xref: /openbsd-src/sys/dev/pci/if_igc.c (revision 3374c67d44f9b75b98444cbf63020f777792342e)
1 /*	$OpenBSD: if_igc.c,v 1.10 2022/11/11 16:41:44 mbuhl Exp $	*/
2 /*-
3  * SPDX-License-Identifier: BSD-2-Clause
4  *
5  * Copyright (c) 2016 Nicole Graziano <nicole@nextbsd.org>
6  * All rights reserved.
7  * Copyright (c) 2021 Rubicon Communications, LLC (Netgate)
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  */
30 
31 #include "bpfilter.h"
32 #include "vlan.h"
33 
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/sockio.h>
37 #include <sys/mbuf.h>
38 #include <sys/malloc.h>
39 #include <sys/kernel.h>
40 #include <sys/socket.h>
41 #include <sys/device.h>
42 #include <sys/endian.h>
43 #include <sys/intrmap.h>
44 
45 #include <net/if.h>
46 #include <net/if_media.h>
47 #include <net/toeplitz.h>
48 
49 #include <netinet/in.h>
50 #include <netinet/if_ether.h>
51 #include <netinet/ip.h>
52 #include <netinet/ip6.h>
53 
54 #if NBPFILTER > 0
55 #include <net/bpf.h>
56 #endif
57 
58 #include <machine/bus.h>
59 #include <machine/intr.h>
60 
61 #include <dev/pci/pcivar.h>
62 #include <dev/pci/pcireg.h>
63 #include <dev/pci/pcidevs.h>
64 #include <dev/pci/if_igc.h>
65 #include <dev/pci/igc_hw.h>
66 
67 const struct pci_matchid igc_devices[] = {
68 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I220_V },
69 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I221_V },
70 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_BLANK_NVM },
71 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_I },
72 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_IT },
73 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_K },
74 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_K2 },
75 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_LM },
76 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_LMVP },
77 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_V },
78 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I226_BLANK_NVM },
79 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I226_IT },
80 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I226_LM },
81 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I226_K },
82 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I226_V }
83 };
84 
85 /*********************************************************************
86  *  Function Prototypes
87  *********************************************************************/
88 int	igc_match(struct device *, void *, void *);
89 void	igc_attach(struct device *, struct device *, void *);
90 int	igc_detach(struct device *, int);
91 
92 void	igc_identify_hardware(struct igc_softc *);
93 int	igc_allocate_pci_resources(struct igc_softc *);
94 int	igc_allocate_queues(struct igc_softc *);
95 void	igc_free_pci_resources(struct igc_softc *);
96 void	igc_reset(struct igc_softc *);
97 void	igc_init_dmac(struct igc_softc *, uint32_t);
98 int	igc_allocate_msix(struct igc_softc *);
99 void	igc_setup_msix(struct igc_softc *);
100 int	igc_dma_malloc(struct igc_softc *, bus_size_t, struct igc_dma_alloc *);
101 void	igc_dma_free(struct igc_softc *, struct igc_dma_alloc *);
102 void	igc_setup_interface(struct igc_softc *);
103 
104 void	igc_init(void *);
105 void	igc_start(struct ifqueue *);
106 int	igc_txeof(struct tx_ring *);
107 void	igc_stop(struct igc_softc *);
108 int	igc_ioctl(struct ifnet *, u_long, caddr_t);
109 int	igc_rxrinfo(struct igc_softc *, struct if_rxrinfo *);
110 int	igc_rxfill(struct rx_ring *);
111 void	igc_rxrefill(void *);
112 int	igc_rxeof(struct rx_ring *);
113 void	igc_rx_checksum(uint32_t, struct mbuf *, uint32_t);
114 void	igc_watchdog(struct ifnet *);
115 void	igc_media_status(struct ifnet *, struct ifmediareq *);
116 int	igc_media_change(struct ifnet *);
117 void	igc_iff(struct igc_softc *);
118 void	igc_update_link_status(struct igc_softc *);
119 int	igc_get_buf(struct rx_ring *, int);
120 int	igc_tx_ctx_setup(struct tx_ring *, struct mbuf *, int, uint32_t *);
121 
122 void	igc_configure_queues(struct igc_softc *);
123 void	igc_set_queues(struct igc_softc *, uint32_t, uint32_t, int);
124 void	igc_enable_queue(struct igc_softc *, uint32_t);
125 void	igc_enable_intr(struct igc_softc *);
126 void	igc_disable_intr(struct igc_softc *);
127 int	igc_intr_link(void *);
128 int	igc_intr_queue(void *);
129 
130 int	igc_allocate_transmit_buffers(struct tx_ring *);
131 int	igc_setup_transmit_structures(struct igc_softc *);
132 int	igc_setup_transmit_ring(struct tx_ring *);
133 void	igc_initialize_transmit_unit(struct igc_softc *);
134 void	igc_free_transmit_structures(struct igc_softc *);
135 void	igc_free_transmit_buffers(struct tx_ring *);
136 int	igc_allocate_receive_buffers(struct rx_ring *);
137 int	igc_setup_receive_structures(struct igc_softc *);
138 int	igc_setup_receive_ring(struct rx_ring *);
139 void	igc_initialize_receive_unit(struct igc_softc *);
140 void	igc_free_receive_structures(struct igc_softc *);
141 void	igc_free_receive_buffers(struct rx_ring *);
142 void	igc_initialize_rss_mapping(struct igc_softc *);
143 
144 void	igc_get_hw_control(struct igc_softc *);
145 void	igc_release_hw_control(struct igc_softc *);
146 int	igc_is_valid_ether_addr(uint8_t *);
147 
148 /*********************************************************************
149  *  OpenBSD Device Interface Entry Points
150  *********************************************************************/
151 
152 struct cfdriver igc_cd = {
153 	NULL, "igc", DV_IFNET
154 };
155 
156 const struct cfattach igc_ca = {
157 	sizeof(struct igc_softc), igc_match, igc_attach, igc_detach
158 };
159 
160 /*********************************************************************
161  *  Device identification routine
162  *
163  *  igc_match determines if the driver should be loaded on
164  *  adapter based on PCI vendor/device id of the adapter.
165  *
166  *  return 0 on success, positive on failure
167  *********************************************************************/
168 int
169 igc_match(struct device *parent, void *match, void *aux)
170 {
171 	return pci_matchbyid((struct pci_attach_args *)aux, igc_devices,
172 	    nitems(igc_devices));
173 }
174 
175 /*********************************************************************
176  *  Device initialization routine
177  *
178  *  The attach entry point is called when the driver is being loaded.
179  *  This routine identifies the type of hardware, allocates all resources
180  *  and initializes the hardware.
181  *
182  *  return 0 on success, positive on failure
183  *********************************************************************/
184 void
185 igc_attach(struct device *parent, struct device *self, void *aux)
186 {
187 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
188 	struct igc_softc *sc = (struct igc_softc *)self;
189 	struct igc_hw *hw = &sc->hw;
190 
191 	sc->osdep.os_sc = sc;
192 	sc->osdep.os_pa = *pa;
193 
194 	/* Determine hardware and mac info */
195 	igc_identify_hardware(sc);
196 
197 	sc->num_tx_desc = IGC_DEFAULT_TXD;
198 	sc->num_rx_desc = IGC_DEFAULT_RXD;
199 
200 	 /* Setup PCI resources */
201 	if (igc_allocate_pci_resources(sc))
202 		 goto err_pci;
203 
204 	/* Allocate TX/RX queues */
205 	if (igc_allocate_queues(sc))
206 		 goto err_pci;
207 
208 	/* Do shared code initialization */
209 	if (igc_setup_init_funcs(hw, true)) {
210 		printf(": Setup of shared code failed\n");
211 		goto err_pci;
212 	}
213 
214 	hw->mac.autoneg = DO_AUTO_NEG;
215 	hw->phy.autoneg_wait_to_complete = false;
216 	hw->phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
217 
218 	/* Copper options. */
219 	if (hw->phy.media_type == igc_media_type_copper)
220 		hw->phy.mdix = AUTO_ALL_MODES;
221 
222 	/* Set the max frame size. */
223 	sc->hw.mac.max_frame_size = 9234;
224 
225 	/* Allocate multicast array memory. */
226 	sc->mta = mallocarray(ETHER_ADDR_LEN, MAX_NUM_MULTICAST_ADDRESSES,
227 	    M_DEVBUF, M_NOWAIT);
228 	if (sc->mta == NULL) {
229 		printf(": Can not allocate multicast setup array\n");
230 		goto err_late;
231 	}
232 
233 	/* Check SOL/IDER usage. */
234 	if (igc_check_reset_block(hw))
235 		printf(": PHY reset is blocked due to SOL/IDER session\n");
236 
237 	/* Enable Energy Efficient Ethernet. */
238 	sc->hw.dev_spec._i225.eee_disable = true;
239 
240 	igc_reset_hw(hw);
241 
242 	/* Make sure we have a good EEPROM before we read from it. */
243 	if (igc_validate_nvm_checksum(hw) < 0) {
244 		/*
245 		 * Some PCI-E parts fail the first check due to
246 		 * the link being in sleep state, call it again,
247 		 * if it fails a second time its a real issue.
248 		 */
249 		if (igc_validate_nvm_checksum(hw) < 0) {
250 			printf(": The EEPROM checksum is not valid\n");
251 			goto err_late;
252 		}
253 	}
254 
255 	/* Copy the permanent MAC address out of the EEPROM. */
256 	if (igc_read_mac_addr(hw) < 0) {
257 		printf(": EEPROM read error while reading MAC address\n");
258 		goto err_late;
259 	}
260 
261 	if (!igc_is_valid_ether_addr(hw->mac.addr)) {
262 		printf(": Invalid MAC address\n");
263 		goto err_late;
264 	}
265 
266 	memcpy(sc->sc_ac.ac_enaddr, sc->hw.mac.addr, ETHER_ADDR_LEN);
267 
268 	if (igc_allocate_msix(sc))
269 		goto err_late;
270 
271 	/* Setup OS specific network interface. */
272 	igc_setup_interface(sc);
273 
274 	igc_reset(sc);
275 	hw->mac.get_link_status = true;
276 	igc_update_link_status(sc);
277 
278 	/* The driver can now take control from firmware. */
279 	igc_get_hw_control(sc);
280 
281 	printf(", address %s\n", ether_sprintf(sc->hw.mac.addr));
282 	return;
283 
284 err_late:
285 	igc_release_hw_control(sc);
286 err_pci:
287 	igc_free_pci_resources(sc);
288 	free(sc->mta, M_DEVBUF, ETHER_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
289 }
290 
291 /*********************************************************************
292  *  Device removal routine
293  *
294  *  The detach entry point is called when the driver is being removed.
295  *  This routine stops the adapter and deallocates all the resources
296  *  that were allocated for driver operation.
297  *
298  *  return 0 on success, positive on failure
299  *********************************************************************/
300 int
301 igc_detach(struct device *self, int flags)
302 {
303 	struct igc_softc *sc = (struct igc_softc *)self;
304 	struct ifnet *ifp = &sc->sc_ac.ac_if;
305 
306 	igc_stop(sc);
307 
308 	igc_phy_hw_reset(&sc->hw);
309 	igc_release_hw_control(sc);
310 
311 	ether_ifdetach(ifp);
312 	if_detach(ifp);
313 
314 	igc_free_pci_resources(sc);
315 
316 	igc_free_transmit_structures(sc);
317 	igc_free_receive_structures(sc);
318 	free(sc->mta, M_DEVBUF, ETHER_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
319 
320 	return 0;
321 }
322 
323 void
324 igc_identify_hardware(struct igc_softc *sc)
325 {
326 	struct igc_osdep *os = &sc->osdep;
327 	struct pci_attach_args *pa = &os->os_pa;
328 
329 	/* Save off the information about this board. */
330 	sc->hw.device_id = PCI_PRODUCT(pa->pa_id);
331 
332 	/* Do shared code init and setup. */
333 	if (igc_set_mac_type(&sc->hw)) {
334 		printf(": Setup init failure\n");
335 		return;
336         }
337 }
338 
339 int
340 igc_allocate_pci_resources(struct igc_softc *sc)
341 {
342 	struct igc_osdep *os = &sc->osdep;
343 	struct pci_attach_args *pa = &os->os_pa;
344 	pcireg_t memtype;
345 
346 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, IGC_PCIREG);
347 	if (pci_mapreg_map(pa, IGC_PCIREG, memtype, 0, &os->os_memt,
348 	    &os->os_memh, &os->os_membase, &os->os_memsize, 0)) {
349 		printf(": unable to map registers\n");
350 		return ENXIO;
351 	}
352 	sc->hw.hw_addr = (uint8_t *)os->os_membase;
353 	sc->hw.back = os;
354 
355 	igc_setup_msix(sc);
356 
357 	return 0;
358 }
359 
360 int
361 igc_allocate_queues(struct igc_softc *sc)
362 {
363 	struct igc_queue *iq;
364 	struct tx_ring *txr;
365 	struct rx_ring *rxr;
366 	int i, rsize, rxconf, tsize, txconf;
367 
368 	/* Allocate the top level queue structs. */
369 	sc->queues = mallocarray(sc->sc_nqueues, sizeof(struct igc_queue),
370 	    M_DEVBUF, M_NOWAIT | M_ZERO);
371 	if (sc->queues == NULL) {
372 		printf("%s: unable to allocate queue\n", DEVNAME(sc));
373 		goto fail;
374 	}
375 
376 	/* Allocate the TX ring. */
377 	sc->tx_rings = mallocarray(sc->sc_nqueues, sizeof(struct tx_ring),
378 	    M_DEVBUF, M_NOWAIT | M_ZERO);
379 	if (sc->tx_rings == NULL) {
380 		printf("%s: unable to allocate TX ring\n", DEVNAME(sc));
381 		goto fail;
382 	}
383 
384 	/* Allocate the RX ring. */
385 	sc->rx_rings = mallocarray(sc->sc_nqueues, sizeof(struct rx_ring),
386 	    M_DEVBUF, M_NOWAIT | M_ZERO);
387 	if (sc->rx_rings == NULL) {
388 		printf("%s: unable to allocate RX ring\n", DEVNAME(sc));
389 		goto rx_fail;
390 	}
391 
392 	txconf = rxconf = 0;
393 
394 	/* Set up the TX queues. */
395 	tsize = roundup2(sc->num_tx_desc * sizeof(union igc_adv_tx_desc),
396 	    IGC_DBA_ALIGN);
397 	for (i = 0; i < sc->sc_nqueues; i++, txconf++) {
398 		txr = &sc->tx_rings[i];
399 		txr->sc = sc;
400 		txr->me = i;
401 
402 		if (igc_dma_malloc(sc, tsize, &txr->txdma)) {
403 			printf("%s: unable to allocate TX descriptor\n",
404 			    DEVNAME(sc));
405 			goto err_tx_desc;
406 		}
407 		txr->tx_base = (union igc_adv_tx_desc *)txr->txdma.dma_vaddr;
408 		bzero((void *)txr->tx_base, tsize);
409 	}
410 
411 	/* Set up the RX queues. */
412 	rsize = roundup2(sc->num_rx_desc * sizeof(union igc_adv_rx_desc),
413 	    IGC_DBA_ALIGN);
414 	for (i = 0; i < sc->sc_nqueues; i++, rxconf++) {
415 		rxr = &sc->rx_rings[i];
416 		rxr->sc = sc;
417 		rxr->me = i;
418 		timeout_set(&rxr->rx_refill, igc_rxrefill, rxr);
419 
420 		if (igc_dma_malloc(sc, rsize, &rxr->rxdma)) {
421 			printf("%s: unable to allocate RX descriptor\n",
422 			    DEVNAME(sc));
423 			goto err_rx_desc;
424 		}
425 		rxr->rx_base = (union igc_adv_rx_desc *)rxr->rxdma.dma_vaddr;
426 		bzero((void *)rxr->rx_base, rsize);
427 	}
428 
429 	/* Set up the queue holding structs. */
430 	for (i = 0; i < sc->sc_nqueues; i++) {
431 		iq = &sc->queues[i];
432 		iq->sc = sc;
433 		iq->txr = &sc->tx_rings[i];
434 		iq->rxr = &sc->rx_rings[i];
435 		snprintf(iq->name, sizeof(iq->name), "%s:%d", DEVNAME(sc), i);
436 	}
437 
438 	return 0;
439 
440 err_rx_desc:
441 	for (rxr = sc->rx_rings; rxconf > 0; rxr++, rxconf--)
442 		igc_dma_free(sc, &rxr->rxdma);
443 err_tx_desc:
444 	for (txr = sc->tx_rings; txconf > 0; txr++, txconf--)
445 		igc_dma_free(sc, &txr->txdma);
446 	free(sc->rx_rings, M_DEVBUF, sc->sc_nqueues * sizeof(struct rx_ring));
447 	sc->rx_rings = NULL;
448 rx_fail:
449 	free(sc->tx_rings, M_DEVBUF, sc->sc_nqueues * sizeof(struct tx_ring));
450 	sc->tx_rings = NULL;
451 fail:
452 	return ENOMEM;
453 }
454 
455 void
456 igc_free_pci_resources(struct igc_softc *sc)
457 {
458 	struct igc_osdep *os = &sc->osdep;
459 	struct pci_attach_args *pa = &os->os_pa;
460 	struct igc_queue *iq = sc->queues;
461 	int i;
462 
463 	/* Release all msix queue resources. */
464 	for (i = 0; i < sc->sc_nqueues; i++, iq++) {
465 		if (iq->tag)
466 			pci_intr_disestablish(pa->pa_pc, iq->tag);
467 		iq->tag = NULL;
468 	}
469 
470 	if (sc->tag)
471 		pci_intr_disestablish(pa->pa_pc, sc->tag);
472 	sc->tag = NULL;
473 	if (os->os_membase != 0)
474 		bus_space_unmap(os->os_memt, os->os_memh, os->os_memsize);
475 	os->os_membase = 0;
476 }
477 
478 /*********************************************************************
479  *
480  *  Initialize the hardware to a configuration as specified by the
481  *  adapter structure.
482  *
483  **********************************************************************/
484 void
485 igc_reset(struct igc_softc *sc)
486 {
487 	struct igc_hw *hw = &sc->hw;
488 	uint32_t pba;
489 	uint16_t rx_buffer_size;
490 
491 	/* Let the firmware know the OS is in control */
492 	igc_get_hw_control(sc);
493 
494 	/*
495 	 * Packet Buffer Allocation (PBA)
496 	 * Writing PBA sets the receive portion of the buffer
497 	 * the remainder is used for the transmit buffer.
498 	 */
499 	pba = IGC_PBA_34K;
500 
501 	/*
502 	 * These parameters control the automatic generation (Tx) and
503 	 * response (Rx) to Ethernet PAUSE frames.
504 	 * - High water mark should allow for at least two frames to be
505 	 *   received after sending an XOFF.
506 	 * - Low water mark works best when it is very near the high water mark.
507 	 *   This allows the receiver to restart by sending XON when it has
508 	 *   drained a bit. Here we use an arbitrary value of 1500 which will
509 	 *   restart after one full frame is pulled from the buffer. There
510 	 *   could be several smaller frames in the buffer and if so they will
511 	 *   not trigger the XON until their total number reduces the buffer
512 	 *   by 1500.
513 	 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
514 	 */
515 	rx_buffer_size = (pba & 0xffff) << 10;
516 	hw->fc.high_water = rx_buffer_size -
517 	    roundup2(sc->hw.mac.max_frame_size, 1024);
518 	/* 16-byte granularity */
519 	hw->fc.low_water = hw->fc.high_water - 16;
520 
521 	if (sc->fc) /* locally set flow control value? */
522 		hw->fc.requested_mode = sc->fc;
523 	else
524 		hw->fc.requested_mode = igc_fc_full;
525 
526 	hw->fc.pause_time = IGC_FC_PAUSE_TIME;
527 
528 	hw->fc.send_xon = true;
529 
530 	/* Issue a global reset */
531 	igc_reset_hw(hw);
532 	IGC_WRITE_REG(hw, IGC_WUC, 0);
533 
534 	/* and a re-init */
535 	if (igc_init_hw(hw) < 0) {
536 		printf(": Hardware Initialization Failed\n");
537 		return;
538 	}
539 
540 	/* Setup DMA Coalescing */
541 	igc_init_dmac(sc, pba);
542 
543 	IGC_WRITE_REG(hw, IGC_VET, ETHERTYPE_VLAN);
544 	igc_get_phy_info(hw);
545 	igc_check_for_link(hw);
546 }
547 
548 /*********************************************************************
549  *
550  *  Initialize the DMA Coalescing feature
551  *
552  **********************************************************************/
553 void
554 igc_init_dmac(struct igc_softc *sc, uint32_t pba)
555 {
556 	struct igc_hw *hw = &sc->hw;
557 	uint32_t dmac, reg = ~IGC_DMACR_DMAC_EN;
558 	uint16_t hwm, max_frame_size;
559 	int status;
560 
561 	max_frame_size = sc->hw.mac.max_frame_size;
562 
563 	if (sc->dmac == 0) { /* Disabling it */
564 		IGC_WRITE_REG(hw, IGC_DMACR, reg);
565 		return;
566 	} else
567 		printf(": DMA Coalescing enabled\n");
568 
569 	/* Set starting threshold */
570 	IGC_WRITE_REG(hw, IGC_DMCTXTH, 0);
571 
572 	hwm = 64 * pba - max_frame_size / 16;
573 	if (hwm < 64 * (pba - 6))
574 		hwm = 64 * (pba - 6);
575 	reg = IGC_READ_REG(hw, IGC_FCRTC);
576 	reg &= ~IGC_FCRTC_RTH_COAL_MASK;
577 	reg |= ((hwm << IGC_FCRTC_RTH_COAL_SHIFT)
578 		& IGC_FCRTC_RTH_COAL_MASK);
579 	IGC_WRITE_REG(hw, IGC_FCRTC, reg);
580 
581 	dmac = pba - max_frame_size / 512;
582 	if (dmac < pba - 10)
583 		dmac = pba - 10;
584 	reg = IGC_READ_REG(hw, IGC_DMACR);
585 	reg &= ~IGC_DMACR_DMACTHR_MASK;
586 	reg |= ((dmac << IGC_DMACR_DMACTHR_SHIFT)
587 		& IGC_DMACR_DMACTHR_MASK);
588 
589 	/* transition to L0x or L1 if available..*/
590 	reg |= (IGC_DMACR_DMAC_EN | IGC_DMACR_DMAC_LX_MASK);
591 
592 	/* Check if status is 2.5Gb backplane connection
593 	 * before configuration of watchdog timer, which is
594 	 * in msec values in 12.8usec intervals
595 	 * watchdog timer= msec values in 32usec intervals
596 	 * for non 2.5Gb connection
597 	 */
598 	status = IGC_READ_REG(hw, IGC_STATUS);
599 	if ((status & IGC_STATUS_2P5_SKU) &&
600 	    (!(status & IGC_STATUS_2P5_SKU_OVER)))
601 		reg |= ((sc->dmac * 5) >> 6);
602 	else
603 		reg |= (sc->dmac >> 5);
604 
605 	IGC_WRITE_REG(hw, IGC_DMACR, reg);
606 
607 	IGC_WRITE_REG(hw, IGC_DMCRTRH, 0);
608 
609 	/* Set the interval before transition */
610 	reg = IGC_READ_REG(hw, IGC_DMCTLX);
611 	reg |= IGC_DMCTLX_DCFLUSH_DIS;
612 
613 	/*
614 	** in 2.5Gb connection, TTLX unit is 0.4 usec
615 	** which is 0x4*2 = 0xA. But delay is still 4 usec
616 	*/
617 	status = IGC_READ_REG(hw, IGC_STATUS);
618 	if ((status & IGC_STATUS_2P5_SKU) &&
619 	    (!(status & IGC_STATUS_2P5_SKU_OVER)))
620 		reg |= 0xA;
621 	else
622 		reg |= 0x4;
623 
624 	IGC_WRITE_REG(hw, IGC_DMCTLX, reg);
625 
626 	/* free space in tx packet buffer to wake from DMA coal */
627 	IGC_WRITE_REG(hw, IGC_DMCTXTH, (IGC_TXPBSIZE -
628 	    (2 * max_frame_size)) >> 6);
629 
630 	/* make low power state decision controlled by DMA coal */
631 	reg = IGC_READ_REG(hw, IGC_PCIEMISC);
632 	reg &= ~IGC_PCIEMISC_LX_DECISION;
633 	IGC_WRITE_REG(hw, IGC_PCIEMISC, reg);
634 }
635 
636 int
637 igc_allocate_msix(struct igc_softc *sc)
638 {
639 	struct igc_osdep *os = &sc->osdep;
640 	struct pci_attach_args *pa = &os->os_pa;
641 	struct igc_queue *iq;
642 	pci_intr_handle_t ih;
643 	int i, error = 0;
644 
645 	for (i = 0, iq = sc->queues; i < sc->sc_nqueues; i++, iq++) {
646 		if (pci_intr_map_msix(pa, i, &ih)) {
647 			printf("%s: unable to map msi-x vector %d\n",
648 			    DEVNAME(sc), i);
649 			error = ENOMEM;
650 			goto fail;
651 		}
652 
653 		iq->tag = pci_intr_establish_cpu(pa->pa_pc, ih,
654 		    IPL_NET | IPL_MPSAFE, intrmap_cpu(sc->sc_intrmap, i),
655 		    igc_intr_queue, iq, iq->name);
656 		if (iq->tag == NULL) {
657 			printf("%s: unable to establish interrupt %d\n",
658 			    DEVNAME(sc), i);
659 			error = ENOMEM;
660 			goto fail;
661 		}
662 
663 		iq->msix = i;
664 		iq->eims = 1 << i;
665 	}
666 
667 	/* Now the link status/control last MSI-X vector. */
668 	if (pci_intr_map_msix(pa, i, &ih)) {
669 		printf("%s: unable to map link vector\n", DEVNAME(sc));
670 		error = ENOMEM;
671 		goto fail;
672 	}
673 
674 	sc->tag = pci_intr_establish(pa->pa_pc, ih, IPL_NET | IPL_MPSAFE,
675 	    igc_intr_link, sc, sc->sc_dev.dv_xname);
676 	if (sc->tag == NULL) {
677 		printf("%s: unable to establish link interrupt\n", DEVNAME(sc));
678 		error = ENOMEM;
679 		goto fail;
680 	}
681 
682 	sc->linkvec = i;
683 	printf(", %s, %d queue%s", pci_intr_string(pa->pa_pc, ih),
684 	    i, (i > 1) ? "s" : "");
685 
686 	return 0;
687 fail:
688 	for (iq = sc->queues; i > 0; i--, iq++) {
689 		if (iq->tag == NULL)
690 			continue;
691 		pci_intr_disestablish(pa->pa_pc, iq->tag);
692 		iq->tag = NULL;
693 	}
694 
695 	return error;
696 }
697 
698 void
699 igc_setup_msix(struct igc_softc *sc)
700 {
701 	struct igc_osdep *os = &sc->osdep;
702 	struct pci_attach_args *pa = &os->os_pa;
703 	int nmsix;
704 
705 	nmsix = pci_intr_msix_count(pa);
706 	if (nmsix <= 1)
707 		printf(": not enough msi-x vectors\n");
708 
709 	/* Give one vector to events. */
710 	nmsix--;
711 
712 	sc->sc_intrmap = intrmap_create(&sc->sc_dev, nmsix, IGC_MAX_VECTORS,
713 	    INTRMAP_POWEROF2);
714 	sc->sc_nqueues = intrmap_count(sc->sc_intrmap);
715 }
716 
717 int
718 igc_dma_malloc(struct igc_softc *sc, bus_size_t size, struct igc_dma_alloc *dma)
719 {
720 	struct igc_osdep *os = &sc->osdep;
721 
722 	dma->dma_tag = os->os_pa.pa_dmat;
723 
724 	if (bus_dmamap_create(dma->dma_tag, size, 1, size, 0, BUS_DMA_NOWAIT,
725 	    &dma->dma_map))
726 		return 1;
727 	if (bus_dmamem_alloc(dma->dma_tag, size, PAGE_SIZE, 0, &dma->dma_seg,
728 	    1, &dma->dma_nseg, BUS_DMA_NOWAIT))
729 		goto destroy;
730 	if (bus_dmamem_map(dma->dma_tag, &dma->dma_seg, dma->dma_nseg, size,
731 	    &dma->dma_vaddr, BUS_DMA_NOWAIT | BUS_DMA_COHERENT))
732 		goto free;
733 	if (bus_dmamap_load(dma->dma_tag, dma->dma_map, dma->dma_vaddr, size,
734 	    NULL, BUS_DMA_NOWAIT))
735 		goto unmap;
736 
737 	dma->dma_size = size;
738 
739 	return 0;
740 unmap:
741 	bus_dmamem_unmap(dma->dma_tag, dma->dma_vaddr, size);
742 free:
743 	bus_dmamem_free(dma->dma_tag, &dma->dma_seg, dma->dma_nseg);
744 destroy:
745 	bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
746 	dma->dma_map = NULL;
747 	dma->dma_tag = NULL;
748 	return 1;
749 }
750 
751 void
752 igc_dma_free(struct igc_softc *sc, struct igc_dma_alloc *dma)
753 {
754 	if (dma->dma_tag == NULL)
755 		return;
756 
757 	if (dma->dma_map != NULL) {
758 		bus_dmamap_sync(dma->dma_tag, dma->dma_map, 0,
759 		    dma->dma_map->dm_mapsize,
760 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
761 		bus_dmamap_unload(dma->dma_tag, dma->dma_map);
762 		bus_dmamem_unmap(dma->dma_tag, dma->dma_vaddr, dma->dma_size);
763 		bus_dmamem_free(dma->dma_tag, &dma->dma_seg, dma->dma_nseg);
764 		bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
765 		dma->dma_map = NULL;
766 	}
767 }
768 
769 /*********************************************************************
770  *
771  *  Setup networking device structure and register an interface.
772  *
773  **********************************************************************/
774 void
775 igc_setup_interface(struct igc_softc *sc)
776 {
777 	struct ifnet *ifp = &sc->sc_ac.ac_if;
778 	int i;
779 
780 	ifp->if_softc = sc;
781 	strlcpy(ifp->if_xname, DEVNAME(sc), IFNAMSIZ);
782 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
783 	ifp->if_xflags = IFXF_MPSAFE;
784 	ifp->if_ioctl = igc_ioctl;
785 	ifp->if_qstart = igc_start;
786 	ifp->if_watchdog = igc_watchdog;
787 	ifp->if_hardmtu = sc->hw.mac.max_frame_size - ETHER_HDR_LEN -
788 	    ETHER_CRC_LEN;
789 	ifq_set_maxlen(&ifp->if_snd, sc->num_tx_desc - 1);
790 
791 	ifp->if_capabilities = IFCAP_VLAN_MTU;
792 
793 #ifdef notyet
794 #if NVLAN > 0
795 	ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING;
796 #endif
797 #endif
798 
799 	ifp->if_capabilities |= IFCAP_CSUM_IPv4;
800 	ifp->if_capabilities |= IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
801 	ifp->if_capabilities |= IFCAP_CSUM_TCPv6 | IFCAP_CSUM_UDPv6;
802 
803 	/* Initialize ifmedia structures. */
804 	ifmedia_init(&sc->media, IFM_IMASK, igc_media_change, igc_media_status);
805 	ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T, 0, NULL);
806 	ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
807 	ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX, 0, NULL);
808 	ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
809 	ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
810 	ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_T, 0, NULL);
811 	ifmedia_add(&sc->media, IFM_ETHER | IFM_2500_T, 0, NULL);
812 
813 	ifmedia_add(&sc->media, IFM_ETHER | IFM_AUTO, 0, NULL);
814 	ifmedia_set(&sc->media, IFM_ETHER | IFM_AUTO);
815 
816 	if_attach(ifp);
817 	ether_ifattach(ifp);
818 
819 	if_attach_queues(ifp, sc->sc_nqueues);
820 	if_attach_iqueues(ifp, sc->sc_nqueues);
821 	for (i = 0; i < sc->sc_nqueues; i++) {
822 		struct ifqueue *ifq = ifp->if_ifqs[i];
823 		struct ifiqueue *ifiq = ifp->if_iqs[i];
824 		struct tx_ring *txr = &sc->tx_rings[i];
825 		struct rx_ring *rxr = &sc->rx_rings[i];
826 
827 		ifq->ifq_softc = txr;
828 		txr->ifq = ifq;
829 
830 		ifiq->ifiq_softc = rxr;
831 		rxr->ifiq = ifiq;
832 	}
833 }
834 
835 void
836 igc_init(void *arg)
837 {
838 	struct igc_softc *sc = (struct igc_softc *)arg;
839 	struct ifnet *ifp = &sc->sc_ac.ac_if;
840 	struct rx_ring *rxr;
841 	uint32_t ctrl = 0;
842 	int i, s;
843 
844 	s = splnet();
845 
846 	igc_stop(sc);
847 
848 	/* Get the latest mac address, user can use a LAA. */
849 	bcopy(sc->sc_ac.ac_enaddr, sc->hw.mac.addr, ETHER_ADDR_LEN);
850 
851 	/* Put the address into the receive address array. */
852 	igc_rar_set(&sc->hw, sc->hw.mac.addr, 0);
853 
854 	/* Initialize the hardware. */
855 	igc_reset(sc);
856 	igc_update_link_status(sc);
857 
858 	/* Setup VLAN support, basic and offload if available. */
859 	IGC_WRITE_REG(&sc->hw, IGC_VET, ETHERTYPE_VLAN);
860 
861 	/* Prepare transmit descriptors and buffers. */
862 	if (igc_setup_transmit_structures(sc)) {
863 		printf("%s: Could not setup transmit structures\n",
864 		    DEVNAME(sc));
865 		igc_stop(sc);
866 		splx(s);
867 		return;
868 	}
869 	igc_initialize_transmit_unit(sc);
870 
871 	sc->rx_mbuf_sz = MCLBYTES + ETHER_ALIGN;
872 	/* Prepare receive descriptors and buffers. */
873 	if (igc_setup_receive_structures(sc)) {
874 		printf("%s: Could not setup receive structures\n",
875 		    DEVNAME(sc));
876 		igc_stop(sc);
877 		splx(s);
878 		return;
879         }
880 	igc_initialize_receive_unit(sc);
881 
882 	if (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) {
883 		ctrl = IGC_READ_REG(&sc->hw, IGC_CTRL);
884 		ctrl |= IGC_CTRL_VME;
885 		IGC_WRITE_REG(&sc->hw, IGC_CTRL, ctrl);
886 	}
887 
888 	/* Setup multicast table. */
889 	igc_iff(sc);
890 
891 	igc_clear_hw_cntrs_base_generic(&sc->hw);
892 
893 	igc_configure_queues(sc);
894 
895 	/* This clears any pending interrupts */
896 	IGC_READ_REG(&sc->hw, IGC_ICR);
897 	IGC_WRITE_REG(&sc->hw, IGC_ICS, IGC_ICS_LSC);
898 
899 	/* The driver can now take control from firmware. */
900 	igc_get_hw_control(sc);
901 
902 	/* Set Energy Efficient Ethernet. */
903 	igc_set_eee_i225(&sc->hw, true, true, true);
904 
905 	for (i = 0; i < sc->sc_nqueues; i++) {
906 		rxr = &sc->rx_rings[i];
907 		igc_rxfill(rxr);
908 		if (if_rxr_inuse(&rxr->rx_ring) == 0) {
909 			printf("%s: Unable to fill any rx descriptors\n",
910 			    DEVNAME(sc));
911 			igc_stop(sc);
912 			splx(s);
913 		}
914 		IGC_WRITE_REG(&sc->hw, IGC_RDT(i),
915 		    (rxr->last_desc_filled + 1) % sc->num_rx_desc);
916 	}
917 
918 	igc_enable_intr(sc);
919 
920 	ifp->if_flags |= IFF_RUNNING;
921 	for (i = 0; i < sc->sc_nqueues; i++)
922 		ifq_clr_oactive(ifp->if_ifqs[i]);
923 
924 	splx(s);
925 }
926 
927 static inline int
928 igc_load_mbuf(bus_dma_tag_t dmat, bus_dmamap_t map, struct mbuf *m)
929 {
930 	int error;
931 
932 	error = bus_dmamap_load_mbuf(dmat, map, m,
933 	    BUS_DMA_STREAMING | BUS_DMA_NOWAIT);
934 	if (error != EFBIG)
935 		return (error);
936 
937 	error = m_defrag(m, M_DONTWAIT);
938 	if (error != 0)
939 		return (error);
940 
941 	return (bus_dmamap_load_mbuf(dmat, map, m,
942 	    BUS_DMA_STREAMING | BUS_DMA_NOWAIT));
943 }
944 
945 void
946 igc_start(struct ifqueue *ifq)
947 {
948 	struct ifnet *ifp = ifq->ifq_if;
949 	struct igc_softc *sc = ifp->if_softc;
950 	struct tx_ring *txr = ifq->ifq_softc;
951 	union igc_adv_tx_desc *txdesc;
952 	struct igc_tx_buf *txbuf;
953 	bus_dmamap_t map;
954 	struct mbuf *m;
955 	unsigned int prod, free, last, i;
956 	unsigned int mask;
957 	uint32_t cmd_type_len;
958 	uint32_t olinfo_status;
959 	int post = 0;
960 #if NBPFILTER > 0
961 	caddr_t if_bpf;
962 #endif
963 
964 	if (!sc->link_active) {
965 		ifq_purge(ifq);
966 		return;
967 	}
968 
969 	prod = txr->next_avail_desc;
970 	free = txr->next_to_clean;
971 	if (free <= prod)
972 		free += sc->num_tx_desc;
973 	free -= prod;
974 
975 	bus_dmamap_sync(txr->txdma.dma_tag, txr->txdma.dma_map, 0,
976 	    txr->txdma.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
977 
978 	mask = sc->num_tx_desc - 1;
979 
980 	for (;;) {
981 		if (free <= IGC_MAX_SCATTER + 1) {
982 			ifq_set_oactive(ifq);
983 			break;
984 		}
985 
986 		m = ifq_dequeue(ifq);
987 		if (m == NULL)
988 			break;
989 
990 		txbuf = &txr->tx_buffers[prod];
991 		map = txbuf->map;
992 
993 		if (igc_load_mbuf(txr->txdma.dma_tag, map, m) != 0) {
994 			ifq->ifq_errors++;
995 			m_freem(m);
996 			continue;
997 		}
998 
999 		olinfo_status = m->m_pkthdr.len << IGC_ADVTXD_PAYLEN_SHIFT;
1000 
1001 		bus_dmamap_sync(txr->txdma.dma_tag, map, 0,
1002 		    map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1003 
1004 		if (igc_tx_ctx_setup(txr, m, prod, &olinfo_status)) {
1005 			/* Consume the first descriptor */
1006 			prod++;
1007 			prod &= mask;
1008 			free--;
1009 		}
1010 
1011 		for (i = 0; i < map->dm_nsegs; i++) {
1012 			txdesc = &txr->tx_base[prod];
1013 
1014 			cmd_type_len = IGC_ADVTXD_DCMD_IFCS | IGC_ADVTXD_DTYP_DATA |
1015 			    IGC_ADVTXD_DCMD_DEXT | map->dm_segs[i].ds_len;
1016 			if (i == map->dm_nsegs - 1)
1017 				cmd_type_len |= IGC_ADVTXD_DCMD_EOP |
1018 				    IGC_ADVTXD_DCMD_RS;
1019 
1020 			htolem64(&txdesc->read.buffer_addr, map->dm_segs[i].ds_addr);
1021 			htolem32(&txdesc->read.cmd_type_len, cmd_type_len);
1022 			htolem32(&txdesc->read.olinfo_status, olinfo_status);
1023 
1024 			last = prod;
1025 
1026 			prod++;
1027 			prod &= mask;
1028 		}
1029 
1030 		txbuf->m_head = m;
1031 		txbuf->eop_index = last;
1032 
1033 #if NBPFILTER > 0
1034 		if_bpf = ifp->if_bpf;
1035 		if (if_bpf)
1036 			bpf_mtap_ether(if_bpf, m, BPF_DIRECTION_OUT);
1037 #endif
1038 
1039 		free -= i;
1040 		post = 1;
1041 	}
1042 
1043 	bus_dmamap_sync(txr->txdma.dma_tag, txr->txdma.dma_map, 0,
1044 	    txr->txdma.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1045 
1046 	if (post) {
1047 		txr->next_avail_desc = prod;
1048 		IGC_WRITE_REG(&sc->hw, IGC_TDT(txr->me), prod);
1049 	}
1050 }
1051 
1052 int
1053 igc_txeof(struct tx_ring *txr)
1054 {
1055 	struct igc_softc *sc = txr->sc;
1056 	struct ifqueue *ifq = txr->ifq;
1057 	union igc_adv_tx_desc *txdesc;
1058 	struct igc_tx_buf *txbuf;
1059 	bus_dmamap_t map;
1060 	unsigned int cons, prod, last;
1061 	unsigned int mask;
1062 	int done = 0;
1063 
1064 	prod = txr->next_avail_desc;
1065 	cons = txr->next_to_clean;
1066 
1067 	if (cons == prod)
1068 		return (0);
1069 
1070 	bus_dmamap_sync(txr->txdma.dma_tag, txr->txdma.dma_map, 0,
1071 	    txr->txdma.dma_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1072 
1073 	mask = sc->num_tx_desc - 1;
1074 
1075 	do {
1076 		txbuf = &txr->tx_buffers[cons];
1077 		last = txbuf->eop_index;
1078 		txdesc = &txr->tx_base[last];
1079 
1080 		if (!(txdesc->wb.status & htole32(IGC_TXD_STAT_DD)))
1081 			break;
1082 
1083 		map = txbuf->map;
1084 
1085 		bus_dmamap_sync(txr->txdma.dma_tag, map, 0, map->dm_mapsize,
1086 		    BUS_DMASYNC_POSTWRITE);
1087 		bus_dmamap_unload(txr->txdma.dma_tag, map);
1088 		m_freem(txbuf->m_head);
1089 
1090 		txbuf->m_head = NULL;
1091 		txbuf->eop_index = -1;
1092 
1093 		cons = last + 1;
1094 		cons &= mask;
1095 
1096 		done = 1;
1097 	} while (cons != prod);
1098 
1099 	bus_dmamap_sync(txr->txdma.dma_tag, txr->txdma.dma_map, 0,
1100 	    txr->txdma.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
1101 
1102 	txr->next_to_clean = cons;
1103 
1104 	if (ifq_is_oactive(ifq))
1105 		ifq_restart(ifq);
1106 
1107 	return (done);
1108 }
1109 
1110 /*********************************************************************
1111  *
1112  *  This routine disables all traffic on the adapter by issuing a
1113  *  global reset on the MAC.
1114  *
1115  **********************************************************************/
1116 void
1117 igc_stop(struct igc_softc *sc)
1118 {
1119 	struct ifnet *ifp = &sc->sc_ac.ac_if;
1120 	int i;
1121 
1122 	/* Tell the stack that the interface is no longer active. */
1123         ifp->if_flags &= ~IFF_RUNNING;
1124 
1125 	igc_disable_intr(sc);
1126 
1127 	igc_reset_hw(&sc->hw);
1128 	IGC_WRITE_REG(&sc->hw, IGC_WUC, 0);
1129 
1130 	intr_barrier(sc->tag);
1131         for (i = 0; i < sc->sc_nqueues; i++) {
1132                 struct ifqueue *ifq = ifp->if_ifqs[i];
1133                 ifq_barrier(ifq);
1134                 ifq_clr_oactive(ifq);
1135 
1136                 if (sc->queues[i].tag != NULL)
1137                         intr_barrier(sc->queues[i].tag);
1138                 timeout_del(&sc->rx_rings[i].rx_refill);
1139         }
1140 
1141         igc_free_transmit_structures(sc);
1142         igc_free_receive_structures(sc);
1143 
1144 	igc_update_link_status(sc);
1145 }
1146 
1147 /*********************************************************************
1148  *  Ioctl entry point
1149  *
1150  *  igc_ioctl is called when the user wants to configure the
1151  *  interface.
1152  *
1153  *  return 0 on success, positive on failure
1154  **********************************************************************/
1155 int
1156 igc_ioctl(struct ifnet * ifp, u_long cmd, caddr_t data)
1157 {
1158 	struct igc_softc *sc = ifp->if_softc;
1159 	struct ifreq *ifr = (struct ifreq *)data;
1160 	int s, error = 0;
1161 
1162 	s = splnet();
1163 
1164 	switch (cmd) {
1165 	case SIOCSIFADDR:
1166 		ifp->if_flags |= IFF_UP;
1167 		if (!(ifp->if_flags & IFF_RUNNING))
1168 			igc_init(sc);
1169 		break;
1170 	case SIOCSIFFLAGS:
1171 		if (ifp->if_flags & IFF_UP) {
1172 			if (ifp->if_flags & IFF_RUNNING)
1173 				error = ENETRESET;
1174 			else
1175 				igc_init(sc);
1176 		} else {
1177 			if (ifp->if_flags & IFF_RUNNING)
1178 				igc_stop(sc);
1179 		}
1180 		break;
1181 	case SIOCSIFMEDIA:
1182 	case SIOCGIFMEDIA:
1183 		error = ifmedia_ioctl(ifp, ifr, &sc->media, cmd);
1184 		break;
1185 	case SIOCGIFRXR:
1186 		error = igc_rxrinfo(sc, (struct if_rxrinfo *)ifr->ifr_data);
1187 		break;
1188 	default:
1189 		error = ether_ioctl(ifp, &sc->sc_ac, cmd, data);
1190 	}
1191 
1192 	if (error == ENETRESET) {
1193 		if (ifp->if_flags & IFF_RUNNING) {
1194 			igc_disable_intr(sc);
1195 			igc_iff(sc);
1196 			igc_enable_intr(sc);
1197 		}
1198 		error = 0;
1199 	}
1200 
1201 	splx(s);
1202 	return error;
1203 }
1204 
1205 int
1206 igc_rxrinfo(struct igc_softc *sc, struct if_rxrinfo *ifri)
1207 {
1208 	struct if_rxring_info *ifr;
1209 	struct rx_ring *rxr;
1210 	int error, i, n = 0;
1211 
1212 	if ((ifr = mallocarray(sc->sc_nqueues, sizeof(*ifr), M_DEVBUF,
1213 	    M_WAITOK | M_ZERO)) == NULL)
1214 		return ENOMEM;
1215 
1216 	for (i = 0; i < sc->sc_nqueues; i++) {
1217 		rxr = &sc->rx_rings[i];
1218 		ifr[n].ifr_size = MCLBYTES;
1219 		snprintf(ifr[n].ifr_name, sizeof(ifr[n].ifr_name), "%d", i);
1220 		ifr[n].ifr_info = rxr->rx_ring;
1221 		n++;
1222 	}
1223 
1224 	error = if_rxr_info_ioctl(ifri, sc->sc_nqueues, ifr);
1225 	free(ifr, M_DEVBUF, sc->sc_nqueues * sizeof(*ifr));
1226 
1227 	return error;
1228 }
1229 
1230 int
1231 igc_rxfill(struct rx_ring *rxr)
1232 {
1233 	struct igc_softc *sc = rxr->sc;
1234 	int i, post = 0;
1235 	u_int slots;
1236 
1237 	bus_dmamap_sync(rxr->rxdma.dma_tag, rxr->rxdma.dma_map, 0,
1238 	    rxr->rxdma.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1239 
1240 	i = rxr->last_desc_filled;
1241 	for (slots = if_rxr_get(&rxr->rx_ring, sc->num_rx_desc); slots > 0;
1242 	    slots--) {
1243 		if (++i == sc->num_rx_desc)
1244 			i = 0;
1245 
1246 		if (igc_get_buf(rxr, i) != 0)
1247 			break;
1248 
1249 		rxr->last_desc_filled = i;
1250 		post = 1;
1251 	}
1252 
1253 	bus_dmamap_sync(rxr->rxdma.dma_tag, rxr->rxdma.dma_map, 0,
1254 	    rxr->rxdma.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1255 
1256 	if_rxr_put(&rxr->rx_ring, slots);
1257 
1258 	return post;
1259 }
1260 
1261 void
1262 igc_rxrefill(void *xrxr)
1263 {
1264 	struct rx_ring *rxr = xrxr;
1265 	struct igc_softc *sc = rxr->sc;
1266 
1267 	if (igc_rxfill(rxr)) {
1268 		IGC_WRITE_REG(&sc->hw, IGC_RDT(rxr->me),
1269 		    (rxr->last_desc_filled + 1) % sc->num_rx_desc);
1270 	}
1271 	else if (if_rxr_inuse(&rxr->rx_ring) == 0)
1272 		timeout_add(&rxr->rx_refill, 1);
1273 }
1274 
1275 /*********************************************************************
1276  *
1277  *  This routine executes in interrupt context. It replenishes
1278  *  the mbufs in the descriptor and sends data which has been
1279  *  dma'ed into host memory to upper layer.
1280  *
1281  *********************************************************************/
1282 int
1283 igc_rxeof(struct rx_ring *rxr)
1284 {
1285 	struct igc_softc *sc = rxr->sc;
1286 	struct ifnet *ifp = &sc->sc_ac.ac_if;
1287 	struct mbuf_list ml = MBUF_LIST_INITIALIZER();
1288 	struct mbuf *mp, *m;
1289 	struct igc_rx_buf *rxbuf, *nxbuf;
1290 	union igc_adv_rx_desc *rxdesc;
1291 	uint32_t ptype, staterr = 0;
1292 	uint16_t len, vtag;
1293 	uint8_t eop = 0;
1294 	int i, nextp;
1295 
1296 	if (!ISSET(ifp->if_flags, IFF_RUNNING))
1297 		return 0;
1298 
1299 	i = rxr->next_to_check;
1300 	while (if_rxr_inuse(&rxr->rx_ring) > 0) {
1301 		uint32_t hash;
1302 		uint16_t hashtype;
1303 
1304 		bus_dmamap_sync(rxr->rxdma.dma_tag, rxr->rxdma.dma_map,
1305 		    i * sizeof(union igc_adv_rx_desc),
1306 		    sizeof(union igc_adv_rx_desc), BUS_DMASYNC_POSTREAD);
1307 
1308 		rxdesc = &rxr->rx_base[i];
1309 		staterr = letoh32(rxdesc->wb.upper.status_error);
1310 		if (!ISSET(staterr, IGC_RXD_STAT_DD)) {
1311 			bus_dmamap_sync(rxr->rxdma.dma_tag, rxr->rxdma.dma_map,
1312 			    i * sizeof(union igc_adv_rx_desc),
1313 			    sizeof(union igc_adv_rx_desc), BUS_DMASYNC_PREREAD);
1314 			break;
1315 		}
1316 
1317 		/* Zero out the receive descriptors status. */
1318 		rxdesc->wb.upper.status_error = 0;
1319 		rxbuf = &rxr->rx_buffers[i];
1320 
1321 		/* Pull the mbuf off the ring. */
1322 		bus_dmamap_sync(rxr->rxdma.dma_tag, rxbuf->map, 0,
1323 		    rxbuf->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1324 		bus_dmamap_unload(rxr->rxdma.dma_tag, rxbuf->map);
1325 
1326 		mp = rxbuf->buf;
1327 		len = letoh16(rxdesc->wb.upper.length);
1328 		vtag = letoh16(rxdesc->wb.upper.vlan);
1329 		eop = ((staterr & IGC_RXD_STAT_EOP) == IGC_RXD_STAT_EOP);
1330 		ptype = letoh32(rxdesc->wb.lower.lo_dword.data) &
1331 		    IGC_PKTTYPE_MASK;
1332 		hash = letoh32(rxdesc->wb.lower.hi_dword.rss);
1333 		hashtype = le16toh(rxdesc->wb.lower.lo_dword.hs_rss.pkt_info) &
1334 		    IGC_RXDADV_RSSTYPE_MASK;
1335 
1336 		if (staterr & IGC_RXDEXT_STATERR_RXE) {
1337 			if (rxbuf->fmp) {
1338 				m_freem(rxbuf->fmp);
1339 				rxbuf->fmp = NULL;
1340 			}
1341 
1342 			m_freem(mp);
1343 			rxbuf->buf = NULL;
1344 			goto next_desc;
1345 		}
1346 
1347 		if (mp == NULL) {
1348 			panic("%s: igc_rxeof: NULL mbuf in slot %d "
1349 			    "(nrx %d, filled %d)", DEVNAME(sc), i,
1350 			    if_rxr_inuse(&rxr->rx_ring), rxr->last_desc_filled);
1351 		}
1352 
1353 		if (!eop) {
1354 			/*
1355 			 * Figure out the next descriptor of this frame.
1356 			 */
1357 			nextp = i + 1;
1358 			if (nextp == sc->num_rx_desc)
1359 				nextp = 0;
1360 			nxbuf = &rxr->rx_buffers[nextp];
1361 			/* prefetch(nxbuf); */
1362 		}
1363 
1364 		mp->m_len = len;
1365 
1366 		m = rxbuf->fmp;
1367 		rxbuf->buf = rxbuf->fmp = NULL;
1368 
1369 		if (m != NULL)
1370 			m->m_pkthdr.len += mp->m_len;
1371 		else {
1372 			m = mp;
1373 			m->m_pkthdr.len = mp->m_len;
1374 #if NVLAN > 0
1375 			if (staterr & IGC_RXD_STAT_VP) {
1376 				m->m_pkthdr.ether_vtag = vtag;
1377 				m->m_flags |= M_VLANTAG;
1378 			}
1379 #endif
1380 		}
1381 
1382 		/* Pass the head pointer on */
1383 		if (eop == 0) {
1384 			nxbuf->fmp = m;
1385 			m = NULL;
1386 			mp->m_next = nxbuf->buf;
1387 		} else {
1388 			igc_rx_checksum(staterr, m, ptype);
1389 
1390 			if (hashtype != IGC_RXDADV_RSSTYPE_NONE) {
1391 				m->m_pkthdr.ph_flowid = hash;
1392 				SET(m->m_pkthdr.csum_flags, M_FLOWID);
1393 			}
1394 
1395 			ml_enqueue(&ml, m);
1396 		}
1397 next_desc:
1398 		if_rxr_put(&rxr->rx_ring, 1);
1399 		bus_dmamap_sync(rxr->rxdma.dma_tag, rxr->rxdma.dma_map,
1400 		    i * sizeof(union igc_adv_rx_desc),
1401 		    sizeof(union igc_adv_rx_desc), BUS_DMASYNC_PREREAD);
1402 
1403 		/* Advance our pointers to the next descriptor. */
1404 		if (++i == sc->num_rx_desc)
1405 			i = 0;
1406 	}
1407 	rxr->next_to_check = i;
1408 
1409 	if (ifiq_input(rxr->ifiq, &ml))
1410 		if_rxr_livelocked(&rxr->rx_ring);
1411 
1412 	if (!(staterr & IGC_RXD_STAT_DD))
1413 		return 0;
1414 
1415 	return 1;
1416 }
1417 
1418 /*********************************************************************
1419  *
1420  *  Verify that the hardware indicated that the checksum is valid.
1421  *  Inform the stack about the status of checksum so that stack
1422  *  doesn't spend time verifying the checksum.
1423  *
1424  *********************************************************************/
1425 void
1426 igc_rx_checksum(uint32_t staterr, struct mbuf *m, uint32_t ptype)
1427 {
1428 	uint16_t status = (uint16_t)staterr;
1429 	uint8_t errors = (uint8_t)(staterr >> 24);
1430 
1431 	if (status & IGC_RXD_STAT_IPCS) {
1432 		if (!(errors & IGC_RXD_ERR_IPE)) {
1433 			/* IP Checksum Good */
1434 			m->m_pkthdr.csum_flags = M_IPV4_CSUM_IN_OK;
1435 		} else
1436 			m->m_pkthdr.csum_flags = 0;
1437 	}
1438 
1439 	if (status & (IGC_RXD_STAT_TCPCS | IGC_RXD_STAT_UDPCS)) {
1440 		if (!(errors & IGC_RXD_ERR_TCPE))
1441 			m->m_pkthdr.csum_flags |=
1442 			    M_TCP_CSUM_IN_OK | M_UDP_CSUM_IN_OK;
1443 	}
1444 }
1445 
1446 void
1447 igc_watchdog(struct ifnet * ifp)
1448 {
1449 }
1450 
1451 /*********************************************************************
1452  *
1453  *  Media Ioctl callback
1454  *
1455  *  This routine is called whenever the user queries the status of
1456  *  the interface using ifconfig.
1457  *
1458  **********************************************************************/
1459 void
1460 igc_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1461 {
1462 	struct igc_softc *sc = ifp->if_softc;
1463 
1464 	igc_update_link_status(sc);
1465 
1466 	ifmr->ifm_status = IFM_AVALID;
1467 	ifmr->ifm_active = IFM_ETHER;
1468 
1469 	if (!sc->link_active) {
1470 		ifmr->ifm_active |= IFM_NONE;
1471 		return;
1472 	}
1473 
1474 	ifmr->ifm_status |= IFM_ACTIVE;
1475 
1476 	switch (sc->link_speed) {
1477 	case 10:
1478 		ifmr->ifm_active |= IFM_10_T;
1479 		break;
1480 	case 100:
1481 		ifmr->ifm_active |= IFM_100_TX;
1482                 break;
1483 	case 1000:
1484 		ifmr->ifm_active |= IFM_1000_T;
1485 		break;
1486 	case 2500:
1487                 ifmr->ifm_active |= IFM_2500_T;
1488                 break;
1489 	}
1490 
1491 	if (sc->link_duplex == FULL_DUPLEX)
1492 		ifmr->ifm_active |= IFM_FDX;
1493 	else
1494 		ifmr->ifm_active |= IFM_HDX;
1495 }
1496 
1497 /*********************************************************************
1498  *
1499  *  Media Ioctl callback
1500  *
1501  *  This routine is called when the user changes speed/duplex using
1502  *  media/mediopt option with ifconfig.
1503  *
1504  **********************************************************************/
1505 int
1506 igc_media_change(struct ifnet *ifp)
1507 {
1508 	struct igc_softc *sc = ifp->if_softc;
1509 	struct ifmedia *ifm = &sc->media;
1510 
1511 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1512 		return (EINVAL);
1513 
1514 	sc->hw.mac.autoneg = DO_AUTO_NEG;
1515 
1516 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
1517 	case IFM_AUTO:
1518 		sc->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1519 		break;
1520         case IFM_2500_T:
1521                 sc->hw.phy.autoneg_advertised = ADVERTISE_2500_FULL;
1522                 break;
1523 	case IFM_1000_T:
1524 		sc->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1525 		break;
1526 	case IFM_100_TX:
1527 		if ((ifm->ifm_media & IFM_GMASK) == IFM_HDX)
1528 			sc->hw.phy.autoneg_advertised = ADVERTISE_100_HALF;
1529 		else
1530 			sc->hw.phy.autoneg_advertised = ADVERTISE_100_FULL;
1531 		break;
1532 	case IFM_10_T:
1533 		if ((ifm->ifm_media & IFM_GMASK) == IFM_HDX)
1534 			sc->hw.phy.autoneg_advertised = ADVERTISE_10_HALF;
1535 		else
1536 			sc->hw.phy.autoneg_advertised = ADVERTISE_10_FULL;
1537 		break;
1538 	default:
1539 		return EINVAL;
1540 	}
1541 
1542 	igc_init(sc);
1543 
1544 	return 0;
1545 }
1546 
1547 void
1548 igc_iff(struct igc_softc *sc)
1549 {
1550 	struct ifnet *ifp = &sc->sc_ac.ac_if;
1551         struct arpcom *ac = &sc->sc_ac;
1552 	struct ether_multi *enm;
1553 	struct ether_multistep step;
1554 	uint32_t reg_rctl = 0;
1555 	uint8_t *mta;
1556 	int mcnt = 0;
1557 
1558 	mta = sc->mta;
1559         bzero(mta, sizeof(uint8_t) * ETHER_ADDR_LEN *
1560 	    MAX_NUM_MULTICAST_ADDRESSES);
1561 
1562 	reg_rctl = IGC_READ_REG(&sc->hw, IGC_RCTL);
1563 	reg_rctl &= ~(IGC_RCTL_UPE | IGC_RCTL_MPE);
1564 	ifp->if_flags &= ~IFF_ALLMULTI;
1565 
1566 	if (ifp->if_flags & IFF_PROMISC || ac->ac_multirangecnt > 0 ||
1567 	    ac->ac_multicnt > MAX_NUM_MULTICAST_ADDRESSES) {
1568 		ifp->if_flags |= IFF_ALLMULTI;
1569 		reg_rctl |= IGC_RCTL_MPE;
1570 		if (ifp->if_flags & IFF_PROMISC)
1571 			reg_rctl |= IGC_RCTL_UPE;
1572 	} else {
1573 		ETHER_FIRST_MULTI(step, ac, enm);
1574 		while (enm != NULL) {
1575 			bcopy(enm->enm_addrlo,
1576 			    &mta[mcnt * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
1577 			mcnt++;
1578 
1579 			ETHER_NEXT_MULTI(step, enm);
1580 		}
1581 
1582 		igc_update_mc_addr_list(&sc->hw, mta, mcnt);
1583 	}
1584 
1585 	IGC_WRITE_REG(&sc->hw, IGC_RCTL, reg_rctl);
1586 }
1587 
1588 void
1589 igc_update_link_status(struct igc_softc *sc)
1590 {
1591 	struct ifnet *ifp = &sc->sc_ac.ac_if;
1592 	struct igc_hw *hw = &sc->hw;
1593 	int link_state;
1594 
1595 	if (IGC_READ_REG(&sc->hw, IGC_STATUS) & IGC_STATUS_LU) {
1596 		if (sc->link_active == 0) {
1597 			igc_get_speed_and_duplex(hw, &sc->link_speed,
1598 			    &sc->link_duplex);
1599 			sc->link_active = 1;
1600 			ifp->if_baudrate = IF_Mbps(sc->link_speed);
1601 		}
1602 		link_state = (sc->link_duplex == FULL_DUPLEX) ?
1603 		    LINK_STATE_FULL_DUPLEX : LINK_STATE_HALF_DUPLEX;
1604 	} else {
1605 		if (sc->link_active == 1) {
1606 			ifp->if_baudrate = sc->link_speed = 0;
1607 			sc->link_duplex = 0;
1608 			sc->link_active = 0;
1609 		}
1610 		link_state = LINK_STATE_DOWN;
1611 	}
1612 	if (ifp->if_link_state != link_state) {
1613 		ifp->if_link_state = link_state;
1614 		if_link_state_change(ifp);
1615 	}
1616 }
1617 
1618 /*********************************************************************
1619  *
1620  *  Get a buffer from system mbuf buffer pool.
1621  *
1622  **********************************************************************/
1623 int
1624 igc_get_buf(struct rx_ring *rxr, int i)
1625 {
1626 	struct igc_softc *sc = rxr->sc;
1627 	struct igc_rx_buf *rxbuf;
1628 	struct mbuf *m;
1629 	union igc_adv_rx_desc *rxdesc;
1630 	int error;
1631 
1632 	rxbuf = &rxr->rx_buffers[i];
1633 	rxdesc = &rxr->rx_base[i];
1634 	if (rxbuf->buf) {
1635 		printf("%s: slot %d already has an mbuf\n", DEVNAME(sc), i);
1636 		return ENOBUFS;
1637 	}
1638 
1639 	m = MCLGETL(NULL, M_DONTWAIT, sc->rx_mbuf_sz);
1640 	if (!m)
1641 		return ENOBUFS;
1642 
1643 	m->m_data += (m->m_ext.ext_size - sc->rx_mbuf_sz);
1644 	m->m_len = m->m_pkthdr.len = sc->rx_mbuf_sz;
1645 
1646 	error = bus_dmamap_load_mbuf(rxr->rxdma.dma_tag, rxbuf->map, m,
1647 	    BUS_DMA_NOWAIT);
1648 	if (error) {
1649 		m_freem(m);
1650 		return error;
1651 	}
1652 
1653 	bus_dmamap_sync(rxr->rxdma.dma_tag, rxbuf->map, 0,
1654 	    rxbuf->map->dm_mapsize, BUS_DMASYNC_PREREAD);
1655 	rxbuf->buf = m;
1656 
1657 	rxdesc->read.pkt_addr = htole64(rxbuf->map->dm_segs[0].ds_addr);
1658 
1659 	return 0;
1660 }
1661 
1662 void
1663 igc_configure_queues(struct igc_softc *sc)
1664 {
1665 	struct igc_hw *hw = &sc->hw;
1666 	struct igc_queue *iq = sc->queues;
1667 	uint32_t ivar, newitr = 0;
1668 	int i;
1669 
1670 	/* First turn on RSS capability */
1671 	IGC_WRITE_REG(hw, IGC_GPIE, IGC_GPIE_MSIX_MODE | IGC_GPIE_EIAME |
1672 	    IGC_GPIE_PBA | IGC_GPIE_NSICR);
1673 
1674 	/* Set the starting interrupt rate */
1675 	newitr = (4000000 / MAX_INTS_PER_SEC) & 0x7FFC;
1676 
1677 	newitr |= IGC_EITR_CNT_IGNR;
1678 
1679 	/* Turn on MSI-X */
1680 	for (i = 0; i < sc->sc_nqueues; i++, iq++) {
1681 		/* RX entries */
1682 		igc_set_queues(sc, i, iq->msix, 0);
1683 		/* TX entries */
1684 		igc_set_queues(sc, i, iq->msix, 1);
1685 		sc->msix_queuesmask |= iq->eims;
1686 		IGC_WRITE_REG(hw, IGC_EITR(iq->msix), newitr);
1687 	}
1688 
1689 	/* And for the link interrupt */
1690 	ivar = (sc->linkvec | IGC_IVAR_VALID) << 8;
1691 	sc->msix_linkmask = 1 << sc->linkvec;
1692 	IGC_WRITE_REG(hw, IGC_IVAR_MISC, ivar);
1693 }
1694 
1695 void
1696 igc_set_queues(struct igc_softc *sc, uint32_t entry, uint32_t vector, int type)
1697 {
1698 	struct igc_hw *hw = &sc->hw;
1699 	uint32_t ivar, index;
1700 
1701 	index = entry >> 1;
1702 	ivar = IGC_READ_REG_ARRAY(hw, IGC_IVAR0, index);
1703 	if (type) {
1704 		if (entry & 1) {
1705 			ivar &= 0x00FFFFFF;
1706 			ivar |= (vector | IGC_IVAR_VALID) << 24;
1707 		} else {
1708 			ivar &= 0xFFFF00FF;
1709 			ivar |= (vector | IGC_IVAR_VALID) << 8;
1710 		}
1711 	} else {
1712 		if (entry & 1) {
1713 			ivar &= 0xFF00FFFF;
1714 			ivar |= (vector | IGC_IVAR_VALID) << 16;
1715 		} else {
1716 			ivar &= 0xFFFFFF00;
1717 			ivar |= vector | IGC_IVAR_VALID;
1718 		}
1719 	}
1720 	IGC_WRITE_REG_ARRAY(hw, IGC_IVAR0, index, ivar);
1721 }
1722 
1723 void
1724 igc_enable_queue(struct igc_softc *sc, uint32_t eims)
1725 {
1726 	IGC_WRITE_REG(&sc->hw, IGC_EIMS, eims);
1727 }
1728 
1729 void
1730 igc_enable_intr(struct igc_softc *sc)
1731 {
1732 	struct igc_hw *hw = &sc->hw;
1733 	uint32_t mask;
1734 
1735 	mask = (sc->msix_queuesmask | sc->msix_linkmask);
1736 	IGC_WRITE_REG(hw, IGC_EIAC, mask);
1737 	IGC_WRITE_REG(hw, IGC_EIAM, mask);
1738 	IGC_WRITE_REG(hw, IGC_EIMS, mask);
1739 	IGC_WRITE_REG(hw, IGC_IMS, IGC_IMS_LSC);
1740 	IGC_WRITE_FLUSH(hw);
1741 }
1742 
1743 void
1744 igc_disable_intr(struct igc_softc *sc)
1745 {
1746 	struct igc_hw *hw = &sc->hw;
1747 
1748 	IGC_WRITE_REG(hw, IGC_EIMC, 0xffffffff);
1749 	IGC_WRITE_REG(hw, IGC_EIAC, 0);
1750 	IGC_WRITE_REG(hw, IGC_IMC, 0xffffffff);
1751 	IGC_WRITE_FLUSH(hw);
1752 }
1753 
1754 int
1755 igc_intr_link(void *arg)
1756 {
1757 	struct igc_softc *sc = (struct igc_softc *)arg;
1758 	uint32_t reg_icr = IGC_READ_REG(&sc->hw, IGC_ICR);
1759 
1760 	if (reg_icr & IGC_ICR_LSC) {
1761 		KERNEL_LOCK();
1762 		sc->hw.mac.get_link_status = true;
1763 		igc_update_link_status(sc);
1764 		KERNEL_UNLOCK();
1765 	}
1766 
1767 	IGC_WRITE_REG(&sc->hw, IGC_IMS, IGC_IMS_LSC);
1768 	IGC_WRITE_REG(&sc->hw, IGC_EIMS, sc->msix_linkmask);
1769 
1770 	return 1;
1771 }
1772 
1773 int
1774 igc_intr_queue(void *arg)
1775 {
1776 	struct igc_queue *iq = arg;
1777 	struct igc_softc *sc = iq->sc;
1778 	struct ifnet *ifp = &sc->sc_ac.ac_if;
1779 	struct rx_ring *rxr = iq->rxr;
1780 	struct tx_ring *txr = iq->txr;
1781 
1782 	if (ifp->if_flags & IFF_RUNNING) {
1783 		igc_txeof(txr);
1784 		igc_rxeof(rxr);
1785 		igc_rxrefill(rxr);
1786 	}
1787 
1788 	igc_enable_queue(sc, iq->eims);
1789 
1790 	return 1;
1791 }
1792 
1793 /*********************************************************************
1794  *
1795  *  Allocate memory for tx_buffer structures. The tx_buffer stores all
1796  *  the information needed to transmit a packet on the wire.
1797  *
1798  **********************************************************************/
1799 int
1800 igc_allocate_transmit_buffers(struct tx_ring *txr)
1801 {
1802 	struct igc_softc *sc = txr->sc;
1803 	struct igc_tx_buf *txbuf;
1804 	int error, i;
1805 
1806 	txr->tx_buffers = mallocarray(sc->num_tx_desc,
1807 	    sizeof(struct igc_tx_buf), M_DEVBUF, M_NOWAIT | M_ZERO);
1808 	if (txr->tx_buffers == NULL) {
1809 		printf("%s: Unable to allocate tx_buffer memory\n",
1810 		    DEVNAME(sc));
1811 		error = ENOMEM;
1812 		goto fail;
1813 	}
1814 	txr->txtag = txr->txdma.dma_tag;
1815 
1816 	/* Create the descriptor buffer dma maps. */
1817 	for (i = 0; i < sc->num_tx_desc; i++) {
1818 		txbuf = &txr->tx_buffers[i];
1819 		error = bus_dmamap_create(txr->txdma.dma_tag, IGC_TSO_SIZE,
1820 		    IGC_MAX_SCATTER, PAGE_SIZE, 0, BUS_DMA_NOWAIT, &txbuf->map);
1821 		if (error != 0) {
1822 			printf("%s: Unable to create TX DMA map\n",
1823 			    DEVNAME(sc));
1824 			goto fail;
1825 		}
1826 	}
1827 
1828 	return 0;
1829 fail:
1830 	return error;
1831 }
1832 
1833 
1834 /*********************************************************************
1835  *
1836  *  Allocate and initialize transmit structures.
1837  *
1838  **********************************************************************/
1839 int
1840 igc_setup_transmit_structures(struct igc_softc *sc)
1841 {
1842 	struct tx_ring *txr = sc->tx_rings;
1843 	int i;
1844 
1845 	for (i = 0; i < sc->sc_nqueues; i++, txr++) {
1846 		if (igc_setup_transmit_ring(txr))
1847 			goto fail;
1848 	}
1849 
1850 	return 0;
1851 fail:
1852 	igc_free_transmit_structures(sc);
1853 	return ENOBUFS;
1854 }
1855 
1856 /*********************************************************************
1857  *
1858  *  Initialize a transmit ring.
1859  *
1860  **********************************************************************/
1861 int
1862 igc_setup_transmit_ring(struct tx_ring *txr)
1863 {
1864 	struct igc_softc *sc = txr->sc;
1865 
1866 	/* Now allocate transmit buffers for the ring. */
1867 	if (igc_allocate_transmit_buffers(txr))
1868 		return ENOMEM;
1869 
1870 	/* Clear the old ring contents */
1871 	bzero((void *)txr->tx_base,
1872 	    (sizeof(union igc_adv_tx_desc)) * sc->num_tx_desc);
1873 
1874 	/* Reset indices. */
1875 	txr->next_avail_desc = 0;
1876 	txr->next_to_clean = 0;
1877 
1878 	bus_dmamap_sync(txr->txdma.dma_tag, txr->txdma.dma_map, 0,
1879 	    txr->txdma.dma_map->dm_mapsize,
1880 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1881 
1882 	return 0;
1883 }
1884 
1885 /*********************************************************************
1886  *
1887  *  Enable transmit unit.
1888  *
1889  **********************************************************************/
1890 void
1891 igc_initialize_transmit_unit(struct igc_softc *sc)
1892 {
1893 	struct ifnet *ifp = &sc->sc_ac.ac_if;
1894 	struct tx_ring *txr;
1895 	struct igc_hw *hw = &sc->hw;
1896 	uint64_t bus_addr;
1897 	uint32_t tctl, txdctl = 0;
1898         int i;
1899 
1900 	/* Setup the Base and Length of the TX descriptor ring. */
1901 	for (i = 0; i < sc->sc_nqueues; i++) {
1902 		txr = &sc->tx_rings[i];
1903 
1904 		bus_addr = txr->txdma.dma_map->dm_segs[0].ds_addr;
1905 
1906 		/* Base and len of TX ring */
1907 		IGC_WRITE_REG(hw, IGC_TDLEN(i),
1908 		    sc->num_tx_desc * sizeof(union igc_adv_tx_desc));
1909 		IGC_WRITE_REG(hw, IGC_TDBAH(i), (uint32_t)(bus_addr >> 32));
1910 		IGC_WRITE_REG(hw, IGC_TDBAL(i), (uint32_t)bus_addr);
1911 
1912 		/* Init the HEAD/TAIL indices */
1913 		IGC_WRITE_REG(hw, IGC_TDT(i), 0);
1914 		IGC_WRITE_REG(hw, IGC_TDH(i), 0);
1915 
1916 		txr->watchdog_timer = 0;
1917 
1918 		txdctl = 0;		/* Clear txdctl */
1919 		txdctl |= 0x1f;		/* PTHRESH */
1920 		txdctl |= 1 << 8;	/* HTHRESH */
1921 		txdctl |= 1 << 16;	/* WTHRESH */
1922 		txdctl |= 1 << 22;	/* Reserved bit 22 must always be 1 */
1923 		txdctl |= IGC_TXDCTL_GRAN;
1924 		txdctl |= 1 << 25;	/* LWTHRESH */
1925 
1926 		IGC_WRITE_REG(hw, IGC_TXDCTL(i), txdctl);
1927 	}
1928 	ifp->if_timer = 0;
1929 
1930 	/* Program the Transmit Control Register */
1931 	tctl = IGC_READ_REG(&sc->hw, IGC_TCTL);
1932 	tctl &= ~IGC_TCTL_CT;
1933 	tctl |= (IGC_TCTL_PSP | IGC_TCTL_RTLC | IGC_TCTL_EN |
1934 	    (IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT));
1935 
1936 	/* This write will effectively turn on the transmit unit. */
1937 	IGC_WRITE_REG(&sc->hw, IGC_TCTL, tctl);
1938 }
1939 
1940 /*********************************************************************
1941  *
1942  *  Free all transmit rings.
1943  *
1944  **********************************************************************/
1945 void
1946 igc_free_transmit_structures(struct igc_softc *sc)
1947 {
1948 	struct tx_ring *txr = sc->tx_rings;
1949 	int i;
1950 
1951 	for (i = 0; i < sc->sc_nqueues; i++, txr++)
1952 		igc_free_transmit_buffers(txr);
1953 }
1954 
1955 /*********************************************************************
1956  *
1957  *  Free transmit ring related data structures.
1958  *
1959  **********************************************************************/
1960 void
1961 igc_free_transmit_buffers(struct tx_ring *txr)
1962 {
1963 	struct igc_softc *sc = txr->sc;
1964 	struct igc_tx_buf *txbuf;
1965 	int i;
1966 
1967 	if (txr->tx_buffers == NULL)
1968 		return;
1969 
1970 	txbuf = txr->tx_buffers;
1971 	for (i = 0; i < sc->num_tx_desc; i++, txbuf++) {
1972 		if (txbuf->map != NULL && txbuf->map->dm_nsegs > 0) {
1973 			bus_dmamap_sync(txr->txdma.dma_tag, txbuf->map,
1974 			    0, txbuf->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1975 			bus_dmamap_unload(txr->txdma.dma_tag, txbuf->map);
1976 		}
1977 		if (txbuf->m_head != NULL) {
1978 			m_freem(txbuf->m_head);
1979 			txbuf->m_head = NULL;
1980 		}
1981 		if (txbuf->map != NULL) {
1982 			bus_dmamap_destroy(txr->txdma.dma_tag, txbuf->map);
1983 			txbuf->map = NULL;
1984 		}
1985 	}
1986 
1987 	if (txr->tx_buffers != NULL)
1988 		free(txr->tx_buffers, M_DEVBUF,
1989 		    sc->num_tx_desc * sizeof(struct igc_tx_buf));
1990 	txr->tx_buffers = NULL;
1991 	txr->txtag = NULL;
1992 }
1993 
1994 
1995 /*********************************************************************
1996  *
1997  *  Advanced Context Descriptor setup for VLAN, CSUM or TSO
1998  *
1999  **********************************************************************/
2000 
2001 int
2002 igc_tx_ctx_setup(struct tx_ring *txr, struct mbuf *mp, int prod,
2003     uint32_t *olinfo_status)
2004 {
2005 	struct igc_adv_tx_context_desc *txdesc;
2006 	struct ether_header *eh = mtod(mp, struct ether_header *);
2007 	struct mbuf *m;
2008 	uint32_t type_tucmd_mlhl = 0;
2009 	uint32_t vlan_macip_lens = 0;
2010 	uint32_t iphlen;
2011 	int hoff;
2012 	int off = 0;
2013 	uint8_t ipproto;
2014 
2015 	vlan_macip_lens |= (sizeof(*eh) << IGC_ADVTXD_MACLEN_SHIFT);
2016 
2017 	/*
2018 	 * In advanced descriptors the vlan tag must
2019 	 * be placed into the context descriptor. Hence
2020 	 * we need to make one even if not doing offloads.
2021 	 */
2022 #ifdef notyet
2023 #if NVLAN > 0
2024 	if (ISSET(mp->m_flags, M_VLANTAG)) {
2025 		uint32_t vtag = mp->m_pkthdr.ether_vtag;
2026 		vlan_macip_lens |= (vtag << IGC_ADVTXD_VLAN_SHIFT);
2027 		off = 1;
2028 	}
2029 #endif
2030 #endif
2031 
2032 	switch (ntohs(eh->ether_type)) {
2033 	case ETHERTYPE_IP: {
2034 		struct ip *ip;
2035 
2036 		m = m_getptr(mp, sizeof(*eh), &hoff);
2037 		KASSERT(m != NULL && m->m_len - hoff >= sizeof(*ip));
2038 		ip = (struct ip *)(mtod(m, caddr_t) + hoff);
2039 
2040 		iphlen = ip->ip_hl << 2;
2041 		ipproto = ip->ip_p;
2042 
2043 		type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_IPV4;
2044 		if (ISSET(mp->m_pkthdr.csum_flags, M_IPV4_CSUM_OUT)) {
2045 			*olinfo_status |= IGC_TXD_POPTS_IXSM << 8;
2046 			off = 1;
2047 		}
2048 
2049 		break;
2050 	}
2051 #ifdef INET6
2052 	case ETHERTYPE_IPV6: {
2053 		struct ip6_hdr *ip6;
2054 
2055 		m = m_getptr(mp, sizeof(*eh), &hoff);
2056 		KASSERT(m != NULL && m->m_len - hoff >= sizeof(*ip6));
2057 		ip6 = (struct ip6_hdr *)(mtod(m, caddr_t) + hoff);
2058 
2059 		iphlen = sizeof(*ip6);
2060 		ipproto = ip6->ip6_nxt;
2061 
2062 		type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_IPV6;
2063 		break;
2064 	}
2065 #endif
2066 	default:
2067 		return 0;
2068 	}
2069 
2070 	vlan_macip_lens |= iphlen;
2071 	type_tucmd_mlhl |= IGC_ADVTXD_DCMD_DEXT | IGC_ADVTXD_DTYP_CTXT;
2072 
2073 	switch (ipproto) {
2074 	case IPPROTO_TCP:
2075 		type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_L4T_TCP;
2076 		if (ISSET(mp->m_pkthdr.csum_flags, M_TCP_CSUM_OUT)) {
2077 			*olinfo_status |= IGC_TXD_POPTS_TXSM << 8;
2078 			off = 1;
2079 		}
2080 		break;
2081 	case IPPROTO_UDP:
2082 		type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_L4T_UDP;
2083 		if (ISSET(mp->m_pkthdr.csum_flags, M_UDP_CSUM_OUT)) {
2084 			*olinfo_status |= IGC_TXD_POPTS_TXSM << 8;
2085 			off = 1;
2086 		}
2087 		break;
2088 	}
2089 
2090 	if (off == 0)
2091 		return 0;
2092 
2093 	/* Now ready a context descriptor */
2094 	txdesc = (struct igc_adv_tx_context_desc *)&txr->tx_base[prod];
2095 
2096 	/* Now copy bits into descriptor */
2097 	htolem32(&txdesc->vlan_macip_lens, vlan_macip_lens);
2098 	htolem32(&txdesc->type_tucmd_mlhl, type_tucmd_mlhl);
2099 	htolem32(&txdesc->seqnum_seed, 0);
2100 	htolem32(&txdesc->mss_l4len_idx, 0);
2101 
2102 	return 1;
2103 }
2104 
2105 /*********************************************************************
2106  *
2107  *  Allocate memory for rx_buffer structures. Since we use one
2108  *  rx_buffer per received packet, the maximum number of rx_buffer's
2109  *  that we'll need is equal to the number of receive descriptors
2110  *  that we've allocated.
2111  *
2112  **********************************************************************/
2113 int
2114 igc_allocate_receive_buffers(struct rx_ring *rxr)
2115 {
2116 	struct igc_softc *sc = rxr->sc;
2117 	struct igc_rx_buf *rxbuf;
2118 	int i, error;
2119 
2120 	rxr->rx_buffers = mallocarray(sc->num_rx_desc,
2121 	    sizeof(struct igc_rx_buf), M_DEVBUF, M_NOWAIT | M_ZERO);
2122 	if (rxr->rx_buffers == NULL) {
2123 		printf("%s: Unable to allocate rx_buffer memory\n",
2124 		    DEVNAME(sc));
2125 		error = ENOMEM;
2126 		goto fail;
2127 	}
2128 
2129 	rxbuf = rxr->rx_buffers;
2130 	for (i = 0; i < sc->num_rx_desc; i++, rxbuf++) {
2131 		error = bus_dmamap_create(rxr->rxdma.dma_tag,
2132 		    MAX_JUMBO_FRAME_SIZE, 1, MAX_JUMBO_FRAME_SIZE, 0,
2133 		    BUS_DMA_NOWAIT, &rxbuf->map);
2134 		if (error) {
2135 			printf("%s: Unable to create RX DMA map\n",
2136 			    DEVNAME(sc));
2137 			goto fail;
2138 		}
2139 	}
2140 	bus_dmamap_sync(rxr->rxdma.dma_tag, rxr->rxdma.dma_map, 0,
2141 	    rxr->rxdma.dma_map->dm_mapsize,
2142 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2143 
2144 	return 0;
2145 fail:
2146 	return error;
2147 }
2148 
2149 /*********************************************************************
2150  *
2151  *  Allocate and initialize receive structures.
2152  *
2153  **********************************************************************/
2154 int
2155 igc_setup_receive_structures(struct igc_softc *sc)
2156 {
2157 	struct rx_ring *rxr = sc->rx_rings;
2158 	int i;
2159 
2160 	for (i = 0; i < sc->sc_nqueues; i++, rxr++) {
2161 		if (igc_setup_receive_ring(rxr))
2162 			goto fail;
2163 	}
2164 
2165 	return 0;
2166 fail:
2167 	igc_free_receive_structures(sc);
2168 	return ENOBUFS;
2169 }
2170 
2171 /*********************************************************************
2172  *
2173  *  Initialize a receive ring and its buffers.
2174  *
2175  **********************************************************************/
2176 int
2177 igc_setup_receive_ring(struct rx_ring *rxr)
2178 {
2179 	struct igc_softc *sc = rxr->sc;
2180 	struct ifnet *ifp = &sc->sc_ac.ac_if;
2181 	int rsize;
2182 
2183 	rsize = roundup2(sc->num_rx_desc * sizeof(union igc_adv_rx_desc),
2184 	    IGC_DBA_ALIGN);
2185 
2186 	/* Clear the ring contents. */
2187 	bzero((void *)rxr->rx_base, rsize);
2188 
2189 	if (igc_allocate_receive_buffers(rxr))
2190 		return ENOMEM;
2191 
2192 	/* Setup our descriptor indices. */
2193 	rxr->next_to_check = 0;
2194 	rxr->last_desc_filled = sc->num_rx_desc - 1;
2195 
2196 	if_rxr_init(&rxr->rx_ring, 2 * ((ifp->if_hardmtu / MCLBYTES) + 1),
2197 	    sc->num_rx_desc - 1);
2198 
2199 	return 0;
2200 }
2201 
2202 /*********************************************************************
2203  *
2204  *  Enable receive unit.
2205  *
2206  **********************************************************************/
2207 void
2208 igc_initialize_receive_unit(struct igc_softc *sc)
2209 {
2210         struct rx_ring *rxr = sc->rx_rings;
2211         struct igc_hw *hw = &sc->hw;
2212 	uint32_t rctl, rxcsum, srrctl = 0;
2213 	int i;
2214 
2215 	/*
2216 	 * Make sure receives are disabled while setting
2217 	 * up the descriptor ring.
2218 	 */
2219 	rctl = IGC_READ_REG(hw, IGC_RCTL);
2220 	IGC_WRITE_REG(hw, IGC_RCTL, rctl & ~IGC_RCTL_EN);
2221 
2222 	/* Setup the Receive Control Register */
2223 	rctl &= ~(3 << IGC_RCTL_MO_SHIFT);
2224 	rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_LBM_NO |
2225 	    IGC_RCTL_RDMTS_HALF | (hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT);
2226 
2227 	/* Do not store bad packets */
2228 	rctl &= ~IGC_RCTL_SBP;
2229 
2230 	/* Enable Long Packet receive */
2231 	if (sc->hw.mac.max_frame_size != ETHER_MAX_LEN)
2232 		rctl |= IGC_RCTL_LPE;
2233 
2234 	/* Strip the CRC */
2235 	rctl |= IGC_RCTL_SECRC;
2236 
2237 	/*
2238 	 * Set the interrupt throttling rate. Value is calculated
2239 	 * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns)
2240 	 */
2241 	IGC_WRITE_REG(hw, IGC_ITR, DEFAULT_ITR);
2242 
2243 	rxcsum = IGC_READ_REG(hw, IGC_RXCSUM);
2244 	rxcsum &= ~IGC_RXCSUM_PCSD;
2245 
2246 	if (sc->sc_nqueues > 1)
2247 		rxcsum |= IGC_RXCSUM_PCSD;
2248 
2249 	IGC_WRITE_REG(hw, IGC_RXCSUM, rxcsum);
2250 
2251 	if (sc->sc_nqueues > 1)
2252 		igc_initialize_rss_mapping(sc);
2253 
2254 #if 0
2255 	srrctl |= 4096 >> IGC_SRRCTL_BSIZEPKT_SHIFT;
2256 	rctl |= IGC_RCTL_SZ_4096 | IGC_RCTL_BSEX;
2257 #endif
2258 
2259 	srrctl |= 2048 >> IGC_SRRCTL_BSIZEPKT_SHIFT;
2260 	rctl |= IGC_RCTL_SZ_2048;
2261 
2262 	/*
2263 	 * If TX flow control is disabled and there's > 1 queue defined,
2264 	 * enable DROP.
2265 	 *
2266 	 * This drops frames rather than hanging the RX MAC for all queues.
2267 	 */
2268 	if ((sc->sc_nqueues > 1) && (sc->fc == igc_fc_none ||
2269 	    sc->fc == igc_fc_rx_pause)) {
2270 		srrctl |= IGC_SRRCTL_DROP_EN;
2271 	}
2272 
2273 	/* Setup the Base and Length of the RX descriptor rings. */
2274 	for (i = 0; i < sc->sc_nqueues; i++, rxr++) {
2275 		IGC_WRITE_REG(hw, IGC_RXDCTL(i), 0);
2276 		uint64_t bus_addr = rxr->rxdma.dma_map->dm_segs[0].ds_addr;
2277 		uint32_t rxdctl;
2278 
2279 		srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF;
2280 
2281 		IGC_WRITE_REG(hw, IGC_RDLEN(i),
2282 		    sc->num_rx_desc * sizeof(union igc_adv_rx_desc));
2283 		IGC_WRITE_REG(hw, IGC_RDBAH(i), (uint32_t)(bus_addr >> 32));
2284 		IGC_WRITE_REG(hw, IGC_RDBAL(i), (uint32_t)bus_addr);
2285 		IGC_WRITE_REG(hw, IGC_SRRCTL(i), srrctl);
2286 
2287 		/* Setup the Head and Tail Descriptor Pointers */
2288 		IGC_WRITE_REG(hw, IGC_RDH(i), 0);
2289 		IGC_WRITE_REG(hw, IGC_RDT(i), 0);
2290 
2291 		/* Enable this Queue */
2292 		rxdctl = IGC_READ_REG(hw, IGC_RXDCTL(i));
2293 		rxdctl |= IGC_RXDCTL_QUEUE_ENABLE;
2294 		rxdctl &= 0xFFF00000;
2295 		rxdctl |= IGC_RX_PTHRESH;
2296 		rxdctl |= IGC_RX_HTHRESH << 8;
2297 		rxdctl |= IGC_RX_WTHRESH << 16;
2298 		IGC_WRITE_REG(hw, IGC_RXDCTL(i), rxdctl);
2299 	}
2300 
2301 	/* Make sure VLAN Filters are off */
2302 	rctl &= ~IGC_RCTL_VFE;
2303 
2304 	/* Write out the settings */
2305 	IGC_WRITE_REG(hw, IGC_RCTL, rctl);
2306 }
2307 
2308 /*********************************************************************
2309  *
2310  *  Free all receive rings.
2311  *
2312  **********************************************************************/
2313 void
2314 igc_free_receive_structures(struct igc_softc *sc)
2315 {
2316 	struct rx_ring *rxr;
2317 	int i;
2318 
2319 	for (i = 0, rxr = sc->rx_rings; i < sc->sc_nqueues; i++, rxr++)
2320 		if_rxr_init(&rxr->rx_ring, 0, 0);
2321 
2322 	for (i = 0, rxr = sc->rx_rings; i < sc->sc_nqueues; i++, rxr++)
2323 		igc_free_receive_buffers(rxr);
2324 }
2325 
2326 /*********************************************************************
2327  *
2328  *  Free receive ring data structures
2329  *
2330  **********************************************************************/
2331 void
2332 igc_free_receive_buffers(struct rx_ring *rxr)
2333 {
2334 	struct igc_softc *sc = rxr->sc;
2335 	struct igc_rx_buf *rxbuf;
2336 	int i;
2337 
2338 	if (rxr->rx_buffers != NULL) {
2339 		for (i = 0; i < sc->num_rx_desc; i++) {
2340 			rxbuf = &rxr->rx_buffers[i];
2341 			if (rxbuf->buf != NULL) {
2342 				bus_dmamap_sync(rxr->rxdma.dma_tag, rxbuf->map,
2343 				    0, rxbuf->map->dm_mapsize,
2344 				    BUS_DMASYNC_POSTREAD);
2345 				bus_dmamap_unload(rxr->rxdma.dma_tag,
2346 				    rxbuf->map);
2347 				m_freem(rxbuf->buf);
2348 				rxbuf->buf = NULL;
2349 			}
2350 			bus_dmamap_destroy(rxr->rxdma.dma_tag, rxbuf->map);
2351 			rxbuf->map = NULL;
2352 		}
2353 		free(rxr->rx_buffers, M_DEVBUF,
2354 		    sc->num_rx_desc * sizeof(struct igc_rx_buf));
2355 		rxr->rx_buffers = NULL;
2356 	}
2357 }
2358 
2359 /*
2360  * Initialise the RSS mapping for NICs that support multiple transmit/
2361  * receive rings.
2362  */
2363 void
2364 igc_initialize_rss_mapping(struct igc_softc *sc)
2365 {
2366 	struct igc_hw *hw = &sc->hw;
2367 	uint32_t rss_key[10], mrqc, reta, shift = 0;
2368 	int i, queue_id;
2369 
2370 	/*
2371 	 * The redirection table controls which destination
2372 	 * queue each bucket redirects traffic to.
2373 	 * Each DWORD represents four queues, with the LSB
2374 	 * being the first queue in the DWORD.
2375 	 *
2376 	 * This just allocates buckets to queues using round-robin
2377 	 * allocation.
2378 	 *
2379 	 * NOTE: It Just Happens to line up with the default
2380 	 * RSS allocation method.
2381 	 */
2382 
2383 	/* Warning FM follows */
2384 	reta = 0;
2385 	for (i = 0; i < 128; i++) {
2386 		queue_id = (i % sc->sc_nqueues);
2387 		/* Adjust if required */
2388 		queue_id = queue_id << shift;
2389 
2390 		/*
2391 		 * The low 8 bits are for hash value (n+0);
2392 		 * The next 8 bits are for hash value (n+1), etc.
2393 		 */
2394 		reta = reta >> 8;
2395 		reta = reta | ( ((uint32_t) queue_id) << 24);
2396 		if ((i & 3) == 3) {
2397 			IGC_WRITE_REG(hw, IGC_RETA(i >> 2), reta);
2398 			reta = 0;
2399 		}
2400 	}
2401 
2402 	/*
2403 	 * MRQC: Multiple Receive Queues Command
2404 	 * Set queuing to RSS control, number depends on the device.
2405 	 */
2406 	mrqc = IGC_MRQC_ENABLE_RSS_4Q;
2407 
2408 	/* Set up random bits */
2409         stoeplitz_to_key(&rss_key, sizeof(rss_key));
2410 
2411 	/* Now fill our hash function seeds */
2412 	for (i = 0; i < 10; i++)
2413 		IGC_WRITE_REG_ARRAY(hw, IGC_RSSRK(0), i, rss_key[i]);
2414 
2415 	/*
2416 	 * Configure the RSS fields to hash upon.
2417 	 */
2418 	mrqc |= (IGC_MRQC_RSS_FIELD_IPV4 | IGC_MRQC_RSS_FIELD_IPV4_TCP);
2419 	mrqc |= (IGC_MRQC_RSS_FIELD_IPV6 | IGC_MRQC_RSS_FIELD_IPV6_TCP);
2420 	mrqc |= IGC_MRQC_RSS_FIELD_IPV6_TCP_EX;
2421 
2422 	IGC_WRITE_REG(hw, IGC_MRQC, mrqc);
2423 }
2424 
2425 /*
2426  * igc_get_hw_control sets the {CTRL_EXT|FWSM}:DRV_LOAD bit.
2427  * For ASF and Pass Through versions of f/w this means
2428  * that the driver is loaded. For AMT version type f/w
2429  * this means that the network i/f is open.
2430  */
2431 void
2432 igc_get_hw_control(struct igc_softc *sc)
2433 {
2434 	uint32_t ctrl_ext;
2435 
2436 	ctrl_ext = IGC_READ_REG(&sc->hw, IGC_CTRL_EXT);
2437 	IGC_WRITE_REG(&sc->hw, IGC_CTRL_EXT, ctrl_ext | IGC_CTRL_EXT_DRV_LOAD);
2438 }
2439 
2440 /*
2441  * igc_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
2442  * For ASF and Pass Through versions of f/w this means that
2443  * the driver is no longer loaded. For AMT versions of the
2444  * f/w this means that the network i/f is closed.
2445  */
2446 void
2447 igc_release_hw_control(struct igc_softc *sc)
2448 {
2449 	uint32_t ctrl_ext;
2450 
2451 	ctrl_ext = IGC_READ_REG(&sc->hw, IGC_CTRL_EXT);
2452 	IGC_WRITE_REG(&sc->hw, IGC_CTRL_EXT, ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD);
2453 }
2454 
2455 int
2456 igc_is_valid_ether_addr(uint8_t *addr)
2457 {
2458 	char zero_addr[6] = { 0, 0, 0, 0, 0, 0 };
2459 
2460 	if ((addr[0] & 1) || (!bcmp(addr, zero_addr, ETHER_ADDR_LEN))) {
2461 		return 0;
2462 	}
2463 
2464 	return 1;
2465 }
2466