1 /* $OpenBSD: if_bnx.c,v 1.97 2012/07/05 13:50:15 phessler Exp $ */ 2 3 /*- 4 * Copyright (c) 2006 Broadcom Corporation 5 * David Christensen <davidch@broadcom.com>. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of Broadcom Corporation nor the name of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written consent. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS' 21 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS 24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 30 * THE POSSIBILITY OF SUCH DAMAGE. 31 */ 32 33 #if 0 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD: src/sys/dev/bce/if_bce.c,v 1.3 2006/04/13 14:12:26 ru Exp $"); 36 #endif 37 38 /* 39 * The following controllers are supported by this driver: 40 * BCM5706C A2, A3 41 * BCM5706S A2, A3 42 * BCM5708C B1, B2 43 * BCM5708S B1, B2 44 * BCM5709C A1, C0 45 * BCM5709S A1, C0 46 * BCM5716 C0 47 * 48 * The following controllers are not supported by this driver: 49 * BCM5706C A0, A1 50 * BCM5706S A0, A1 51 * BCM5708C A0, B0 52 * BCM5708S A0, B0 53 * BCM5709C A0 B0, B1, B2 (pre-production) 54 * BCM5709S A0, B0, B1, B2 (pre-production) 55 */ 56 57 #include <dev/pci/if_bnxreg.h> 58 59 struct bnx_firmware { 60 char *filename; 61 struct bnx_firmware_header *fw; 62 63 u_int32_t *bnx_COM_FwText; 64 u_int32_t *bnx_COM_FwData; 65 u_int32_t *bnx_COM_FwRodata; 66 u_int32_t *bnx_COM_FwBss; 67 u_int32_t *bnx_COM_FwSbss; 68 69 u_int32_t *bnx_RXP_FwText; 70 u_int32_t *bnx_RXP_FwData; 71 u_int32_t *bnx_RXP_FwRodata; 72 u_int32_t *bnx_RXP_FwBss; 73 u_int32_t *bnx_RXP_FwSbss; 74 75 u_int32_t *bnx_TPAT_FwText; 76 u_int32_t *bnx_TPAT_FwData; 77 u_int32_t *bnx_TPAT_FwRodata; 78 u_int32_t *bnx_TPAT_FwBss; 79 u_int32_t *bnx_TPAT_FwSbss; 80 81 u_int32_t *bnx_TXP_FwText; 82 u_int32_t *bnx_TXP_FwData; 83 u_int32_t *bnx_TXP_FwRodata; 84 u_int32_t *bnx_TXP_FwBss; 85 u_int32_t *bnx_TXP_FwSbss; 86 }; 87 88 struct bnx_firmware bnx_firmwares[] = { 89 { "bnx-b06", NULL }, 90 { "bnx-b09", NULL } 91 }; 92 #define BNX_FW_B06 0 93 #define BNX_FW_B09 1 94 95 struct bnx_rv2p { 96 char *filename; 97 struct bnx_rv2p_header *fw; 98 99 u_int32_t *bnx_rv2p_proc1; 100 u_int32_t *bnx_rv2p_proc2; 101 }; 102 103 struct bnx_rv2p bnx_rv2ps[] = { 104 { "bnx-rv2p", NULL }, 105 { "bnx-xi-rv2p", NULL }, 106 { "bnx-xi90-rv2p", NULL } 107 }; 108 #define BNX_RV2P 0 109 #define BNX_XI_RV2P 1 110 #define BNX_XI90_RV2P 2 111 112 void nswaph(u_int32_t *p, int wcount); 113 114 /****************************************************************************/ 115 /* BNX Driver Version */ 116 /****************************************************************************/ 117 118 #define BNX_DRIVER_VERSION "v0.9.6" 119 120 /****************************************************************************/ 121 /* BNX Debug Options */ 122 /****************************************************************************/ 123 #ifdef BNX_DEBUG 124 u_int32_t bnx_debug = BNX_WARN; 125 126 /* 0 = Never */ 127 /* 1 = 1 in 2,147,483,648 */ 128 /* 256 = 1 in 8,388,608 */ 129 /* 2048 = 1 in 1,048,576 */ 130 /* 65536 = 1 in 32,768 */ 131 /* 1048576 = 1 in 2,048 */ 132 /* 268435456 = 1 in 8 */ 133 /* 536870912 = 1 in 4 */ 134 /* 1073741824 = 1 in 2 */ 135 136 /* Controls how often the l2_fhdr frame error check will fail. */ 137 int bnx_debug_l2fhdr_status_check = 0; 138 139 /* Controls how often the unexpected attention check will fail. */ 140 int bnx_debug_unexpected_attention = 0; 141 142 /* Controls how often to simulate an mbuf allocation failure. */ 143 int bnx_debug_mbuf_allocation_failure = 0; 144 145 /* Controls how often to simulate a DMA mapping failure. */ 146 int bnx_debug_dma_map_addr_failure = 0; 147 148 /* Controls how often to simulate a bootcode failure. */ 149 int bnx_debug_bootcode_running_failure = 0; 150 #endif 151 152 /****************************************************************************/ 153 /* PCI Device ID Table */ 154 /* */ 155 /* Used by bnx_probe() to identify the devices supported by this driver. */ 156 /****************************************************************************/ 157 const struct pci_matchid bnx_devices[] = { 158 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706 }, 159 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S }, 160 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708 }, 161 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708S }, 162 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709 }, 163 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709S }, 164 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716 }, 165 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716S } 166 }; 167 168 /****************************************************************************/ 169 /* Supported Flash NVRAM device data. */ 170 /****************************************************************************/ 171 static struct flash_spec flash_table[] = 172 { 173 #define BUFFERED_FLAGS (BNX_NV_BUFFERED | BNX_NV_TRANSLATE) 174 #define NONBUFFERED_FLAGS (BNX_NV_WREN) 175 176 /* Slow EEPROM */ 177 {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400, 178 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE, 179 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE, 180 "EEPROM - slow"}, 181 /* Expansion entry 0001 */ 182 {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406, 183 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 184 SAIFUN_FLASH_BYTE_ADDR_MASK, 0, 185 "Entry 0001"}, 186 /* Saifun SA25F010 (non-buffered flash) */ 187 /* strap, cfg1, & write1 need updates */ 188 {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406, 189 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 190 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2, 191 "Non-buffered flash (128kB)"}, 192 /* Saifun SA25F020 (non-buffered flash) */ 193 /* strap, cfg1, & write1 need updates */ 194 {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406, 195 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 196 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4, 197 "Non-buffered flash (256kB)"}, 198 /* Expansion entry 0100 */ 199 {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406, 200 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 201 SAIFUN_FLASH_BYTE_ADDR_MASK, 0, 202 "Entry 0100"}, 203 /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */ 204 {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406, 205 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE, 206 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2, 207 "Entry 0101: ST M45PE10 (128kB non-bufferred)"}, 208 /* Entry 0110: ST M45PE20 (non-buffered flash)*/ 209 {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406, 210 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE, 211 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4, 212 "Entry 0110: ST M45PE20 (256kB non-bufferred)"}, 213 /* Saifun SA25F005 (non-buffered flash) */ 214 /* strap, cfg1, & write1 need updates */ 215 {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406, 216 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 217 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE, 218 "Non-buffered flash (64kB)"}, 219 /* Fast EEPROM */ 220 {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400, 221 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE, 222 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE, 223 "EEPROM - fast"}, 224 /* Expansion entry 1001 */ 225 {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406, 226 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 227 SAIFUN_FLASH_BYTE_ADDR_MASK, 0, 228 "Entry 1001"}, 229 /* Expansion entry 1010 */ 230 {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406, 231 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 232 SAIFUN_FLASH_BYTE_ADDR_MASK, 0, 233 "Entry 1010"}, 234 /* ATMEL AT45DB011B (buffered flash) */ 235 {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400, 236 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE, 237 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE, 238 "Buffered flash (128kB)"}, 239 /* Expansion entry 1100 */ 240 {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406, 241 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 242 SAIFUN_FLASH_BYTE_ADDR_MASK, 0, 243 "Entry 1100"}, 244 /* Expansion entry 1101 */ 245 {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406, 246 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 247 SAIFUN_FLASH_BYTE_ADDR_MASK, 0, 248 "Entry 1101"}, 249 /* Ateml Expansion entry 1110 */ 250 {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400, 251 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE, 252 BUFFERED_FLASH_BYTE_ADDR_MASK, 0, 253 "Entry 1110 (Atmel)"}, 254 /* ATMEL AT45DB021B (buffered flash) */ 255 {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400, 256 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE, 257 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2, 258 "Buffered flash (256kB)"}, 259 }; 260 261 /* 262 * The BCM5709 controllers transparently handle the 263 * differences between Atmel 264 byte pages and all 264 * flash devices which use 256 byte pages, so no 265 * logical-to-physical mapping is required in the 266 * driver. 267 */ 268 static struct flash_spec flash_5709 = { 269 .flags = BNX_NV_BUFFERED, 270 .page_bits = BCM5709_FLASH_PAGE_BITS, 271 .page_size = BCM5709_FLASH_PAGE_SIZE, 272 .addr_mask = BCM5709_FLASH_BYTE_ADDR_MASK, 273 .total_size = BUFFERED_FLASH_TOTAL_SIZE * 2, 274 .name = "5709 buffered flash (256kB)", 275 }; 276 277 /****************************************************************************/ 278 /* OpenBSD device entry points. */ 279 /****************************************************************************/ 280 int bnx_probe(struct device *, void *, void *); 281 void bnx_attach(struct device *, struct device *, void *); 282 void bnx_attachhook(void *); 283 int bnx_read_firmware(struct bnx_softc *sc, int); 284 int bnx_read_rv2p(struct bnx_softc *sc, int); 285 #if 0 286 void bnx_detach(void *); 287 #endif 288 289 /****************************************************************************/ 290 /* BNX Debug Data Structure Dump Routines */ 291 /****************************************************************************/ 292 #ifdef BNX_DEBUG 293 void bnx_dump_mbuf(struct bnx_softc *, struct mbuf *); 294 void bnx_dump_tx_mbuf_chain(struct bnx_softc *, int, int); 295 void bnx_dump_rx_mbuf_chain(struct bnx_softc *, int, int); 296 void bnx_dump_txbd(struct bnx_softc *, int, struct tx_bd *); 297 void bnx_dump_rxbd(struct bnx_softc *, int, struct rx_bd *); 298 void bnx_dump_l2fhdr(struct bnx_softc *, int, struct l2_fhdr *); 299 void bnx_dump_tx_chain(struct bnx_softc *, int, int); 300 void bnx_dump_rx_chain(struct bnx_softc *, int, int); 301 void bnx_dump_status_block(struct bnx_softc *); 302 void bnx_dump_stats_block(struct bnx_softc *); 303 void bnx_dump_driver_state(struct bnx_softc *); 304 void bnx_dump_hw_state(struct bnx_softc *); 305 void bnx_breakpoint(struct bnx_softc *); 306 #endif 307 308 /****************************************************************************/ 309 /* BNX Register/Memory Access Routines */ 310 /****************************************************************************/ 311 u_int32_t bnx_reg_rd_ind(struct bnx_softc *, u_int32_t); 312 void bnx_reg_wr_ind(struct bnx_softc *, u_int32_t, u_int32_t); 313 void bnx_ctx_wr(struct bnx_softc *, u_int32_t, u_int32_t, u_int32_t); 314 int bnx_miibus_read_reg(struct device *, int, int); 315 void bnx_miibus_write_reg(struct device *, int, int, int); 316 void bnx_miibus_statchg(struct device *); 317 318 /****************************************************************************/ 319 /* BNX NVRAM Access Routines */ 320 /****************************************************************************/ 321 int bnx_acquire_nvram_lock(struct bnx_softc *); 322 int bnx_release_nvram_lock(struct bnx_softc *); 323 void bnx_enable_nvram_access(struct bnx_softc *); 324 void bnx_disable_nvram_access(struct bnx_softc *); 325 int bnx_nvram_read_dword(struct bnx_softc *, u_int32_t, u_int8_t *, 326 u_int32_t); 327 int bnx_init_nvram(struct bnx_softc *); 328 int bnx_nvram_read(struct bnx_softc *, u_int32_t, u_int8_t *, int); 329 int bnx_nvram_test(struct bnx_softc *); 330 #ifdef BNX_NVRAM_WRITE_SUPPORT 331 int bnx_enable_nvram_write(struct bnx_softc *); 332 void bnx_disable_nvram_write(struct bnx_softc *); 333 int bnx_nvram_erase_page(struct bnx_softc *, u_int32_t); 334 int bnx_nvram_write_dword(struct bnx_softc *, u_int32_t, u_int8_t *, 335 u_int32_t); 336 int bnx_nvram_write(struct bnx_softc *, u_int32_t, u_int8_t *, int); 337 #endif 338 339 /****************************************************************************/ 340 /* */ 341 /****************************************************************************/ 342 void bnx_get_media(struct bnx_softc *); 343 void bnx_init_media(struct bnx_softc *); 344 int bnx_dma_alloc(struct bnx_softc *); 345 void bnx_dma_free(struct bnx_softc *); 346 void bnx_release_resources(struct bnx_softc *); 347 348 /****************************************************************************/ 349 /* BNX Firmware Synchronization and Load */ 350 /****************************************************************************/ 351 int bnx_fw_sync(struct bnx_softc *, u_int32_t); 352 void bnx_load_rv2p_fw(struct bnx_softc *, u_int32_t *, u_int32_t, 353 u_int32_t); 354 void bnx_load_cpu_fw(struct bnx_softc *, struct cpu_reg *, 355 struct fw_info *); 356 void bnx_init_cpus(struct bnx_softc *); 357 358 void bnx_stop(struct bnx_softc *); 359 int bnx_reset(struct bnx_softc *, u_int32_t); 360 int bnx_chipinit(struct bnx_softc *); 361 int bnx_blockinit(struct bnx_softc *); 362 int bnx_get_buf(struct bnx_softc *, u_int16_t *, u_int16_t *, u_int32_t *); 363 364 int bnx_init_tx_chain(struct bnx_softc *); 365 void bnx_init_tx_context(struct bnx_softc *); 366 void bnx_fill_rx_chain(struct bnx_softc *); 367 void bnx_init_rx_context(struct bnx_softc *); 368 int bnx_init_rx_chain(struct bnx_softc *); 369 void bnx_free_rx_chain(struct bnx_softc *); 370 void bnx_free_tx_chain(struct bnx_softc *); 371 372 int bnx_tx_encap(struct bnx_softc *, struct mbuf *); 373 void bnx_start(struct ifnet *); 374 int bnx_ioctl(struct ifnet *, u_long, caddr_t); 375 void bnx_watchdog(struct ifnet *); 376 int bnx_ifmedia_upd(struct ifnet *); 377 void bnx_ifmedia_sts(struct ifnet *, struct ifmediareq *); 378 void bnx_init(void *); 379 void bnx_mgmt_init(struct bnx_softc *sc); 380 381 void bnx_init_context(struct bnx_softc *); 382 void bnx_get_mac_addr(struct bnx_softc *); 383 void bnx_set_mac_addr(struct bnx_softc *); 384 void bnx_phy_intr(struct bnx_softc *); 385 void bnx_rx_intr(struct bnx_softc *); 386 void bnx_tx_intr(struct bnx_softc *); 387 void bnx_disable_intr(struct bnx_softc *); 388 void bnx_enable_intr(struct bnx_softc *); 389 390 int bnx_intr(void *); 391 void bnx_iff(struct bnx_softc *); 392 void bnx_stats_update(struct bnx_softc *); 393 void bnx_tick(void *); 394 395 struct rwlock bnx_tx_pool_lk = RWLOCK_INITIALIZER("bnxplinit"); 396 struct pool *bnx_tx_pool = NULL; 397 void bnx_alloc_pkts(void *, void *); 398 399 /****************************************************************************/ 400 /* OpenBSD device dispatch table. */ 401 /****************************************************************************/ 402 struct cfattach bnx_ca = { 403 sizeof(struct bnx_softc), bnx_probe, bnx_attach 404 }; 405 406 struct cfdriver bnx_cd = { 407 NULL, "bnx", DV_IFNET 408 }; 409 410 /****************************************************************************/ 411 /* Device probe function. */ 412 /* */ 413 /* Compares the device to the driver's list of supported devices and */ 414 /* reports back to the OS whether this is the right driver for the device. */ 415 /* */ 416 /* Returns: */ 417 /* BUS_PROBE_DEFAULT on success, positive value on failure. */ 418 /****************************************************************************/ 419 int 420 bnx_probe(struct device *parent, void *match, void *aux) 421 { 422 return (pci_matchbyid((struct pci_attach_args *)aux, bnx_devices, 423 nitems(bnx_devices))); 424 } 425 426 void 427 nswaph(u_int32_t *p, int wcount) 428 { 429 for (; wcount; wcount -=4) { 430 *p = ntohl(*p); 431 p++; 432 } 433 } 434 435 int 436 bnx_read_firmware(struct bnx_softc *sc, int idx) 437 { 438 struct bnx_firmware *bfw = &bnx_firmwares[idx]; 439 struct bnx_firmware_header *hdr = bfw->fw; 440 u_char *p, *q; 441 size_t size; 442 int error; 443 444 if (hdr != NULL) 445 return (0); 446 447 if ((error = loadfirmware(bfw->filename, &p, &size)) != 0) 448 return (error); 449 450 if (size < sizeof(struct bnx_firmware_header)) { 451 free(p, M_DEVBUF); 452 return (EINVAL); 453 } 454 455 hdr = (struct bnx_firmware_header *)p; 456 457 hdr->bnx_COM_FwReleaseMajor = ntohl(hdr->bnx_COM_FwReleaseMajor); 458 hdr->bnx_COM_FwReleaseMinor = ntohl(hdr->bnx_COM_FwReleaseMinor); 459 hdr->bnx_COM_FwReleaseFix = ntohl(hdr->bnx_COM_FwReleaseFix); 460 hdr->bnx_COM_FwStartAddr = ntohl(hdr->bnx_COM_FwStartAddr); 461 hdr->bnx_COM_FwTextAddr = ntohl(hdr->bnx_COM_FwTextAddr); 462 hdr->bnx_COM_FwTextLen = ntohl(hdr->bnx_COM_FwTextLen); 463 hdr->bnx_COM_FwDataAddr = ntohl(hdr->bnx_COM_FwDataAddr); 464 hdr->bnx_COM_FwDataLen = ntohl(hdr->bnx_COM_FwDataLen); 465 hdr->bnx_COM_FwRodataAddr = ntohl(hdr->bnx_COM_FwRodataAddr); 466 hdr->bnx_COM_FwRodataLen = ntohl(hdr->bnx_COM_FwRodataLen); 467 hdr->bnx_COM_FwBssAddr = ntohl(hdr->bnx_COM_FwBssAddr); 468 hdr->bnx_COM_FwBssLen = ntohl(hdr->bnx_COM_FwBssLen); 469 hdr->bnx_COM_FwSbssAddr = ntohl(hdr->bnx_COM_FwSbssAddr); 470 hdr->bnx_COM_FwSbssLen = ntohl(hdr->bnx_COM_FwSbssLen); 471 472 hdr->bnx_RXP_FwReleaseMajor = ntohl(hdr->bnx_RXP_FwReleaseMajor); 473 hdr->bnx_RXP_FwReleaseMinor = ntohl(hdr->bnx_RXP_FwReleaseMinor); 474 hdr->bnx_RXP_FwReleaseFix = ntohl(hdr->bnx_RXP_FwReleaseFix); 475 hdr->bnx_RXP_FwStartAddr = ntohl(hdr->bnx_RXP_FwStartAddr); 476 hdr->bnx_RXP_FwTextAddr = ntohl(hdr->bnx_RXP_FwTextAddr); 477 hdr->bnx_RXP_FwTextLen = ntohl(hdr->bnx_RXP_FwTextLen); 478 hdr->bnx_RXP_FwDataAddr = ntohl(hdr->bnx_RXP_FwDataAddr); 479 hdr->bnx_RXP_FwDataLen = ntohl(hdr->bnx_RXP_FwDataLen); 480 hdr->bnx_RXP_FwRodataAddr = ntohl(hdr->bnx_RXP_FwRodataAddr); 481 hdr->bnx_RXP_FwRodataLen = ntohl(hdr->bnx_RXP_FwRodataLen); 482 hdr->bnx_RXP_FwBssAddr = ntohl(hdr->bnx_RXP_FwBssAddr); 483 hdr->bnx_RXP_FwBssLen = ntohl(hdr->bnx_RXP_FwBssLen); 484 hdr->bnx_RXP_FwSbssAddr = ntohl(hdr->bnx_RXP_FwSbssAddr); 485 hdr->bnx_RXP_FwSbssLen = ntohl(hdr->bnx_RXP_FwSbssLen); 486 487 hdr->bnx_TPAT_FwReleaseMajor = ntohl(hdr->bnx_TPAT_FwReleaseMajor); 488 hdr->bnx_TPAT_FwReleaseMinor = ntohl(hdr->bnx_TPAT_FwReleaseMinor); 489 hdr->bnx_TPAT_FwReleaseFix = ntohl(hdr->bnx_TPAT_FwReleaseFix); 490 hdr->bnx_TPAT_FwStartAddr = ntohl(hdr->bnx_TPAT_FwStartAddr); 491 hdr->bnx_TPAT_FwTextAddr = ntohl(hdr->bnx_TPAT_FwTextAddr); 492 hdr->bnx_TPAT_FwTextLen = ntohl(hdr->bnx_TPAT_FwTextLen); 493 hdr->bnx_TPAT_FwDataAddr = ntohl(hdr->bnx_TPAT_FwDataAddr); 494 hdr->bnx_TPAT_FwDataLen = ntohl(hdr->bnx_TPAT_FwDataLen); 495 hdr->bnx_TPAT_FwRodataAddr = ntohl(hdr->bnx_TPAT_FwRodataAddr); 496 hdr->bnx_TPAT_FwRodataLen = ntohl(hdr->bnx_TPAT_FwRodataLen); 497 hdr->bnx_TPAT_FwBssAddr = ntohl(hdr->bnx_TPAT_FwBssAddr); 498 hdr->bnx_TPAT_FwBssLen = ntohl(hdr->bnx_TPAT_FwBssLen); 499 hdr->bnx_TPAT_FwSbssAddr = ntohl(hdr->bnx_TPAT_FwSbssAddr); 500 hdr->bnx_TPAT_FwSbssLen = ntohl(hdr->bnx_TPAT_FwSbssLen); 501 502 hdr->bnx_TXP_FwReleaseMajor = ntohl(hdr->bnx_TXP_FwReleaseMajor); 503 hdr->bnx_TXP_FwReleaseMinor = ntohl(hdr->bnx_TXP_FwReleaseMinor); 504 hdr->bnx_TXP_FwReleaseFix = ntohl(hdr->bnx_TXP_FwReleaseFix); 505 hdr->bnx_TXP_FwStartAddr = ntohl(hdr->bnx_TXP_FwStartAddr); 506 hdr->bnx_TXP_FwTextAddr = ntohl(hdr->bnx_TXP_FwTextAddr); 507 hdr->bnx_TXP_FwTextLen = ntohl(hdr->bnx_TXP_FwTextLen); 508 hdr->bnx_TXP_FwDataAddr = ntohl(hdr->bnx_TXP_FwDataAddr); 509 hdr->bnx_TXP_FwDataLen = ntohl(hdr->bnx_TXP_FwDataLen); 510 hdr->bnx_TXP_FwRodataAddr = ntohl(hdr->bnx_TXP_FwRodataAddr); 511 hdr->bnx_TXP_FwRodataLen = ntohl(hdr->bnx_TXP_FwRodataLen); 512 hdr->bnx_TXP_FwBssAddr = ntohl(hdr->bnx_TXP_FwBssAddr); 513 hdr->bnx_TXP_FwBssLen = ntohl(hdr->bnx_TXP_FwBssLen); 514 hdr->bnx_TXP_FwSbssAddr = ntohl(hdr->bnx_TXP_FwSbssAddr); 515 hdr->bnx_TXP_FwSbssLen = ntohl(hdr->bnx_TXP_FwSbssLen); 516 517 q = p + sizeof(*hdr); 518 519 bfw->bnx_COM_FwText = (u_int32_t *)q; 520 q += hdr->bnx_COM_FwTextLen; 521 nswaph(bfw->bnx_COM_FwText, hdr->bnx_COM_FwTextLen); 522 bfw->bnx_COM_FwData = (u_int32_t *)q; 523 q += hdr->bnx_COM_FwDataLen; 524 nswaph(bfw->bnx_COM_FwData, hdr->bnx_COM_FwDataLen); 525 bfw->bnx_COM_FwRodata = (u_int32_t *)q; 526 q += hdr->bnx_COM_FwRodataLen; 527 nswaph(bfw->bnx_COM_FwRodata, hdr->bnx_COM_FwRodataLen); 528 bfw->bnx_COM_FwBss = (u_int32_t *)q; 529 q += hdr->bnx_COM_FwBssLen; 530 nswaph(bfw->bnx_COM_FwBss, hdr->bnx_COM_FwBssLen); 531 bfw->bnx_COM_FwSbss = (u_int32_t *)q; 532 q += hdr->bnx_COM_FwSbssLen; 533 nswaph(bfw->bnx_COM_FwSbss, hdr->bnx_COM_FwSbssLen); 534 535 bfw->bnx_RXP_FwText = (u_int32_t *)q; 536 q += hdr->bnx_RXP_FwTextLen; 537 nswaph(bfw->bnx_RXP_FwText, hdr->bnx_RXP_FwTextLen); 538 bfw->bnx_RXP_FwData = (u_int32_t *)q; 539 q += hdr->bnx_RXP_FwDataLen; 540 nswaph(bfw->bnx_RXP_FwData, hdr->bnx_RXP_FwDataLen); 541 bfw->bnx_RXP_FwRodata = (u_int32_t *)q; 542 q += hdr->bnx_RXP_FwRodataLen; 543 nswaph(bfw->bnx_RXP_FwRodata, hdr->bnx_RXP_FwRodataLen); 544 bfw->bnx_RXP_FwBss = (u_int32_t *)q; 545 q += hdr->bnx_RXP_FwBssLen; 546 nswaph(bfw->bnx_RXP_FwBss, hdr->bnx_RXP_FwBssLen); 547 bfw->bnx_RXP_FwSbss = (u_int32_t *)q; 548 q += hdr->bnx_RXP_FwSbssLen; 549 nswaph(bfw->bnx_RXP_FwSbss, hdr->bnx_RXP_FwSbssLen); 550 551 bfw->bnx_TPAT_FwText = (u_int32_t *)q; 552 q += hdr->bnx_TPAT_FwTextLen; 553 nswaph(bfw->bnx_TPAT_FwText, hdr->bnx_TPAT_FwTextLen); 554 bfw->bnx_TPAT_FwData = (u_int32_t *)q; 555 q += hdr->bnx_TPAT_FwDataLen; 556 nswaph(bfw->bnx_TPAT_FwData, hdr->bnx_TPAT_FwDataLen); 557 bfw->bnx_TPAT_FwRodata = (u_int32_t *)q; 558 q += hdr->bnx_TPAT_FwRodataLen; 559 nswaph(bfw->bnx_TPAT_FwRodata, hdr->bnx_TPAT_FwRodataLen); 560 bfw->bnx_TPAT_FwBss = (u_int32_t *)q; 561 q += hdr->bnx_TPAT_FwBssLen; 562 nswaph(bfw->bnx_TPAT_FwBss, hdr->bnx_TPAT_FwBssLen); 563 bfw->bnx_TPAT_FwSbss = (u_int32_t *)q; 564 q += hdr->bnx_TPAT_FwSbssLen; 565 nswaph(bfw->bnx_TPAT_FwSbss, hdr->bnx_TPAT_FwSbssLen); 566 567 bfw->bnx_TXP_FwText = (u_int32_t *)q; 568 q += hdr->bnx_TXP_FwTextLen; 569 nswaph(bfw->bnx_TXP_FwText, hdr->bnx_TXP_FwTextLen); 570 bfw->bnx_TXP_FwData = (u_int32_t *)q; 571 q += hdr->bnx_TXP_FwDataLen; 572 nswaph(bfw->bnx_TXP_FwData, hdr->bnx_TXP_FwDataLen); 573 bfw->bnx_TXP_FwRodata = (u_int32_t *)q; 574 q += hdr->bnx_TXP_FwRodataLen; 575 nswaph(bfw->bnx_TXP_FwRodata, hdr->bnx_TXP_FwRodataLen); 576 bfw->bnx_TXP_FwBss = (u_int32_t *)q; 577 q += hdr->bnx_TXP_FwBssLen; 578 nswaph(bfw->bnx_TXP_FwBss, hdr->bnx_TXP_FwBssLen); 579 bfw->bnx_TXP_FwSbss = (u_int32_t *)q; 580 q += hdr->bnx_TXP_FwSbssLen; 581 nswaph(bfw->bnx_TXP_FwSbss, hdr->bnx_TXP_FwSbssLen); 582 583 if (q - p != size) { 584 free(p, M_DEVBUF); 585 hdr = NULL; 586 return EINVAL; 587 } 588 589 bfw->fw = hdr; 590 591 return (0); 592 } 593 594 int 595 bnx_read_rv2p(struct bnx_softc *sc, int idx) 596 { 597 struct bnx_rv2p *rv2p = &bnx_rv2ps[idx]; 598 struct bnx_rv2p_header *hdr = rv2p->fw; 599 u_char *p, *q; 600 size_t size; 601 int error; 602 603 if (hdr != NULL) 604 return (0); 605 606 if ((error = loadfirmware(rv2p->filename, &p, &size)) != 0) 607 return (error); 608 609 if (size < sizeof(struct bnx_rv2p_header)) { 610 free(p, M_DEVBUF); 611 return (EINVAL); 612 } 613 614 hdr = (struct bnx_rv2p_header *)p; 615 616 hdr->bnx_rv2p_proc1len = ntohl(hdr->bnx_rv2p_proc1len); 617 hdr->bnx_rv2p_proc2len = ntohl(hdr->bnx_rv2p_proc2len); 618 619 q = p + sizeof(*hdr); 620 621 rv2p->bnx_rv2p_proc1 = (u_int32_t *)q; 622 q += hdr->bnx_rv2p_proc1len; 623 nswaph(rv2p->bnx_rv2p_proc1, hdr->bnx_rv2p_proc1len); 624 rv2p->bnx_rv2p_proc2 = (u_int32_t *)q; 625 q += hdr->bnx_rv2p_proc2len; 626 nswaph(rv2p->bnx_rv2p_proc2, hdr->bnx_rv2p_proc2len); 627 628 if (q - p != size) { 629 free(p, M_DEVBUF); 630 return EINVAL; 631 } 632 633 rv2p->fw = hdr; 634 635 return (0); 636 } 637 638 639 /****************************************************************************/ 640 /* Device attach function. */ 641 /* */ 642 /* Allocates device resources, performs secondary chip identification, */ 643 /* resets and initializes the hardware, and initializes driver instance */ 644 /* variables. */ 645 /* */ 646 /* Returns: */ 647 /* 0 on success, positive value on failure. */ 648 /****************************************************************************/ 649 void 650 bnx_attach(struct device *parent, struct device *self, void *aux) 651 { 652 struct bnx_softc *sc = (struct bnx_softc *)self; 653 struct pci_attach_args *pa = aux; 654 pci_chipset_tag_t pc = pa->pa_pc; 655 u_int32_t val; 656 pcireg_t memtype; 657 const char *intrstr = NULL; 658 659 sc->bnx_pa = *pa; 660 661 /* 662 * Map control/status registers. 663 */ 664 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BNX_PCI_BAR0); 665 if (pci_mapreg_map(pa, BNX_PCI_BAR0, memtype, 0, &sc->bnx_btag, 666 &sc->bnx_bhandle, NULL, &sc->bnx_size, 0)) { 667 printf(": can't find mem space\n"); 668 return; 669 } 670 671 if (pci_intr_map(pa, &sc->bnx_ih)) { 672 printf(": couldn't map interrupt\n"); 673 goto bnx_attach_fail; 674 } 675 intrstr = pci_intr_string(pc, sc->bnx_ih); 676 677 /* 678 * Configure byte swap and enable indirect register access. 679 * Rely on CPU to do target byte swapping on big endian systems. 680 * Access to registers outside of PCI configurtion space are not 681 * valid until this is done. 682 */ 683 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG, 684 BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA | 685 BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP); 686 687 /* Save ASIC revsion info. */ 688 sc->bnx_chipid = REG_RD(sc, BNX_MISC_ID); 689 690 /* 691 * Find the base address for shared memory access. 692 * Newer versions of bootcode use a signature and offset 693 * while older versions use a fixed address. 694 */ 695 val = REG_RD_IND(sc, BNX_SHM_HDR_SIGNATURE); 696 if ((val & BNX_SHM_HDR_SIGNATURE_SIG_MASK) == BNX_SHM_HDR_SIGNATURE_SIG) 697 sc->bnx_shmem_base = REG_RD_IND(sc, BNX_SHM_HDR_ADDR_0 + 698 (sc->bnx_pa.pa_function << 2)); 699 else 700 sc->bnx_shmem_base = HOST_VIEW_SHMEM_BASE; 701 702 DBPRINT(sc, BNX_INFO, "bnx_shmem_base = 0x%08X\n", sc->bnx_shmem_base); 703 704 /* Set initial device and PHY flags */ 705 sc->bnx_flags = 0; 706 sc->bnx_phy_flags = 0; 707 708 /* Get PCI bus information (speed and type). */ 709 val = REG_RD(sc, BNX_PCICFG_MISC_STATUS); 710 if (val & BNX_PCICFG_MISC_STATUS_PCIX_DET) { 711 u_int32_t clkreg; 712 713 sc->bnx_flags |= BNX_PCIX_FLAG; 714 715 clkreg = REG_RD(sc, BNX_PCICFG_PCI_CLOCK_CONTROL_BITS); 716 717 clkreg &= BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET; 718 switch (clkreg) { 719 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ: 720 sc->bus_speed_mhz = 133; 721 break; 722 723 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ: 724 sc->bus_speed_mhz = 100; 725 break; 726 727 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ: 728 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ: 729 sc->bus_speed_mhz = 66; 730 break; 731 732 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ: 733 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ: 734 sc->bus_speed_mhz = 50; 735 break; 736 737 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW: 738 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ: 739 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ: 740 sc->bus_speed_mhz = 33; 741 break; 742 } 743 } else if (val & BNX_PCICFG_MISC_STATUS_M66EN) 744 sc->bus_speed_mhz = 66; 745 else 746 sc->bus_speed_mhz = 33; 747 748 if (val & BNX_PCICFG_MISC_STATUS_32BIT_DET) 749 sc->bnx_flags |= BNX_PCI_32BIT_FLAG; 750 751 /* Hookup IRQ last. */ 752 sc->bnx_intrhand = pci_intr_establish(pc, sc->bnx_ih, IPL_NET, 753 bnx_intr, sc, sc->bnx_dev.dv_xname); 754 if (sc->bnx_intrhand == NULL) { 755 printf(": couldn't establish interrupt"); 756 if (intrstr != NULL) 757 printf(" at %s", intrstr); 758 printf("\n"); 759 goto bnx_attach_fail; 760 } 761 762 printf(": %s\n", intrstr); 763 764 mountroothook_establish(bnx_attachhook, sc); 765 return; 766 767 bnx_attach_fail: 768 bnx_release_resources(sc); 769 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__); 770 } 771 772 void 773 bnx_attachhook(void *xsc) 774 { 775 struct bnx_softc *sc = xsc; 776 struct pci_attach_args *pa = &sc->bnx_pa; 777 struct ifnet *ifp; 778 int error, mii_flags = 0; 779 int fw = BNX_FW_B06; 780 int rv2p = BNX_RV2P; 781 782 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) { 783 fw = BNX_FW_B09; 784 if ((BNX_CHIP_REV(sc) == BNX_CHIP_REV_Ax)) 785 rv2p = BNX_XI90_RV2P; 786 else 787 rv2p = BNX_XI_RV2P; 788 } 789 790 if ((error = bnx_read_firmware(sc, fw)) != 0) { 791 printf("%s: error %d, could not read firmware\n", 792 sc->bnx_dev.dv_xname, error); 793 return; 794 } 795 796 if ((error = bnx_read_rv2p(sc, rv2p)) != 0) { 797 printf("%s: error %d, could not read rv2p\n", 798 sc->bnx_dev.dv_xname, error); 799 return; 800 } 801 802 /* Reset the controller. */ 803 if (bnx_reset(sc, BNX_DRV_MSG_CODE_RESET)) 804 goto bnx_attach_fail; 805 806 /* Initialize the controller. */ 807 if (bnx_chipinit(sc)) { 808 printf("%s: Controller initialization failed!\n", 809 sc->bnx_dev.dv_xname); 810 goto bnx_attach_fail; 811 } 812 813 /* Perform NVRAM test. */ 814 if (bnx_nvram_test(sc)) { 815 printf("%s: NVRAM test failed!\n", 816 sc->bnx_dev.dv_xname); 817 goto bnx_attach_fail; 818 } 819 820 /* Fetch the permanent Ethernet MAC address. */ 821 bnx_get_mac_addr(sc); 822 823 /* 824 * Trip points control how many BDs 825 * should be ready before generating an 826 * interrupt while ticks control how long 827 * a BD can sit in the chain before 828 * generating an interrupt. Set the default 829 * values for the RX and TX rings. 830 */ 831 832 #ifdef BNX_DEBUG 833 /* Force more frequent interrupts. */ 834 sc->bnx_tx_quick_cons_trip_int = 1; 835 sc->bnx_tx_quick_cons_trip = 1; 836 sc->bnx_tx_ticks_int = 0; 837 sc->bnx_tx_ticks = 0; 838 839 sc->bnx_rx_quick_cons_trip_int = 1; 840 sc->bnx_rx_quick_cons_trip = 1; 841 sc->bnx_rx_ticks_int = 0; 842 sc->bnx_rx_ticks = 0; 843 #else 844 sc->bnx_tx_quick_cons_trip_int = 20; 845 sc->bnx_tx_quick_cons_trip = 20; 846 sc->bnx_tx_ticks_int = 80; 847 sc->bnx_tx_ticks = 80; 848 849 sc->bnx_rx_quick_cons_trip_int = 6; 850 sc->bnx_rx_quick_cons_trip = 6; 851 sc->bnx_rx_ticks_int = 18; 852 sc->bnx_rx_ticks = 18; 853 #endif 854 855 /* Update statistics once every second. */ 856 sc->bnx_stats_ticks = 1000000 & 0xffff00; 857 858 /* Find the media type for the adapter. */ 859 bnx_get_media(sc); 860 861 /* 862 * Store config data needed by the PHY driver for 863 * backplane applications 864 */ 865 sc->bnx_shared_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base + 866 BNX_SHARED_HW_CFG_CONFIG); 867 sc->bnx_port_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base + 868 BNX_PORT_HW_CFG_CONFIG); 869 870 /* Allocate DMA memory resources. */ 871 sc->bnx_dmatag = pa->pa_dmat; 872 if (bnx_dma_alloc(sc)) { 873 printf("%s: DMA resource allocation failed!\n", 874 sc->bnx_dev.dv_xname); 875 goto bnx_attach_fail; 876 } 877 878 /* Initialize the ifnet interface. */ 879 ifp = &sc->arpcom.ac_if; 880 ifp->if_softc = sc; 881 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 882 ifp->if_ioctl = bnx_ioctl; 883 ifp->if_start = bnx_start; 884 ifp->if_watchdog = bnx_watchdog; 885 IFQ_SET_MAXLEN(&ifp->if_snd, USABLE_TX_BD - 1); 886 IFQ_SET_READY(&ifp->if_snd); 887 m_clsetwms(ifp, MCLBYTES, 2, USABLE_RX_BD); 888 bcopy(sc->eaddr, sc->arpcom.ac_enaddr, ETHER_ADDR_LEN); 889 bcopy(sc->bnx_dev.dv_xname, ifp->if_xname, IFNAMSIZ); 890 891 ifp->if_capabilities = IFCAP_VLAN_MTU; 892 893 #ifdef BNX_CSUM 894 ifp->if_capabilities |= IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4; 895 #endif 896 897 #if NVLAN > 0 898 ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING; 899 #endif 900 901 sc->mbuf_alloc_size = BNX_MAX_MRU; 902 903 printf("%s: address %s\n", sc->bnx_dev.dv_xname, 904 ether_sprintf(sc->arpcom.ac_enaddr)); 905 906 sc->bnx_mii.mii_ifp = ifp; 907 sc->bnx_mii.mii_readreg = bnx_miibus_read_reg; 908 sc->bnx_mii.mii_writereg = bnx_miibus_write_reg; 909 sc->bnx_mii.mii_statchg = bnx_miibus_statchg; 910 911 /* Handle any special PHY initialization for SerDes PHYs. */ 912 bnx_init_media(sc); 913 914 /* Look for our PHY. */ 915 ifmedia_init(&sc->bnx_mii.mii_media, 0, bnx_ifmedia_upd, 916 bnx_ifmedia_sts); 917 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706 || 918 (!(sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG))) 919 mii_flags |= MIIF_DOPAUSE; 920 if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG) 921 mii_flags |= MIIF_HAVEFIBER; 922 mii_attach(&sc->bnx_dev, &sc->bnx_mii, 0xffffffff, 923 MII_PHY_ANY, MII_OFFSET_ANY, mii_flags); 924 925 if (LIST_FIRST(&sc->bnx_mii.mii_phys) == NULL) { 926 printf("%s: no PHY found!\n", sc->bnx_dev.dv_xname); 927 ifmedia_add(&sc->bnx_mii.mii_media, 928 IFM_ETHER|IFM_MANUAL, 0, NULL); 929 ifmedia_set(&sc->bnx_mii.mii_media, 930 IFM_ETHER|IFM_MANUAL); 931 } else { 932 ifmedia_set(&sc->bnx_mii.mii_media, 933 IFM_ETHER|IFM_AUTO); 934 } 935 936 /* Attach to the Ethernet interface list. */ 937 if_attach(ifp); 938 ether_ifattach(ifp); 939 940 timeout_set(&sc->bnx_timeout, bnx_tick, sc); 941 942 /* Print some important debugging info. */ 943 DBRUN(BNX_INFO, bnx_dump_driver_state(sc)); 944 945 /* Get the firmware running so ASF still works. */ 946 bnx_mgmt_init(sc); 947 948 /* Handle interrupts */ 949 sc->bnx_flags |= BNX_ACTIVE_FLAG; 950 951 goto bnx_attach_exit; 952 953 bnx_attach_fail: 954 bnx_release_resources(sc); 955 956 bnx_attach_exit: 957 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__); 958 } 959 960 /****************************************************************************/ 961 /* Device detach function. */ 962 /* */ 963 /* Stops the controller, resets the controller, and releases resources. */ 964 /* */ 965 /* Returns: */ 966 /* 0 on success, positive value on failure. */ 967 /****************************************************************************/ 968 #if 0 969 void 970 bnx_detach(void *xsc) 971 { 972 struct bnx_softc *sc; 973 struct ifnet *ifp = &sc->arpcom.ac_if; 974 975 sc = device_get_softc(dev); 976 977 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__); 978 979 /* Stop and reset the controller. */ 980 bnx_stop(sc); 981 bnx_reset(sc, BNX_DRV_MSG_CODE_RESET); 982 983 ether_ifdetach(ifp); 984 985 /* If we have a child device on the MII bus remove it too. */ 986 bus_generic_detach(dev); 987 device_delete_child(dev, sc->bnx_mii); 988 989 /* Release all remaining resources. */ 990 bnx_release_resources(sc); 991 992 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__); 993 994 return(0); 995 } 996 #endif 997 998 /****************************************************************************/ 999 /* Indirect register read. */ 1000 /* */ 1001 /* Reads NetXtreme II registers using an index/data register pair in PCI */ 1002 /* configuration space. Using this mechanism avoids issues with posted */ 1003 /* reads but is much slower than memory-mapped I/O. */ 1004 /* */ 1005 /* Returns: */ 1006 /* The value of the register. */ 1007 /****************************************************************************/ 1008 u_int32_t 1009 bnx_reg_rd_ind(struct bnx_softc *sc, u_int32_t offset) 1010 { 1011 struct pci_attach_args *pa = &(sc->bnx_pa); 1012 1013 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS, 1014 offset); 1015 #ifdef BNX_DEBUG 1016 { 1017 u_int32_t val; 1018 val = pci_conf_read(pa->pa_pc, pa->pa_tag, 1019 BNX_PCICFG_REG_WINDOW); 1020 DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, " 1021 "val = 0x%08X\n", __FUNCTION__, offset, val); 1022 return (val); 1023 } 1024 #else 1025 return pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW); 1026 #endif 1027 } 1028 1029 /****************************************************************************/ 1030 /* Indirect register write. */ 1031 /* */ 1032 /* Writes NetXtreme II registers using an index/data register pair in PCI */ 1033 /* configuration space. Using this mechanism avoids issues with posted */ 1034 /* writes but is muchh slower than memory-mapped I/O. */ 1035 /* */ 1036 /* Returns: */ 1037 /* Nothing. */ 1038 /****************************************************************************/ 1039 void 1040 bnx_reg_wr_ind(struct bnx_softc *sc, u_int32_t offset, u_int32_t val) 1041 { 1042 struct pci_attach_args *pa = &(sc->bnx_pa); 1043 1044 DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, val = 0x%08X\n", 1045 __FUNCTION__, offset, val); 1046 1047 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS, 1048 offset); 1049 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW, val); 1050 } 1051 1052 /****************************************************************************/ 1053 /* Context memory write. */ 1054 /* */ 1055 /* The NetXtreme II controller uses context memory to track connection */ 1056 /* information for L2 and higher network protocols. */ 1057 /* */ 1058 /* Returns: */ 1059 /* Nothing. */ 1060 /****************************************************************************/ 1061 void 1062 bnx_ctx_wr(struct bnx_softc *sc, u_int32_t cid_addr, u_int32_t ctx_offset, 1063 u_int32_t ctx_val) 1064 { 1065 u_int32_t idx, offset = ctx_offset + cid_addr; 1066 u_int32_t val, retry_cnt = 5; 1067 1068 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) { 1069 REG_WR(sc, BNX_CTX_CTX_DATA, ctx_val); 1070 REG_WR(sc, BNX_CTX_CTX_CTRL, 1071 (offset | BNX_CTX_CTX_CTRL_WRITE_REQ)); 1072 1073 for (idx = 0; idx < retry_cnt; idx++) { 1074 val = REG_RD(sc, BNX_CTX_CTX_CTRL); 1075 if ((val & BNX_CTX_CTX_CTRL_WRITE_REQ) == 0) 1076 break; 1077 DELAY(5); 1078 } 1079 1080 #if 0 1081 if (val & BNX_CTX_CTX_CTRL_WRITE_REQ) 1082 BNX_PRINTF("%s(%d); Unable to write CTX memory: " 1083 "cid_addr = 0x%08X, offset = 0x%08X!\n", 1084 __FILE__, __LINE__, cid_addr, ctx_offset); 1085 #endif 1086 1087 } else { 1088 REG_WR(sc, BNX_CTX_DATA_ADR, offset); 1089 REG_WR(sc, BNX_CTX_DATA, ctx_val); 1090 } 1091 } 1092 1093 /****************************************************************************/ 1094 /* PHY register read. */ 1095 /* */ 1096 /* Implements register reads on the MII bus. */ 1097 /* */ 1098 /* Returns: */ 1099 /* The value of the register. */ 1100 /****************************************************************************/ 1101 int 1102 bnx_miibus_read_reg(struct device *dev, int phy, int reg) 1103 { 1104 struct bnx_softc *sc = (struct bnx_softc *)dev; 1105 u_int32_t val; 1106 int i; 1107 1108 /* Make sure we are accessing the correct PHY address. */ 1109 if (phy != sc->bnx_phy_addr) { 1110 DBPRINT(sc, BNX_VERBOSE, 1111 "Invalid PHY address %d for PHY read!\n", phy); 1112 return(0); 1113 } 1114 1115 /* 1116 * The BCM5709S PHY is an IEEE Clause 45 PHY 1117 * with special mappings to work with IEEE 1118 * Clause 22 register accesses. 1119 */ 1120 if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) { 1121 if (reg >= MII_BMCR && reg <= MII_ANLPRNP) 1122 reg += 0x10; 1123 } 1124 1125 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) { 1126 val = REG_RD(sc, BNX_EMAC_MDIO_MODE); 1127 val &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL; 1128 1129 REG_WR(sc, BNX_EMAC_MDIO_MODE, val); 1130 REG_RD(sc, BNX_EMAC_MDIO_MODE); 1131 1132 DELAY(40); 1133 } 1134 1135 val = BNX_MIPHY(phy) | BNX_MIREG(reg) | 1136 BNX_EMAC_MDIO_COMM_COMMAND_READ | BNX_EMAC_MDIO_COMM_DISEXT | 1137 BNX_EMAC_MDIO_COMM_START_BUSY; 1138 REG_WR(sc, BNX_EMAC_MDIO_COMM, val); 1139 1140 for (i = 0; i < BNX_PHY_TIMEOUT; i++) { 1141 DELAY(10); 1142 1143 val = REG_RD(sc, BNX_EMAC_MDIO_COMM); 1144 if (!(val & BNX_EMAC_MDIO_COMM_START_BUSY)) { 1145 DELAY(5); 1146 1147 val = REG_RD(sc, BNX_EMAC_MDIO_COMM); 1148 val &= BNX_EMAC_MDIO_COMM_DATA; 1149 1150 break; 1151 } 1152 } 1153 1154 if (val & BNX_EMAC_MDIO_COMM_START_BUSY) { 1155 BNX_PRINTF(sc, "%s(%d): Error: PHY read timeout! phy = %d, " 1156 "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg); 1157 val = 0x0; 1158 } else 1159 val = REG_RD(sc, BNX_EMAC_MDIO_COMM); 1160 1161 DBPRINT(sc, BNX_EXCESSIVE, 1162 "%s(): phy = %d, reg = 0x%04X, val = 0x%04X\n", __FUNCTION__, phy, 1163 (u_int16_t) reg & 0xffff, (u_int16_t) val & 0xffff); 1164 1165 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) { 1166 val = REG_RD(sc, BNX_EMAC_MDIO_MODE); 1167 val |= BNX_EMAC_MDIO_MODE_AUTO_POLL; 1168 1169 REG_WR(sc, BNX_EMAC_MDIO_MODE, val); 1170 REG_RD(sc, BNX_EMAC_MDIO_MODE); 1171 1172 DELAY(40); 1173 } 1174 1175 return (val & 0xffff); 1176 } 1177 1178 /****************************************************************************/ 1179 /* PHY register write. */ 1180 /* */ 1181 /* Implements register writes on the MII bus. */ 1182 /* */ 1183 /* Returns: */ 1184 /* The value of the register. */ 1185 /****************************************************************************/ 1186 void 1187 bnx_miibus_write_reg(struct device *dev, int phy, int reg, int val) 1188 { 1189 struct bnx_softc *sc = (struct bnx_softc *)dev; 1190 u_int32_t val1; 1191 int i; 1192 1193 /* Make sure we are accessing the correct PHY address. */ 1194 if (phy != sc->bnx_phy_addr) { 1195 DBPRINT(sc, BNX_VERBOSE, "Invalid PHY address %d for PHY write!\n", 1196 phy); 1197 return; 1198 } 1199 1200 DBPRINT(sc, BNX_EXCESSIVE, "%s(): phy = %d, reg = 0x%04X, " 1201 "val = 0x%04X\n", __FUNCTION__, 1202 phy, (u_int16_t) reg & 0xffff, (u_int16_t) val & 0xffff); 1203 1204 /* 1205 * The BCM5709S PHY is an IEEE Clause 45 PHY 1206 * with special mappings to work with IEEE 1207 * Clause 22 register accesses. 1208 */ 1209 if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) { 1210 if (reg >= MII_BMCR && reg <= MII_ANLPRNP) 1211 reg += 0x10; 1212 } 1213 1214 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) { 1215 val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE); 1216 val1 &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL; 1217 1218 REG_WR(sc, BNX_EMAC_MDIO_MODE, val1); 1219 REG_RD(sc, BNX_EMAC_MDIO_MODE); 1220 1221 DELAY(40); 1222 } 1223 1224 val1 = BNX_MIPHY(phy) | BNX_MIREG(reg) | val | 1225 BNX_EMAC_MDIO_COMM_COMMAND_WRITE | 1226 BNX_EMAC_MDIO_COMM_START_BUSY | BNX_EMAC_MDIO_COMM_DISEXT; 1227 REG_WR(sc, BNX_EMAC_MDIO_COMM, val1); 1228 1229 for (i = 0; i < BNX_PHY_TIMEOUT; i++) { 1230 DELAY(10); 1231 1232 val1 = REG_RD(sc, BNX_EMAC_MDIO_COMM); 1233 if (!(val1 & BNX_EMAC_MDIO_COMM_START_BUSY)) { 1234 DELAY(5); 1235 break; 1236 } 1237 } 1238 1239 if (val1 & BNX_EMAC_MDIO_COMM_START_BUSY) { 1240 BNX_PRINTF(sc, "%s(%d): PHY write timeout!\n", __FILE__, 1241 __LINE__); 1242 } 1243 1244 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) { 1245 val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE); 1246 val1 |= BNX_EMAC_MDIO_MODE_AUTO_POLL; 1247 1248 REG_WR(sc, BNX_EMAC_MDIO_MODE, val1); 1249 REG_RD(sc, BNX_EMAC_MDIO_MODE); 1250 1251 DELAY(40); 1252 } 1253 } 1254 1255 /****************************************************************************/ 1256 /* MII bus status change. */ 1257 /* */ 1258 /* Called by the MII bus driver when the PHY establishes link to set the */ 1259 /* MAC interface registers. */ 1260 /* */ 1261 /* Returns: */ 1262 /* Nothing. */ 1263 /****************************************************************************/ 1264 void 1265 bnx_miibus_statchg(struct device *dev) 1266 { 1267 struct bnx_softc *sc = (struct bnx_softc *)dev; 1268 struct mii_data *mii = &sc->bnx_mii; 1269 u_int32_t rx_mode = sc->rx_mode; 1270 int val; 1271 1272 val = REG_RD(sc, BNX_EMAC_MODE); 1273 val &= ~(BNX_EMAC_MODE_PORT | BNX_EMAC_MODE_HALF_DUPLEX | 1274 BNX_EMAC_MODE_MAC_LOOP | BNX_EMAC_MODE_FORCE_LINK | 1275 BNX_EMAC_MODE_25G); 1276 1277 /* 1278 * Get flow control negotiation result. 1279 */ 1280 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO && 1281 (mii->mii_media_active & IFM_ETH_FMASK) != sc->bnx_flowflags) { 1282 sc->bnx_flowflags = mii->mii_media_active & IFM_ETH_FMASK; 1283 mii->mii_media_active &= ~IFM_ETH_FMASK; 1284 } 1285 1286 /* Set MII or GMII interface based on the speed 1287 * negotiated by the PHY. 1288 */ 1289 switch (IFM_SUBTYPE(mii->mii_media_active)) { 1290 case IFM_10_T: 1291 if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) { 1292 DBPRINT(sc, BNX_INFO, "Enabling 10Mb interface.\n"); 1293 val |= BNX_EMAC_MODE_PORT_MII_10; 1294 break; 1295 } 1296 /* FALLTHROUGH */ 1297 case IFM_100_TX: 1298 DBPRINT(sc, BNX_INFO, "Enabling MII interface.\n"); 1299 val |= BNX_EMAC_MODE_PORT_MII; 1300 break; 1301 case IFM_2500_SX: 1302 DBPRINT(sc, BNX_INFO, "Enabling 2.5G MAC mode.\n"); 1303 val |= BNX_EMAC_MODE_25G; 1304 /* FALLTHROUGH */ 1305 case IFM_1000_T: 1306 case IFM_1000_SX: 1307 DBPRINT(sc, BNX_INFO, "Enablinb GMII interface.\n"); 1308 val |= BNX_EMAC_MODE_PORT_GMII; 1309 break; 1310 default: 1311 val |= BNX_EMAC_MODE_PORT_GMII; 1312 break; 1313 } 1314 1315 /* Set half or full duplex based on the duplicity 1316 * negotiated by the PHY. 1317 */ 1318 if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) { 1319 DBPRINT(sc, BNX_INFO, "Setting Half-Duplex interface.\n"); 1320 val |= BNX_EMAC_MODE_HALF_DUPLEX; 1321 } else 1322 DBPRINT(sc, BNX_INFO, "Setting Full-Duplex interface.\n"); 1323 1324 REG_WR(sc, BNX_EMAC_MODE, val); 1325 1326 /* 1327 * 802.3x flow control 1328 */ 1329 if (sc->bnx_flowflags & IFM_ETH_RXPAUSE) { 1330 DBPRINT(sc, BNX_INFO, "Enabling RX mode flow control.\n"); 1331 rx_mode |= BNX_EMAC_RX_MODE_FLOW_EN; 1332 } else { 1333 DBPRINT(sc, BNX_INFO, "Disabling RX mode flow control.\n"); 1334 rx_mode &= ~BNX_EMAC_RX_MODE_FLOW_EN; 1335 } 1336 1337 if (sc->bnx_flowflags & IFM_ETH_TXPAUSE) { 1338 DBPRINT(sc, BNX_INFO, "Enabling TX mode flow control.\n"); 1339 BNX_SETBIT(sc, BNX_EMAC_TX_MODE, BNX_EMAC_TX_MODE_FLOW_EN); 1340 } else { 1341 DBPRINT(sc, BNX_INFO, "Disabling TX mode flow control.\n"); 1342 BNX_CLRBIT(sc, BNX_EMAC_TX_MODE, BNX_EMAC_TX_MODE_FLOW_EN); 1343 } 1344 1345 /* Only make changes if the recive mode has actually changed. */ 1346 if (rx_mode != sc->rx_mode) { 1347 DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n", 1348 rx_mode); 1349 1350 sc->rx_mode = rx_mode; 1351 REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode); 1352 } 1353 } 1354 1355 /****************************************************************************/ 1356 /* Acquire NVRAM lock. */ 1357 /* */ 1358 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock. */ 1359 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */ 1360 /* for use by the driver. */ 1361 /* */ 1362 /* Returns: */ 1363 /* 0 on success, positive value on failure. */ 1364 /****************************************************************************/ 1365 int 1366 bnx_acquire_nvram_lock(struct bnx_softc *sc) 1367 { 1368 u_int32_t val; 1369 int j; 1370 1371 DBPRINT(sc, BNX_VERBOSE, "Acquiring NVRAM lock.\n"); 1372 1373 /* Request access to the flash interface. */ 1374 REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_SET2); 1375 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { 1376 val = REG_RD(sc, BNX_NVM_SW_ARB); 1377 if (val & BNX_NVM_SW_ARB_ARB_ARB2) 1378 break; 1379 1380 DELAY(5); 1381 } 1382 1383 if (j >= NVRAM_TIMEOUT_COUNT) { 1384 DBPRINT(sc, BNX_WARN, "Timeout acquiring NVRAM lock!\n"); 1385 return (EBUSY); 1386 } 1387 1388 return (0); 1389 } 1390 1391 /****************************************************************************/ 1392 /* Release NVRAM lock. */ 1393 /* */ 1394 /* When the caller is finished accessing NVRAM the lock must be released. */ 1395 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */ 1396 /* for use by the driver. */ 1397 /* */ 1398 /* Returns: */ 1399 /* 0 on success, positive value on failure. */ 1400 /****************************************************************************/ 1401 int 1402 bnx_release_nvram_lock(struct bnx_softc *sc) 1403 { 1404 int j; 1405 u_int32_t val; 1406 1407 DBPRINT(sc, BNX_VERBOSE, "Releasing NVRAM lock.\n"); 1408 1409 /* Relinquish nvram interface. */ 1410 REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_CLR2); 1411 1412 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { 1413 val = REG_RD(sc, BNX_NVM_SW_ARB); 1414 if (!(val & BNX_NVM_SW_ARB_ARB_ARB2)) 1415 break; 1416 1417 DELAY(5); 1418 } 1419 1420 if (j >= NVRAM_TIMEOUT_COUNT) { 1421 DBPRINT(sc, BNX_WARN, "Timeout reeasing NVRAM lock!\n"); 1422 return (EBUSY); 1423 } 1424 1425 return (0); 1426 } 1427 1428 #ifdef BNX_NVRAM_WRITE_SUPPORT 1429 /****************************************************************************/ 1430 /* Enable NVRAM write access. */ 1431 /* */ 1432 /* Before writing to NVRAM the caller must enable NVRAM writes. */ 1433 /* */ 1434 /* Returns: */ 1435 /* 0 on success, positive value on failure. */ 1436 /****************************************************************************/ 1437 int 1438 bnx_enable_nvram_write(struct bnx_softc *sc) 1439 { 1440 u_int32_t val; 1441 1442 DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM write.\n"); 1443 1444 val = REG_RD(sc, BNX_MISC_CFG); 1445 REG_WR(sc, BNX_MISC_CFG, val | BNX_MISC_CFG_NVM_WR_EN_PCI); 1446 1447 if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) { 1448 int j; 1449 1450 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE); 1451 REG_WR(sc, BNX_NVM_COMMAND, 1452 BNX_NVM_COMMAND_WREN | BNX_NVM_COMMAND_DOIT); 1453 1454 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { 1455 DELAY(5); 1456 1457 val = REG_RD(sc, BNX_NVM_COMMAND); 1458 if (val & BNX_NVM_COMMAND_DONE) 1459 break; 1460 } 1461 1462 if (j >= NVRAM_TIMEOUT_COUNT) { 1463 DBPRINT(sc, BNX_WARN, "Timeout writing NVRAM!\n"); 1464 return (EBUSY); 1465 } 1466 } 1467 1468 return (0); 1469 } 1470 1471 /****************************************************************************/ 1472 /* Disable NVRAM write access. */ 1473 /* */ 1474 /* When the caller is finished writing to NVRAM write access must be */ 1475 /* disabled. */ 1476 /* */ 1477 /* Returns: */ 1478 /* Nothing. */ 1479 /****************************************************************************/ 1480 void 1481 bnx_disable_nvram_write(struct bnx_softc *sc) 1482 { 1483 u_int32_t val; 1484 1485 DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM write.\n"); 1486 1487 val = REG_RD(sc, BNX_MISC_CFG); 1488 REG_WR(sc, BNX_MISC_CFG, val & ~BNX_MISC_CFG_NVM_WR_EN); 1489 } 1490 #endif 1491 1492 /****************************************************************************/ 1493 /* Enable NVRAM access. */ 1494 /* */ 1495 /* Before accessing NVRAM for read or write operations the caller must */ 1496 /* enabled NVRAM access. */ 1497 /* */ 1498 /* Returns: */ 1499 /* Nothing. */ 1500 /****************************************************************************/ 1501 void 1502 bnx_enable_nvram_access(struct bnx_softc *sc) 1503 { 1504 u_int32_t val; 1505 1506 DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM access.\n"); 1507 1508 val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE); 1509 /* Enable both bits, even on read. */ 1510 REG_WR(sc, BNX_NVM_ACCESS_ENABLE, 1511 val | BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN); 1512 } 1513 1514 /****************************************************************************/ 1515 /* Disable NVRAM access. */ 1516 /* */ 1517 /* When the caller is finished accessing NVRAM access must be disabled. */ 1518 /* */ 1519 /* Returns: */ 1520 /* Nothing. */ 1521 /****************************************************************************/ 1522 void 1523 bnx_disable_nvram_access(struct bnx_softc *sc) 1524 { 1525 u_int32_t val; 1526 1527 DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM access.\n"); 1528 1529 val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE); 1530 1531 /* Disable both bits, even after read. */ 1532 REG_WR(sc, BNX_NVM_ACCESS_ENABLE, 1533 val & ~(BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN)); 1534 } 1535 1536 #ifdef BNX_NVRAM_WRITE_SUPPORT 1537 /****************************************************************************/ 1538 /* Erase NVRAM page before writing. */ 1539 /* */ 1540 /* Non-buffered flash parts require that a page be erased before it is */ 1541 /* written. */ 1542 /* */ 1543 /* Returns: */ 1544 /* 0 on success, positive value on failure. */ 1545 /****************************************************************************/ 1546 int 1547 bnx_nvram_erase_page(struct bnx_softc *sc, u_int32_t offset) 1548 { 1549 u_int32_t cmd; 1550 int j; 1551 1552 /* Buffered flash doesn't require an erase. */ 1553 if (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) 1554 return (0); 1555 1556 DBPRINT(sc, BNX_VERBOSE, "Erasing NVRAM page.\n"); 1557 1558 /* Build an erase command. */ 1559 cmd = BNX_NVM_COMMAND_ERASE | BNX_NVM_COMMAND_WR | 1560 BNX_NVM_COMMAND_DOIT; 1561 1562 /* 1563 * Clear the DONE bit separately, set the NVRAM address to erase, 1564 * and issue the erase command. 1565 */ 1566 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE); 1567 REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE); 1568 REG_WR(sc, BNX_NVM_COMMAND, cmd); 1569 1570 /* Wait for completion. */ 1571 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { 1572 u_int32_t val; 1573 1574 DELAY(5); 1575 1576 val = REG_RD(sc, BNX_NVM_COMMAND); 1577 if (val & BNX_NVM_COMMAND_DONE) 1578 break; 1579 } 1580 1581 if (j >= NVRAM_TIMEOUT_COUNT) { 1582 DBPRINT(sc, BNX_WARN, "Timeout erasing NVRAM.\n"); 1583 return (EBUSY); 1584 } 1585 1586 return (0); 1587 } 1588 #endif /* BNX_NVRAM_WRITE_SUPPORT */ 1589 1590 /****************************************************************************/ 1591 /* Read a dword (32 bits) from NVRAM. */ 1592 /* */ 1593 /* Read a 32 bit word from NVRAM. The caller is assumed to have already */ 1594 /* obtained the NVRAM lock and enabled the controller for NVRAM access. */ 1595 /* */ 1596 /* Returns: */ 1597 /* 0 on success and the 32 bit value read, positive value on failure. */ 1598 /****************************************************************************/ 1599 int 1600 bnx_nvram_read_dword(struct bnx_softc *sc, u_int32_t offset, 1601 u_int8_t *ret_val, u_int32_t cmd_flags) 1602 { 1603 u_int32_t cmd; 1604 int i, rc = 0; 1605 1606 /* Build the command word. */ 1607 cmd = BNX_NVM_COMMAND_DOIT | cmd_flags; 1608 1609 /* Calculate the offset for buffered flash if translation is used. */ 1610 if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) { 1611 offset = ((offset / sc->bnx_flash_info->page_size) << 1612 sc->bnx_flash_info->page_bits) + 1613 (offset % sc->bnx_flash_info->page_size); 1614 } 1615 1616 /* 1617 * Clear the DONE bit separately, set the address to read, 1618 * and issue the read. 1619 */ 1620 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE); 1621 REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE); 1622 REG_WR(sc, BNX_NVM_COMMAND, cmd); 1623 1624 /* Wait for completion. */ 1625 for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) { 1626 u_int32_t val; 1627 1628 DELAY(5); 1629 1630 val = REG_RD(sc, BNX_NVM_COMMAND); 1631 if (val & BNX_NVM_COMMAND_DONE) { 1632 val = REG_RD(sc, BNX_NVM_READ); 1633 1634 val = bnx_be32toh(val); 1635 memcpy(ret_val, &val, 4); 1636 break; 1637 } 1638 } 1639 1640 /* Check for errors. */ 1641 if (i >= NVRAM_TIMEOUT_COUNT) { 1642 BNX_PRINTF(sc, "%s(%d): Timeout error reading NVRAM at " 1643 "offset 0x%08X!\n", __FILE__, __LINE__, offset); 1644 rc = EBUSY; 1645 } 1646 1647 return(rc); 1648 } 1649 1650 #ifdef BNX_NVRAM_WRITE_SUPPORT 1651 /****************************************************************************/ 1652 /* Write a dword (32 bits) to NVRAM. */ 1653 /* */ 1654 /* Write a 32 bit word to NVRAM. The caller is assumed to have already */ 1655 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and */ 1656 /* enabled NVRAM write access. */ 1657 /* */ 1658 /* Returns: */ 1659 /* 0 on success, positive value on failure. */ 1660 /****************************************************************************/ 1661 int 1662 bnx_nvram_write_dword(struct bnx_softc *sc, u_int32_t offset, u_int8_t *val, 1663 u_int32_t cmd_flags) 1664 { 1665 u_int32_t cmd, val32; 1666 int j; 1667 1668 /* Build the command word. */ 1669 cmd = BNX_NVM_COMMAND_DOIT | BNX_NVM_COMMAND_WR | cmd_flags; 1670 1671 /* Calculate the offset for buffered flash if translation is used. */ 1672 if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) { 1673 offset = ((offset / sc->bnx_flash_info->page_size) << 1674 sc->bnx_flash_info->page_bits) + 1675 (offset % sc->bnx_flash_info->page_size); 1676 } 1677 1678 /* 1679 * Clear the DONE bit separately, convert NVRAM data to big-endian, 1680 * set the NVRAM address to write, and issue the write command 1681 */ 1682 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE); 1683 memcpy(&val32, val, 4); 1684 val32 = htobe32(val32); 1685 REG_WR(sc, BNX_NVM_WRITE, val32); 1686 REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE); 1687 REG_WR(sc, BNX_NVM_COMMAND, cmd); 1688 1689 /* Wait for completion. */ 1690 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { 1691 DELAY(5); 1692 1693 if (REG_RD(sc, BNX_NVM_COMMAND) & BNX_NVM_COMMAND_DONE) 1694 break; 1695 } 1696 if (j >= NVRAM_TIMEOUT_COUNT) { 1697 BNX_PRINTF(sc, "%s(%d): Timeout error writing NVRAM at " 1698 "offset 0x%08X\n", __FILE__, __LINE__, offset); 1699 return (EBUSY); 1700 } 1701 1702 return (0); 1703 } 1704 #endif /* BNX_NVRAM_WRITE_SUPPORT */ 1705 1706 /****************************************************************************/ 1707 /* Initialize NVRAM access. */ 1708 /* */ 1709 /* Identify the NVRAM device in use and prepare the NVRAM interface to */ 1710 /* access that device. */ 1711 /* */ 1712 /* Returns: */ 1713 /* 0 on success, positive value on failure. */ 1714 /****************************************************************************/ 1715 int 1716 bnx_init_nvram(struct bnx_softc *sc) 1717 { 1718 u_int32_t val; 1719 int j, entry_count, rc = 0; 1720 struct flash_spec *flash; 1721 1722 DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__); 1723 1724 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) { 1725 sc->bnx_flash_info = &flash_5709; 1726 goto bnx_init_nvram_get_flash_size; 1727 } 1728 1729 /* Determine the selected interface. */ 1730 val = REG_RD(sc, BNX_NVM_CFG1); 1731 1732 entry_count = sizeof(flash_table) / sizeof(struct flash_spec); 1733 1734 /* 1735 * Flash reconfiguration is required to support additional 1736 * NVRAM devices not directly supported in hardware. 1737 * Check if the flash interface was reconfigured 1738 * by the bootcode. 1739 */ 1740 1741 if (val & 0x40000000) { 1742 /* Flash interface reconfigured by bootcode. */ 1743 1744 DBPRINT(sc,BNX_INFO_LOAD, 1745 "bnx_init_nvram(): Flash WAS reconfigured.\n"); 1746 1747 for (j = 0, flash = &flash_table[0]; j < entry_count; 1748 j++, flash++) { 1749 if ((val & FLASH_BACKUP_STRAP_MASK) == 1750 (flash->config1 & FLASH_BACKUP_STRAP_MASK)) { 1751 sc->bnx_flash_info = flash; 1752 break; 1753 } 1754 } 1755 } else { 1756 /* Flash interface not yet reconfigured. */ 1757 u_int32_t mask; 1758 1759 DBPRINT(sc,BNX_INFO_LOAD, 1760 "bnx_init_nvram(): Flash was NOT reconfigured.\n"); 1761 1762 if (val & (1 << 23)) 1763 mask = FLASH_BACKUP_STRAP_MASK; 1764 else 1765 mask = FLASH_STRAP_MASK; 1766 1767 /* Look for the matching NVRAM device configuration data. */ 1768 for (j = 0, flash = &flash_table[0]; j < entry_count; 1769 j++, flash++) { 1770 /* Check if the dev matches any of the known devices. */ 1771 if ((val & mask) == (flash->strapping & mask)) { 1772 /* Found a device match. */ 1773 sc->bnx_flash_info = flash; 1774 1775 /* Request access to the flash interface. */ 1776 if ((rc = bnx_acquire_nvram_lock(sc)) != 0) 1777 return (rc); 1778 1779 /* Reconfigure the flash interface. */ 1780 bnx_enable_nvram_access(sc); 1781 REG_WR(sc, BNX_NVM_CFG1, flash->config1); 1782 REG_WR(sc, BNX_NVM_CFG2, flash->config2); 1783 REG_WR(sc, BNX_NVM_CFG3, flash->config3); 1784 REG_WR(sc, BNX_NVM_WRITE1, flash->write1); 1785 bnx_disable_nvram_access(sc); 1786 bnx_release_nvram_lock(sc); 1787 1788 break; 1789 } 1790 } 1791 } 1792 1793 /* Check if a matching device was found. */ 1794 if (j == entry_count) { 1795 sc->bnx_flash_info = NULL; 1796 BNX_PRINTF(sc, "%s(%d): Unknown Flash NVRAM found!\n", 1797 __FILE__, __LINE__); 1798 rc = ENODEV; 1799 } 1800 1801 bnx_init_nvram_get_flash_size: 1802 /* Write the flash config data to the shared memory interface. */ 1803 val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_SHARED_HW_CFG_CONFIG2); 1804 val &= BNX_SHARED_HW_CFG2_NVM_SIZE_MASK; 1805 if (val) 1806 sc->bnx_flash_size = val; 1807 else 1808 sc->bnx_flash_size = sc->bnx_flash_info->total_size; 1809 1810 DBPRINT(sc, BNX_INFO_LOAD, "bnx_init_nvram() flash->total_size = " 1811 "0x%08X\n", sc->bnx_flash_info->total_size); 1812 1813 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__); 1814 1815 return (rc); 1816 } 1817 1818 /****************************************************************************/ 1819 /* Read an arbitrary range of data from NVRAM. */ 1820 /* */ 1821 /* Prepares the NVRAM interface for access and reads the requested data */ 1822 /* into the supplied buffer. */ 1823 /* */ 1824 /* Returns: */ 1825 /* 0 on success and the data read, positive value on failure. */ 1826 /****************************************************************************/ 1827 int 1828 bnx_nvram_read(struct bnx_softc *sc, u_int32_t offset, u_int8_t *ret_buf, 1829 int buf_size) 1830 { 1831 int rc = 0; 1832 u_int32_t cmd_flags, offset32, len32, extra; 1833 1834 if (buf_size == 0) 1835 return (0); 1836 1837 /* Request access to the flash interface. */ 1838 if ((rc = bnx_acquire_nvram_lock(sc)) != 0) 1839 return (rc); 1840 1841 /* Enable access to flash interface */ 1842 bnx_enable_nvram_access(sc); 1843 1844 len32 = buf_size; 1845 offset32 = offset; 1846 extra = 0; 1847 1848 cmd_flags = 0; 1849 1850 if (offset32 & 3) { 1851 u_int8_t buf[4]; 1852 u_int32_t pre_len; 1853 1854 offset32 &= ~3; 1855 pre_len = 4 - (offset & 3); 1856 1857 if (pre_len >= len32) { 1858 pre_len = len32; 1859 cmd_flags = 1860 BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST; 1861 } else 1862 cmd_flags = BNX_NVM_COMMAND_FIRST; 1863 1864 rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags); 1865 1866 if (rc) 1867 return (rc); 1868 1869 memcpy(ret_buf, buf + (offset & 3), pre_len); 1870 1871 offset32 += 4; 1872 ret_buf += pre_len; 1873 len32 -= pre_len; 1874 } 1875 1876 if (len32 & 3) { 1877 extra = 4 - (len32 & 3); 1878 len32 = (len32 + 4) & ~3; 1879 } 1880 1881 if (len32 == 4) { 1882 u_int8_t buf[4]; 1883 1884 if (cmd_flags) 1885 cmd_flags = BNX_NVM_COMMAND_LAST; 1886 else 1887 cmd_flags = 1888 BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST; 1889 1890 rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags); 1891 1892 memcpy(ret_buf, buf, 4 - extra); 1893 } else if (len32 > 0) { 1894 u_int8_t buf[4]; 1895 1896 /* Read the first word. */ 1897 if (cmd_flags) 1898 cmd_flags = 0; 1899 else 1900 cmd_flags = BNX_NVM_COMMAND_FIRST; 1901 1902 rc = bnx_nvram_read_dword(sc, offset32, ret_buf, cmd_flags); 1903 1904 /* Advance to the next dword. */ 1905 offset32 += 4; 1906 ret_buf += 4; 1907 len32 -= 4; 1908 1909 while (len32 > 4 && rc == 0) { 1910 rc = bnx_nvram_read_dword(sc, offset32, ret_buf, 0); 1911 1912 /* Advance to the next dword. */ 1913 offset32 += 4; 1914 ret_buf += 4; 1915 len32 -= 4; 1916 } 1917 1918 if (rc) 1919 return (rc); 1920 1921 cmd_flags = BNX_NVM_COMMAND_LAST; 1922 rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags); 1923 1924 memcpy(ret_buf, buf, 4 - extra); 1925 } 1926 1927 /* Disable access to flash interface and release the lock. */ 1928 bnx_disable_nvram_access(sc); 1929 bnx_release_nvram_lock(sc); 1930 1931 return (rc); 1932 } 1933 1934 #ifdef BNX_NVRAM_WRITE_SUPPORT 1935 /****************************************************************************/ 1936 /* Write an arbitrary range of data from NVRAM. */ 1937 /* */ 1938 /* Prepares the NVRAM interface for write access and writes the requested */ 1939 /* data from the supplied buffer. The caller is responsible for */ 1940 /* calculating any appropriate CRCs. */ 1941 /* */ 1942 /* Returns: */ 1943 /* 0 on success, positive value on failure. */ 1944 /****************************************************************************/ 1945 int 1946 bnx_nvram_write(struct bnx_softc *sc, u_int32_t offset, u_int8_t *data_buf, 1947 int buf_size) 1948 { 1949 u_int32_t written, offset32, len32; 1950 u_int8_t *buf, start[4], end[4]; 1951 int rc = 0; 1952 int align_start, align_end; 1953 1954 buf = data_buf; 1955 offset32 = offset; 1956 len32 = buf_size; 1957 align_start = align_end = 0; 1958 1959 if ((align_start = (offset32 & 3))) { 1960 offset32 &= ~3; 1961 len32 += align_start; 1962 if ((rc = bnx_nvram_read(sc, offset32, start, 4))) 1963 return (rc); 1964 } 1965 1966 if (len32 & 3) { 1967 if ((len32 > 4) || !align_start) { 1968 align_end = 4 - (len32 & 3); 1969 len32 += align_end; 1970 if ((rc = bnx_nvram_read(sc, offset32 + len32 - 4, 1971 end, 4))) { 1972 return (rc); 1973 } 1974 } 1975 } 1976 1977 if (align_start || align_end) { 1978 buf = malloc(len32, M_DEVBUF, M_NOWAIT); 1979 if (buf == 0) 1980 return (ENOMEM); 1981 1982 if (align_start) 1983 memcpy(buf, start, 4); 1984 1985 if (align_end) 1986 memcpy(buf + len32 - 4, end, 4); 1987 1988 memcpy(buf + align_start, data_buf, buf_size); 1989 } 1990 1991 written = 0; 1992 while ((written < len32) && (rc == 0)) { 1993 u_int32_t page_start, page_end, data_start, data_end; 1994 u_int32_t addr, cmd_flags; 1995 int i; 1996 u_int8_t flash_buffer[264]; 1997 1998 /* Find the page_start addr */ 1999 page_start = offset32 + written; 2000 page_start -= (page_start % sc->bnx_flash_info->page_size); 2001 /* Find the page_end addr */ 2002 page_end = page_start + sc->bnx_flash_info->page_size; 2003 /* Find the data_start addr */ 2004 data_start = (written == 0) ? offset32 : page_start; 2005 /* Find the data_end addr */ 2006 data_end = (page_end > offset32 + len32) ? 2007 (offset32 + len32) : page_end; 2008 2009 /* Request access to the flash interface. */ 2010 if ((rc = bnx_acquire_nvram_lock(sc)) != 0) 2011 goto nvram_write_end; 2012 2013 /* Enable access to flash interface */ 2014 bnx_enable_nvram_access(sc); 2015 2016 cmd_flags = BNX_NVM_COMMAND_FIRST; 2017 if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) { 2018 int j; 2019 2020 /* Read the whole page into the buffer 2021 * (non-buffer flash only) */ 2022 for (j = 0; j < sc->bnx_flash_info->page_size; j += 4) { 2023 if (j == (sc->bnx_flash_info->page_size - 4)) 2024 cmd_flags |= BNX_NVM_COMMAND_LAST; 2025 2026 rc = bnx_nvram_read_dword(sc, 2027 page_start + j, 2028 &flash_buffer[j], 2029 cmd_flags); 2030 2031 if (rc) 2032 goto nvram_write_end; 2033 2034 cmd_flags = 0; 2035 } 2036 } 2037 2038 /* Enable writes to flash interface (unlock write-protect) */ 2039 if ((rc = bnx_enable_nvram_write(sc)) != 0) 2040 goto nvram_write_end; 2041 2042 /* Erase the page */ 2043 if ((rc = bnx_nvram_erase_page(sc, page_start)) != 0) 2044 goto nvram_write_end; 2045 2046 /* Re-enable the write again for the actual write */ 2047 bnx_enable_nvram_write(sc); 2048 2049 /* Loop to write back the buffer data from page_start to 2050 * data_start */ 2051 i = 0; 2052 if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) { 2053 for (addr = page_start; addr < data_start; 2054 addr += 4, i += 4) { 2055 2056 rc = bnx_nvram_write_dword(sc, addr, 2057 &flash_buffer[i], cmd_flags); 2058 2059 if (rc != 0) 2060 goto nvram_write_end; 2061 2062 cmd_flags = 0; 2063 } 2064 } 2065 2066 /* Loop to write the new data from data_start to data_end */ 2067 for (addr = data_start; addr < data_end; addr += 4, i++) { 2068 if ((addr == page_end - 4) || 2069 (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED) 2070 && (addr == data_end - 4))) { 2071 2072 cmd_flags |= BNX_NVM_COMMAND_LAST; 2073 } 2074 2075 rc = bnx_nvram_write_dword(sc, addr, buf, cmd_flags); 2076 2077 if (rc != 0) 2078 goto nvram_write_end; 2079 2080 cmd_flags = 0; 2081 buf += 4; 2082 } 2083 2084 /* Loop to write back the buffer data from data_end 2085 * to page_end */ 2086 if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) { 2087 for (addr = data_end; addr < page_end; 2088 addr += 4, i += 4) { 2089 2090 if (addr == page_end-4) 2091 cmd_flags = BNX_NVM_COMMAND_LAST; 2092 2093 rc = bnx_nvram_write_dword(sc, addr, 2094 &flash_buffer[i], cmd_flags); 2095 2096 if (rc != 0) 2097 goto nvram_write_end; 2098 2099 cmd_flags = 0; 2100 } 2101 } 2102 2103 /* Disable writes to flash interface (lock write-protect) */ 2104 bnx_disable_nvram_write(sc); 2105 2106 /* Disable access to flash interface */ 2107 bnx_disable_nvram_access(sc); 2108 bnx_release_nvram_lock(sc); 2109 2110 /* Increment written */ 2111 written += data_end - data_start; 2112 } 2113 2114 nvram_write_end: 2115 if (align_start || align_end) 2116 free(buf, M_DEVBUF); 2117 2118 return (rc); 2119 } 2120 #endif /* BNX_NVRAM_WRITE_SUPPORT */ 2121 2122 /****************************************************************************/ 2123 /* Verifies that NVRAM is accessible and contains valid data. */ 2124 /* */ 2125 /* Reads the configuration data from NVRAM and verifies that the CRC is */ 2126 /* correct. */ 2127 /* */ 2128 /* Returns: */ 2129 /* 0 on success, positive value on failure. */ 2130 /****************************************************************************/ 2131 int 2132 bnx_nvram_test(struct bnx_softc *sc) 2133 { 2134 u_int32_t buf[BNX_NVRAM_SIZE / 4]; 2135 u_int8_t *data = (u_int8_t *) buf; 2136 int rc = 0; 2137 u_int32_t magic, csum; 2138 2139 /* 2140 * Check that the device NVRAM is valid by reading 2141 * the magic value at offset 0. 2142 */ 2143 if ((rc = bnx_nvram_read(sc, 0, data, 4)) != 0) 2144 goto bnx_nvram_test_done; 2145 2146 magic = bnx_be32toh(buf[0]); 2147 if (magic != BNX_NVRAM_MAGIC) { 2148 rc = ENODEV; 2149 BNX_PRINTF(sc, "%s(%d): Invalid NVRAM magic value! " 2150 "Expected: 0x%08X, Found: 0x%08X\n", 2151 __FILE__, __LINE__, BNX_NVRAM_MAGIC, magic); 2152 goto bnx_nvram_test_done; 2153 } 2154 2155 /* 2156 * Verify that the device NVRAM includes valid 2157 * configuration data. 2158 */ 2159 if ((rc = bnx_nvram_read(sc, 0x100, data, BNX_NVRAM_SIZE)) != 0) 2160 goto bnx_nvram_test_done; 2161 2162 csum = ether_crc32_le(data, 0x100); 2163 if (csum != BNX_CRC32_RESIDUAL) { 2164 rc = ENODEV; 2165 BNX_PRINTF(sc, "%s(%d): Invalid Manufacturing Information " 2166 "NVRAM CRC! Expected: 0x%08X, Found: 0x%08X\n", 2167 __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum); 2168 goto bnx_nvram_test_done; 2169 } 2170 2171 csum = ether_crc32_le(data + 0x100, 0x100); 2172 if (csum != BNX_CRC32_RESIDUAL) { 2173 BNX_PRINTF(sc, "%s(%d): Invalid Feature Configuration " 2174 "Information NVRAM CRC! Expected: 0x%08X, Found: 08%08X\n", 2175 __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum); 2176 rc = ENODEV; 2177 } 2178 2179 bnx_nvram_test_done: 2180 return (rc); 2181 } 2182 2183 /****************************************************************************/ 2184 /* Identifies the current media type of the controller and sets the PHY */ 2185 /* address. */ 2186 /* */ 2187 /* Returns: */ 2188 /* Nothing. */ 2189 /****************************************************************************/ 2190 void 2191 bnx_get_media(struct bnx_softc *sc) 2192 { 2193 u_int32_t val; 2194 2195 sc->bnx_phy_addr = 1; 2196 2197 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) { 2198 u_int32_t val = REG_RD(sc, BNX_MISC_DUAL_MEDIA_CTRL); 2199 u_int32_t bond_id = val & BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID; 2200 u_int32_t strap; 2201 2202 /* 2203 * The BCM5709S is software configurable 2204 * for Copper or SerDes operation. 2205 */ 2206 if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) { 2207 DBPRINT(sc, BNX_INFO_LOAD, 2208 "5709 bonded for copper.\n"); 2209 goto bnx_get_media_exit; 2210 } else if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) { 2211 DBPRINT(sc, BNX_INFO_LOAD, 2212 "5709 bonded for dual media.\n"); 2213 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG; 2214 goto bnx_get_media_exit; 2215 } 2216 2217 if (val & BNX_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE) 2218 strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21; 2219 else { 2220 strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) 2221 >> 8; 2222 } 2223 2224 if (sc->bnx_pa.pa_function == 0) { 2225 switch (strap) { 2226 case 0x4: 2227 case 0x5: 2228 case 0x6: 2229 DBPRINT(sc, BNX_INFO_LOAD, 2230 "BCM5709 s/w configured for SerDes.\n"); 2231 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG; 2232 break; 2233 default: 2234 DBPRINT(sc, BNX_INFO_LOAD, 2235 "BCM5709 s/w configured for Copper.\n"); 2236 } 2237 } else { 2238 switch (strap) { 2239 case 0x1: 2240 case 0x2: 2241 case 0x4: 2242 DBPRINT(sc, BNX_INFO_LOAD, 2243 "BCM5709 s/w configured for SerDes.\n"); 2244 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG; 2245 break; 2246 default: 2247 DBPRINT(sc, BNX_INFO_LOAD, 2248 "BCM5709 s/w configured for Copper.\n"); 2249 } 2250 } 2251 2252 } else if (BNX_CHIP_BOND_ID(sc) & BNX_CHIP_BOND_ID_SERDES_BIT) 2253 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG; 2254 2255 if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG) { 2256 sc->bnx_flags |= BNX_NO_WOL_FLAG; 2257 2258 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) 2259 sc->bnx_phy_flags |= BNX_PHY_IEEE_CLAUSE_45_FLAG; 2260 2261 /* 2262 * The BCM5708S, BCM5709S, and BCM5716S controllers use a 2263 * separate PHY for SerDes. 2264 */ 2265 if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) { 2266 sc->bnx_phy_addr = 2; 2267 val = REG_RD_IND(sc, sc->bnx_shmem_base + 2268 BNX_SHARED_HW_CFG_CONFIG); 2269 if (val & BNX_SHARED_HW_CFG_PHY_2_5G) { 2270 sc->bnx_phy_flags |= BNX_PHY_2_5G_CAPABLE_FLAG; 2271 DBPRINT(sc, BNX_INFO_LOAD, 2272 "Found 2.5Gb capable adapter\n"); 2273 } 2274 } 2275 } else if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) || 2276 (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5708)) 2277 sc->bnx_phy_flags |= BNX_PHY_CRC_FIX_FLAG; 2278 2279 bnx_get_media_exit: 2280 DBPRINT(sc, (BNX_INFO_LOAD | BNX_INFO_PHY), 2281 "Using PHY address %d.\n", sc->bnx_phy_addr); 2282 } 2283 2284 /****************************************************************************/ 2285 /* Performs PHY initialization required before MII drivers access the */ 2286 /* device. */ 2287 /* */ 2288 /* Returns: */ 2289 /* Nothing. */ 2290 /****************************************************************************/ 2291 void 2292 bnx_init_media(struct bnx_softc *sc) 2293 { 2294 if (sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) { 2295 /* 2296 * Configure the BCM5709S / BCM5716S PHYs to use traditional 2297 * IEEE Clause 22 method. Otherwise we have no way to attach 2298 * the PHY to the mii(4) layer. PHY specific configuration 2299 * is done by the mii(4) layer. 2300 */ 2301 2302 /* Select auto-negotiation MMD of the PHY. */ 2303 bnx_miibus_write_reg(&sc->bnx_dev, sc->bnx_phy_addr, 2304 BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_ADDR_EXT); 2305 2306 bnx_miibus_write_reg(&sc->bnx_dev, sc->bnx_phy_addr, 2307 BRGPHY_ADDR_EXT, BRGPHY_ADDR_EXT_AN_MMD); 2308 2309 bnx_miibus_write_reg(&sc->bnx_dev, sc->bnx_phy_addr, 2310 BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_COMBO_IEEE0); 2311 } 2312 } 2313 2314 /****************************************************************************/ 2315 /* Free any DMA memory owned by the driver. */ 2316 /* */ 2317 /* Scans through each data structre that requires DMA memory and frees */ 2318 /* the memory if allocated. */ 2319 /* */ 2320 /* Returns: */ 2321 /* Nothing. */ 2322 /****************************************************************************/ 2323 void 2324 bnx_dma_free(struct bnx_softc *sc) 2325 { 2326 int i; 2327 2328 DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__); 2329 2330 /* Destroy the status block. */ 2331 if (sc->status_block != NULL && sc->status_map != NULL) { 2332 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, 2333 sc->status_map->dm_mapsize, BUS_DMASYNC_POSTREAD); 2334 bus_dmamap_unload(sc->bnx_dmatag, sc->status_map); 2335 bus_dmamem_unmap(sc->bnx_dmatag, (caddr_t)sc->status_block, 2336 BNX_STATUS_BLK_SZ); 2337 bus_dmamem_free(sc->bnx_dmatag, &sc->status_seg, 2338 sc->status_rseg); 2339 bus_dmamap_destroy(sc->bnx_dmatag, sc->status_map); 2340 sc->status_block = NULL; 2341 sc->status_map = NULL; 2342 } 2343 2344 /* Destroy the statistics block. */ 2345 if (sc->stats_block != NULL && sc->stats_map != NULL) { 2346 bus_dmamap_unload(sc->bnx_dmatag, sc->stats_map); 2347 bus_dmamem_unmap(sc->bnx_dmatag, (caddr_t)sc->stats_block, 2348 BNX_STATS_BLK_SZ); 2349 bus_dmamem_free(sc->bnx_dmatag, &sc->stats_seg, 2350 sc->stats_rseg); 2351 bus_dmamap_destroy(sc->bnx_dmatag, sc->stats_map); 2352 sc->stats_block = NULL; 2353 sc->stats_map = NULL; 2354 } 2355 2356 /* Free, unmap and destroy all context memory pages. */ 2357 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) { 2358 for (i = 0; i < sc->ctx_pages; i++) { 2359 if (sc->ctx_block[i] != NULL) { 2360 bus_dmamap_unload(sc->bnx_dmatag, 2361 sc->ctx_map[i]); 2362 bus_dmamem_unmap(sc->bnx_dmatag, 2363 (caddr_t)sc->ctx_block[i], 2364 BCM_PAGE_SIZE); 2365 bus_dmamem_free(sc->bnx_dmatag, 2366 &sc->ctx_segs[i], sc->ctx_rsegs[i]); 2367 bus_dmamap_destroy(sc->bnx_dmatag, 2368 sc->ctx_map[i]); 2369 sc->ctx_block[i] = NULL; 2370 } 2371 } 2372 } 2373 2374 /* Free, unmap and destroy all TX buffer descriptor chain pages. */ 2375 for (i = 0; i < TX_PAGES; i++ ) { 2376 if (sc->tx_bd_chain[i] != NULL && 2377 sc->tx_bd_chain_map[i] != NULL) { 2378 bus_dmamap_unload(sc->bnx_dmatag, 2379 sc->tx_bd_chain_map[i]); 2380 bus_dmamem_unmap(sc->bnx_dmatag, 2381 (caddr_t)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ); 2382 bus_dmamem_free(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i], 2383 sc->tx_bd_chain_rseg[i]); 2384 bus_dmamap_destroy(sc->bnx_dmatag, 2385 sc->tx_bd_chain_map[i]); 2386 sc->tx_bd_chain[i] = NULL; 2387 sc->tx_bd_chain_map[i] = NULL; 2388 } 2389 } 2390 2391 /* Destroy the TX dmamaps. */ 2392 /* This isn't necessary since we dont allocate them up front */ 2393 2394 /* Free, unmap and destroy all RX buffer descriptor chain pages. */ 2395 for (i = 0; i < RX_PAGES; i++ ) { 2396 if (sc->rx_bd_chain[i] != NULL && 2397 sc->rx_bd_chain_map[i] != NULL) { 2398 bus_dmamap_unload(sc->bnx_dmatag, 2399 sc->rx_bd_chain_map[i]); 2400 bus_dmamem_unmap(sc->bnx_dmatag, 2401 (caddr_t)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ); 2402 bus_dmamem_free(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i], 2403 sc->rx_bd_chain_rseg[i]); 2404 2405 bus_dmamap_destroy(sc->bnx_dmatag, 2406 sc->rx_bd_chain_map[i]); 2407 sc->rx_bd_chain[i] = NULL; 2408 sc->rx_bd_chain_map[i] = NULL; 2409 } 2410 } 2411 2412 /* Unload and destroy the RX mbuf maps. */ 2413 for (i = 0; i < TOTAL_RX_BD; i++) { 2414 if (sc->rx_mbuf_map[i] != NULL) { 2415 bus_dmamap_unload(sc->bnx_dmatag, sc->rx_mbuf_map[i]); 2416 bus_dmamap_destroy(sc->bnx_dmatag, sc->rx_mbuf_map[i]); 2417 } 2418 } 2419 2420 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__); 2421 } 2422 2423 /****************************************************************************/ 2424 /* Allocate any DMA memory needed by the driver. */ 2425 /* */ 2426 /* Allocates DMA memory needed for the various global structures needed by */ 2427 /* hardware. */ 2428 /* */ 2429 /* Returns: */ 2430 /* 0 for success, positive value for failure. */ 2431 /****************************************************************************/ 2432 int 2433 bnx_dma_alloc(struct bnx_softc *sc) 2434 { 2435 int i, rc = 0; 2436 2437 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__); 2438 2439 /* 2440 * Allocate DMA memory for the status block, map the memory into DMA 2441 * space, and fetch the physical address of the block. 2442 */ 2443 if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATUS_BLK_SZ, 1, 2444 BNX_STATUS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->status_map)) { 2445 printf(": Could not create status block DMA map!\n"); 2446 rc = ENOMEM; 2447 goto bnx_dma_alloc_exit; 2448 } 2449 2450 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATUS_BLK_SZ, 2451 BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->status_seg, 1, 2452 &sc->status_rseg, BUS_DMA_NOWAIT | BUS_DMA_ZERO)) { 2453 printf(": Could not allocate status block DMA memory!\n"); 2454 rc = ENOMEM; 2455 goto bnx_dma_alloc_exit; 2456 } 2457 2458 if (bus_dmamem_map(sc->bnx_dmatag, &sc->status_seg, sc->status_rseg, 2459 BNX_STATUS_BLK_SZ, (caddr_t *)&sc->status_block, BUS_DMA_NOWAIT)) { 2460 printf(": Could not map status block DMA memory!\n"); 2461 rc = ENOMEM; 2462 goto bnx_dma_alloc_exit; 2463 } 2464 2465 if (bus_dmamap_load(sc->bnx_dmatag, sc->status_map, 2466 sc->status_block, BNX_STATUS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) { 2467 printf(": Could not load status block DMA memory!\n"); 2468 rc = ENOMEM; 2469 goto bnx_dma_alloc_exit; 2470 } 2471 2472 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, 2473 sc->status_map->dm_mapsize, BUS_DMASYNC_PREREAD); 2474 2475 sc->status_block_paddr = sc->status_map->dm_segs[0].ds_addr; 2476 2477 /* DRC - Fix for 64 bit addresses. */ 2478 DBPRINT(sc, BNX_INFO, "status_block_paddr = 0x%08X\n", 2479 (u_int32_t) sc->status_block_paddr); 2480 2481 /* BCM5709 uses host memory as cache for context memory. */ 2482 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) { 2483 sc->ctx_pages = 0x2000 / BCM_PAGE_SIZE; 2484 if (sc->ctx_pages == 0) 2485 sc->ctx_pages = 1; 2486 if (sc->ctx_pages > 4) /* XXX */ 2487 sc->ctx_pages = 4; 2488 2489 DBRUNIF((sc->ctx_pages > 512), 2490 BCE_PRINTF("%s(%d): Too many CTX pages! %d > 512\n", 2491 __FILE__, __LINE__, sc->ctx_pages)); 2492 2493 2494 for (i = 0; i < sc->ctx_pages; i++) { 2495 if (bus_dmamap_create(sc->bnx_dmatag, BCM_PAGE_SIZE, 2496 1, BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, 2497 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, 2498 &sc->ctx_map[i]) != 0) { 2499 rc = ENOMEM; 2500 goto bnx_dma_alloc_exit; 2501 } 2502 2503 if (bus_dmamem_alloc(sc->bnx_dmatag, BCM_PAGE_SIZE, 2504 BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->ctx_segs[i], 2505 1, &sc->ctx_rsegs[i], BUS_DMA_NOWAIT) != 0) { 2506 rc = ENOMEM; 2507 goto bnx_dma_alloc_exit; 2508 } 2509 2510 if (bus_dmamem_map(sc->bnx_dmatag, &sc->ctx_segs[i], 2511 sc->ctx_rsegs[i], BCM_PAGE_SIZE, 2512 (caddr_t *)&sc->ctx_block[i], 2513 BUS_DMA_NOWAIT) != 0) { 2514 rc = ENOMEM; 2515 goto bnx_dma_alloc_exit; 2516 } 2517 2518 if (bus_dmamap_load(sc->bnx_dmatag, sc->ctx_map[i], 2519 sc->ctx_block[i], BCM_PAGE_SIZE, NULL, 2520 BUS_DMA_NOWAIT) != 0) { 2521 rc = ENOMEM; 2522 goto bnx_dma_alloc_exit; 2523 } 2524 2525 bzero(sc->ctx_block[i], BCM_PAGE_SIZE); 2526 } 2527 } 2528 2529 /* 2530 * Allocate DMA memory for the statistics block, map the memory into 2531 * DMA space, and fetch the physical address of the block. 2532 */ 2533 if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATS_BLK_SZ, 1, 2534 BNX_STATS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->stats_map)) { 2535 printf(": Could not create stats block DMA map!\n"); 2536 rc = ENOMEM; 2537 goto bnx_dma_alloc_exit; 2538 } 2539 2540 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATS_BLK_SZ, 2541 BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->stats_seg, 1, 2542 &sc->stats_rseg, BUS_DMA_NOWAIT | BUS_DMA_ZERO)) { 2543 printf(": Could not allocate stats block DMA memory!\n"); 2544 rc = ENOMEM; 2545 goto bnx_dma_alloc_exit; 2546 } 2547 2548 if (bus_dmamem_map(sc->bnx_dmatag, &sc->stats_seg, sc->stats_rseg, 2549 BNX_STATS_BLK_SZ, (caddr_t *)&sc->stats_block, BUS_DMA_NOWAIT)) { 2550 printf(": Could not map stats block DMA memory!\n"); 2551 rc = ENOMEM; 2552 goto bnx_dma_alloc_exit; 2553 } 2554 2555 if (bus_dmamap_load(sc->bnx_dmatag, sc->stats_map, 2556 sc->stats_block, BNX_STATS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) { 2557 printf(": Could not load status block DMA memory!\n"); 2558 rc = ENOMEM; 2559 goto bnx_dma_alloc_exit; 2560 } 2561 2562 sc->stats_block_paddr = sc->stats_map->dm_segs[0].ds_addr; 2563 2564 /* DRC - Fix for 64 bit address. */ 2565 DBPRINT(sc,BNX_INFO, "stats_block_paddr = 0x%08X\n", 2566 (u_int32_t) sc->stats_block_paddr); 2567 2568 /* 2569 * Allocate DMA memory for the TX buffer descriptor chain, 2570 * and fetch the physical address of the block. 2571 */ 2572 for (i = 0; i < TX_PAGES; i++) { 2573 if (bus_dmamap_create(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ, 1, 2574 BNX_TX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT, 2575 &sc->tx_bd_chain_map[i])) { 2576 printf(": Could not create Tx desc %d DMA map!\n", i); 2577 rc = ENOMEM; 2578 goto bnx_dma_alloc_exit; 2579 } 2580 2581 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ, 2582 BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->tx_bd_chain_seg[i], 1, 2583 &sc->tx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) { 2584 printf(": Could not allocate TX desc %d DMA memory!\n", 2585 i); 2586 rc = ENOMEM; 2587 goto bnx_dma_alloc_exit; 2588 } 2589 2590 if (bus_dmamem_map(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i], 2591 sc->tx_bd_chain_rseg[i], BNX_TX_CHAIN_PAGE_SZ, 2592 (caddr_t *)&sc->tx_bd_chain[i], BUS_DMA_NOWAIT)) { 2593 printf(": Could not map TX desc %d DMA memory!\n", i); 2594 rc = ENOMEM; 2595 goto bnx_dma_alloc_exit; 2596 } 2597 2598 if (bus_dmamap_load(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 2599 (caddr_t)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ, NULL, 2600 BUS_DMA_NOWAIT)) { 2601 printf(": Could not load TX desc %d DMA memory!\n", i); 2602 rc = ENOMEM; 2603 goto bnx_dma_alloc_exit; 2604 } 2605 2606 sc->tx_bd_chain_paddr[i] = 2607 sc->tx_bd_chain_map[i]->dm_segs[0].ds_addr; 2608 2609 /* DRC - Fix for 64 bit systems. */ 2610 DBPRINT(sc, BNX_INFO, "tx_bd_chain_paddr[%d] = 0x%08X\n", 2611 i, (u_int32_t) sc->tx_bd_chain_paddr[i]); 2612 } 2613 2614 /* 2615 * Create lists to hold TX mbufs. 2616 */ 2617 TAILQ_INIT(&sc->tx_free_pkts); 2618 TAILQ_INIT(&sc->tx_used_pkts); 2619 sc->tx_pkt_count = 0; 2620 mtx_init(&sc->tx_pkt_mtx, IPL_NET); 2621 2622 /* 2623 * Allocate DMA memory for the Rx buffer descriptor chain, 2624 * and fetch the physical address of the block. 2625 */ 2626 for (i = 0; i < RX_PAGES; i++) { 2627 if (bus_dmamap_create(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ, 1, 2628 BNX_RX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT, 2629 &sc->rx_bd_chain_map[i])) { 2630 printf(": Could not create Rx desc %d DMA map!\n", i); 2631 rc = ENOMEM; 2632 goto bnx_dma_alloc_exit; 2633 } 2634 2635 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ, 2636 BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->rx_bd_chain_seg[i], 1, 2637 &sc->rx_bd_chain_rseg[i], BUS_DMA_NOWAIT | BUS_DMA_ZERO)) { 2638 printf(": Could not allocate Rx desc %d DMA memory!\n", 2639 i); 2640 rc = ENOMEM; 2641 goto bnx_dma_alloc_exit; 2642 } 2643 2644 if (bus_dmamem_map(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i], 2645 sc->rx_bd_chain_rseg[i], BNX_RX_CHAIN_PAGE_SZ, 2646 (caddr_t *)&sc->rx_bd_chain[i], BUS_DMA_NOWAIT)) { 2647 printf(": Could not map Rx desc %d DMA memory!\n", i); 2648 rc = ENOMEM; 2649 goto bnx_dma_alloc_exit; 2650 } 2651 2652 if (bus_dmamap_load(sc->bnx_dmatag, sc->rx_bd_chain_map[i], 2653 (caddr_t)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ, NULL, 2654 BUS_DMA_NOWAIT)) { 2655 printf(": Could not load Rx desc %d DMA memory!\n", i); 2656 rc = ENOMEM; 2657 goto bnx_dma_alloc_exit; 2658 } 2659 2660 sc->rx_bd_chain_paddr[i] = 2661 sc->rx_bd_chain_map[i]->dm_segs[0].ds_addr; 2662 2663 /* DRC - Fix for 64 bit systems. */ 2664 DBPRINT(sc, BNX_INFO, "rx_bd_chain_paddr[%d] = 0x%08X\n", 2665 i, (u_int32_t) sc->rx_bd_chain_paddr[i]); 2666 } 2667 2668 /* 2669 * Create DMA maps for the Rx buffer mbufs. 2670 */ 2671 for (i = 0; i < TOTAL_RX_BD; i++) { 2672 if (bus_dmamap_create(sc->bnx_dmatag, BNX_MAX_MRU, 2673 BNX_MAX_SEGMENTS, BNX_MAX_MRU, 0, BUS_DMA_NOWAIT, 2674 &sc->rx_mbuf_map[i])) { 2675 printf(": Could not create Rx mbuf %d DMA map!\n", i); 2676 rc = ENOMEM; 2677 goto bnx_dma_alloc_exit; 2678 } 2679 } 2680 2681 bnx_dma_alloc_exit: 2682 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__); 2683 2684 return(rc); 2685 } 2686 2687 /****************************************************************************/ 2688 /* Release all resources used by the driver. */ 2689 /* */ 2690 /* Releases all resources acquired by the driver including interrupts, */ 2691 /* interrupt handler, interfaces, mutexes, and DMA memory. */ 2692 /* */ 2693 /* Returns: */ 2694 /* Nothing. */ 2695 /****************************************************************************/ 2696 void 2697 bnx_release_resources(struct bnx_softc *sc) 2698 { 2699 struct pci_attach_args *pa = &(sc->bnx_pa); 2700 2701 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__); 2702 2703 bnx_dma_free(sc); 2704 2705 if (sc->bnx_intrhand != NULL) 2706 pci_intr_disestablish(pa->pa_pc, sc->bnx_intrhand); 2707 2708 if (sc->bnx_size) 2709 bus_space_unmap(sc->bnx_btag, sc->bnx_bhandle, sc->bnx_size); 2710 2711 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__); 2712 } 2713 2714 /****************************************************************************/ 2715 /* Firmware synchronization. */ 2716 /* */ 2717 /* Before performing certain events such as a chip reset, synchronize with */ 2718 /* the firmware first. */ 2719 /* */ 2720 /* Returns: */ 2721 /* 0 for success, positive value for failure. */ 2722 /****************************************************************************/ 2723 int 2724 bnx_fw_sync(struct bnx_softc *sc, u_int32_t msg_data) 2725 { 2726 int i, rc = 0; 2727 u_int32_t val; 2728 2729 /* Don't waste any time if we've timed out before. */ 2730 if (sc->bnx_fw_timed_out) { 2731 rc = EBUSY; 2732 goto bnx_fw_sync_exit; 2733 } 2734 2735 /* Increment the message sequence number. */ 2736 sc->bnx_fw_wr_seq++; 2737 msg_data |= sc->bnx_fw_wr_seq; 2738 2739 DBPRINT(sc, BNX_VERBOSE, "bnx_fw_sync(): msg_data = 0x%08X\n", 2740 msg_data); 2741 2742 /* Send the message to the bootcode driver mailbox. */ 2743 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data); 2744 2745 /* Wait for the bootcode to acknowledge the message. */ 2746 for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) { 2747 /* Check for a response in the bootcode firmware mailbox. */ 2748 val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_FW_MB); 2749 if ((val & BNX_FW_MSG_ACK) == (msg_data & BNX_DRV_MSG_SEQ)) 2750 break; 2751 DELAY(1000); 2752 } 2753 2754 /* If we've timed out, tell the bootcode that we've stopped waiting. */ 2755 if (((val & BNX_FW_MSG_ACK) != (msg_data & BNX_DRV_MSG_SEQ)) && 2756 ((msg_data & BNX_DRV_MSG_DATA) != BNX_DRV_MSG_DATA_WAIT0)) { 2757 BNX_PRINTF(sc, "%s(%d): Firmware synchronization timeout! " 2758 "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data); 2759 2760 msg_data &= ~BNX_DRV_MSG_CODE; 2761 msg_data |= BNX_DRV_MSG_CODE_FW_TIMEOUT; 2762 2763 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data); 2764 2765 sc->bnx_fw_timed_out = 1; 2766 rc = EBUSY; 2767 } 2768 2769 bnx_fw_sync_exit: 2770 return (rc); 2771 } 2772 2773 /****************************************************************************/ 2774 /* Load Receive Virtual 2 Physical (RV2P) processor firmware. */ 2775 /* */ 2776 /* Returns: */ 2777 /* Nothing. */ 2778 /****************************************************************************/ 2779 void 2780 bnx_load_rv2p_fw(struct bnx_softc *sc, u_int32_t *rv2p_code, 2781 u_int32_t rv2p_code_len, u_int32_t rv2p_proc) 2782 { 2783 int i; 2784 u_int32_t val; 2785 2786 /* Set the page size used by RV2P. */ 2787 if (rv2p_proc == RV2P_PROC2) { 2788 BNX_RV2P_PROC2_CHG_MAX_BD_PAGE(rv2p_code, 2789 USABLE_RX_BD_PER_PAGE); 2790 } 2791 2792 for (i = 0; i < rv2p_code_len; i += 8) { 2793 REG_WR(sc, BNX_RV2P_INSTR_HIGH, *rv2p_code); 2794 rv2p_code++; 2795 REG_WR(sc, BNX_RV2P_INSTR_LOW, *rv2p_code); 2796 rv2p_code++; 2797 2798 if (rv2p_proc == RV2P_PROC1) { 2799 val = (i / 8) | BNX_RV2P_PROC1_ADDR_CMD_RDWR; 2800 REG_WR(sc, BNX_RV2P_PROC1_ADDR_CMD, val); 2801 } else { 2802 val = (i / 8) | BNX_RV2P_PROC2_ADDR_CMD_RDWR; 2803 REG_WR(sc, BNX_RV2P_PROC2_ADDR_CMD, val); 2804 } 2805 } 2806 2807 /* Reset the processor, un-stall is done later. */ 2808 if (rv2p_proc == RV2P_PROC1) 2809 REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC1_RESET); 2810 else 2811 REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC2_RESET); 2812 } 2813 2814 /****************************************************************************/ 2815 /* Load RISC processor firmware. */ 2816 /* */ 2817 /* Loads firmware from the file if_bnxfw.h into the scratchpad memory */ 2818 /* associated with a particular processor. */ 2819 /* */ 2820 /* Returns: */ 2821 /* Nothing. */ 2822 /****************************************************************************/ 2823 void 2824 bnx_load_cpu_fw(struct bnx_softc *sc, struct cpu_reg *cpu_reg, 2825 struct fw_info *fw) 2826 { 2827 u_int32_t offset; 2828 u_int32_t val; 2829 2830 /* Halt the CPU. */ 2831 val = REG_RD_IND(sc, cpu_reg->mode); 2832 val |= cpu_reg->mode_value_halt; 2833 REG_WR_IND(sc, cpu_reg->mode, val); 2834 REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear); 2835 2836 /* Load the Text area. */ 2837 offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base); 2838 if (fw->text) { 2839 int j; 2840 2841 for (j = 0; j < (fw->text_len / 4); j++, offset += 4) 2842 REG_WR_IND(sc, offset, fw->text[j]); 2843 } 2844 2845 /* Load the Data area. */ 2846 offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base); 2847 if (fw->data) { 2848 int j; 2849 2850 for (j = 0; j < (fw->data_len / 4); j++, offset += 4) 2851 REG_WR_IND(sc, offset, fw->data[j]); 2852 } 2853 2854 /* Load the SBSS area. */ 2855 offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base); 2856 if (fw->sbss) { 2857 int j; 2858 2859 for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4) 2860 REG_WR_IND(sc, offset, fw->sbss[j]); 2861 } 2862 2863 /* Load the BSS area. */ 2864 offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base); 2865 if (fw->bss) { 2866 int j; 2867 2868 for (j = 0; j < (fw->bss_len/4); j++, offset += 4) 2869 REG_WR_IND(sc, offset, fw->bss[j]); 2870 } 2871 2872 /* Load the Read-Only area. */ 2873 offset = cpu_reg->spad_base + 2874 (fw->rodata_addr - cpu_reg->mips_view_base); 2875 if (fw->rodata) { 2876 int j; 2877 2878 for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4) 2879 REG_WR_IND(sc, offset, fw->rodata[j]); 2880 } 2881 2882 /* Clear the pre-fetch instruction. */ 2883 REG_WR_IND(sc, cpu_reg->inst, 0); 2884 REG_WR_IND(sc, cpu_reg->pc, fw->start_addr); 2885 2886 /* Start the CPU. */ 2887 val = REG_RD_IND(sc, cpu_reg->mode); 2888 val &= ~cpu_reg->mode_value_halt; 2889 REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear); 2890 REG_WR_IND(sc, cpu_reg->mode, val); 2891 } 2892 2893 /****************************************************************************/ 2894 /* Initialize the RV2P, RX, TX, TPAT, and COM CPUs. */ 2895 /* */ 2896 /* Loads the firmware for each CPU and starts the CPU. */ 2897 /* */ 2898 /* Returns: */ 2899 /* Nothing. */ 2900 /****************************************************************************/ 2901 void 2902 bnx_init_cpus(struct bnx_softc *sc) 2903 { 2904 struct bnx_firmware *bfw = &bnx_firmwares[BNX_FW_B06]; 2905 struct bnx_rv2p *rv2p = &bnx_rv2ps[BNX_RV2P]; 2906 struct cpu_reg cpu_reg; 2907 struct fw_info fw; 2908 2909 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) { 2910 bfw = &bnx_firmwares[BNX_FW_B09]; 2911 if ((BNX_CHIP_REV(sc) == BNX_CHIP_REV_Ax)) 2912 rv2p = &bnx_rv2ps[BNX_XI90_RV2P]; 2913 else 2914 rv2p = &bnx_rv2ps[BNX_XI_RV2P]; 2915 } 2916 2917 /* Initialize the RV2P processor. */ 2918 bnx_load_rv2p_fw(sc, rv2p->bnx_rv2p_proc1, 2919 rv2p->fw->bnx_rv2p_proc1len, RV2P_PROC1); 2920 bnx_load_rv2p_fw(sc, rv2p->bnx_rv2p_proc2, 2921 rv2p->fw->bnx_rv2p_proc2len, RV2P_PROC2); 2922 2923 /* Initialize the RX Processor. */ 2924 cpu_reg.mode = BNX_RXP_CPU_MODE; 2925 cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT; 2926 cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA; 2927 cpu_reg.state = BNX_RXP_CPU_STATE; 2928 cpu_reg.state_value_clear = 0xffffff; 2929 cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE; 2930 cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK; 2931 cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER; 2932 cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION; 2933 cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT; 2934 cpu_reg.spad_base = BNX_RXP_SCRATCH; 2935 cpu_reg.mips_view_base = 0x8000000; 2936 2937 fw.ver_major = bfw->fw->bnx_RXP_FwReleaseMajor; 2938 fw.ver_minor = bfw->fw->bnx_RXP_FwReleaseMinor; 2939 fw.ver_fix = bfw->fw->bnx_RXP_FwReleaseFix; 2940 fw.start_addr = bfw->fw->bnx_RXP_FwStartAddr; 2941 2942 fw.text_addr = bfw->fw->bnx_RXP_FwTextAddr; 2943 fw.text_len = bfw->fw->bnx_RXP_FwTextLen; 2944 fw.text_index = 0; 2945 fw.text = bfw->bnx_RXP_FwText; 2946 2947 fw.data_addr = bfw->fw->bnx_RXP_FwDataAddr; 2948 fw.data_len = bfw->fw->bnx_RXP_FwDataLen; 2949 fw.data_index = 0; 2950 fw.data = bfw->bnx_RXP_FwData; 2951 2952 fw.sbss_addr = bfw->fw->bnx_RXP_FwSbssAddr; 2953 fw.sbss_len = bfw->fw->bnx_RXP_FwSbssLen; 2954 fw.sbss_index = 0; 2955 fw.sbss = bfw->bnx_RXP_FwSbss; 2956 2957 fw.bss_addr = bfw->fw->bnx_RXP_FwBssAddr; 2958 fw.bss_len = bfw->fw->bnx_RXP_FwBssLen; 2959 fw.bss_index = 0; 2960 fw.bss = bfw->bnx_RXP_FwBss; 2961 2962 fw.rodata_addr = bfw->fw->bnx_RXP_FwRodataAddr; 2963 fw.rodata_len = bfw->fw->bnx_RXP_FwRodataLen; 2964 fw.rodata_index = 0; 2965 fw.rodata = bfw->bnx_RXP_FwRodata; 2966 2967 DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n"); 2968 bnx_load_cpu_fw(sc, &cpu_reg, &fw); 2969 2970 /* Initialize the TX Processor. */ 2971 cpu_reg.mode = BNX_TXP_CPU_MODE; 2972 cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT; 2973 cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA; 2974 cpu_reg.state = BNX_TXP_CPU_STATE; 2975 cpu_reg.state_value_clear = 0xffffff; 2976 cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE; 2977 cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK; 2978 cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER; 2979 cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION; 2980 cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT; 2981 cpu_reg.spad_base = BNX_TXP_SCRATCH; 2982 cpu_reg.mips_view_base = 0x8000000; 2983 2984 fw.ver_major = bfw->fw->bnx_TXP_FwReleaseMajor; 2985 fw.ver_minor = bfw->fw->bnx_TXP_FwReleaseMinor; 2986 fw.ver_fix = bfw->fw->bnx_TXP_FwReleaseFix; 2987 fw.start_addr = bfw->fw->bnx_TXP_FwStartAddr; 2988 2989 fw.text_addr = bfw->fw->bnx_TXP_FwTextAddr; 2990 fw.text_len = bfw->fw->bnx_TXP_FwTextLen; 2991 fw.text_index = 0; 2992 fw.text = bfw->bnx_TXP_FwText; 2993 2994 fw.data_addr = bfw->fw->bnx_TXP_FwDataAddr; 2995 fw.data_len = bfw->fw->bnx_TXP_FwDataLen; 2996 fw.data_index = 0; 2997 fw.data = bfw->bnx_TXP_FwData; 2998 2999 fw.sbss_addr = bfw->fw->bnx_TXP_FwSbssAddr; 3000 fw.sbss_len = bfw->fw->bnx_TXP_FwSbssLen; 3001 fw.sbss_index = 0; 3002 fw.sbss = bfw->bnx_TXP_FwSbss; 3003 3004 fw.bss_addr = bfw->fw->bnx_TXP_FwBssAddr; 3005 fw.bss_len = bfw->fw->bnx_TXP_FwBssLen; 3006 fw.bss_index = 0; 3007 fw.bss = bfw->bnx_TXP_FwBss; 3008 3009 fw.rodata_addr = bfw->fw->bnx_TXP_FwRodataAddr; 3010 fw.rodata_len = bfw->fw->bnx_TXP_FwRodataLen; 3011 fw.rodata_index = 0; 3012 fw.rodata = bfw->bnx_TXP_FwRodata; 3013 3014 DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n"); 3015 bnx_load_cpu_fw(sc, &cpu_reg, &fw); 3016 3017 /* Initialize the TX Patch-up Processor. */ 3018 cpu_reg.mode = BNX_TPAT_CPU_MODE; 3019 cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT; 3020 cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA; 3021 cpu_reg.state = BNX_TPAT_CPU_STATE; 3022 cpu_reg.state_value_clear = 0xffffff; 3023 cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE; 3024 cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK; 3025 cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER; 3026 cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION; 3027 cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT; 3028 cpu_reg.spad_base = BNX_TPAT_SCRATCH; 3029 cpu_reg.mips_view_base = 0x8000000; 3030 3031 fw.ver_major = bfw->fw->bnx_TPAT_FwReleaseMajor; 3032 fw.ver_minor = bfw->fw->bnx_TPAT_FwReleaseMinor; 3033 fw.ver_fix = bfw->fw->bnx_TPAT_FwReleaseFix; 3034 fw.start_addr = bfw->fw->bnx_TPAT_FwStartAddr; 3035 3036 fw.text_addr = bfw->fw->bnx_TPAT_FwTextAddr; 3037 fw.text_len = bfw->fw->bnx_TPAT_FwTextLen; 3038 fw.text_index = 0; 3039 fw.text = bfw->bnx_TPAT_FwText; 3040 3041 fw.data_addr = bfw->fw->bnx_TPAT_FwDataAddr; 3042 fw.data_len = bfw->fw->bnx_TPAT_FwDataLen; 3043 fw.data_index = 0; 3044 fw.data = bfw->bnx_TPAT_FwData; 3045 3046 fw.sbss_addr = bfw->fw->bnx_TPAT_FwSbssAddr; 3047 fw.sbss_len = bfw->fw->bnx_TPAT_FwSbssLen; 3048 fw.sbss_index = 0; 3049 fw.sbss = bfw->bnx_TPAT_FwSbss; 3050 3051 fw.bss_addr = bfw->fw->bnx_TPAT_FwBssAddr; 3052 fw.bss_len = bfw->fw->bnx_TPAT_FwBssLen; 3053 fw.bss_index = 0; 3054 fw.bss = bfw->bnx_TPAT_FwBss; 3055 3056 fw.rodata_addr = bfw->fw->bnx_TPAT_FwRodataAddr; 3057 fw.rodata_len = bfw->fw->bnx_TPAT_FwRodataLen; 3058 fw.rodata_index = 0; 3059 fw.rodata = bfw->bnx_TPAT_FwRodata; 3060 3061 DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n"); 3062 bnx_load_cpu_fw(sc, &cpu_reg, &fw); 3063 3064 /* Initialize the Completion Processor. */ 3065 cpu_reg.mode = BNX_COM_CPU_MODE; 3066 cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT; 3067 cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA; 3068 cpu_reg.state = BNX_COM_CPU_STATE; 3069 cpu_reg.state_value_clear = 0xffffff; 3070 cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE; 3071 cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK; 3072 cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER; 3073 cpu_reg.inst = BNX_COM_CPU_INSTRUCTION; 3074 cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT; 3075 cpu_reg.spad_base = BNX_COM_SCRATCH; 3076 cpu_reg.mips_view_base = 0x8000000; 3077 3078 fw.ver_major = bfw->fw->bnx_COM_FwReleaseMajor; 3079 fw.ver_minor = bfw->fw->bnx_COM_FwReleaseMinor; 3080 fw.ver_fix = bfw->fw->bnx_COM_FwReleaseFix; 3081 fw.start_addr = bfw->fw->bnx_COM_FwStartAddr; 3082 3083 fw.text_addr = bfw->fw->bnx_COM_FwTextAddr; 3084 fw.text_len = bfw->fw->bnx_COM_FwTextLen; 3085 fw.text_index = 0; 3086 fw.text = bfw->bnx_COM_FwText; 3087 3088 fw.data_addr = bfw->fw->bnx_COM_FwDataAddr; 3089 fw.data_len = bfw->fw->bnx_COM_FwDataLen; 3090 fw.data_index = 0; 3091 fw.data = bfw->bnx_COM_FwData; 3092 3093 fw.sbss_addr = bfw->fw->bnx_COM_FwSbssAddr; 3094 fw.sbss_len = bfw->fw->bnx_COM_FwSbssLen; 3095 fw.sbss_index = 0; 3096 fw.sbss = bfw->bnx_COM_FwSbss; 3097 3098 fw.bss_addr = bfw->fw->bnx_COM_FwBssAddr; 3099 fw.bss_len = bfw->fw->bnx_COM_FwBssLen; 3100 fw.bss_index = 0; 3101 fw.bss = bfw->bnx_COM_FwBss; 3102 3103 fw.rodata_addr = bfw->fw->bnx_COM_FwRodataAddr; 3104 fw.rodata_len = bfw->fw->bnx_COM_FwRodataLen; 3105 fw.rodata_index = 0; 3106 fw.rodata = bfw->bnx_COM_FwRodata; 3107 3108 DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n"); 3109 bnx_load_cpu_fw(sc, &cpu_reg, &fw); 3110 } 3111 3112 /****************************************************************************/ 3113 /* Initialize context memory. */ 3114 /* */ 3115 /* Clears the memory associated with each Context ID (CID). */ 3116 /* */ 3117 /* Returns: */ 3118 /* Nothing. */ 3119 /****************************************************************************/ 3120 void 3121 bnx_init_context(struct bnx_softc *sc) 3122 { 3123 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) { 3124 /* DRC: Replace this constant value with a #define. */ 3125 int i, retry_cnt = 10; 3126 u_int32_t val; 3127 3128 /* 3129 * BCM5709 context memory may be cached 3130 * in host memory so prepare the host memory 3131 * for access. 3132 */ 3133 val = BNX_CTX_COMMAND_ENABLED | BNX_CTX_COMMAND_MEM_INIT 3134 | (1 << 12); 3135 val |= (BCM_PAGE_BITS - 8) << 16; 3136 REG_WR(sc, BNX_CTX_COMMAND, val); 3137 3138 /* Wait for mem init command to complete. */ 3139 for (i = 0; i < retry_cnt; i++) { 3140 val = REG_RD(sc, BNX_CTX_COMMAND); 3141 if (!(val & BNX_CTX_COMMAND_MEM_INIT)) 3142 break; 3143 DELAY(2); 3144 } 3145 3146 /* ToDo: Consider returning an error here. */ 3147 3148 for (i = 0; i < sc->ctx_pages; i++) { 3149 int j; 3150 3151 /* Set the physaddr of the context memory cache. */ 3152 val = (u_int32_t)(sc->ctx_segs[i].ds_addr); 3153 REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA0, val | 3154 BNX_CTX_HOST_PAGE_TBL_DATA0_VALID); 3155 val = (u_int32_t) 3156 ((u_int64_t)sc->ctx_segs[i].ds_addr >> 32); 3157 REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA1, val); 3158 REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_CTRL, i | 3159 BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ); 3160 3161 /* Verify that the context memory write was successful. */ 3162 for (j = 0; j < retry_cnt; j++) { 3163 val = REG_RD(sc, BNX_CTX_HOST_PAGE_TBL_CTRL); 3164 if ((val & BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0) 3165 break; 3166 DELAY(5); 3167 } 3168 3169 /* ToDo: Consider returning an error here. */ 3170 } 3171 } else { 3172 u_int32_t vcid_addr, offset; 3173 3174 /* 3175 * For the 5706/5708, context memory is local to 3176 * the controller, so initialize the controller 3177 * context memory. 3178 */ 3179 3180 vcid_addr = GET_CID_ADDR(96); 3181 while (vcid_addr) { 3182 3183 vcid_addr -= PHY_CTX_SIZE; 3184 3185 REG_WR(sc, BNX_CTX_VIRT_ADDR, 0); 3186 REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr); 3187 3188 for(offset = 0; offset < PHY_CTX_SIZE; offset += 4) { 3189 CTX_WR(sc, 0x00, offset, 0); 3190 } 3191 3192 REG_WR(sc, BNX_CTX_VIRT_ADDR, vcid_addr); 3193 REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr); 3194 } 3195 } 3196 } 3197 3198 /****************************************************************************/ 3199 /* Fetch the permanent MAC address of the controller. */ 3200 /* */ 3201 /* Returns: */ 3202 /* Nothing. */ 3203 /****************************************************************************/ 3204 void 3205 bnx_get_mac_addr(struct bnx_softc *sc) 3206 { 3207 u_int32_t mac_lo = 0, mac_hi = 0; 3208 3209 /* 3210 * The NetXtreme II bootcode populates various NIC 3211 * power-on and runtime configuration items in a 3212 * shared memory area. The factory configured MAC 3213 * address is available from both NVRAM and the 3214 * shared memory area so we'll read the value from 3215 * shared memory for speed. 3216 */ 3217 3218 mac_hi = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_UPPER); 3219 mac_lo = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_LOWER); 3220 3221 if ((mac_lo == 0) && (mac_hi == 0)) { 3222 BNX_PRINTF(sc, "%s(%d): Invalid Ethernet address!\n", 3223 __FILE__, __LINE__); 3224 } else { 3225 sc->eaddr[0] = (u_char)(mac_hi >> 8); 3226 sc->eaddr[1] = (u_char)(mac_hi >> 0); 3227 sc->eaddr[2] = (u_char)(mac_lo >> 24); 3228 sc->eaddr[3] = (u_char)(mac_lo >> 16); 3229 sc->eaddr[4] = (u_char)(mac_lo >> 8); 3230 sc->eaddr[5] = (u_char)(mac_lo >> 0); 3231 } 3232 3233 DBPRINT(sc, BNX_INFO, "Permanent Ethernet address = " 3234 "%6D\n", sc->eaddr, ":"); 3235 } 3236 3237 /****************************************************************************/ 3238 /* Program the MAC address. */ 3239 /* */ 3240 /* Returns: */ 3241 /* Nothing. */ 3242 /****************************************************************************/ 3243 void 3244 bnx_set_mac_addr(struct bnx_softc *sc) 3245 { 3246 u_int32_t val; 3247 u_int8_t *mac_addr = sc->eaddr; 3248 3249 DBPRINT(sc, BNX_INFO, "Setting Ethernet address = " 3250 "%6D\n", sc->eaddr, ":"); 3251 3252 val = (mac_addr[0] << 8) | mac_addr[1]; 3253 3254 REG_WR(sc, BNX_EMAC_MAC_MATCH0, val); 3255 3256 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) | 3257 (mac_addr[4] << 8) | mac_addr[5]; 3258 3259 REG_WR(sc, BNX_EMAC_MAC_MATCH1, val); 3260 } 3261 3262 /****************************************************************************/ 3263 /* Stop the controller. */ 3264 /* */ 3265 /* Returns: */ 3266 /* Nothing. */ 3267 /****************************************************************************/ 3268 void 3269 bnx_stop(struct bnx_softc *sc) 3270 { 3271 struct ifnet *ifp = &sc->arpcom.ac_if; 3272 struct ifmedia_entry *ifm; 3273 struct mii_data *mii; 3274 int mtmp, itmp; 3275 3276 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__); 3277 3278 timeout_del(&sc->bnx_timeout); 3279 3280 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 3281 3282 /* Disable the transmit/receive blocks. */ 3283 REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff); 3284 REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS); 3285 DELAY(20); 3286 3287 bnx_disable_intr(sc); 3288 3289 /* Tell firmware that the driver is going away. */ 3290 bnx_reset(sc, BNX_DRV_MSG_CODE_SUSPEND_NO_WOL); 3291 3292 /* Free RX buffers. */ 3293 bnx_free_rx_chain(sc); 3294 3295 /* Free TX buffers. */ 3296 bnx_free_tx_chain(sc); 3297 3298 /* 3299 * Isolate/power down the PHY, but leave the media selection 3300 * unchanged so that things will be put back to normal when 3301 * we bring the interface back up. 3302 */ 3303 mii = &sc->bnx_mii; 3304 itmp = ifp->if_flags; 3305 ifp->if_flags |= IFF_UP; 3306 ifm = mii->mii_media.ifm_cur; 3307 mtmp = ifm->ifm_media; 3308 ifm->ifm_media = IFM_ETHER|IFM_NONE; 3309 mii_mediachg(mii); 3310 ifm->ifm_media = mtmp; 3311 ifp->if_flags = itmp; 3312 3313 ifp->if_timer = 0; 3314 3315 sc->bnx_link = 0; 3316 3317 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__); 3318 3319 bnx_mgmt_init(sc); 3320 } 3321 3322 int 3323 bnx_reset(struct bnx_softc *sc, u_int32_t reset_code) 3324 { 3325 struct pci_attach_args *pa = &(sc->bnx_pa); 3326 u_int32_t val; 3327 int i, rc = 0; 3328 3329 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__); 3330 3331 /* Wait for pending PCI transactions to complete. */ 3332 REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 3333 BNX_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE | 3334 BNX_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE | 3335 BNX_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE | 3336 BNX_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE); 3337 val = REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS); 3338 DELAY(5); 3339 3340 /* Disable DMA */ 3341 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) { 3342 val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL); 3343 val &= ~BNX_MISC_NEW_CORE_CTL_DMA_ENABLE; 3344 REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val); 3345 } 3346 3347 /* Assume bootcode is running. */ 3348 sc->bnx_fw_timed_out = 0; 3349 3350 /* Give the firmware a chance to prepare for the reset. */ 3351 rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT0 | reset_code); 3352 if (rc) 3353 goto bnx_reset_exit; 3354 3355 /* Set a firmware reminder that this is a soft reset. */ 3356 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_RESET_SIGNATURE, 3357 BNX_DRV_RESET_SIGNATURE_MAGIC); 3358 3359 /* Dummy read to force the chip to complete all current transactions. */ 3360 val = REG_RD(sc, BNX_MISC_ID); 3361 3362 /* Chip reset. */ 3363 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) { 3364 REG_WR(sc, BNX_MISC_COMMAND, BNX_MISC_COMMAND_SW_RESET); 3365 REG_RD(sc, BNX_MISC_COMMAND); 3366 DELAY(5); 3367 3368 val = BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA | 3369 BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP; 3370 3371 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG, 3372 val); 3373 } else { 3374 val = BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ | 3375 BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA | 3376 BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP; 3377 REG_WR(sc, BNX_PCICFG_MISC_CONFIG, val); 3378 3379 /* Allow up to 30us for reset to complete. */ 3380 for (i = 0; i < 10; i++) { 3381 val = REG_RD(sc, BNX_PCICFG_MISC_CONFIG); 3382 if ((val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ | 3383 BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) { 3384 break; 3385 } 3386 DELAY(10); 3387 } 3388 3389 /* Check that reset completed successfully. */ 3390 if (val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ | 3391 BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) { 3392 BNX_PRINTF(sc, "%s(%d): Reset failed!\n", 3393 __FILE__, __LINE__); 3394 rc = EBUSY; 3395 goto bnx_reset_exit; 3396 } 3397 } 3398 3399 /* Make sure byte swapping is properly configured. */ 3400 val = REG_RD(sc, BNX_PCI_SWAP_DIAG0); 3401 if (val != 0x01020304) { 3402 BNX_PRINTF(sc, "%s(%d): Byte swap is incorrect!\n", 3403 __FILE__, __LINE__); 3404 rc = ENODEV; 3405 goto bnx_reset_exit; 3406 } 3407 3408 /* Just completed a reset, assume that firmware is running again. */ 3409 sc->bnx_fw_timed_out = 0; 3410 3411 /* Wait for the firmware to finish its initialization. */ 3412 rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT1 | reset_code); 3413 if (rc) 3414 BNX_PRINTF(sc, "%s(%d): Firmware did not complete " 3415 "initialization!\n", __FILE__, __LINE__); 3416 3417 bnx_reset_exit: 3418 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__); 3419 3420 return (rc); 3421 } 3422 3423 int 3424 bnx_chipinit(struct bnx_softc *sc) 3425 { 3426 struct pci_attach_args *pa = &(sc->bnx_pa); 3427 u_int32_t val; 3428 int rc = 0; 3429 3430 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__); 3431 3432 /* Make sure the interrupt is not active. */ 3433 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT); 3434 3435 /* Initialize DMA byte/word swapping, configure the number of DMA */ 3436 /* channels and PCI clock compensation delay. */ 3437 val = BNX_DMA_CONFIG_DATA_BYTE_SWAP | 3438 BNX_DMA_CONFIG_DATA_WORD_SWAP | 3439 #if BYTE_ORDER == BIG_ENDIAN 3440 BNX_DMA_CONFIG_CNTL_BYTE_SWAP | 3441 #endif 3442 BNX_DMA_CONFIG_CNTL_WORD_SWAP | 3443 DMA_READ_CHANS << 12 | 3444 DMA_WRITE_CHANS << 16; 3445 3446 val |= (0x2 << 20) | BNX_DMA_CONFIG_CNTL_PCI_COMP_DLY; 3447 3448 if ((sc->bnx_flags & BNX_PCIX_FLAG) && (sc->bus_speed_mhz == 133)) 3449 val |= BNX_DMA_CONFIG_PCI_FAST_CLK_CMP; 3450 3451 /* 3452 * This setting resolves a problem observed on certain Intel PCI 3453 * chipsets that cannot handle multiple outstanding DMA operations. 3454 * See errata E9_5706A1_65. 3455 */ 3456 if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) && 3457 (BNX_CHIP_ID(sc) != BNX_CHIP_ID_5706_A0) && 3458 !(sc->bnx_flags & BNX_PCIX_FLAG)) 3459 val |= BNX_DMA_CONFIG_CNTL_PING_PONG_DMA; 3460 3461 REG_WR(sc, BNX_DMA_CONFIG, val); 3462 3463 #if 1 3464 /* Clear the PCI-X relaxed ordering bit. See errata E3_5708CA0_570. */ 3465 if (sc->bnx_flags & BNX_PCIX_FLAG) { 3466 val = pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD); 3467 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD, 3468 val & ~0x20000); 3469 } 3470 #endif 3471 3472 /* Enable the RX_V2P and Context state machines before access. */ 3473 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, 3474 BNX_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE | 3475 BNX_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE | 3476 BNX_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE); 3477 3478 /* Initialize context mapping and zero out the quick contexts. */ 3479 bnx_init_context(sc); 3480 3481 /* Initialize the on-boards CPUs */ 3482 bnx_init_cpus(sc); 3483 3484 /* Prepare NVRAM for access. */ 3485 if (bnx_init_nvram(sc)) { 3486 rc = ENODEV; 3487 goto bnx_chipinit_exit; 3488 } 3489 3490 /* Set the kernel bypass block size */ 3491 val = REG_RD(sc, BNX_MQ_CONFIG); 3492 val &= ~BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE; 3493 val |= BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE_256; 3494 3495 /* Enable bins used on the 5709. */ 3496 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) { 3497 val |= BNX_MQ_CONFIG_BIN_MQ_MODE; 3498 if (BNX_CHIP_ID(sc) == BNX_CHIP_ID_5709_A1) 3499 val |= BNX_MQ_CONFIG_HALT_DIS; 3500 } 3501 3502 REG_WR(sc, BNX_MQ_CONFIG, val); 3503 3504 val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE); 3505 REG_WR(sc, BNX_MQ_KNL_BYP_WIND_START, val); 3506 REG_WR(sc, BNX_MQ_KNL_WIND_END, val); 3507 3508 val = (BCM_PAGE_BITS - 8) << 24; 3509 REG_WR(sc, BNX_RV2P_CONFIG, val); 3510 3511 /* Configure page size. */ 3512 val = REG_RD(sc, BNX_TBDR_CONFIG); 3513 val &= ~BNX_TBDR_CONFIG_PAGE_SIZE; 3514 val |= (BCM_PAGE_BITS - 8) << 24 | 0x40; 3515 REG_WR(sc, BNX_TBDR_CONFIG, val); 3516 3517 #if 0 3518 /* Set the perfect match control register to default. */ 3519 REG_WR_IND(sc, BNX_RXP_PM_CTRL, 0); 3520 #endif 3521 3522 bnx_chipinit_exit: 3523 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__); 3524 3525 return(rc); 3526 } 3527 3528 /****************************************************************************/ 3529 /* Initialize the controller in preparation to send/receive traffic. */ 3530 /* */ 3531 /* Returns: */ 3532 /* 0 for success, positive value for failure. */ 3533 /****************************************************************************/ 3534 int 3535 bnx_blockinit(struct bnx_softc *sc) 3536 { 3537 u_int32_t reg, val; 3538 int rc = 0; 3539 3540 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__); 3541 3542 /* Load the hardware default MAC address. */ 3543 bnx_set_mac_addr(sc); 3544 3545 /* Set the Ethernet backoff seed value */ 3546 val = sc->eaddr[0] + (sc->eaddr[1] << 8) + (sc->eaddr[2] << 16) + 3547 (sc->eaddr[3]) + (sc->eaddr[4] << 8) + (sc->eaddr[5] << 16); 3548 REG_WR(sc, BNX_EMAC_BACKOFF_SEED, val); 3549 3550 sc->last_status_idx = 0; 3551 sc->rx_mode = BNX_EMAC_RX_MODE_SORT_MODE; 3552 3553 /* Set up link change interrupt generation. */ 3554 REG_WR(sc, BNX_EMAC_ATTENTION_ENA, BNX_EMAC_ATTENTION_ENA_LINK); 3555 REG_WR(sc, BNX_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE); 3556 3557 /* Program the physical address of the status block. */ 3558 REG_WR(sc, BNX_HC_STATUS_ADDR_L, (u_int32_t)(sc->status_block_paddr)); 3559 REG_WR(sc, BNX_HC_STATUS_ADDR_H, 3560 (u_int32_t)((u_int64_t)sc->status_block_paddr >> 32)); 3561 3562 /* Program the physical address of the statistics block. */ 3563 REG_WR(sc, BNX_HC_STATISTICS_ADDR_L, 3564 (u_int32_t)(sc->stats_block_paddr)); 3565 REG_WR(sc, BNX_HC_STATISTICS_ADDR_H, 3566 (u_int32_t)((u_int64_t)sc->stats_block_paddr >> 32)); 3567 3568 /* Program various host coalescing parameters. */ 3569 REG_WR(sc, BNX_HC_TX_QUICK_CONS_TRIP, (sc->bnx_tx_quick_cons_trip_int 3570 << 16) | sc->bnx_tx_quick_cons_trip); 3571 REG_WR(sc, BNX_HC_RX_QUICK_CONS_TRIP, (sc->bnx_rx_quick_cons_trip_int 3572 << 16) | sc->bnx_rx_quick_cons_trip); 3573 REG_WR(sc, BNX_HC_COMP_PROD_TRIP, (sc->bnx_comp_prod_trip_int << 16) | 3574 sc->bnx_comp_prod_trip); 3575 REG_WR(sc, BNX_HC_TX_TICKS, (sc->bnx_tx_ticks_int << 16) | 3576 sc->bnx_tx_ticks); 3577 REG_WR(sc, BNX_HC_RX_TICKS, (sc->bnx_rx_ticks_int << 16) | 3578 sc->bnx_rx_ticks); 3579 REG_WR(sc, BNX_HC_COM_TICKS, (sc->bnx_com_ticks_int << 16) | 3580 sc->bnx_com_ticks); 3581 REG_WR(sc, BNX_HC_CMD_TICKS, (sc->bnx_cmd_ticks_int << 16) | 3582 sc->bnx_cmd_ticks); 3583 REG_WR(sc, BNX_HC_STATS_TICKS, (sc->bnx_stats_ticks & 0xffff00)); 3584 REG_WR(sc, BNX_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */ 3585 REG_WR(sc, BNX_HC_CONFIG, 3586 (BNX_HC_CONFIG_RX_TMR_MODE | BNX_HC_CONFIG_TX_TMR_MODE | 3587 BNX_HC_CONFIG_COLLECT_STATS)); 3588 3589 /* Clear the internal statistics counters. */ 3590 REG_WR(sc, BNX_HC_COMMAND, BNX_HC_COMMAND_CLR_STAT_NOW); 3591 3592 /* Verify that bootcode is running. */ 3593 reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_SIGNATURE); 3594 3595 DBRUNIF(DB_RANDOMTRUE(bnx_debug_bootcode_running_failure), 3596 BNX_PRINTF(sc, "%s(%d): Simulating bootcode failure.\n", 3597 __FILE__, __LINE__); reg = 0); 3598 3599 if ((reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK) != 3600 BNX_DEV_INFO_SIGNATURE_MAGIC) { 3601 BNX_PRINTF(sc, "%s(%d): Bootcode not running! Found: 0x%08X, " 3602 "Expected: 08%08X\n", __FILE__, __LINE__, 3603 (reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK), 3604 BNX_DEV_INFO_SIGNATURE_MAGIC); 3605 rc = ENODEV; 3606 goto bnx_blockinit_exit; 3607 } 3608 3609 /* Check if any management firmware is running. */ 3610 reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_FEATURE); 3611 if (reg & (BNX_PORT_FEATURE_ASF_ENABLED | 3612 BNX_PORT_FEATURE_IMD_ENABLED)) { 3613 DBPRINT(sc, BNX_INFO, "Management F/W Enabled.\n"); 3614 sc->bnx_flags |= BNX_MFW_ENABLE_FLAG; 3615 } 3616 3617 sc->bnx_fw_ver = REG_RD_IND(sc, sc->bnx_shmem_base + 3618 BNX_DEV_INFO_BC_REV); 3619 3620 DBPRINT(sc, BNX_INFO, "bootcode rev = 0x%08X\n", sc->bnx_fw_ver); 3621 3622 /* Enable DMA */ 3623 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) { 3624 val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL); 3625 val |= BNX_MISC_NEW_CORE_CTL_DMA_ENABLE; 3626 REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val); 3627 } 3628 3629 /* Allow bootcode to apply any additional fixes before enabling MAC. */ 3630 rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT2 | BNX_DRV_MSG_CODE_RESET); 3631 3632 /* Enable link state change interrupt generation. */ 3633 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) { 3634 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, 3635 BNX_MISC_ENABLE_DEFAULT_XI); 3636 } else 3637 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, BNX_MISC_ENABLE_DEFAULT); 3638 3639 /* Enable all remaining blocks in the MAC. */ 3640 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, 0x5ffffff); 3641 REG_RD(sc, BNX_MISC_ENABLE_SET_BITS); 3642 DELAY(20); 3643 3644 bnx_blockinit_exit: 3645 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__); 3646 3647 return (rc); 3648 } 3649 3650 /****************************************************************************/ 3651 /* Encapsulate an mbuf cluster into the rx_bd chain. */ 3652 /* */ 3653 /* The NetXtreme II can support Jumbo frames by using multiple rx_bd's. */ 3654 /* This routine will map an mbuf cluster into 1 or more rx_bd's as */ 3655 /* necessary. */ 3656 /* */ 3657 /* Returns: */ 3658 /* 0 for success, positive value for failure. */ 3659 /****************************************************************************/ 3660 int 3661 bnx_get_buf(struct bnx_softc *sc, u_int16_t *prod, 3662 u_int16_t *chain_prod, u_int32_t *prod_bseq) 3663 { 3664 bus_dmamap_t map; 3665 struct mbuf *m; 3666 struct rx_bd *rxbd; 3667 int i; 3668 u_int32_t addr; 3669 #ifdef BNX_DEBUG 3670 u_int16_t debug_chain_prod = *chain_prod; 3671 #endif 3672 u_int16_t first_chain_prod; 3673 3674 DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Entering %s()\n", 3675 __FUNCTION__); 3676 3677 /* Make sure the inputs are valid. */ 3678 DBRUNIF((*chain_prod > MAX_RX_BD), 3679 printf("%s: RX producer out of range: 0x%04X > 0x%04X\n", 3680 *chain_prod, (u_int16_t) MAX_RX_BD)); 3681 3682 DBPRINT(sc, BNX_VERBOSE_RECV, "%s(enter): prod = 0x%04X, chain_prod = " 3683 "0x%04X, prod_bseq = 0x%08X\n", __FUNCTION__, *prod, *chain_prod, 3684 *prod_bseq); 3685 3686 /* This is a new mbuf allocation. */ 3687 m = MCLGETI(NULL, M_DONTWAIT, &sc->arpcom.ac_if, MCLBYTES); 3688 if (!m) 3689 return (ENOBUFS); 3690 m->m_len = m->m_pkthdr.len = MCLBYTES; 3691 /* the chip aligns the ip header for us, no need to m_adj */ 3692 3693 /* Map the mbuf cluster into device memory. */ 3694 map = sc->rx_mbuf_map[*chain_prod]; 3695 if (bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m, BUS_DMA_NOWAIT)) { 3696 m_freem(m); 3697 return (ENOBUFS); 3698 } 3699 first_chain_prod = *chain_prod; 3700 3701 /* Make sure there is room in the receive chain. */ 3702 if (map->dm_nsegs > sc->free_rx_bd) { 3703 bus_dmamap_unload(sc->bnx_dmatag, map); 3704 m_freem(m); 3705 return (EFBIG); 3706 } 3707 3708 #ifdef BNX_DEBUG 3709 /* Track the distribution of buffer segments. */ 3710 sc->rx_mbuf_segs[map->dm_nsegs]++; 3711 #endif 3712 3713 /* Update some debug statistics counters */ 3714 DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark), 3715 sc->rx_low_watermark = sc->free_rx_bd); 3716 DBRUNIF((sc->free_rx_bd == sc->max_rx_bd), sc->rx_empty_count++); 3717 3718 /* Setup the rx_bd for the first segment. */ 3719 rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)]; 3720 3721 addr = (u_int32_t)map->dm_segs[0].ds_addr; 3722 rxbd->rx_bd_haddr_lo = addr; 3723 addr = (u_int32_t)((u_int64_t)map->dm_segs[0].ds_addr >> 32); 3724 rxbd->rx_bd_haddr_hi = addr; 3725 rxbd->rx_bd_len = map->dm_segs[0].ds_len; 3726 rxbd->rx_bd_flags = RX_BD_FLAGS_START; 3727 *prod_bseq += map->dm_segs[0].ds_len; 3728 3729 for (i = 1; i < map->dm_nsegs; i++) { 3730 *prod = NEXT_RX_BD(*prod); 3731 *chain_prod = RX_CHAIN_IDX(*prod); 3732 3733 rxbd = 3734 &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)]; 3735 3736 addr = (u_int32_t)map->dm_segs[i].ds_addr; 3737 rxbd->rx_bd_haddr_lo = addr; 3738 addr = (u_int32_t)((u_int64_t)map->dm_segs[i].ds_addr >> 32); 3739 rxbd->rx_bd_haddr_hi = addr; 3740 rxbd->rx_bd_len = map->dm_segs[i].ds_len; 3741 rxbd->rx_bd_flags = 0; 3742 *prod_bseq += map->dm_segs[i].ds_len; 3743 } 3744 3745 rxbd->rx_bd_flags |= RX_BD_FLAGS_END; 3746 3747 /* 3748 * Save the mbuf, adjust the map pointer (swap map for first and 3749 * last rx_bd entry so that rx_mbuf_ptr and rx_mbuf_map matches) 3750 * and update our counter. 3751 */ 3752 sc->rx_mbuf_ptr[*chain_prod] = m; 3753 sc->rx_mbuf_map[first_chain_prod] = sc->rx_mbuf_map[*chain_prod]; 3754 sc->rx_mbuf_map[*chain_prod] = map; 3755 sc->free_rx_bd -= map->dm_nsegs; 3756 3757 DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_mbuf_chain(sc, debug_chain_prod, 3758 map->dm_nsegs)); 3759 3760 return (0); 3761 } 3762 3763 void 3764 bnx_alloc_pkts(void *xsc, void *arg) 3765 { 3766 struct bnx_softc *sc = xsc; 3767 struct ifnet *ifp = &sc->arpcom.ac_if; 3768 struct bnx_pkt *pkt; 3769 int i; 3770 int s; 3771 3772 for (i = 0; i < 4; i++) { /* magic! */ 3773 pkt = pool_get(bnx_tx_pool, PR_WAITOK); 3774 if (pkt == NULL) 3775 break; 3776 3777 if (bus_dmamap_create(sc->bnx_dmatag, 3778 MCLBYTES * BNX_MAX_SEGMENTS, USABLE_TX_BD, 3779 MCLBYTES, 0, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, 3780 &pkt->pkt_dmamap) != 0) 3781 goto put; 3782 3783 if (!ISSET(ifp->if_flags, IFF_UP)) 3784 goto stopping; 3785 3786 mtx_enter(&sc->tx_pkt_mtx); 3787 TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry); 3788 sc->tx_pkt_count++; 3789 mtx_leave(&sc->tx_pkt_mtx); 3790 } 3791 3792 mtx_enter(&sc->tx_pkt_mtx); 3793 CLR(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG); 3794 mtx_leave(&sc->tx_pkt_mtx); 3795 3796 s = splnet(); 3797 if (!IFQ_IS_EMPTY(&ifp->if_snd)) 3798 bnx_start(ifp); 3799 splx(s); 3800 3801 return; 3802 3803 stopping: 3804 bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap); 3805 put: 3806 pool_put(bnx_tx_pool, pkt); 3807 } 3808 3809 /****************************************************************************/ 3810 /* Initialize the TX context memory. */ 3811 /* */ 3812 /* Returns: */ 3813 /* Nothing */ 3814 /****************************************************************************/ 3815 void 3816 bnx_init_tx_context(struct bnx_softc *sc) 3817 { 3818 u_int32_t val; 3819 3820 /* Initialize the context ID for an L2 TX chain. */ 3821 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) { 3822 /* Set the CID type to support an L2 connection. */ 3823 val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2; 3824 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE_XI, val); 3825 val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16); 3826 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE_XI, val); 3827 3828 /* Point the hardware to the first page in the chain. */ 3829 val = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[0] >> 32); 3830 CTX_WR(sc, GET_CID_ADDR(TX_CID), 3831 BNX_L2CTX_TBDR_BHADDR_HI_XI, val); 3832 val = (u_int32_t)(sc->tx_bd_chain_paddr[0]); 3833 CTX_WR(sc, GET_CID_ADDR(TX_CID), 3834 BNX_L2CTX_TBDR_BHADDR_LO_XI, val); 3835 } else { 3836 /* Set the CID type to support an L2 connection. */ 3837 val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2; 3838 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE, val); 3839 val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16); 3840 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE, val); 3841 3842 /* Point the hardware to the first page in the chain. */ 3843 val = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[0] >> 32); 3844 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_HI, val); 3845 val = (u_int32_t)(sc->tx_bd_chain_paddr[0]); 3846 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_LO, val); 3847 } 3848 } 3849 3850 /****************************************************************************/ 3851 /* Allocate memory and initialize the TX data structures. */ 3852 /* */ 3853 /* Returns: */ 3854 /* 0 for success, positive value for failure. */ 3855 /****************************************************************************/ 3856 int 3857 bnx_init_tx_chain(struct bnx_softc *sc) 3858 { 3859 struct tx_bd *txbd; 3860 u_int32_t addr; 3861 int i, rc = 0; 3862 3863 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__); 3864 3865 /* Force an allocation of some dmamaps for tx up front */ 3866 bnx_alloc_pkts(sc, NULL); 3867 3868 /* Set the initial TX producer/consumer indices. */ 3869 sc->tx_prod = 0; 3870 sc->tx_cons = 0; 3871 sc->tx_prod_bseq = 0; 3872 sc->used_tx_bd = 0; 3873 sc->max_tx_bd = USABLE_TX_BD; 3874 DBRUNIF(1, sc->tx_hi_watermark = USABLE_TX_BD); 3875 DBRUNIF(1, sc->tx_full_count = 0); 3876 3877 /* 3878 * The NetXtreme II supports a linked-list structure called 3879 * a Buffer Descriptor Chain (or BD chain). A BD chain 3880 * consists of a series of 1 or more chain pages, each of which 3881 * consists of a fixed number of BD entries. 3882 * The last BD entry on each page is a pointer to the next page 3883 * in the chain, and the last pointer in the BD chain 3884 * points back to the beginning of the chain. 3885 */ 3886 3887 /* Set the TX next pointer chain entries. */ 3888 for (i = 0; i < TX_PAGES; i++) { 3889 int j; 3890 3891 txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE]; 3892 3893 /* Check if we've reached the last page. */ 3894 if (i == (TX_PAGES - 1)) 3895 j = 0; 3896 else 3897 j = i + 1; 3898 3899 addr = (u_int32_t)sc->tx_bd_chain_paddr[j]; 3900 txbd->tx_bd_haddr_lo = addr; 3901 addr = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[j] >> 32); 3902 txbd->tx_bd_haddr_hi = addr; 3903 } 3904 3905 /* 3906 * Initialize the context ID for an L2 TX chain. 3907 */ 3908 bnx_init_tx_context(sc); 3909 3910 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__); 3911 3912 return(rc); 3913 } 3914 3915 /****************************************************************************/ 3916 /* Free memory and clear the TX data structures. */ 3917 /* */ 3918 /* Returns: */ 3919 /* Nothing. */ 3920 /****************************************************************************/ 3921 void 3922 bnx_free_tx_chain(struct bnx_softc *sc) 3923 { 3924 struct bnx_pkt *pkt; 3925 int i; 3926 3927 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__); 3928 3929 /* Unmap, unload, and free any mbufs still in the TX mbuf chain. */ 3930 mtx_enter(&sc->tx_pkt_mtx); 3931 while ((pkt = TAILQ_FIRST(&sc->tx_used_pkts)) != NULL) { 3932 TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry); 3933 mtx_leave(&sc->tx_pkt_mtx); 3934 3935 bus_dmamap_sync(sc->bnx_dmatag, pkt->pkt_dmamap, 0, 3936 pkt->pkt_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE); 3937 bus_dmamap_unload(sc->bnx_dmatag, pkt->pkt_dmamap); 3938 3939 m_freem(pkt->pkt_mbuf); 3940 3941 mtx_enter(&sc->tx_pkt_mtx); 3942 TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry); 3943 } 3944 3945 /* Destroy all the dmamaps we allocated for TX */ 3946 while ((pkt = TAILQ_FIRST(&sc->tx_free_pkts)) != NULL) { 3947 TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry); 3948 sc->tx_pkt_count--; 3949 mtx_leave(&sc->tx_pkt_mtx); 3950 3951 bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap); 3952 pool_put(bnx_tx_pool, pkt); 3953 3954 mtx_enter(&sc->tx_pkt_mtx); 3955 } 3956 mtx_leave(&sc->tx_pkt_mtx); 3957 3958 /* Clear each TX chain page. */ 3959 for (i = 0; i < TX_PAGES; i++) 3960 bzero(sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ); 3961 3962 sc->used_tx_bd = 0; 3963 3964 /* Check if we lost any mbufs in the process. */ 3965 DBRUNIF((sc->tx_mbuf_alloc), 3966 printf("%s: Memory leak! Lost %d mbufs from tx chain!\n", 3967 sc->tx_mbuf_alloc)); 3968 3969 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__); 3970 } 3971 3972 /****************************************************************************/ 3973 /* Initialize the RX context memory. */ 3974 /* */ 3975 /* Returns: */ 3976 /* Nothing */ 3977 /****************************************************************************/ 3978 void 3979 bnx_init_rx_context(struct bnx_softc *sc) 3980 { 3981 u_int32_t val; 3982 3983 /* Initialize the context ID for an L2 RX chain. */ 3984 val = BNX_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE | 3985 BNX_L2CTX_CTX_TYPE_SIZE_L2 | (0x02 << 8); 3986 3987 /* 3988 * Set the level for generating pause frames 3989 * when the number of available rx_bd's gets 3990 * too low (the low watermark) and the level 3991 * when pause frames can be stopped (the high 3992 * watermark). 3993 */ 3994 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) { 3995 u_int32_t lo_water, hi_water; 3996 3997 lo_water = BNX_L2CTX_RX_LO_WATER_MARK_DEFAULT; 3998 hi_water = USABLE_RX_BD / 4; 3999 4000 lo_water /= BNX_L2CTX_RX_LO_WATER_MARK_SCALE; 4001 hi_water /= BNX_L2CTX_RX_HI_WATER_MARK_SCALE; 4002 4003 if (hi_water > 0xf) 4004 hi_water = 0xf; 4005 else if (hi_water == 0) 4006 lo_water = 0; 4007 4008 val |= (lo_water << BNX_L2CTX_RX_LO_WATER_MARK_SHIFT) | 4009 (hi_water << BNX_L2CTX_RX_HI_WATER_MARK_SHIFT); 4010 } 4011 4012 CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_CTX_TYPE, val); 4013 4014 /* Setup the MQ BIN mapping for l2_ctx_host_bseq. */ 4015 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) { 4016 val = REG_RD(sc, BNX_MQ_MAP_L2_5); 4017 REG_WR(sc, BNX_MQ_MAP_L2_5, val | BNX_MQ_MAP_L2_5_ARM); 4018 } 4019 4020 /* Point the hardware to the first page in the chain. */ 4021 val = (u_int32_t)((u_int64_t)sc->rx_bd_chain_paddr[0] >> 32); 4022 CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_HI, val); 4023 val = (u_int32_t)(sc->rx_bd_chain_paddr[0]); 4024 CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_LO, val); 4025 } 4026 4027 /****************************************************************************/ 4028 /* Add mbufs to the RX chain until its full or an mbuf allocation error */ 4029 /* occurs. */ 4030 /* */ 4031 /* Returns: */ 4032 /* Nothing */ 4033 /****************************************************************************/ 4034 void 4035 bnx_fill_rx_chain(struct bnx_softc *sc) 4036 { 4037 u_int16_t prod, chain_prod; 4038 u_int32_t prod_bseq; 4039 #ifdef BNX_DEBUG 4040 int rx_mbuf_alloc_before, free_rx_bd_before; 4041 #endif 4042 4043 DBPRINT(sc, BNX_EXCESSIVE_RECV, "Entering %s()\n", __FUNCTION__); 4044 4045 prod = sc->rx_prod; 4046 prod_bseq = sc->rx_prod_bseq; 4047 4048 #ifdef BNX_DEBUG 4049 rx_mbuf_alloc_before = sc->rx_mbuf_alloc; 4050 free_rx_bd_before = sc->free_rx_bd; 4051 #endif 4052 4053 /* Keep filling the RX chain until it's full. */ 4054 while (sc->free_rx_bd > 0) { 4055 chain_prod = RX_CHAIN_IDX(prod); 4056 if (bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq)) { 4057 /* Bail out if we can't add an mbuf to the chain. */ 4058 break; 4059 } 4060 prod = NEXT_RX_BD(prod); 4061 } 4062 4063 #if 0 4064 DBRUNIF((sc->rx_mbuf_alloc - rx_mbuf_alloc_before), 4065 BNX_PRINTF(sc, "%s(): Installed %d mbufs in %d rx_bd entries.\n", 4066 __FUNCTION__, (sc->rx_mbuf_alloc - rx_mbuf_alloc_before), 4067 (free_rx_bd_before - sc->free_rx_bd))); 4068 #endif 4069 4070 /* Save the RX chain producer index. */ 4071 sc->rx_prod = prod; 4072 sc->rx_prod_bseq = prod_bseq; 4073 4074 /* Tell the chip about the waiting rx_bd's. */ 4075 REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod); 4076 REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq); 4077 4078 DBPRINT(sc, BNX_EXCESSIVE_RECV, "Exiting %s()\n", __FUNCTION__); 4079 } 4080 4081 /****************************************************************************/ 4082 /* Allocate memory and initialize the RX data structures. */ 4083 /* */ 4084 /* Returns: */ 4085 /* 0 for success, positive value for failure. */ 4086 /****************************************************************************/ 4087 int 4088 bnx_init_rx_chain(struct bnx_softc *sc) 4089 { 4090 struct rx_bd *rxbd; 4091 int i, rc = 0; 4092 u_int32_t addr; 4093 4094 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__); 4095 4096 /* Initialize the RX producer and consumer indices. */ 4097 sc->rx_prod = 0; 4098 sc->rx_cons = 0; 4099 sc->rx_prod_bseq = 0; 4100 sc->free_rx_bd = USABLE_RX_BD; 4101 sc->max_rx_bd = USABLE_RX_BD; 4102 DBRUNIF(1, sc->rx_low_watermark = USABLE_RX_BD); 4103 DBRUNIF(1, sc->rx_empty_count = 0); 4104 4105 /* Initialize the RX next pointer chain entries. */ 4106 for (i = 0; i < RX_PAGES; i++) { 4107 int j; 4108 4109 rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE]; 4110 4111 /* Check if we've reached the last page. */ 4112 if (i == (RX_PAGES - 1)) 4113 j = 0; 4114 else 4115 j = i + 1; 4116 4117 /* Setup the chain page pointers. */ 4118 addr = (u_int32_t)((u_int64_t)sc->rx_bd_chain_paddr[j] >> 32); 4119 rxbd->rx_bd_haddr_hi = addr; 4120 addr = (u_int32_t)sc->rx_bd_chain_paddr[j]; 4121 rxbd->rx_bd_haddr_lo = addr; 4122 } 4123 4124 /* Fill up the RX chain. */ 4125 bnx_fill_rx_chain(sc); 4126 4127 for (i = 0; i < RX_PAGES; i++) 4128 bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i], 0, 4129 sc->rx_bd_chain_map[i]->dm_mapsize, 4130 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 4131 4132 bnx_init_rx_context(sc); 4133 4134 DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_chain(sc, 0, TOTAL_RX_BD)); 4135 4136 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__); 4137 4138 return(rc); 4139 } 4140 4141 /****************************************************************************/ 4142 /* Free memory and clear the RX data structures. */ 4143 /* */ 4144 /* Returns: */ 4145 /* Nothing. */ 4146 /****************************************************************************/ 4147 void 4148 bnx_free_rx_chain(struct bnx_softc *sc) 4149 { 4150 int i; 4151 #ifdef BNX_DEBUG 4152 int rx_mbuf_alloc_before; 4153 #endif 4154 4155 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__); 4156 4157 #ifdef BNX_DEBUG 4158 rx_mbuf_alloc_before = sc->rx_mbuf_alloc; 4159 #endif 4160 4161 /* Free any mbufs still in the RX mbuf chain. */ 4162 for (i = 0; i < TOTAL_RX_BD; i++) { 4163 if (sc->rx_mbuf_ptr[i] != NULL) { 4164 if (sc->rx_mbuf_map[i] != NULL) { 4165 bus_dmamap_sync(sc->bnx_dmatag, 4166 sc->rx_mbuf_map[i], 0, 4167 sc->rx_mbuf_map[i]->dm_mapsize, 4168 BUS_DMASYNC_POSTREAD); 4169 bus_dmamap_unload(sc->bnx_dmatag, 4170 sc->rx_mbuf_map[i]); 4171 } 4172 m_freem(sc->rx_mbuf_ptr[i]); 4173 sc->rx_mbuf_ptr[i] = NULL; 4174 DBRUNIF(1, sc->rx_mbuf_alloc--); 4175 } 4176 } 4177 4178 DBRUNIF((rx_mbuf_alloc_before - sc->rx_mbuf_alloc), 4179 BNX_PRINTF(sc, "%s(): Released %d mbufs.\n", 4180 __FUNCTION__, (rx_mbuf_alloc_before - sc->rx_mbuf_alloc))); 4181 4182 /* Clear each RX chain page. */ 4183 for (i = 0; i < RX_PAGES; i++) 4184 bzero(sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ); 4185 4186 sc->free_rx_bd = sc->max_rx_bd; 4187 4188 /* Check if we lost any mbufs in the process. */ 4189 DBRUNIF((sc->rx_mbuf_alloc), 4190 printf("%s: Memory leak! Lost %d mbufs from rx chain!\n", 4191 sc->rx_mbuf_alloc)); 4192 4193 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__); 4194 } 4195 4196 /****************************************************************************/ 4197 /* Set media options. */ 4198 /* */ 4199 /* Returns: */ 4200 /* 0 for success, positive value for failure. */ 4201 /****************************************************************************/ 4202 int 4203 bnx_ifmedia_upd(struct ifnet *ifp) 4204 { 4205 struct bnx_softc *sc; 4206 struct mii_data *mii; 4207 int rc = 0; 4208 4209 sc = ifp->if_softc; 4210 4211 mii = &sc->bnx_mii; 4212 sc->bnx_link = 0; 4213 if (mii->mii_instance) { 4214 struct mii_softc *miisc; 4215 LIST_FOREACH(miisc, &mii->mii_phys, mii_list) 4216 mii_phy_reset(miisc); 4217 } 4218 mii_mediachg(mii); 4219 4220 return(rc); 4221 } 4222 4223 /****************************************************************************/ 4224 /* Reports current media status. */ 4225 /* */ 4226 /* Returns: */ 4227 /* Nothing. */ 4228 /****************************************************************************/ 4229 void 4230 bnx_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) 4231 { 4232 struct bnx_softc *sc; 4233 struct mii_data *mii; 4234 int s; 4235 4236 sc = ifp->if_softc; 4237 4238 s = splnet(); 4239 4240 mii = &sc->bnx_mii; 4241 4242 mii_pollstat(mii); 4243 ifmr->ifm_status = mii->mii_media_status; 4244 ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) | 4245 sc->bnx_flowflags; 4246 4247 splx(s); 4248 } 4249 4250 /****************************************************************************/ 4251 /* Handles PHY generated interrupt events. */ 4252 /* */ 4253 /* Returns: */ 4254 /* Nothing. */ 4255 /****************************************************************************/ 4256 void 4257 bnx_phy_intr(struct bnx_softc *sc) 4258 { 4259 u_int32_t new_link_state, old_link_state; 4260 4261 new_link_state = sc->status_block->status_attn_bits & 4262 STATUS_ATTN_BITS_LINK_STATE; 4263 old_link_state = sc->status_block->status_attn_bits_ack & 4264 STATUS_ATTN_BITS_LINK_STATE; 4265 4266 /* Handle any changes if the link state has changed. */ 4267 if (new_link_state != old_link_state) { 4268 DBRUN(BNX_VERBOSE_INTR, bnx_dump_status_block(sc)); 4269 4270 sc->bnx_link = 0; 4271 timeout_del(&sc->bnx_timeout); 4272 bnx_tick(sc); 4273 4274 /* Update the status_attn_bits_ack field in the status block. */ 4275 if (new_link_state) { 4276 REG_WR(sc, BNX_PCICFG_STATUS_BIT_SET_CMD, 4277 STATUS_ATTN_BITS_LINK_STATE); 4278 DBPRINT(sc, BNX_INFO, "Link is now UP.\n"); 4279 } else { 4280 REG_WR(sc, BNX_PCICFG_STATUS_BIT_CLEAR_CMD, 4281 STATUS_ATTN_BITS_LINK_STATE); 4282 DBPRINT(sc, BNX_INFO, "Link is now DOWN.\n"); 4283 } 4284 } 4285 4286 /* Acknowledge the link change interrupt. */ 4287 REG_WR(sc, BNX_EMAC_STATUS, BNX_EMAC_STATUS_LINK_CHANGE); 4288 } 4289 4290 /****************************************************************************/ 4291 /* Handles received frame interrupt events. */ 4292 /* */ 4293 /* Returns: */ 4294 /* Nothing. */ 4295 /****************************************************************************/ 4296 void 4297 bnx_rx_intr(struct bnx_softc *sc) 4298 { 4299 struct status_block *sblk = sc->status_block; 4300 struct ifnet *ifp = &sc->arpcom.ac_if; 4301 u_int16_t hw_cons, sw_cons, sw_chain_cons; 4302 u_int16_t sw_prod, sw_chain_prod; 4303 u_int32_t sw_prod_bseq; 4304 struct l2_fhdr *l2fhdr; 4305 int i; 4306 4307 DBRUNIF(1, sc->rx_interrupts++); 4308 4309 /* Prepare the RX chain pages to be accessed by the host CPU. */ 4310 for (i = 0; i < RX_PAGES; i++) 4311 bus_dmamap_sync(sc->bnx_dmatag, 4312 sc->rx_bd_chain_map[i], 0, 4313 sc->rx_bd_chain_map[i]->dm_mapsize, 4314 BUS_DMASYNC_POSTWRITE); 4315 4316 /* Get the hardware's view of the RX consumer index. */ 4317 hw_cons = sc->hw_rx_cons = sblk->status_rx_quick_consumer_index0; 4318 if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE) 4319 hw_cons++; 4320 4321 /* Get working copies of the driver's view of the RX indices. */ 4322 sw_cons = sc->rx_cons; 4323 sw_prod = sc->rx_prod; 4324 sw_prod_bseq = sc->rx_prod_bseq; 4325 4326 DBPRINT(sc, BNX_INFO_RECV, "%s(enter): sw_prod = 0x%04X, " 4327 "sw_cons = 0x%04X, sw_prod_bseq = 0x%08X\n", 4328 __FUNCTION__, sw_prod, sw_cons, sw_prod_bseq); 4329 4330 /* Prevent speculative reads from getting ahead of the status block. */ 4331 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0, 4332 BUS_SPACE_BARRIER_READ); 4333 4334 /* Update some debug statistics counters */ 4335 DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark), 4336 sc->rx_low_watermark = sc->free_rx_bd); 4337 DBRUNIF((sc->free_rx_bd == USABLE_RX_BD), sc->rx_empty_count++); 4338 4339 /* 4340 * Scan through the receive chain as long 4341 * as there is work to do. 4342 */ 4343 while (sw_cons != hw_cons) { 4344 struct mbuf *m; 4345 struct rx_bd *rxbd; 4346 unsigned int len; 4347 u_int32_t status; 4348 4349 /* Clear the mbuf pointer. */ 4350 m = NULL; 4351 4352 /* Convert the producer/consumer indices to an actual 4353 * rx_bd index. 4354 */ 4355 sw_chain_cons = RX_CHAIN_IDX(sw_cons); 4356 sw_chain_prod = RX_CHAIN_IDX(sw_prod); 4357 4358 /* Get the used rx_bd. */ 4359 rxbd = &sc->rx_bd_chain[RX_PAGE(sw_chain_cons)][RX_IDX(sw_chain_cons)]; 4360 sc->free_rx_bd++; 4361 4362 DBRUN(BNX_VERBOSE_RECV, printf("%s(): ", __FUNCTION__); 4363 bnx_dump_rxbd(sc, sw_chain_cons, rxbd)); 4364 4365 /* The mbuf is stored with the last rx_bd entry of a packet. */ 4366 if (sc->rx_mbuf_ptr[sw_chain_cons] != NULL) { 4367 /* Validate that this is the last rx_bd. */ 4368 DBRUNIF((!(rxbd->rx_bd_flags & RX_BD_FLAGS_END)), 4369 printf("%s: Unexpected mbuf found in " 4370 "rx_bd[0x%04X]!\n", sw_chain_cons); 4371 bnx_breakpoint(sc)); 4372 4373 /* DRC - ToDo: If the received packet is small, say less 4374 * than 128 bytes, allocate a new mbuf here, 4375 * copy the data to that mbuf, and recycle 4376 * the mapped jumbo frame. 4377 */ 4378 4379 /* Unmap the mbuf from DMA space. */ 4380 bus_dmamap_sync(sc->bnx_dmatag, 4381 sc->rx_mbuf_map[sw_chain_cons], 0, 4382 sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize, 4383 BUS_DMASYNC_POSTREAD); 4384 bus_dmamap_unload(sc->bnx_dmatag, 4385 sc->rx_mbuf_map[sw_chain_cons]); 4386 4387 /* Remove the mbuf from RX chain. */ 4388 m = sc->rx_mbuf_ptr[sw_chain_cons]; 4389 sc->rx_mbuf_ptr[sw_chain_cons] = NULL; 4390 4391 /* 4392 * Frames received on the NetXteme II are prepended 4393 * with the l2_fhdr structure which provides status 4394 * information about the received frame (including 4395 * VLAN tags and checksum info) and are also 4396 * automatically adjusted to align the IP header 4397 * (i.e. two null bytes are inserted before the 4398 * Ethernet header). 4399 */ 4400 l2fhdr = mtod(m, struct l2_fhdr *); 4401 4402 len = l2fhdr->l2_fhdr_pkt_len; 4403 status = l2fhdr->l2_fhdr_status; 4404 4405 DBRUNIF(DB_RANDOMTRUE(bnx_debug_l2fhdr_status_check), 4406 printf("Simulating l2_fhdr status error.\n"); 4407 status = status | L2_FHDR_ERRORS_PHY_DECODE); 4408 4409 /* Watch for unusual sized frames. */ 4410 DBRUNIF(((len < BNX_MIN_MTU) || 4411 (len > BNX_MAX_JUMBO_ETHER_MTU_VLAN)), 4412 printf("%s: Unusual frame size found. " 4413 "Min(%d), Actual(%d), Max(%d)\n", (int)BNX_MIN_MTU, 4414 len, (int) BNX_MAX_JUMBO_ETHER_MTU_VLAN); 4415 4416 bnx_dump_mbuf(sc, m); 4417 bnx_breakpoint(sc)); 4418 4419 len -= ETHER_CRC_LEN; 4420 4421 /* Check the received frame for errors. */ 4422 if (status & (L2_FHDR_ERRORS_BAD_CRC | 4423 L2_FHDR_ERRORS_PHY_DECODE | 4424 L2_FHDR_ERRORS_ALIGNMENT | 4425 L2_FHDR_ERRORS_TOO_SHORT | 4426 L2_FHDR_ERRORS_GIANT_FRAME)) { 4427 /* Log the error and release the mbuf. */ 4428 ifp->if_ierrors++; 4429 DBRUNIF(1, sc->l2fhdr_status_errors++); 4430 4431 m_freem(m); 4432 m = NULL; 4433 goto bnx_rx_int_next_rx; 4434 } 4435 4436 /* Skip over the l2_fhdr when passing the data up 4437 * the stack. 4438 */ 4439 m_adj(m, sizeof(struct l2_fhdr) + ETHER_ALIGN); 4440 4441 /* Adjust the pckt length to match the received data. */ 4442 m->m_pkthdr.len = m->m_len = len; 4443 4444 /* Send the packet to the appropriate interface. */ 4445 m->m_pkthdr.rcvif = ifp; 4446 4447 DBRUN(BNX_VERBOSE_RECV, 4448 struct ether_header *eh; 4449 eh = mtod(m, struct ether_header *); 4450 printf("%s: to: %6D, from: %6D, type: 0x%04X\n", 4451 __FUNCTION__, eh->ether_dhost, ":", 4452 eh->ether_shost, ":", htons(eh->ether_type))); 4453 4454 /* Validate the checksum. */ 4455 4456 /* Check for an IP datagram. */ 4457 if (status & L2_FHDR_STATUS_IP_DATAGRAM) { 4458 /* Check if the IP checksum is valid. */ 4459 if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff) 4460 == 0) 4461 m->m_pkthdr.csum_flags |= 4462 M_IPV4_CSUM_IN_OK; 4463 else 4464 DBPRINT(sc, BNX_WARN_SEND, 4465 "%s(): Invalid IP checksum " 4466 "= 0x%04X!\n", 4467 __FUNCTION__, 4468 l2fhdr->l2_fhdr_ip_xsum 4469 ); 4470 } 4471 4472 /* Check for a valid TCP/UDP frame. */ 4473 if (status & (L2_FHDR_STATUS_TCP_SEGMENT | 4474 L2_FHDR_STATUS_UDP_DATAGRAM)) { 4475 /* Check for a good TCP/UDP checksum. */ 4476 if ((status & 4477 (L2_FHDR_ERRORS_TCP_XSUM | 4478 L2_FHDR_ERRORS_UDP_XSUM)) == 0) { 4479 m->m_pkthdr.csum_flags |= 4480 M_TCP_CSUM_IN_OK | 4481 M_UDP_CSUM_IN_OK; 4482 } else { 4483 DBPRINT(sc, BNX_WARN_SEND, 4484 "%s(): Invalid TCP/UDP " 4485 "checksum = 0x%04X!\n", 4486 __FUNCTION__, 4487 l2fhdr->l2_fhdr_tcp_udp_xsum); 4488 } 4489 } 4490 4491 /* 4492 * If we received a packet with a vlan tag, 4493 * attach that information to the packet. 4494 */ 4495 if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) && 4496 !(sc->rx_mode & BNX_EMAC_RX_MODE_KEEP_VLAN_TAG)) { 4497 #if NVLAN > 0 4498 DBPRINT(sc, BNX_VERBOSE_SEND, 4499 "%s(): VLAN tag = 0x%04X\n", 4500 __FUNCTION__, 4501 l2fhdr->l2_fhdr_vlan_tag); 4502 4503 m->m_pkthdr.ether_vtag = 4504 l2fhdr->l2_fhdr_vlan_tag; 4505 m->m_flags |= M_VLANTAG; 4506 #else 4507 m_freem(m); 4508 goto bnx_rx_int_next_rx; 4509 #endif 4510 } 4511 4512 /* Pass the mbuf off to the upper layers. */ 4513 ifp->if_ipackets++; 4514 4515 bnx_rx_int_next_rx: 4516 sw_prod = NEXT_RX_BD(sw_prod); 4517 } 4518 4519 sw_cons = NEXT_RX_BD(sw_cons); 4520 4521 /* If we have a packet, pass it up the stack */ 4522 if (m) { 4523 sc->rx_cons = sw_cons; 4524 4525 #if NBPFILTER > 0 4526 /* 4527 * Handle BPF listeners. Let the BPF 4528 * user see the packet. 4529 */ 4530 if (ifp->if_bpf) 4531 bpf_mtap_ether(ifp->if_bpf, m, 4532 BPF_DIRECTION_IN); 4533 #endif 4534 4535 DBPRINT(sc, BNX_VERBOSE_RECV, 4536 "%s(): Passing received frame up.\n", __FUNCTION__); 4537 ether_input_mbuf(ifp, m); 4538 DBRUNIF(1, sc->rx_mbuf_alloc--); 4539 4540 sw_cons = sc->rx_cons; 4541 } 4542 4543 /* Refresh hw_cons to see if there's new work */ 4544 if (sw_cons == hw_cons) { 4545 hw_cons = sc->hw_rx_cons = 4546 sblk->status_rx_quick_consumer_index0; 4547 if ((hw_cons & USABLE_RX_BD_PER_PAGE) == 4548 USABLE_RX_BD_PER_PAGE) 4549 hw_cons++; 4550 } 4551 4552 /* Prevent speculative reads from getting ahead of 4553 * the status block. 4554 */ 4555 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0, 4556 BUS_SPACE_BARRIER_READ); 4557 } 4558 4559 /* No new packets to process. Refill the RX chain and exit. */ 4560 sc->rx_cons = sw_cons; 4561 bnx_fill_rx_chain(sc); 4562 4563 for (i = 0; i < RX_PAGES; i++) 4564 bus_dmamap_sync(sc->bnx_dmatag, 4565 sc->rx_bd_chain_map[i], 0, 4566 sc->rx_bd_chain_map[i]->dm_mapsize, 4567 BUS_DMASYNC_PREWRITE); 4568 4569 DBPRINT(sc, BNX_INFO_RECV, "%s(exit): rx_prod = 0x%04X, " 4570 "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n", 4571 __FUNCTION__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq); 4572 } 4573 4574 /****************************************************************************/ 4575 /* Handles transmit completion interrupt events. */ 4576 /* */ 4577 /* Returns: */ 4578 /* Nothing. */ 4579 /****************************************************************************/ 4580 void 4581 bnx_tx_intr(struct bnx_softc *sc) 4582 { 4583 struct status_block *sblk = sc->status_block; 4584 struct ifnet *ifp = &sc->arpcom.ac_if; 4585 struct bnx_pkt *pkt; 4586 bus_dmamap_t map; 4587 u_int16_t hw_tx_cons, sw_tx_cons, sw_tx_chain_cons; 4588 4589 DBRUNIF(1, sc->tx_interrupts++); 4590 4591 /* Get the hardware's view of the TX consumer index. */ 4592 hw_tx_cons = sc->hw_tx_cons = sblk->status_tx_quick_consumer_index0; 4593 4594 /* Skip to the next entry if this is a chain page pointer. */ 4595 if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE) 4596 hw_tx_cons++; 4597 4598 sw_tx_cons = sc->tx_cons; 4599 4600 /* Prevent speculative reads from getting ahead of the status block. */ 4601 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0, 4602 BUS_SPACE_BARRIER_READ); 4603 4604 /* Cycle through any completed TX chain page entries. */ 4605 while (sw_tx_cons != hw_tx_cons) { 4606 #ifdef BNX_DEBUG 4607 struct tx_bd *txbd = NULL; 4608 #endif 4609 sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons); 4610 4611 DBPRINT(sc, BNX_INFO_SEND, "%s(): hw_tx_cons = 0x%04X, " 4612 "sw_tx_cons = 0x%04X, sw_tx_chain_cons = 0x%04X\n", 4613 __FUNCTION__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons); 4614 4615 DBRUNIF((sw_tx_chain_cons > MAX_TX_BD), 4616 printf("%s: TX chain consumer out of range! " 4617 " 0x%04X > 0x%04X\n", sw_tx_chain_cons, (int)MAX_TX_BD); 4618 bnx_breakpoint(sc)); 4619 4620 DBRUNIF(1, txbd = &sc->tx_bd_chain 4621 [TX_PAGE(sw_tx_chain_cons)][TX_IDX(sw_tx_chain_cons)]); 4622 4623 DBRUNIF((txbd == NULL), 4624 printf("%s: Unexpected NULL tx_bd[0x%04X]!\n", 4625 sw_tx_chain_cons); 4626 bnx_breakpoint(sc)); 4627 4628 DBRUN(BNX_INFO_SEND, printf("%s: ", __FUNCTION__); 4629 bnx_dump_txbd(sc, sw_tx_chain_cons, txbd)); 4630 4631 mtx_enter(&sc->tx_pkt_mtx); 4632 pkt = TAILQ_FIRST(&sc->tx_used_pkts); 4633 if (pkt != NULL && pkt->pkt_end_desc == sw_tx_chain_cons) { 4634 TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry); 4635 mtx_leave(&sc->tx_pkt_mtx); 4636 /* 4637 * Free the associated mbuf. Remember 4638 * that only the last tx_bd of a packet 4639 * has an mbuf pointer and DMA map. 4640 */ 4641 map = pkt->pkt_dmamap; 4642 bus_dmamap_sync(sc->bnx_dmatag, map, 0, 4643 map->dm_mapsize, BUS_DMASYNC_POSTWRITE); 4644 bus_dmamap_unload(sc->bnx_dmatag, map); 4645 4646 m_freem(pkt->pkt_mbuf); 4647 4648 ifp->if_opackets++; 4649 4650 mtx_enter(&sc->tx_pkt_mtx); 4651 TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry); 4652 } 4653 mtx_leave(&sc->tx_pkt_mtx); 4654 4655 sc->used_tx_bd--; 4656 sw_tx_cons = NEXT_TX_BD(sw_tx_cons); 4657 4658 /* Refresh hw_cons to see if there's new work. */ 4659 hw_tx_cons = sc->hw_tx_cons = 4660 sblk->status_tx_quick_consumer_index0; 4661 if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) == 4662 USABLE_TX_BD_PER_PAGE) 4663 hw_tx_cons++; 4664 4665 /* Prevent speculative reads from getting ahead of 4666 * the status block. 4667 */ 4668 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0, 4669 BUS_SPACE_BARRIER_READ); 4670 } 4671 4672 /* Clear the TX timeout timer. */ 4673 ifp->if_timer = 0; 4674 4675 /* Clear the tx hardware queue full flag. */ 4676 if (sc->used_tx_bd < sc->max_tx_bd) { 4677 DBRUNIF((ifp->if_flags & IFF_OACTIVE), 4678 printf("%s: Open TX chain! %d/%d (used/total)\n", 4679 sc->bnx_dev.dv_xname, sc->used_tx_bd, 4680 sc->max_tx_bd)); 4681 ifp->if_flags &= ~IFF_OACTIVE; 4682 } 4683 4684 sc->tx_cons = sw_tx_cons; 4685 } 4686 4687 /****************************************************************************/ 4688 /* Disables interrupt generation. */ 4689 /* */ 4690 /* Returns: */ 4691 /* Nothing. */ 4692 /****************************************************************************/ 4693 void 4694 bnx_disable_intr(struct bnx_softc *sc) 4695 { 4696 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT); 4697 REG_RD(sc, BNX_PCICFG_INT_ACK_CMD); 4698 } 4699 4700 /****************************************************************************/ 4701 /* Enables interrupt generation. */ 4702 /* */ 4703 /* Returns: */ 4704 /* Nothing. */ 4705 /****************************************************************************/ 4706 void 4707 bnx_enable_intr(struct bnx_softc *sc) 4708 { 4709 u_int32_t val; 4710 4711 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | 4712 BNX_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx); 4713 4714 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | 4715 sc->last_status_idx); 4716 4717 val = REG_RD(sc, BNX_HC_COMMAND); 4718 REG_WR(sc, BNX_HC_COMMAND, val | BNX_HC_COMMAND_COAL_NOW); 4719 } 4720 4721 /****************************************************************************/ 4722 /* Handles controller initialization. */ 4723 /* */ 4724 /* Returns: */ 4725 /* Nothing. */ 4726 /****************************************************************************/ 4727 void 4728 bnx_init(void *xsc) 4729 { 4730 struct bnx_softc *sc = (struct bnx_softc *)xsc; 4731 struct ifnet *ifp = &sc->arpcom.ac_if; 4732 u_int32_t ether_mtu; 4733 int txpl = 1; 4734 int s; 4735 4736 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__); 4737 4738 if (rw_enter(&bnx_tx_pool_lk, RW_WRITE | RW_INTR) != 0) 4739 return; 4740 if (bnx_tx_pool == NULL) { 4741 bnx_tx_pool = malloc(sizeof(*bnx_tx_pool), M_DEVBUF, M_WAITOK); 4742 if (bnx_tx_pool != NULL) { 4743 pool_init(bnx_tx_pool, sizeof(struct bnx_pkt), 4744 0, 0, 0, "bnxpkts", &pool_allocator_nointr); 4745 } else 4746 txpl = 0; 4747 } 4748 rw_exit(&bnx_tx_pool_lk); 4749 4750 if (!txpl) 4751 return; 4752 4753 s = splnet(); 4754 4755 bnx_stop(sc); 4756 4757 if (bnx_reset(sc, BNX_DRV_MSG_CODE_RESET)) { 4758 BNX_PRINTF(sc, "Controller reset failed!\n"); 4759 goto bnx_init_exit; 4760 } 4761 4762 if (bnx_chipinit(sc)) { 4763 BNX_PRINTF(sc, "Controller initialization failed!\n"); 4764 goto bnx_init_exit; 4765 } 4766 4767 if (bnx_blockinit(sc)) { 4768 BNX_PRINTF(sc, "Block initialization failed!\n"); 4769 goto bnx_init_exit; 4770 } 4771 4772 /* Load our MAC address. */ 4773 bcopy(sc->arpcom.ac_enaddr, sc->eaddr, ETHER_ADDR_LEN); 4774 bnx_set_mac_addr(sc); 4775 4776 /* Calculate and program the Ethernet MRU size. */ 4777 ether_mtu = BNX_MAX_STD_ETHER_MTU_VLAN; 4778 4779 DBPRINT(sc, BNX_INFO, "%s(): setting MRU = %d\n", 4780 __FUNCTION__, ether_mtu); 4781 4782 /* 4783 * Program the MRU and enable Jumbo frame 4784 * support. 4785 */ 4786 REG_WR(sc, BNX_EMAC_RX_MTU_SIZE, ether_mtu | 4787 BNX_EMAC_RX_MTU_SIZE_JUMBO_ENA); 4788 4789 /* Calculate the RX Ethernet frame size for rx_bd's. */ 4790 sc->max_frame_size = sizeof(struct l2_fhdr) + 2 + ether_mtu + 8; 4791 4792 DBPRINT(sc, BNX_INFO, "%s(): mclbytes = %d, mbuf_alloc_size = %d, " 4793 "max_frame_size = %d\n", __FUNCTION__, (int)MCLBYTES, 4794 sc->mbuf_alloc_size, sc->max_frame_size); 4795 4796 /* Program appropriate promiscuous/multicast filtering. */ 4797 bnx_iff(sc); 4798 4799 /* Init RX buffer descriptor chain. */ 4800 bnx_init_rx_chain(sc); 4801 4802 /* Init TX buffer descriptor chain. */ 4803 bnx_init_tx_chain(sc); 4804 4805 /* Enable host interrupts. */ 4806 bnx_enable_intr(sc); 4807 4808 bnx_ifmedia_upd(ifp); 4809 4810 ifp->if_flags |= IFF_RUNNING; 4811 ifp->if_flags &= ~IFF_OACTIVE; 4812 4813 timeout_add_sec(&sc->bnx_timeout, 1); 4814 4815 bnx_init_exit: 4816 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__); 4817 4818 splx(s); 4819 4820 return; 4821 } 4822 4823 void 4824 bnx_mgmt_init(struct bnx_softc *sc) 4825 { 4826 struct ifnet *ifp = &sc->arpcom.ac_if; 4827 u_int32_t val; 4828 4829 /* Check if the driver is still running and bail out if it is. */ 4830 if (ifp->if_flags & IFF_RUNNING) 4831 goto bnx_mgmt_init_exit; 4832 4833 /* Initialize the on-boards CPUs */ 4834 bnx_init_cpus(sc); 4835 4836 val = (BCM_PAGE_BITS - 8) << 24; 4837 REG_WR(sc, BNX_RV2P_CONFIG, val); 4838 4839 /* Enable all critical blocks in the MAC. */ 4840 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, 4841 BNX_MISC_ENABLE_SET_BITS_RX_V2P_ENABLE | 4842 BNX_MISC_ENABLE_SET_BITS_RX_DMA_ENABLE | 4843 BNX_MISC_ENABLE_SET_BITS_COMPLETION_ENABLE); 4844 REG_RD(sc, BNX_MISC_ENABLE_SET_BITS); 4845 DELAY(20); 4846 4847 bnx_ifmedia_upd(ifp); 4848 4849 bnx_mgmt_init_exit: 4850 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__); 4851 } 4852 4853 /****************************************************************************/ 4854 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */ 4855 /* memory visible to the controller. */ 4856 /* */ 4857 /* Returns: */ 4858 /* 0 for success, positive value for failure. */ 4859 /****************************************************************************/ 4860 int 4861 bnx_tx_encap(struct bnx_softc *sc, struct mbuf *m) 4862 { 4863 struct bnx_pkt *pkt; 4864 bus_dmamap_t map; 4865 struct tx_bd *txbd = NULL; 4866 u_int16_t vlan_tag = 0, flags = 0; 4867 u_int16_t chain_prod, prod; 4868 #ifdef BNX_DEBUG 4869 u_int16_t debug_prod; 4870 #endif 4871 u_int32_t addr, prod_bseq; 4872 int i, error; 4873 4874 mtx_enter(&sc->tx_pkt_mtx); 4875 pkt = TAILQ_FIRST(&sc->tx_free_pkts); 4876 if (pkt == NULL) { 4877 if (sc->tx_pkt_count <= TOTAL_TX_BD && 4878 !ISSET(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG) && 4879 workq_add_task(NULL, 0, bnx_alloc_pkts, sc, NULL) == 0) 4880 SET(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG); 4881 4882 mtx_leave(&sc->tx_pkt_mtx); 4883 return (ENOMEM); 4884 } 4885 TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry); 4886 mtx_leave(&sc->tx_pkt_mtx); 4887 4888 /* Transfer any checksum offload flags to the bd. */ 4889 if (m->m_pkthdr.csum_flags) { 4890 if (m->m_pkthdr.csum_flags & M_IPV4_CSUM_OUT) 4891 flags |= TX_BD_FLAGS_IP_CKSUM; 4892 if (m->m_pkthdr.csum_flags & 4893 (M_TCP_CSUM_OUT | M_UDP_CSUM_OUT)) 4894 flags |= TX_BD_FLAGS_TCP_UDP_CKSUM; 4895 } 4896 4897 #if NVLAN > 0 4898 /* Transfer any VLAN tags to the bd. */ 4899 if (m->m_flags & M_VLANTAG) { 4900 flags |= TX_BD_FLAGS_VLAN_TAG; 4901 vlan_tag = m->m_pkthdr.ether_vtag; 4902 } 4903 #endif 4904 4905 /* Map the mbuf into DMAable memory. */ 4906 prod = sc->tx_prod; 4907 chain_prod = TX_CHAIN_IDX(prod); 4908 map = pkt->pkt_dmamap; 4909 4910 /* Map the mbuf into our DMA address space. */ 4911 error = bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m, 4912 BUS_DMA_NOWAIT); 4913 if (error != 0) { 4914 printf("%s: Error mapping mbuf into TX chain!\n", 4915 sc->bnx_dev.dv_xname); 4916 sc->tx_dma_map_failures++; 4917 goto maperr; 4918 } 4919 4920 /* Make sure there's room in the chain */ 4921 if (map->dm_nsegs > (sc->max_tx_bd - sc->used_tx_bd)) 4922 goto nospace; 4923 4924 /* prod points to an empty tx_bd at this point. */ 4925 prod_bseq = sc->tx_prod_bseq; 4926 #ifdef BNX_DEBUG 4927 debug_prod = chain_prod; 4928 #endif 4929 4930 DBPRINT(sc, BNX_INFO_SEND, 4931 "%s(): Start: prod = 0x%04X, chain_prod = %04X, " 4932 "prod_bseq = 0x%08X\n", 4933 __FUNCTION__, prod, chain_prod, prod_bseq); 4934 4935 /* 4936 * Cycle through each mbuf segment that makes up 4937 * the outgoing frame, gathering the mapping info 4938 * for that segment and creating a tx_bd for the 4939 * mbuf. 4940 */ 4941 for (i = 0; i < map->dm_nsegs ; i++) { 4942 chain_prod = TX_CHAIN_IDX(prod); 4943 txbd = &sc->tx_bd_chain[TX_PAGE(chain_prod)][TX_IDX(chain_prod)]; 4944 4945 addr = (u_int32_t)map->dm_segs[i].ds_addr; 4946 txbd->tx_bd_haddr_lo = addr; 4947 addr = (u_int32_t)((u_int64_t)map->dm_segs[i].ds_addr >> 32); 4948 txbd->tx_bd_haddr_hi = addr; 4949 txbd->tx_bd_mss_nbytes = map->dm_segs[i].ds_len; 4950 txbd->tx_bd_vlan_tag = vlan_tag; 4951 txbd->tx_bd_flags = flags; 4952 prod_bseq += map->dm_segs[i].ds_len; 4953 if (i == 0) 4954 txbd->tx_bd_flags |= TX_BD_FLAGS_START; 4955 prod = NEXT_TX_BD(prod); 4956 } 4957 4958 /* Set the END flag on the last TX buffer descriptor. */ 4959 txbd->tx_bd_flags |= TX_BD_FLAGS_END; 4960 4961 DBRUN(BNX_INFO_SEND, bnx_dump_tx_chain(sc, debug_prod, 4962 map->dm_nsegs)); 4963 4964 DBPRINT(sc, BNX_INFO_SEND, 4965 "%s(): End: prod = 0x%04X, chain_prod = %04X, " 4966 "prod_bseq = 0x%08X\n", 4967 __FUNCTION__, prod, chain_prod, prod_bseq); 4968 4969 pkt->pkt_mbuf = m; 4970 pkt->pkt_end_desc = chain_prod; 4971 4972 mtx_enter(&sc->tx_pkt_mtx); 4973 TAILQ_INSERT_TAIL(&sc->tx_used_pkts, pkt, pkt_entry); 4974 mtx_leave(&sc->tx_pkt_mtx); 4975 4976 sc->used_tx_bd += map->dm_nsegs; 4977 4978 /* Update some debug statistics counters */ 4979 DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark), 4980 sc->tx_hi_watermark = sc->used_tx_bd); 4981 DBRUNIF(sc->used_tx_bd == sc->max_tx_bd, sc->tx_full_count++); 4982 DBRUNIF(1, sc->tx_mbuf_alloc++); 4983 4984 DBRUN(BNX_VERBOSE_SEND, bnx_dump_tx_mbuf_chain(sc, chain_prod, 4985 map->dm_nsegs)); 4986 4987 bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize, 4988 BUS_DMASYNC_PREWRITE); 4989 4990 /* prod points to the next free tx_bd at this point. */ 4991 sc->tx_prod = prod; 4992 sc->tx_prod_bseq = prod_bseq; 4993 4994 return (0); 4995 4996 nospace: 4997 bus_dmamap_unload(sc->bnx_dmatag, map); 4998 maperr: 4999 mtx_enter(&sc->tx_pkt_mtx); 5000 TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry); 5001 mtx_leave(&sc->tx_pkt_mtx); 5002 5003 return (ENOMEM); 5004 } 5005 5006 /****************************************************************************/ 5007 /* Main transmit routine. */ 5008 /* */ 5009 /* Returns: */ 5010 /* Nothing. */ 5011 /****************************************************************************/ 5012 void 5013 bnx_start(struct ifnet *ifp) 5014 { 5015 struct bnx_softc *sc = ifp->if_softc; 5016 struct mbuf *m_head = NULL; 5017 int count = 0; 5018 u_int16_t tx_prod, tx_chain_prod; 5019 5020 /* If there's no link or the transmit queue is empty then just exit. */ 5021 if (!sc->bnx_link || IFQ_IS_EMPTY(&ifp->if_snd)) { 5022 DBPRINT(sc, BNX_INFO_SEND, 5023 "%s(): No link or transmit queue empty.\n", __FUNCTION__); 5024 goto bnx_start_exit; 5025 } 5026 5027 /* prod points to the next free tx_bd. */ 5028 tx_prod = sc->tx_prod; 5029 tx_chain_prod = TX_CHAIN_IDX(tx_prod); 5030 5031 DBPRINT(sc, BNX_INFO_SEND, "%s(): Start: tx_prod = 0x%04X, " 5032 "tx_chain_prod = %04X, tx_prod_bseq = 0x%08X\n", 5033 __FUNCTION__, tx_prod, tx_chain_prod, sc->tx_prod_bseq); 5034 5035 /* 5036 * Keep adding entries while there is space in the ring. 5037 */ 5038 while (sc->used_tx_bd < sc->max_tx_bd) { 5039 /* Check for any frames to send. */ 5040 IFQ_POLL(&ifp->if_snd, m_head); 5041 if (m_head == NULL) 5042 break; 5043 5044 /* 5045 * Pack the data into the transmit ring. If we 5046 * don't have room, set the OACTIVE flag to wait 5047 * for the NIC to drain the chain. 5048 */ 5049 if (bnx_tx_encap(sc, m_head)) { 5050 ifp->if_flags |= IFF_OACTIVE; 5051 DBPRINT(sc, BNX_INFO_SEND, "TX chain is closed for " 5052 "business! Total tx_bd used = %d\n", 5053 sc->used_tx_bd); 5054 break; 5055 } 5056 5057 IFQ_DEQUEUE(&ifp->if_snd, m_head); 5058 count++; 5059 5060 #if NBPFILTER > 0 5061 /* Send a copy of the frame to any BPF listeners. */ 5062 if (ifp->if_bpf) 5063 bpf_mtap_ether(ifp->if_bpf, m_head, BPF_DIRECTION_OUT); 5064 #endif 5065 } 5066 5067 if (count == 0) { 5068 /* no packets were dequeued */ 5069 DBPRINT(sc, BNX_VERBOSE_SEND, 5070 "%s(): No packets were dequeued\n", __FUNCTION__); 5071 goto bnx_start_exit; 5072 } 5073 5074 /* Update the driver's counters. */ 5075 tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod); 5076 5077 DBPRINT(sc, BNX_INFO_SEND, "%s(): End: tx_prod = 0x%04X, tx_chain_prod " 5078 "= 0x%04X, tx_prod_bseq = 0x%08X\n", __FUNCTION__, tx_prod, 5079 tx_chain_prod, sc->tx_prod_bseq); 5080 5081 /* Start the transmit. */ 5082 REG_WR16(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BIDX, sc->tx_prod); 5083 REG_WR(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BSEQ, sc->tx_prod_bseq); 5084 5085 /* Set the tx timeout. */ 5086 ifp->if_timer = BNX_TX_TIMEOUT; 5087 5088 bnx_start_exit: 5089 return; 5090 } 5091 5092 /****************************************************************************/ 5093 /* Handles any IOCTL calls from the operating system. */ 5094 /* */ 5095 /* Returns: */ 5096 /* 0 for success, positive value for failure. */ 5097 /****************************************************************************/ 5098 int 5099 bnx_ioctl(struct ifnet *ifp, u_long command, caddr_t data) 5100 { 5101 struct bnx_softc *sc = ifp->if_softc; 5102 struct ifaddr *ifa = (struct ifaddr *) data; 5103 struct ifreq *ifr = (struct ifreq *) data; 5104 struct mii_data *mii = &sc->bnx_mii; 5105 int s, error = 0; 5106 5107 s = splnet(); 5108 5109 switch (command) { 5110 case SIOCSIFADDR: 5111 ifp->if_flags |= IFF_UP; 5112 if (!(ifp->if_flags & IFF_RUNNING)) 5113 bnx_init(sc); 5114 #ifdef INET 5115 if (ifa->ifa_addr->sa_family == AF_INET) 5116 arp_ifinit(&sc->arpcom, ifa); 5117 #endif /* INET */ 5118 break; 5119 5120 case SIOCSIFFLAGS: 5121 if (ifp->if_flags & IFF_UP) { 5122 if (ifp->if_flags & IFF_RUNNING) 5123 error = ENETRESET; 5124 else 5125 bnx_init(sc); 5126 } else { 5127 if (ifp->if_flags & IFF_RUNNING) 5128 bnx_stop(sc); 5129 } 5130 break; 5131 5132 case SIOCSIFMEDIA: 5133 /* Flow control requires full-duplex mode. */ 5134 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO || 5135 (ifr->ifr_media & IFM_FDX) == 0) 5136 ifr->ifr_media &= ~IFM_ETH_FMASK; 5137 5138 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) { 5139 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) { 5140 /* We can do both TXPAUSE and RXPAUSE. */ 5141 ifr->ifr_media |= 5142 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE; 5143 } 5144 sc->bnx_flowflags = ifr->ifr_media & IFM_ETH_FMASK; 5145 } 5146 /* FALLTHROUGH */ 5147 case SIOCGIFMEDIA: 5148 DBPRINT(sc, BNX_VERBOSE, "bnx_phy_flags = 0x%08X\n", 5149 sc->bnx_phy_flags); 5150 5151 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); 5152 break; 5153 5154 default: 5155 error = ether_ioctl(ifp, &sc->arpcom, command, data); 5156 } 5157 5158 if (error == ENETRESET) { 5159 if (ifp->if_flags & IFF_RUNNING) 5160 bnx_iff(sc); 5161 error = 0; 5162 } 5163 5164 splx(s); 5165 return (error); 5166 } 5167 5168 /****************************************************************************/ 5169 /* Transmit timeout handler. */ 5170 /* */ 5171 /* Returns: */ 5172 /* Nothing. */ 5173 /****************************************************************************/ 5174 void 5175 bnx_watchdog(struct ifnet *ifp) 5176 { 5177 struct bnx_softc *sc = ifp->if_softc; 5178 5179 DBRUN(BNX_WARN_SEND, bnx_dump_driver_state(sc); 5180 bnx_dump_status_block(sc)); 5181 5182 /* 5183 * If we are in this routine because of pause frames, then 5184 * don't reset the hardware. 5185 */ 5186 if (REG_RD(sc, BNX_EMAC_TX_STATUS) & BNX_EMAC_TX_STATUS_XOFFED) 5187 return; 5188 5189 printf("%s: Watchdog timeout occurred, resetting!\n", 5190 ifp->if_xname); 5191 5192 /* DBRUN(BNX_FATAL, bnx_breakpoint(sc)); */ 5193 5194 bnx_init(sc); 5195 5196 ifp->if_oerrors++; 5197 } 5198 5199 /* 5200 * Interrupt handler. 5201 */ 5202 /****************************************************************************/ 5203 /* Main interrupt entry point. Verifies that the controller generated the */ 5204 /* interrupt and then calls a separate routine for handle the various */ 5205 /* interrupt causes (PHY, TX, RX). */ 5206 /* */ 5207 /* Returns: */ 5208 /* 0 for success, positive value for failure. */ 5209 /****************************************************************************/ 5210 int 5211 bnx_intr(void *xsc) 5212 { 5213 struct bnx_softc *sc = xsc; 5214 struct ifnet *ifp = &sc->arpcom.ac_if; 5215 u_int32_t status_attn_bits; 5216 u_int16_t status_idx; 5217 int rv = 0; 5218 5219 if ((sc->bnx_flags & BNX_ACTIVE_FLAG) == 0) 5220 return (0); 5221 5222 DBRUNIF(1, sc->interrupts_generated++); 5223 5224 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, 5225 sc->status_map->dm_mapsize, BUS_DMASYNC_POSTREAD); 5226 5227 /* 5228 * If the hardware status block index 5229 * matches the last value read by the 5230 * driver and we haven't asserted our 5231 * interrupt then there's nothing to do. 5232 */ 5233 status_idx = sc->status_block->status_idx; 5234 if (status_idx != sc->last_status_idx || 5235 !ISSET(REG_RD(sc, BNX_PCICFG_MISC_STATUS), 5236 BNX_PCICFG_MISC_STATUS_INTA_VALUE)) { 5237 rv = 1; 5238 5239 /* Ack the interrupt */ 5240 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, 5241 BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | status_idx); 5242 5243 status_attn_bits = sc->status_block->status_attn_bits; 5244 5245 DBRUNIF(DB_RANDOMTRUE(bnx_debug_unexpected_attention), 5246 printf("Simulating unexpected status attention bit set."); 5247 status_attn_bits = status_attn_bits | 5248 STATUS_ATTN_BITS_PARITY_ERROR); 5249 5250 /* Was it a link change interrupt? */ 5251 if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) != 5252 (sc->status_block->status_attn_bits_ack & 5253 STATUS_ATTN_BITS_LINK_STATE)) 5254 bnx_phy_intr(sc); 5255 5256 /* If any other attention is asserted then the chip is toast. */ 5257 if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) != 5258 (sc->status_block->status_attn_bits_ack & 5259 ~STATUS_ATTN_BITS_LINK_STATE))) { 5260 DBRUN(1, sc->unexpected_attentions++); 5261 5262 BNX_PRINTF(sc, "Fatal attention detected: 0x%08X\n", 5263 sc->status_block->status_attn_bits); 5264 5265 DBRUN(BNX_FATAL, 5266 if (bnx_debug_unexpected_attention == 0) 5267 bnx_breakpoint(sc)); 5268 5269 bnx_init(sc); 5270 goto out; 5271 } 5272 5273 /* Check for any completed RX frames. */ 5274 if (sc->status_block->status_rx_quick_consumer_index0 != 5275 sc->hw_rx_cons) 5276 bnx_rx_intr(sc); 5277 5278 /* Check for any completed TX frames. */ 5279 if (sc->status_block->status_tx_quick_consumer_index0 != 5280 sc->hw_tx_cons) 5281 bnx_tx_intr(sc); 5282 5283 /* 5284 * Save the status block index value for use during the 5285 * next interrupt. 5286 */ 5287 sc->last_status_idx = status_idx; 5288 5289 /* Start moving packets again */ 5290 if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd)) 5291 bnx_start(ifp); 5292 } 5293 5294 out: 5295 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, 5296 sc->status_map->dm_mapsize, BUS_DMASYNC_PREREAD); 5297 5298 return (rv); 5299 } 5300 5301 /****************************************************************************/ 5302 /* Programs the various packet receive modes (broadcast and multicast). */ 5303 /* */ 5304 /* Returns: */ 5305 /* Nothing. */ 5306 /****************************************************************************/ 5307 void 5308 bnx_iff(struct bnx_softc *sc) 5309 { 5310 struct arpcom *ac = &sc->arpcom; 5311 struct ifnet *ifp = &ac->ac_if; 5312 struct ether_multi *enm; 5313 struct ether_multistep step; 5314 u_int32_t hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 }; 5315 u_int32_t rx_mode, sort_mode; 5316 int h, i; 5317 5318 /* Initialize receive mode default settings. */ 5319 rx_mode = sc->rx_mode & ~(BNX_EMAC_RX_MODE_PROMISCUOUS | 5320 BNX_EMAC_RX_MODE_KEEP_VLAN_TAG); 5321 sort_mode = 1 | BNX_RPM_SORT_USER0_BC_EN; 5322 ifp->if_flags &= ~IFF_ALLMULTI; 5323 5324 /* 5325 * ASF/IPMI/UMP firmware requires that VLAN tag stripping 5326 * be enbled. 5327 */ 5328 if (!(ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) && 5329 (!(sc->bnx_flags & BNX_MFW_ENABLE_FLAG))) 5330 rx_mode |= BNX_EMAC_RX_MODE_KEEP_VLAN_TAG; 5331 5332 /* 5333 * Check for promiscuous, all multicast, or selected 5334 * multicast address filtering. 5335 */ 5336 if (ifp->if_flags & IFF_PROMISC) { 5337 DBPRINT(sc, BNX_INFO, "Enabling promiscuous mode.\n"); 5338 5339 ifp->if_flags |= IFF_ALLMULTI; 5340 /* Enable promiscuous mode. */ 5341 rx_mode |= BNX_EMAC_RX_MODE_PROMISCUOUS; 5342 sort_mode |= BNX_RPM_SORT_USER0_PROM_EN; 5343 } else if (ac->ac_multirangecnt > 0) { 5344 DBPRINT(sc, BNX_INFO, "Enabling all multicast mode.\n"); 5345 5346 ifp->if_flags |= IFF_ALLMULTI; 5347 /* Enable all multicast addresses. */ 5348 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) 5349 REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4), 5350 0xffffffff); 5351 sort_mode |= BNX_RPM_SORT_USER0_MC_EN; 5352 } else { 5353 /* Accept one or more multicast(s). */ 5354 DBPRINT(sc, BNX_INFO, "Enabling selective multicast mode.\n"); 5355 5356 ETHER_FIRST_MULTI(step, ac, enm); 5357 while (enm != NULL) { 5358 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) & 5359 0xFF; 5360 5361 hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F); 5362 5363 ETHER_NEXT_MULTI(step, enm); 5364 } 5365 5366 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) 5367 REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4), 5368 hashes[i]); 5369 5370 sort_mode |= BNX_RPM_SORT_USER0_MC_HSH_EN; 5371 } 5372 5373 /* Only make changes if the recive mode has actually changed. */ 5374 if (rx_mode != sc->rx_mode) { 5375 DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n", 5376 rx_mode); 5377 5378 sc->rx_mode = rx_mode; 5379 REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode); 5380 } 5381 5382 /* Disable and clear the exisitng sort before enabling a new sort. */ 5383 REG_WR(sc, BNX_RPM_SORT_USER0, 0x0); 5384 REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode); 5385 REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode | BNX_RPM_SORT_USER0_ENA); 5386 } 5387 5388 /****************************************************************************/ 5389 /* Called periodically to updates statistics from the controllers */ 5390 /* statistics block. */ 5391 /* */ 5392 /* Returns: */ 5393 /* Nothing. */ 5394 /****************************************************************************/ 5395 void 5396 bnx_stats_update(struct bnx_softc *sc) 5397 { 5398 struct ifnet *ifp = &sc->arpcom.ac_if; 5399 struct statistics_block *stats; 5400 5401 DBPRINT(sc, BNX_EXCESSIVE, "Entering %s()\n", __FUNCTION__); 5402 5403 stats = (struct statistics_block *)sc->stats_block; 5404 5405 /* 5406 * Update the interface statistics from the 5407 * hardware statistics. 5408 */ 5409 ifp->if_collisions = (u_long)stats->stat_EtherStatsCollisions; 5410 5411 ifp->if_ierrors = (u_long)stats->stat_EtherStatsUndersizePkts + 5412 (u_long)stats->stat_EtherStatsOverrsizePkts + 5413 (u_long)stats->stat_IfInMBUFDiscards + 5414 (u_long)stats->stat_Dot3StatsAlignmentErrors + 5415 (u_long)stats->stat_Dot3StatsFCSErrors; 5416 5417 ifp->if_oerrors = (u_long) 5418 stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors + 5419 (u_long)stats->stat_Dot3StatsExcessiveCollisions + 5420 (u_long)stats->stat_Dot3StatsLateCollisions; 5421 5422 /* 5423 * Certain controllers don't report 5424 * carrier sense errors correctly. 5425 * See errata E11_5708CA0_1165. 5426 */ 5427 if (!(BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) && 5428 !(BNX_CHIP_ID(sc) == BNX_CHIP_ID_5708_A0)) 5429 ifp->if_oerrors += (u_long) stats->stat_Dot3StatsCarrierSenseErrors; 5430 5431 /* 5432 * Update the sysctl statistics from the 5433 * hardware statistics. 5434 */ 5435 sc->stat_IfHCInOctets = ((u_int64_t)stats->stat_IfHCInOctets_hi << 32) + 5436 (u_int64_t) stats->stat_IfHCInOctets_lo; 5437 5438 sc->stat_IfHCInBadOctets = 5439 ((u_int64_t) stats->stat_IfHCInBadOctets_hi << 32) + 5440 (u_int64_t) stats->stat_IfHCInBadOctets_lo; 5441 5442 sc->stat_IfHCOutOctets = 5443 ((u_int64_t) stats->stat_IfHCOutOctets_hi << 32) + 5444 (u_int64_t) stats->stat_IfHCOutOctets_lo; 5445 5446 sc->stat_IfHCOutBadOctets = 5447 ((u_int64_t) stats->stat_IfHCOutBadOctets_hi << 32) + 5448 (u_int64_t) stats->stat_IfHCOutBadOctets_lo; 5449 5450 sc->stat_IfHCInUcastPkts = 5451 ((u_int64_t) stats->stat_IfHCInUcastPkts_hi << 32) + 5452 (u_int64_t) stats->stat_IfHCInUcastPkts_lo; 5453 5454 sc->stat_IfHCInMulticastPkts = 5455 ((u_int64_t) stats->stat_IfHCInMulticastPkts_hi << 32) + 5456 (u_int64_t) stats->stat_IfHCInMulticastPkts_lo; 5457 5458 sc->stat_IfHCInBroadcastPkts = 5459 ((u_int64_t) stats->stat_IfHCInBroadcastPkts_hi << 32) + 5460 (u_int64_t) stats->stat_IfHCInBroadcastPkts_lo; 5461 5462 sc->stat_IfHCOutUcastPkts = 5463 ((u_int64_t) stats->stat_IfHCOutUcastPkts_hi << 32) + 5464 (u_int64_t) stats->stat_IfHCOutUcastPkts_lo; 5465 5466 sc->stat_IfHCOutMulticastPkts = 5467 ((u_int64_t) stats->stat_IfHCOutMulticastPkts_hi << 32) + 5468 (u_int64_t) stats->stat_IfHCOutMulticastPkts_lo; 5469 5470 sc->stat_IfHCOutBroadcastPkts = 5471 ((u_int64_t) stats->stat_IfHCOutBroadcastPkts_hi << 32) + 5472 (u_int64_t) stats->stat_IfHCOutBroadcastPkts_lo; 5473 5474 sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors = 5475 stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors; 5476 5477 sc->stat_Dot3StatsCarrierSenseErrors = 5478 stats->stat_Dot3StatsCarrierSenseErrors; 5479 5480 sc->stat_Dot3StatsFCSErrors = stats->stat_Dot3StatsFCSErrors; 5481 5482 sc->stat_Dot3StatsAlignmentErrors = 5483 stats->stat_Dot3StatsAlignmentErrors; 5484 5485 sc->stat_Dot3StatsSingleCollisionFrames = 5486 stats->stat_Dot3StatsSingleCollisionFrames; 5487 5488 sc->stat_Dot3StatsMultipleCollisionFrames = 5489 stats->stat_Dot3StatsMultipleCollisionFrames; 5490 5491 sc->stat_Dot3StatsDeferredTransmissions = 5492 stats->stat_Dot3StatsDeferredTransmissions; 5493 5494 sc->stat_Dot3StatsExcessiveCollisions = 5495 stats->stat_Dot3StatsExcessiveCollisions; 5496 5497 sc->stat_Dot3StatsLateCollisions = stats->stat_Dot3StatsLateCollisions; 5498 5499 sc->stat_EtherStatsCollisions = stats->stat_EtherStatsCollisions; 5500 5501 sc->stat_EtherStatsFragments = stats->stat_EtherStatsFragments; 5502 5503 sc->stat_EtherStatsJabbers = stats->stat_EtherStatsJabbers; 5504 5505 sc->stat_EtherStatsUndersizePkts = stats->stat_EtherStatsUndersizePkts; 5506 5507 sc->stat_EtherStatsOverrsizePkts = stats->stat_EtherStatsOverrsizePkts; 5508 5509 sc->stat_EtherStatsPktsRx64Octets = 5510 stats->stat_EtherStatsPktsRx64Octets; 5511 5512 sc->stat_EtherStatsPktsRx65Octetsto127Octets = 5513 stats->stat_EtherStatsPktsRx65Octetsto127Octets; 5514 5515 sc->stat_EtherStatsPktsRx128Octetsto255Octets = 5516 stats->stat_EtherStatsPktsRx128Octetsto255Octets; 5517 5518 sc->stat_EtherStatsPktsRx256Octetsto511Octets = 5519 stats->stat_EtherStatsPktsRx256Octetsto511Octets; 5520 5521 sc->stat_EtherStatsPktsRx512Octetsto1023Octets = 5522 stats->stat_EtherStatsPktsRx512Octetsto1023Octets; 5523 5524 sc->stat_EtherStatsPktsRx1024Octetsto1522Octets = 5525 stats->stat_EtherStatsPktsRx1024Octetsto1522Octets; 5526 5527 sc->stat_EtherStatsPktsRx1523Octetsto9022Octets = 5528 stats->stat_EtherStatsPktsRx1523Octetsto9022Octets; 5529 5530 sc->stat_EtherStatsPktsTx64Octets = 5531 stats->stat_EtherStatsPktsTx64Octets; 5532 5533 sc->stat_EtherStatsPktsTx65Octetsto127Octets = 5534 stats->stat_EtherStatsPktsTx65Octetsto127Octets; 5535 5536 sc->stat_EtherStatsPktsTx128Octetsto255Octets = 5537 stats->stat_EtherStatsPktsTx128Octetsto255Octets; 5538 5539 sc->stat_EtherStatsPktsTx256Octetsto511Octets = 5540 stats->stat_EtherStatsPktsTx256Octetsto511Octets; 5541 5542 sc->stat_EtherStatsPktsTx512Octetsto1023Octets = 5543 stats->stat_EtherStatsPktsTx512Octetsto1023Octets; 5544 5545 sc->stat_EtherStatsPktsTx1024Octetsto1522Octets = 5546 stats->stat_EtherStatsPktsTx1024Octetsto1522Octets; 5547 5548 sc->stat_EtherStatsPktsTx1523Octetsto9022Octets = 5549 stats->stat_EtherStatsPktsTx1523Octetsto9022Octets; 5550 5551 sc->stat_XonPauseFramesReceived = stats->stat_XonPauseFramesReceived; 5552 5553 sc->stat_XoffPauseFramesReceived = stats->stat_XoffPauseFramesReceived; 5554 5555 sc->stat_OutXonSent = stats->stat_OutXonSent; 5556 5557 sc->stat_OutXoffSent = stats->stat_OutXoffSent; 5558 5559 sc->stat_FlowControlDone = stats->stat_FlowControlDone; 5560 5561 sc->stat_MacControlFramesReceived = 5562 stats->stat_MacControlFramesReceived; 5563 5564 sc->stat_XoffStateEntered = stats->stat_XoffStateEntered; 5565 5566 sc->stat_IfInFramesL2FilterDiscards = 5567 stats->stat_IfInFramesL2FilterDiscards; 5568 5569 sc->stat_IfInRuleCheckerDiscards = stats->stat_IfInRuleCheckerDiscards; 5570 5571 sc->stat_IfInFTQDiscards = stats->stat_IfInFTQDiscards; 5572 5573 sc->stat_IfInMBUFDiscards = stats->stat_IfInMBUFDiscards; 5574 5575 sc->stat_IfInRuleCheckerP4Hit = stats->stat_IfInRuleCheckerP4Hit; 5576 5577 sc->stat_CatchupInRuleCheckerDiscards = 5578 stats->stat_CatchupInRuleCheckerDiscards; 5579 5580 sc->stat_CatchupInFTQDiscards = stats->stat_CatchupInFTQDiscards; 5581 5582 sc->stat_CatchupInMBUFDiscards = stats->stat_CatchupInMBUFDiscards; 5583 5584 sc->stat_CatchupInRuleCheckerP4Hit = 5585 stats->stat_CatchupInRuleCheckerP4Hit; 5586 5587 DBPRINT(sc, BNX_EXCESSIVE, "Exiting %s()\n", __FUNCTION__); 5588 } 5589 5590 void 5591 bnx_tick(void *xsc) 5592 { 5593 struct bnx_softc *sc = xsc; 5594 struct ifnet *ifp = &sc->arpcom.ac_if; 5595 struct mii_data *mii = NULL; 5596 u_int32_t msg; 5597 5598 /* Tell the firmware that the driver is still running. */ 5599 #ifdef BNX_DEBUG 5600 msg = (u_int32_t)BNX_DRV_MSG_DATA_PULSE_CODE_ALWAYS_ALIVE; 5601 #else 5602 msg = (u_int32_t)++sc->bnx_fw_drv_pulse_wr_seq; 5603 #endif 5604 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_PULSE_MB, msg); 5605 5606 /* Update the statistics from the hardware statistics block. */ 5607 bnx_stats_update(sc); 5608 5609 /* Schedule the next tick. */ 5610 timeout_add_sec(&sc->bnx_timeout, 1); 5611 5612 /* If link is up already up then we're done. */ 5613 if (sc->bnx_link) 5614 goto bnx_tick_exit; 5615 5616 mii = &sc->bnx_mii; 5617 mii_tick(mii); 5618 5619 /* Check if the link has come up. */ 5620 if (!sc->bnx_link && mii->mii_media_status & IFM_ACTIVE && 5621 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) { 5622 sc->bnx_link++; 5623 /* Now that link is up, handle any outstanding TX traffic. */ 5624 if (!IFQ_IS_EMPTY(&ifp->if_snd)) 5625 bnx_start(ifp); 5626 } 5627 5628 bnx_tick_exit: 5629 return; 5630 } 5631 5632 /****************************************************************************/ 5633 /* BNX Debug Routines */ 5634 /****************************************************************************/ 5635 #ifdef BNX_DEBUG 5636 5637 /****************************************************************************/ 5638 /* Prints out information about an mbuf. */ 5639 /* */ 5640 /* Returns: */ 5641 /* Nothing. */ 5642 /****************************************************************************/ 5643 void 5644 bnx_dump_mbuf(struct bnx_softc *sc, struct mbuf *m) 5645 { 5646 struct mbuf *mp = m; 5647 5648 if (m == NULL) { 5649 /* Index out of range. */ 5650 printf("mbuf ptr is null!\n"); 5651 return; 5652 } 5653 5654 while (mp) { 5655 printf("mbuf: vaddr = %p, m_len = %d, m_flags = ", 5656 mp, mp->m_len); 5657 5658 if (mp->m_flags & M_EXT) 5659 printf("M_EXT "); 5660 if (mp->m_flags & M_PKTHDR) 5661 printf("M_PKTHDR "); 5662 printf("\n"); 5663 5664 if (mp->m_flags & M_EXT) 5665 printf("- m_ext: vaddr = %p, ext_size = 0x%04X\n", 5666 mp, mp->m_ext.ext_size); 5667 5668 mp = mp->m_next; 5669 } 5670 } 5671 5672 /****************************************************************************/ 5673 /* Prints out the mbufs in the TX mbuf chain. */ 5674 /* */ 5675 /* Returns: */ 5676 /* Nothing. */ 5677 /****************************************************************************/ 5678 void 5679 bnx_dump_tx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count) 5680 { 5681 struct mbuf *m; 5682 int i; 5683 5684 BNX_PRINTF(sc, 5685 "----------------------------" 5686 " tx mbuf data " 5687 "----------------------------\n"); 5688 5689 for (i = 0; i < count; i++) { 5690 m = sc->tx_mbuf_ptr[chain_prod]; 5691 BNX_PRINTF(sc, "txmbuf[%d]\n", chain_prod); 5692 bnx_dump_mbuf(sc, m); 5693 chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod)); 5694 } 5695 5696 BNX_PRINTF(sc, 5697 "--------------------------------------------" 5698 "----------------------------\n"); 5699 } 5700 5701 /* 5702 * This routine prints the RX mbuf chain. 5703 */ 5704 void 5705 bnx_dump_rx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count) 5706 { 5707 struct mbuf *m; 5708 int i; 5709 5710 BNX_PRINTF(sc, 5711 "----------------------------" 5712 " rx mbuf data " 5713 "----------------------------\n"); 5714 5715 for (i = 0; i < count; i++) { 5716 m = sc->rx_mbuf_ptr[chain_prod]; 5717 BNX_PRINTF(sc, "rxmbuf[0x%04X]\n", chain_prod); 5718 bnx_dump_mbuf(sc, m); 5719 chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod)); 5720 } 5721 5722 5723 BNX_PRINTF(sc, 5724 "--------------------------------------------" 5725 "----------------------------\n"); 5726 } 5727 5728 void 5729 bnx_dump_txbd(struct bnx_softc *sc, int idx, struct tx_bd *txbd) 5730 { 5731 if (idx > MAX_TX_BD) 5732 /* Index out of range. */ 5733 BNX_PRINTF(sc, "tx_bd[0x%04X]: Invalid tx_bd index!\n", idx); 5734 else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE) 5735 /* TX Chain page pointer. */ 5736 BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain " 5737 "page pointer\n", idx, txbd->tx_bd_haddr_hi, 5738 txbd->tx_bd_haddr_lo); 5739 else 5740 /* Normal tx_bd entry. */ 5741 BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = " 5742 "0x%08X, vlan tag = 0x%4X, flags = 0x%08X\n", idx, 5743 txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo, 5744 txbd->tx_bd_mss_nbytes, txbd->tx_bd_vlan_tag, 5745 txbd->tx_bd_flags); 5746 } 5747 5748 void 5749 bnx_dump_rxbd(struct bnx_softc *sc, int idx, struct rx_bd *rxbd) 5750 { 5751 if (idx > MAX_RX_BD) 5752 /* Index out of range. */ 5753 BNX_PRINTF(sc, "rx_bd[0x%04X]: Invalid rx_bd index!\n", idx); 5754 else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE) 5755 /* TX Chain page pointer. */ 5756 BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page " 5757 "pointer\n", idx, rxbd->rx_bd_haddr_hi, 5758 rxbd->rx_bd_haddr_lo); 5759 else 5760 /* Normal tx_bd entry. */ 5761 BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = " 5762 "0x%08X, flags = 0x%08X\n", idx, 5763 rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo, 5764 rxbd->rx_bd_len, rxbd->rx_bd_flags); 5765 } 5766 5767 void 5768 bnx_dump_l2fhdr(struct bnx_softc *sc, int idx, struct l2_fhdr *l2fhdr) 5769 { 5770 BNX_PRINTF(sc, "l2_fhdr[0x%04X]: status = 0x%08X, " 5771 "pkt_len = 0x%04X, vlan = 0x%04x, ip_xsum = 0x%04X, " 5772 "tcp_udp_xsum = 0x%04X\n", idx, 5773 l2fhdr->l2_fhdr_status, l2fhdr->l2_fhdr_pkt_len, 5774 l2fhdr->l2_fhdr_vlan_tag, l2fhdr->l2_fhdr_ip_xsum, 5775 l2fhdr->l2_fhdr_tcp_udp_xsum); 5776 } 5777 5778 /* 5779 * This routine prints the TX chain. 5780 */ 5781 void 5782 bnx_dump_tx_chain(struct bnx_softc *sc, int tx_prod, int count) 5783 { 5784 struct tx_bd *txbd; 5785 int i; 5786 5787 /* First some info about the tx_bd chain structure. */ 5788 BNX_PRINTF(sc, 5789 "----------------------------" 5790 " tx_bd chain " 5791 "----------------------------\n"); 5792 5793 BNX_PRINTF(sc, 5794 "page size = 0x%08X, tx chain pages = 0x%08X\n", 5795 (u_int32_t)BCM_PAGE_SIZE, (u_int32_t) TX_PAGES); 5796 5797 BNX_PRINTF(sc, 5798 "tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n", 5799 (u_int32_t)TOTAL_TX_BD_PER_PAGE, (u_int32_t)USABLE_TX_BD_PER_PAGE); 5800 5801 BNX_PRINTF(sc, "total tx_bd = 0x%08X\n", (u_int32_t)TOTAL_TX_BD); 5802 5803 BNX_PRINTF(sc, "" 5804 "-----------------------------" 5805 " tx_bd data " 5806 "-----------------------------\n"); 5807 5808 /* Now print out the tx_bd's themselves. */ 5809 for (i = 0; i < count; i++) { 5810 txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)]; 5811 bnx_dump_txbd(sc, tx_prod, txbd); 5812 tx_prod = TX_CHAIN_IDX(NEXT_TX_BD(tx_prod)); 5813 } 5814 5815 BNX_PRINTF(sc, 5816 "-----------------------------" 5817 "--------------" 5818 "-----------------------------\n"); 5819 } 5820 5821 /* 5822 * This routine prints the RX chain. 5823 */ 5824 void 5825 bnx_dump_rx_chain(struct bnx_softc *sc, int rx_prod, int count) 5826 { 5827 struct rx_bd *rxbd; 5828 int i; 5829 5830 /* First some info about the tx_bd chain structure. */ 5831 BNX_PRINTF(sc, 5832 "----------------------------" 5833 " rx_bd chain " 5834 "----------------------------\n"); 5835 5836 BNX_PRINTF(sc, "----- RX_BD Chain -----\n"); 5837 5838 BNX_PRINTF(sc, 5839 "page size = 0x%08X, rx chain pages = 0x%08X\n", 5840 (u_int32_t)BCM_PAGE_SIZE, (u_int32_t)RX_PAGES); 5841 5842 BNX_PRINTF(sc, 5843 "rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n", 5844 (u_int32_t)TOTAL_RX_BD_PER_PAGE, (u_int32_t)USABLE_RX_BD_PER_PAGE); 5845 5846 BNX_PRINTF(sc, "total rx_bd = 0x%08X\n", (u_int32_t)TOTAL_RX_BD); 5847 5848 BNX_PRINTF(sc, 5849 "----------------------------" 5850 " rx_bd data " 5851 "----------------------------\n"); 5852 5853 /* Now print out the rx_bd's themselves. */ 5854 for (i = 0; i < count; i++) { 5855 rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)]; 5856 bnx_dump_rxbd(sc, rx_prod, rxbd); 5857 rx_prod = RX_CHAIN_IDX(NEXT_RX_BD(rx_prod)); 5858 } 5859 5860 BNX_PRINTF(sc, 5861 "----------------------------" 5862 "--------------" 5863 "----------------------------\n"); 5864 } 5865 5866 /* 5867 * This routine prints the status block. 5868 */ 5869 void 5870 bnx_dump_status_block(struct bnx_softc *sc) 5871 { 5872 struct status_block *sblk; 5873 5874 sblk = sc->status_block; 5875 5876 BNX_PRINTF(sc, "----------------------------- Status Block " 5877 "-----------------------------\n"); 5878 5879 BNX_PRINTF(sc, 5880 "attn_bits = 0x%08X, attn_bits_ack = 0x%08X, index = 0x%04X\n", 5881 sblk->status_attn_bits, sblk->status_attn_bits_ack, 5882 sblk->status_idx); 5883 5884 BNX_PRINTF(sc, "rx_cons0 = 0x%08X, tx_cons0 = 0x%08X\n", 5885 sblk->status_rx_quick_consumer_index0, 5886 sblk->status_tx_quick_consumer_index0); 5887 5888 BNX_PRINTF(sc, "status_idx = 0x%04X\n", sblk->status_idx); 5889 5890 /* Theses indices are not used for normal L2 drivers. */ 5891 if (sblk->status_rx_quick_consumer_index1 || 5892 sblk->status_tx_quick_consumer_index1) 5893 BNX_PRINTF(sc, "rx_cons1 = 0x%08X, tx_cons1 = 0x%08X\n", 5894 sblk->status_rx_quick_consumer_index1, 5895 sblk->status_tx_quick_consumer_index1); 5896 5897 if (sblk->status_rx_quick_consumer_index2 || 5898 sblk->status_tx_quick_consumer_index2) 5899 BNX_PRINTF(sc, "rx_cons2 = 0x%08X, tx_cons2 = 0x%08X\n", 5900 sblk->status_rx_quick_consumer_index2, 5901 sblk->status_tx_quick_consumer_index2); 5902 5903 if (sblk->status_rx_quick_consumer_index3 || 5904 sblk->status_tx_quick_consumer_index3) 5905 BNX_PRINTF(sc, "rx_cons3 = 0x%08X, tx_cons3 = 0x%08X\n", 5906 sblk->status_rx_quick_consumer_index3, 5907 sblk->status_tx_quick_consumer_index3); 5908 5909 if (sblk->status_rx_quick_consumer_index4 || 5910 sblk->status_rx_quick_consumer_index5) 5911 BNX_PRINTF(sc, "rx_cons4 = 0x%08X, rx_cons5 = 0x%08X\n", 5912 sblk->status_rx_quick_consumer_index4, 5913 sblk->status_rx_quick_consumer_index5); 5914 5915 if (sblk->status_rx_quick_consumer_index6 || 5916 sblk->status_rx_quick_consumer_index7) 5917 BNX_PRINTF(sc, "rx_cons6 = 0x%08X, rx_cons7 = 0x%08X\n", 5918 sblk->status_rx_quick_consumer_index6, 5919 sblk->status_rx_quick_consumer_index7); 5920 5921 if (sblk->status_rx_quick_consumer_index8 || 5922 sblk->status_rx_quick_consumer_index9) 5923 BNX_PRINTF(sc, "rx_cons8 = 0x%08X, rx_cons9 = 0x%08X\n", 5924 sblk->status_rx_quick_consumer_index8, 5925 sblk->status_rx_quick_consumer_index9); 5926 5927 if (sblk->status_rx_quick_consumer_index10 || 5928 sblk->status_rx_quick_consumer_index11) 5929 BNX_PRINTF(sc, "rx_cons10 = 0x%08X, rx_cons11 = 0x%08X\n", 5930 sblk->status_rx_quick_consumer_index10, 5931 sblk->status_rx_quick_consumer_index11); 5932 5933 if (sblk->status_rx_quick_consumer_index12 || 5934 sblk->status_rx_quick_consumer_index13) 5935 BNX_PRINTF(sc, "rx_cons12 = 0x%08X, rx_cons13 = 0x%08X\n", 5936 sblk->status_rx_quick_consumer_index12, 5937 sblk->status_rx_quick_consumer_index13); 5938 5939 if (sblk->status_rx_quick_consumer_index14 || 5940 sblk->status_rx_quick_consumer_index15) 5941 BNX_PRINTF(sc, "rx_cons14 = 0x%08X, rx_cons15 = 0x%08X\n", 5942 sblk->status_rx_quick_consumer_index14, 5943 sblk->status_rx_quick_consumer_index15); 5944 5945 if (sblk->status_completion_producer_index || 5946 sblk->status_cmd_consumer_index) 5947 BNX_PRINTF(sc, "com_prod = 0x%08X, cmd_cons = 0x%08X\n", 5948 sblk->status_completion_producer_index, 5949 sblk->status_cmd_consumer_index); 5950 5951 BNX_PRINTF(sc, "-------------------------------------------" 5952 "-----------------------------\n"); 5953 } 5954 5955 /* 5956 * This routine prints the statistics block. 5957 */ 5958 void 5959 bnx_dump_stats_block(struct bnx_softc *sc) 5960 { 5961 struct statistics_block *sblk; 5962 5963 sblk = sc->stats_block; 5964 5965 BNX_PRINTF(sc, "" 5966 "-----------------------------" 5967 " Stats Block " 5968 "-----------------------------\n"); 5969 5970 BNX_PRINTF(sc, "IfHcInOctets = 0x%08X:%08X, " 5971 "IfHcInBadOctets = 0x%08X:%08X\n", 5972 sblk->stat_IfHCInOctets_hi, sblk->stat_IfHCInOctets_lo, 5973 sblk->stat_IfHCInBadOctets_hi, sblk->stat_IfHCInBadOctets_lo); 5974 5975 BNX_PRINTF(sc, "IfHcOutOctets = 0x%08X:%08X, " 5976 "IfHcOutBadOctets = 0x%08X:%08X\n", 5977 sblk->stat_IfHCOutOctets_hi, sblk->stat_IfHCOutOctets_lo, 5978 sblk->stat_IfHCOutBadOctets_hi, sblk->stat_IfHCOutBadOctets_lo); 5979 5980 BNX_PRINTF(sc, "IfHcInUcastPkts = 0x%08X:%08X, " 5981 "IfHcInMulticastPkts = 0x%08X:%08X\n", 5982 sblk->stat_IfHCInUcastPkts_hi, sblk->stat_IfHCInUcastPkts_lo, 5983 sblk->stat_IfHCInMulticastPkts_hi, 5984 sblk->stat_IfHCInMulticastPkts_lo); 5985 5986 BNX_PRINTF(sc, "IfHcInBroadcastPkts = 0x%08X:%08X, " 5987 "IfHcOutUcastPkts = 0x%08X:%08X\n", 5988 sblk->stat_IfHCInBroadcastPkts_hi, 5989 sblk->stat_IfHCInBroadcastPkts_lo, 5990 sblk->stat_IfHCOutUcastPkts_hi, 5991 sblk->stat_IfHCOutUcastPkts_lo); 5992 5993 BNX_PRINTF(sc, "IfHcOutMulticastPkts = 0x%08X:%08X, " 5994 "IfHcOutBroadcastPkts = 0x%08X:%08X\n", 5995 sblk->stat_IfHCOutMulticastPkts_hi, 5996 sblk->stat_IfHCOutMulticastPkts_lo, 5997 sblk->stat_IfHCOutBroadcastPkts_hi, 5998 sblk->stat_IfHCOutBroadcastPkts_lo); 5999 6000 if (sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors) 6001 BNX_PRINTF(sc, "0x%08X : " 6002 "emac_tx_stat_dot3statsinternalmactransmiterrors\n", 6003 sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors); 6004 6005 if (sblk->stat_Dot3StatsCarrierSenseErrors) 6006 BNX_PRINTF(sc, "0x%08X : Dot3StatsCarrierSenseErrors\n", 6007 sblk->stat_Dot3StatsCarrierSenseErrors); 6008 6009 if (sblk->stat_Dot3StatsFCSErrors) 6010 BNX_PRINTF(sc, "0x%08X : Dot3StatsFCSErrors\n", 6011 sblk->stat_Dot3StatsFCSErrors); 6012 6013 if (sblk->stat_Dot3StatsAlignmentErrors) 6014 BNX_PRINTF(sc, "0x%08X : Dot3StatsAlignmentErrors\n", 6015 sblk->stat_Dot3StatsAlignmentErrors); 6016 6017 if (sblk->stat_Dot3StatsSingleCollisionFrames) 6018 BNX_PRINTF(sc, "0x%08X : Dot3StatsSingleCollisionFrames\n", 6019 sblk->stat_Dot3StatsSingleCollisionFrames); 6020 6021 if (sblk->stat_Dot3StatsMultipleCollisionFrames) 6022 BNX_PRINTF(sc, "0x%08X : Dot3StatsMultipleCollisionFrames\n", 6023 sblk->stat_Dot3StatsMultipleCollisionFrames); 6024 6025 if (sblk->stat_Dot3StatsDeferredTransmissions) 6026 BNX_PRINTF(sc, "0x%08X : Dot3StatsDeferredTransmissions\n", 6027 sblk->stat_Dot3StatsDeferredTransmissions); 6028 6029 if (sblk->stat_Dot3StatsExcessiveCollisions) 6030 BNX_PRINTF(sc, "0x%08X : Dot3StatsExcessiveCollisions\n", 6031 sblk->stat_Dot3StatsExcessiveCollisions); 6032 6033 if (sblk->stat_Dot3StatsLateCollisions) 6034 BNX_PRINTF(sc, "0x%08X : Dot3StatsLateCollisions\n", 6035 sblk->stat_Dot3StatsLateCollisions); 6036 6037 if (sblk->stat_EtherStatsCollisions) 6038 BNX_PRINTF(sc, "0x%08X : EtherStatsCollisions\n", 6039 sblk->stat_EtherStatsCollisions); 6040 6041 if (sblk->stat_EtherStatsFragments) 6042 BNX_PRINTF(sc, "0x%08X : EtherStatsFragments\n", 6043 sblk->stat_EtherStatsFragments); 6044 6045 if (sblk->stat_EtherStatsJabbers) 6046 BNX_PRINTF(sc, "0x%08X : EtherStatsJabbers\n", 6047 sblk->stat_EtherStatsJabbers); 6048 6049 if (sblk->stat_EtherStatsUndersizePkts) 6050 BNX_PRINTF(sc, "0x%08X : EtherStatsUndersizePkts\n", 6051 sblk->stat_EtherStatsUndersizePkts); 6052 6053 if (sblk->stat_EtherStatsOverrsizePkts) 6054 BNX_PRINTF(sc, "0x%08X : EtherStatsOverrsizePkts\n", 6055 sblk->stat_EtherStatsOverrsizePkts); 6056 6057 if (sblk->stat_EtherStatsPktsRx64Octets) 6058 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx64Octets\n", 6059 sblk->stat_EtherStatsPktsRx64Octets); 6060 6061 if (sblk->stat_EtherStatsPktsRx65Octetsto127Octets) 6062 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx65Octetsto127Octets\n", 6063 sblk->stat_EtherStatsPktsRx65Octetsto127Octets); 6064 6065 if (sblk->stat_EtherStatsPktsRx128Octetsto255Octets) 6066 BNX_PRINTF(sc, "0x%08X : " 6067 "EtherStatsPktsRx128Octetsto255Octets\n", 6068 sblk->stat_EtherStatsPktsRx128Octetsto255Octets); 6069 6070 if (sblk->stat_EtherStatsPktsRx256Octetsto511Octets) 6071 BNX_PRINTF(sc, "0x%08X : " 6072 "EtherStatsPktsRx256Octetsto511Octets\n", 6073 sblk->stat_EtherStatsPktsRx256Octetsto511Octets); 6074 6075 if (sblk->stat_EtherStatsPktsRx512Octetsto1023Octets) 6076 BNX_PRINTF(sc, "0x%08X : " 6077 "EtherStatsPktsRx512Octetsto1023Octets\n", 6078 sblk->stat_EtherStatsPktsRx512Octetsto1023Octets); 6079 6080 if (sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets) 6081 BNX_PRINTF(sc, "0x%08X : " 6082 "EtherStatsPktsRx1024Octetsto1522Octets\n", 6083 sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets); 6084 6085 if (sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets) 6086 BNX_PRINTF(sc, "0x%08X : " 6087 "EtherStatsPktsRx1523Octetsto9022Octets\n", 6088 sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets); 6089 6090 if (sblk->stat_EtherStatsPktsTx64Octets) 6091 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx64Octets\n", 6092 sblk->stat_EtherStatsPktsTx64Octets); 6093 6094 if (sblk->stat_EtherStatsPktsTx65Octetsto127Octets) 6095 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx65Octetsto127Octets\n", 6096 sblk->stat_EtherStatsPktsTx65Octetsto127Octets); 6097 6098 if (sblk->stat_EtherStatsPktsTx128Octetsto255Octets) 6099 BNX_PRINTF(sc, "0x%08X : " 6100 "EtherStatsPktsTx128Octetsto255Octets\n", 6101 sblk->stat_EtherStatsPktsTx128Octetsto255Octets); 6102 6103 if (sblk->stat_EtherStatsPktsTx256Octetsto511Octets) 6104 BNX_PRINTF(sc, "0x%08X : " 6105 "EtherStatsPktsTx256Octetsto511Octets\n", 6106 sblk->stat_EtherStatsPktsTx256Octetsto511Octets); 6107 6108 if (sblk->stat_EtherStatsPktsTx512Octetsto1023Octets) 6109 BNX_PRINTF(sc, "0x%08X : " 6110 "EtherStatsPktsTx512Octetsto1023Octets\n", 6111 sblk->stat_EtherStatsPktsTx512Octetsto1023Octets); 6112 6113 if (sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets) 6114 BNX_PRINTF(sc, "0x%08X : " 6115 "EtherStatsPktsTx1024Octetsto1522Octets\n", 6116 sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets); 6117 6118 if (sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets) 6119 BNX_PRINTF(sc, "0x%08X : " 6120 "EtherStatsPktsTx1523Octetsto9022Octets\n", 6121 sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets); 6122 6123 if (sblk->stat_XonPauseFramesReceived) 6124 BNX_PRINTF(sc, "0x%08X : XonPauseFramesReceived\n", 6125 sblk->stat_XonPauseFramesReceived); 6126 6127 if (sblk->stat_XoffPauseFramesReceived) 6128 BNX_PRINTF(sc, "0x%08X : XoffPauseFramesReceived\n", 6129 sblk->stat_XoffPauseFramesReceived); 6130 6131 if (sblk->stat_OutXonSent) 6132 BNX_PRINTF(sc, "0x%08X : OutXonSent\n", 6133 sblk->stat_OutXonSent); 6134 6135 if (sblk->stat_OutXoffSent) 6136 BNX_PRINTF(sc, "0x%08X : OutXoffSent\n", 6137 sblk->stat_OutXoffSent); 6138 6139 if (sblk->stat_FlowControlDone) 6140 BNX_PRINTF(sc, "0x%08X : FlowControlDone\n", 6141 sblk->stat_FlowControlDone); 6142 6143 if (sblk->stat_MacControlFramesReceived) 6144 BNX_PRINTF(sc, "0x%08X : MacControlFramesReceived\n", 6145 sblk->stat_MacControlFramesReceived); 6146 6147 if (sblk->stat_XoffStateEntered) 6148 BNX_PRINTF(sc, "0x%08X : XoffStateEntered\n", 6149 sblk->stat_XoffStateEntered); 6150 6151 if (sblk->stat_IfInFramesL2FilterDiscards) 6152 BNX_PRINTF(sc, "0x%08X : IfInFramesL2FilterDiscards\n", 6153 sblk->stat_IfInFramesL2FilterDiscards); 6154 6155 if (sblk->stat_IfInRuleCheckerDiscards) 6156 BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerDiscards\n", 6157 sblk->stat_IfInRuleCheckerDiscards); 6158 6159 if (sblk->stat_IfInFTQDiscards) 6160 BNX_PRINTF(sc, "0x%08X : IfInFTQDiscards\n", 6161 sblk->stat_IfInFTQDiscards); 6162 6163 if (sblk->stat_IfInMBUFDiscards) 6164 BNX_PRINTF(sc, "0x%08X : IfInMBUFDiscards\n", 6165 sblk->stat_IfInMBUFDiscards); 6166 6167 if (sblk->stat_IfInRuleCheckerP4Hit) 6168 BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerP4Hit\n", 6169 sblk->stat_IfInRuleCheckerP4Hit); 6170 6171 if (sblk->stat_CatchupInRuleCheckerDiscards) 6172 BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerDiscards\n", 6173 sblk->stat_CatchupInRuleCheckerDiscards); 6174 6175 if (sblk->stat_CatchupInFTQDiscards) 6176 BNX_PRINTF(sc, "0x%08X : CatchupInFTQDiscards\n", 6177 sblk->stat_CatchupInFTQDiscards); 6178 6179 if (sblk->stat_CatchupInMBUFDiscards) 6180 BNX_PRINTF(sc, "0x%08X : CatchupInMBUFDiscards\n", 6181 sblk->stat_CatchupInMBUFDiscards); 6182 6183 if (sblk->stat_CatchupInRuleCheckerP4Hit) 6184 BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerP4Hit\n", 6185 sblk->stat_CatchupInRuleCheckerP4Hit); 6186 6187 BNX_PRINTF(sc, 6188 "-----------------------------" 6189 "--------------" 6190 "-----------------------------\n"); 6191 } 6192 6193 void 6194 bnx_dump_driver_state(struct bnx_softc *sc) 6195 { 6196 BNX_PRINTF(sc, 6197 "-----------------------------" 6198 " Driver State " 6199 "-----------------------------\n"); 6200 6201 BNX_PRINTF(sc, "%p - (sc) driver softc structure virtual " 6202 "address\n", sc); 6203 6204 BNX_PRINTF(sc, "%p - (sc->status_block) status block virtual address\n", 6205 sc->status_block); 6206 6207 BNX_PRINTF(sc, "%p - (sc->stats_block) statistics block virtual " 6208 "address\n", sc->stats_block); 6209 6210 BNX_PRINTF(sc, "%p - (sc->tx_bd_chain) tx_bd chain virtual " 6211 "adddress\n", sc->tx_bd_chain); 6212 6213 BNX_PRINTF(sc, "%p - (sc->rx_bd_chain) rx_bd chain virtual address\n", 6214 sc->rx_bd_chain); 6215 6216 BNX_PRINTF(sc, "%p - (sc->tx_mbuf_ptr) tx mbuf chain virtual address\n", 6217 sc->tx_mbuf_ptr); 6218 6219 BNX_PRINTF(sc, "%p - (sc->rx_mbuf_ptr) rx mbuf chain virtual address\n", 6220 sc->rx_mbuf_ptr); 6221 6222 BNX_PRINTF(sc, 6223 " 0x%08X - (sc->interrupts_generated) h/w intrs\n", 6224 sc->interrupts_generated); 6225 6226 BNX_PRINTF(sc, 6227 " 0x%08X - (sc->rx_interrupts) rx interrupts handled\n", 6228 sc->rx_interrupts); 6229 6230 BNX_PRINTF(sc, 6231 " 0x%08X - (sc->tx_interrupts) tx interrupts handled\n", 6232 sc->tx_interrupts); 6233 6234 BNX_PRINTF(sc, 6235 " 0x%08X - (sc->last_status_idx) status block index\n", 6236 sc->last_status_idx); 6237 6238 BNX_PRINTF(sc, " 0x%08X - (sc->tx_prod) tx producer index\n", 6239 sc->tx_prod); 6240 6241 BNX_PRINTF(sc, " 0x%08X - (sc->tx_cons) tx consumer index\n", 6242 sc->tx_cons); 6243 6244 BNX_PRINTF(sc, 6245 " 0x%08X - (sc->tx_prod_bseq) tx producer bseq index\n", 6246 sc->tx_prod_bseq); 6247 6248 BNX_PRINTF(sc, 6249 " 0x%08X - (sc->tx_mbuf_alloc) tx mbufs allocated\n", 6250 sc->tx_mbuf_alloc); 6251 6252 BNX_PRINTF(sc, 6253 " 0x%08X - (sc->used_tx_bd) used tx_bd's\n", 6254 sc->used_tx_bd); 6255 6256 BNX_PRINTF(sc, 6257 " 0x%08X/%08X - (sc->tx_hi_watermark) tx hi watermark\n", 6258 sc->tx_hi_watermark, sc->max_tx_bd); 6259 6260 BNX_PRINTF(sc, " 0x%08X - (sc->rx_prod) rx producer index\n", 6261 sc->rx_prod); 6262 6263 BNX_PRINTF(sc, " 0x%08X - (sc->rx_cons) rx consumer index\n", 6264 sc->rx_cons); 6265 6266 BNX_PRINTF(sc, 6267 " 0x%08X - (sc->rx_prod_bseq) rx producer bseq index\n", 6268 sc->rx_prod_bseq); 6269 6270 BNX_PRINTF(sc, 6271 " 0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n", 6272 sc->rx_mbuf_alloc); 6273 6274 BNX_PRINTF(sc, " 0x%08X - (sc->free_rx_bd) free rx_bd's\n", 6275 sc->free_rx_bd); 6276 6277 BNX_PRINTF(sc, 6278 "0x%08X/%08X - (sc->rx_low_watermark) rx low watermark\n", 6279 sc->rx_low_watermark, sc->max_rx_bd); 6280 6281 BNX_PRINTF(sc, 6282 " 0x%08X - (sc->mbuf_alloc_failed) " 6283 "mbuf alloc failures\n", 6284 sc->mbuf_alloc_failed); 6285 6286 BNX_PRINTF(sc, 6287 " 0x%0X - (sc->mbuf_sim_allocated_failed) " 6288 "simulated mbuf alloc failures\n", 6289 sc->mbuf_sim_alloc_failed); 6290 6291 BNX_PRINTF(sc, "-------------------------------------------" 6292 "-----------------------------\n"); 6293 } 6294 6295 void 6296 bnx_dump_hw_state(struct bnx_softc *sc) 6297 { 6298 u_int32_t val1; 6299 int i; 6300 6301 BNX_PRINTF(sc, 6302 "----------------------------" 6303 " Hardware State " 6304 "----------------------------\n"); 6305 6306 BNX_PRINTF(sc, "0x%08X : bootcode version\n", sc->bnx_fw_ver); 6307 6308 val1 = REG_RD(sc, BNX_MISC_ENABLE_STATUS_BITS); 6309 BNX_PRINTF(sc, "0x%08X : (0x%04X) misc_enable_status_bits\n", 6310 val1, BNX_MISC_ENABLE_STATUS_BITS); 6311 6312 val1 = REG_RD(sc, BNX_DMA_STATUS); 6313 BNX_PRINTF(sc, "0x%08X : (0x%04X) dma_status\n", val1, BNX_DMA_STATUS); 6314 6315 val1 = REG_RD(sc, BNX_CTX_STATUS); 6316 BNX_PRINTF(sc, "0x%08X : (0x%04X) ctx_status\n", val1, BNX_CTX_STATUS); 6317 6318 val1 = REG_RD(sc, BNX_EMAC_STATUS); 6319 BNX_PRINTF(sc, "0x%08X : (0x%04X) emac_status\n", val1, 6320 BNX_EMAC_STATUS); 6321 6322 val1 = REG_RD(sc, BNX_RPM_STATUS); 6323 BNX_PRINTF(sc, "0x%08X : (0x%04X) rpm_status\n", val1, BNX_RPM_STATUS); 6324 6325 val1 = REG_RD(sc, BNX_TBDR_STATUS); 6326 BNX_PRINTF(sc, "0x%08X : (0x%04X) tbdr_status\n", val1, 6327 BNX_TBDR_STATUS); 6328 6329 val1 = REG_RD(sc, BNX_TDMA_STATUS); 6330 BNX_PRINTF(sc, "0x%08X : (0x%04X) tdma_status\n", val1, 6331 BNX_TDMA_STATUS); 6332 6333 val1 = REG_RD(sc, BNX_HC_STATUS); 6334 BNX_PRINTF(sc, "0x%08X : (0x%04X) hc_status\n", val1, BNX_HC_STATUS); 6335 6336 BNX_PRINTF(sc, 6337 "----------------------------" 6338 "----------------" 6339 "----------------------------\n"); 6340 6341 BNX_PRINTF(sc, 6342 "----------------------------" 6343 " Register Dump " 6344 "----------------------------\n"); 6345 6346 for (i = 0x400; i < 0x8000; i += 0x10) 6347 BNX_PRINTF(sc, "0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", 6348 i, REG_RD(sc, i), REG_RD(sc, i + 0x4), 6349 REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC)); 6350 6351 BNX_PRINTF(sc, 6352 "----------------------------" 6353 "----------------" 6354 "----------------------------\n"); 6355 } 6356 6357 void 6358 bnx_breakpoint(struct bnx_softc *sc) 6359 { 6360 /* Unreachable code to shut the compiler up about unused functions. */ 6361 if (0) { 6362 bnx_dump_txbd(sc, 0, NULL); 6363 bnx_dump_rxbd(sc, 0, NULL); 6364 bnx_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD); 6365 bnx_dump_rx_mbuf_chain(sc, 0, sc->max_rx_bd); 6366 bnx_dump_l2fhdr(sc, 0, NULL); 6367 bnx_dump_tx_chain(sc, 0, USABLE_TX_BD); 6368 bnx_dump_rx_chain(sc, 0, sc->max_rx_bd); 6369 bnx_dump_status_block(sc); 6370 bnx_dump_stats_block(sc); 6371 bnx_dump_driver_state(sc); 6372 bnx_dump_hw_state(sc); 6373 } 6374 6375 bnx_dump_driver_state(sc); 6376 /* Print the important status block fields. */ 6377 bnx_dump_status_block(sc); 6378 6379 #if 0 6380 /* Call the debugger. */ 6381 breakpoint(); 6382 #endif 6383 6384 return; 6385 } 6386 #endif 6387