xref: /openbsd-src/sys/dev/pci/if_iwn.c (revision 43003dfe3ad45d1698bed8a37f2b0f5b14f20d4f)
1 /*	$OpenBSD: if_iwn.c,v 1.63 2009/09/20 20:04:07 damien Exp $	*/
2 
3 /*-
4  * Copyright (c) 2007-2009 Damien Bergamini <damien.bergamini@free.fr>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 /*
20  * Driver for Intel Wireless WiFi Link 4965 and Intel WiFi Link 5000 Series
21  * 802.11 network adapters.
22  */
23 
24 #include "bpfilter.h"
25 
26 #include <sys/param.h>
27 #include <sys/sockio.h>
28 #include <sys/sysctl.h>
29 #include <sys/mbuf.h>
30 #include <sys/kernel.h>
31 #include <sys/socket.h>
32 #include <sys/systm.h>
33 #include <sys/malloc.h>
34 #include <sys/conf.h>
35 #include <sys/device.h>
36 #include <sys/sensors.h>
37 
38 #include <machine/bus.h>
39 #include <machine/endian.h>
40 #include <machine/intr.h>
41 
42 #include <dev/pci/pcireg.h>
43 #include <dev/pci/pcivar.h>
44 #include <dev/pci/pcidevs.h>
45 
46 #if NBPFILTER > 0
47 #include <net/bpf.h>
48 #endif
49 #include <net/if.h>
50 #include <net/if_arp.h>
51 #include <net/if_dl.h>
52 #include <net/if_media.h>
53 #include <net/if_types.h>
54 
55 #include <netinet/in.h>
56 #include <netinet/in_systm.h>
57 #include <netinet/in_var.h>
58 #include <netinet/if_ether.h>
59 #include <netinet/ip.h>
60 
61 #include <net80211/ieee80211_var.h>
62 #include <net80211/ieee80211_amrr.h>
63 #include <net80211/ieee80211_radiotap.h>
64 
65 #include <dev/pci/if_iwnreg.h>
66 #include <dev/pci/if_iwnvar.h>
67 
68 static const struct pci_matchid iwn_devices[] = {
69 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WIFI_LINK_4965_1 },
70 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WIFI_LINK_4965_2 },
71 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WIFI_LINK_5100_1 },
72 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WIFI_LINK_5100_2 },
73 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WIFI_LINK_5150_1 },
74 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WIFI_LINK_5150_2 },
75 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WIFI_LINK_5300_1 },
76 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WIFI_LINK_5300_2 },
77 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WIFI_LINK_5350_1 },
78 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WIFI_LINK_5350_2 },
79 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WIFI_LINK_6000_1 },
80 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WIFI_LINK_6000_2 },
81 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WIFI_LINK_6000_3 },
82 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WIFI_LINK_6000_4 },
83 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WIFI_LINK_6000_5 },
84 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WIFI_LINK_6000_6 },
85 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WIFI_LINK_6050_1 },
86 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WIFI_LINK_6050_2 },
87 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WIFI_LINK_6050_3 },
88 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WIFI_LINK_6050_4 },
89 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WIFI_LINK_1000_1 },
90 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WIFI_LINK_1000_2 }
91 };
92 
93 int		iwn_match(struct device *, void *, void *);
94 void		iwn_attach(struct device *, struct device *, void *);
95 const struct	iwn_hal *iwn_hal_attach(struct iwn_softc *);
96 #ifndef SMALL_KERNEL
97 void		iwn_sensor_attach(struct iwn_softc *);
98 #endif
99 #if NBPFILTER > 0
100 void		iwn_radiotap_attach(struct iwn_softc *);
101 #endif
102 int		iwn_detach(struct device *, int);
103 void		iwn_power(int, void *);
104 int		iwn_nic_lock(struct iwn_softc *);
105 int		iwn_eeprom_lock(struct iwn_softc *);
106 int		iwn_init_otprom(struct iwn_softc *);
107 int		iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
108 int		iwn_dma_contig_alloc(bus_dma_tag_t, struct iwn_dma_info *,
109 		    void **, bus_size_t, bus_size_t);
110 void		iwn_dma_contig_free(struct iwn_dma_info *);
111 int		iwn_alloc_sched(struct iwn_softc *);
112 void		iwn_free_sched(struct iwn_softc *);
113 int		iwn_alloc_kw(struct iwn_softc *);
114 void		iwn_free_kw(struct iwn_softc *);
115 int		iwn_alloc_fwmem(struct iwn_softc *);
116 void		iwn_free_fwmem(struct iwn_softc *);
117 int		iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
118 void		iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
119 void		iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
120 int		iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
121 		    int);
122 void		iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
123 void		iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
124 int		iwn_read_eeprom(struct iwn_softc *);
125 void		iwn4965_read_eeprom(struct iwn_softc *);
126 void		iwn4965_print_power_group(struct iwn_softc *, int);
127 void		iwn5000_read_eeprom(struct iwn_softc *);
128 void		iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t);
129 struct		ieee80211_node *iwn_node_alloc(struct ieee80211com *);
130 void		iwn_newassoc(struct ieee80211com *, struct ieee80211_node *,
131 		    int);
132 int		iwn_media_change(struct ifnet *);
133 int		iwn_newstate(struct ieee80211com *, enum ieee80211_state, int);
134 void		iwn_iter_func(void *, struct ieee80211_node *);
135 void		iwn_calib_timeout(void *);
136 int		iwn_ccmp_decap(struct iwn_softc *, struct mbuf *,
137 		    struct ieee80211_key *);
138 void		iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *,
139 		    struct iwn_rx_data *);
140 void		iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
141 		    struct iwn_rx_data *);
142 void		iwn5000_rx_calib_results(struct iwn_softc *,
143 		    struct iwn_rx_desc *, struct iwn_rx_data *);
144 void		iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *,
145 		    struct iwn_rx_data *);
146 void		iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
147 		    struct iwn_rx_data *);
148 void		iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
149 		    struct iwn_rx_data *);
150 void		iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int,
151 		    uint8_t);
152 void		iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
153 void		iwn_notif_intr(struct iwn_softc *);
154 void		iwn_wakeup_intr(struct iwn_softc *);
155 void		iwn_fatal_intr(struct iwn_softc *);
156 int		iwn_intr(void *);
157 void		iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
158 		    uint16_t);
159 void		iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
160 		    uint16_t);
161 void		iwn5000_reset_sched(struct iwn_softc *, int, int);
162 int		iwn_tx(struct iwn_softc *, struct mbuf *,
163 		    struct ieee80211_node *);
164 void		iwn_start(struct ifnet *);
165 void		iwn_watchdog(struct ifnet *);
166 int		iwn_ioctl(struct ifnet *, u_long, caddr_t);
167 int		iwn_cmd(struct iwn_softc *, int, const void *, int, int);
168 int		iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
169 		    int);
170 int		iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
171 		    int);
172 int		iwn_set_link_quality(struct iwn_softc *,
173 		    struct ieee80211_node *);
174 int		iwn_add_broadcast_node(struct iwn_softc *, int);
175 void		iwn_updateedca(struct ieee80211com *);
176 void		iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
177 int		iwn_set_critical_temp(struct iwn_softc *);
178 int		iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
179 void		iwn4965_power_calibration(struct iwn_softc *, int);
180 int		iwn4965_set_txpower(struct iwn_softc *, int);
181 int		iwn5000_set_txpower(struct iwn_softc *, int);
182 int		iwn4965_get_rssi(const struct iwn_rx_stat *);
183 int		iwn5000_get_rssi(const struct iwn_rx_stat *);
184 int		iwn_get_noise(const struct iwn_rx_general_stats *);
185 int		iwn4965_get_temperature(struct iwn_softc *);
186 int		iwn5000_get_temperature(struct iwn_softc *);
187 int		iwn_init_sensitivity(struct iwn_softc *);
188 void		iwn_collect_noise(struct iwn_softc *,
189 		    const struct iwn_rx_general_stats *);
190 int		iwn4965_init_gains(struct iwn_softc *);
191 int		iwn5000_init_gains(struct iwn_softc *);
192 int		iwn4965_set_gains(struct iwn_softc *);
193 int		iwn5000_set_gains(struct iwn_softc *);
194 void		iwn_tune_sensitivity(struct iwn_softc *,
195 		    const struct iwn_rx_stats *);
196 int		iwn_send_sensitivity(struct iwn_softc *);
197 int		iwn_set_pslevel(struct iwn_softc *, int, int, int);
198 int		iwn_config(struct iwn_softc *);
199 int		iwn_scan(struct iwn_softc *, uint16_t);
200 int		iwn_auth(struct iwn_softc *);
201 int		iwn_run(struct iwn_softc *);
202 int		iwn_set_key(struct ieee80211com *, struct ieee80211_node *,
203 		    struct ieee80211_key *);
204 void		iwn_delete_key(struct ieee80211com *, struct ieee80211_node *,
205 		    struct ieee80211_key *);
206 #ifndef IEEE80211_NO_HT
207 int		iwn_ampdu_rx_start(struct ieee80211com *,
208 		    struct ieee80211_node *, uint8_t);
209 void		iwn_ampdu_rx_stop(struct ieee80211com *,
210 		    struct ieee80211_node *, uint8_t);
211 int		iwn_ampdu_tx_start(struct ieee80211com *,
212 		    struct ieee80211_node *, uint8_t);
213 void		iwn_ampdu_tx_stop(struct ieee80211com *,
214 		    struct ieee80211_node *, uint8_t);
215 void		iwn4965_ampdu_tx_start(struct iwn_softc *,
216 		    struct ieee80211_node *, uint8_t, uint16_t);
217 void		iwn4965_ampdu_tx_stop(struct iwn_softc *,
218 		    uint8_t, uint16_t);
219 void		iwn5000_ampdu_tx_start(struct iwn_softc *,
220 		    struct ieee80211_node *, uint8_t, uint16_t);
221 void		iwn5000_ampdu_tx_stop(struct iwn_softc *,
222 		    uint8_t, uint16_t);
223 #endif
224 int		iwn5000_query_calibration(struct iwn_softc *);
225 int		iwn5000_send_calibration(struct iwn_softc *);
226 int		iwn4965_post_alive(struct iwn_softc *);
227 int		iwn5000_post_alive(struct iwn_softc *);
228 int		iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
229 		    int);
230 int		iwn4965_load_firmware(struct iwn_softc *);
231 int		iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
232 		    const uint8_t *, int);
233 int		iwn5000_load_firmware(struct iwn_softc *);
234 int		iwn_read_firmware(struct iwn_softc *);
235 int		iwn_clock_wait(struct iwn_softc *);
236 int		iwn4965_apm_init(struct iwn_softc *);
237 int		iwn5000_apm_init(struct iwn_softc *);
238 void		iwn_apm_stop_master(struct iwn_softc *);
239 void		iwn_apm_stop(struct iwn_softc *);
240 int		iwn4965_nic_config(struct iwn_softc *);
241 int		iwn5000_nic_config(struct iwn_softc *);
242 int		iwn_hw_prepare(struct iwn_softc *);
243 int		iwn_hw_init(struct iwn_softc *);
244 void		iwn_hw_stop(struct iwn_softc *);
245 int		iwn_init(struct ifnet *);
246 void		iwn_stop(struct ifnet *, int);
247 
248 #ifdef IWN_DEBUG
249 #define DPRINTF(x)	do { if (iwn_debug > 0) printf x; } while (0)
250 #define DPRINTFN(n, x)	do { if (iwn_debug >= (n)) printf x; } while (0)
251 int iwn_debug = 0;
252 #else
253 #define DPRINTF(x)
254 #define DPRINTFN(n, x)
255 #endif
256 
257 static const struct iwn_hal iwn4965_hal = {
258 	iwn4965_load_firmware,
259 	iwn4965_read_eeprom,
260 	iwn4965_post_alive,
261 	iwn4965_apm_init,
262 	iwn4965_nic_config,
263 	iwn4965_update_sched,
264 	iwn4965_get_temperature,
265 	iwn4965_get_rssi,
266 	iwn4965_set_txpower,
267 	iwn4965_init_gains,
268 	iwn4965_set_gains,
269 	iwn4965_add_node,
270 	iwn4965_tx_done,
271 #ifndef IEEE80211_NO_HT
272 	iwn4965_ampdu_tx_start,
273 	iwn4965_ampdu_tx_stop,
274 #endif
275 	&iwn4965_sensitivity_limits,
276 	IWN4965_NTXQUEUES,
277 	IWN4965_NDMACHNLS,
278 	IWN4965_ID_BROADCAST,
279 	IWN4965_RXONSZ,
280 	IWN4965_SCHEDSZ,
281 	IWN4965_FW_TEXT_MAXSZ,
282 	IWN4965_FW_DATA_MAXSZ,
283 	IWN4965_FWSZ,
284 	IWN4965_SCHED_TXFACT
285 };
286 
287 static const struct iwn_hal iwn5000_hal = {
288 	iwn5000_load_firmware,
289 	iwn5000_read_eeprom,
290 	iwn5000_post_alive,
291 	iwn5000_apm_init,
292 	iwn5000_nic_config,
293 	iwn5000_update_sched,
294 	iwn5000_get_temperature,
295 	iwn5000_get_rssi,
296 	iwn5000_set_txpower,
297 	iwn5000_init_gains,
298 	iwn5000_set_gains,
299 	iwn5000_add_node,
300 	iwn5000_tx_done,
301 #ifndef IEEE80211_NO_HT
302 	iwn5000_ampdu_tx_start,
303 	iwn5000_ampdu_tx_stop,
304 #endif
305 	&iwn5000_sensitivity_limits,
306 	IWN5000_NTXQUEUES,
307 	IWN5000_NDMACHNLS,
308 	IWN5000_ID_BROADCAST,
309 	IWN5000_RXONSZ,
310 	IWN5000_SCHEDSZ,
311 	IWN5000_FW_TEXT_MAXSZ,
312 	IWN5000_FW_DATA_MAXSZ,
313 	IWN5000_FWSZ,
314 	IWN5000_SCHED_TXFACT
315 };
316 
317 struct cfdriver iwn_cd = {
318 	NULL, "iwn", DV_IFNET
319 };
320 
321 struct cfattach iwn_ca = {
322 	sizeof (struct iwn_softc), iwn_match, iwn_attach, iwn_detach
323 };
324 
325 int
326 iwn_match(struct device *parent, void *match, void *aux)
327 {
328 	return pci_matchbyid((struct pci_attach_args *)aux, iwn_devices,
329 	    nitems(iwn_devices));
330 }
331 
332 void
333 iwn_attach(struct device *parent, struct device *self, void *aux)
334 {
335 	struct iwn_softc *sc = (struct iwn_softc *)self;
336 	struct ieee80211com *ic = &sc->sc_ic;
337 	struct ifnet *ifp = &ic->ic_if;
338 	struct pci_attach_args *pa = aux;
339 	const struct iwn_hal *hal;
340 	const char *intrstr;
341 	pci_intr_handle_t ih;
342 	pcireg_t memtype, reg;
343 	int i, error;
344 
345 	sc->sc_pct = pa->pa_pc;
346 	sc->sc_pcitag = pa->pa_tag;
347 	sc->sc_dmat = pa->pa_dmat;
348 
349 	/*
350 	 * Get the offset of the PCI Express Capability Structure in PCI
351 	 * Configuration Space.
352 	 */
353 	error = pci_get_capability(sc->sc_pct, sc->sc_pcitag,
354 	    PCI_CAP_PCIEXPRESS, &sc->sc_cap_off, NULL);
355 	if (error == 0) {
356 		printf(": PCIe capability structure not found!\n");
357 		return;
358 	}
359 
360 	/* Clear device-specific "PCI retry timeout" register (41h). */
361 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
362 	reg &= ~0xff00;
363 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg);
364 
365 	/* Hardware bug workaround. */
366 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
367 	if (reg & PCI_COMMAND_INTERRUPT_DISABLE) {
368 		DPRINTF(("PCIe INTx Disable set\n"));
369 		reg &= ~PCI_COMMAND_INTERRUPT_DISABLE;
370 		pci_conf_write(sc->sc_pct, sc->sc_pcitag,
371 		    PCI_COMMAND_STATUS_REG, reg);
372 	}
373 
374 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, IWN_PCI_BAR0);
375 	error = pci_mapreg_map(pa, IWN_PCI_BAR0, memtype, 0, &sc->sc_st,
376 	    &sc->sc_sh, NULL, &sc->sc_sz, 0);
377 	if (error != 0) {
378 		printf(": can't map mem space\n");
379 		return;
380 	}
381 
382 	/* Install interrupt handler. */
383 	if (pci_intr_map(pa, &ih) != 0) {
384 		printf(": can't map interrupt\n");
385 		return;
386 	}
387 	intrstr = pci_intr_string(sc->sc_pct, ih);
388 	sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, iwn_intr, sc,
389 	    sc->sc_dev.dv_xname);
390 	if (sc->sc_ih == NULL) {
391 		printf(": can't establish interrupt");
392 		if (intrstr != NULL)
393 			printf(" at %s", intrstr);
394 		printf("\n");
395 		return;
396 	}
397 	printf(": %s", intrstr);
398 
399 	/* Attach Hardware Abstraction Layer. */
400 	if ((hal = iwn_hal_attach(sc)) == NULL)
401 		return;
402 
403 	if ((error = iwn_hw_prepare(sc)) != 0) {
404 		printf(": hardware not ready\n");
405 		return;
406 	}
407 
408 	/* Power ON adapter. */
409 	if ((error = hal->apm_init(sc)) != 0) {
410 		printf(": could not power ON adapter\n");
411 		return;
412 	}
413 
414 	/* Read MAC address, channels, etc from EEPROM. */
415 	if ((error = iwn_read_eeprom(sc)) != 0) {
416 		printf(": could not read EEPROM\n");
417 		return;
418 	}
419 
420 	/* Allocate DMA memory for firmware transfers. */
421 	if ((error = iwn_alloc_fwmem(sc)) != 0) {
422 		printf(": could not allocate memory for firmware\n");
423 		return;
424 	}
425 
426 	/* Allocate "Keep Warm" page. */
427 	if ((error = iwn_alloc_kw(sc)) != 0) {
428 		printf(": could not allocate keep warm page\n");
429 		goto fail1;
430 	}
431 
432 	/* Allocate TX scheduler "rings". */
433 	if ((error = iwn_alloc_sched(sc)) != 0) {
434 		printf(": could not allocate TX scheduler rings\n");
435 		goto fail2;
436 	}
437 
438 	/* Allocate TX rings (16 on 4965AGN, 20 on 5000.) */
439 	for (i = 0; i < hal->ntxqs; i++) {
440 		if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
441 			printf(": could not allocate TX ring %d\n", i);
442 			goto fail3;
443 		}
444 	}
445 
446 	/* Allocate RX ring. */
447 	if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) {
448 		printf(": could not allocate RX ring\n");
449 		goto fail3;
450 	}
451 
452 	/* Power OFF adapter. */
453 	iwn_apm_stop(sc);
454 	/* Clear pending interrupts. */
455 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
456 
457 	printf(", MIMO %dT%dR, %.4s, address %s\n", sc->ntxchains,
458 	    sc->nrxchains, sc->eeprom_domain, ether_sprintf(ic->ic_myaddr));
459 
460 	/* Initialization firmware has not been loaded yet. */
461 	sc->sc_flags |= IWN_FLAG_FIRST_BOOT;
462 
463 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
464 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
465 	ic->ic_state = IEEE80211_S_INIT;
466 
467 	/* Set device capabilities. */
468 	ic->ic_caps =
469 	    IEEE80211_C_WEP |		/* WEP */
470 	    IEEE80211_C_RSN |		/* WPA/RSN */
471 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
472 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
473 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
474 	    IEEE80211_C_PMGT;		/* power saving supported */
475 
476 	/* Set supported rates. */
477 	ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
478 	ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
479 	if (sc->sc_flags & IWN_FLAG_HAS_5GHZ) {
480 		ic->ic_sup_rates[IEEE80211_MODE_11A] =
481 		    ieee80211_std_rateset_11a;
482 	}
483 
484 	/* IBSS channel undefined for now. */
485 	ic->ic_ibss_chan = &ic->ic_channels[0];
486 
487 	ifp->if_softc = sc;
488 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
489 	ifp->if_init = iwn_init;
490 	ifp->if_ioctl = iwn_ioctl;
491 	ifp->if_start = iwn_start;
492 	ifp->if_watchdog = iwn_watchdog;
493 	IFQ_SET_READY(&ifp->if_snd);
494 	memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
495 
496 	if_attach(ifp);
497 	ieee80211_ifattach(ifp);
498 	ic->ic_node_alloc = iwn_node_alloc;
499 	ic->ic_newassoc = iwn_newassoc;
500 	ic->ic_updateedca = iwn_updateedca;
501 	ic->ic_set_key = iwn_set_key;
502 	ic->ic_delete_key = iwn_delete_key;
503 #ifndef IEEE80211_NO_HT
504 	ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
505 	ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
506 	ic->ic_ampdu_tx_start = iwn_ampdu_tx_start;
507 	ic->ic_ampdu_tx_stop = iwn_ampdu_tx_stop;
508 #endif
509 
510 	/* Override 802.11 state transition machine. */
511 	sc->sc_newstate = ic->ic_newstate;
512 	ic->ic_newstate = iwn_newstate;
513 	ieee80211_media_init(ifp, iwn_media_change, ieee80211_media_status);
514 
515 	sc->amrr.amrr_min_success_threshold =  1;
516 	sc->amrr.amrr_max_success_threshold = 15;
517 
518 #ifndef SMALL_KERNEL
519 	iwn_sensor_attach(sc);
520 #endif
521 #if NBPFILTER > 0
522 	iwn_radiotap_attach(sc);
523 #endif
524 	timeout_set(&sc->calib_to, iwn_calib_timeout, sc);
525 
526 	sc->powerhook = powerhook_establish(iwn_power, sc);
527 
528 	return;
529 
530 	/* Free allocated memory if something failed during attachment. */
531 fail3:	while (--i >= 0)
532 		iwn_free_tx_ring(sc, &sc->txq[i]);
533 	iwn_free_sched(sc);
534 fail2:	iwn_free_kw(sc);
535 fail1:	iwn_free_fwmem(sc);
536 }
537 
538 const struct iwn_hal *
539 iwn_hal_attach(struct iwn_softc *sc)
540 {
541 	sc->hw_type = (IWN_READ(sc, IWN_HW_REV) >> 4) & 0xf;
542 
543 	switch (sc->hw_type) {
544 	case IWN_HW_REV_TYPE_4965:
545 		sc->sc_hal = &iwn4965_hal;
546 		sc->fwname = "iwn-4965";
547 		sc->critical_temp = IWN_CTOK(110);
548 		sc->txantmsk = IWN_ANT_A | IWN_ANT_B;
549 		sc->rxantmsk = IWN_ANT_ABC;
550 		sc->ntxchains = 2;
551 		sc->nrxchains = 3;
552 		break;
553 	case IWN_HW_REV_TYPE_5100:
554 		sc->sc_hal = &iwn5000_hal;
555 		sc->fwname = "iwn-5000";
556 		sc->critical_temp = 110;
557 		sc->txantmsk = IWN_ANT_B;
558 		sc->rxantmsk = IWN_ANT_A | IWN_ANT_B;
559 		sc->ntxchains = 1;
560 		sc->nrxchains = 2;
561 		break;
562 	case IWN_HW_REV_TYPE_5150:
563 		sc->sc_hal = &iwn5000_hal;
564 		sc->fwname = "iwn-5150";
565 		/* NB: critical temperature will be read from EEPROM. */
566 		sc->txantmsk = IWN_ANT_A;
567 		sc->rxantmsk = IWN_ANT_A | IWN_ANT_B;
568 		sc->ntxchains = 1;
569 		sc->nrxchains = 2;
570 		break;
571 	case IWN_HW_REV_TYPE_5300:
572 	case IWN_HW_REV_TYPE_5350:
573 		sc->sc_hal = &iwn5000_hal;
574 		sc->fwname = "iwn-5000";
575 		sc->critical_temp = 110;
576 		sc->txantmsk = sc->rxantmsk = IWN_ANT_ABC;
577 		sc->ntxchains = sc->nrxchains = 3;
578 		break;
579 	case IWN_HW_REV_TYPE_1000:
580 		sc->sc_hal = &iwn5000_hal;
581 		sc->fwname = "iwn-1000";
582 		sc->critical_temp = 110;
583 		sc->txantmsk = IWN_ANT_A;
584 		sc->rxantmsk = IWN_ANT_A | IWN_ANT_B;
585 		sc->ntxchains = 1;
586 		sc->nrxchains = 2;
587 		break;
588 	case IWN_HW_REV_TYPE_6000:
589 		sc->sc_hal = &iwn5000_hal;
590 		sc->fwname = "iwn-6000";
591 		sc->critical_temp = 110;
592 		sc->txantmsk = IWN_ANT_ABC;
593 		sc->rxantmsk = IWN_ANT_ABC;
594 		sc->ntxchains = 3;
595 		sc->nrxchains = 3;
596 		break;
597 	case IWN_HW_REV_TYPE_6050:
598 		sc->sc_hal = &iwn5000_hal;
599 		sc->fwname = "iwn-6050";
600 		sc->critical_temp = 110;
601 		sc->txantmsk = IWN_ANT_ABC;
602 		sc->rxantmsk = IWN_ANT_ABC;
603 		sc->ntxchains = 3;
604 		sc->nrxchains = 3;
605 		break;
606 	default:
607 		printf(": adapter type %d not supported\n", sc->hw_type);
608 		return NULL;
609 	}
610 	return sc->sc_hal;
611 }
612 
613 #ifndef SMALL_KERNEL
614 /*
615  * Attach the adapter's on-board thermal sensor to the sensors framework.
616  */
617 void
618 iwn_sensor_attach(struct iwn_softc *sc)
619 {
620 	strlcpy(sc->sensordev.xname, sc->sc_dev.dv_xname,
621 	    sizeof sc->sensordev.xname);
622 	sc->sensor.type = SENSOR_TEMP;
623 	/* Temperature is not valid unless interface is up. */
624 	sc->sensor.flags = SENSOR_FINVALID;
625 	sensor_attach(&sc->sensordev, &sc->sensor);
626 	sensordev_install(&sc->sensordev);
627 }
628 #endif
629 
630 #if NBPFILTER > 0
631 /*
632  * Attach the interface to 802.11 radiotap.
633  */
634 void
635 iwn_radiotap_attach(struct iwn_softc *sc)
636 {
637 	bpfattach(&sc->sc_drvbpf, &sc->sc_ic.ic_if, DLT_IEEE802_11_RADIO,
638 	    sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN);
639 
640 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
641 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
642 	sc->sc_rxtap.wr_ihdr.it_present = htole32(IWN_RX_RADIOTAP_PRESENT);
643 
644 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
645 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
646 	sc->sc_txtap.wt_ihdr.it_present = htole32(IWN_TX_RADIOTAP_PRESENT);
647 }
648 #endif
649 
650 int
651 iwn_detach(struct device *self, int flags)
652 {
653 	struct iwn_softc *sc = (struct iwn_softc *)self;
654 	struct ifnet *ifp = &sc->sc_ic.ic_if;
655 	int s, qid;
656 
657 	s = splnet();
658 	timeout_del(&sc->calib_to);
659 
660 	/* Uninstall interrupt handler. */
661 	if (sc->sc_ih != NULL)
662 		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
663 
664 	ieee80211_ifdetach(ifp);
665  	if_detach(ifp);
666 	splx(s);
667 
668 	/* Free DMA resources. */
669 	iwn_free_rx_ring(sc, &sc->rxq);
670 	for (qid = 0; qid < sc->sc_hal->ntxqs; qid++)
671 		iwn_free_tx_ring(sc, &sc->txq[qid]);
672 	iwn_free_sched(sc);
673 	iwn_free_kw(sc);
674 	iwn_free_fwmem(sc);
675 
676 #ifndef SMALL_KERNEL
677 	/* Detach the thermal sensor. */
678 	sensor_detach(&sc->sensordev, &sc->sensor);
679 	sensordev_deinstall(&sc->sensordev);
680 #endif
681 
682 	if (sc->powerhook != NULL)
683 		powerhook_disestablish(sc->powerhook);
684 
685 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
686 
687 	return 0;
688 }
689 
690 void
691 iwn_power(int why, void *arg)
692 {
693 	struct iwn_softc *sc = arg;
694 	struct ifnet *ifp;
695 	pcireg_t reg;
696 	int s;
697 
698 	if (why != PWR_RESUME)
699 		return;
700 
701 	/* Clear device-specific "PCI retry timeout" register (41h). */
702 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
703 	reg &= ~0xff00;
704 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg);
705 
706 	s = splnet();
707 	ifp = &sc->sc_ic.ic_if;
708 	if (ifp->if_flags & IFF_UP) {
709 		ifp->if_init(ifp);
710 		if (ifp->if_flags & IFF_RUNNING)
711 			ifp->if_start(ifp);
712 	}
713 	splx(s);
714 }
715 
716 int
717 iwn_nic_lock(struct iwn_softc *sc)
718 {
719 	int ntries;
720 
721 	/* Request exclusive access to NIC. */
722 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
723 
724 	/* Spin until we actually get the lock. */
725 	for (ntries = 0; ntries < 1000; ntries++) {
726 		if ((IWN_READ(sc, IWN_GP_CNTRL) &
727 		     (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
728 		    IWN_GP_CNTRL_MAC_ACCESS_ENA)
729 			return 0;
730 		DELAY(10);
731 	}
732 	return ETIMEDOUT;
733 }
734 
735 static __inline void
736 iwn_nic_unlock(struct iwn_softc *sc)
737 {
738 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
739 }
740 
741 static __inline uint32_t
742 iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
743 {
744 	IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
745 	return IWN_READ(sc, IWN_PRPH_RDATA);
746 }
747 
748 static __inline void
749 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
750 {
751 	IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
752 	IWN_WRITE(sc, IWN_PRPH_WDATA, data);
753 }
754 
755 static __inline void
756 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
757 {
758 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
759 }
760 
761 static __inline void
762 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
763 {
764 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
765 }
766 
767 static __inline void
768 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
769     const uint32_t *data, int count)
770 {
771 	for (; count > 0; count--, data++, addr += 4)
772 		iwn_prph_write(sc, addr, *data);
773 }
774 
775 static __inline uint32_t
776 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
777 {
778 	IWN_WRITE(sc, IWN_MEM_RADDR, addr);
779 	return IWN_READ(sc, IWN_MEM_RDATA);
780 }
781 
782 static __inline void
783 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
784 {
785 	IWN_WRITE(sc, IWN_MEM_WADDR, addr);
786 	IWN_WRITE(sc, IWN_MEM_WDATA, data);
787 }
788 
789 static __inline void
790 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
791 {
792 	uint32_t tmp;
793 
794 	tmp = iwn_mem_read(sc, addr & ~3);
795 	if (addr & 3)
796 		tmp = (tmp & 0x0000ffff) | data << 16;
797 	else
798 		tmp = (tmp & 0xffff0000) | data;
799 	iwn_mem_write(sc, addr & ~3, tmp);
800 }
801 
802 static __inline void
803 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
804     int count)
805 {
806 	for (; count > 0; count--, addr += 4)
807 		*data++ = iwn_mem_read(sc, addr);
808 }
809 
810 static __inline void
811 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
812     int count)
813 {
814 	for (; count > 0; count--, addr += 4)
815 		iwn_mem_write(sc, addr, val);
816 }
817 
818 int
819 iwn_eeprom_lock(struct iwn_softc *sc)
820 {
821 	int i, ntries;
822 
823 	for (i = 0; i < 100; i++) {
824 		/* Request exclusive access to EEPROM. */
825 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
826 		    IWN_HW_IF_CONFIG_EEPROM_LOCKED);
827 
828 		/* Spin until we actually get the lock. */
829 		for (ntries = 0; ntries < 100; ntries++) {
830 			if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
831 			    IWN_HW_IF_CONFIG_EEPROM_LOCKED)
832 				return 0;
833 			DELAY(10);
834 		}
835 	}
836 	return ETIMEDOUT;
837 }
838 
839 static __inline void
840 iwn_eeprom_unlock(struct iwn_softc *sc)
841 {
842 	IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
843 }
844 
845 /*
846  * Initialize access by host to One Time Programmable ROM.
847  * NB: This kind of ROM can be found on 1000 or 6000 Series only.
848  */
849 int
850 iwn_init_otprom(struct iwn_softc *sc)
851 {
852 	int error;
853 
854 	if ((error = iwn_clock_wait(sc)) != 0)
855 		return error;
856 
857 	if ((error = iwn_nic_lock(sc)) != 0)
858 		return error;
859 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
860 	DELAY(5);
861 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
862 	iwn_nic_unlock(sc);
863 
864 	IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
865 	/* Clear ECC status. */
866 	IWN_SETBITS(sc, IWN_OTP_GP,
867 	    IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
868 
869 	return 0;
870 }
871 
872 int
873 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
874 {
875 	uint8_t *out = data;
876 	uint32_t val, tmp;
877 	int ntries;
878 
879 	for (; count > 0; count -= 2, addr++) {
880 		IWN_WRITE(sc, IWN_EEPROM, addr << 2);
881 		for (ntries = 0; ntries < 10; ntries++) {
882 			val = IWN_READ(sc, IWN_EEPROM);
883 			if (val & IWN_EEPROM_READ_VALID)
884 				break;
885 			DELAY(5);
886 		}
887 		if (ntries == 10) {
888 			printf("%s: timeout reading ROM at 0x%x\n",
889 			    sc->sc_dev.dv_xname, addr);
890 			return ETIMEDOUT;
891 		}
892 		if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
893 			/* OTPROM, check for ECC errors. */
894 			tmp = IWN_READ(sc, IWN_OTP_GP);
895 			if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
896 				printf("%s: OTPROM ECC error at 0x%x\n",
897 				    sc->sc_dev.dv_xname, addr);
898 				return EIO;
899 			}
900 			if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
901 				/* Correctable ECC error, clear bit. */
902 				IWN_SETBITS(sc, IWN_OTP_GP,
903 				    IWN_OTP_GP_ECC_CORR_STTS);
904 			}
905 		}
906 		*out++ = val >> 16;
907 		if (count > 1)
908 			*out++ = val >> 24;
909 	}
910 	return 0;
911 }
912 
913 int
914 iwn_dma_contig_alloc(bus_dma_tag_t tag, struct iwn_dma_info *dma, void **kvap,
915     bus_size_t size, bus_size_t alignment)
916 {
917 	int nsegs, error;
918 
919 	dma->tag = tag;
920 	dma->size = size;
921 
922 	error = bus_dmamap_create(tag, size, 1, size, 0, BUS_DMA_NOWAIT,
923 	    &dma->map);
924 	if (error != 0)
925 		goto fail;
926 
927 	error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
928 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO);
929 	if (error != 0)
930 		goto fail;
931 
932 	error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr,
933 	    BUS_DMA_NOWAIT);
934 	if (error != 0)
935 		goto fail;
936 
937 	error = bus_dmamap_load_raw(tag, dma->map, &dma->seg, 1, size,
938 	    BUS_DMA_NOWAIT);
939 	if (error != 0)
940 		goto fail;
941 
942 	bus_dmamap_sync(tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
943 
944 	dma->paddr = dma->map->dm_segs[0].ds_addr;
945 	if (kvap != NULL)
946 		*kvap = dma->vaddr;
947 
948 	return 0;
949 
950 fail:	iwn_dma_contig_free(dma);
951 	return error;
952 }
953 
954 void
955 iwn_dma_contig_free(struct iwn_dma_info *dma)
956 {
957 	if (dma->map != NULL) {
958 		if (dma->vaddr != NULL) {
959 			bus_dmamap_sync(dma->tag, dma->map, 0, dma->size,
960 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
961 			bus_dmamap_unload(dma->tag, dma->map);
962 			bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
963 			bus_dmamem_free(dma->tag, &dma->seg, 1);
964 			dma->vaddr = NULL;
965 		}
966 		bus_dmamap_destroy(dma->tag, dma->map);
967 		dma->map = NULL;
968 	}
969 }
970 
971 int
972 iwn_alloc_sched(struct iwn_softc *sc)
973 {
974 	/* TX scheduler rings must be aligned on a 1KB boundary. */
975 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->sched_dma,
976 	    (void **)&sc->sched, sc->sc_hal->schedsz, 1024);
977 }
978 
979 void
980 iwn_free_sched(struct iwn_softc *sc)
981 {
982 	iwn_dma_contig_free(&sc->sched_dma);
983 }
984 
985 int
986 iwn_alloc_kw(struct iwn_softc *sc)
987 {
988 	/* "Keep Warm" page must be aligned on a 4KB boundary. */
989 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, NULL, 4096,
990 	    4096);
991 }
992 
993 void
994 iwn_free_kw(struct iwn_softc *sc)
995 {
996 	iwn_dma_contig_free(&sc->kw_dma);
997 }
998 
999 int
1000 iwn_alloc_fwmem(struct iwn_softc *sc)
1001 {
1002 	/* Must be aligned on a 16-byte boundary. */
1003 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
1004 	    sc->sc_hal->fwsz, 16);
1005 }
1006 
1007 void
1008 iwn_free_fwmem(struct iwn_softc *sc)
1009 {
1010 	iwn_dma_contig_free(&sc->fw_dma);
1011 }
1012 
1013 int
1014 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1015 {
1016 	bus_size_t size;
1017 	int i, error;
1018 
1019 	ring->cur = 0;
1020 
1021 	/* Allocate RX descriptors (256-byte aligned.) */
1022 	size = IWN_RX_RING_COUNT * sizeof (uint32_t);
1023 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
1024 	    (void **)&ring->desc, size, 256);
1025 	if (error != 0) {
1026 		printf("%s: could not allocate RX ring DMA memory\n",
1027 		    sc->sc_dev.dv_xname);
1028 		goto fail;
1029 	}
1030 
1031 	/* Allocate RX status area (16-byte aligned.) */
1032 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma,
1033 	    (void **)&ring->stat, sizeof (struct iwn_rx_status), 16);
1034 	if (error != 0) {
1035 		printf("%s: could not allocate RX status DMA memory\n",
1036 		    sc->sc_dev.dv_xname);
1037 		goto fail;
1038 	}
1039 
1040 	/*
1041 	 * Allocate and map RX buffers.
1042 	 */
1043 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1044 		struct iwn_rx_data *data = &ring->data[i];
1045 
1046 		error = bus_dmamap_create(sc->sc_dmat, IWN_RBUF_SIZE, 1,
1047 		    IWN_RBUF_SIZE, 0, BUS_DMA_NOWAIT, &data->map);
1048 		if (error != 0) {
1049 			printf("%s: could not create RX buf DMA map\n",
1050 			    sc->sc_dev.dv_xname);
1051 			goto fail;
1052 		}
1053 
1054 		data->m = MCLGETI(NULL, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
1055 		if (data->m == NULL) {
1056 			printf("%s: could not allocate RX mbuf\n",
1057 			    sc->sc_dev.dv_xname);
1058 			error = ENOBUFS;
1059 			goto fail;
1060 		}
1061 
1062 		error = bus_dmamap_load(sc->sc_dmat, data->map,
1063 		    mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
1064 		    BUS_DMA_NOWAIT);
1065 		if (error != 0) {
1066 			printf("%s: can't not map mbuf (error %d)\n",
1067 			    sc->sc_dev.dv_xname, error);
1068 			goto fail;
1069 		}
1070 
1071 		/* Set physical address of RX buffer (256-byte aligned.) */
1072 		ring->desc[i] = htole32(data->map->dm_segs[0].ds_addr >> 8);
1073 	}
1074 
1075 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size,
1076 	    BUS_DMASYNC_PREWRITE);
1077 
1078 	return 0;
1079 
1080 fail:	iwn_free_rx_ring(sc, ring);
1081 	return error;
1082 }
1083 
1084 void
1085 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1086 {
1087 	int ntries;
1088 
1089 	if (iwn_nic_lock(sc) == 0) {
1090 		IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
1091 		for (ntries = 0; ntries < 1000; ntries++) {
1092 			if (IWN_READ(sc, IWN_FH_RX_STATUS) &
1093 			    IWN_FH_RX_STATUS_IDLE)
1094 				break;
1095 			DELAY(10);
1096 		}
1097 		iwn_nic_unlock(sc);
1098 	}
1099 	ring->cur = 0;
1100 	sc->last_rx_valid = 0;
1101 }
1102 
1103 void
1104 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1105 {
1106 	int i;
1107 
1108 	iwn_dma_contig_free(&ring->desc_dma);
1109 	iwn_dma_contig_free(&ring->stat_dma);
1110 
1111 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1112 		struct iwn_rx_data *data = &ring->data[i];
1113 
1114 		if (data->m != NULL) {
1115 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1116 			    data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1117 			bus_dmamap_unload(sc->sc_dmat, data->map);
1118 			m_freem(data->m);
1119 		}
1120 		if (data->map != NULL)
1121 			bus_dmamap_destroy(sc->sc_dmat, data->map);
1122 	}
1123 }
1124 
1125 int
1126 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
1127 {
1128 	bus_addr_t paddr;
1129 	bus_size_t size;
1130 	int i, error;
1131 
1132 	ring->qid = qid;
1133 	ring->queued = 0;
1134 	ring->cur = 0;
1135 
1136 	/* Allocate TX descriptors (256-byte aligned.) */
1137 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc);
1138 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
1139 	    (void **)&ring->desc, size, 256);
1140 	if (error != 0) {
1141 		printf("%s: could not allocate TX ring DMA memory\n",
1142 		    sc->sc_dev.dv_xname);
1143 		goto fail;
1144 	}
1145 	/*
1146 	 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need
1147 	 * to allocate commands space for other rings.
1148 	 * XXX Do we really need to allocate descriptors for other rings?
1149 	 */
1150 	if (qid > 4)
1151 		return 0;
1152 
1153 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd);
1154 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
1155 	    (void **)&ring->cmd, size, 4);
1156 	if (error != 0) {
1157 		printf("%s: could not allocate TX cmd DMA memory\n",
1158 		    sc->sc_dev.dv_xname);
1159 		goto fail;
1160 	}
1161 
1162 	paddr = ring->cmd_dma.paddr;
1163 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1164 		struct iwn_tx_data *data = &ring->data[i];
1165 
1166 		data->cmd_paddr = paddr;
1167 		data->scratch_paddr = paddr + 12;
1168 		paddr += sizeof (struct iwn_tx_cmd);
1169 
1170 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
1171 		    IWN_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
1172 		    &data->map);
1173 		if (error != 0) {
1174 			printf("%s: could not create TX buf DMA map\n",
1175 			    sc->sc_dev.dv_xname);
1176 			goto fail;
1177 		}
1178 	}
1179 	return 0;
1180 
1181 fail:	iwn_free_tx_ring(sc, ring);
1182 	return error;
1183 }
1184 
1185 void
1186 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1187 {
1188 	int i;
1189 
1190 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1191 		struct iwn_tx_data *data = &ring->data[i];
1192 
1193 		if (data->m != NULL) {
1194 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1195 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1196 			bus_dmamap_unload(sc->sc_dmat, data->map);
1197 			m_freem(data->m);
1198 			data->m = NULL;
1199 		}
1200 	}
1201 	/* Clear TX descriptors. */
1202 	memset(ring->desc, 0, ring->desc_dma.size);
1203 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
1204 	    ring->desc_dma.size, BUS_DMASYNC_PREWRITE);
1205 	sc->qfullmsk &= ~(1 << ring->qid);
1206 	ring->queued = 0;
1207 	ring->cur = 0;
1208 }
1209 
1210 void
1211 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1212 {
1213 	int i;
1214 
1215 	iwn_dma_contig_free(&ring->desc_dma);
1216 	iwn_dma_contig_free(&ring->cmd_dma);
1217 
1218 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1219 		struct iwn_tx_data *data = &ring->data[i];
1220 
1221 		if (data->m != NULL) {
1222 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1223 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1224 			bus_dmamap_unload(sc->sc_dmat, data->map);
1225 			m_freem(data->m);
1226 		}
1227 		if (data->map != NULL)
1228 			bus_dmamap_destroy(sc->sc_dmat, data->map);
1229 	}
1230 }
1231 
1232 int
1233 iwn_read_eeprom(struct iwn_softc *sc)
1234 {
1235 	const struct iwn_hal *hal = sc->sc_hal;
1236 	struct ieee80211com *ic = &sc->sc_ic;
1237 	uint16_t val;
1238 	int error;
1239 
1240 	/* Check whether adapter has an EEPROM or an OTPROM. */
1241 	if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
1242 	    (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
1243 		sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
1244 	DPRINTF(("%s found\n", (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ?
1245 	    "OTPROM" : "EEPROM"));
1246 
1247 	if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
1248 		printf("%s: bad ROM signature\n", sc->sc_dev.dv_xname);
1249 		return EIO;
1250 	}
1251 	if ((error = iwn_eeprom_lock(sc)) != 0) {
1252 		printf("%s: could not lock ROM (error=%d)\n",
1253 		    sc->sc_dev.dv_xname, error);
1254 		return error;
1255 	}
1256 
1257 	if ((sc->sc_flags & IWN_FLAG_HAS_OTPROM) &&
1258 	    ((error = iwn_init_otprom(sc)) != 0)) {
1259 		printf("%s: could not initialize OTPROM (error=%d)\n",
1260 		    sc->sc_dev.dv_xname, error);
1261 		return error;
1262 	}
1263 
1264 	iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
1265 	sc->rfcfg = letoh16(val);
1266 	DPRINTF(("radio config=0x%04x\n", sc->rfcfg));
1267 
1268 	/* Read MAC address. */
1269 	iwn_read_prom_data(sc, IWN_EEPROM_MAC, ic->ic_myaddr, 6);
1270 
1271 	/* Read adapter-specific information from EEPROM. */
1272 	hal->read_eeprom(sc);
1273 
1274 	iwn_eeprom_unlock(sc);
1275 	return 0;
1276 }
1277 
1278 void
1279 iwn4965_read_eeprom(struct iwn_softc *sc)
1280 {
1281 	uint32_t addr;
1282 	uint16_t val;
1283 	int i;
1284 
1285 	/* Read regulatory domain (4 ASCII characters.) */
1286 	iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
1287 
1288 	/* Read the list of authorized channels (20MHz ones only.) */
1289 	for (i = 0; i < 5; i++) {
1290 		addr = iwn4965_regulatory_bands[i];
1291 		iwn_read_eeprom_channels(sc, i, addr);
1292 	}
1293 
1294 	/* Read maximum allowed TX power for 2GHz and 5GHz bands. */
1295 	iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
1296 	sc->maxpwr2GHz = val & 0xff;
1297 	sc->maxpwr5GHz = val >> 8;
1298 	/* Check that EEPROM values are within valid range. */
1299 	if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
1300 		sc->maxpwr5GHz = 38;
1301 	if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
1302 		sc->maxpwr2GHz = 38;
1303 	DPRINTF(("maxpwr 2GHz=%d 5GHz=%d\n", sc->maxpwr2GHz, sc->maxpwr5GHz));
1304 
1305 	/* Read samples for each TX power group. */
1306 	iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
1307 	    sizeof sc->bands);
1308 
1309 	/* Read voltage at which samples were taken. */
1310 	iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
1311 	sc->eeprom_voltage = (int16_t)letoh16(val);
1312 	DPRINTF(("voltage=%d (in 0.3V)\n", sc->eeprom_voltage));
1313 
1314 #ifdef IWN_DEBUG
1315 	/* Print samples. */
1316 	if (iwn_debug > 0) {
1317 		for (i = 0; i < IWN_NBANDS; i++)
1318 			iwn4965_print_power_group(sc, i);
1319 	}
1320 #endif
1321 }
1322 
1323 #ifdef IWN_DEBUG
1324 void
1325 iwn4965_print_power_group(struct iwn_softc *sc, int i)
1326 {
1327 	struct iwn4965_eeprom_band *band = &sc->bands[i];
1328 	struct iwn4965_eeprom_chan_samples *chans = band->chans;
1329 	int j, c;
1330 
1331 	printf("===band %d===\n", i);
1332 	printf("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
1333 	printf("chan1 num=%d\n", chans[0].num);
1334 	for (c = 0; c < 2; c++) {
1335 		for (j = 0; j < IWN_NSAMPLES; j++) {
1336 			printf("chain %d, sample %d: temp=%d gain=%d "
1337 			    "power=%d pa_det=%d\n", c, j,
1338 			    chans[0].samples[c][j].temp,
1339 			    chans[0].samples[c][j].gain,
1340 			    chans[0].samples[c][j].power,
1341 			    chans[0].samples[c][j].pa_det);
1342 		}
1343 	}
1344 	printf("chan2 num=%d\n", chans[1].num);
1345 	for (c = 0; c < 2; c++) {
1346 		for (j = 0; j < IWN_NSAMPLES; j++) {
1347 			printf("chain %d, sample %d: temp=%d gain=%d "
1348 			    "power=%d pa_det=%d\n", c, j,
1349 			    chans[1].samples[c][j].temp,
1350 			    chans[1].samples[c][j].gain,
1351 			    chans[1].samples[c][j].power,
1352 			    chans[1].samples[c][j].pa_det);
1353 		}
1354 	}
1355 }
1356 #endif
1357 
1358 void
1359 iwn5000_read_eeprom(struct iwn_softc *sc)
1360 {
1361 	int32_t temp, volt, delta;
1362 	uint32_t base, addr;
1363 	uint16_t val;
1364 	int i;
1365 
1366 	/* Read regulatory domain (4 ASCII characters.) */
1367 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1368 	base = letoh16(val);
1369 	iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
1370 	    sc->eeprom_domain, 4);
1371 
1372 	/* Read the list of authorized channels (20MHz ones only.) */
1373 	for (i = 0; i < 5; i++) {
1374 		addr = base + iwn5000_regulatory_bands[i];
1375 		iwn_read_eeprom_channels(sc, i, addr);
1376 	}
1377 
1378 	iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
1379 	base = letoh16(val);
1380 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
1381 		/* Compute critical temperature (in Kelvin.) */
1382 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
1383 		temp = letoh16(val);
1384 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
1385 		volt = letoh16(val);
1386 		delta = temp - (volt / -5);
1387 		sc->critical_temp = (IWN_CTOK(110) - delta) * -5;
1388 		DPRINTF(("temp=%d volt=%d delta=%dK\n",
1389 		    temp, volt, delta));
1390 	} else {
1391 		/* Read crystal calibration. */
1392 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
1393 		    &sc->eeprom_crystal, sizeof (uint32_t));
1394 		DPRINTF(("crystal calibration 0x%08x\n",
1395 		    letoh32(sc->eeprom_crystal)));
1396 	}
1397 }
1398 
1399 void
1400 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
1401 {
1402 	struct ieee80211com *ic = &sc->sc_ic;
1403 	const struct iwn_chan_band *band = &iwn_bands[n];
1404 	struct iwn_eeprom_chan channels[IWN_MAX_CHAN_PER_BAND];
1405 	uint8_t chan;
1406 	int i;
1407 
1408 	iwn_read_prom_data(sc, addr, channels,
1409 	    band->nchan * sizeof (struct iwn_eeprom_chan));
1410 
1411 	for (i = 0; i < band->nchan; i++) {
1412 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID))
1413 			continue;
1414 
1415 		chan = band->chan[i];
1416 
1417 		if (n == 0) {	/* 2GHz band */
1418 			ic->ic_channels[chan].ic_freq =
1419 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
1420 			ic->ic_channels[chan].ic_flags =
1421 			    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
1422 			    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
1423 
1424 		} else {	/* 5GHz band */
1425 			/*
1426 			 * Some adapters support channels 7, 8, 11 and 12
1427 			 * both in the 2GHz and 4.9GHz bands.
1428 			 * Because of limitations in our net80211 layer,
1429 			 * we don't support them in the 4.9GHz band.
1430 			 */
1431 			if (chan <= 14)
1432 				continue;
1433 
1434 			ic->ic_channels[chan].ic_freq =
1435 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
1436 			ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
1437 			/* We have at least one valid 5GHz channel. */
1438 			sc->sc_flags |= IWN_FLAG_HAS_5GHZ;
1439 		}
1440 
1441 		/* Is active scan allowed on this channel? */
1442 		if (!(channels[i].flags & IWN_EEPROM_CHAN_ACTIVE)) {
1443 			ic->ic_channels[chan].ic_flags |=
1444 			    IEEE80211_CHAN_PASSIVE;
1445 		}
1446 
1447 		/* Save maximum allowed TX power for this channel. */
1448 		sc->maxpwr[chan] = channels[i].maxpwr;
1449 
1450 		DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
1451 		    chan, channels[i].flags, sc->maxpwr[chan]));
1452 	}
1453 }
1454 
1455 struct ieee80211_node *
1456 iwn_node_alloc(struct ieee80211com *ic)
1457 {
1458 	return malloc(sizeof (struct iwn_node), M_DEVBUF, M_NOWAIT | M_ZERO);
1459 }
1460 
1461 void
1462 iwn_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew)
1463 {
1464 	struct iwn_softc *sc = ic->ic_if.if_softc;
1465 	struct iwn_node *wn = (void *)ni;
1466 	uint8_t rate;
1467 	int ridx, i;
1468 
1469 	ieee80211_amrr_node_init(&sc->amrr, &wn->amn);
1470 
1471 	for (i = 0; i < ni->ni_rates.rs_nrates; i++) {
1472 		rate = ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL;
1473 		/* Map 802.11 rate to HW rate index. */
1474 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
1475 			if (iwn_rates[ridx].rate == rate)
1476 				break;
1477 		wn->ridx[i] = ridx;
1478 		/* Initial TX rate <= 24Mbps. */
1479 		if (rate <= 48)
1480 			ni->ni_txrate = i;
1481 	}
1482 }
1483 
1484 int
1485 iwn_media_change(struct ifnet *ifp)
1486 {
1487 	struct iwn_softc *sc = ifp->if_softc;
1488 	struct ieee80211com *ic = &sc->sc_ic;
1489 	uint8_t rate, ridx;
1490 	int error;
1491 
1492 	error = ieee80211_media_change(ifp);
1493 	if (error != ENETRESET)
1494 		return error;
1495 
1496 	if (ic->ic_fixed_rate != -1) {
1497 		rate = ic->ic_sup_rates[ic->ic_curmode].
1498 		    rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
1499 		/* Map 802.11 rate to HW rate index. */
1500 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
1501 			if (iwn_rates[ridx].rate == rate)
1502 				break;
1503 		sc->fixed_ridx = ridx;
1504 	}
1505 
1506 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1507 	    (IFF_UP | IFF_RUNNING)) {
1508 		iwn_stop(ifp, 0);
1509 		error = iwn_init(ifp);
1510 	}
1511 	return error;
1512 }
1513 
1514 int
1515 iwn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
1516 {
1517 	struct ifnet *ifp = &ic->ic_if;
1518 	struct iwn_softc *sc = ifp->if_softc;
1519 	int error;
1520 
1521 	timeout_del(&sc->calib_to);
1522 
1523 	switch (nstate) {
1524 	case IEEE80211_S_SCAN:
1525 		/* Make the link LED blink while we're scanning. */
1526 		iwn_set_led(sc, IWN_LED_LINK, 10, 10);
1527 
1528 		if ((error = iwn_scan(sc, IEEE80211_CHAN_2GHZ)) != 0) {
1529 			printf("%s: could not initiate scan\n",
1530 			    sc->sc_dev.dv_xname);
1531 			return error;
1532 		}
1533 		ic->ic_state = nstate;
1534 		return 0;
1535 
1536 	case IEEE80211_S_ASSOC:
1537 		if (ic->ic_state != IEEE80211_S_RUN)
1538 			break;
1539 		/* FALLTHROUGH */
1540 	case IEEE80211_S_AUTH:
1541 		/* Reset state to handle reassociations correctly. */
1542 		sc->rxon.associd = 0;
1543 		sc->rxon.filter &= ~htole32(IWN_FILTER_BSS);
1544 		sc->calib.state = IWN_CALIB_STATE_INIT;
1545 
1546 		if ((error = iwn_auth(sc)) != 0) {
1547 			printf("%s: could not move to auth state\n",
1548 			    sc->sc_dev.dv_xname);
1549 			return error;
1550 		}
1551 		break;
1552 
1553 	case IEEE80211_S_RUN:
1554 		if ((error = iwn_run(sc)) != 0) {
1555 			printf("%s: could not move to run state\n",
1556 			    sc->sc_dev.dv_xname);
1557 			return error;
1558 		}
1559 		break;
1560 
1561 	case IEEE80211_S_INIT:
1562 		sc->calib.state = IWN_CALIB_STATE_INIT;
1563 		break;
1564 	}
1565 
1566 	return sc->sc_newstate(ic, nstate, arg);
1567 }
1568 
1569 void
1570 iwn_iter_func(void *arg, struct ieee80211_node *ni)
1571 {
1572 	struct iwn_softc *sc = arg;
1573 	struct iwn_node *wn = (struct iwn_node *)ni;
1574 
1575 	ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
1576 }
1577 
1578 void
1579 iwn_calib_timeout(void *arg)
1580 {
1581 	struct iwn_softc *sc = arg;
1582 	struct ieee80211com *ic = &sc->sc_ic;
1583 	int s;
1584 
1585 	if (ic->ic_fixed_rate == -1) {
1586 		s = splnet();
1587 		if (ic->ic_opmode == IEEE80211_M_STA)
1588 			iwn_iter_func(sc, ic->ic_bss);
1589 		else
1590 			ieee80211_iterate_nodes(ic, iwn_iter_func, sc);
1591 		splx(s);
1592 	}
1593 	/* Force automatic TX power calibration every 60 secs. */
1594 	if (++sc->calib_cnt >= 120) {
1595 		uint32_t flags = 0;
1596 
1597 		DPRINTF(("sending request for statistics\n"));
1598 		(void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
1599 		    sizeof flags, 1);
1600 		sc->calib_cnt = 0;
1601 	}
1602 	/* Automatic rate control triggered every 500ms. */
1603 	timeout_add_msec(&sc->calib_to, 500);
1604 }
1605 
1606 int
1607 iwn_ccmp_decap(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_key *k)
1608 {
1609 	struct ieee80211_frame *wh;
1610 	uint64_t pn, *prsc;
1611 	uint8_t *ivp;
1612 	uint8_t tid;
1613 	int hdrlen;
1614 
1615 	wh = mtod(m, struct ieee80211_frame *);
1616 	hdrlen = ieee80211_get_hdrlen(wh);
1617 	ivp = (uint8_t *)wh + hdrlen;
1618 
1619 	/* Check that ExtIV bit is be set. */
1620 	if (!(ivp[3] & IEEE80211_WEP_EXTIV)) {
1621 		DPRINTF(("CCMP decap ExtIV not set\n"));
1622 		return 1;
1623 	}
1624 	tid = ieee80211_has_qos(wh) ?
1625 	    ieee80211_get_qos(wh) & IEEE80211_QOS_TID : 0;
1626 	prsc = &k->k_rsc[tid];
1627 
1628 	/* Extract the 48-bit PN from the CCMP header. */
1629 	pn = (uint64_t)ivp[0]       |
1630 	     (uint64_t)ivp[1] <<  8 |
1631 	     (uint64_t)ivp[4] << 16 |
1632 	     (uint64_t)ivp[5] << 24 |
1633 	     (uint64_t)ivp[6] << 32 |
1634 	     (uint64_t)ivp[7] << 40;
1635 	if (pn <= *prsc) {
1636 		/*
1637 		 * Not necessarily a replayed frame since we did not check
1638 		 * the sequence number of the 802.11 header yet.
1639 		 */
1640 		DPRINTF(("CCMP replayed\n"));
1641 		return 1;
1642 	}
1643 	/* Update last seen packet number. */
1644 	*prsc = pn;
1645 
1646 	/* Clear Protected bit and strip IV. */
1647 	wh->i_fc[1] &= ~IEEE80211_FC1_PROTECTED;
1648 	ovbcopy(wh, mtod(m, caddr_t) + IEEE80211_CCMP_HDRLEN, hdrlen);
1649 	m_adj(m, IEEE80211_CCMP_HDRLEN);
1650 	/* Strip MIC. */
1651 	m_adj(m, -IEEE80211_CCMP_MICLEN);
1652 	return 0;
1653 }
1654 
1655 /*
1656  * Process an RX_PHY firmware notification.  This is usually immediately
1657  * followed by an MPDU_RX_DONE notification.
1658  */
1659 void
1660 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc,
1661     struct iwn_rx_data *data)
1662 {
1663 	struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
1664 
1665 	DPRINTFN(2, ("received PHY stats\n"));
1666 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
1667 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
1668 
1669 	/* Save RX statistics, they will be used on MPDU_RX_DONE. */
1670 	memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
1671 	sc->last_rx_valid = 1;
1672 }
1673 
1674 /*
1675  * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
1676  * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
1677  */
1678 void
1679 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
1680     struct iwn_rx_data *data)
1681 {
1682 	const struct iwn_hal *hal = sc->sc_hal;
1683 	struct ieee80211com *ic = &sc->sc_ic;
1684 	struct ifnet *ifp = &ic->ic_if;
1685 	struct iwn_rx_ring *ring = &sc->rxq;
1686 	struct ieee80211_frame *wh;
1687 	struct ieee80211_rxinfo rxi;
1688 	struct ieee80211_node *ni;
1689 	struct mbuf *m, *m1;
1690 	struct iwn_rx_stat *stat;
1691 	caddr_t head;
1692 	uint32_t flags;
1693 	int error, len, rssi;
1694 
1695 	if (desc->type == IWN_MPDU_RX_DONE) {
1696 		/* Check for prior RX_PHY notification. */
1697 		if (!sc->last_rx_valid) {
1698 			DPRINTF(("missing RX_PHY\n"));
1699 			ifp->if_ierrors++;
1700 			return;
1701 		}
1702 		sc->last_rx_valid = 0;
1703 		stat = &sc->last_rx_stat;
1704 	} else
1705 		stat = (struct iwn_rx_stat *)(desc + 1);
1706 
1707 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, IWN_RBUF_SIZE,
1708 	    BUS_DMASYNC_POSTREAD);
1709 
1710 	if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
1711 		printf("%s: invalid RX statistic header\n",
1712 		    sc->sc_dev.dv_xname);
1713 		ifp->if_ierrors++;
1714 		return;
1715 	}
1716 	if (desc->type == IWN_MPDU_RX_DONE) {
1717 		struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
1718 		head = (caddr_t)(mpdu + 1);
1719 		len = letoh16(mpdu->len);
1720 	} else {
1721 		head = (caddr_t)(stat + 1) + stat->cfg_phy_len;
1722 		len = letoh16(stat->len);
1723 	}
1724 
1725 	flags = letoh32(*(uint32_t *)(head + len));
1726 
1727 	/* Discard frames with a bad FCS early. */
1728 	if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
1729 		DPRINTFN(2, ("RX flags error %x\n", flags));
1730 		ifp->if_ierrors++;
1731 		return;
1732 	}
1733 	/* Discard frames that are too short. */
1734 	if (len < sizeof (*wh)) {
1735 		DPRINTF(("frame too short: %d\n", len));
1736 		ic->ic_stats.is_rx_tooshort++;
1737 		ifp->if_ierrors++;
1738 		return;
1739 	}
1740 
1741 	m1 = MCLGETI(NULL, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
1742 	if (m1 == NULL) {
1743 		ic->ic_stats.is_rx_nombuf++;
1744 		ifp->if_ierrors++;
1745 		return;
1746 	}
1747 	bus_dmamap_unload(sc->sc_dmat, data->map);
1748 
1749 	error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(m1, void *),
1750 	    IWN_RBUF_SIZE, NULL, BUS_DMA_NOWAIT);
1751 	if (error != 0) {
1752 		m_freem(m1);
1753 
1754 		/* Try to reload the old mbuf. */
1755 		error = bus_dmamap_load(sc->sc_dmat, data->map,
1756 		    mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
1757 		    BUS_DMA_NOWAIT);
1758 		if (error != 0) {
1759 			panic("%s: could not load old RX mbuf",
1760 			    sc->sc_dev.dv_xname);
1761 		}
1762 		/* Physical address may have changed. */
1763 		ring->desc[ring->cur] =
1764 		    htole32(data->map->dm_segs[0].ds_addr >> 8);
1765 		bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
1766 		    ring->cur * sizeof (uint32_t), sizeof (uint32_t),
1767 		    BUS_DMASYNC_PREWRITE);
1768 		ifp->if_ierrors++;
1769 		return;
1770 	}
1771 
1772 	m = data->m;
1773 	data->m = m1;
1774 	/* Update RX descriptor. */
1775 	ring->desc[ring->cur] = htole32(data->map->dm_segs[0].ds_addr >> 8);
1776 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
1777 	    ring->cur * sizeof (uint32_t), sizeof (uint32_t),
1778 	    BUS_DMASYNC_PREWRITE);
1779 
1780 	/* Finalize mbuf. */
1781 	m->m_pkthdr.rcvif = ifp;
1782 	m->m_data = head;
1783 	m->m_pkthdr.len = m->m_len = len;
1784 
1785 	/* Grab a reference to the source node. */
1786 	wh = mtod(m, struct ieee80211_frame *);
1787 	ni = ieee80211_find_rxnode(ic, wh);
1788 
1789 	rxi.rxi_flags = 0;
1790 	if ((wh->i_fc[1] & IEEE80211_FC1_PROTECTED) &&
1791 	    !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1792 	    (ni->ni_flags & IEEE80211_NODE_RXPROT) &&
1793 	    ni->ni_pairwise_key.k_cipher == IEEE80211_CIPHER_CCMP) {
1794 		if ((flags & IWN_RX_CIPHER_MASK) != IWN_RX_CIPHER_CCMP) {
1795 			ic->ic_stats.is_ccmp_dec_errs++;
1796 			ifp->if_ierrors++;
1797 			m_freem(m);
1798 			return;
1799 		}
1800 		/* Check whether decryption was successful or not. */
1801 		if ((desc->type == IWN_MPDU_RX_DONE &&
1802 		     (flags & (IWN_RX_MPDU_DEC | IWN_RX_MPDU_MIC_OK)) !=
1803 		      (IWN_RX_MPDU_DEC | IWN_RX_MPDU_MIC_OK)) ||
1804 		    (desc->type != IWN_MPDU_RX_DONE &&
1805 		     (flags & IWN_RX_DECRYPT_MASK) != IWN_RX_DECRYPT_OK)) {
1806 			DPRINTF(("CCMP decryption failed 0x%x\n", flags));
1807 			ic->ic_stats.is_ccmp_dec_errs++;
1808 			ifp->if_ierrors++;
1809 			m_freem(m);
1810 			return;
1811 		}
1812 		if (iwn_ccmp_decap(sc, m, &ni->ni_pairwise_key) != 0) {
1813 			ifp->if_ierrors++;
1814 			m_freem(m);
1815 			return;
1816 		}
1817 		rxi.rxi_flags |= IEEE80211_RXI_HWDEC;
1818 	}
1819 
1820 	rssi = hal->get_rssi(stat);
1821 
1822 #if NBPFILTER > 0
1823 	if (sc->sc_drvbpf != NULL) {
1824 		struct mbuf mb;
1825 		struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
1826 
1827 		tap->wr_flags = 0;
1828 		if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
1829 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1830 		tap->wr_chan_freq =
1831 		    htole16(ic->ic_channels[stat->chan].ic_freq);
1832 		tap->wr_chan_flags =
1833 		    htole16(ic->ic_channels[stat->chan].ic_flags);
1834 		tap->wr_dbm_antsignal = (int8_t)rssi;
1835 		tap->wr_dbm_antnoise = (int8_t)sc->noise;
1836 		tap->wr_tsft = stat->tstamp;
1837 		switch (stat->rate) {
1838 		/* CCK rates. */
1839 		case  10: tap->wr_rate =   2; break;
1840 		case  20: tap->wr_rate =   4; break;
1841 		case  55: tap->wr_rate =  11; break;
1842 		case 110: tap->wr_rate =  22; break;
1843 		/* OFDM rates. */
1844 		case 0xd: tap->wr_rate =  12; break;
1845 		case 0xf: tap->wr_rate =  18; break;
1846 		case 0x5: tap->wr_rate =  24; break;
1847 		case 0x7: tap->wr_rate =  36; break;
1848 		case 0x9: tap->wr_rate =  48; break;
1849 		case 0xb: tap->wr_rate =  72; break;
1850 		case 0x1: tap->wr_rate =  96; break;
1851 		case 0x3: tap->wr_rate = 108; break;
1852 		/* Unknown rate: should not happen. */
1853 		default:  tap->wr_rate =   0;
1854 		}
1855 
1856 		mb.m_data = (caddr_t)tap;
1857 		mb.m_len = sc->sc_rxtap_len;
1858 		mb.m_next = m;
1859 		mb.m_nextpkt = NULL;
1860 		mb.m_type = 0;
1861 		mb.m_flags = 0;
1862 		bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_IN);
1863 	}
1864 #endif
1865 
1866 	/* Send the frame to the 802.11 layer. */
1867 	rxi.rxi_rssi = rssi;
1868 	rxi.rxi_tstamp = 0;	/* unused */
1869 	ieee80211_input(ifp, m, ni, &rxi);
1870 
1871 	/* Node is no longer needed. */
1872 	ieee80211_release_node(ic, ni);
1873 }
1874 
1875 /*
1876  * Process a CALIBRATION_RESULT notification sent by the initialization
1877  * firmware on response to a CMD_CALIB_CONFIG command (5000 only.)
1878  */
1879 void
1880 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc,
1881     struct iwn_rx_data *data)
1882 {
1883 	struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
1884 	int len, idx = -1;
1885 
1886 	/* Runtime firmware should not send such a notification. */
1887 	if (!(sc->sc_flags & IWN_FLAG_FIRST_BOOT))
1888 		return;
1889 
1890 	len = (letoh32(desc->len) & 0x3fff) - 4;
1891 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), len,
1892 	    BUS_DMASYNC_POSTREAD);
1893 
1894 	switch (calib->code) {
1895 	case IWN5000_PHY_CALIB_DC:
1896 		if (sc->hw_type == IWN_HW_REV_TYPE_5150)
1897 			idx = 0;
1898 		break;
1899 	case IWN5000_PHY_CALIB_LO:
1900 		idx = 1;
1901 		break;
1902 	case IWN5000_PHY_CALIB_TX_IQ:
1903 		idx = 2;
1904 		break;
1905 	case IWN5000_PHY_CALIB_TX_IQ_PERD:
1906 		if (sc->hw_type != IWN_HW_REV_TYPE_5150)
1907 			idx = 3;
1908 		break;
1909 	case IWN5000_PHY_CALIB_BASE_BAND:
1910 		idx = 4;
1911 		break;
1912 	}
1913 	if (idx == -1)	/* Ignore other results. */
1914 		return;
1915 
1916 	/* Save calibration result. */
1917 	if (sc->calibcmd[idx].buf != NULL)
1918 		free(sc->calibcmd[idx].buf, M_DEVBUF);
1919 	sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT);
1920 	if (sc->calibcmd[idx].buf == NULL) {
1921 		DPRINTF(("not enough memory for calibration result %d\n",
1922 		    calib->code));
1923 		return;
1924 	}
1925 	DPRINTF(("saving calibration result code=%d len=%d\n",
1926 	    calib->code, len));
1927 	sc->calibcmd[idx].len = len;
1928 	memcpy(sc->calibcmd[idx].buf, calib, len);
1929 }
1930 
1931 /*
1932  * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
1933  * The latter is sent by the firmware after each received beacon.
1934  */
1935 void
1936 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc,
1937     struct iwn_rx_data *data)
1938 {
1939 	const struct iwn_hal *hal = sc->sc_hal;
1940 	struct ieee80211com *ic = &sc->sc_ic;
1941 	struct iwn_calib_state *calib = &sc->calib;
1942 	struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
1943 	int temp;
1944 
1945 	/* Ignore statistics received during a scan. */
1946 	if (ic->ic_state != IEEE80211_S_RUN)
1947 		return;
1948 
1949 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
1950 	    sizeof (*stats), BUS_DMASYNC_POSTREAD);
1951 
1952 	DPRINTFN(3, ("received statistics (cmd=%d)\n", desc->type));
1953 	sc->calib_cnt = 0;	/* Reset TX power calibration timeout. */
1954 
1955 	/* Test if temperature has changed. */
1956 	if (stats->general.temp != sc->rawtemp) {
1957 		/* Convert "raw" temperature to degC. */
1958 		sc->rawtemp = stats->general.temp;
1959 		temp = hal->get_temperature(sc);
1960 		DPRINTFN(2, ("temperature=%dC\n", temp));
1961 
1962 		/* Update temperature sensor. */
1963 		sc->sensor.value = IWN_CTOMUK(temp);
1964 		sc->sensor.flags &= ~SENSOR_FINVALID;
1965 
1966 		/* Update TX power if need be (4965AGN only.) */
1967 		if (sc->hw_type == IWN_HW_REV_TYPE_4965)
1968 			iwn4965_power_calibration(sc, temp);
1969 	}
1970 
1971 	if (desc->type != IWN_BEACON_STATISTICS)
1972 		return;	/* Reply to a statistics request. */
1973 
1974 	sc->noise = iwn_get_noise(&stats->rx.general);
1975 
1976 	/* Test that RSSI and noise are present in stats report. */
1977 	if (letoh32(stats->rx.general.flags) != 1) {
1978 		DPRINTF(("received statistics without RSSI\n"));
1979 		return;
1980 	}
1981 
1982 	if (calib->state == IWN_CALIB_STATE_ASSOC)
1983 		iwn_collect_noise(sc, &stats->rx.general);
1984 	else if (calib->state == IWN_CALIB_STATE_RUN)
1985 		iwn_tune_sensitivity(sc, &stats->rx);
1986 }
1987 
1988 /*
1989  * Process a TX_DONE firmware notification.  Unfortunately, the 4965AGN
1990  * and 5000 adapters have different incompatible TX status formats.
1991  */
1992 void
1993 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
1994     struct iwn_rx_data *data)
1995 {
1996 	struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
1997 
1998 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
1999 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
2000 	iwn_tx_done(sc, desc, stat->retrycnt, letoh32(stat->status) & 0xff);
2001 }
2002 
2003 void
2004 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2005     struct iwn_rx_data *data)
2006 {
2007 	struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
2008 
2009 	/* Reset TX scheduler slot. */
2010 	iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx);
2011 
2012 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2013 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
2014 	iwn_tx_done(sc, desc, stat->retrycnt, letoh16(stat->status) & 0xff);
2015 }
2016 
2017 /*
2018  * Adapter-independent backend for TX_DONE firmware notifications.
2019  */
2020 void
2021 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int retrycnt,
2022     uint8_t status)
2023 {
2024 	struct ieee80211com *ic = &sc->sc_ic;
2025 	struct ifnet *ifp = &ic->ic_if;
2026 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
2027 	struct iwn_tx_data *data = &ring->data[desc->idx];
2028 	struct iwn_node *wn = (struct iwn_node *)data->ni;
2029 
2030 	/* Update rate control statistics. */
2031 	wn->amn.amn_txcnt++;
2032 	if (retrycnt > 0)
2033 		wn->amn.amn_retrycnt++;
2034 
2035 	if (status != 1 && status != 2)
2036 		ifp->if_oerrors++;
2037 	else
2038 		ifp->if_opackets++;
2039 
2040 	/* Unmap and free mbuf. */
2041 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
2042 	    BUS_DMASYNC_POSTWRITE);
2043 	bus_dmamap_unload(sc->sc_dmat, data->map);
2044 	m_freem(data->m);
2045 	data->m = NULL;
2046 	ieee80211_release_node(ic, data->ni);
2047 	data->ni = NULL;
2048 
2049 	sc->sc_tx_timer = 0;
2050 	if (--ring->queued < IWN_TX_RING_LOMARK) {
2051 		sc->qfullmsk &= ~(1 << ring->qid);
2052 		if (sc->qfullmsk == 0 && (ifp->if_flags & IFF_OACTIVE)) {
2053 			ifp->if_flags &= ~IFF_OACTIVE;
2054 			(*ifp->if_start)(ifp);
2055 		}
2056 	}
2057 }
2058 
2059 /*
2060  * Process a "command done" firmware notification.  This is where we wakeup
2061  * processes waiting for a synchronous command completion.
2062  */
2063 void
2064 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
2065 {
2066 	struct iwn_tx_ring *ring = &sc->txq[4];
2067 	struct iwn_tx_data *data;
2068 
2069 	if ((desc->qid & 0xf) != 4)
2070 		return;	/* Not a command ack. */
2071 
2072 	data = &ring->data[desc->idx];
2073 
2074 	/* If the command was mapped in an mbuf, free it. */
2075 	if (data->m != NULL) {
2076 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
2077 		    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2078 		bus_dmamap_unload(sc->sc_dmat, data->map);
2079 		m_freem(data->m);
2080 		data->m = NULL;
2081 	}
2082 	wakeup(&ring->desc[desc->idx]);
2083 }
2084 
2085 /*
2086  * Process an INT_FH_RX or INT_SW_RX interrupt.
2087  */
2088 void
2089 iwn_notif_intr(struct iwn_softc *sc)
2090 {
2091 	struct ieee80211com *ic = &sc->sc_ic;
2092 	struct ifnet *ifp = &ic->ic_if;
2093 	uint16_t hw;
2094 
2095 	bus_dmamap_sync(sc->sc_dmat, sc->rxq.stat_dma.map,
2096 	    0, sc->rxq.stat_dma.size, BUS_DMASYNC_POSTREAD);
2097 
2098 	hw = letoh16(sc->rxq.stat->closed_count) & 0xfff;
2099 	while (sc->rxq.cur != hw) {
2100 		struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
2101 		struct iwn_rx_desc *desc;
2102 
2103 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, sizeof (*desc),
2104 		    BUS_DMASYNC_POSTREAD);
2105 		desc = mtod(data->m, struct iwn_rx_desc *);
2106 
2107 		DPRINTFN(4, ("notification qid=%d idx=%d flags=%x type=%d\n",
2108 		    desc->qid & 0xf, desc->idx, desc->flags, desc->type));
2109 
2110 		if (!(desc->qid & 0x80))	/* Reply to a command. */
2111 			iwn_cmd_done(sc, desc);
2112 
2113 		switch (desc->type) {
2114 		case IWN_RX_PHY:
2115 			iwn_rx_phy(sc, desc, data);
2116 			break;
2117 
2118 		case IWN_RX_DONE:		/* 4965AGN only. */
2119 		case IWN_MPDU_RX_DONE:
2120 			/* An 802.11 frame has been received. */
2121 			iwn_rx_done(sc, desc, data);
2122 			break;
2123 
2124 		case IWN_TX_DONE:
2125 			/* An 802.11 frame has been transmitted. */
2126 			sc->sc_hal->tx_done(sc, desc, data);
2127 			break;
2128 
2129 		case IWN_RX_STATISTICS:
2130 		case IWN_BEACON_STATISTICS:
2131 			iwn_rx_statistics(sc, desc, data);
2132 			break;
2133 
2134 		case IWN_BEACON_MISSED:
2135 		{
2136 			struct iwn_beacon_missed *miss =
2137 			    (struct iwn_beacon_missed *)(desc + 1);
2138 
2139 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2140 			    sizeof (*miss), BUS_DMASYNC_POSTREAD);
2141 			/*
2142 			 * If more than 5 consecutive beacons are missed,
2143 			 * reinitialize the sensitivity state machine.
2144 			 */
2145 			DPRINTF(("beacons missed %d/%d\n",
2146 			    letoh32(miss->consecutive), letoh32(miss->total)));
2147 			if (ic->ic_state == IEEE80211_S_RUN &&
2148 			    letoh32(miss->consecutive) > 5)
2149 				(void)iwn_init_sensitivity(sc);
2150 			break;
2151 		}
2152 		case IWN_UC_READY:
2153 		{
2154 			struct iwn_ucode_info *uc =
2155 			    (struct iwn_ucode_info *)(desc + 1);
2156 
2157 			/* The microcontroller is ready. */
2158 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2159 			    sizeof (*uc), BUS_DMASYNC_POSTREAD);
2160 			DPRINTF(("microcode alive notification version=%d.%d "
2161 			    "subtype=%x alive=%x\n", uc->major, uc->minor,
2162 			    uc->subtype, letoh32(uc->valid)));
2163 
2164 			if (letoh32(uc->valid) != 1) {
2165 				printf("%s: microcontroller initialization "
2166 				    "failed\n", sc->sc_dev.dv_xname);
2167 				break;
2168 			}
2169 			if (uc->subtype == IWN_UCODE_INIT) {
2170 				/* Save microcontroller's report. */
2171 				memcpy(&sc->ucode_info, uc, sizeof (*uc));
2172 			}
2173 			/* Save the address of the error log in SRAM. */
2174 			sc->errptr = letoh32(uc->errptr);
2175 			break;
2176 		}
2177 		case IWN_STATE_CHANGED:
2178 		{
2179 			uint32_t *status = (uint32_t *)(desc + 1);
2180 
2181 			/* Enabled/disabled notification. */
2182 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2183 			    sizeof (*status), BUS_DMASYNC_POSTREAD);
2184 			DPRINTF(("state changed to %x\n", letoh32(*status)));
2185 
2186 			if (letoh32(*status) & 1) {
2187 				/* The radio button has to be pushed. */
2188 				printf("%s: Radio transmitter is off\n",
2189 				    sc->sc_dev.dv_xname);
2190 				/* Turn the interface down. */
2191 				ifp->if_flags &= ~IFF_UP;
2192 				iwn_stop(ifp, 1);
2193 				return;	/* No further processing. */
2194 			}
2195 			break;
2196 		}
2197 		case IWN_START_SCAN:
2198 		{
2199 			struct iwn_start_scan *scan =
2200 			    (struct iwn_start_scan *)(desc + 1);
2201 
2202 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2203 			    sizeof (*scan), BUS_DMASYNC_POSTREAD);
2204 			DPRINTFN(2, ("scanning channel %d status %x\n",
2205 			    scan->chan, letoh32(scan->status)));
2206 
2207 			/* Fix current channel. */
2208 			ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
2209 			break;
2210 		}
2211 		case IWN_STOP_SCAN:
2212 		{
2213 			struct iwn_stop_scan *scan =
2214 			    (struct iwn_stop_scan *)(desc + 1);
2215 
2216 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2217 			    sizeof (*scan), BUS_DMASYNC_POSTREAD);
2218 			DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
2219 			    scan->nchan, scan->status, scan->chan));
2220 
2221 			if (scan->status == 1 && scan->chan <= 14 &&
2222 			    (sc->sc_flags & IWN_FLAG_HAS_5GHZ)) {
2223 				/*
2224 				 * We just finished scanning 2GHz channels,
2225 				 * start scanning 5GHz ones.
2226 				 */
2227 				if (iwn_scan(sc, IEEE80211_CHAN_5GHZ) == 0)
2228 					break;
2229 			}
2230 			ieee80211_end_scan(ifp);
2231 			break;
2232 		}
2233 		case IWN5000_CALIBRATION_RESULT:
2234 			iwn5000_rx_calib_results(sc, desc, data);
2235 			break;
2236 
2237 		case IWN5000_CALIBRATION_DONE:
2238 			wakeup(sc);
2239 			break;
2240 		}
2241 
2242 		sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
2243 	}
2244 
2245 	/* Tell the firmware what we have processed. */
2246 	hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
2247 	IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
2248 }
2249 
2250 /*
2251  * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
2252  * from power-down sleep mode.
2253  */
2254 void
2255 iwn_wakeup_intr(struct iwn_softc *sc)
2256 {
2257 	int qid;
2258 
2259 	DPRINTF(("ucode wakeup from power-down sleep\n"));
2260 
2261 	/* Wakeup RX and TX rings. */
2262 	IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
2263 	for (qid = 0; qid < 6; qid++) {
2264 		struct iwn_tx_ring *ring = &sc->txq[qid];
2265 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
2266 	}
2267 }
2268 
2269 /*
2270  * Dump the error log of the firmware when a firmware panic occurs.  Although
2271  * we can't debug the firmware because it is neither open source nor free, it
2272  * can help us to identify certain classes of problems.
2273  */
2274 void
2275 iwn_fatal_intr(struct iwn_softc *sc)
2276 {
2277 	const struct iwn_hal *hal = sc->sc_hal;
2278 	struct iwn_fw_dump dump;
2279 	int i;
2280 
2281 	/* Check that the error log address is valid. */
2282 	if (sc->errptr < IWN_FW_DATA_BASE ||
2283 	    sc->errptr + sizeof (dump) >
2284 	    IWN_FW_DATA_BASE + hal->fw_data_maxsz) {
2285 		printf("%s: bad firmware error log address 0x%08x\n",
2286 		    sc->sc_dev.dv_xname, sc->errptr);
2287 		return;
2288 	}
2289 	if (iwn_nic_lock(sc) != 0) {
2290 		printf("%s: could not read firmware error log\n",
2291 		    sc->sc_dev.dv_xname);
2292 		return;
2293 	}
2294 	/* Read firmware error log from SRAM. */
2295 	iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
2296 	    sizeof (dump) / sizeof (uint32_t));
2297 	iwn_nic_unlock(sc);
2298 
2299 	if (dump.valid == 0) {
2300 		printf("%s: firmware error log is empty\n",
2301 		    sc->sc_dev.dv_xname);
2302 		return;
2303 	}
2304 	printf("firmware error log:\n");
2305 	printf("  error type      = \"%s\" (0x%08X)\n",
2306 	    (dump.id < nitems(iwn_fw_errmsg)) ?
2307 		iwn_fw_errmsg[dump.id] : "UNKNOWN",
2308 	    dump.id);
2309 	printf("  program counter = 0x%08X\n", dump.pc);
2310 	printf("  source line     = 0x%08X\n", dump.src_line);
2311 	printf("  error data      = 0x%08X%08X\n",
2312 	    dump.error_data[0], dump.error_data[1]);
2313 	printf("  branch link     = 0x%08X%08X\n",
2314 	    dump.branch_link[0], dump.branch_link[1]);
2315 	printf("  interrupt link  = 0x%08X%08X\n",
2316 	    dump.interrupt_link[0], dump.interrupt_link[1]);
2317 	printf("  time            = %u\n", dump.time[0]);
2318 
2319 	/* Dump driver status (TX and RX rings) while we're here. */
2320 	printf("driver status:\n");
2321 	for (i = 0; i < hal->ntxqs; i++) {
2322 		struct iwn_tx_ring *ring = &sc->txq[i];
2323 		printf("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
2324 		    i, ring->qid, ring->cur, ring->queued);
2325 	}
2326 	printf("  rx ring: cur=%d\n", sc->rxq.cur);
2327 	printf("  802.11 state %d\n", sc->sc_ic.ic_state);
2328 }
2329 
2330 int
2331 iwn_intr(void *arg)
2332 {
2333 	struct iwn_softc *sc = arg;
2334 	struct ifnet *ifp = &sc->sc_ic.ic_if;
2335 	uint32_t r1, r2;
2336 
2337 	/* Disable interrupts. */
2338 	IWN_WRITE(sc, IWN_MASK, 0);
2339 
2340 	r1 = IWN_READ(sc, IWN_INT);
2341 	r2 = IWN_READ(sc, IWN_FH_INT);
2342 
2343 	if (r1 == 0 && r2 == 0) {
2344 		if (ifp->if_flags & IFF_UP)
2345 			IWN_WRITE(sc, IWN_MASK, IWN_INT_MASK);
2346 		return 0;	/* Interrupt not for us. */
2347 	}
2348 	if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
2349 		return 0;	/* Hardware gone! */
2350 
2351 	/* Acknowledge interrupts. */
2352 	IWN_WRITE(sc, IWN_INT, r1);
2353 	IWN_WRITE(sc, IWN_FH_INT, r2);
2354 
2355 	if (r1 & IWN_INT_RF_TOGGLED) {
2356 		uint32_t tmp = IWN_READ(sc, IWN_GP_CNTRL);
2357 		printf("%s: RF switch: radio %s\n", sc->sc_dev.dv_xname,
2358 		    (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
2359 	}
2360 	if (r1 & IWN_INT_CT_REACHED) {
2361 		printf("%s: critical temperature reached!\n",
2362 		    sc->sc_dev.dv_xname);
2363 		/* XXX Reduce TX power? */
2364 	}
2365 	if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
2366 		printf("%s: fatal firmware error\n", sc->sc_dev.dv_xname);
2367 		/* Dump firmware error log and stop. */
2368 		iwn_fatal_intr(sc);
2369 		ifp->if_flags &= ~IFF_UP;
2370 		iwn_stop(ifp, 1);
2371 		return 1;
2372 	}
2373 	if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) ||
2374 	    (r2 & IWN_FH_INT_RX))
2375 		iwn_notif_intr(sc);
2376 
2377 	if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX))
2378 		wakeup(sc);	/* FH DMA transfer completed. */
2379 
2380 	if (r1 & IWN_INT_ALIVE)
2381 		wakeup(sc);	/* Firmware is alive. */
2382 
2383 	if (r1 & IWN_INT_WAKEUP)
2384 		iwn_wakeup_intr(sc);
2385 
2386 	/* Re-enable interrupts. */
2387 	if (ifp->if_flags & IFF_UP)
2388 		IWN_WRITE(sc, IWN_MASK, IWN_INT_MASK);
2389 
2390 	return 1;
2391 }
2392 
2393 /*
2394  * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
2395  * 5000 adapters use a slightly different format.)
2396  */
2397 void
2398 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
2399     uint16_t len)
2400 {
2401 	uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
2402 
2403 	*w = htole16(len + 8);
2404 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2405 	    (caddr_t)w - sc->sched_dma.vaddr, sizeof (uint16_t),
2406 	    BUS_DMASYNC_PREWRITE);
2407 	if (idx < IWN_SCHED_WINSZ) {
2408 		*(w + IWN_TX_RING_COUNT) = *w;
2409 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2410 		    (caddr_t)(w + IWN_TX_RING_COUNT) - sc->sched_dma.vaddr,
2411 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2412 	}
2413 }
2414 
2415 void
2416 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
2417     uint16_t len)
2418 {
2419 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
2420 
2421 	*w = htole16(id << 12 | (len + 8));
2422 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2423 	    (caddr_t)w - sc->sched_dma.vaddr, sizeof (uint16_t),
2424 	    BUS_DMASYNC_PREWRITE);
2425 	if (idx < IWN_SCHED_WINSZ) {
2426 		*(w + IWN_TX_RING_COUNT) = *w;
2427 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2428 		    (caddr_t)(w + IWN_TX_RING_COUNT) - sc->sched_dma.vaddr,
2429 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2430 	}
2431 }
2432 
2433 void
2434 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
2435 {
2436 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
2437 
2438 	*w = (*w & htole16(0xf000)) | htole16(1);
2439 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2440 	    (caddr_t)w - sc->sched_dma.vaddr, sizeof (uint16_t),
2441 	    BUS_DMASYNC_PREWRITE);
2442 	if (idx < IWN_SCHED_WINSZ) {
2443 		*(w + IWN_TX_RING_COUNT) = *w;
2444 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2445 		    (caddr_t)(w + IWN_TX_RING_COUNT) - sc->sched_dma.vaddr,
2446 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2447 	}
2448 }
2449 
2450 int
2451 iwn_tx(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
2452 {
2453 	const struct iwn_hal *hal = sc->sc_hal;
2454 	struct ieee80211com *ic = &sc->sc_ic;
2455 	struct iwn_node *wn = (void *)ni;
2456 	struct iwn_tx_ring *ring;
2457 	struct iwn_tx_desc *desc;
2458 	struct iwn_tx_data *data;
2459 	struct iwn_tx_cmd *cmd;
2460 	struct iwn_cmd_data *tx;
2461 	const struct iwn_rate *rinfo;
2462 	struct ieee80211_frame *wh;
2463 	struct ieee80211_key *k = NULL;
2464 	struct mbuf *m1;
2465 	enum ieee80211_edca_ac ac;
2466 	uint32_t flags;
2467 	uint16_t qos;
2468 	u_int hdrlen;
2469 	bus_dma_segment_t *seg;
2470 	uint8_t *ivp, tid, ridx, txant, type;
2471 	int i, totlen, hasqos, error, pad;
2472 
2473 	wh = mtod(m, struct ieee80211_frame *);
2474 	hdrlen = ieee80211_get_hdrlen(wh);
2475 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2476 
2477 	/* Select EDCA Access Category and TX ring for this frame. */
2478 	if ((hasqos = ieee80211_has_qos(wh))) {
2479 		qos = ieee80211_get_qos(wh);
2480 		tid = qos & IEEE80211_QOS_TID;
2481 		ac = ieee80211_up_to_ac(ic, tid);
2482 	} else {
2483 		tid = 0;
2484 		ac = EDCA_AC_BE;
2485 	}
2486 
2487 	ring = &sc->txq[ac];
2488 	desc = &ring->desc[ring->cur];
2489 	data = &ring->data[ring->cur];
2490 
2491 	/* Choose a TX rate index. */
2492 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
2493 	    type != IEEE80211_FC0_TYPE_DATA) {
2494 		ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2495 		    IWN_RIDX_OFDM6 : IWN_RIDX_CCK1;
2496 	} else if (ic->ic_fixed_rate != -1) {
2497 		ridx = sc->fixed_ridx;
2498 	} else
2499 		ridx = wn->ridx[ni->ni_txrate];
2500 	rinfo = &iwn_rates[ridx];
2501 
2502 #if NBPFILTER > 0
2503 	if (sc->sc_drvbpf != NULL) {
2504 		struct mbuf mb;
2505 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
2506 
2507 		tap->wt_flags = 0;
2508 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
2509 		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
2510 		tap->wt_rate = rinfo->rate;
2511 		tap->wt_hwqueue = ac;
2512 		if ((ic->ic_flags & IEEE80211_F_WEPON) &&
2513 		    (wh->i_fc[1] & IEEE80211_FC1_PROTECTED))
2514 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2515 
2516 		mb.m_data = (caddr_t)tap;
2517 		mb.m_len = sc->sc_txtap_len;
2518 		mb.m_next = m;
2519 		mb.m_nextpkt = NULL;
2520 		mb.m_type = 0;
2521 		mb.m_flags = 0;
2522 		bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_OUT);
2523 	}
2524 #endif
2525 
2526 	totlen = m->m_pkthdr.len;
2527 
2528 	/* Encrypt the frame if need be. */
2529 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
2530 		/* Retrieve key for TX. */
2531 		k = ieee80211_get_txkey(ic, wh, ni);
2532 		if (k->k_cipher != IEEE80211_CIPHER_CCMP) {
2533 			/* Do software encryption. */
2534 			if ((m = ieee80211_encrypt(ic, m, k)) == NULL)
2535 				return ENOBUFS;
2536 			/* 802.11 header may have moved. */
2537 			wh = mtod(m, struct ieee80211_frame *);
2538 			totlen = m->m_pkthdr.len;
2539 
2540 		} else	/* HW appends CCMP MIC. */
2541 			totlen += IEEE80211_CCMP_HDRLEN;
2542 	}
2543 
2544 	/* Prepare TX firmware command. */
2545 	cmd = &ring->cmd[ring->cur];
2546 	cmd->code = IWN_CMD_TX_DATA;
2547 	cmd->flags = 0;
2548 	cmd->qid = ring->qid;
2549 	cmd->idx = ring->cur;
2550 
2551 	tx = (struct iwn_cmd_data *)cmd->data;
2552 	/* NB: No need to clear tx, all fields are reinitialized here. */
2553 	tx->scratch = 0;	/* clear "scratch" area */
2554 
2555 	flags = 0;
2556 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2557 		/* Unicast frame, check if an ACK is expected. */
2558 		if (!hasqos || (qos & IEEE80211_QOS_ACK_POLICY_MASK) !=
2559 		    IEEE80211_QOS_ACK_POLICY_NOACK)
2560 			flags |= IWN_TX_NEED_ACK;
2561 	}
2562 	if ((wh->i_fc[0] &
2563 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
2564 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
2565 		flags |= IWN_TX_IMM_BA;		/* Cannot happen yet. */
2566 
2567 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
2568 		flags |= IWN_TX_MORE_FRAG;	/* Cannot happen yet. */
2569 
2570 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
2571 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2572 		/* NB: Group frames are sent using CCK in 802.11b/g. */
2573 		if (totlen + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) {
2574 			flags |= IWN_TX_NEED_RTS;
2575 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
2576 		    ridx >= IWN_RIDX_OFDM6) {
2577 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2578 				flags |= IWN_TX_NEED_CTS;
2579 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2580 				flags |= IWN_TX_NEED_RTS;
2581 		}
2582 		if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
2583 			if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
2584 				/* 5000 autoselects RTS/CTS or CTS-to-self. */
2585 				flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
2586 				flags |= IWN_TX_NEED_PROTECTION;
2587 			} else
2588 				flags |= IWN_TX_FULL_TXOP;
2589 		}
2590 	}
2591 
2592 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
2593 	    type != IEEE80211_FC0_TYPE_DATA)
2594 		tx->id = hal->broadcast_id;
2595 	else
2596 		tx->id = wn->id;
2597 
2598 	if (type == IEEE80211_FC0_TYPE_MGT) {
2599 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2600 
2601 #ifndef IEEE80211_STA_ONLY
2602 		/* Tell HW to set timestamp in probe responses. */
2603 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2604 			flags |= IWN_TX_INSERT_TSTAMP;
2605 #endif
2606 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
2607 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
2608 			tx->timeout = htole16(3);
2609 		else
2610 			tx->timeout = htole16(2);
2611 	} else
2612 		tx->timeout = htole16(0);
2613 
2614 	if (hdrlen & 3) {
2615 		/* First segment's length must be a multiple of 4. */
2616 		flags |= IWN_TX_NEED_PADDING;
2617 		pad = 4 - (hdrlen & 3);
2618 	} else
2619 		pad = 0;
2620 
2621 	tx->len = htole16(totlen);
2622 	tx->tid = tid;
2623 	tx->rts_ntries = 60;
2624 	tx->data_ntries = 15;
2625 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
2626 	tx->plcp = rinfo->plcp;
2627 	tx->rflags = rinfo->flags;
2628 	if (tx->id == hal->broadcast_id) {
2629 		/* Group or management frame. */
2630 		tx->linkq = 0;
2631 		/* XXX Alternate between antenna A and B? */
2632 		txant = IWN_LSB(sc->txantmsk);
2633 		tx->rflags |= IWN_RFLAG_ANT(txant);
2634 	} else {
2635 		tx->linkq = ni->ni_rates.rs_nrates - ni->ni_txrate - 1;
2636 		flags |= IWN_TX_LINKQ;	/* enable MRR */
2637 	}
2638 	/* Set physical address of "scratch area". */
2639 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
2640 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
2641 
2642 	/* Copy 802.11 header in TX command. */
2643 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
2644 
2645 	if (k != NULL && k->k_cipher == IEEE80211_CIPHER_CCMP) {
2646 		/* Trim 802.11 header and prepend CCMP IV. */
2647 		m_adj(m, hdrlen - IEEE80211_CCMP_HDRLEN);
2648 		ivp = mtod(m, uint8_t *);
2649 		k->k_tsc++;
2650 		ivp[0] = k->k_tsc;
2651 		ivp[1] = k->k_tsc >> 8;
2652 		ivp[2] = 0;
2653 		ivp[3] = k->k_id << 6 | IEEE80211_WEP_EXTIV;
2654 		ivp[4] = k->k_tsc >> 16;
2655 		ivp[5] = k->k_tsc >> 24;
2656 		ivp[6] = k->k_tsc >> 32;
2657 		ivp[7] = k->k_tsc >> 40;
2658 
2659 		tx->security = IWN_CIPHER_CCMP;
2660 		/* XXX flags |= IWN_TX_AMPDU_CCMP; */
2661 		memcpy(tx->key, k->k_key, k->k_len);
2662 
2663 		/* TX scheduler includes CCMP MIC len w/5000 Series. */
2664 		if (sc->hw_type != IWN_HW_REV_TYPE_4965)
2665 			totlen += IEEE80211_CCMP_MICLEN;
2666 	} else {
2667 		/* Trim 802.11 header. */
2668 		m_adj(m, hdrlen);
2669 		tx->security = 0;
2670 	}
2671 	tx->flags = htole32(flags);
2672 
2673 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
2674 	    BUS_DMA_NOWAIT);
2675 	if (error != 0 && error != EFBIG) {
2676 		printf("%s: can't map mbuf (error %d)\n",
2677 		    sc->sc_dev.dv_xname, error);
2678 		m_freem(m);
2679 		return error;
2680 	}
2681 	if (error != 0) {
2682 		/* Too many DMA segments, linearize mbuf. */
2683 		MGETHDR(m1, M_DONTWAIT, MT_DATA);
2684 		if (m1 == NULL) {
2685 			m_freem(m);
2686 			return ENOBUFS;
2687 		}
2688 		if (m->m_pkthdr.len > MHLEN) {
2689 			MCLGET(m1, M_DONTWAIT);
2690 			if (!(m1->m_flags & M_EXT)) {
2691 				m_freem(m);
2692 				m_freem(m1);
2693 				return ENOBUFS;
2694 			}
2695 		}
2696 		m_copydata(m, 0, m->m_pkthdr.len, mtod(m1, caddr_t));
2697 		m1->m_pkthdr.len = m1->m_len = m->m_pkthdr.len;
2698 		m_freem(m);
2699 		m = m1;
2700 
2701 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
2702 		    BUS_DMA_NOWAIT);
2703 		if (error != 0) {
2704 			printf("%s: can't map mbuf (error %d)\n",
2705 			    sc->sc_dev.dv_xname, error);
2706 			m_freem(m);
2707 			return error;
2708 		}
2709 	}
2710 
2711 	data->m = m;
2712 	data->ni = ni;
2713 
2714 	DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
2715 	    ring->qid, ring->cur, m->m_pkthdr.len, data->map->dm_nsegs));
2716 
2717 	/* Fill TX descriptor. */
2718 	desc->nsegs = 1 + data->map->dm_nsegs;
2719 	/* First DMA segment is used by the TX command. */
2720 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
2721 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
2722 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
2723 	/* Other DMA segments are for data payload. */
2724 	seg = data->map->dm_segs;
2725 	for (i = 1; i <= data->map->dm_nsegs; i++) {
2726 		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
2727 		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
2728 		    seg->ds_len << 4);
2729 		seg++;
2730 	}
2731 
2732 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
2733 	    BUS_DMASYNC_PREWRITE);
2734 	bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
2735 	    (caddr_t)cmd - ring->cmd_dma.vaddr, sizeof (*cmd),
2736 	    BUS_DMASYNC_PREWRITE);
2737 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
2738 	    (caddr_t)desc - ring->desc_dma.vaddr, sizeof (*desc),
2739 	    BUS_DMASYNC_PREWRITE);
2740 
2741 	/* Update TX scheduler. */
2742 	hal->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
2743 
2744 	/* Kick TX ring. */
2745 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
2746 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
2747 
2748 	/* Mark TX ring as full if we reach a certain threshold. */
2749 	if (++ring->queued > IWN_TX_RING_HIMARK)
2750 		sc->qfullmsk |= 1 << ring->qid;
2751 
2752 	return 0;
2753 }
2754 
2755 void
2756 iwn_start(struct ifnet *ifp)
2757 {
2758 	struct iwn_softc *sc = ifp->if_softc;
2759 	struct ieee80211com *ic = &sc->sc_ic;
2760 	struct ieee80211_node *ni;
2761 	struct mbuf *m;
2762 
2763 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2764 		return;
2765 
2766 	for (;;) {
2767 		if (sc->qfullmsk != 0) {
2768 			ifp->if_flags |= IFF_OACTIVE;
2769 			break;
2770 		}
2771 		/* Send pending management frames first. */
2772 		IF_DEQUEUE(&ic->ic_mgtq, m);
2773 		if (m != NULL) {
2774 			ni = (void *)m->m_pkthdr.rcvif;
2775 			goto sendit;
2776 		}
2777 		if (ic->ic_state != IEEE80211_S_RUN)
2778 			break;
2779 
2780 		/* Encapsulate and send data frames. */
2781 		IFQ_DEQUEUE(&ifp->if_snd, m);
2782 		if (m == NULL)
2783 			break;
2784 #if NBPFILTER > 0
2785 		if (ifp->if_bpf != NULL)
2786 			bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_OUT);
2787 #endif
2788 		if ((m = ieee80211_encap(ifp, m, &ni)) == NULL)
2789 			continue;
2790 sendit:
2791 #if NBPFILTER > 0
2792 		if (ic->ic_rawbpf != NULL)
2793 			bpf_mtap(ic->ic_rawbpf, m, BPF_DIRECTION_OUT);
2794 #endif
2795 		if (iwn_tx(sc, m, ni) != 0) {
2796 			ieee80211_release_node(ic, ni);
2797 			ifp->if_oerrors++;
2798 			continue;
2799 		}
2800 
2801 		sc->sc_tx_timer = 5;
2802 		ifp->if_timer = 1;
2803 	}
2804 }
2805 
2806 void
2807 iwn_watchdog(struct ifnet *ifp)
2808 {
2809 	struct iwn_softc *sc = ifp->if_softc;
2810 
2811 	ifp->if_timer = 0;
2812 
2813 	if (sc->sc_tx_timer > 0) {
2814 		if (--sc->sc_tx_timer == 0) {
2815 			printf("%s: device timeout\n", sc->sc_dev.dv_xname);
2816 			ifp->if_flags &= ~IFF_UP;
2817 			iwn_stop(ifp, 1);
2818 			ifp->if_oerrors++;
2819 			return;
2820 		}
2821 		ifp->if_timer = 1;
2822 	}
2823 
2824 	ieee80211_watchdog(ifp);
2825 }
2826 
2827 int
2828 iwn_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2829 {
2830 	struct iwn_softc *sc = ifp->if_softc;
2831 	struct ieee80211com *ic = &sc->sc_ic;
2832 	struct ifaddr *ifa;
2833 	struct ifreq *ifr;
2834 	int s, error = 0;
2835 
2836 	s = splnet();
2837 
2838 	switch (cmd) {
2839 	case SIOCSIFADDR:
2840 		ifa = (struct ifaddr *)data;
2841 		ifp->if_flags |= IFF_UP;
2842 #ifdef INET
2843 		if (ifa->ifa_addr->sa_family == AF_INET)
2844 			arp_ifinit(&ic->ic_ac, ifa);
2845 #endif
2846 		/* FALLTHROUGH */
2847 	case SIOCSIFFLAGS:
2848 		if (ifp->if_flags & IFF_UP) {
2849 			if (!(ifp->if_flags & IFF_RUNNING))
2850 				error = iwn_init(ifp);
2851 		} else {
2852 			if (ifp->if_flags & IFF_RUNNING)
2853 				iwn_stop(ifp, 1);
2854 		}
2855 		break;
2856 
2857 	case SIOCADDMULTI:
2858 	case SIOCDELMULTI:
2859 		ifr = (struct ifreq *)data;
2860 		error = (cmd == SIOCADDMULTI) ?
2861 		    ether_addmulti(ifr, &ic->ic_ac) :
2862 		    ether_delmulti(ifr, &ic->ic_ac);
2863 
2864 		if (error == ENETRESET)
2865 			error = 0;
2866 		break;
2867 
2868 	case SIOCS80211POWER:
2869 		error = ieee80211_ioctl(ifp, cmd, data);
2870 		if (error != ENETRESET)
2871 			break;
2872 		if (ic->ic_state == IEEE80211_S_RUN &&
2873 		    sc->calib.state == IWN_CALIB_STATE_RUN) {
2874 			if (ic->ic_flags & IEEE80211_F_PMGTON)
2875 				error = iwn_set_pslevel(sc, 0, 3, 0);
2876 			else	/* back to CAM */
2877 				error = iwn_set_pslevel(sc, 0, 0, 0);
2878 		} else {
2879 			/* Defer until transition to IWN_CALIB_STATE_RUN. */
2880 			error = 0;
2881 		}
2882 		break;
2883 
2884 	default:
2885 		error = ieee80211_ioctl(ifp, cmd, data);
2886 	}
2887 
2888 	if (error == ENETRESET) {
2889 		error = 0;
2890 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
2891 		    (IFF_UP | IFF_RUNNING)) {
2892 			iwn_stop(ifp, 0);
2893 			error = iwn_init(ifp);
2894 		}
2895 	}
2896 	splx(s);
2897 	return error;
2898 }
2899 
2900 /*
2901  * Send a command to the firmware.
2902  */
2903 int
2904 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
2905 {
2906 	const struct iwn_hal *hal = sc->sc_hal;
2907 	struct iwn_tx_ring *ring = &sc->txq[4];
2908 	struct iwn_tx_desc *desc;
2909 	struct iwn_tx_data *data;
2910 	struct iwn_tx_cmd *cmd;
2911 	struct mbuf *m;
2912 	bus_addr_t paddr;
2913 	int totlen, error;
2914 
2915 	desc = &ring->desc[ring->cur];
2916 	data = &ring->data[ring->cur];
2917 	totlen = 4 + size;
2918 
2919 	if (size > sizeof cmd->data) {
2920 		/* Command is too large to fit in a descriptor. */
2921 		if (totlen > MCLBYTES)
2922 			return EINVAL;
2923 		MGETHDR(m, M_DONTWAIT, MT_DATA);
2924 		if (m == NULL)
2925 			return ENOMEM;
2926 		if (totlen > MHLEN) {
2927 			MCLGET(m, M_DONTWAIT);
2928 			if (!(m->m_flags & M_EXT)) {
2929 				m_freem(m);
2930 				return ENOMEM;
2931 			}
2932 		}
2933 		cmd = mtod(m, struct iwn_tx_cmd *);
2934 		error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, totlen,
2935 		    NULL, BUS_DMA_NOWAIT);
2936 		if (error != 0) {
2937 			m_freem(m);
2938 			return error;
2939 		}
2940 		data->m = m;
2941 		paddr = data->map->dm_segs[0].ds_addr;
2942 	} else {
2943 		cmd = &ring->cmd[ring->cur];
2944 		paddr = data->cmd_paddr;
2945 	}
2946 
2947 	cmd->code = code;
2948 	cmd->flags = 0;
2949 	cmd->qid = ring->qid;
2950 	cmd->idx = ring->cur;
2951 	memcpy(cmd->data, buf, size);
2952 
2953 	desc->nsegs = 1;
2954 	desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
2955 	desc->segs[0].len  = htole16(IWN_HIADDR(paddr) | totlen << 4);
2956 
2957 	if (size > sizeof cmd->data) {
2958 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, totlen,
2959 		    BUS_DMASYNC_PREWRITE);
2960 	} else {
2961 		bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
2962 		    (caddr_t)cmd - ring->cmd_dma.vaddr, totlen,
2963 		    BUS_DMASYNC_PREWRITE);
2964 	}
2965 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
2966 	    (caddr_t)desc - ring->desc_dma.vaddr, sizeof (*desc),
2967 	    BUS_DMASYNC_PREWRITE);
2968 
2969 	/* Update TX scheduler. */
2970 	hal->update_sched(sc, ring->qid, ring->cur, 0, 0);
2971 
2972 	/* Kick command ring. */
2973 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
2974 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
2975 
2976 	return async ? 0 : tsleep(desc, PCATCH, "iwncmd", hz);
2977 }
2978 
2979 int
2980 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
2981 {
2982 	struct iwn4965_node_info hnode;
2983 	caddr_t src, dst;
2984 
2985 	/*
2986 	 * We use the node structure for 5000 Series internally (it is
2987 	 * a superset of the one for 4965AGN). We thus copy the common
2988 	 * fields before sending the command.
2989 	 */
2990 	src = (caddr_t)node;
2991 	dst = (caddr_t)&hnode;
2992 	memcpy(dst, src, 48);
2993 	/* Skip TSC, RX MIC and TX MIC fields from ``src''. */
2994 	memcpy(dst + 48, src + 72, 20);
2995 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
2996 }
2997 
2998 int
2999 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3000 {
3001 	/* Direct mapping. */
3002 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
3003 }
3004 
3005 int
3006 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni)
3007 {
3008 	struct iwn_node *wn = (void *)ni;
3009 	struct ieee80211_rateset *rs = &ni->ni_rates;
3010 	struct iwn_cmd_link_quality linkq;
3011 	const struct iwn_rate *rinfo;
3012 	uint8_t txant;
3013 	int i, txrate;
3014 
3015 	/* Use the first valid TX antenna. */
3016 	txant = IWN_LSB(sc->txantmsk);
3017 
3018 	memset(&linkq, 0, sizeof linkq);
3019 	linkq.id = wn->id;
3020 	linkq.antmsk_1stream = txant;
3021 	linkq.antmsk_2stream = IWN_ANT_A | IWN_ANT_B;
3022 	linkq.ampdu_max = 64;
3023 	linkq.ampdu_threshold = 3;
3024 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
3025 
3026 	/* Start at highest available bit-rate. */
3027 	txrate = rs->rs_nrates - 1;
3028 	for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
3029 		rinfo = &iwn_rates[wn->ridx[txrate]];
3030 		linkq.retry[i].plcp = rinfo->plcp;
3031 		linkq.retry[i].rflags = rinfo->flags;
3032 		linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant);
3033 		/* Next retry at immediate lower bit-rate. */
3034 		if (txrate > 0)
3035 			txrate--;
3036 	}
3037 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1);
3038 }
3039 
3040 /*
3041  * Broadcast node is used to send group-addressed and management frames.
3042  */
3043 int
3044 iwn_add_broadcast_node(struct iwn_softc *sc, int async)
3045 {
3046 	const struct iwn_hal *hal = sc->sc_hal;
3047 	struct iwn_node_info node;
3048 	struct iwn_cmd_link_quality linkq;
3049 	const struct iwn_rate *rinfo;
3050 	uint8_t txant;
3051 	int i, error;
3052 
3053 	memset(&node, 0, sizeof node);
3054 	IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr);
3055 	node.id = hal->broadcast_id;
3056 	DPRINTF(("adding broadcast node\n"));
3057 	if ((error = hal->add_node(sc, &node, async)) != 0)
3058 		return error;
3059 
3060 	/* Use the first valid TX antenna. */
3061 	txant = IWN_LSB(sc->txantmsk);
3062 
3063 	memset(&linkq, 0, sizeof linkq);
3064 	linkq.id = hal->broadcast_id;
3065 	linkq.antmsk_1stream = txant;
3066 	linkq.antmsk_2stream = IWN_ANT_A | IWN_ANT_B;
3067 	linkq.ampdu_max = 64;
3068 	linkq.ampdu_threshold = 3;
3069 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
3070 
3071 	/* Use lowest mandatory bit-rate. */
3072 	rinfo = (sc->sc_ic.ic_curmode != IEEE80211_MODE_11A) ?
3073 	    &iwn_rates[IWN_RIDX_CCK1] : &iwn_rates[IWN_RIDX_OFDM6];
3074 	linkq.retry[0].plcp = rinfo->plcp;
3075 	linkq.retry[0].rflags = rinfo->flags;
3076 	linkq.retry[0].rflags |= IWN_RFLAG_ANT(txant);
3077 	/* Use same bit-rate for all TX retries. */
3078 	for (i = 1; i < IWN_MAX_TX_RETRIES; i++) {
3079 		linkq.retry[i].plcp = linkq.retry[0].plcp;
3080 		linkq.retry[i].rflags = linkq.retry[0].rflags;
3081 	}
3082 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
3083 }
3084 
3085 void
3086 iwn_updateedca(struct ieee80211com *ic)
3087 {
3088 #define IWN_EXP2(x)	((1 << (x)) - 1)	/* CWmin = 2^ECWmin - 1 */
3089 	struct iwn_softc *sc = ic->ic_softc;
3090 	struct iwn_edca_params cmd;
3091 	int aci;
3092 
3093 	memset(&cmd, 0, sizeof cmd);
3094 	cmd.flags = htole32(IWN_EDCA_UPDATE);
3095 	for (aci = 0; aci < EDCA_NUM_AC; aci++) {
3096 		const struct ieee80211_edca_ac_params *ac =
3097 		    &ic->ic_edca_ac[aci];
3098 		cmd.ac[aci].aifsn = ac->ac_aifsn;
3099 		cmd.ac[aci].cwmin = htole16(IWN_EXP2(ac->ac_ecwmin));
3100 		cmd.ac[aci].cwmax = htole16(IWN_EXP2(ac->ac_ecwmax));
3101 		cmd.ac[aci].txoplimit =
3102 		    htole16(IEEE80211_TXOP_TO_US(ac->ac_txoplimit));
3103 	}
3104 	(void)iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
3105 #undef IWN_EXP2
3106 }
3107 
3108 void
3109 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
3110 {
3111 	struct iwn_cmd_led led;
3112 
3113 	/* Clear microcode LED ownership. */
3114 	IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
3115 
3116 	led.which = which;
3117 	led.unit = htole32(10000);	/* on/off in unit of 100ms */
3118 	led.off = off;
3119 	led.on = on;
3120 	(void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
3121 }
3122 
3123 /*
3124  * Set the critical temperature at which the firmware will notify us.
3125  */
3126 int
3127 iwn_set_critical_temp(struct iwn_softc *sc)
3128 {
3129 	struct iwn_critical_temp crit;
3130 
3131 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
3132 
3133 	memset(&crit, 0, sizeof crit);
3134 	crit.tempR = htole32(sc->critical_temp);
3135 	DPRINTF(("setting critical temperature to %u\n", sc->critical_temp));
3136 	return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
3137 }
3138 
3139 int
3140 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
3141 {
3142 	struct iwn_cmd_timing cmd;
3143 	uint64_t val, mod;
3144 
3145 	memset(&cmd, 0, sizeof cmd);
3146 	memcpy(&cmd.tstamp, ni->ni_tstamp, sizeof (uint64_t));
3147 	cmd.bintval = htole16(ni->ni_intval);
3148 	cmd.lintval = htole16(10);
3149 
3150 	/* Compute remaining time until next beacon. */
3151 	val = (uint64_t)ni->ni_intval * 1024;	/* msecs -> usecs */
3152 	mod = letoh64(cmd.tstamp) % val;
3153 	cmd.binitval = htole32((uint32_t)(val - mod));
3154 
3155 	DPRINTF(("timing bintval=%u, tstamp=%llu, init=%u\n",
3156 	    ni->ni_intval, letoh64(cmd.tstamp), (uint32_t)(val - mod)));
3157 
3158 	return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
3159 }
3160 
3161 void
3162 iwn4965_power_calibration(struct iwn_softc *sc, int temp)
3163 {
3164 	/* Adjust TX power if need be (delta >= 3 degC.) */
3165 	DPRINTF(("temperature %d->%d\n", sc->temp, temp));
3166 	if (abs(temp - sc->temp) >= 3) {
3167 		/* Record temperature of last calibration. */
3168 		sc->temp = temp;
3169 		(void)iwn4965_set_txpower(sc, 1);
3170 	}
3171 }
3172 
3173 /*
3174  * Set TX power for current channel (each rate has its own power settings).
3175  * This function takes into account the regulatory information from EEPROM,
3176  * the current temperature and the current voltage.
3177  */
3178 int
3179 iwn4965_set_txpower(struct iwn_softc *sc, int async)
3180 {
3181 /* Fixed-point arithmetic division using a n-bit fractional part. */
3182 #define fdivround(a, b, n)	\
3183 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3184 /* Linear interpolation. */
3185 #define interpolate(x, x1, y1, x2, y2, n)	\
3186 	((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3187 
3188 	static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
3189 	struct ieee80211com *ic = &sc->sc_ic;
3190 	struct iwn_ucode_info *uc = &sc->ucode_info;
3191 	struct ieee80211_channel *ch;
3192 	struct iwn4965_cmd_txpower cmd;
3193 	struct iwn4965_eeprom_chan_samples *chans;
3194 	const uint8_t *rf_gain, *dsp_gain;
3195 	int32_t vdiff, tdiff;
3196 	int i, c, grp, maxpwr;
3197 	uint8_t chan;
3198 
3199 	/* Retrieve current channel from last RXON. */
3200 	chan = sc->rxon.chan;
3201 	DPRINTF(("setting TX power for channel %d\n", chan));
3202 	ch = &ic->ic_channels[chan];
3203 
3204 	memset(&cmd, 0, sizeof cmd);
3205 	cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
3206 	cmd.chan = chan;
3207 
3208 	if (IEEE80211_IS_CHAN_5GHZ(ch)) {
3209 		maxpwr   = sc->maxpwr5GHz;
3210 		rf_gain  = iwn4965_rf_gain_5ghz;
3211 		dsp_gain = iwn4965_dsp_gain_5ghz;
3212 	} else {
3213 		maxpwr   = sc->maxpwr2GHz;
3214 		rf_gain  = iwn4965_rf_gain_2ghz;
3215 		dsp_gain = iwn4965_dsp_gain_2ghz;
3216 	}
3217 
3218 	/* Compute voltage compensation. */
3219 	vdiff = ((int32_t)letoh32(uc->volt) - sc->eeprom_voltage) / 7;
3220 	if (vdiff > 0)
3221 		vdiff *= 2;
3222 	if (abs(vdiff) > 2)
3223 		vdiff = 0;
3224 	DPRINTF(("voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
3225 	    vdiff, letoh32(uc->volt), sc->eeprom_voltage));
3226 
3227 	/* Get channel's attenuation group. */
3228 	if (chan <= 20)		/* 1-20 */
3229 		grp = 4;
3230 	else if (chan <= 43)	/* 34-43 */
3231 		grp = 0;
3232 	else if (chan <= 70)	/* 44-70 */
3233 		grp = 1;
3234 	else if (chan <= 124)	/* 71-124 */
3235 		grp = 2;
3236 	else			/* 125-200 */
3237 		grp = 3;
3238 	DPRINTF(("chan %d, attenuation group=%d\n", chan, grp));
3239 
3240 	/* Get channel's sub-band. */
3241 	for (i = 0; i < IWN_NBANDS; i++)
3242 		if (sc->bands[i].lo != 0 &&
3243 		    sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
3244 			break;
3245 	if (i == IWN_NBANDS)	/* Can't happen in real-life. */
3246 		return EINVAL;
3247 	chans = sc->bands[i].chans;
3248 	DPRINTF(("chan %d sub-band=%d\n", chan, i));
3249 
3250 	for (c = 0; c < 2; c++) {
3251 		uint8_t power, gain, temp;
3252 		int maxchpwr, pwr, ridx, idx;
3253 
3254 		power = interpolate(chan,
3255 		    chans[0].num, chans[0].samples[c][1].power,
3256 		    chans[1].num, chans[1].samples[c][1].power, 1);
3257 		gain  = interpolate(chan,
3258 		    chans[0].num, chans[0].samples[c][1].gain,
3259 		    chans[1].num, chans[1].samples[c][1].gain, 1);
3260 		temp  = interpolate(chan,
3261 		    chans[0].num, chans[0].samples[c][1].temp,
3262 		    chans[1].num, chans[1].samples[c][1].temp, 1);
3263 		DPRINTF(("TX chain %d: power=%d gain=%d temp=%d\n",
3264 		    c, power, gain, temp));
3265 
3266 		/* Compute temperature compensation. */
3267 		tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
3268 		DPRINTF(("temperature compensation=%d (current=%d, "
3269 		    "EEPROM=%d)\n", tdiff, sc->temp, temp));
3270 
3271 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
3272 			maxchpwr = sc->maxpwr[chan] * 2;
3273 			if ((ridx / 8) & 1)
3274 				maxchpwr -= 6;	/* MIMO 2T: -3dB */
3275 
3276 			pwr = maxpwr;
3277 
3278 			/* Adjust TX power based on rate. */
3279 			if ((ridx % 8) == 5)
3280 				pwr -= 15;	/* OFDM48: -7.5dB */
3281 			else if ((ridx % 8) == 6)
3282 				pwr -= 17;	/* OFDM54: -8.5dB */
3283 			else if ((ridx % 8) == 7)
3284 				pwr -= 20;	/* OFDM60: -10dB */
3285 			else
3286 				pwr -= 10;	/* Others: -5dB */
3287 
3288 			/* Do not exceed channel's max TX power. */
3289 			if (pwr > maxchpwr)
3290 				pwr = maxchpwr;
3291 
3292 			idx = gain - (pwr - power) - tdiff - vdiff;
3293 			if ((ridx / 8) & 1)	/* MIMO */
3294 				idx += (int32_t)letoh32(uc->atten[grp][c]);
3295 
3296 			if (cmd.band == 0)
3297 				idx += 9;	/* 5GHz */
3298 			if (ridx == IWN_RIDX_MAX)
3299 				idx += 5;	/* CCK */
3300 
3301 			/* Make sure idx stays in a valid range. */
3302 			if (idx < 0)
3303 				idx = 0;
3304 			else if (idx > IWN4965_MAX_PWR_INDEX)
3305 				idx = IWN4965_MAX_PWR_INDEX;
3306 
3307 			DPRINTF(("TX chain %d, rate idx %d: power=%d\n",
3308 			    c, ridx, idx));
3309 			cmd.power[ridx].rf_gain[c] = rf_gain[idx];
3310 			cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
3311 		}
3312 	}
3313 
3314 	DPRINTF(("setting TX power for chan %d\n", chan));
3315 	return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
3316 
3317 #undef interpolate
3318 #undef fdivround
3319 }
3320 
3321 int
3322 iwn5000_set_txpower(struct iwn_softc *sc, int async)
3323 {
3324 	struct iwn5000_cmd_txpower cmd;
3325 
3326 	/*
3327 	 * TX power calibration is handled automatically by the firmware
3328 	 * for 5000 Series.
3329 	 */
3330 	memset(&cmd, 0, sizeof cmd);
3331 	cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM;	/* 16 dBm */
3332 	cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
3333 	cmd.srv_limit = IWN5000_TXPOWER_AUTO;
3334 	DPRINTF(("setting TX power\n"));
3335 	return iwn_cmd(sc, IWN_CMD_TXPOWER_DBM, &cmd, sizeof cmd, async);
3336 }
3337 
3338 /*
3339  * Retrieve the maximum RSSI (in dBm) among receivers.
3340  */
3341 int
3342 iwn4965_get_rssi(const struct iwn_rx_stat *stat)
3343 {
3344 	struct iwn4965_rx_phystat *phy = (void *)stat->phybuf;
3345 	uint8_t mask, agc;
3346 	int rssi;
3347 
3348 	mask = (letoh16(phy->antenna) >> 4) & 0x7;
3349 	agc  = (letoh16(phy->agc) >> 7) & 0x7f;
3350 
3351 	rssi = 0;
3352 	if (mask & IWN_ANT_A)
3353 		rssi = MAX(rssi, phy->rssi[0]);
3354 	if (mask & IWN_ANT_B)
3355 		rssi = MAX(rssi, phy->rssi[2]);
3356 	if (mask & IWN_ANT_C)
3357 		rssi = MAX(rssi, phy->rssi[4]);
3358 
3359 	return rssi - agc - IWN_RSSI_TO_DBM;
3360 }
3361 
3362 int
3363 iwn5000_get_rssi(const struct iwn_rx_stat *stat)
3364 {
3365 	struct iwn5000_rx_phystat *phy = (void *)stat->phybuf;
3366 	uint8_t agc;
3367 	int rssi;
3368 
3369 	agc = (letoh32(phy->agc) >> 9) & 0x7f;
3370 
3371 	rssi = MAX(letoh16(phy->rssi[0]) & 0xff,
3372 		   letoh16(phy->rssi[1]) & 0xff);
3373 	rssi = MAX(letoh16(phy->rssi[2]) & 0xff, rssi);
3374 
3375 	return rssi - agc - IWN_RSSI_TO_DBM;
3376 }
3377 
3378 /*
3379  * Retrieve the average noise (in dBm) among receivers.
3380  */
3381 int
3382 iwn_get_noise(const struct iwn_rx_general_stats *stats)
3383 {
3384 	int i, total, nbant, noise;
3385 
3386 	total = nbant = 0;
3387 	for (i = 0; i < 3; i++) {
3388 		if ((noise = letoh32(stats->noise[i]) & 0xff) == 0)
3389 			continue;
3390 		total += noise;
3391 		nbant++;
3392 	}
3393 	/* There should be at least one antenna but check anyway. */
3394 	return (nbant == 0) ? -127 : (total / nbant) - 107;
3395 }
3396 
3397 /*
3398  * Compute temperature (in degC) from last received statistics.
3399  */
3400 int
3401 iwn4965_get_temperature(struct iwn_softc *sc)
3402 {
3403 	struct iwn_ucode_info *uc = &sc->ucode_info;
3404 	int32_t r1, r2, r3, r4, temp;
3405 
3406 	r1 = letoh32(uc->temp[0].chan20MHz);
3407 	r2 = letoh32(uc->temp[1].chan20MHz);
3408 	r3 = letoh32(uc->temp[2].chan20MHz);
3409 	r4 = letoh32(sc->rawtemp);
3410 
3411 	if (r1 == r3)	/* Prevents division by 0 (should not happen.) */
3412 		return 0;
3413 
3414 	/* Sign-extend 23-bit R4 value to 32-bit. */
3415 	r4 = (r4 << 8) >> 8;
3416 	/* Compute temperature in Kelvin. */
3417 	temp = (259 * (r4 - r2)) / (r3 - r1);
3418 	temp = (temp * 97) / 100 + 8;
3419 
3420 	DPRINTF(("temperature %dK/%dC\n", temp, IWN_KTOC(temp)));
3421 	return IWN_KTOC(temp);
3422 }
3423 
3424 int
3425 iwn5000_get_temperature(struct iwn_softc *sc)
3426 {
3427 	/*
3428 	 * Temperature is not used by the driver for 5000 Series because
3429 	 * TX power calibration is handled by firmware.  We export it to
3430 	 * users through the sensor framework though.
3431 	 */
3432 	return letoh32(sc->rawtemp);
3433 }
3434 
3435 /*
3436  * Initialize sensitivity calibration state machine.
3437  */
3438 int
3439 iwn_init_sensitivity(struct iwn_softc *sc)
3440 {
3441 	const struct iwn_hal *hal = sc->sc_hal;
3442 	struct iwn_calib_state *calib = &sc->calib;
3443 	uint32_t flags;
3444 	int error;
3445 
3446 	/* Reset calibration state machine. */
3447 	memset(calib, 0, sizeof (*calib));
3448 	calib->state = IWN_CALIB_STATE_INIT;
3449 	calib->cck_state = IWN_CCK_STATE_HIFA;
3450 	/* Set initial correlation values. */
3451 	calib->ofdm_x1     = hal->limits->min_ofdm_x1;
3452 	calib->ofdm_mrc_x1 = hal->limits->min_ofdm_mrc_x1;
3453 	calib->ofdm_x4     = 90;
3454 	calib->ofdm_mrc_x4 = hal->limits->min_ofdm_mrc_x4;
3455 	calib->cck_x4      = 125;
3456 	calib->cck_mrc_x4  = hal->limits->min_cck_mrc_x4;
3457 	calib->energy_cck  = hal->limits->energy_cck;
3458 
3459 	/* Write initial sensitivity. */
3460 	if ((error = iwn_send_sensitivity(sc)) != 0)
3461 		return error;
3462 
3463 	/* Write initial gains. */
3464 	if ((error = hal->init_gains(sc)) != 0)
3465 		return error;
3466 
3467 	/* Request statistics at each beacon interval. */
3468 	flags = 0;
3469 	DPRINTF(("sending request for statistics\n"));
3470 	return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
3471 }
3472 
3473 /*
3474  * Collect noise and RSSI statistics for the first 20 beacons received
3475  * after association and use them to determine connected antennas and
3476  * to set differential gains.
3477  */
3478 void
3479 iwn_collect_noise(struct iwn_softc *sc,
3480     const struct iwn_rx_general_stats *stats)
3481 {
3482 	const struct iwn_hal *hal = sc->sc_hal;
3483 	struct iwn_calib_state *calib = &sc->calib;
3484 	uint32_t val;
3485 	int i;
3486 
3487 	/* Accumulate RSSI and noise for all 3 antennas. */
3488 	for (i = 0; i < 3; i++) {
3489 		calib->rssi[i] += letoh32(stats->rssi[i]) & 0xff;
3490 		calib->noise[i] += letoh32(stats->noise[i]) & 0xff;
3491 	}
3492 	/* NB: We update differential gains only once after 20 beacons. */
3493 	if (++calib->nbeacons < 20)
3494 		return;
3495 
3496 	/* Determine highest average RSSI. */
3497 	val = MAX(calib->rssi[0], calib->rssi[1]);
3498 	val = MAX(calib->rssi[2], val);
3499 
3500 	/* Determine which antennas are connected. */
3501 	sc->antmsk = 0;
3502 	for (i = 0; i < 3; i++)
3503 		if (val - calib->rssi[i] <= 15 * 20)
3504 			sc->antmsk |= 1 << i;
3505 	/* If none of the TX antennas are connected, keep at least one. */
3506 	if ((sc->antmsk & sc->txantmsk) == 0)
3507 		sc->antmsk |= IWN_LSB(sc->txantmsk);
3508 
3509 	(void)hal->set_gains(sc);
3510 	calib->state = IWN_CALIB_STATE_RUN;
3511 
3512 #ifdef notyet
3513 	/* XXX Disable RX chains with no antennas connected. */
3514 	sc->rxon.rxchain = htole16(IWN_RXCHAIN_SEL(sc->antmsk));
3515 	(void)iwn_cmd(sc, IWN_CMD_CONFIGURE, &sc->rxon, hal->rxonsz, 1);
3516 #endif
3517 
3518 	/* Enable power-saving mode if requested by user. */
3519 	if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON)
3520 		(void)iwn_set_pslevel(sc, 0, 3, 1);
3521 }
3522 
3523 int
3524 iwn4965_init_gains(struct iwn_softc *sc)
3525 {
3526 	struct iwn_phy_calib_gain cmd;
3527 
3528 	memset(&cmd, 0, sizeof cmd);
3529 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
3530 	/* Differential gains initially set to 0 for all 3 antennas. */
3531 	DPRINTF(("setting initial differential gains\n"));
3532 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3533 }
3534 
3535 int
3536 iwn5000_init_gains(struct iwn_softc *sc)
3537 {
3538 	struct iwn_phy_calib cmd;
3539 
3540 	if (sc->hw_type == IWN_HW_REV_TYPE_6000 ||
3541 	    sc->hw_type == IWN_HW_REV_TYPE_6050)
3542 		return 0;
3543 
3544 	memset(&cmd, 0, sizeof cmd);
3545 	cmd.code = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
3546 	cmd.ngroups = 1;
3547 	cmd.isvalid = 1;
3548 	DPRINTF(("setting initial differential gains\n"));
3549 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3550 }
3551 
3552 int
3553 iwn4965_set_gains(struct iwn_softc *sc)
3554 {
3555 	struct iwn_calib_state *calib = &sc->calib;
3556 	struct iwn_phy_calib_gain cmd;
3557 	int i, delta, noise;
3558 
3559 	/* Get minimal noise among connected antennas. */
3560 	noise = INT_MAX;	/* NB: There's at least one antenna. */
3561 	for (i = 0; i < 3; i++)
3562 		if (sc->antmsk & (1 << i))
3563 			noise = MIN(calib->noise[i], noise);
3564 
3565 	memset(&cmd, 0, sizeof cmd);
3566 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
3567 	/* Set differential gains for connected antennas. */
3568 	for (i = 0; i < 3; i++) {
3569 		if (sc->antmsk & (1 << i)) {
3570 			/* Compute attenuation (in unit of 1.5dB). */
3571 			delta = (noise - (int32_t)calib->noise[i]) / 30;
3572 			/* NB: delta <= 0 */
3573 			/* Limit to [-4.5dB,0]. */
3574 			cmd.gain[i] = MIN(abs(delta), 3);
3575 			if (delta < 0)
3576 				cmd.gain[i] |= 1 << 2;	/* sign bit */
3577 		}
3578 	}
3579 	DPRINTF(("setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
3580 	    cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->antmsk));
3581 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3582 }
3583 
3584 int
3585 iwn5000_set_gains(struct iwn_softc *sc)
3586 {
3587 	struct iwn_calib_state *calib = &sc->calib;
3588 	struct iwn_phy_calib_gain cmd;
3589 	int i, delta;
3590 
3591 	if (sc->hw_type == IWN_HW_REV_TYPE_6000 ||
3592 	    sc->hw_type == IWN_HW_REV_TYPE_6050)
3593 		return 0;
3594 
3595 	memset(&cmd, 0, sizeof cmd);
3596 	cmd.code = IWN5000_PHY_CALIB_NOISE_GAIN;
3597 	cmd.ngroups = 1;
3598 	cmd.isvalid = 1;
3599 	/* Set differential gains for antennas B and C. */
3600 	for (i = 1; i < 3; i++) {
3601 		if (sc->antmsk & (1 << i)) {
3602 			/* The delta is relative to antenna A. */
3603 			delta = ((int32_t)calib->noise[0] -
3604 			    (int32_t)calib->noise[i]) / 30;
3605 			/* Limit to [-4.5dB,+4.5dB]. */
3606 			cmd.gain[i - 1] = MIN(abs(delta), 3);
3607 			if (delta < 0)
3608 				cmd.gain[i - 1] |= 1 << 2;	/* sign bit */
3609 		}
3610 	}
3611 	DPRINTF(("setting differential gains Ant B/C: %x/%x (%x)\n",
3612 	    cmd.gain[0], cmd.gain[1], sc->antmsk));
3613 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3614 }
3615 
3616 /*
3617  * Tune RF RX sensitivity based on the number of false alarms detected
3618  * during the last beacon period.
3619  */
3620 void
3621 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
3622 {
3623 #define inc(val, inc, max)			\
3624 	if ((val) < (max)) {			\
3625 		if ((val) < (max) - (inc))	\
3626 			(val) += (inc);		\
3627 		else				\
3628 			(val) = (max);		\
3629 		needs_update = 1;		\
3630 	}
3631 #define dec(val, dec, min)			\
3632 	if ((val) > (min)) {			\
3633 		if ((val) > (min) + (dec))	\
3634 			(val) -= (dec);		\
3635 		else				\
3636 			(val) = (min);		\
3637 		needs_update = 1;		\
3638 	}
3639 
3640 	const struct iwn_hal *hal = sc->sc_hal;
3641 	const struct iwn_sensitivity_limits *limits = hal->limits;
3642 	struct iwn_calib_state *calib = &sc->calib;
3643 	uint32_t val, rxena, fa;
3644 	uint32_t energy[3], energy_min;
3645 	uint8_t noise[3], noise_ref;
3646 	int i, needs_update = 0;
3647 
3648 	/* Check that we've been enabled long enough. */
3649 	if ((rxena = letoh32(stats->general.load)) == 0)
3650 		return;
3651 
3652 	/* Compute number of false alarms since last call for OFDM. */
3653 	fa  = letoh32(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
3654 	fa += letoh32(stats->ofdm.fa) - calib->fa_ofdm;
3655 	fa *= 200 * 1024;	/* 200TU */
3656 
3657 	/* Save counters values for next call. */
3658 	calib->bad_plcp_ofdm = letoh32(stats->ofdm.bad_plcp);
3659 	calib->fa_ofdm = letoh32(stats->ofdm.fa);
3660 
3661 	if (fa > 50 * rxena) {
3662 		/* High false alarm count, decrease sensitivity. */
3663 		DPRINTFN(2, ("OFDM high false alarm count: %u\n", fa));
3664 		inc(calib->ofdm_x1,     1, limits->max_ofdm_x1);
3665 		inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
3666 		inc(calib->ofdm_x4,     1, limits->max_ofdm_x4);
3667 		inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
3668 
3669 	} else if (fa < 5 * rxena) {
3670 		/* Low false alarm count, increase sensitivity. */
3671 		DPRINTFN(2, ("OFDM low false alarm count: %u\n", fa));
3672 		dec(calib->ofdm_x1,     1, limits->min_ofdm_x1);
3673 		dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
3674 		dec(calib->ofdm_x4,     1, limits->min_ofdm_x4);
3675 		dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
3676 	}
3677 
3678 	/* Compute maximum noise among 3 receivers. */
3679 	for (i = 0; i < 3; i++)
3680 		noise[i] = (letoh32(stats->general.noise[i]) >> 8) & 0xff;
3681 	val = MAX(noise[0], noise[1]);
3682 	val = MAX(noise[2], val);
3683 	/* Insert it into our samples table. */
3684 	calib->noise_samples[calib->cur_noise_sample] = val;
3685 	calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
3686 
3687 	/* Compute maximum noise among last 20 samples. */
3688 	noise_ref = calib->noise_samples[0];
3689 	for (i = 1; i < 20; i++)
3690 		noise_ref = MAX(noise_ref, calib->noise_samples[i]);
3691 
3692 	/* Compute maximum energy among 3 receivers. */
3693 	for (i = 0; i < 3; i++)
3694 		energy[i] = letoh32(stats->general.energy[i]);
3695 	val = MIN(energy[0], energy[1]);
3696 	val = MIN(energy[2], val);
3697 	/* Insert it into our samples table. */
3698 	calib->energy_samples[calib->cur_energy_sample] = val;
3699 	calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
3700 
3701 	/* Compute minimum energy among last 10 samples. */
3702 	energy_min = calib->energy_samples[0];
3703 	for (i = 1; i < 10; i++)
3704 		energy_min = MAX(energy_min, calib->energy_samples[i]);
3705 	energy_min += 6;
3706 
3707 	/* Compute number of false alarms since last call for CCK. */
3708 	fa  = letoh32(stats->cck.bad_plcp) - calib->bad_plcp_cck;
3709 	fa += letoh32(stats->cck.fa) - calib->fa_cck;
3710 	fa *= 200 * 1024;	/* 200TU */
3711 
3712 	/* Save counters values for next call. */
3713 	calib->bad_plcp_cck = letoh32(stats->cck.bad_plcp);
3714 	calib->fa_cck = letoh32(stats->cck.fa);
3715 
3716 	if (fa > 50 * rxena) {
3717 		/* High false alarm count, decrease sensitivity. */
3718 		DPRINTFN(2, ("CCK high false alarm count: %u\n", fa));
3719 		calib->cck_state = IWN_CCK_STATE_HIFA;
3720 		calib->low_fa = 0;
3721 
3722 		if (calib->cck_x4 > 160) {
3723 			calib->noise_ref = noise_ref;
3724 			if (calib->energy_cck > 2)
3725 				dec(calib->energy_cck, 2, energy_min);
3726 		}
3727 		if (calib->cck_x4 < 160) {
3728 			calib->cck_x4 = 161;
3729 			needs_update = 1;
3730 		} else
3731 			inc(calib->cck_x4, 3, limits->max_cck_x4);
3732 
3733 		inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
3734 
3735 	} else if (fa < 5 * rxena) {
3736 		/* Low false alarm count, increase sensitivity. */
3737 		DPRINTFN(2, ("CCK low false alarm count: %u\n", fa));
3738 		calib->cck_state = IWN_CCK_STATE_LOFA;
3739 		calib->low_fa++;
3740 
3741 		if (calib->cck_state != IWN_CCK_STATE_INIT &&
3742 		    (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
3743 		     calib->low_fa > 100)) {
3744 			inc(calib->energy_cck, 2, limits->min_energy_cck);
3745 			dec(calib->cck_x4,     3, limits->min_cck_x4);
3746 			dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
3747 		}
3748 	} else {
3749 		/* Not worth to increase or decrease sensitivity. */
3750 		DPRINTFN(2, ("CCK normal false alarm count: %u\n", fa));
3751 		calib->low_fa = 0;
3752 		calib->noise_ref = noise_ref;
3753 
3754 		if (calib->cck_state == IWN_CCK_STATE_HIFA) {
3755 			/* Previous interval had many false alarms. */
3756 			dec(calib->energy_cck, 8, energy_min);
3757 		}
3758 		calib->cck_state = IWN_CCK_STATE_INIT;
3759 	}
3760 
3761 	if (needs_update)
3762 		(void)iwn_send_sensitivity(sc);
3763 #undef dec
3764 #undef inc
3765 }
3766 
3767 int
3768 iwn_send_sensitivity(struct iwn_softc *sc)
3769 {
3770 	const struct iwn_hal *hal = sc->sc_hal;
3771 	struct iwn_calib_state *calib = &sc->calib;
3772 	struct iwn_sensitivity_cmd cmd;
3773 
3774 	memset(&cmd, 0, sizeof cmd);
3775 	cmd.which = IWN_SENSITIVITY_WORKTBL;
3776 	/* OFDM modulation. */
3777 	cmd.corr_ofdm_x1     = htole16(calib->ofdm_x1);
3778 	cmd.corr_ofdm_mrc_x1 = htole16(calib->ofdm_mrc_x1);
3779 	cmd.corr_ofdm_x4     = htole16(calib->ofdm_x4);
3780 	cmd.corr_ofdm_mrc_x4 = htole16(calib->ofdm_mrc_x4);
3781 	cmd.energy_ofdm      = htole16(hal->limits->energy_ofdm);
3782 	cmd.energy_ofdm_th   = htole16(62);
3783 	/* CCK modulation. */
3784 	cmd.corr_cck_x4      = htole16(calib->cck_x4);
3785 	cmd.corr_cck_mrc_x4  = htole16(calib->cck_mrc_x4);
3786 	cmd.energy_cck       = htole16(calib->energy_cck);
3787 	/* Barker modulation: use default values. */
3788 	cmd.corr_barker      = htole16(190);
3789 	cmd.corr_barker_mrc  = htole16(390);
3790 
3791 	DPRINTFN(2, ("setting sensitivity %d/%d/%d/%d/%d/%d/%d\n",
3792 	    calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4,
3793 	    calib->ofdm_mrc_x4, calib->cck_x4, calib->cck_mrc_x4,
3794 	    calib->energy_cck));
3795 	return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, sizeof cmd, 1);
3796 }
3797 
3798 /*
3799  * Set STA mode power saving level (between 0 and 5).
3800  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
3801  */
3802 int
3803 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
3804 {
3805 	struct iwn_pmgt_cmd cmd;
3806 	const struct iwn_pmgt *pmgt;
3807 	uint32_t max, skip_dtim;
3808 	pcireg_t reg;
3809 	int i;
3810 
3811 	/* Select which PS parameters to use. */
3812 	if (dtim <= 2)
3813 		pmgt = &iwn_pmgt[0][level];
3814 	else if (dtim <= 10)
3815 		pmgt = &iwn_pmgt[1][level];
3816 	else
3817 		pmgt = &iwn_pmgt[2][level];
3818 
3819 	memset(&cmd, 0, sizeof cmd);
3820 	if (level != 0)	/* not CAM */
3821 		cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
3822 	if (level == 5)
3823 		cmd.flags |= htole16(IWN_PS_FAST_PD);
3824 	/* Retrieve PCIe Active State Power Management (ASPM). */
3825 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
3826 	    sc->sc_cap_off + PCI_PCIE_LCSR);
3827 	if (!(reg & PCI_PCIE_LCSR_ASPM_L0S))	/* L0s Entry disabled. */
3828 		cmd.flags |= htole16(IWN_PS_PCI_PMGT);
3829 	cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
3830 	cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
3831 
3832 	if (dtim == 0) {
3833 		dtim = 1;
3834 		skip_dtim = 0;
3835 	} else
3836 		skip_dtim = pmgt->skip_dtim;
3837 	if (skip_dtim != 0) {
3838 		cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
3839 		max = pmgt->intval[4];
3840 		if (max == (uint32_t)-1)
3841 			max = dtim * (skip_dtim + 1);
3842 		else if (max > dtim)
3843 			max = (max / dtim) * dtim;
3844 	} else
3845 		max = dtim;
3846 	for (i = 0; i < 5; i++)
3847 		cmd.intval[i] = htole32(MIN(max, pmgt->intval[i]));
3848 
3849 	DPRINTF(("setting power saving level to %d\n", level));
3850 	return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
3851 }
3852 
3853 int
3854 iwn_config(struct iwn_softc *sc)
3855 {
3856 	const struct iwn_hal *hal = sc->sc_hal;
3857 	struct ieee80211com *ic = &sc->sc_ic;
3858 	struct ifnet *ifp = &ic->ic_if;
3859 	struct iwn_bluetooth bluetooth;
3860 	uint16_t rxchain;
3861 	int error;
3862 
3863 	/* Set power saving level to CAM during initialization. */
3864 	if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) {
3865 		printf("%s: could not set power saving level\n",
3866 		    sc->sc_dev.dv_xname);
3867 		return error;
3868 	}
3869 
3870 	/* Configure bluetooth coexistence. */
3871 	memset(&bluetooth, 0, sizeof bluetooth);
3872 	bluetooth.flags = 3;
3873 	bluetooth.lead = 0xaa;
3874 	bluetooth.kill = 1;
3875 	DPRINTF(("configuring bluetooth coexistence\n"));
3876 	error = iwn_cmd(sc, IWN_CMD_BT_COEX, &bluetooth, sizeof bluetooth, 0);
3877 	if (error != 0) {
3878 		printf("%s: could not configure bluetooth coexistence\n",
3879 		    sc->sc_dev.dv_xname);
3880 		return error;
3881 	}
3882 
3883 	/* Configure adapter. */
3884 	memset(&sc->rxon, 0, sizeof (struct iwn_rxon));
3885 	IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
3886 	IEEE80211_ADDR_COPY(sc->rxon.myaddr, ic->ic_myaddr);
3887 	IEEE80211_ADDR_COPY(sc->rxon.wlap, ic->ic_myaddr);
3888 	/* Set default channel. */
3889 	sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
3890 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
3891 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan))
3892 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
3893 	switch (ic->ic_opmode) {
3894 	case IEEE80211_M_STA:
3895 		sc->rxon.mode = IWN_MODE_STA;
3896 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST);
3897 		break;
3898 	case IEEE80211_M_MONITOR:
3899 		sc->rxon.mode = IWN_MODE_MONITOR;
3900 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST |
3901 		    IWN_FILTER_CTL | IWN_FILTER_PROMISC);
3902 		break;
3903 	default:
3904 		/* Should not get there. */
3905 		break;
3906 	}
3907 	sc->rxon.cck_mask  = 0x0f;	/* not yet negotiated */
3908 	sc->rxon.ofdm_mask = 0xff;	/* not yet negotiated */
3909 	sc->rxon.ht_single_mask = 0xff;
3910 	sc->rxon.ht_dual_mask = 0xff;
3911 	rxchain = IWN_RXCHAIN_VALID(IWN_ANT_ABC) | IWN_RXCHAIN_IDLE_COUNT(2) |
3912 	    IWN_RXCHAIN_MIMO_COUNT(2);
3913 	sc->rxon.rxchain = htole16(rxchain);
3914 	DPRINTF(("setting configuration\n"));
3915 	error = iwn_cmd(sc, IWN_CMD_CONFIGURE, &sc->rxon, hal->rxonsz, 0);
3916 	if (error != 0) {
3917 		printf("%s: configure command failed\n", sc->sc_dev.dv_xname);
3918 		return error;
3919 	}
3920 
3921 	/* Configuration has changed, set TX power accordingly. */
3922 	if ((error = hal->set_txpower(sc, 0)) != 0) {
3923 		printf("%s: could not set TX power\n", sc->sc_dev.dv_xname);
3924 		return error;
3925 	}
3926 
3927 	if ((error = iwn_add_broadcast_node(sc, 0)) != 0) {
3928 		printf("%s: could not add broadcast node\n",
3929 		    sc->sc_dev.dv_xname);
3930 		return error;
3931 	}
3932 
3933 	if ((error = iwn_set_critical_temp(sc)) != 0) {
3934 		printf("%s: could not set critical temperature\n",
3935 		    sc->sc_dev.dv_xname);
3936 		return error;
3937 	}
3938 	return 0;
3939 }
3940 
3941 int
3942 iwn_scan(struct iwn_softc *sc, uint16_t flags)
3943 {
3944 	struct ieee80211com *ic = &sc->sc_ic;
3945 	struct iwn_scan_hdr *hdr;
3946 	struct iwn_cmd_data *tx;
3947 	struct iwn_scan_essid *essid;
3948 	struct iwn_scan_chan *chan;
3949 	struct ieee80211_frame *wh;
3950 	struct ieee80211_rateset *rs;
3951 	struct ieee80211_channel *c;
3952 	uint8_t *buf, *frm;
3953 	uint16_t rxchain;
3954 	uint8_t txant;
3955 	int buflen, error;
3956 
3957 	buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
3958 	if (buf == NULL) {
3959 		printf("%s: could not allocate buffer for scan command\n",
3960 		    sc->sc_dev.dv_xname);
3961 		return ENOMEM;
3962 	}
3963 	hdr = (struct iwn_scan_hdr *)buf;
3964 	/*
3965 	 * Move to the next channel if no frames are received within 10ms
3966 	 * after sending the probe request.
3967 	 */
3968 	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
3969 	hdr->quiet_threshold = htole16(1);	/* min # of packets */
3970 
3971 	/* Select antennas for scanning. */
3972 	rxchain = IWN_RXCHAIN_FORCE | IWN_RXCHAIN_VALID(IWN_ANT_ABC) |
3973 	    IWN_RXCHAIN_MIMO(IWN_ANT_ABC);
3974 	if ((flags & IEEE80211_CHAN_5GHZ) &&
3975 	    sc->hw_type == IWN_HW_REV_TYPE_4965) {
3976 		/* Ant A must be avoided in 5GHz because of an HW bug. */
3977 		rxchain |= IWN_RXCHAIN_SEL(IWN_ANT_B | IWN_ANT_C);
3978 	} else	/* Use all available RX antennas. */
3979 		rxchain |= IWN_RXCHAIN_SEL(IWN_ANT_ABC);
3980 	hdr->rxchain = htole16(rxchain);
3981 	hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
3982 
3983 	tx = (struct iwn_cmd_data *)(hdr + 1);
3984 	tx->flags = htole32(IWN_TX_AUTO_SEQ);
3985 	tx->id = sc->sc_hal->broadcast_id;
3986 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
3987 
3988 	if (flags & IEEE80211_CHAN_5GHZ) {
3989 		hdr->crc_threshold = htole16(1);
3990 		/* Send probe requests at 6Mbps. */
3991 		tx->plcp = iwn_rates[IWN_RIDX_OFDM6].plcp;
3992 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
3993 	} else {
3994 		hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
3995 		/* Send probe requests at 1Mbps. */
3996 		tx->plcp = iwn_rates[IWN_RIDX_CCK1].plcp;
3997 		tx->rflags = IWN_RFLAG_CCK;
3998 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
3999 	}
4000 	/* Use the first valid TX antenna. */
4001 	txant = IWN_LSB(sc->txantmsk);
4002 	tx->rflags |= IWN_RFLAG_ANT(txant);
4003 
4004 	essid = (struct iwn_scan_essid *)(tx + 1);
4005 	if (ic->ic_des_esslen != 0) {
4006 		essid[0].id = IEEE80211_ELEMID_SSID;
4007 		essid[0].len = ic->ic_des_esslen;
4008 		memcpy(essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
4009 	}
4010 	/*
4011 	 * Build a probe request frame.  Most of the following code is a
4012 	 * copy & paste of what is done in net80211.
4013 	 */
4014 	wh = (struct ieee80211_frame *)(essid + 20);
4015 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
4016 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
4017 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
4018 	IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
4019 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
4020 	IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
4021 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by HW */
4022 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by HW */
4023 
4024 	frm = (uint8_t *)(wh + 1);
4025 	frm = ieee80211_add_ssid(frm, NULL, 0);
4026 	frm = ieee80211_add_rates(frm, rs);
4027 	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
4028 		frm = ieee80211_add_xrates(frm, rs);
4029 
4030 	/* Set length of probe request. */
4031 	tx->len = htole16(frm - (uint8_t *)wh);
4032 
4033 	chan = (struct iwn_scan_chan *)frm;
4034 	for (c  = &ic->ic_channels[1];
4035 	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
4036 		if ((c->ic_flags & flags) != flags)
4037 			continue;
4038 
4039 		chan->chan = htole16(ieee80211_chan2ieee(ic, c));
4040 		DPRINTFN(2, ("adding channel %d\n", chan->chan));
4041 		chan->flags = 0;
4042 		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE))
4043 			chan->flags |= htole32(IWN_CHAN_ACTIVE);
4044 		if (ic->ic_des_esslen != 0)
4045 			chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
4046 		chan->dsp_gain = 0x6e;
4047 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
4048 			chan->rf_gain = 0x3b;
4049 			chan->active  = htole16(24);
4050 			chan->passive = htole16(110);
4051 		} else {
4052 			chan->rf_gain = 0x28;
4053 			chan->active  = htole16(36);
4054 			chan->passive = htole16(120);
4055 		}
4056 		hdr->nchan++;
4057 		chan++;
4058 	}
4059 
4060 	buflen = (uint8_t *)chan - buf;
4061 	hdr->len = htole16(buflen);
4062 
4063 	DPRINTF(("sending scan command nchan=%d\n", hdr->nchan));
4064 	error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
4065 	free(buf, M_DEVBUF);
4066 	return error;
4067 }
4068 
4069 int
4070 iwn_auth(struct iwn_softc *sc)
4071 {
4072 	const struct iwn_hal *hal = sc->sc_hal;
4073 	struct ieee80211com *ic = &sc->sc_ic;
4074 	struct ieee80211_node *ni = ic->ic_bss;
4075 	int error;
4076 
4077 	/* Update adapter's configuration. */
4078 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4079 	sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
4080 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4081 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
4082 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4083 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4084 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
4085 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4086 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
4087 	switch (ic->ic_curmode) {
4088 	case IEEE80211_MODE_11A:
4089 		sc->rxon.cck_mask  = 0;
4090 		sc->rxon.ofdm_mask = 0x15;
4091 		break;
4092 	case IEEE80211_MODE_11B:
4093 		sc->rxon.cck_mask  = 0x03;
4094 		sc->rxon.ofdm_mask = 0;
4095 		break;
4096 	default:	/* Assume 802.11b/g. */
4097 		sc->rxon.cck_mask  = 0x0f;
4098 		sc->rxon.ofdm_mask = 0x15;
4099 	}
4100 	DPRINTF(("rxon chan %d flags %x cck %x ofdm %x\n", sc->rxon.chan,
4101 	    sc->rxon.flags, sc->rxon.cck_mask, sc->rxon.ofdm_mask));
4102 	error = iwn_cmd(sc, IWN_CMD_CONFIGURE, &sc->rxon, hal->rxonsz, 1);
4103 	if (error != 0) {
4104 		printf("%s: could not configure\n", sc->sc_dev.dv_xname);
4105 		return error;
4106 	}
4107 
4108 	/* Configuration has changed, set TX power accordingly. */
4109 	if ((error = hal->set_txpower(sc, 1)) != 0) {
4110 		printf("%s: could not set TX power\n", sc->sc_dev.dv_xname);
4111 		return error;
4112 	}
4113 	/*
4114 	 * Reconfiguring RXON clears the firmware's nodes table so we must
4115 	 * add the broadcast node again.
4116 	 */
4117 	if ((error = iwn_add_broadcast_node(sc, 1)) != 0) {
4118 		printf("%s: could not add broadcast node\n",
4119 		    sc->sc_dev.dv_xname);
4120 		return error;
4121 	}
4122 	return 0;
4123 }
4124 
4125 int
4126 iwn_run(struct iwn_softc *sc)
4127 {
4128 	const struct iwn_hal *hal = sc->sc_hal;
4129 	struct ieee80211com *ic = &sc->sc_ic;
4130 	struct ieee80211_node *ni = ic->ic_bss;
4131 	struct iwn_node_info node;
4132 	int error;
4133 
4134 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4135 		/* Link LED blinks while monitoring. */
4136 		iwn_set_led(sc, IWN_LED_LINK, 5, 5);
4137 		return 0;
4138 	}
4139 	if ((error = iwn_set_timing(sc, ni)) != 0) {
4140 		printf("%s: could not set timing\n", sc->sc_dev.dv_xname);
4141 		return error;
4142 	}
4143 
4144 	/* Update adapter's configuration. */
4145 	sc->rxon.associd = htole16(IEEE80211_AID(ni->ni_associd));
4146 	/* Short preamble and slot time are negotiated when associating. */
4147 	sc->rxon.flags &= ~htole32(IWN_RXON_SHPREAMBLE | IWN_RXON_SHSLOT);
4148 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4149 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
4150 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4151 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
4152 	sc->rxon.filter |= htole32(IWN_FILTER_BSS);
4153 	DPRINTF(("rxon chan %d flags %x\n", sc->rxon.chan, sc->rxon.flags));
4154 	error = iwn_cmd(sc, IWN_CMD_CONFIGURE, &sc->rxon, hal->rxonsz, 1);
4155 	if (error != 0) {
4156 		printf("%s: could not update configuration\n",
4157 		    sc->sc_dev.dv_xname);
4158 		return error;
4159 	}
4160 
4161 	/* Configuration has changed, set TX power accordingly. */
4162 	if ((error = hal->set_txpower(sc, 1)) != 0) {
4163 		printf("%s: could not set TX power\n", sc->sc_dev.dv_xname);
4164 		return error;
4165 	}
4166 
4167 	/* Fake a join to initialize the TX rate. */
4168 	((struct iwn_node *)ni)->id = IWN_ID_BSS;
4169 	iwn_newassoc(ic, ni, 1);
4170 
4171 	/* Add BSS node. */
4172 	memset(&node, 0, sizeof node);
4173 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
4174 	node.id = IWN_ID_BSS;
4175 #ifdef notyet
4176 	node.htflags = htole32(IWN_AMDPU_SIZE_FACTOR(3) |
4177 	    IWN_AMDPU_DENSITY(5));	/* 2us */
4178 #endif
4179 	DPRINTF(("adding BSS node\n"));
4180 	error = hal->add_node(sc, &node, 1);
4181 	if (error != 0) {
4182 		printf("%s: could not add BSS node\n", sc->sc_dev.dv_xname);
4183 		return error;
4184 	}
4185 	DPRINTF(("setting link quality for node %d\n", node.id));
4186 	if ((error = iwn_set_link_quality(sc, ni)) != 0) {
4187 		printf("%s: could not setup link quality for node %d\n",
4188 		    sc->sc_dev.dv_xname, node.id);
4189 		return error;
4190 	}
4191 
4192 	if ((error = iwn_init_sensitivity(sc)) != 0) {
4193 		printf("%s: could not set sensitivity\n",
4194 		    sc->sc_dev.dv_xname);
4195 		return error;
4196 	}
4197 	/* Start periodic calibration timer. */
4198 	sc->calib.state = IWN_CALIB_STATE_ASSOC;
4199 	sc->calib_cnt = 0;
4200 	timeout_add_msec(&sc->calib_to, 500);
4201 
4202 	/* Link LED always on while associated. */
4203 	iwn_set_led(sc, IWN_LED_LINK, 0, 1);
4204 	return 0;
4205 }
4206 
4207 /*
4208  * We support CCMP hardware encryption/decryption of unicast frames only.
4209  * HW support for TKIP really sucks.  We should let TKIP die anyway.
4210  */
4211 int
4212 iwn_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
4213     struct ieee80211_key *k)
4214 {
4215 	struct iwn_softc *sc = ic->ic_softc;
4216 	const struct iwn_hal *hal = sc->sc_hal;
4217 	struct iwn_node *wn = (void *)ni;
4218 	struct iwn_node_info node;
4219 	uint16_t kflags;
4220 
4221 	if ((k->k_flags & IEEE80211_KEY_GROUP) ||
4222 	    k->k_cipher != IEEE80211_CIPHER_CCMP)
4223 		return ieee80211_set_key(ic, ni, k);
4224 
4225 	kflags = IWN_KFLAG_CCMP | IWN_KFLAG_MAP | IWN_KFLAG_KID(k->k_id);
4226 	if (k->k_flags & IEEE80211_KEY_GROUP)
4227 		kflags |= IWN_KFLAG_GROUP;
4228 
4229 	memset(&node, 0, sizeof node);
4230 	node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
4231 	    hal->broadcast_id : wn->id;
4232 	node.control = IWN_NODE_UPDATE;
4233 	node.flags = IWN_FLAG_SET_KEY;
4234 	node.kflags = htole16(kflags);
4235 	node.kid = k->k_id;
4236 	memcpy(node.key, k->k_key, k->k_len);
4237 	DPRINTF(("set key id=%d for node %d\n", k->k_id, node.id));
4238 	return hal->add_node(sc, &node, 1);
4239 }
4240 
4241 void
4242 iwn_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
4243     struct ieee80211_key *k)
4244 {
4245 	struct iwn_softc *sc = ic->ic_softc;
4246 	const struct iwn_hal *hal = sc->sc_hal;
4247 	struct iwn_node *wn = (void *)ni;
4248 	struct iwn_node_info node;
4249 
4250 	if ((k->k_flags & IEEE80211_KEY_GROUP) ||
4251 	    k->k_cipher != IEEE80211_CIPHER_CCMP) {
4252 		/* See comment about other ciphers above. */
4253 		ieee80211_delete_key(ic, ni, k);
4254 		return;
4255 	}
4256 	if (ic->ic_state != IEEE80211_S_RUN)
4257 		return;	/* Nothing to do. */
4258 	memset(&node, 0, sizeof node);
4259 	node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
4260 	    hal->broadcast_id : wn->id;
4261 	node.control = IWN_NODE_UPDATE;
4262 	node.flags = IWN_FLAG_SET_KEY;
4263 	node.kflags = htole16(IWN_KFLAG_INVALID);
4264 	node.kid = 0xff;
4265 	DPRINTF(("delete keys for node %d\n", node.id));
4266 	(void)hal->add_node(sc, &node, 1);
4267 }
4268 
4269 #ifndef IEEE80211_NO_HT
4270 /*
4271  * This function is called by upper layer when an ADDBA request is received
4272  * from another STA and before the ADDBA response is sent.
4273  */
4274 int
4275 iwn_ampdu_rx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
4276     uint8_t tid)
4277 {
4278 	struct ieee80211_rx_ba *ba = &ni->ni_rx_ba[tid];
4279 	struct iwn_softc *sc = ic->ic_softc;
4280 	struct iwn_node *wn = (void *)ni;
4281 	struct iwn_node_info node;
4282 
4283 	memset(&node, 0, sizeof node);
4284 	node.id = wn->id;
4285 	node.control = IWN_NODE_UPDATE;
4286 	node.flags = IWN_FLAG_SET_ADDBA;
4287 	node.addba_tid = tid;
4288 	node.addba_ssn = htole16(ba->ba_winstart);
4289 	DPRINTFN(2, ("ADDBA RA=%d TID=%d SSN=%d\n", wn->id, tid,
4290 	    ba->ba_winstart));
4291 	return sc->sc_hal->add_node(sc, &node, 1);
4292 }
4293 
4294 /*
4295  * This function is called by upper layer on teardown of an HT-immediate
4296  * Block Ack agreement (eg. uppon receipt of a DELBA frame.)
4297  */
4298 void
4299 iwn_ampdu_rx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
4300     uint8_t tid)
4301 {
4302 	struct iwn_softc *sc = ic->ic_softc;
4303 	struct iwn_node *wn = (void *)ni;
4304 	struct iwn_node_info node;
4305 
4306 	memset(&node, 0, sizeof node);
4307 	node.id = wn->id;
4308 	node.control = IWN_NODE_UPDATE;
4309 	node.flags = IWN_FLAG_SET_DELBA;
4310 	node.delba_tid = tid;
4311 	DPRINTFN(2, ("DELBA RA=%d TID=%d\n", wn->id, tid));
4312 	(void)sc->sc_hal->add_node(sc, &node, 1);
4313 }
4314 
4315 /*
4316  * This function is called by upper layer when an ADDBA response is received
4317  * from another STA.
4318  */
4319 int
4320 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
4321     uint8_t tid)
4322 {
4323 	struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
4324 	struct iwn_softc *sc = ic->ic_softc;
4325 	const struct iwn_hal *hal = sc->sc_hal;
4326 	struct iwn_node *wn = (void *)ni;
4327 	struct iwn_node_info node;
4328 	int error;
4329 
4330 	/* Enable TX for the specified RA/TID. */
4331 	wn->disable_tid &= ~(1 << tid);
4332 	memset(&node, 0, sizeof node);
4333 	node.id = wn->id;
4334 	node.control = IWN_NODE_UPDATE;
4335 	node.flags = IWN_FLAG_SET_DISABLE_TID;
4336 	node.disable_tid = htole16(wn->disable_tid);
4337 	error = hal->add_node(sc, &node, 1);
4338 	if (error != 0)
4339 		return error;
4340 
4341 	if ((error = iwn_nic_lock(sc)) != 0)
4342 		return error;
4343 	hal->ampdu_tx_start(sc, ni, tid, ba->ba_winstart);
4344 	iwn_nic_unlock(sc);
4345 	return 0;
4346 }
4347 
4348 void
4349 iwn_ampdu_tx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
4350     uint8_t tid)
4351 {
4352 	struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
4353 	struct iwn_softc *sc = ic->ic_softc;
4354 
4355 	if (iwn_nic_lock(sc) != 0)
4356 		return;
4357 	sc->sc_hal->ampdu_tx_stop(sc, tid, ba->ba_winstart);
4358 	iwn_nic_unlock(sc);
4359 }
4360 
4361 void
4362 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
4363     uint8_t tid, uint16_t ssn)
4364 {
4365 	struct iwn_node *wn = (void *)ni;
4366 	int qid = 7 + tid;
4367 
4368 	/* Stop TX scheduler while we're changing its configuration. */
4369 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
4370 	    IWN4965_TXQ_STATUS_CHGACT);
4371 
4372 	/* Assign RA/TID translation to the queue. */
4373 	iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
4374 	    wn->id << 4 | tid);
4375 
4376 	/* Enable chain mode for the queue. */
4377 	iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
4378 
4379 	/* Set starting sequence number from the ADDBA request. */
4380 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ssn);
4381 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
4382 
4383 	/* Set scheduler window size. */
4384 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
4385 	    IWN_SCHED_WINSZ);
4386 	/* Set scheduler frame limit. */
4387 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
4388 	    IWN_SCHED_LIMIT << 16);
4389 
4390 	/* Enable interrupts for the queue. */
4391 	iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
4392 
4393 	/* Mark the queue as active. */
4394 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
4395 	    IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
4396 	    iwn_tid2fifo[tid] << 1);
4397 }
4398 
4399 void
4400 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
4401 {
4402 	int qid = 7 + tid;
4403 
4404 	/* Stop TX scheduler while we're changing its configuration. */
4405 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
4406 	    IWN4965_TXQ_STATUS_CHGACT);
4407 
4408 	/* Set starting sequence number from the ADDBA request. */
4409 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ssn);
4410 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
4411 
4412 	/* Disable interrupts for the queue. */
4413 	iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
4414 
4415 	/* Mark the queue as inactive. */
4416 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
4417 	    IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
4418 }
4419 
4420 void
4421 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
4422     uint8_t tid, uint16_t ssn)
4423 {
4424 	struct iwn_node *wn = (void *)ni;
4425 	int qid = 10 + tid;
4426 
4427 	/* Stop TX scheduler while we're changing its configuration. */
4428 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
4429 	    IWN5000_TXQ_STATUS_CHGACT);
4430 
4431 	/* Assign RA/TID translation to the queue. */
4432 	iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
4433 	    wn->id << 4 | tid);
4434 
4435 	/* Enable chain mode for the queue. */
4436 	iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
4437 
4438 	/* Enable aggregation for the queue. */
4439 	iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
4440 
4441 	/* Set starting sequence number from the ADDBA request. */
4442 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ssn);
4443 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
4444 
4445 	/* Set scheduler window size and frame limit. */
4446 	iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
4447 	    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
4448 
4449 	/* Enable interrupts for the queue. */
4450 	iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
4451 
4452 	/* Mark the queue as active. */
4453 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
4454 	    IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
4455 }
4456 
4457 void
4458 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
4459 {
4460 	int qid = 10 + tid;
4461 
4462 	/* Stop TX scheduler while we're changing its configuration. */
4463 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
4464 	    IWN5000_TXQ_STATUS_CHGACT);
4465 
4466 	/* Disable aggregation for the queue. */
4467 	iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
4468 
4469 	/* Set starting sequence number from the ADDBA request. */
4470 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ssn);
4471 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
4472 
4473 	/* Disable interrupts for the queue. */
4474 	iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
4475 
4476 	/* Mark the queue as inactive. */
4477 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
4478 	    IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
4479 }
4480 #endif	/* !IEEE80211_NO_HT */
4481 
4482 /*
4483  * Query calibration tables from the initialization firmware.  We do this
4484  * only once at first boot.  Called from a process context.
4485  */
4486 int
4487 iwn5000_query_calibration(struct iwn_softc *sc)
4488 {
4489 	struct iwn5000_calib_config cmd;
4490 	int error;
4491 
4492 	memset(&cmd, 0, sizeof cmd);
4493 	cmd.ucode.once.enable = 0xffffffff;
4494 	cmd.ucode.once.start  = 0xffffffff;
4495 	cmd.ucode.once.send   = 0xffffffff;
4496 	cmd.ucode.flags       = 0xffffffff;
4497 	DPRINTF(("sending calibration query\n"));
4498 	error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
4499 	if (error != 0)
4500 		return error;
4501 
4502 	/* Wait at most two seconds for calibration to complete. */
4503 	return tsleep(sc, PCATCH, "iwncal", 2 * hz);
4504 }
4505 
4506 /*
4507  * Send calibration results to the runtime firmware.  These results were
4508  * obtained on first boot from the initialization firmware.
4509  */
4510 int
4511 iwn5000_send_calibration(struct iwn_softc *sc)
4512 {
4513 	int idx, error;
4514 
4515 	for (idx = 0; idx < 5; idx++) {
4516 		if (sc->calibcmd[idx].buf == NULL)
4517 			continue;	/* No results available. */
4518 		DPRINTF(("send calibration result idx=%d len=%d\n",
4519 		    idx, sc->calibcmd[idx].len));
4520 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
4521 		    sc->calibcmd[idx].len, 0);
4522 		if (error != 0) {
4523 			printf("%s: could not send calibration result\n",
4524 			    sc->sc_dev.dv_xname);
4525 			return error;
4526 		}
4527 	}
4528 	return 0;
4529 }
4530 
4531 /*
4532  * This function is called after the runtime firmware notifies us of its
4533  * readiness (called in a process context.)
4534  */
4535 int
4536 iwn4965_post_alive(struct iwn_softc *sc)
4537 {
4538 	int error, qid;
4539 
4540 	if ((error = iwn_nic_lock(sc)) != 0)
4541 		return error;
4542 
4543 	/* Clear TX scheduler's state in SRAM. */
4544 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
4545 	iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
4546 	    IWN4965_SCHED_CTX_LEN);
4547 
4548 	/* Set physical address of TX scheduler rings (1KB aligned.) */
4549 	iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
4550 
4551 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
4552 
4553 	/* Disable chain mode for all our 16 queues. */
4554 	iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
4555 
4556 	for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
4557 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
4558 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
4559 
4560 		/* Set scheduler window size. */
4561 		iwn_mem_write(sc, sc->sched_base +
4562 		    IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
4563 		/* Set scheduler frame limit. */
4564 		iwn_mem_write(sc, sc->sched_base +
4565 		    IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
4566 		    IWN_SCHED_LIMIT << 16);
4567 	}
4568 
4569 	/* Enable interrupts for all our 16 queues. */
4570 	iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
4571 	/* Identify TX FIFO rings (0-7). */
4572 	iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
4573 
4574 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
4575 	for (qid = 0; qid < 7; qid++) {
4576 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
4577 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
4578 		    IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
4579 	}
4580 	iwn_nic_unlock(sc);
4581 	return 0;
4582 }
4583 
4584 /*
4585  * This function is called after the initialization or runtime firmware
4586  * notifies us of its readiness (called in a process context.)
4587  */
4588 int
4589 iwn5000_post_alive(struct iwn_softc *sc)
4590 {
4591 	struct iwn5000_wimax_coex wimax;
4592 	int error, qid;
4593 
4594 	if ((error = iwn_nic_lock(sc)) != 0)
4595 		return error;
4596 
4597 	/* Clear TX scheduler's state in SRAM. */
4598 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
4599 	iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
4600 	    IWN5000_SCHED_CTX_LEN);
4601 
4602 	/* Set physical address of TX scheduler rings (1KB aligned.) */
4603 	iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
4604 
4605 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
4606 
4607 	/* Enable chain mode for all our 20 queues. */
4608 	iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffff);
4609 	iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
4610 
4611 	for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
4612 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
4613 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
4614 
4615 		iwn_mem_write(sc, sc->sched_base +
4616 		    IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
4617 		/* Set scheduler window size and frame limit. */
4618 		iwn_mem_write(sc, sc->sched_base +
4619 		    IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
4620 		    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
4621 	}
4622 
4623 	/* Enable interrupts for all our 20 queues. */
4624 	iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
4625 	/* Identify TX FIFO rings (0-7). */
4626 	iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
4627 
4628 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
4629 	for (qid = 0; qid < 7; qid++) {
4630 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
4631 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
4632 		    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
4633 	}
4634 	iwn_nic_unlock(sc);
4635 
4636 	/* Configure WiMAX (IEEE 802.16e) coexistence. */
4637 	memset(&wimax, 0, sizeof wimax);
4638 	DPRINTF(("Configuring WiMAX coexistence\n"));
4639 	error = iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
4640 	if (error != 0) {
4641 		printf("%s: could not configure WiMAX coexistence\n",
4642 		    sc->sc_dev.dv_xname);
4643 		return error;
4644 	}
4645 
4646 	if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
4647 		struct iwn5000_phy_calib_crystal cmd;
4648 
4649 		/* Perform crystal calibration. */
4650 		memset(&cmd, 0, sizeof cmd);
4651 		cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
4652 		cmd.ngroups = 1;
4653 		cmd.isvalid = 1;
4654 		cmd.cap_pin[0] = letoh32(sc->eeprom_crystal) & 0xff;
4655 		cmd.cap_pin[1] = (letoh32(sc->eeprom_crystal) >> 16) & 0xff;
4656 		DPRINTF(("sending crystal calibration %d, %d\n",
4657 		    cmd.cap_pin[0], cmd.cap_pin[1]));
4658 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
4659 		if (error != 0) {
4660 			printf("%s: crystal calibration failed\n",
4661 			    sc->sc_dev.dv_xname);
4662 			return error;
4663 		}
4664 	}
4665 	if (sc->sc_flags & IWN_FLAG_FIRST_BOOT) {
4666 		/* Query calibration from the initialization firmware. */
4667 		if ((error = iwn5000_query_calibration(sc)) != 0) {
4668 			printf("%s: could not query calibration\n",
4669 			    sc->sc_dev.dv_xname);
4670 			return error;
4671 		}
4672 		/*
4673 		 * We have the calibration results now so we can skip
4674 		 * loading the initialization firmware next time.
4675 		 */
4676 		sc->sc_flags &= ~IWN_FLAG_FIRST_BOOT;
4677 
4678 		/* Reboot (call ourselves recursively!) */
4679 		iwn_hw_stop(sc);
4680 		error = iwn_hw_init(sc);
4681 	} else {
4682 		/* Send calibration results to runtime firmware. */
4683 		error = iwn5000_send_calibration(sc);
4684 	}
4685 	return error;
4686 }
4687 
4688 /*
4689  * The firmware boot code is small and is intended to be copied directly into
4690  * the NIC internal memory (no DMA transfer.)
4691  */
4692 int
4693 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
4694 {
4695 	int error, ntries;
4696 
4697 	size /= sizeof (uint32_t);
4698 
4699 	if ((error = iwn_nic_lock(sc)) != 0)
4700 		return error;
4701 
4702 	/* Copy microcode image into NIC memory. */
4703 	iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
4704 	    (const uint32_t *)ucode, size);
4705 
4706 	iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
4707 	iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
4708 	iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
4709 
4710 	/* Start boot load now. */
4711 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
4712 
4713 	/* Wait for transfer to complete. */
4714 	for (ntries = 0; ntries < 1000; ntries++) {
4715 		if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
4716 		    IWN_BSM_WR_CTRL_START))
4717 			break;
4718 		DELAY(10);
4719 	}
4720 	if (ntries == 1000) {
4721 		printf("%s: could not load boot firmware\n",
4722 		    sc->sc_dev.dv_xname);
4723 		iwn_nic_unlock(sc);
4724 		return ETIMEDOUT;
4725 	}
4726 
4727 	/* Enable boot after power up. */
4728 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
4729 
4730 	iwn_nic_unlock(sc);
4731 	return 0;
4732 }
4733 
4734 int
4735 iwn4965_load_firmware(struct iwn_softc *sc)
4736 {
4737 	struct iwn_fw_info *fw = &sc->fw;
4738 	struct iwn_dma_info *dma = &sc->fw_dma;
4739 	int error;
4740 
4741 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
4742 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
4743 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->init.datasz,
4744 	    BUS_DMASYNC_PREWRITE);
4745 	memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
4746 	    fw->init.text, fw->init.textsz);
4747 	bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
4748 	    fw->init.textsz, BUS_DMASYNC_PREWRITE);
4749 
4750 	/* Tell adapter where to find initialization sections. */
4751 	if ((error = iwn_nic_lock(sc)) != 0)
4752 		return error;
4753 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
4754 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
4755 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
4756 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
4757 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
4758 	iwn_nic_unlock(sc);
4759 
4760 	/* Load firmware boot code. */
4761 	error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
4762 	if (error != 0) {
4763 		printf("%s: could not load boot firmware\n",
4764 		    sc->sc_dev.dv_xname);
4765 		return error;
4766 	}
4767 	/* Now press "execute". */
4768 	IWN_WRITE(sc, IWN_RESET, 0);
4769 
4770 	/* Wait at most one second for first alive notification. */
4771 	if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
4772 		printf("%s: timeout waiting for adapter to initialize\n",
4773 		    sc->sc_dev.dv_xname);
4774 		return error;
4775 	}
4776 
4777 	/* Retrieve current temperature for initial TX power calibration. */
4778 	sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
4779 	sc->temp = iwn4965_get_temperature(sc);
4780 
4781 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
4782 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
4783 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->main.datasz,
4784 	    BUS_DMASYNC_PREWRITE);
4785 	memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
4786 	    fw->main.text, fw->main.textsz);
4787 	bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
4788 	    fw->main.textsz, BUS_DMASYNC_PREWRITE);
4789 
4790 	/* Tell adapter where to find runtime sections. */
4791 	if ((error = iwn_nic_lock(sc)) != 0)
4792 		return error;
4793 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
4794 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
4795 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
4796 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
4797 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
4798 	    IWN_FW_UPDATED | fw->main.textsz);
4799 	iwn_nic_unlock(sc);
4800 
4801 	return 0;
4802 }
4803 
4804 int
4805 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
4806     const uint8_t *section, int size)
4807 {
4808 	struct iwn_dma_info *dma = &sc->fw_dma;
4809 	int error;
4810 
4811 	/* Copy firmware section into pre-allocated DMA-safe memory. */
4812 	memcpy(dma->vaddr, section, size);
4813 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
4814 
4815 	if ((error = iwn_nic_lock(sc)) != 0)
4816 		return error;
4817 
4818 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
4819 	    IWN_FH_TX_CONFIG_DMA_PAUSE);
4820 
4821 	IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
4822 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
4823 	    IWN_LOADDR(dma->paddr));
4824 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
4825 	    IWN_HIADDR(dma->paddr) << 28 | size);
4826 	IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
4827 	    IWN_FH_TXBUF_STATUS_TBNUM(1) |
4828 	    IWN_FH_TXBUF_STATUS_TBIDX(1) |
4829 	    IWN_FH_TXBUF_STATUS_TFBD_VALID);
4830 
4831 	/* Kick Flow Handler to start DMA transfer. */
4832 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
4833 	    IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
4834 
4835 	iwn_nic_unlock(sc);
4836 
4837 	/* Wait at most five seconds for FH DMA transfer to complete. */
4838 	return tsleep(sc, PCATCH, "iwninit", 5 * hz);
4839 }
4840 
4841 int
4842 iwn5000_load_firmware(struct iwn_softc *sc)
4843 {
4844 	struct iwn_fw_part *fw;
4845 	int error;
4846 
4847 	/* Load the initialization firmware on first boot only. */
4848 	fw = (sc->sc_flags & IWN_FLAG_FIRST_BOOT) ?
4849 	    &sc->fw.init : &sc->fw.main;
4850 
4851 	error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
4852 	    fw->text, fw->textsz);
4853 	if (error != 0) {
4854 		printf("%s: could not load firmware %s section\n",
4855 		    sc->sc_dev.dv_xname, ".text");
4856 		return error;
4857 	}
4858 	error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
4859 	    fw->data, fw->datasz);
4860 	if (error != 0) {
4861 		printf("%s: could not load firmware %s section\n",
4862 		    sc->sc_dev.dv_xname, ".data");
4863 		return error;
4864 	}
4865 
4866 	/* Now press "execute". */
4867 	IWN_WRITE(sc, IWN_RESET, 0);
4868 	return 0;
4869 }
4870 
4871 int
4872 iwn_read_firmware(struct iwn_softc *sc)
4873 {
4874 	const struct iwn_hal *hal = sc->sc_hal;
4875 	struct iwn_fw_info *fw = &sc->fw;
4876 	const struct iwn_firmware_hdr *hdr;
4877 	size_t size;
4878 	int error;
4879 
4880 	/* Read firmware image from filesystem. */
4881 	if ((error = loadfirmware(sc->fwname, &fw->data, &size)) != 0) {
4882 		printf("%s: error, %d, could not read firmware %s\n",
4883 		    sc->sc_dev.dv_xname, error, sc->fwname);
4884 		return error;
4885 	}
4886 	if (size < sizeof (*hdr)) {
4887 		printf("%s: truncated firmware header: %d bytes\n",
4888 		    sc->sc_dev.dv_xname, size);
4889 		free(fw->data, M_DEVBUF);
4890 		return EINVAL;
4891 	}
4892 	/* Extract firmware header information. */
4893 	hdr = (struct iwn_firmware_hdr *)fw->data;
4894 	fw->main.textsz = letoh32(hdr->main_textsz);
4895 	fw->main.datasz = letoh32(hdr->main_datasz);
4896 	fw->init.textsz = letoh32(hdr->init_textsz);
4897 	fw->init.datasz = letoh32(hdr->init_datasz);
4898 	fw->boot.textsz = letoh32(hdr->boot_textsz);
4899 	fw->boot.datasz = 0;
4900 
4901 	/* Sanity-check firmware header. */
4902 	if (fw->main.textsz > hal->fw_text_maxsz ||
4903 	    fw->main.datasz > hal->fw_data_maxsz ||
4904 	    fw->init.textsz > hal->fw_text_maxsz ||
4905 	    fw->init.datasz > hal->fw_data_maxsz ||
4906 	    fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
4907 	    (fw->boot.textsz & 3) != 0) {
4908 		printf("%s: invalid firmware header\n", sc->sc_dev.dv_xname);
4909 		free(fw->data, M_DEVBUF);
4910 		return EINVAL;
4911 	}
4912 
4913 	/* Check that all firmware sections fit. */
4914 	if (size < sizeof (*hdr) + fw->main.textsz + fw->main.datasz +
4915 	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
4916 		printf("%s: firmware file too short: %d bytes\n",
4917 		    sc->sc_dev.dv_xname, size);
4918 		free(fw->data, M_DEVBUF);
4919 		return EINVAL;
4920 	}
4921 
4922 	/* Get pointers to firmware sections. */
4923 	fw->main.text = (const uint8_t *)(hdr + 1);
4924 	fw->main.data = fw->main.text + fw->main.textsz;
4925 	fw->init.text = fw->main.data + fw->main.datasz;
4926 	fw->init.data = fw->init.text + fw->init.textsz;
4927 	fw->boot.text = fw->init.data + fw->init.datasz;
4928 
4929 	return 0;
4930 }
4931 
4932 int
4933 iwn_clock_wait(struct iwn_softc *sc)
4934 {
4935 	int ntries;
4936 
4937 	/* Set "initialization complete" bit. */
4938 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
4939 
4940 	/* Wait for clock stabilization. */
4941 	for (ntries = 0; ntries < 25000; ntries++) {
4942 		if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
4943 			return 0;
4944 		DELAY(100);
4945 	}
4946 	printf("%s: timeout waiting for clock stabilization\n",
4947 	    sc->sc_dev.dv_xname);
4948 	return ETIMEDOUT;
4949 }
4950 
4951 int
4952 iwn4965_apm_init(struct iwn_softc *sc)
4953 {
4954 	int error;
4955 
4956 	/* Disable L0s. */
4957 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
4958 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
4959 
4960 	if ((error = iwn_clock_wait(sc)) != 0)
4961 		return error;
4962 
4963 	if ((error = iwn_nic_lock(sc)) != 0)
4964 		return error;
4965 	/* Enable DMA. */
4966 	iwn_prph_write(sc, IWN_APMG_CLK_CTRL,
4967 	    IWN_APMG_CLK_CTRL_DMA_CLK_RQT | IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
4968 	DELAY(20);
4969 	/* Disable L1. */
4970 	iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
4971 	iwn_nic_unlock(sc);
4972 
4973 	return 0;
4974 }
4975 
4976 int
4977 iwn5000_apm_init(struct iwn_softc *sc)
4978 {
4979 	int error;
4980 
4981 	/* Disable L0s. */
4982 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
4983 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
4984 
4985 	/* Set Flow Handler wait threshold to the maximum. */
4986 	IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
4987 
4988 	/* Enable HAP to move adapter from L1a to L0s. */
4989 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
4990 
4991 	if (sc->hw_type != IWN_HW_REV_TYPE_6000 &&
4992 	    sc->hw_type != IWN_HW_REV_TYPE_6050)
4993 		IWN_SETBITS(sc, IWN_ANA_PLL, IWN_ANA_PLL_INIT);
4994 
4995 	if ((error = iwn_clock_wait(sc)) != 0)
4996 		return error;
4997 
4998 	if ((error = iwn_nic_lock(sc)) != 0)
4999 		return error;
5000 	/* Enable DMA. */
5001 	iwn_prph_write(sc, IWN_APMG_CLK_CTRL, IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
5002 	DELAY(20);
5003 	/* Disable L1. */
5004 	iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
5005 	iwn_nic_unlock(sc);
5006 
5007 	return 0;
5008 }
5009 
5010 void
5011 iwn_apm_stop_master(struct iwn_softc *sc)
5012 {
5013 	int ntries;
5014 
5015 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
5016 	for (ntries = 0; ntries < 100; ntries++) {
5017 		if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
5018 			return;
5019 		DELAY(10);
5020 	}
5021 	printf("%s: timeout waiting for master\n", sc->sc_dev.dv_xname);
5022 }
5023 
5024 void
5025 iwn_apm_stop(struct iwn_softc *sc)
5026 {
5027 	iwn_apm_stop_master(sc);
5028 
5029 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
5030 	DELAY(10);
5031 	/* Clear "initialization complete" bit. */
5032 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
5033 }
5034 
5035 int
5036 iwn4965_nic_config(struct iwn_softc *sc)
5037 {
5038 	pcireg_t reg;
5039 
5040 	/* Retrieve PCIe Active State Power Management (ASPM). */
5041 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
5042 	    sc->sc_cap_off + PCI_PCIE_LCSR);
5043 	if (reg & PCI_PCIE_LCSR_ASPM_L1)	/* L1 Entry enabled. */
5044 		IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
5045 	else
5046 		IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
5047 
5048 	if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
5049 		/*
5050 		 * I don't believe this to be correct but this is what the
5051 		 * vendor driver is doing. Probably the bits should not be
5052 		 * shifted in IWN_RFCFG_*.
5053 		 */
5054 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5055 		    IWN_RFCFG_TYPE(sc->rfcfg) |
5056 		    IWN_RFCFG_STEP(sc->rfcfg) |
5057 		    IWN_RFCFG_DASH(sc->rfcfg));
5058 	}
5059 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5060 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
5061 	return 0;
5062 }
5063 
5064 int
5065 iwn5000_nic_config(struct iwn_softc *sc)
5066 {
5067 	pcireg_t reg;
5068 	int error;
5069 
5070 	/* Retrieve PCIe Active State Power Management (ASPM). */
5071 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
5072 	    sc->sc_cap_off + PCI_PCIE_LCSR);
5073 	if (reg & PCI_PCIE_LCSR_ASPM_L1)	/* L1 Entry enabled. */
5074 		IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
5075 	else
5076 		IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
5077 
5078 	if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
5079 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5080 		    IWN_RFCFG_TYPE(sc->rfcfg) |
5081 		    IWN_RFCFG_STEP(sc->rfcfg) |
5082 		    IWN_RFCFG_DASH(sc->rfcfg));
5083 	}
5084 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5085 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
5086 
5087 	if ((error = iwn_nic_lock(sc)) != 0)
5088 		return error;
5089 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
5090 	iwn_nic_unlock(sc);
5091 	return 0;
5092 }
5093 
5094 /*
5095  * Take NIC ownership over Intel Active Management Technology (AMT).
5096  */
5097 int
5098 iwn_hw_prepare(struct iwn_softc *sc)
5099 {
5100 	int ntries;
5101 
5102 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
5103 	for (ntries = 0; ntries < 15000; ntries++) {
5104 		if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
5105 		    IWN_HW_IF_CONFIG_PREPARE_DONE))
5106 			break;
5107 		DELAY(10);
5108 	}
5109 	if (ntries == 15000)
5110 		return ETIMEDOUT;
5111 
5112 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
5113 	for (ntries = 0; ntries < 5; ntries++) {
5114 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
5115 		    IWN_HW_IF_CONFIG_NIC_READY)
5116 			return 0;
5117 		DELAY(10);
5118 	}
5119 	return ETIMEDOUT;
5120 }
5121 
5122 int
5123 iwn_hw_init(struct iwn_softc *sc)
5124 {
5125 	const struct iwn_hal *hal = sc->sc_hal;
5126 	int error, chnl, qid;
5127 
5128 	/* Clear pending interrupts. */
5129 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
5130 
5131 	if ((error = hal->apm_init(sc)) != 0) {
5132 		printf("%s: could not power ON adapter\n",
5133 		    sc->sc_dev.dv_xname);
5134 		return error;
5135 	}
5136 
5137 	/* Select VMAIN power source. */
5138 	if ((error = iwn_nic_lock(sc)) != 0)
5139 		return error;
5140 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
5141 	iwn_nic_unlock(sc);
5142 
5143 	/* Perform adapter-specific initialization. */
5144 	if ((error = hal->nic_config(sc)) != 0)
5145 		return error;
5146 
5147 	/* Initialize RX ring. */
5148 	if ((error = iwn_nic_lock(sc)) != 0)
5149 		return error;
5150 	IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
5151 	IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
5152 	/* Set physical address of RX ring (256-byte aligned.) */
5153 	IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
5154 	/* Set physical address of RX status (16-byte aligned.) */
5155 	IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
5156 	/* Enable RX. */
5157 	IWN_WRITE(sc, IWN_FH_RX_CONFIG,
5158 	    IWN_FH_RX_CONFIG_ENA           |
5159 	    IWN_FH_RX_CONFIG_IGN_RXF_EMPTY |	/* HW bug workaround */
5160 	    IWN_FH_RX_CONFIG_IRQ_DST_HOST  |
5161 	    IWN_FH_RX_CONFIG_SINGLE_FRAME  |
5162 	    IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
5163 	    IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
5164 	iwn_nic_unlock(sc);
5165 	IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
5166 
5167 	if ((error = iwn_nic_lock(sc)) != 0)
5168 		return error;
5169 
5170 	/* Initialize TX scheduler. */
5171 	iwn_prph_write(sc, hal->sched_txfact_addr, 0);
5172 
5173 	/* Set physical address of "keep warm" page (16-byte aligned.) */
5174 	IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
5175 
5176 	/* Initialize TX rings. */
5177 	for (qid = 0; qid < hal->ntxqs; qid++) {
5178 		struct iwn_tx_ring *txq = &sc->txq[qid];
5179 
5180 		/* Set physical address of TX ring (256-byte aligned.) */
5181 		IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
5182 		    txq->desc_dma.paddr >> 8);
5183 	}
5184 	iwn_nic_unlock(sc);
5185 
5186 	/* Enable DMA channels. */
5187 	for (chnl = 0; chnl < hal->ndmachnls; chnl++) {
5188 		IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
5189 		    IWN_FH_TX_CONFIG_DMA_ENA |
5190 		    IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
5191 	}
5192 
5193 	/* Clear "radio off" and "commands blocked" bits. */
5194 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
5195 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
5196 
5197 	/* Clear pending interrupts. */
5198 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
5199 	/* Enable interrupt coalescing. */
5200 	IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
5201 	/* Enable interrupts. */
5202 	IWN_WRITE(sc, IWN_MASK, IWN_INT_MASK);
5203 
5204 	/* _Really_ make sure "radio off" bit is cleared! */
5205 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
5206 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
5207 
5208 	if ((error = hal->load_firmware(sc)) != 0) {
5209 		printf("%s: could not load firmware\n", sc->sc_dev.dv_xname);
5210 		return error;
5211 	}
5212 	/* Wait at most one second for firmware alive notification. */
5213 	if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
5214 		printf("%s: timeout waiting for adapter to initialize\n",
5215 		    sc->sc_dev.dv_xname);
5216 		return error;
5217 	}
5218 	/* Do post-firmware initialization. */
5219 	return hal->post_alive(sc);
5220 }
5221 
5222 void
5223 iwn_hw_stop(struct iwn_softc *sc)
5224 {
5225 	const struct iwn_hal *hal = sc->sc_hal;
5226 	int chnl, qid, ntries;
5227 	uint32_t tmp;
5228 
5229 	IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
5230 
5231 	/* Disable interrupts. */
5232 	IWN_WRITE(sc, IWN_MASK, 0);
5233 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
5234 	IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
5235 
5236 	/* Make sure we no longer hold the NIC lock. */
5237 	iwn_nic_unlock(sc);
5238 
5239 	/* Stop TX scheduler. */
5240 	iwn_prph_write(sc, hal->sched_txfact_addr, 0);
5241 
5242 	/* Stop all DMA channels. */
5243 	if (iwn_nic_lock(sc) == 0) {
5244 		for (chnl = 0; chnl < hal->ndmachnls; chnl++) {
5245 			IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
5246 			for (ntries = 0; ntries < 200; ntries++) {
5247 				tmp = IWN_READ(sc, IWN_FH_TX_STATUS);
5248 				if ((tmp & IWN_FH_TX_STATUS_IDLE(chnl)) ==
5249 				    IWN_FH_TX_STATUS_IDLE(chnl))
5250 					break;
5251 				DELAY(10);
5252 			}
5253 		}
5254 		iwn_nic_unlock(sc);
5255 	}
5256 
5257 	/* Stop RX ring. */
5258 	iwn_reset_rx_ring(sc, &sc->rxq);
5259 
5260 	/* Reset all TX rings. */
5261 	for (qid = 0; qid < hal->ntxqs; qid++)
5262 		iwn_reset_tx_ring(sc, &sc->txq[qid]);
5263 
5264 	if (iwn_nic_lock(sc) == 0) {
5265 		iwn_prph_write(sc, IWN_APMG_CLK_DIS, IWN_APMG_CLK_DMA_RQT);
5266 		iwn_nic_unlock(sc);
5267 	}
5268 	DELAY(5);
5269 	/* Power OFF adapter. */
5270 	iwn_apm_stop(sc);
5271 }
5272 
5273 int
5274 iwn_init(struct ifnet *ifp)
5275 {
5276 	struct iwn_softc *sc = ifp->if_softc;
5277 	struct ieee80211com *ic = &sc->sc_ic;
5278 	int error;
5279 
5280 	if ((error = iwn_hw_prepare(sc)) != 0) {
5281 		printf("%s: hardware not ready\n", sc->sc_dev.dv_xname);
5282 		goto fail;
5283 	}
5284 
5285 	/* Check that the radio is not disabled by hardware switch. */
5286 	if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
5287 		printf("%s: radio is disabled by hardware switch\n",
5288 		    sc->sc_dev.dv_xname);
5289 		error = EPERM;	/* :-) */
5290 		goto fail;
5291 	}
5292 
5293 	/* Read firmware images from the filesystem. */
5294 	if ((error = iwn_read_firmware(sc)) != 0) {
5295 		printf("%s: could not read firmware\n", sc->sc_dev.dv_xname);
5296 		goto fail;
5297 	}
5298 
5299 	/* Initialize hardware and upload firmware. */
5300 	error = iwn_hw_init(sc);
5301 	free(sc->fw.data, M_DEVBUF);
5302 	if (error != 0) {
5303 		printf("%s: could not initialize hardware\n",
5304 		    sc->sc_dev.dv_xname);
5305 		goto fail;
5306 	}
5307 
5308 	/* Configure adapter now that it is ready. */
5309 	if ((error = iwn_config(sc)) != 0) {
5310 		printf("%s: could not configure device\n",
5311 		    sc->sc_dev.dv_xname);
5312 		goto fail;
5313 	}
5314 
5315 	ifp->if_flags &= ~IFF_OACTIVE;
5316 	ifp->if_flags |= IFF_RUNNING;
5317 
5318 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
5319 		ieee80211_begin_scan(ifp);
5320 	else
5321 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
5322 
5323 	return 0;
5324 
5325 fail:	iwn_stop(ifp, 1);
5326 	return error;
5327 }
5328 
5329 void
5330 iwn_stop(struct ifnet *ifp, int disable)
5331 {
5332 	struct iwn_softc *sc = ifp->if_softc;
5333 	struct ieee80211com *ic = &sc->sc_ic;
5334 
5335 	ifp->if_timer = sc->sc_tx_timer = 0;
5336 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
5337 
5338 	/* In case we were scanning, release the scan "lock". */
5339 	ic->ic_scan_lock = IEEE80211_SCAN_UNLOCKED;
5340 
5341 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
5342 
5343 	/* Power OFF hardware. */
5344 	iwn_hw_stop(sc);
5345 
5346 	/* Temperature sensor is no longer valid. */
5347 	sc->sensor.value = 0;
5348 	sc->sensor.flags |= SENSOR_FINVALID;
5349 }
5350