xref: /openbsd-src/sys/dev/pci/if_et.c (revision 850e275390052b330d93020bf619a739a3c277ac)
1 /*	$OpenBSD: if_et.c,v 1.13 2008/09/10 14:01:22 blambert Exp $	*/
2 /*
3  * Copyright (c) 2007 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Sepherosa Ziehau <sepherosa@gmail.com>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in
16  *    the documentation and/or other materials provided with the
17  *    distribution.
18  * 3. Neither the name of The DragonFly Project nor the names of its
19  *    contributors may be used to endorse or promote products derived
20  *    from this software without specific, prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
26  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
28  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
30  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
31  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
32  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  * $DragonFly: src/sys/dev/netif/et/if_et.c,v 1.1 2007/10/12 14:12:42 sephe Exp $
36  */
37 
38 #include "bpfilter.h"
39 #include "vlan.h"
40 
41 #include <sys/param.h>
42 #include <sys/endian.h>
43 #include <sys/systm.h>
44 #include <sys/types.h>
45 #include <sys/sockio.h>
46 #include <sys/mbuf.h>
47 #include <sys/queue.h>
48 #include <sys/kernel.h>
49 #include <sys/device.h>
50 #include <sys/timeout.h>
51 #include <sys/socket.h>
52 
53 #include <machine/bus.h>
54 
55 #include <net/if.h>
56 #include <net/if_dl.h>
57 #include <net/if_media.h>
58 
59 #ifdef INET
60 #include <netinet/in.h>
61 #include <netinet/in_systm.h>
62 #include <netinet/in_var.h>
63 #include <netinet/ip.h>
64 #include <netinet/if_ether.h>
65 #endif
66 
67 #if NBPFILTER > 0
68 #include <net/bpf.h>
69 #endif
70 #include <net/if_vlan_var.h>
71 
72 #include <dev/mii/mii.h>
73 #include <dev/mii/miivar.h>
74 
75 #include <dev/pci/pcireg.h>
76 #include <dev/pci/pcivar.h>
77 #include <dev/pci/pcidevs.h>
78 
79 #include <dev/pci/if_etreg.h>
80 
81 /* XXX temporary porting goop */
82 #define KKASSERT(cond) if (!(cond)) panic("KKASSERT: %s in %s", #cond, __func__)
83 #undef KASSERT
84 #define KASSERT(cond, complaint) if (!(cond)) panic complaint
85 
86 /* these macros in particular need to die, so gross */
87 #define __LOWEST_SET_BIT(__mask) ((((__mask) - 1) & (__mask)) ^ (__mask))
88 #define __SHIFTOUT(__x, __mask) (((__x) & (__mask)) / __LOWEST_SET_BIT(__mask))
89 #define __SHIFTIN(__x, __mask) ((__x) * __LOWEST_SET_BIT(__mask))
90 /* XXX end porting goop */
91 
92 int	et_match(struct device *, void *, void *);
93 void	et_attach(struct device *, struct device *, void *);
94 int	et_detach(struct device *, int);
95 int	et_shutdown(struct device *);
96 
97 int	et_miibus_readreg(struct device *, int, int);
98 void	et_miibus_writereg(struct device *, int, int, int);
99 void	et_miibus_statchg(struct device *);
100 
101 int	et_init(struct ifnet *);
102 int	et_ioctl(struct ifnet *, u_long, caddr_t);
103 void	et_start(struct ifnet *);
104 void	et_watchdog(struct ifnet *);
105 int	et_ifmedia_upd(struct ifnet *);
106 void	et_ifmedia_sts(struct ifnet *, struct ifmediareq *);
107 
108 int	et_intr(void *);
109 void	et_enable_intrs(struct et_softc *, uint32_t);
110 void	et_disable_intrs(struct et_softc *);
111 void	et_rxeof(struct et_softc *);
112 void	et_txeof(struct et_softc *);
113 void	et_txtick(void *);
114 
115 int	et_dma_alloc(struct et_softc *);
116 void	et_dma_free(struct et_softc *);
117 int	et_dma_mem_create(struct et_softc *, bus_size_t,
118 	    void **, bus_addr_t *, bus_dmamap_t *, bus_dma_segment_t *);
119 void	et_dma_mem_destroy(struct et_softc *, void *, bus_dmamap_t);
120 int	et_dma_mbuf_create(struct et_softc *);
121 void	et_dma_mbuf_destroy(struct et_softc *, int, const int[]);
122 
123 int	et_init_tx_ring(struct et_softc *);
124 int	et_init_rx_ring(struct et_softc *);
125 void	et_free_tx_ring(struct et_softc *);
126 void	et_free_rx_ring(struct et_softc *);
127 int	et_encap(struct et_softc *, struct mbuf **);
128 int	et_newbuf(struct et_rxbuf_data *, int, int, int);
129 int	et_newbuf_cluster(struct et_rxbuf_data *, int, int);
130 int	et_newbuf_hdr(struct et_rxbuf_data *, int, int);
131 
132 void	et_stop(struct et_softc *);
133 int	et_chip_init(struct et_softc *);
134 void	et_chip_attach(struct et_softc *);
135 void	et_init_mac(struct et_softc *);
136 void	et_init_rxmac(struct et_softc *);
137 void	et_init_txmac(struct et_softc *);
138 int	et_init_rxdma(struct et_softc *);
139 int	et_init_txdma(struct et_softc *);
140 int	et_start_rxdma(struct et_softc *);
141 int	et_start_txdma(struct et_softc *);
142 int	et_stop_rxdma(struct et_softc *);
143 int	et_stop_txdma(struct et_softc *);
144 int	et_enable_txrx(struct et_softc *);
145 void	et_reset(struct et_softc *);
146 int	et_bus_config(struct et_softc *);
147 void	et_get_eaddr(struct et_softc *, uint8_t[]);
148 void	et_setmulti(struct et_softc *);
149 void	et_tick(void *);
150 
151 static int	et_rx_intr_npkts = 32;
152 static int	et_rx_intr_delay = 20;		/* x10 usec */
153 static int	et_tx_intr_nsegs = 128;
154 static uint32_t	et_timer = 1000 * 1000 * 1000;	/* nanosec */
155 
156 struct et_bsize {
157 	int		bufsize;
158 	et_newbuf_t	newbuf;
159 };
160 
161 static const struct et_bsize	et_bufsize[ET_RX_NRING] = {
162 	{ .bufsize = 0,	.newbuf = et_newbuf_hdr },
163 	{ .bufsize = 0,	.newbuf = et_newbuf_cluster },
164 };
165 
166 const struct pci_matchid et_devices[] = {
167 	{ PCI_VENDOR_LUCENT, PCI_PRODUCT_LUCENT_ET1310_FE },
168 	{ PCI_VENDOR_LUCENT, PCI_PRODUCT_LUCENT_ET1310_GBE }
169 };
170 
171 struct cfattach et_ca = {
172 	sizeof (struct et_softc), et_match, et_attach, et_detach
173 };
174 
175 struct cfdriver et_cd = {
176 	NULL, "et", DV_IFNET
177 };
178 
179 int
180 et_match(struct device *dev, void *match, void *aux)
181 {
182 	return pci_matchbyid((struct pci_attach_args *)aux, et_devices,
183 	    sizeof (et_devices) / sizeof (et_devices[0]));
184 }
185 
186 void
187 et_attach(struct device *parent, struct device *self, void *aux)
188 {
189 	struct et_softc *sc = (struct et_softc *)self;
190 	struct pci_attach_args *pa = aux;
191 	pci_chipset_tag_t pc = pa->pa_pc;
192 	pci_intr_handle_t ih;
193 	const char *intrstr;
194 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
195 	pcireg_t memtype;
196 	int error;
197 
198 	/*
199 	 * Initialize tunables
200 	 */
201 	sc->sc_rx_intr_npkts = et_rx_intr_npkts;
202 	sc->sc_rx_intr_delay = et_rx_intr_delay;
203 	sc->sc_tx_intr_nsegs = et_tx_intr_nsegs;
204 	sc->sc_timer = et_timer;
205 
206 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, ET_PCIR_BAR);
207 	if (pci_mapreg_map(pa, ET_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
208 	    &sc->sc_mem_bh, NULL, &sc->sc_mem_size, 0)) {
209 		printf(": could not map mem space\n");
210 		return;
211 	}
212 
213 	if (pci_intr_map(pa, &ih) != 0) {
214 		printf(": could not map interrupt\n");
215 		return;
216 	}
217 
218 	intrstr = pci_intr_string(pc, ih);
219 	sc->sc_irq_handle = pci_intr_establish(pc, ih, IPL_NET, et_intr, sc,
220 	    sc->sc_dev.dv_xname);
221 	if (sc->sc_irq_handle == NULL) {
222 		printf(": could not establish interrupt");
223 		if (intrstr != NULL)
224 			printf(" at %s", intrstr);
225 		printf("\n");
226 		return;
227 	}
228 	printf(": %s", intrstr);
229 
230 	sc->sc_dmat = pa->pa_dmat;
231 	sc->sc_pct = pa->pa_pc;
232 	sc->sc_pcitag = pa->pa_tag;
233 
234 	error = et_bus_config(sc);
235 	if (error)
236 		return;
237 
238 	et_get_eaddr(sc, sc->sc_arpcom.ac_enaddr);
239 
240 	printf(", address %s\n", ether_sprintf(sc->sc_arpcom.ac_enaddr));
241 
242 	CSR_WRITE_4(sc, ET_PM,
243 		    ET_PM_SYSCLK_GATE | ET_PM_TXCLK_GATE | ET_PM_RXCLK_GATE);
244 
245 	et_reset(sc);
246 
247 	et_disable_intrs(sc);
248 
249 	error = et_dma_alloc(sc);
250 	if (error)
251 		return;
252 
253 	ifp->if_softc = sc;
254 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
255 	ifp->if_init = et_init;
256 	ifp->if_ioctl = et_ioctl;
257 	ifp->if_start = et_start;
258 	ifp->if_watchdog = et_watchdog;
259 	IFQ_SET_MAXLEN(&ifp->if_snd, ET_TX_NDESC);
260 	IFQ_SET_READY(&ifp->if_snd);
261 	strlcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
262 
263 	ifp->if_capabilities = IFCAP_VLAN_MTU;
264 
265 	et_chip_attach(sc);
266 
267 	sc->sc_miibus.mii_ifp = ifp;
268 	sc->sc_miibus.mii_readreg = et_miibus_readreg;
269 	sc->sc_miibus.mii_writereg = et_miibus_writereg;
270 	sc->sc_miibus.mii_statchg = et_miibus_statchg;
271 
272 	ifmedia_init(&sc->sc_miibus.mii_media, 0, et_ifmedia_upd,
273 	    et_ifmedia_sts);
274 	mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY,
275 	    MII_OFFSET_ANY, 0);
276 	if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) {
277 		printf("%s: no PHY found!\n", sc->sc_dev.dv_xname);
278 		ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL,
279 		    0, NULL);
280 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL);
281 	} else
282 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO);
283 
284 	if_attach(ifp);
285 	ether_ifattach(ifp);
286 
287 	timeout_set(&sc->sc_tick, et_tick, sc);
288 	timeout_set(&sc->sc_txtick, et_txtick, sc);
289 }
290 
291 int
292 et_detach(struct device *self, int flags)
293 {
294 	struct et_softc *sc = (struct et_softc *)self;
295 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
296 	int s;
297 
298 	s = splnet();
299 	et_stop(sc);
300 	splx(s);
301 
302 	mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
303 
304 	/* Delete all remaining media. */
305 	ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
306 
307 	ether_ifdetach(ifp);
308 	if_detach(ifp);
309 	et_dma_free(sc);
310 
311 	if (sc->sc_irq_handle != NULL) {
312 		pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
313 		sc->sc_irq_handle = NULL;
314 	}
315 
316 	bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
317 
318 	return 0;
319 }
320 
321 int
322 et_shutdown(struct device *self)
323 {
324 	struct et_softc *sc = (struct et_softc *)self;
325 	int s;
326 
327 	s = splnet();
328 	et_stop(sc);
329 	splx(s);
330 
331 	return 0;
332 }
333 
334 int
335 et_miibus_readreg(struct device *dev, int phy, int reg)
336 {
337 	struct et_softc *sc = (struct et_softc *)dev;
338 	uint32_t val;
339 	int i, ret;
340 
341 	/* Stop any pending operations */
342 	CSR_WRITE_4(sc, ET_MII_CMD, 0);
343 
344 	val = __SHIFTIN(phy, ET_MII_ADDR_PHY) |
345 	      __SHIFTIN(reg, ET_MII_ADDR_REG);
346 	CSR_WRITE_4(sc, ET_MII_ADDR, val);
347 
348 	/* Start reading */
349 	CSR_WRITE_4(sc, ET_MII_CMD, ET_MII_CMD_READ);
350 
351 #define NRETRY	50
352 
353 	for (i = 0; i < NRETRY; ++i) {
354 		val = CSR_READ_4(sc, ET_MII_IND);
355 		if ((val & (ET_MII_IND_BUSY | ET_MII_IND_INVALID)) == 0)
356 			break;
357 		DELAY(50);
358 	}
359 	if (i == NRETRY) {
360 		printf("%s: read phy %d, reg %d timed out\n",
361 		    sc->sc_dev.dv_xname, phy, reg);
362 		ret = 0;
363 		goto back;
364 	}
365 
366 #undef NRETRY
367 
368 	val = CSR_READ_4(sc, ET_MII_STAT);
369 	ret = __SHIFTOUT(val, ET_MII_STAT_VALUE);
370 
371 back:
372 	/* Make sure that the current operation is stopped */
373 	CSR_WRITE_4(sc, ET_MII_CMD, 0);
374 	return ret;
375 }
376 
377 void
378 et_miibus_writereg(struct device *dev, int phy, int reg, int val0)
379 {
380 	struct et_softc *sc = (struct et_softc *)dev;
381 	uint32_t val;
382 	int i;
383 
384 	/* Stop any pending operations */
385 	CSR_WRITE_4(sc, ET_MII_CMD, 0);
386 
387 	val = __SHIFTIN(phy, ET_MII_ADDR_PHY) |
388 	      __SHIFTIN(reg, ET_MII_ADDR_REG);
389 	CSR_WRITE_4(sc, ET_MII_ADDR, val);
390 
391 	/* Start writing */
392 	CSR_WRITE_4(sc, ET_MII_CTRL, __SHIFTIN(val0, ET_MII_CTRL_VALUE));
393 
394 #define NRETRY 100
395 
396 	for (i = 0; i < NRETRY; ++i) {
397 		val = CSR_READ_4(sc, ET_MII_IND);
398 		if ((val & ET_MII_IND_BUSY) == 0)
399 			break;
400 		DELAY(50);
401 	}
402 	if (i == NRETRY) {
403 		printf("%s: write phy %d, reg %d timed out\n",
404 		    sc->sc_dev.dv_xname,  phy, reg);
405 		et_miibus_readreg(dev, phy, reg);
406 	}
407 
408 #undef NRETRY
409 
410 	/* Make sure that the current operation is stopped */
411 	CSR_WRITE_4(sc, ET_MII_CMD, 0);
412 }
413 
414 void
415 et_miibus_statchg(struct device *dev)
416 {
417 	struct et_softc *sc = (struct et_softc *)dev;
418 	struct mii_data *mii = &sc->sc_miibus;
419 	uint32_t cfg2, ctrl;
420 
421 	cfg2 = CSR_READ_4(sc, ET_MAC_CFG2);
422 	cfg2 &= ~(ET_MAC_CFG2_MODE_MII | ET_MAC_CFG2_MODE_GMII |
423 		  ET_MAC_CFG2_FDX | ET_MAC_CFG2_BIGFRM);
424 	cfg2 |= ET_MAC_CFG2_LENCHK | ET_MAC_CFG2_CRC | ET_MAC_CFG2_PADCRC |
425 		__SHIFTIN(7, ET_MAC_CFG2_PREAMBLE_LEN);
426 
427 	ctrl = CSR_READ_4(sc, ET_MAC_CTRL);
428 	ctrl &= ~(ET_MAC_CTRL_GHDX | ET_MAC_CTRL_MODE_MII);
429 
430 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
431 		cfg2 |= ET_MAC_CFG2_MODE_GMII;
432 	} else {
433 		cfg2 |= ET_MAC_CFG2_MODE_MII;
434 		ctrl |= ET_MAC_CTRL_MODE_MII;
435 	}
436 
437 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
438 		cfg2 |= ET_MAC_CFG2_FDX;
439 	else
440 		ctrl |= ET_MAC_CTRL_GHDX;
441 
442 	CSR_WRITE_4(sc, ET_MAC_CTRL, ctrl);
443 	CSR_WRITE_4(sc, ET_MAC_CFG2, cfg2);
444 }
445 
446 int
447 et_ifmedia_upd(struct ifnet *ifp)
448 {
449 	struct et_softc *sc = ifp->if_softc;
450 	struct mii_data *mii = &sc->sc_miibus;
451 
452 	if (mii->mii_instance != 0) {
453 		struct mii_softc *miisc;
454 
455 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
456 			mii_phy_reset(miisc);
457 	}
458 	mii_mediachg(mii);
459 
460 	return 0;
461 }
462 
463 void
464 et_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
465 {
466 	struct et_softc *sc = ifp->if_softc;
467 	struct mii_data *mii = &sc->sc_miibus;
468 
469 	mii_pollstat(mii);
470 	ifmr->ifm_active = mii->mii_media_active;
471 	ifmr->ifm_status = mii->mii_media_status;
472 }
473 
474 void
475 et_stop(struct et_softc *sc)
476 {
477 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
478 
479 	timeout_del(&sc->sc_tick);
480 	timeout_del(&sc->sc_txtick);
481 
482 	et_stop_rxdma(sc);
483 	et_stop_txdma(sc);
484 
485 	et_disable_intrs(sc);
486 
487 	et_free_tx_ring(sc);
488 	et_free_rx_ring(sc);
489 
490 	et_reset(sc);
491 
492 	sc->sc_tx = 0;
493 	sc->sc_tx_intr = 0;
494 
495 	ifp->if_timer = 0;
496 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
497 }
498 
499 int
500 et_bus_config(struct et_softc *sc)
501 {
502 	uint32_t val; //, max_plsz;
503 //	uint16_t ack_latency, replay_timer;
504 
505 	/*
506 	 * Test whether EEPROM is valid
507 	 * NOTE: Read twice to get the correct value
508 	 */
509 	pci_conf_read(sc->sc_pct, sc->sc_pcitag, ET_PCIR_EEPROM_MISC);
510 	val = pci_conf_read(sc->sc_pct, sc->sc_pcitag, ET_PCIR_EEPROM_MISC);
511 
512 	if (val & ET_PCIM_EEPROM_STATUS_ERROR) {
513 		printf("%s: EEPROM status error 0x%02x\n",
514 		    sc->sc_dev.dv_xname, val);
515 		return ENXIO;
516 	}
517 
518 	/* TODO: LED */
519 #if 0
520 	/*
521 	 * Configure ACK latency and replay timer according to
522 	 * max playload size
523 	 */
524 	val = pci_conf_read(sc->sc_pct, sc->sc_pcitag, ET_PCIR_DEVICE_CAPS);
525 	max_plsz = val & ET_PCIM_DEVICE_CAPS_MAX_PLSZ;
526 
527 	switch (max_plsz) {
528 	case ET_PCIV_DEVICE_CAPS_PLSZ_128:
529 		ack_latency = ET_PCIV_ACK_LATENCY_128;
530 		replay_timer = ET_PCIV_REPLAY_TIMER_128;
531 		break;
532 
533 	case ET_PCIV_DEVICE_CAPS_PLSZ_256:
534 		ack_latency = ET_PCIV_ACK_LATENCY_256;
535 		replay_timer = ET_PCIV_REPLAY_TIMER_256;
536 		break;
537 
538 	default:
539 		ack_latency = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
540 		    ET_PCIR_ACK_LATENCY) >> 16;
541 		replay_timer = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
542 		    ET_PCIR_REPLAY_TIMER) >> 16;
543 		printf("%s: ack latency %u, replay timer %u\n",
544 		    sc->sc_dev.dv_xname, ack_latency, replay_timer);
545 		break;
546 	}
547 	if (ack_latency != 0) {
548 		pci_conf_write(sc->sc_pct, sc->sc_pcitag,
549 		    ET_PCIR_ACK_LATENCY, ack_latency << 16);
550 		pci_conf_write(sc->sc_pct, sc->sc_pcitag,
551 		    ET_PCIR_REPLAY_TIMER, replay_timer << 16);
552 	}
553 
554 	/*
555 	 * Set L0s and L1 latency timer to 2us
556 	 */
557 	val = ET_PCIV_L0S_LATENCY(2) | ET_PCIV_L1_LATENCY(2);
558 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, ET_PCIR_L0S_L1_LATENCY,
559 	    val << 24);
560 
561 	/*
562 	 * Set max read request size to 2048 bytes
563 	 */
564 	val = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
565 	    ET_PCIR_DEVICE_CTRL) >> 16;
566 	val &= ~ET_PCIM_DEVICE_CTRL_MAX_RRSZ;
567 	val |= ET_PCIV_DEVICE_CTRL_RRSZ_2K;
568 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, ET_PCIR_DEVICE_CTRL,
569 	    val << 16);
570 #endif
571 
572 	return 0;
573 }
574 
575 void
576 et_get_eaddr(struct et_softc *sc, uint8_t eaddr[])
577 {
578 	uint32_t r;
579 
580 	r = pci_conf_read(sc->sc_pct, sc->sc_pcitag, ET_PCIR_MACADDR_LO);
581 	eaddr[0] = r & 0xff;
582 	eaddr[1] = (r >> 8) & 0xff;
583 	eaddr[2] = (r >> 16) & 0xff;
584 	eaddr[3] = (r >> 24) & 0xff;
585 	r = pci_conf_read(sc->sc_pct, sc->sc_pcitag, ET_PCIR_MACADDR_HI);
586 	eaddr[4] = r & 0xff;
587 	eaddr[5] = (r >> 8) & 0xff;
588 }
589 
590 void
591 et_reset(struct et_softc *sc)
592 {
593 	CSR_WRITE_4(sc, ET_MAC_CFG1,
594 		    ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
595 		    ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC |
596 		    ET_MAC_CFG1_SIM_RST | ET_MAC_CFG1_SOFT_RST);
597 
598 	CSR_WRITE_4(sc, ET_SWRST,
599 		    ET_SWRST_TXDMA | ET_SWRST_RXDMA |
600 		    ET_SWRST_TXMAC | ET_SWRST_RXMAC |
601 		    ET_SWRST_MAC | ET_SWRST_MAC_STAT | ET_SWRST_MMC);
602 
603 	CSR_WRITE_4(sc, ET_MAC_CFG1,
604 		    ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
605 		    ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC);
606 	CSR_WRITE_4(sc, ET_MAC_CFG1, 0);
607 }
608 
609 void
610 et_disable_intrs(struct et_softc *sc)
611 {
612 	CSR_WRITE_4(sc, ET_INTR_MASK, 0xffffffff);
613 }
614 
615 void
616 et_enable_intrs(struct et_softc *sc, uint32_t intrs)
617 {
618 	CSR_WRITE_4(sc, ET_INTR_MASK, ~intrs);
619 }
620 
621 int
622 et_dma_alloc(struct et_softc *sc)
623 {
624 	struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
625 	struct et_txstatus_data *txsd = &sc->sc_tx_status;
626 	struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
627 	struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
628 	int i, error;
629 
630 	/*
631 	 * Create TX ring DMA stuffs
632 	 */
633 	error = et_dma_mem_create(sc, ET_TX_RING_SIZE,
634 	    (void **)&tx_ring->tr_desc, &tx_ring->tr_paddr, &tx_ring->tr_dmap,
635 	    &tx_ring->tr_seg);
636 	if (error) {
637 		printf("%s: can't create TX ring DMA stuffs\n",
638 		    sc->sc_dev.dv_xname);
639 		return error;
640 	}
641 
642 	/*
643 	 * Create TX status DMA stuffs
644 	 */
645 	error = et_dma_mem_create(sc, sizeof(uint32_t),
646 	    (void **)&txsd->txsd_status,
647 	    &txsd->txsd_paddr, &txsd->txsd_dmap, &txsd->txsd_seg);
648 	if (error) {
649 		printf("%s: can't create TX status DMA stuffs\n",
650 		    sc->sc_dev.dv_xname);
651 		return error;
652 	}
653 
654 	/*
655 	 * Create DMA stuffs for RX rings
656 	 */
657 	for (i = 0; i < ET_RX_NRING; ++i) {
658 		static const uint32_t rx_ring_posreg[ET_RX_NRING] =
659 		{ ET_RX_RING0_POS, ET_RX_RING1_POS };
660 
661 		struct et_rxdesc_ring *rx_ring = &sc->sc_rx_ring[i];
662 
663 		error = et_dma_mem_create(sc, ET_RX_RING_SIZE,
664 		    (void **)&rx_ring->rr_desc,
665 		    &rx_ring->rr_paddr, &rx_ring->rr_dmap, &rx_ring->rr_seg);
666 		if (error) {
667 			printf("%s: can't create DMA stuffs for "
668 			    "the %d RX ring\n", sc->sc_dev.dv_xname, i);
669 			return error;
670 		}
671 		rx_ring->rr_posreg = rx_ring_posreg[i];
672 	}
673 
674 	/*
675 	 * Create RX stat ring DMA stuffs
676 	 */
677 	error = et_dma_mem_create(sc, ET_RXSTAT_RING_SIZE,
678 	    (void **)&rxst_ring->rsr_stat,
679 	    &rxst_ring->rsr_paddr, &rxst_ring->rsr_dmap, &rxst_ring->rsr_seg);
680 	if (error) {
681 		printf("%s: can't create RX stat ring DMA stuffs\n",
682 		    sc->sc_dev.dv_xname);
683 		return error;
684 	}
685 
686 	/*
687 	 * Create RX status DMA stuffs
688 	 */
689 	error = et_dma_mem_create(sc, sizeof(struct et_rxstatus),
690 	    (void **)&rxsd->rxsd_status,
691 	    &rxsd->rxsd_paddr, &rxsd->rxsd_dmap, &rxsd->rxsd_seg);
692 	if (error) {
693 		printf("%s: can't create RX status DMA stuffs\n",
694 		    sc->sc_dev.dv_xname);
695 		return error;
696 	}
697 
698 	/*
699 	 * Create mbuf DMA stuffs
700 	 */
701 	error = et_dma_mbuf_create(sc);
702 	if (error)
703 		return error;
704 
705 	return 0;
706 }
707 
708 void
709 et_dma_free(struct et_softc *sc)
710 {
711 	struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
712 	struct et_txstatus_data *txsd = &sc->sc_tx_status;
713 	struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
714 	struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
715 	int i, rx_done[ET_RX_NRING];
716 
717 	/*
718 	 * Destroy TX ring DMA stuffs
719 	 */
720 	et_dma_mem_destroy(sc, tx_ring->tr_desc, tx_ring->tr_dmap);
721 
722 	/*
723 	 * Destroy TX status DMA stuffs
724 	 */
725 	et_dma_mem_destroy(sc, txsd->txsd_status, txsd->txsd_dmap);
726 
727 	/*
728 	 * Destroy DMA stuffs for RX rings
729 	 */
730 	for (i = 0; i < ET_RX_NRING; ++i) {
731 		struct et_rxdesc_ring *rx_ring = &sc->sc_rx_ring[i];
732 
733 		et_dma_mem_destroy(sc, rx_ring->rr_desc, rx_ring->rr_dmap);
734 	}
735 
736 	/*
737 	 * Destroy RX stat ring DMA stuffs
738 	 */
739 	et_dma_mem_destroy(sc, rxst_ring->rsr_stat, rxst_ring->rsr_dmap);
740 
741 	/*
742 	 * Destroy RX status DMA stuffs
743 	 */
744 	et_dma_mem_destroy(sc, rxsd->rxsd_status, rxsd->rxsd_dmap);
745 
746 	/*
747 	 * Destroy mbuf DMA stuffs
748 	 */
749 	for (i = 0; i < ET_RX_NRING; ++i)
750 		rx_done[i] = ET_RX_NDESC;
751 	et_dma_mbuf_destroy(sc, ET_TX_NDESC, rx_done);
752 }
753 
754 int
755 et_dma_mbuf_create(struct et_softc *sc)
756 {
757 	struct et_txbuf_data *tbd = &sc->sc_tx_data;
758 	int i, error, rx_done[ET_RX_NRING];
759 
760 	/*
761 	 * Create spare DMA map for RX mbufs
762 	 */
763 	error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
764 	    BUS_DMA_NOWAIT, &sc->sc_mbuf_tmp_dmap);
765 	if (error) {
766 		printf("%s: can't create spare mbuf DMA map\n",
767 		    sc->sc_dev.dv_xname);
768 		return error;
769 	}
770 
771 	/*
772 	 * Create DMA maps for RX mbufs
773 	 */
774 	bzero(rx_done, sizeof(rx_done));
775 	for (i = 0; i < ET_RX_NRING; ++i) {
776 		struct et_rxbuf_data *rbd = &sc->sc_rx_data[i];
777 		int j;
778 
779 		for (j = 0; j < ET_RX_NDESC; ++j) {
780 			error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
781 			    MCLBYTES, 0, BUS_DMA_NOWAIT,
782 			    &rbd->rbd_buf[j].rb_dmap);
783 			if (error) {
784 				printf("%s: can't create %d RX mbuf "
785 				    "for %d RX ring\n", sc->sc_dev.dv_xname,
786 				    j, i);
787 				rx_done[i] = j;
788 				et_dma_mbuf_destroy(sc, 0, rx_done);
789 				return error;
790 			}
791 		}
792 		rx_done[i] = ET_RX_NDESC;
793 
794 		rbd->rbd_softc = sc;
795 		rbd->rbd_ring = &sc->sc_rx_ring[i];
796 	}
797 
798 	/*
799 	 * Create DMA maps for TX mbufs
800 	 */
801 	for (i = 0; i < ET_TX_NDESC; ++i) {
802 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
803 		    0, BUS_DMA_NOWAIT, &tbd->tbd_buf[i].tb_dmap);
804 		if (error) {
805 			printf("%s: can't create %d TX mbuf "
806 			    "DMA map\n", sc->sc_dev.dv_xname, i);
807 			et_dma_mbuf_destroy(sc, i, rx_done);
808 			return error;
809 		}
810 	}
811 
812 	return 0;
813 }
814 
815 void
816 et_dma_mbuf_destroy(struct et_softc *sc, int tx_done, const int rx_done[])
817 {
818 	struct et_txbuf_data *tbd = &sc->sc_tx_data;
819 	int i;
820 
821 	/*
822 	 * Destroy DMA maps for RX mbufs
823 	 */
824 	for (i = 0; i < ET_RX_NRING; ++i) {
825 		struct et_rxbuf_data *rbd = &sc->sc_rx_data[i];
826 		int j;
827 
828 		for (j = 0; j < rx_done[i]; ++j) {
829 			struct et_rxbuf *rb = &rbd->rbd_buf[j];
830 
831 			KASSERT(rb->rb_mbuf == NULL,
832 			    ("RX mbuf in %d RX ring is not freed yet\n", i));
833 			bus_dmamap_destroy(sc->sc_dmat, rb->rb_dmap);
834 		}
835 	}
836 
837 	/*
838 	 * Destroy DMA maps for TX mbufs
839 	 */
840 	for (i = 0; i < tx_done; ++i) {
841 		struct et_txbuf *tb = &tbd->tbd_buf[i];
842 
843 		KASSERT(tb->tb_mbuf == NULL, ("TX mbuf is not freed yet\n"));
844 		bus_dmamap_destroy(sc->sc_dmat, tb->tb_dmap);
845 	}
846 
847 	/*
848 	 * Destroy spare mbuf DMA map
849 	 */
850 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_mbuf_tmp_dmap);
851 }
852 
853 int
854 et_dma_mem_create(struct et_softc *sc, bus_size_t size,
855     void **addr, bus_addr_t *paddr, bus_dmamap_t *dmap, bus_dma_segment_t *seg)
856 {
857 	int error, nsegs;
858 
859 	error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0, BUS_DMA_NOWAIT,
860 	    dmap);
861 	if (error) {
862 		printf("%s: can't create DMA map\n", sc->sc_dev.dv_xname);
863 		return error;
864 	}
865 
866 	error = bus_dmamem_alloc(sc->sc_dmat, size, ET_ALIGN, 0, seg,
867 	    1, &nsegs, BUS_DMA_WAITOK);
868 	if (error) {
869 		printf("%s: can't allocate DMA mem\n", sc->sc_dev.dv_xname);
870 		return error;
871 	}
872 
873 	error = bus_dmamem_map(sc->sc_dmat, seg, nsegs,
874 	    size, (caddr_t *)addr, BUS_DMA_NOWAIT);
875 	if (error) {
876 		printf("%s: can't map DMA mem\n", sc->sc_dev.dv_xname);
877 		return (error);
878 	}
879 
880 	error = bus_dmamap_load(sc->sc_dmat, *dmap, *addr, size, NULL,
881 	    BUS_DMA_WAITOK);
882 	if (error) {
883 		printf("%s: can't load DMA mem\n", sc->sc_dev.dv_xname);
884 		bus_dmamem_free(sc->sc_dmat, (bus_dma_segment_t *)addr, 1);
885 		return error;
886 	}
887 
888 	memset(*addr, 0, size);
889 
890 	*paddr = (*dmap)->dm_segs[0].ds_addr;
891 
892 	return 0;
893 }
894 
895 void
896 et_dma_mem_destroy(struct et_softc *sc, void *addr, bus_dmamap_t dmap)
897 {
898 	bus_dmamap_unload(sc->sc_dmat, dmap);
899 	bus_dmamem_free(sc->sc_dmat, (bus_dma_segment_t *)&addr, 1);
900 }
901 
902 void
903 et_chip_attach(struct et_softc *sc)
904 {
905 	uint32_t val;
906 
907 	/*
908 	 * Perform minimal initialization
909 	 */
910 
911 	/* Disable loopback */
912 	CSR_WRITE_4(sc, ET_LOOPBACK, 0);
913 
914 	/* Reset MAC */
915 	CSR_WRITE_4(sc, ET_MAC_CFG1,
916 		    ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
917 		    ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC |
918 		    ET_MAC_CFG1_SIM_RST | ET_MAC_CFG1_SOFT_RST);
919 
920 	/*
921 	 * Setup half duplex mode
922 	 */
923 	val = __SHIFTIN(10, ET_MAC_HDX_ALT_BEB_TRUNC) |
924 	      __SHIFTIN(15, ET_MAC_HDX_REXMIT_MAX) |
925 	      __SHIFTIN(55, ET_MAC_HDX_COLLWIN) |
926 	      ET_MAC_HDX_EXC_DEFER;
927 	CSR_WRITE_4(sc, ET_MAC_HDX, val);
928 
929 	/* Clear MAC control */
930 	CSR_WRITE_4(sc, ET_MAC_CTRL, 0);
931 
932 	/* Reset MII */
933 	CSR_WRITE_4(sc, ET_MII_CFG, ET_MII_CFG_CLKRST);
934 
935 	/* Bring MAC out of reset state */
936 	CSR_WRITE_4(sc, ET_MAC_CFG1, 0);
937 
938 	/* Enable memory controllers */
939 	CSR_WRITE_4(sc, ET_MMC_CTRL, ET_MMC_CTRL_ENABLE);
940 }
941 
942 int
943 et_intr(void *xsc)
944 {
945 	struct et_softc *sc = xsc;
946 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
947 	uint32_t intrs;
948 
949 	if ((ifp->if_flags & IFF_RUNNING) == 0)
950 		return (0);
951 
952 	intrs = CSR_READ_4(sc, ET_INTR_STATUS);
953 	if (intrs == 0 || intrs == 0xffffffff)
954 		return (0);
955 
956 	et_disable_intrs(sc);
957 	intrs &= ET_INTRS;
958 	if (intrs == 0)	/* Not interested */
959 		goto back;
960 
961 	if (intrs & ET_INTR_RXEOF)
962 		et_rxeof(sc);
963 	if (intrs & (ET_INTR_TXEOF | ET_INTR_TIMER))
964 		et_txeof(sc);
965 	if (intrs & ET_INTR_TIMER)
966 		CSR_WRITE_4(sc, ET_TIMER, sc->sc_timer);
967 back:
968 	et_enable_intrs(sc, ET_INTRS);
969 
970 	return (1);
971 }
972 
973 int
974 et_init(struct ifnet *ifp)
975 {
976 	struct et_softc *sc = ifp->if_softc;
977 	const struct et_bsize *arr;
978 	int error, i, s;
979 
980 	s = splnet();
981 
982 	et_stop(sc);
983 
984 	arr = ifp->if_mtu <= ETHERMTU ? et_bufsize : NULL;
985 	for (i = 0; i < ET_RX_NRING; ++i) {
986 		sc->sc_rx_data[i].rbd_bufsize = arr[i].bufsize;
987 		sc->sc_rx_data[i].rbd_newbuf = arr[i].newbuf;
988 	}
989 
990 	error = et_init_tx_ring(sc);
991 	if (error)
992 		goto back;
993 
994 	error = et_init_rx_ring(sc);
995 	if (error)
996 		goto back;
997 
998 	error = et_chip_init(sc);
999 	if (error)
1000 		goto back;
1001 
1002 	error = et_enable_txrx(sc);
1003 	if (error)
1004 		goto back;
1005 
1006 	error = et_start_rxdma(sc);
1007 	if (error)
1008 		goto back;
1009 
1010 	error = et_start_txdma(sc);
1011 	if (error)
1012 		goto back;
1013 
1014 	et_enable_intrs(sc, ET_INTRS);
1015 
1016 	timeout_add_sec(&sc->sc_tick, 1);
1017 
1018 	CSR_WRITE_4(sc, ET_TIMER, sc->sc_timer);
1019 
1020 	ifp->if_flags |= IFF_RUNNING;
1021 	ifp->if_flags &= ~IFF_OACTIVE;
1022 back:
1023 	if (error)
1024 		et_stop(sc);
1025 
1026 	splx(s);
1027 
1028 	return (0);
1029 }
1030 
1031 int
1032 et_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1033 {
1034 	struct et_softc *sc = ifp->if_softc;
1035 	struct ifreq *ifr = (struct ifreq *)data;
1036 	struct ifaddr *ifa = (struct ifaddr *)data;
1037 	int s, error = 0;
1038 
1039 	s = splnet();
1040 
1041 	if ((error = ether_ioctl(ifp, &sc->sc_arpcom, cmd, data)) > 0) {
1042 		splx(s);
1043 		return error;
1044 	}
1045 
1046 	switch (cmd) {
1047 	case SIOCSIFADDR:
1048 		ifp->if_flags |= IFF_UP;
1049 		if (!(ifp->if_flags & IFF_RUNNING))
1050 			et_init(ifp);
1051 #ifdef INET
1052 		if (ifa->ifa_addr->sa_family == AF_INET)
1053 			arp_ifinit(&sc->sc_arpcom, ifa);
1054 #endif
1055 		break;
1056 	case SIOCSIFMTU:
1057 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ifp->if_hardmtu)
1058 			error = EINVAL;
1059 		else if (ifp->if_mtu != ifr->ifr_mtu)
1060 			ifp->if_mtu = ifr->ifr_mtu;
1061 		break;
1062 	case SIOCSIFFLAGS:
1063 		if (ifp->if_flags & IFF_UP) {
1064 			/*
1065 			 * If only the PROMISC or ALLMULTI flag changes, then
1066 			 * don't do a full re-init of the chip, just update
1067 			 * the Rx filter.
1068 			 */
1069 			if ((ifp->if_flags & IFF_RUNNING) &&
1070 			    ((ifp->if_flags ^ sc->sc_if_flags) &
1071 			     (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
1072 				et_setmulti(sc);
1073 			} else {
1074 				if (!(ifp->if_flags & IFF_RUNNING))
1075 					et_init(ifp);
1076 			}
1077 		} else {
1078 			if (ifp->if_flags & IFF_RUNNING)
1079 				et_stop(sc);
1080 		}
1081 		sc->sc_if_flags = ifp->if_flags;
1082 		break;
1083 	case SIOCADDMULTI:
1084 	case SIOCDELMULTI:
1085 		error = (cmd == SIOCADDMULTI) ?
1086 		    ether_addmulti(ifr, &sc->sc_arpcom) :
1087 		    ether_delmulti(ifr, &sc->sc_arpcom);
1088 
1089 		if (error == ENETRESET) {
1090 			if (ifp->if_flags & IFF_RUNNING)
1091 				et_setmulti(sc);
1092 			error = 0;
1093 		}
1094 		break;
1095 	case SIOCSIFMEDIA:
1096 	case SIOCGIFMEDIA:
1097 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_miibus.mii_media, cmd);
1098 		break;
1099 	default:
1100 		error = ENOTTY;
1101 	}
1102 
1103 	splx(s);
1104 
1105 	return error;
1106 }
1107 
1108 void
1109 et_start(struct ifnet *ifp)
1110 {
1111 	struct et_softc *sc = ifp->if_softc;
1112 	struct et_txbuf_data *tbd = &sc->sc_tx_data;
1113 	int trans;
1114 	struct mbuf *m;
1115 
1116 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1117 		return;
1118 
1119 	trans = 0;
1120 	for (;;) {
1121 		IFQ_DEQUEUE(&ifp->if_snd, m);
1122 		if (m == NULL)
1123 			break;
1124 
1125 		if ((tbd->tbd_used + ET_NSEG_SPARE) > ET_TX_NDESC) {
1126 			ifp->if_flags |= IFF_OACTIVE;
1127 			break;
1128 		}
1129 
1130 		if (et_encap(sc, &m)) {
1131 			ifp->if_oerrors++;
1132 			ifp->if_flags |= IFF_OACTIVE;
1133 			break;
1134 		}
1135 
1136 		trans = 1;
1137 
1138 #if NBPFILTER > 0
1139 		if (ifp->if_bpf != NULL)
1140 			bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_OUT);
1141 #endif
1142 	}
1143 
1144 	if (trans) {
1145 		timeout_add_sec(&sc->sc_txtick, 1);
1146 		ifp->if_timer = 5;
1147 	}
1148 }
1149 
1150 void
1151 et_watchdog(struct ifnet *ifp)
1152 {
1153 	struct et_softc *sc = ifp->if_softc;
1154 	printf("%s: watchdog timed out\n", sc->sc_dev.dv_xname);
1155 
1156 	et_init(ifp);
1157 	et_start(ifp);
1158 }
1159 
1160 int
1161 et_stop_rxdma(struct et_softc *sc)
1162 {
1163 	CSR_WRITE_4(sc, ET_RXDMA_CTRL,
1164 		    ET_RXDMA_CTRL_HALT | ET_RXDMA_CTRL_RING1_ENABLE);
1165 
1166 	DELAY(5);
1167 	if ((CSR_READ_4(sc, ET_RXDMA_CTRL) & ET_RXDMA_CTRL_HALTED) == 0) {
1168 		printf("%s: can't stop RX DMA engine\n", sc->sc_dev.dv_xname);
1169 		return ETIMEDOUT;
1170 	}
1171 	return 0;
1172 }
1173 
1174 int
1175 et_stop_txdma(struct et_softc *sc)
1176 {
1177 	CSR_WRITE_4(sc, ET_TXDMA_CTRL,
1178 		    ET_TXDMA_CTRL_HALT | ET_TXDMA_CTRL_SINGLE_EPKT);
1179 	return 0;
1180 }
1181 
1182 void
1183 et_free_tx_ring(struct et_softc *sc)
1184 {
1185 	struct et_txbuf_data *tbd = &sc->sc_tx_data;
1186 	struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
1187 	int i;
1188 
1189 	for (i = 0; i < ET_TX_NDESC; ++i) {
1190 		struct et_txbuf *tb = &tbd->tbd_buf[i];
1191 
1192 		if (tb->tb_mbuf != NULL) {
1193 			bus_dmamap_unload(sc->sc_dmat, tb->tb_dmap);
1194 			m_freem(tb->tb_mbuf);
1195 			tb->tb_mbuf = NULL;
1196 		}
1197 	}
1198 
1199 	bzero(tx_ring->tr_desc, ET_TX_RING_SIZE);
1200 	bus_dmamap_sync(sc->sc_dmat, tx_ring->tr_dmap, 0,
1201 	    tx_ring->tr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1202 }
1203 
1204 void
1205 et_free_rx_ring(struct et_softc *sc)
1206 {
1207 	int n;
1208 
1209 	for (n = 0; n < ET_RX_NRING; ++n) {
1210 		struct et_rxbuf_data *rbd = &sc->sc_rx_data[n];
1211 		struct et_rxdesc_ring *rx_ring = &sc->sc_rx_ring[n];
1212 		int i;
1213 
1214 		for (i = 0; i < ET_RX_NDESC; ++i) {
1215 			struct et_rxbuf *rb = &rbd->rbd_buf[i];
1216 
1217 			if (rb->rb_mbuf != NULL) {
1218 				bus_dmamap_unload(sc->sc_dmat, rb->rb_dmap);
1219 				m_freem(rb->rb_mbuf);
1220 				rb->rb_mbuf = NULL;
1221 			}
1222 		}
1223 
1224 		bzero(rx_ring->rr_desc, ET_RX_RING_SIZE);
1225 		bus_dmamap_sync(sc->sc_dmat, rx_ring->rr_dmap, 0,
1226 		    rx_ring->rr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1227 	}
1228 }
1229 
1230 void
1231 et_setmulti(struct et_softc *sc)
1232 {
1233 	struct arpcom *ac = &sc->sc_arpcom;
1234 	struct ifnet *ifp = &ac->ac_if;
1235 	uint32_t hash[4] = { 0, 0, 0, 0 };
1236 	uint32_t rxmac_ctrl, pktfilt;
1237 	struct ether_multi *enm;
1238 	struct ether_multistep step;
1239 	uint8_t addr[ETHER_ADDR_LEN];
1240 	int i, count;
1241 
1242 	pktfilt = CSR_READ_4(sc, ET_PKTFILT);
1243 	rxmac_ctrl = CSR_READ_4(sc, ET_RXMAC_CTRL);
1244 
1245 	pktfilt &= ~(ET_PKTFILT_BCAST | ET_PKTFILT_MCAST | ET_PKTFILT_UCAST);
1246 	if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) {
1247 		rxmac_ctrl |= ET_RXMAC_CTRL_NO_PKTFILT;
1248 		goto back;
1249 	}
1250 
1251 	bcopy(etherbroadcastaddr, addr, ETHER_ADDR_LEN);
1252 
1253 	count = 0;
1254 	ETHER_FIRST_MULTI(step, ac, enm);
1255 	while (enm != NULL) {
1256 		uint32_t *hp, h;
1257 
1258 		for (i = 0; i < ETHER_ADDR_LEN; i++) {
1259 			addr[i] &=  enm->enm_addrlo[i];
1260 		}
1261 
1262 		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)addr),
1263 		    ETHER_ADDR_LEN);
1264 		h = (h & 0x3f800000) >> 23;
1265 
1266 		hp = &hash[0];
1267 		if (h >= 32 && h < 64) {
1268 			h -= 32;
1269 			hp = &hash[1];
1270 		} else if (h >= 64 && h < 96) {
1271 			h -= 64;
1272 			hp = &hash[2];
1273 		} else if (h >= 96) {
1274 			h -= 96;
1275 			hp = &hash[3];
1276 		}
1277 		*hp |= (1 << h);
1278 
1279 		++count;
1280 		ETHER_NEXT_MULTI(step, enm);
1281 	}
1282 
1283 	for (i = 0; i < 4; ++i)
1284 		CSR_WRITE_4(sc, ET_MULTI_HASH + (i * 4), hash[i]);
1285 
1286 	if (count > 0)
1287 		pktfilt |= ET_PKTFILT_MCAST;
1288 	rxmac_ctrl &= ~ET_RXMAC_CTRL_NO_PKTFILT;
1289 back:
1290 	CSR_WRITE_4(sc, ET_PKTFILT, pktfilt);
1291 	CSR_WRITE_4(sc, ET_RXMAC_CTRL, rxmac_ctrl);
1292 }
1293 
1294 int
1295 et_chip_init(struct et_softc *sc)
1296 {
1297 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1298 	uint32_t rxq_end;
1299 	int error;
1300 
1301 	/*
1302 	 * Split internal memory between TX and RX according to MTU
1303 	 */
1304 	if (ifp->if_mtu < 2048)
1305 		rxq_end = 0x2bc;
1306 	else if (ifp->if_mtu < 8192)
1307 		rxq_end = 0x1ff;
1308 	else
1309 		rxq_end = 0x1b3;
1310 	CSR_WRITE_4(sc, ET_RXQ_START, 0);
1311 	CSR_WRITE_4(sc, ET_RXQ_END, rxq_end);
1312 	CSR_WRITE_4(sc, ET_TXQ_START, rxq_end + 1);
1313 	CSR_WRITE_4(sc, ET_TXQ_END, ET_INTERN_MEM_END);
1314 
1315 	/* No loopback */
1316 	CSR_WRITE_4(sc, ET_LOOPBACK, 0);
1317 
1318 	/* Clear MSI configure */
1319 	CSR_WRITE_4(sc, ET_MSI_CFG, 0);
1320 
1321 	/* Disable timer */
1322 	CSR_WRITE_4(sc, ET_TIMER, 0);
1323 
1324 	/* Initialize MAC */
1325 	et_init_mac(sc);
1326 
1327 	/* Enable memory controllers */
1328 	CSR_WRITE_4(sc, ET_MMC_CTRL, ET_MMC_CTRL_ENABLE);
1329 
1330 	/* Initialize RX MAC */
1331 	et_init_rxmac(sc);
1332 
1333 	/* Initialize TX MAC */
1334 	et_init_txmac(sc);
1335 
1336 	/* Initialize RX DMA engine */
1337 	error = et_init_rxdma(sc);
1338 	if (error)
1339 		return error;
1340 
1341 	/* Initialize TX DMA engine */
1342 	error = et_init_txdma(sc);
1343 	if (error)
1344 		return error;
1345 
1346 	return 0;
1347 }
1348 
1349 int
1350 et_init_tx_ring(struct et_softc *sc)
1351 {
1352 	struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
1353 	struct et_txstatus_data *txsd = &sc->sc_tx_status;
1354 	struct et_txbuf_data *tbd = &sc->sc_tx_data;
1355 
1356 	bzero(tx_ring->tr_desc, ET_TX_RING_SIZE);
1357 	bus_dmamap_sync(sc->sc_dmat, tx_ring->tr_dmap, 0,
1358 	    tx_ring->tr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1359 
1360 	tbd->tbd_start_index = 0;
1361 	tbd->tbd_start_wrap = 0;
1362 	tbd->tbd_used = 0;
1363 
1364 	bzero(txsd->txsd_status, sizeof(uint32_t));
1365 	bus_dmamap_sync(sc->sc_dmat, txsd->txsd_dmap, 0,
1366 	    txsd->txsd_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1367 	return 0;
1368 }
1369 
1370 int
1371 et_init_rx_ring(struct et_softc *sc)
1372 {
1373 	struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
1374 	struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
1375 	int n;
1376 
1377 	for (n = 0; n < ET_RX_NRING; ++n) {
1378 		struct et_rxbuf_data *rbd = &sc->sc_rx_data[n];
1379 		int i, error;
1380 
1381 		for (i = 0; i < ET_RX_NDESC; ++i) {
1382 			error = rbd->rbd_newbuf(rbd, i, 1);
1383 			if (error) {
1384 				printf("%s: %d ring %d buf, newbuf failed: "
1385 				    "%d\n", sc->sc_dev.dv_xname, n, i, error);
1386 				return error;
1387 			}
1388 		}
1389 	}
1390 
1391 	bzero(rxsd->rxsd_status, sizeof(struct et_rxstatus));
1392 	bus_dmamap_sync(sc->sc_dmat, rxsd->rxsd_dmap, 0,
1393 	    rxsd->rxsd_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1394 
1395 	bzero(rxst_ring->rsr_stat, ET_RXSTAT_RING_SIZE);
1396 	bus_dmamap_sync(sc->sc_dmat, rxst_ring->rsr_dmap, 0,
1397 	    rxst_ring->rsr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1398 
1399 	return 0;
1400 }
1401 
1402 int
1403 et_init_rxdma(struct et_softc *sc)
1404 {
1405 	struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
1406 	struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
1407 	struct et_rxdesc_ring *rx_ring;
1408 	int error;
1409 
1410 	error = et_stop_rxdma(sc);
1411 	if (error) {
1412 		printf("%s: can't init RX DMA engine\n", sc->sc_dev.dv_xname);
1413 		return error;
1414 	}
1415 
1416 	/*
1417 	 * Install RX status
1418 	 */
1419 	CSR_WRITE_4(sc, ET_RX_STATUS_HI, ET_ADDR_HI(rxsd->rxsd_paddr));
1420 	CSR_WRITE_4(sc, ET_RX_STATUS_LO, ET_ADDR_LO(rxsd->rxsd_paddr));
1421 
1422 	/*
1423 	 * Install RX stat ring
1424 	 */
1425 	CSR_WRITE_4(sc, ET_RXSTAT_HI, ET_ADDR_HI(rxst_ring->rsr_paddr));
1426 	CSR_WRITE_4(sc, ET_RXSTAT_LO, ET_ADDR_LO(rxst_ring->rsr_paddr));
1427 	CSR_WRITE_4(sc, ET_RXSTAT_CNT, ET_RX_NSTAT - 1);
1428 	CSR_WRITE_4(sc, ET_RXSTAT_POS, 0);
1429 	CSR_WRITE_4(sc, ET_RXSTAT_MINCNT, ((ET_RX_NSTAT * 15) / 100) - 1);
1430 
1431 	/* Match ET_RXSTAT_POS */
1432 	rxst_ring->rsr_index = 0;
1433 	rxst_ring->rsr_wrap = 0;
1434 
1435 	/*
1436 	 * Install the 2nd RX descriptor ring
1437 	 */
1438 	rx_ring = &sc->sc_rx_ring[1];
1439 	CSR_WRITE_4(sc, ET_RX_RING1_HI, ET_ADDR_HI(rx_ring->rr_paddr));
1440 	CSR_WRITE_4(sc, ET_RX_RING1_LO, ET_ADDR_LO(rx_ring->rr_paddr));
1441 	CSR_WRITE_4(sc, ET_RX_RING1_CNT, ET_RX_NDESC - 1);
1442 	CSR_WRITE_4(sc, ET_RX_RING1_POS, ET_RX_RING1_POS_WRAP);
1443 	CSR_WRITE_4(sc, ET_RX_RING1_MINCNT, ((ET_RX_NDESC * 15) / 100) - 1);
1444 
1445 	/* Match ET_RX_RING1_POS */
1446 	rx_ring->rr_index = 0;
1447 	rx_ring->rr_wrap = 1;
1448 
1449 	/*
1450 	 * Install the 1st RX descriptor ring
1451 	 */
1452 	rx_ring = &sc->sc_rx_ring[0];
1453 	CSR_WRITE_4(sc, ET_RX_RING0_HI, ET_ADDR_HI(rx_ring->rr_paddr));
1454 	CSR_WRITE_4(sc, ET_RX_RING0_LO, ET_ADDR_LO(rx_ring->rr_paddr));
1455 	CSR_WRITE_4(sc, ET_RX_RING0_CNT, ET_RX_NDESC - 1);
1456 	CSR_WRITE_4(sc, ET_RX_RING0_POS, ET_RX_RING0_POS_WRAP);
1457 	CSR_WRITE_4(sc, ET_RX_RING0_MINCNT, ((ET_RX_NDESC * 15) / 100) - 1);
1458 
1459 	/* Match ET_RX_RING0_POS */
1460 	rx_ring->rr_index = 0;
1461 	rx_ring->rr_wrap = 1;
1462 
1463 	/*
1464 	 * RX intr moderation
1465 	 */
1466 	CSR_WRITE_4(sc, ET_RX_INTR_NPKTS, sc->sc_rx_intr_npkts);
1467 	CSR_WRITE_4(sc, ET_RX_INTR_DELAY, sc->sc_rx_intr_delay);
1468 
1469 	return 0;
1470 }
1471 
1472 int
1473 et_init_txdma(struct et_softc *sc)
1474 {
1475 	struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
1476 	struct et_txstatus_data *txsd = &sc->sc_tx_status;
1477 	int error;
1478 
1479 	error = et_stop_txdma(sc);
1480 	if (error) {
1481 		printf("%s: can't init TX DMA engine\n", sc->sc_dev.dv_xname);
1482 		return error;
1483 	}
1484 
1485 	/*
1486 	 * Install TX descriptor ring
1487 	 */
1488 	CSR_WRITE_4(sc, ET_TX_RING_HI, ET_ADDR_HI(tx_ring->tr_paddr));
1489 	CSR_WRITE_4(sc, ET_TX_RING_LO, ET_ADDR_LO(tx_ring->tr_paddr));
1490 	CSR_WRITE_4(sc, ET_TX_RING_CNT, ET_TX_NDESC - 1);
1491 
1492 	/*
1493 	 * Install TX status
1494 	 */
1495 	CSR_WRITE_4(sc, ET_TX_STATUS_HI, ET_ADDR_HI(txsd->txsd_paddr));
1496 	CSR_WRITE_4(sc, ET_TX_STATUS_LO, ET_ADDR_LO(txsd->txsd_paddr));
1497 
1498 	CSR_WRITE_4(sc, ET_TX_READY_POS, 0);
1499 
1500 	/* Match ET_TX_READY_POS */
1501 	tx_ring->tr_ready_index = 0;
1502 	tx_ring->tr_ready_wrap = 0;
1503 
1504 	return 0;
1505 }
1506 
1507 void
1508 et_init_mac(struct et_softc *sc)
1509 {
1510 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1511 	const uint8_t *eaddr = LLADDR(ifp->if_sadl);
1512 	uint32_t val;
1513 
1514 	/* Reset MAC */
1515 	CSR_WRITE_4(sc, ET_MAC_CFG1,
1516 		    ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
1517 		    ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC |
1518 		    ET_MAC_CFG1_SIM_RST | ET_MAC_CFG1_SOFT_RST);
1519 
1520 	/*
1521 	 * Setup inter packet gap
1522 	 */
1523 	val = __SHIFTIN(56, ET_IPG_NONB2B_1) |
1524 	      __SHIFTIN(88, ET_IPG_NONB2B_2) |
1525 	      __SHIFTIN(80, ET_IPG_MINIFG) |
1526 	      __SHIFTIN(96, ET_IPG_B2B);
1527 	CSR_WRITE_4(sc, ET_IPG, val);
1528 
1529 	/*
1530 	 * Setup half duplex mode
1531 	 */
1532 	val = __SHIFTIN(10, ET_MAC_HDX_ALT_BEB_TRUNC) |
1533 	      __SHIFTIN(15, ET_MAC_HDX_REXMIT_MAX) |
1534 	      __SHIFTIN(55, ET_MAC_HDX_COLLWIN) |
1535 	      ET_MAC_HDX_EXC_DEFER;
1536 	CSR_WRITE_4(sc, ET_MAC_HDX, val);
1537 
1538 	/* Clear MAC control */
1539 	CSR_WRITE_4(sc, ET_MAC_CTRL, 0);
1540 
1541 	/* Reset MII */
1542 	CSR_WRITE_4(sc, ET_MII_CFG, ET_MII_CFG_CLKRST);
1543 
1544 	/*
1545 	 * Set MAC address
1546 	 */
1547 	val = eaddr[2] | (eaddr[3] << 8) | (eaddr[4] << 16) | (eaddr[5] << 24);
1548 	CSR_WRITE_4(sc, ET_MAC_ADDR1, val);
1549 	val = (eaddr[0] << 16) | (eaddr[1] << 24);
1550 	CSR_WRITE_4(sc, ET_MAC_ADDR2, val);
1551 
1552 	/* Set max frame length */
1553 	CSR_WRITE_4(sc, ET_MAX_FRMLEN,
1554 		    ETHER_HDR_LEN + EVL_ENCAPLEN + ifp->if_mtu + ETHER_CRC_LEN);
1555 
1556 	/* Bring MAC out of reset state */
1557 	CSR_WRITE_4(sc, ET_MAC_CFG1, 0);
1558 }
1559 
1560 void
1561 et_init_rxmac(struct et_softc *sc)
1562 {
1563 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1564 	const uint8_t *eaddr = LLADDR(ifp->if_sadl);
1565 	uint32_t val;
1566 	int i;
1567 
1568 	/* Disable RX MAC and WOL */
1569 	CSR_WRITE_4(sc, ET_RXMAC_CTRL, ET_RXMAC_CTRL_WOL_DISABLE);
1570 
1571 	/*
1572 	 * Clear all WOL related registers
1573 	 */
1574 	for (i = 0; i < 3; ++i)
1575 		CSR_WRITE_4(sc, ET_WOL_CRC + (i * 4), 0);
1576 	for (i = 0; i < 20; ++i)
1577 		CSR_WRITE_4(sc, ET_WOL_MASK + (i * 4), 0);
1578 
1579 	/*
1580 	 * Set WOL source address.  XXX is this necessary?
1581 	 */
1582 	val = (eaddr[2] << 24) | (eaddr[3] << 16) | (eaddr[4] << 8) | eaddr[5];
1583 	CSR_WRITE_4(sc, ET_WOL_SA_LO, val);
1584 	val = (eaddr[0] << 8) | eaddr[1];
1585 	CSR_WRITE_4(sc, ET_WOL_SA_HI, val);
1586 
1587 	/* Clear packet filters */
1588 	CSR_WRITE_4(sc, ET_PKTFILT, 0);
1589 
1590 	/* No ucast filtering */
1591 	CSR_WRITE_4(sc, ET_UCAST_FILTADDR1, 0);
1592 	CSR_WRITE_4(sc, ET_UCAST_FILTADDR2, 0);
1593 	CSR_WRITE_4(sc, ET_UCAST_FILTADDR3, 0);
1594 
1595 	if (ifp->if_mtu > 8192) {
1596 		/*
1597 		 * In order to transmit jumbo packets greater than 8k,
1598 		 * the FIFO between RX MAC and RX DMA needs to be reduced
1599 		 * in size to (16k - MTU).  In order to implement this, we
1600 		 * must use "cut through" mode in the RX MAC, which chops
1601 		 * packets down into segments which are (max_size * 16).
1602 		 * In this case we selected 256 bytes, since this is the
1603 		 * size of the PCI-Express TLP's that the 1310 uses.
1604 		 */
1605 		val = __SHIFTIN(16, ET_RXMAC_MC_SEGSZ_MAX) |
1606 		      ET_RXMAC_MC_SEGSZ_ENABLE;
1607 	} else {
1608 		val = 0;
1609 	}
1610 	CSR_WRITE_4(sc, ET_RXMAC_MC_SEGSZ, val);
1611 
1612 	CSR_WRITE_4(sc, ET_RXMAC_MC_WATERMARK, 0);
1613 
1614 	/* Initialize RX MAC management register */
1615 	CSR_WRITE_4(sc, ET_RXMAC_MGT, 0);
1616 
1617 	CSR_WRITE_4(sc, ET_RXMAC_SPACE_AVL, 0);
1618 
1619 	CSR_WRITE_4(sc, ET_RXMAC_MGT,
1620 		    ET_RXMAC_MGT_PASS_ECRC |
1621 		    ET_RXMAC_MGT_PASS_ELEN |
1622 		    ET_RXMAC_MGT_PASS_ETRUNC |
1623 		    ET_RXMAC_MGT_CHECK_PKT);
1624 
1625 	/*
1626 	 * Configure runt filtering (may not work on certain chip generation)
1627 	 */
1628 	val = __SHIFTIN(ETHER_MIN_LEN, ET_PKTFILT_MINLEN) | ET_PKTFILT_FRAG;
1629 	CSR_WRITE_4(sc, ET_PKTFILT, val);
1630 
1631 	/* Enable RX MAC but leave WOL disabled */
1632 	CSR_WRITE_4(sc, ET_RXMAC_CTRL,
1633 		    ET_RXMAC_CTRL_WOL_DISABLE | ET_RXMAC_CTRL_ENABLE);
1634 
1635 	/*
1636 	 * Setup multicast hash and allmulti/promisc mode
1637 	 */
1638 	et_setmulti(sc);
1639 }
1640 
1641 void
1642 et_init_txmac(struct et_softc *sc)
1643 {
1644 	/* Disable TX MAC and FC(?) */
1645 	CSR_WRITE_4(sc, ET_TXMAC_CTRL, ET_TXMAC_CTRL_FC_DISABLE);
1646 
1647 	/* No flow control yet */
1648 	CSR_WRITE_4(sc, ET_TXMAC_FLOWCTRL, 0);
1649 
1650 	/* Enable TX MAC but leave FC(?) diabled */
1651 	CSR_WRITE_4(sc, ET_TXMAC_CTRL,
1652 		    ET_TXMAC_CTRL_ENABLE | ET_TXMAC_CTRL_FC_DISABLE);
1653 }
1654 
1655 int
1656 et_start_rxdma(struct et_softc *sc)
1657 {
1658 	uint32_t val = 0;
1659 
1660 	val |= __SHIFTIN(sc->sc_rx_data[0].rbd_bufsize,
1661 			 ET_RXDMA_CTRL_RING0_SIZE) |
1662 	       ET_RXDMA_CTRL_RING0_ENABLE;
1663 	val |= __SHIFTIN(sc->sc_rx_data[1].rbd_bufsize,
1664 			 ET_RXDMA_CTRL_RING1_SIZE) |
1665 	       ET_RXDMA_CTRL_RING1_ENABLE;
1666 
1667 	CSR_WRITE_4(sc, ET_RXDMA_CTRL, val);
1668 
1669 	DELAY(5);
1670 
1671 	if (CSR_READ_4(sc, ET_RXDMA_CTRL) & ET_RXDMA_CTRL_HALTED) {
1672 		printf("%s: can't start RX DMA engine\n", sc->sc_dev.dv_xname);
1673 		return ETIMEDOUT;
1674 	}
1675 	return 0;
1676 }
1677 
1678 int
1679 et_start_txdma(struct et_softc *sc)
1680 {
1681 	CSR_WRITE_4(sc, ET_TXDMA_CTRL, ET_TXDMA_CTRL_SINGLE_EPKT);
1682 	return 0;
1683 }
1684 
1685 int
1686 et_enable_txrx(struct et_softc *sc)
1687 {
1688 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1689 	uint32_t val;
1690 	int i;
1691 
1692 	val = CSR_READ_4(sc, ET_MAC_CFG1);
1693 	val |= ET_MAC_CFG1_TXEN | ET_MAC_CFG1_RXEN;
1694 	val &= ~(ET_MAC_CFG1_TXFLOW | ET_MAC_CFG1_RXFLOW |
1695 		 ET_MAC_CFG1_LOOPBACK);
1696 	CSR_WRITE_4(sc, ET_MAC_CFG1, val);
1697 
1698 	et_ifmedia_upd(ifp);
1699 
1700 #define NRETRY	100
1701 
1702 	for (i = 0; i < NRETRY; ++i) {
1703 		val = CSR_READ_4(sc, ET_MAC_CFG1);
1704 		if ((val & (ET_MAC_CFG1_SYNC_TXEN | ET_MAC_CFG1_SYNC_RXEN)) ==
1705 		    (ET_MAC_CFG1_SYNC_TXEN | ET_MAC_CFG1_SYNC_RXEN))
1706 			break;
1707 
1708 		DELAY(10);
1709 	}
1710 	if (i == NRETRY) {
1711 		printf("%s: can't enable RX/TX\n", sc->sc_dev.dv_xname);
1712 		return ETIMEDOUT;
1713 	}
1714 
1715 #undef NRETRY
1716 	return 0;
1717 }
1718 
1719 void
1720 et_rxeof(struct et_softc *sc)
1721 {
1722 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1723 	struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
1724 	struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
1725 	uint32_t rxs_stat_ring;
1726 	int rxst_wrap, rxst_index;
1727 
1728 	bus_dmamap_sync(sc->sc_dmat, rxsd->rxsd_dmap, 0,
1729 	    rxsd->rxsd_dmap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1730 	bus_dmamap_sync(sc->sc_dmat, rxst_ring->rsr_dmap, 0,
1731 	    rxst_ring->rsr_dmap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1732 
1733 	rxs_stat_ring = rxsd->rxsd_status->rxs_stat_ring;
1734 	rxst_wrap = (rxs_stat_ring & ET_RXS_STATRING_WRAP) ? 1 : 0;
1735 	rxst_index = __SHIFTOUT(rxs_stat_ring, ET_RXS_STATRING_INDEX);
1736 
1737 	while (rxst_index != rxst_ring->rsr_index ||
1738 	       rxst_wrap != rxst_ring->rsr_wrap) {
1739 		struct et_rxbuf_data *rbd;
1740 		struct et_rxdesc_ring *rx_ring;
1741 		struct et_rxstat *st;
1742 		struct et_rxbuf *rb;
1743 		struct mbuf *m;
1744 		int buflen, buf_idx, ring_idx;
1745 		uint32_t rxstat_pos, rxring_pos;
1746 
1747 		KKASSERT(rxst_ring->rsr_index < ET_RX_NSTAT);
1748 		st = &rxst_ring->rsr_stat[rxst_ring->rsr_index];
1749 
1750 		buflen = __SHIFTOUT(st->rxst_info2, ET_RXST_INFO2_LEN);
1751 		buf_idx = __SHIFTOUT(st->rxst_info2, ET_RXST_INFO2_BUFIDX);
1752 		ring_idx = __SHIFTOUT(st->rxst_info2, ET_RXST_INFO2_RINGIDX);
1753 
1754 		if (++rxst_ring->rsr_index == ET_RX_NSTAT) {
1755 			rxst_ring->rsr_index = 0;
1756 			rxst_ring->rsr_wrap ^= 1;
1757 		}
1758 		rxstat_pos = __SHIFTIN(rxst_ring->rsr_index,
1759 				       ET_RXSTAT_POS_INDEX);
1760 		if (rxst_ring->rsr_wrap)
1761 			rxstat_pos |= ET_RXSTAT_POS_WRAP;
1762 		CSR_WRITE_4(sc, ET_RXSTAT_POS, rxstat_pos);
1763 
1764 		if (ring_idx >= ET_RX_NRING) {
1765 			ifp->if_ierrors++;
1766 			printf("%s: invalid ring index %d\n",
1767 			    sc->sc_dev.dv_xname, ring_idx);
1768 			continue;
1769 		}
1770 		if (buf_idx >= ET_RX_NDESC) {
1771 			ifp->if_ierrors++;
1772 			printf("%s: invalid buf index %d\n",
1773 			    sc->sc_dev.dv_xname, buf_idx);
1774 			continue;
1775 		}
1776 
1777 		rbd = &sc->sc_rx_data[ring_idx];
1778 		rb = &rbd->rbd_buf[buf_idx];
1779 		m = rb->rb_mbuf;
1780 		bus_dmamap_sync(sc->sc_dmat, rb->rb_dmap, 0,
1781 		    rb->rb_dmap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1782 
1783 		if (rbd->rbd_newbuf(rbd, buf_idx, 0) == 0) {
1784 			if (buflen < ETHER_CRC_LEN) {
1785 				m_freem(m);
1786 				ifp->if_ierrors++;
1787 			} else {
1788 				m->m_pkthdr.len = m->m_len = buflen -
1789 				    ETHER_CRC_LEN;
1790 				m->m_pkthdr.rcvif = ifp;
1791 
1792 #if NBPFILTER > 0
1793 				if (ifp->if_bpf != NULL)
1794 					bpf_mtap(ifp->if_bpf, m,
1795 					    BPF_DIRECTION_IN);
1796 #endif
1797 
1798 				ifp->if_ipackets++;
1799 				ether_input_mbuf(ifp, m);
1800 			}
1801 		} else {
1802 			ifp->if_ierrors++;
1803 		}
1804 
1805 		rx_ring = &sc->sc_rx_ring[ring_idx];
1806 
1807 		if (buf_idx != rx_ring->rr_index) {
1808 			printf("%s: WARNING!! ring %d, "
1809 			    "buf_idx %d, rr_idx %d\n", sc->sc_dev.dv_xname,
1810 			    ring_idx, buf_idx, rx_ring->rr_index);
1811 		}
1812 
1813 		KKASSERT(rx_ring->rr_index < ET_RX_NDESC);
1814 		if (++rx_ring->rr_index == ET_RX_NDESC) {
1815 			rx_ring->rr_index = 0;
1816 			rx_ring->rr_wrap ^= 1;
1817 		}
1818 		rxring_pos = __SHIFTIN(rx_ring->rr_index, ET_RX_RING_POS_INDEX);
1819 		if (rx_ring->rr_wrap)
1820 			rxring_pos |= ET_RX_RING_POS_WRAP;
1821 		CSR_WRITE_4(sc, rx_ring->rr_posreg, rxring_pos);
1822 	}
1823 }
1824 
1825 int
1826 et_encap(struct et_softc *sc, struct mbuf **m0)
1827 {
1828 	struct mbuf *m = *m0;
1829 	struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
1830 	struct et_txbuf_data *tbd = &sc->sc_tx_data;
1831 	struct et_txdesc *td;
1832 	bus_dmamap_t map;
1833 	int error, maxsegs, first_idx, last_idx, i;
1834 	uint32_t tx_ready_pos, last_td_ctrl2;
1835 
1836 	maxsegs = ET_TX_NDESC - tbd->tbd_used;
1837 	if (maxsegs > ET_NSEG_MAX)
1838 		maxsegs = ET_NSEG_MAX;
1839 	KASSERT(maxsegs >= ET_NSEG_SPARE,
1840 		("not enough spare TX desc (%d)\n", maxsegs));
1841 
1842 	KKASSERT(tx_ring->tr_ready_index < ET_TX_NDESC);
1843 	first_idx = tx_ring->tr_ready_index;
1844 	map = tbd->tbd_buf[first_idx].tb_dmap;
1845 
1846 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1847 	    BUS_DMA_NOWAIT);
1848 	if (!error && map->dm_nsegs == 0) {
1849 		bus_dmamap_unload(sc->sc_dmat, map);
1850 		error = EFBIG;
1851 	}
1852 	if (error && error != EFBIG) {
1853 		printf("%s: can't load TX mbuf", sc->sc_dev.dv_xname);
1854 		goto back;
1855 	}
1856 	if (error) {	/* error == EFBIG */
1857 		struct mbuf *m_new;
1858 
1859 		error = 0;
1860 
1861 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1862 		if (m_new == NULL) {
1863 			m_freem(m);
1864 			printf("%s: can't defrag TX mbuf\n",
1865 			    sc->sc_dev.dv_xname);
1866 			error = ENOBUFS;
1867 			goto back;
1868 		}
1869 
1870 		M_DUP_PKTHDR(m_new, m);
1871 		if (m->m_pkthdr.len > MHLEN) {
1872 			MCLGET(m_new, M_DONTWAIT);
1873 			if (!(m_new->m_flags & M_EXT)) {
1874 				m_freem(m);
1875 				m_freem(m_new);
1876 				error = ENOBUFS;
1877 			}
1878 		}
1879 
1880 		if (error) {
1881 			printf("%s: can't defrag TX buffer\n",
1882 			    sc->sc_dev.dv_xname);
1883 			goto back;
1884 		}
1885 
1886 		m_copydata(m, 0, m->m_pkthdr.len, mtod(m_new, caddr_t));
1887 		m_freem(m);
1888 		m_new->m_len = m_new->m_pkthdr.len;
1889 		*m0 = m = m_new;
1890 
1891 		error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1892 					     BUS_DMA_NOWAIT);
1893 		if (error || map->dm_nsegs == 0) {
1894 			if (map->dm_nsegs == 0) {
1895 				bus_dmamap_unload(sc->sc_dmat, map);
1896 				error = EFBIG;
1897 			}
1898 			printf("%s: can't load defraged TX mbuf\n",
1899 			    sc->sc_dev.dv_xname);
1900 			goto back;
1901 		}
1902 	}
1903 
1904 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1905 	    BUS_DMASYNC_PREWRITE);
1906 
1907 	last_td_ctrl2 = ET_TDCTRL2_LAST_FRAG;
1908 	sc->sc_tx += map->dm_nsegs;
1909 	if (sc->sc_tx / sc->sc_tx_intr_nsegs != sc->sc_tx_intr) {
1910 		sc->sc_tx_intr = sc->sc_tx / sc->sc_tx_intr_nsegs;
1911 		last_td_ctrl2 |= ET_TDCTRL2_INTR;
1912 	}
1913 
1914 	last_idx = -1;
1915 	for (i = 0; i < map->dm_nsegs; ++i) {
1916 		int idx;
1917 
1918 		idx = (first_idx + i) % ET_TX_NDESC;
1919 		td = &tx_ring->tr_desc[idx];
1920 		td->td_addr_hi = ET_ADDR_HI(map->dm_segs[i].ds_addr);
1921 		td->td_addr_lo = ET_ADDR_LO(map->dm_segs[i].ds_addr);
1922 		td->td_ctrl1 =
1923 		    __SHIFTIN(map->dm_segs[i].ds_len, ET_TDCTRL1_LEN);
1924 
1925 		if (i == map->dm_nsegs - 1) {	/* Last frag */
1926 			td->td_ctrl2 = last_td_ctrl2;
1927 			last_idx = idx;
1928 		}
1929 
1930 		KKASSERT(tx_ring->tr_ready_index < ET_TX_NDESC);
1931 		if (++tx_ring->tr_ready_index == ET_TX_NDESC) {
1932 			tx_ring->tr_ready_index = 0;
1933 			tx_ring->tr_ready_wrap ^= 1;
1934 		}
1935 	}
1936 	td = &tx_ring->tr_desc[first_idx];
1937 	td->td_ctrl2 |= ET_TDCTRL2_FIRST_FRAG;	/* First frag */
1938 
1939 	KKASSERT(last_idx >= 0);
1940 	tbd->tbd_buf[first_idx].tb_dmap = tbd->tbd_buf[last_idx].tb_dmap;
1941 	tbd->tbd_buf[last_idx].tb_dmap = map;
1942 	tbd->tbd_buf[last_idx].tb_mbuf = m;
1943 
1944 	tbd->tbd_used += map->dm_nsegs;
1945 	KKASSERT(tbd->tbd_used <= ET_TX_NDESC);
1946 
1947 	bus_dmamap_sync(sc->sc_dmat, tx_ring->tr_dmap, 0,
1948 	    tx_ring->tr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1949 
1950 
1951 	tx_ready_pos = __SHIFTIN(tx_ring->tr_ready_index,
1952 		       ET_TX_READY_POS_INDEX);
1953 	if (tx_ring->tr_ready_wrap)
1954 		tx_ready_pos |= ET_TX_READY_POS_WRAP;
1955 	CSR_WRITE_4(sc, ET_TX_READY_POS, tx_ready_pos);
1956 
1957 	error = 0;
1958 back:
1959 	if (error) {
1960 		m_freem(m);
1961 		*m0 = NULL;
1962 	}
1963 	return error;
1964 }
1965 
1966 void
1967 et_txeof(struct et_softc *sc)
1968 {
1969 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1970 	struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
1971 	struct et_txbuf_data *tbd = &sc->sc_tx_data;
1972 	uint32_t tx_done;
1973 	int end, wrap;
1974 
1975 	if (tbd->tbd_used == 0)
1976 		return;
1977 
1978 	tx_done = CSR_READ_4(sc, ET_TX_DONE_POS);
1979 	end = __SHIFTOUT(tx_done, ET_TX_DONE_POS_INDEX);
1980 	wrap = (tx_done & ET_TX_DONE_POS_WRAP) ? 1 : 0;
1981 
1982 	while (tbd->tbd_start_index != end || tbd->tbd_start_wrap != wrap) {
1983 		struct et_txbuf *tb;
1984 
1985 		KKASSERT(tbd->tbd_start_index < ET_TX_NDESC);
1986 		tb = &tbd->tbd_buf[tbd->tbd_start_index];
1987 
1988 		bzero(&tx_ring->tr_desc[tbd->tbd_start_index],
1989 		      sizeof(struct et_txdesc));
1990 		bus_dmamap_sync(sc->sc_dmat, tx_ring->tr_dmap, 0,
1991 		    tx_ring->tr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1992 
1993 		if (tb->tb_mbuf != NULL) {
1994 			bus_dmamap_unload(sc->sc_dmat, tb->tb_dmap);
1995 			m_freem(tb->tb_mbuf);
1996 			tb->tb_mbuf = NULL;
1997 			ifp->if_opackets++;
1998 		}
1999 
2000 		if (++tbd->tbd_start_index == ET_TX_NDESC) {
2001 			tbd->tbd_start_index = 0;
2002 			tbd->tbd_start_wrap ^= 1;
2003 		}
2004 
2005 		KKASSERT(tbd->tbd_used > 0);
2006 		tbd->tbd_used--;
2007 	}
2008 
2009 	if (tbd->tbd_used == 0) {
2010 		timeout_del(&sc->sc_txtick);
2011 		ifp->if_timer = 0;
2012 	}
2013 	if (tbd->tbd_used + ET_NSEG_SPARE <= ET_TX_NDESC)
2014 		ifp->if_flags &= ~IFF_OACTIVE;
2015 
2016 	et_start(ifp);
2017 }
2018 
2019 void
2020 et_txtick(void *xsc)
2021 {
2022 	struct et_softc *sc = xsc;
2023 	int s;
2024 
2025 	s = splnet();
2026 	et_txeof(sc);
2027 	splx(s);
2028 }
2029 
2030 void
2031 et_tick(void *xsc)
2032 {
2033 	struct et_softc *sc = xsc;
2034 	int s;
2035 
2036 	s = splnet();
2037 	mii_tick(&sc->sc_miibus);
2038 	timeout_add_sec(&sc->sc_tick, 1);
2039 	splx(s);
2040 }
2041 
2042 int
2043 et_newbuf_cluster(struct et_rxbuf_data *rbd, int buf_idx, int init)
2044 {
2045 	return et_newbuf(rbd, buf_idx, init, MCLBYTES);
2046 }
2047 
2048 int
2049 et_newbuf_hdr(struct et_rxbuf_data *rbd, int buf_idx, int init)
2050 {
2051 	return et_newbuf(rbd, buf_idx, init, MHLEN);
2052 }
2053 
2054 int
2055 et_newbuf(struct et_rxbuf_data *rbd, int buf_idx, int init, int len0)
2056 {
2057 	struct et_softc *sc = rbd->rbd_softc;
2058 	struct et_rxdesc_ring *rx_ring;
2059 	struct et_rxdesc *desc;
2060 	struct et_rxbuf *rb;
2061 	struct mbuf *m;
2062 	bus_dmamap_t dmap;
2063 	int error, len;
2064 
2065 	KKASSERT(buf_idx < ET_RX_NDESC);
2066 	rb = &rbd->rbd_buf[buf_idx];
2067 
2068 	if (len0 >= MINCLSIZE) {
2069 		MGETHDR(m, init ? M_WAITOK : M_DONTWAIT, MT_DATA);
2070 		if (m == NULL)
2071 			return (ENOBUFS);
2072 		MCLGET(m, init ? M_WAITOK : M_DONTWAIT);
2073 		len = MCLBYTES;
2074 	} else {
2075 		MGETHDR(m, init ? M_WAITOK : M_DONTWAIT, MT_DATA);
2076 		len = MHLEN;
2077 	}
2078 
2079 	if (m == NULL) {
2080 		error = ENOBUFS;
2081 
2082 		/* XXX for debug */
2083 		printf("%s: M_CLGET failed, size %d\n", sc->sc_dev.dv_xname,
2084 		    len0);
2085 		if (init) {
2086 			return error;
2087 		} else {
2088 			goto back;
2089 		}
2090 	}
2091 	m->m_len = m->m_pkthdr.len = len;
2092 
2093 	/*
2094 	 * Try load RX mbuf into temporary DMA tag
2095 	 */
2096 	error = bus_dmamap_load_mbuf(sc->sc_dmat, sc->sc_mbuf_tmp_dmap, m,
2097 				     init ? BUS_DMA_WAITOK : BUS_DMA_NOWAIT);
2098 	if (error) {
2099 		if (!error) {
2100 			bus_dmamap_unload(sc->sc_dmat, sc->sc_mbuf_tmp_dmap);
2101 			error = EFBIG;
2102 			printf("%s: too many segments?!\n",
2103 			    sc->sc_dev.dv_xname);
2104 		}
2105 		m_freem(m);
2106 
2107 		/* XXX for debug */
2108 		printf("%s: can't load RX mbuf\n", sc->sc_dev.dv_xname);
2109 		if (init) {
2110 			return error;
2111 		} else {
2112 			goto back;
2113 		}
2114 	}
2115 
2116 	if (!init)
2117 		bus_dmamap_unload(sc->sc_dmat, rb->rb_dmap);
2118 	rb->rb_mbuf = m;
2119 
2120 	/*
2121 	 * Swap RX buf's DMA map with the loaded temporary one
2122 	 */
2123 	dmap = rb->rb_dmap;
2124 	rb->rb_dmap = sc->sc_mbuf_tmp_dmap;
2125 	rb->rb_paddr = rb->rb_dmap->dm_segs[0].ds_addr;
2126 	sc->sc_mbuf_tmp_dmap = dmap;
2127 
2128 	error = 0;
2129 back:
2130 	rx_ring = rbd->rbd_ring;
2131 	desc = &rx_ring->rr_desc[buf_idx];
2132 
2133 	desc->rd_addr_hi = ET_ADDR_HI(rb->rb_paddr);
2134 	desc->rd_addr_lo = ET_ADDR_LO(rb->rb_paddr);
2135 	desc->rd_ctrl = __SHIFTIN(buf_idx, ET_RDCTRL_BUFIDX);
2136 
2137 	bus_dmamap_sync(sc->sc_dmat, rx_ring->rr_dmap, 0,
2138 	    rx_ring->rr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
2139 	return error;
2140 }
2141