xref: /openbsd-src/sys/dev/pci/if_ale.c (revision d13be5d47e4149db2549a9828e244d59dbc43f15)
1 /*	$OpenBSD: if_ale.c,v 1.20 2011/09/13 08:15:35 kevlo Exp $	*/
2 /*-
3  * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice unmodified, this list of conditions, and the following
11  *    disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  * $FreeBSD: src/sys/dev/ale/if_ale.c,v 1.3 2008/12/03 09:01:12 yongari Exp $
29  */
30 
31 /* Driver for Atheros AR8121/AR8113/AR8114 PCIe Ethernet. */
32 
33 #include "bpfilter.h"
34 #include "vlan.h"
35 
36 #include <sys/param.h>
37 #include <sys/endian.h>
38 #include <sys/systm.h>
39 #include <sys/types.h>
40 #include <sys/sockio.h>
41 #include <sys/mbuf.h>
42 #include <sys/queue.h>
43 #include <sys/kernel.h>
44 #include <sys/device.h>
45 #include <sys/timeout.h>
46 #include <sys/socket.h>
47 
48 #include <machine/bus.h>
49 
50 #include <net/if.h>
51 #include <net/if_dl.h>
52 #include <net/if_llc.h>
53 #include <net/if_media.h>
54 
55 #ifdef INET
56 #include <netinet/in.h>
57 #include <netinet/in_systm.h>
58 #include <netinet/in_var.h>
59 #include <netinet/ip.h>
60 #include <netinet/if_ether.h>
61 #endif
62 
63 #include <net/if_types.h>
64 #include <net/if_vlan_var.h>
65 
66 #if NBPFILTER > 0
67 #include <net/bpf.h>
68 #endif
69 
70 #include <dev/rndvar.h>
71 
72 #include <dev/mii/mii.h>
73 #include <dev/mii/miivar.h>
74 
75 #include <dev/pci/pcireg.h>
76 #include <dev/pci/pcivar.h>
77 #include <dev/pci/pcidevs.h>
78 
79 #include <dev/pci/if_alereg.h>
80 
81 int	ale_match(struct device *, void *, void *);
82 void	ale_attach(struct device *, struct device *, void *);
83 int	ale_detach(struct device *, int);
84 int	ale_activate(struct device *, int);
85 
86 int	ale_miibus_readreg(struct device *, int, int);
87 void	ale_miibus_writereg(struct device *, int, int, int);
88 void	ale_miibus_statchg(struct device *);
89 
90 int	ale_init(struct ifnet *);
91 void	ale_start(struct ifnet *);
92 int	ale_ioctl(struct ifnet *, u_long, caddr_t);
93 void	ale_watchdog(struct ifnet *);
94 int	ale_mediachange(struct ifnet *);
95 void	ale_mediastatus(struct ifnet *, struct ifmediareq *);
96 
97 int	ale_intr(void *);
98 int	ale_rxeof(struct ale_softc *sc);
99 void	ale_rx_update_page(struct ale_softc *, struct ale_rx_page **,
100 	    uint32_t, uint32_t *);
101 void	ale_rxcsum(struct ale_softc *, struct mbuf *, uint32_t);
102 void	ale_txeof(struct ale_softc *);
103 
104 int	ale_dma_alloc(struct ale_softc *);
105 void	ale_dma_free(struct ale_softc *);
106 int	ale_encap(struct ale_softc *, struct mbuf **);
107 void	ale_init_rx_pages(struct ale_softc *);
108 void	ale_init_tx_ring(struct ale_softc *);
109 
110 void	ale_stop(struct ale_softc *);
111 void	ale_tick(void *);
112 void	ale_get_macaddr(struct ale_softc *);
113 void	ale_mac_config(struct ale_softc *);
114 void	ale_phy_reset(struct ale_softc *);
115 void	ale_reset(struct ale_softc *);
116 void	ale_iff(struct ale_softc *);
117 void	ale_rxvlan(struct ale_softc *);
118 void	ale_stats_clear(struct ale_softc *);
119 void	ale_stats_update(struct ale_softc *);
120 void	ale_stop_mac(struct ale_softc *);
121 
122 const struct pci_matchid ale_devices[] = {
123 	{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_L1E }
124 };
125 
126 struct cfattach ale_ca = {
127 	sizeof (struct ale_softc), ale_match, ale_attach, NULL,
128 	ale_activate
129 };
130 
131 struct cfdriver ale_cd = {
132 	NULL, "ale", DV_IFNET
133 };
134 
135 int aledebug = 0;
136 #define DPRINTF(x)	do { if (aledebug) printf x; } while (0)
137 
138 #define ALE_CSUM_FEATURES	(M_TCP_CSUM_OUT | M_UDP_CSUM_OUT)
139 
140 int
141 ale_miibus_readreg(struct device *dev, int phy, int reg)
142 {
143 	struct ale_softc *sc = (struct ale_softc *)dev;
144 	uint32_t v;
145 	int i;
146 
147 	if (phy != sc->ale_phyaddr)
148 		return (0);
149 
150 	if ((sc->ale_flags & ALE_FLAG_FASTETHER) != 0 &&
151 	    reg == MII_EXTSR)
152 		return (0);
153 
154 	CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
155 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
156 	for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
157 		DELAY(5);
158 		v = CSR_READ_4(sc, ALE_MDIO);
159 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
160 			break;
161 	}
162 
163 	if (i == 0) {
164 		printf("%s: phy read timeout: phy %d, reg %d\n",
165 		    sc->sc_dev.dv_xname, phy, reg);
166 		return (0);
167 	}
168 
169 	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
170 }
171 
172 void
173 ale_miibus_writereg(struct device *dev, int phy, int reg, int val)
174 {
175 	struct ale_softc *sc = (struct ale_softc *)dev;
176 	uint32_t v;
177 	int i;
178 
179 	if (phy != sc->ale_phyaddr)
180 		return;
181 
182 	CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
183 	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
184 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
185 	for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
186 		DELAY(5);
187 		v = CSR_READ_4(sc, ALE_MDIO);
188 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
189 			break;
190 	}
191 
192 	if (i == 0)
193 		printf("%s: phy write timeout: phy %d, reg %d\n",
194 		    sc->sc_dev.dv_xname, phy, reg);
195 }
196 
197 void
198 ale_miibus_statchg(struct device *dev)
199 {
200 	struct ale_softc *sc = (struct ale_softc *)dev;
201 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
202 	struct mii_data *mii = &sc->sc_miibus;
203 	uint32_t reg;
204 
205 	if ((ifp->if_flags & IFF_RUNNING) == 0)
206 		return;
207 
208 	sc->ale_flags &= ~ALE_FLAG_LINK;
209 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
210 	    (IFM_ACTIVE | IFM_AVALID)) {
211 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
212 		case IFM_10_T:
213 		case IFM_100_TX:
214 			sc->ale_flags |= ALE_FLAG_LINK;
215 			break;
216 
217 		case IFM_1000_T:
218 			if ((sc->ale_flags & ALE_FLAG_FASTETHER) == 0)
219 				sc->ale_flags |= ALE_FLAG_LINK;
220 			break;
221 
222 		default:
223 			break;
224 		}
225 	}
226 
227 	/* Stop Rx/Tx MACs. */
228 	ale_stop_mac(sc);
229 
230 	/* Program MACs with resolved speed/duplex/flow-control. */
231 	if ((sc->ale_flags & ALE_FLAG_LINK) != 0) {
232 		ale_mac_config(sc);
233 		/* Reenable Tx/Rx MACs. */
234 		reg = CSR_READ_4(sc, ALE_MAC_CFG);
235 		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
236 		CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
237 	}
238 }
239 
240 void
241 ale_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
242 {
243 	struct ale_softc *sc = ifp->if_softc;
244 	struct mii_data *mii = &sc->sc_miibus;
245 
246 	mii_pollstat(mii);
247 	ifmr->ifm_status = mii->mii_media_status;
248 	ifmr->ifm_active = mii->mii_media_active;
249 }
250 
251 int
252 ale_mediachange(struct ifnet *ifp)
253 {
254 	struct ale_softc *sc = ifp->if_softc;
255 	struct mii_data *mii = &sc->sc_miibus;
256 	int error;
257 
258 	if (mii->mii_instance != 0) {
259 		struct mii_softc *miisc;
260 
261 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
262 			mii_phy_reset(miisc);
263 	}
264 	error = mii_mediachg(mii);
265 
266 	return (error);
267 }
268 
269 int
270 ale_match(struct device *dev, void *match, void *aux)
271 {
272 	return pci_matchbyid((struct pci_attach_args *)aux, ale_devices,
273 	    sizeof (ale_devices) / sizeof (ale_devices[0]));
274 }
275 
276 void
277 ale_get_macaddr(struct ale_softc *sc)
278 {
279 	uint32_t ea[2], reg;
280 	int i, vpdc;
281 
282 	reg = CSR_READ_4(sc, ALE_SPI_CTRL);
283 	if ((reg & SPI_VPD_ENB) != 0) {
284 		reg &= ~SPI_VPD_ENB;
285 		CSR_WRITE_4(sc, ALE_SPI_CTRL, reg);
286 	}
287 
288 	if (pci_get_capability(sc->sc_pct, sc->sc_pcitag, PCI_CAP_VPD,
289 	    &vpdc, NULL)) {
290 		/*
291 		 * PCI VPD capability found, let TWSI reload EEPROM.
292 		 * This will set ethernet address of controller.
293 		 */
294 		CSR_WRITE_4(sc, ALE_TWSI_CTRL, CSR_READ_4(sc, ALE_TWSI_CTRL) |
295 		    TWSI_CTRL_SW_LD_START);
296 		for (i = 100; i > 0; i--) {
297 			DELAY(1000);
298 			reg = CSR_READ_4(sc, ALE_TWSI_CTRL);
299 			if ((reg & TWSI_CTRL_SW_LD_START) == 0)
300 				break;
301 		}
302 		if (i == 0)
303 			printf("%s: reloading EEPROM timeout!\n",
304 			    sc->sc_dev.dv_xname);
305 	} else {
306 		if (aledebug)
307 			printf("%s: PCI VPD capability not found!\n",
308 			    sc->sc_dev.dv_xname);
309 	}
310 
311 	ea[0] = CSR_READ_4(sc, ALE_PAR0);
312 	ea[1] = CSR_READ_4(sc, ALE_PAR1);
313 	sc->ale_eaddr[0] = (ea[1] >> 8) & 0xFF;
314 	sc->ale_eaddr[1] = (ea[1] >> 0) & 0xFF;
315 	sc->ale_eaddr[2] = (ea[0] >> 24) & 0xFF;
316 	sc->ale_eaddr[3] = (ea[0] >> 16) & 0xFF;
317 	sc->ale_eaddr[4] = (ea[0] >> 8) & 0xFF;
318 	sc->ale_eaddr[5] = (ea[0] >> 0) & 0xFF;
319 }
320 
321 void
322 ale_phy_reset(struct ale_softc *sc)
323 {
324 	/* Reset magic from Linux. */
325 	CSR_WRITE_2(sc, ALE_GPHY_CTRL,
326 	    GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE | GPHY_CTRL_SEL_ANA_RESET |
327 	    GPHY_CTRL_PHY_PLL_ON);
328 	DELAY(1000);
329 	CSR_WRITE_2(sc, ALE_GPHY_CTRL,
330 	    GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE |
331 	    GPHY_CTRL_SEL_ANA_RESET | GPHY_CTRL_PHY_PLL_ON);
332 	DELAY(1000);
333 
334 #define	ATPHY_DBG_ADDR		0x1D
335 #define	ATPHY_DBG_DATA		0x1E
336 
337 	/* Enable hibernation mode. */
338 	ale_miibus_writereg(&sc->sc_dev, sc->ale_phyaddr,
339 	    ATPHY_DBG_ADDR, 0x0B);
340 	ale_miibus_writereg(&sc->sc_dev, sc->ale_phyaddr,
341 	    ATPHY_DBG_DATA, 0xBC00);
342 	/* Set Class A/B for all modes. */
343 	ale_miibus_writereg(&sc->sc_dev, sc->ale_phyaddr,
344 	    ATPHY_DBG_ADDR, 0x00);
345 	ale_miibus_writereg(&sc->sc_dev, sc->ale_phyaddr,
346 	    ATPHY_DBG_DATA, 0x02EF);
347 	/* Enable 10BT power saving. */
348 	ale_miibus_writereg(&sc->sc_dev, sc->ale_phyaddr,
349 	    ATPHY_DBG_ADDR, 0x12);
350 	ale_miibus_writereg(&sc->sc_dev, sc->ale_phyaddr,
351 	    ATPHY_DBG_DATA, 0x4C04);
352 	/* Adjust 1000T power. */
353 	ale_miibus_writereg(&sc->sc_dev, sc->ale_phyaddr,
354 	    ATPHY_DBG_ADDR, 0x04);
355 	ale_miibus_writereg(&sc->sc_dev, sc->ale_phyaddr,
356 	    ATPHY_DBG_ADDR, 0x8BBB);
357 	/* 10BT center tap voltage. */
358 	ale_miibus_writereg(&sc->sc_dev, sc->ale_phyaddr,
359 	    ATPHY_DBG_ADDR, 0x05);
360 	ale_miibus_writereg(&sc->sc_dev, sc->ale_phyaddr,
361 	    ATPHY_DBG_ADDR, 0x2C46);
362 
363 #undef	ATPHY_DBG_ADDR
364 #undef	ATPHY_DBG_DATA
365 	DELAY(1000);
366 }
367 
368 void
369 ale_attach(struct device *parent, struct device *self, void *aux)
370 {
371 	struct ale_softc *sc = (struct ale_softc *)self;
372 	struct pci_attach_args *pa = aux;
373 	pci_chipset_tag_t pc = pa->pa_pc;
374 	pci_intr_handle_t ih;
375 	const char *intrstr;
376 	struct ifnet *ifp;
377 	pcireg_t memtype;
378 	int mii_flags, error = 0;
379 	uint32_t rxf_len, txf_len;
380 	const char *chipname;
381 
382 	/*
383 	 * Allocate IO memory
384 	 */
385 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, ALE_PCIR_BAR);
386 	if (pci_mapreg_map(pa, ALE_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
387 	    &sc->sc_mem_bh, NULL, &sc->sc_mem_size, 0)) {
388 		printf(": can't map mem space\n");
389 		return;
390 	}
391 
392 	if (pci_intr_map_msi(pa, &ih) != 0 && pci_intr_map(pa, &ih) != 0) {
393 		printf(": can't map interrupt\n");
394 		goto fail;
395 	}
396 
397 	/*
398 	 * Allocate IRQ
399 	 */
400 	intrstr = pci_intr_string(pc, ih);
401 	sc->sc_irq_handle = pci_intr_establish(pc, ih, IPL_NET, ale_intr, sc,
402 	    sc->sc_dev.dv_xname);
403 	if (sc->sc_irq_handle == NULL) {
404 		printf(": could not establish interrupt");
405 		if (intrstr != NULL)
406 			printf(" at %s", intrstr);
407 		printf("\n");
408 		goto fail;
409 	}
410 
411 	sc->sc_dmat = pa->pa_dmat;
412 	sc->sc_pct = pa->pa_pc;
413 	sc->sc_pcitag = pa->pa_tag;
414 
415 	/* Set PHY address. */
416 	sc->ale_phyaddr = ALE_PHY_ADDR;
417 
418 	/* Reset PHY. */
419 	ale_phy_reset(sc);
420 
421 	/* Reset the ethernet controller. */
422 	ale_reset(sc);
423 
424 	/* Get PCI and chip id/revision. */
425 	sc->ale_rev = PCI_REVISION(pa->pa_class);
426 	if (sc->ale_rev >= 0xF0) {
427 		/* L2E Rev. B. AR8114 */
428 		sc->ale_flags |= ALE_FLAG_FASTETHER;
429 		chipname = "AR8114";
430 	} else {
431 		if ((CSR_READ_4(sc, ALE_PHY_STATUS) & PHY_STATUS_100M) != 0) {
432 			/* L1E AR8121 */
433 			sc->ale_flags |= ALE_FLAG_JUMBO;
434 			chipname = "AR8121";
435 		} else {
436 			/* L2E Rev. A. AR8113 */
437 			sc->ale_flags |= ALE_FLAG_FASTETHER;
438 			chipname = "AR8113";
439 		}
440 	}
441 
442 	printf(": %s, %s", chipname, intrstr);
443 
444 	/*
445 	 * All known controllers seems to require 4 bytes alignment
446 	 * of Tx buffers to make Tx checksum offload with custom
447 	 * checksum generation method work.
448 	 */
449 	sc->ale_flags |= ALE_FLAG_TXCSUM_BUG;
450 
451 	/*
452 	 * All known controllers seems to have issues on Rx checksum
453 	 * offload for fragmented IP datagrams.
454 	 */
455 	sc->ale_flags |= ALE_FLAG_RXCSUM_BUG;
456 
457 	/*
458 	 * Don't use Tx CMB. It is known to cause RRS update failure
459 	 * under certain circumstances. Typical phenomenon of the
460 	 * issue would be unexpected sequence number encountered in
461 	 * Rx handler.
462 	 */
463 	sc->ale_flags |= ALE_FLAG_TXCMB_BUG;
464 	sc->ale_chip_rev = CSR_READ_4(sc, ALE_MASTER_CFG) >>
465 	    MASTER_CHIP_REV_SHIFT;
466 	if (aledebug) {
467 		printf("%s: PCI device revision : 0x%04x\n",
468 		    sc->sc_dev.dv_xname, sc->ale_rev);
469 		printf("%s: Chip id/revision : 0x%04x\n",
470 		    sc->sc_dev.dv_xname, sc->ale_chip_rev);
471 	}
472 
473 	/*
474 	 * Uninitialized hardware returns an invalid chip id/revision
475 	 * as well as 0xFFFFFFFF for Tx/Rx fifo length.
476 	 */
477 	txf_len = CSR_READ_4(sc, ALE_SRAM_TX_FIFO_LEN);
478 	rxf_len = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
479 	if (sc->ale_chip_rev == 0xFFFF || txf_len == 0xFFFFFFFF ||
480 	    rxf_len == 0xFFFFFFF) {
481 		printf("%s: chip revision : 0x%04x, %u Tx FIFO "
482 		    "%u Rx FIFO -- not initialized?\n", sc->sc_dev.dv_xname,
483 		    sc->ale_chip_rev, txf_len, rxf_len);
484 		goto fail;
485 	}
486 
487 	if (aledebug) {
488 		printf("%s: %u Tx FIFO, %u Rx FIFO\n", sc->sc_dev.dv_xname,
489 		    txf_len, rxf_len);
490 	}
491 
492 	/* Set max allowable DMA size. */
493 	sc->ale_dma_rd_burst = DMA_CFG_RD_BURST_128;
494 	sc->ale_dma_wr_burst = DMA_CFG_WR_BURST_128;
495 
496 	error = ale_dma_alloc(sc);
497 	if (error)
498 		goto fail;
499 
500 	/* Load station address. */
501 	ale_get_macaddr(sc);
502 
503 	ifp = &sc->sc_arpcom.ac_if;
504 	ifp->if_softc = sc;
505 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
506 	ifp->if_ioctl = ale_ioctl;
507 	ifp->if_start = ale_start;
508 	ifp->if_watchdog = ale_watchdog;
509 	ifp->if_baudrate = IF_Gbps(1);
510 	IFQ_SET_MAXLEN(&ifp->if_snd, ALE_TX_RING_CNT - 1);
511 	IFQ_SET_READY(&ifp->if_snd);
512 	bcopy(sc->ale_eaddr, sc->sc_arpcom.ac_enaddr, ETHER_ADDR_LEN);
513 	bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
514 
515 	ifp->if_capabilities = IFCAP_VLAN_MTU;
516 
517 #ifdef ALE_CHECKSUM
518 	ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 |
519 	    IFCAP_CSUM_UDPv4;
520 #endif
521 
522 #if NVLAN > 0
523 	ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING;
524 #endif
525 
526 	printf(", address %s\n", ether_sprintf(sc->sc_arpcom.ac_enaddr));
527 
528 	/* Set up MII bus. */
529 	sc->sc_miibus.mii_ifp = ifp;
530 	sc->sc_miibus.mii_readreg = ale_miibus_readreg;
531 	sc->sc_miibus.mii_writereg = ale_miibus_writereg;
532 	sc->sc_miibus.mii_statchg = ale_miibus_statchg;
533 
534 	ifmedia_init(&sc->sc_miibus.mii_media, 0, ale_mediachange,
535 	    ale_mediastatus);
536 	mii_flags = 0;
537 	if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0)
538 		mii_flags |= MIIF_DOPAUSE;
539 	mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY,
540 	    MII_OFFSET_ANY, mii_flags);
541 
542 	if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) {
543 		printf("%s: no PHY found!\n", sc->sc_dev.dv_xname);
544 		ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL,
545 		    0, NULL);
546 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL);
547 	} else
548 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO);
549 
550 	if_attach(ifp);
551 	ether_ifattach(ifp);
552 
553 	timeout_set(&sc->ale_tick_ch, ale_tick, sc);
554 
555 	return;
556 fail:
557 	ale_dma_free(sc);
558 	if (sc->sc_irq_handle != NULL)
559 		pci_intr_disestablish(pc, sc->sc_irq_handle);
560 	if (sc->sc_mem_size)
561 		bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
562 }
563 
564 int
565 ale_detach(struct device *self, int flags)
566 {
567 	struct ale_softc *sc = (struct ale_softc *)self;
568 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
569 	int s;
570 
571 	s = splnet();
572 	ale_stop(sc);
573 	splx(s);
574 
575 	mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
576 
577 	/* Delete all remaining media. */
578 	ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
579 
580 	ether_ifdetach(ifp);
581 	if_detach(ifp);
582 	ale_dma_free(sc);
583 
584 	if (sc->sc_irq_handle != NULL) {
585 		pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
586 		sc->sc_irq_handle = NULL;
587 	}
588 
589 	return (0);
590 }
591 
592 int
593 ale_activate(struct device *self, int act)
594 {
595 	struct ale_softc *sc = (struct ale_softc *)self;
596 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
597 	int rv = 0;
598 
599 	switch (act) {
600 	case DVACT_QUIESCE:
601 		rv = config_activate_children(self, act);
602 		break;
603 	case DVACT_SUSPEND:
604 		if (ifp->if_flags & IFF_RUNNING)
605 			ale_stop(sc);
606 		rv = config_activate_children(self, act);
607 		break;
608 	case DVACT_RESUME:
609 		rv = config_activate_children(self, act);
610 		if (ifp->if_flags & IFF_UP)
611 			ale_init(ifp);
612 		break;
613 	}
614 	return (rv);
615 }
616 
617 int
618 ale_dma_alloc(struct ale_softc *sc)
619 {
620 	struct ale_txdesc *txd;
621 	int nsegs, error, guard_size, i;
622 
623 	if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0)
624 		guard_size = ALE_JUMBO_FRAMELEN;
625 	else
626 		guard_size = ALE_MAX_FRAMELEN;
627 	sc->ale_pagesize = roundup(guard_size + ALE_RX_PAGE_SZ,
628 	    ALE_RX_PAGE_ALIGN);
629 
630 	/*
631 	 * Create DMA stuffs for TX ring
632 	 */
633 	error = bus_dmamap_create(sc->sc_dmat, ALE_TX_RING_SZ, 1,
634 	    ALE_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->ale_cdata.ale_tx_ring_map);
635 	if (error)
636 		return (ENOBUFS);
637 
638 	/* Allocate DMA'able memory for TX ring */
639 	error = bus_dmamem_alloc(sc->sc_dmat, ALE_TX_RING_SZ,
640 	    ETHER_ALIGN, 0, &sc->ale_cdata.ale_tx_ring_seg, 1,
641 	    &nsegs, BUS_DMA_WAITOK | BUS_DMA_ZERO);
642 	if (error) {
643 		printf("%s: could not allocate DMA'able memory for Tx ring.\n",
644 		    sc->sc_dev.dv_xname);
645 		return error;
646 	}
647 
648 	error = bus_dmamem_map(sc->sc_dmat, &sc->ale_cdata.ale_tx_ring_seg,
649 	    nsegs, ALE_TX_RING_SZ, (caddr_t *)&sc->ale_cdata.ale_tx_ring,
650 	    BUS_DMA_NOWAIT);
651 	if (error)
652 		return (ENOBUFS);
653 
654 	/* Load the DMA map for Tx ring. */
655 	error = bus_dmamap_load(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map,
656 	    sc->ale_cdata.ale_tx_ring, ALE_TX_RING_SZ, NULL, BUS_DMA_WAITOK);
657 	if (error) {
658 		printf("%s: could not load DMA'able memory for Tx ring.\n",
659 		    sc->sc_dev.dv_xname);
660 		bus_dmamem_free(sc->sc_dmat,
661 		    (bus_dma_segment_t *)&sc->ale_cdata.ale_tx_ring, 1);
662 		return error;
663 	}
664 	sc->ale_cdata.ale_tx_ring_paddr =
665 	    sc->ale_cdata.ale_tx_ring_map->dm_segs[0].ds_addr;
666 
667 	for (i = 0; i < ALE_RX_PAGES; i++) {
668 		/*
669 		 * Create DMA stuffs for RX pages
670 		 */
671 		error = bus_dmamap_create(sc->sc_dmat, sc->ale_pagesize, 1,
672 		    sc->ale_pagesize, 0, BUS_DMA_NOWAIT,
673 		    &sc->ale_cdata.ale_rx_page[i].page_map);
674 		if (error)
675 			return (ENOBUFS);
676 
677 		/* Allocate DMA'able memory for RX pages */
678 		error = bus_dmamem_alloc(sc->sc_dmat, sc->ale_pagesize,
679 		    ETHER_ALIGN, 0, &sc->ale_cdata.ale_rx_page[i].page_seg,
680 		    1, &nsegs, BUS_DMA_WAITOK | BUS_DMA_ZERO);
681 		if (error) {
682 			printf("%s: could not allocate DMA'able memory for "
683 			    "Rx ring.\n", sc->sc_dev.dv_xname);
684 			return error;
685 		}
686 		error = bus_dmamem_map(sc->sc_dmat,
687 		    &sc->ale_cdata.ale_rx_page[i].page_seg, nsegs,
688 		    sc->ale_pagesize,
689 		    (caddr_t *)&sc->ale_cdata.ale_rx_page[i].page_addr,
690 		    BUS_DMA_NOWAIT);
691 		if (error)
692 			return (ENOBUFS);
693 
694 		/* Load the DMA map for Rx pages. */
695 		error = bus_dmamap_load(sc->sc_dmat,
696 		    sc->ale_cdata.ale_rx_page[i].page_map,
697 		    sc->ale_cdata.ale_rx_page[i].page_addr,
698 		    sc->ale_pagesize, NULL, BUS_DMA_WAITOK);
699 		if (error) {
700 			printf("%s: could not load DMA'able memory for "
701 			    "Rx pages.\n", sc->sc_dev.dv_xname);
702 			bus_dmamem_free(sc->sc_dmat,
703 			    (bus_dma_segment_t *)sc->ale_cdata.ale_rx_page[i].page_addr, 1);
704 			return error;
705 		}
706 		sc->ale_cdata.ale_rx_page[i].page_paddr =
707 		    sc->ale_cdata.ale_rx_page[i].page_map->dm_segs[0].ds_addr;
708 	}
709 
710 	/*
711 	 * Create DMA stuffs for Tx CMB.
712 	 */
713 	error = bus_dmamap_create(sc->sc_dmat, ALE_TX_CMB_SZ, 1,
714 	    ALE_TX_CMB_SZ, 0, BUS_DMA_NOWAIT, &sc->ale_cdata.ale_tx_cmb_map);
715 	if (error)
716 		return (ENOBUFS);
717 
718 	/* Allocate DMA'able memory for Tx CMB. */
719 	error = bus_dmamem_alloc(sc->sc_dmat, ALE_TX_CMB_SZ, ETHER_ALIGN, 0,
720 	    &sc->ale_cdata.ale_tx_cmb_seg, 1, &nsegs,
721 	    BUS_DMA_WAITOK |BUS_DMA_ZERO);
722 
723 	if (error) {
724 		printf("%s: could not allocate DMA'able memory for Tx CMB.\n",
725 		    sc->sc_dev.dv_xname);
726 		return error;
727 	}
728 
729 	error = bus_dmamem_map(sc->sc_dmat, &sc->ale_cdata.ale_tx_cmb_seg,
730 	    nsegs, ALE_TX_CMB_SZ, (caddr_t *)&sc->ale_cdata.ale_tx_cmb,
731 	    BUS_DMA_NOWAIT);
732 	if (error)
733 		return (ENOBUFS);
734 
735 	/* Load the DMA map for Tx CMB. */
736 	error = bus_dmamap_load(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map,
737 	    sc->ale_cdata.ale_tx_cmb, ALE_TX_CMB_SZ, NULL, BUS_DMA_WAITOK);
738 	if (error) {
739 		printf("%s: could not load DMA'able memory for Tx CMB.\n",
740 		    sc->sc_dev.dv_xname);
741 		bus_dmamem_free(sc->sc_dmat,
742 		    (bus_dma_segment_t *)&sc->ale_cdata.ale_tx_cmb, 1);
743 		return error;
744 	}
745 
746 	sc->ale_cdata.ale_tx_cmb_paddr =
747 	    sc->ale_cdata.ale_tx_cmb_map->dm_segs[0].ds_addr;
748 
749 	for (i = 0; i < ALE_RX_PAGES; i++) {
750 		/*
751 		 * Create DMA stuffs for Rx CMB.
752 		 */
753 		error = bus_dmamap_create(sc->sc_dmat, ALE_RX_CMB_SZ, 1,
754 		    ALE_RX_CMB_SZ, 0, BUS_DMA_NOWAIT,
755 		    &sc->ale_cdata.ale_rx_page[i].cmb_map);
756 		if (error)
757 			return (ENOBUFS);
758 
759 		/* Allocate DMA'able memory for Rx CMB */
760 		error = bus_dmamem_alloc(sc->sc_dmat, ALE_RX_CMB_SZ,
761 		    ETHER_ALIGN, 0, &sc->ale_cdata.ale_rx_page[i].cmb_seg, 1,
762 		    &nsegs, BUS_DMA_WAITOK | BUS_DMA_ZERO);
763 		if (error) {
764 			printf("%s: could not allocate DMA'able memory for "
765 			    "Rx CMB\n", sc->sc_dev.dv_xname);
766 			return error;
767 		}
768 		error = bus_dmamem_map(sc->sc_dmat,
769 		    &sc->ale_cdata.ale_rx_page[i].cmb_seg, nsegs,
770 		    ALE_RX_CMB_SZ,
771 		    (caddr_t *)&sc->ale_cdata.ale_rx_page[i].cmb_addr,
772 		    BUS_DMA_NOWAIT);
773 		if (error)
774 			return (ENOBUFS);
775 
776 		/* Load the DMA map for Rx CMB */
777 		error = bus_dmamap_load(sc->sc_dmat,
778 		    sc->ale_cdata.ale_rx_page[i].cmb_map,
779 		    sc->ale_cdata.ale_rx_page[i].cmb_addr,
780 		    ALE_RX_CMB_SZ, NULL, BUS_DMA_WAITOK);
781 		if (error) {
782 			printf("%s: could not load DMA'able memory for Rx CMB"
783 			    "\n", sc->sc_dev.dv_xname);
784 			bus_dmamem_free(sc->sc_dmat,
785 			    (bus_dma_segment_t *)&sc->ale_cdata.ale_rx_page[i].cmb_addr, 1);
786 			return error;
787 		}
788 		sc->ale_cdata.ale_rx_page[i].cmb_paddr =
789 		    sc->ale_cdata.ale_rx_page[i].cmb_map->dm_segs[0].ds_addr;
790 	}
791 
792 
793 	/* Create DMA maps for Tx buffers. */
794 	for (i = 0; i < ALE_TX_RING_CNT; i++) {
795 		txd = &sc->ale_cdata.ale_txdesc[i];
796 		txd->tx_m = NULL;
797 		txd->tx_dmamap = NULL;
798 		error = bus_dmamap_create(sc->sc_dmat, ALE_TSO_MAXSIZE,
799 		    ALE_MAXTXSEGS, ALE_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,
800 		    &txd->tx_dmamap);
801 		if (error) {
802 			printf("%s: could not create Tx dmamap.\n",
803 			    sc->sc_dev.dv_xname);
804 			return error;
805 		}
806 	}
807 
808 	return (0);
809 }
810 
811 void
812 ale_dma_free(struct ale_softc *sc)
813 {
814 	struct ale_txdesc *txd;
815 	int i;
816 
817 	/* Tx buffers. */
818 	for (i = 0; i < ALE_TX_RING_CNT; i++) {
819 		txd = &sc->ale_cdata.ale_txdesc[i];
820 		if (txd->tx_dmamap != NULL) {
821 			bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
822 			txd->tx_dmamap = NULL;
823 		}
824 	}
825 
826 	/* Tx descriptor ring. */
827 	if (sc->ale_cdata.ale_tx_ring_map != NULL)
828 		bus_dmamap_unload(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map);
829 	if (sc->ale_cdata.ale_tx_ring_map != NULL &&
830 	    sc->ale_cdata.ale_tx_ring != NULL)
831 		bus_dmamem_free(sc->sc_dmat,
832 		    (bus_dma_segment_t *)sc->ale_cdata.ale_tx_ring, 1);
833 	sc->ale_cdata.ale_tx_ring = NULL;
834 	sc->ale_cdata.ale_tx_ring_map = NULL;
835 
836 	/* Rx page block. */
837 	for (i = 0; i < ALE_RX_PAGES; i++) {
838 		if (sc->ale_cdata.ale_rx_page[i].page_map != NULL)
839 			bus_dmamap_unload(sc->sc_dmat,
840 			    sc->ale_cdata.ale_rx_page[i].page_map);
841 		if (sc->ale_cdata.ale_rx_page[i].page_map != NULL &&
842 		    sc->ale_cdata.ale_rx_page[i].page_addr != NULL)
843 			bus_dmamem_free(sc->sc_dmat,
844 			    (bus_dma_segment_t *)sc->ale_cdata.ale_rx_page[i].page_addr, 1);
845 		sc->ale_cdata.ale_rx_page[i].page_addr = NULL;
846 		sc->ale_cdata.ale_rx_page[i].page_map = NULL;
847 	}
848 
849 	/* Rx CMB. */
850 	for (i = 0; i < ALE_RX_PAGES; i++) {
851 		if (sc->ale_cdata.ale_rx_page[i].cmb_map != NULL)
852 			bus_dmamap_unload(sc->sc_dmat,
853 			    sc->ale_cdata.ale_rx_page[i].cmb_map);
854 		if (sc->ale_cdata.ale_rx_page[i].cmb_map != NULL &&
855 		    sc->ale_cdata.ale_rx_page[i].cmb_addr != NULL)
856 			bus_dmamem_free(sc->sc_dmat,
857 			    (bus_dma_segment_t *)sc->ale_cdata.ale_rx_page[i].cmb_addr, 1);
858 		sc->ale_cdata.ale_rx_page[i].cmb_addr = NULL;
859 		sc->ale_cdata.ale_rx_page[i].cmb_map = NULL;
860 	}
861 
862 	/* Tx CMB. */
863 	if (sc->ale_cdata.ale_tx_cmb_map != NULL)
864 		bus_dmamap_unload(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map);
865 	if (sc->ale_cdata.ale_tx_cmb_map != NULL &&
866 	    sc->ale_cdata.ale_tx_cmb != NULL)
867 		bus_dmamem_free(sc->sc_dmat,
868 		    (bus_dma_segment_t *)sc->ale_cdata.ale_tx_cmb, 1);
869 	sc->ale_cdata.ale_tx_cmb = NULL;
870 	sc->ale_cdata.ale_tx_cmb_map = NULL;
871 
872 }
873 
874 int
875 ale_encap(struct ale_softc *sc, struct mbuf **m_head)
876 {
877 	struct ale_txdesc *txd, *txd_last;
878 	struct tx_desc *desc;
879 	struct mbuf *m;
880 	bus_dmamap_t map;
881 	uint32_t cflags, poff, vtag;
882 	int error, i, prod;
883 
884 	m = *m_head;
885 	cflags = vtag = 0;
886 	poff = 0;
887 
888 	prod = sc->ale_cdata.ale_tx_prod;
889 	txd = &sc->ale_cdata.ale_txdesc[prod];
890 	txd_last = txd;
891 	map = txd->tx_dmamap;
892 
893 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head, BUS_DMA_NOWAIT);
894 	if (error != 0 && error != EFBIG)
895 		goto drop;
896 	if (error != 0) {
897 		if (m_defrag(*m_head, M_DONTWAIT)) {
898 			error = ENOBUFS;
899 			goto drop;
900 		}
901 		error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head,
902 		    BUS_DMA_NOWAIT);
903 		if (error != 0)
904 			goto drop;
905 	}
906 
907 	/* Check descriptor overrun. */
908 	if (sc->ale_cdata.ale_tx_cnt + map->dm_nsegs >= ALE_TX_RING_CNT - 2) {
909 		bus_dmamap_unload(sc->sc_dmat, map);
910 		return (ENOBUFS);
911 	}
912 
913 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
914 	    BUS_DMASYNC_PREWRITE);
915 
916 	m = *m_head;
917 	/* Configure Tx checksum offload. */
918 	if ((m->m_pkthdr.csum_flags & ALE_CSUM_FEATURES) != 0) {
919 		/*
920 		 * AR81xx supports Tx custom checksum offload feature
921 		 * that offloads single 16bit checksum computation.
922 		 * So you can choose one among IP, TCP and UDP.
923 		 * Normally driver sets checksum start/insertion
924 		 * position from the information of TCP/UDP frame as
925 		 * TCP/UDP checksum takes more time than that of IP.
926 		 * However it seems that custom checksum offload
927 		 * requires 4 bytes aligned Tx buffers due to hardware
928 		 * bug.
929 		 * AR81xx also supports explicit Tx checksum computation
930 		 * if it is told that the size of IP header and TCP
931 		 * header(for UDP, the header size does not matter
932 		 * because it's fixed length). However with this scheme
933 		 * TSO does not work so you have to choose one either
934 		 * TSO or explicit Tx checksum offload. I chosen TSO
935 		 * plus custom checksum offload with work-around which
936 		 * will cover most common usage for this consumer
937 		 * ethernet controller. The work-around takes a lot of
938 		 * CPU cycles if Tx buffer is not aligned on 4 bytes
939 		 * boundary, though.
940 		 */
941 		cflags |= ALE_TD_CXSUM;
942 		/* Set checksum start offset. */
943 		cflags |= (poff << ALE_TD_CSUM_PLOADOFFSET_SHIFT);
944 	}
945 
946 #if NVLAN > 0
947 	/* Configure VLAN hardware tag insertion. */
948 	if (m->m_flags & M_VLANTAG) {
949 		vtag = ALE_TX_VLAN_TAG(m->m_pkthdr.ether_vtag);
950 		vtag = ((vtag << ALE_TD_VLAN_SHIFT) & ALE_TD_VLAN_MASK);
951 		cflags |= ALE_TD_INSERT_VLAN_TAG;
952 	}
953 #endif
954 
955 	desc = NULL;
956 	for (i = 0; i < map->dm_nsegs; i++) {
957 		desc = &sc->ale_cdata.ale_tx_ring[prod];
958 		desc->addr = htole64(map->dm_segs[i].ds_addr);
959 		desc->len =
960 		    htole32(ALE_TX_BYTES(map->dm_segs[i].ds_len) | vtag);
961 		desc->flags = htole32(cflags);
962 		sc->ale_cdata.ale_tx_cnt++;
963 		ALE_DESC_INC(prod, ALE_TX_RING_CNT);
964 	}
965 
966 	/* Update producer index. */
967 	sc->ale_cdata.ale_tx_prod = prod;
968 
969 	/* Finally set EOP on the last descriptor. */
970 	prod = (prod + ALE_TX_RING_CNT - 1) % ALE_TX_RING_CNT;
971 	desc = &sc->ale_cdata.ale_tx_ring[prod];
972 	desc->flags |= htole32(ALE_TD_EOP);
973 
974 	/* Swap dmamap of the first and the last. */
975 	txd = &sc->ale_cdata.ale_txdesc[prod];
976 	map = txd_last->tx_dmamap;
977 	txd_last->tx_dmamap = txd->tx_dmamap;
978 	txd->tx_dmamap = map;
979 	txd->tx_m = m;
980 
981 	/* Sync descriptors. */
982 	bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map, 0,
983 	    sc->ale_cdata.ale_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
984 
985 	return (0);
986 
987  drop:
988 	m_freem(*m_head);
989 	*m_head = NULL;
990 	return (error);
991 }
992 
993 void
994 ale_start(struct ifnet *ifp)
995 {
996         struct ale_softc *sc = ifp->if_softc;
997 	struct mbuf *m_head;
998 	int enq;
999 
1000 	/* Reclaim transmitted frames. */
1001 	if (sc->ale_cdata.ale_tx_cnt >= ALE_TX_DESC_HIWAT)
1002 		ale_txeof(sc);
1003 
1004 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1005 		return;
1006 	if ((sc->ale_flags & ALE_FLAG_LINK) == 0)
1007 		return;
1008 	if (IFQ_IS_EMPTY(&ifp->if_snd))
1009 		return;
1010 
1011 	enq = 0;
1012 	for (;;) {
1013 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
1014 		if (m_head == NULL)
1015 			break;
1016 
1017 		/*
1018 		 * Pack the data into the transmit ring. If we
1019 		 * don't have room, set the OACTIVE flag and wait
1020 		 * for the NIC to drain the ring.
1021 		 */
1022 		if (ale_encap(sc, &m_head)) {
1023 			if (m_head == NULL) {
1024 				ifp->if_oerrors++;
1025 				break;
1026 			}
1027 			IF_PREPEND(&ifp->if_snd, m_head);
1028 			ifp->if_flags |= IFF_OACTIVE;
1029 			break;
1030 		}
1031 
1032 		enq = 1;
1033 
1034 #if NBPFILTER > 0
1035 		/*
1036 		 * If there's a BPF listener, bounce a copy of this frame
1037 		 * to him.
1038 		 */
1039 		if (ifp->if_bpf != NULL)
1040 			bpf_mtap_ether(ifp->if_bpf, m_head, BPF_DIRECTION_OUT);
1041 #endif
1042 	}
1043 
1044 	if (enq) {
1045 		/* Kick. */
1046 		CSR_WRITE_4(sc, ALE_MBOX_TPD_PROD_IDX,
1047 		    sc->ale_cdata.ale_tx_prod);
1048 
1049 		/* Set a timeout in case the chip goes out to lunch. */
1050 		ifp->if_timer = ALE_TX_TIMEOUT;
1051 	}
1052 }
1053 
1054 void
1055 ale_watchdog(struct ifnet *ifp)
1056 {
1057 	struct ale_softc *sc = ifp->if_softc;
1058 
1059 	if ((sc->ale_flags & ALE_FLAG_LINK) == 0) {
1060 		printf("%s: watchdog timeout (missed link)\n",
1061 		    sc->sc_dev.dv_xname);
1062 		ifp->if_oerrors++;
1063 		ale_init(ifp);
1064 		return;
1065 	}
1066 
1067 	printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
1068 	ifp->if_oerrors++;
1069 	ale_init(ifp);
1070 	ale_start(ifp);
1071 }
1072 
1073 int
1074 ale_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1075 {
1076 	struct ale_softc *sc = ifp->if_softc;
1077 	struct mii_data *mii = &sc->sc_miibus;
1078 	struct ifaddr *ifa = (struct ifaddr *)data;
1079 	struct ifreq *ifr = (struct ifreq *)data;
1080 	int s, error = 0;
1081 
1082 	s = splnet();
1083 
1084 	switch (cmd) {
1085 	case SIOCSIFADDR:
1086 		ifp->if_flags |= IFF_UP;
1087 		if (!(ifp->if_flags & IFF_RUNNING))
1088 			ale_init(ifp);
1089 #ifdef INET
1090 		if (ifa->ifa_addr->sa_family == AF_INET)
1091 			arp_ifinit(&sc->sc_arpcom, ifa);
1092 #endif
1093 		break;
1094 
1095 	case SIOCSIFFLAGS:
1096 		if (ifp->if_flags & IFF_UP) {
1097 			if (ifp->if_flags & IFF_RUNNING)
1098 				error = ENETRESET;
1099 			else
1100 				ale_init(ifp);
1101 		} else {
1102 			if (ifp->if_flags & IFF_RUNNING)
1103 				ale_stop(sc);
1104 		}
1105 		break;
1106 
1107 	case SIOCSIFMEDIA:
1108 	case SIOCGIFMEDIA:
1109 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1110 		break;
1111 
1112 	default:
1113 		error = ether_ioctl(ifp, &sc->sc_arpcom, cmd, data);
1114 		break;
1115 	}
1116 
1117 	if (error == ENETRESET) {
1118 		if (ifp->if_flags & IFF_RUNNING)
1119 			ale_iff(sc);
1120 		error = 0;
1121 	}
1122 
1123 	splx(s);
1124 	return (error);
1125 }
1126 
1127 void
1128 ale_mac_config(struct ale_softc *sc)
1129 {
1130 	struct mii_data *mii;
1131 	uint32_t reg;
1132 
1133 	mii = &sc->sc_miibus;
1134 	reg = CSR_READ_4(sc, ALE_MAC_CFG);
1135 	reg &= ~(MAC_CFG_FULL_DUPLEX | MAC_CFG_TX_FC | MAC_CFG_RX_FC |
1136 	    MAC_CFG_SPEED_MASK);
1137 	/* Reprogram MAC with resolved speed/duplex. */
1138 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1139 	case IFM_10_T:
1140 	case IFM_100_TX:
1141 		reg |= MAC_CFG_SPEED_10_100;
1142 		break;
1143 	case IFM_1000_T:
1144 		reg |= MAC_CFG_SPEED_1000;
1145 		break;
1146 	}
1147 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1148 		reg |= MAC_CFG_FULL_DUPLEX;
1149 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1150 			reg |= MAC_CFG_TX_FC;
1151 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1152 			reg |= MAC_CFG_RX_FC;
1153 	}
1154 	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1155 }
1156 
1157 void
1158 ale_stats_clear(struct ale_softc *sc)
1159 {
1160 	struct smb sb;
1161 	uint32_t *reg;
1162 	int i;
1163 
1164 	for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
1165 		CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
1166 		i += sizeof(uint32_t);
1167 	}
1168 	/* Read Tx statistics. */
1169 	for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
1170 		CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
1171 		i += sizeof(uint32_t);
1172 	}
1173 }
1174 
1175 void
1176 ale_stats_update(struct ale_softc *sc)
1177 {
1178 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1179 	struct ale_hw_stats *stat;
1180 	struct smb sb, *smb;
1181 	uint32_t *reg;
1182 	int i;
1183 
1184 	stat = &sc->ale_stats;
1185 	smb = &sb;
1186 
1187 	/* Read Rx statistics. */
1188 	for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
1189 		*reg = CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
1190 		i += sizeof(uint32_t);
1191 	}
1192 	/* Read Tx statistics. */
1193 	for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
1194 		*reg = CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
1195 		i += sizeof(uint32_t);
1196 	}
1197 
1198 	/* Rx stats. */
1199 	stat->rx_frames += smb->rx_frames;
1200 	stat->rx_bcast_frames += smb->rx_bcast_frames;
1201 	stat->rx_mcast_frames += smb->rx_mcast_frames;
1202 	stat->rx_pause_frames += smb->rx_pause_frames;
1203 	stat->rx_control_frames += smb->rx_control_frames;
1204 	stat->rx_crcerrs += smb->rx_crcerrs;
1205 	stat->rx_lenerrs += smb->rx_lenerrs;
1206 	stat->rx_bytes += smb->rx_bytes;
1207 	stat->rx_runts += smb->rx_runts;
1208 	stat->rx_fragments += smb->rx_fragments;
1209 	stat->rx_pkts_64 += smb->rx_pkts_64;
1210 	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
1211 	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
1212 	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
1213 	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
1214 	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
1215 	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
1216 	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
1217 	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
1218 	stat->rx_rrs_errs += smb->rx_rrs_errs;
1219 	stat->rx_alignerrs += smb->rx_alignerrs;
1220 	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
1221 	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
1222 	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
1223 
1224 	/* Tx stats. */
1225 	stat->tx_frames += smb->tx_frames;
1226 	stat->tx_bcast_frames += smb->tx_bcast_frames;
1227 	stat->tx_mcast_frames += smb->tx_mcast_frames;
1228 	stat->tx_pause_frames += smb->tx_pause_frames;
1229 	stat->tx_excess_defer += smb->tx_excess_defer;
1230 	stat->tx_control_frames += smb->tx_control_frames;
1231 	stat->tx_deferred += smb->tx_deferred;
1232 	stat->tx_bytes += smb->tx_bytes;
1233 	stat->tx_pkts_64 += smb->tx_pkts_64;
1234 	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
1235 	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
1236 	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
1237 	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
1238 	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
1239 	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
1240 	stat->tx_single_colls += smb->tx_single_colls;
1241 	stat->tx_multi_colls += smb->tx_multi_colls;
1242 	stat->tx_late_colls += smb->tx_late_colls;
1243 	stat->tx_excess_colls += smb->tx_excess_colls;
1244 	stat->tx_abort += smb->tx_abort;
1245 	stat->tx_underrun += smb->tx_underrun;
1246 	stat->tx_desc_underrun += smb->tx_desc_underrun;
1247 	stat->tx_lenerrs += smb->tx_lenerrs;
1248 	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
1249 	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
1250 	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
1251 
1252 	/* Update counters in ifnet. */
1253 	ifp->if_opackets += smb->tx_frames;
1254 
1255 	ifp->if_collisions += smb->tx_single_colls +
1256 	    smb->tx_multi_colls * 2 + smb->tx_late_colls +
1257 	    smb->tx_abort * HDPX_CFG_RETRY_DEFAULT;
1258 
1259 	/*
1260 	 * XXX
1261 	 * tx_pkts_truncated counter looks suspicious. It constantly
1262 	 * increments with no sign of Tx errors. This may indicate
1263 	 * the counter name is not correct one so I've removed the
1264 	 * counter in output errors.
1265 	 */
1266 	ifp->if_oerrors += smb->tx_abort + smb->tx_late_colls +
1267 	    smb->tx_underrun;
1268 
1269 	ifp->if_ipackets += smb->rx_frames;
1270 
1271 	ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
1272 	    smb->rx_runts + smb->rx_pkts_truncated +
1273 	    smb->rx_fifo_oflows + smb->rx_rrs_errs +
1274 	    smb->rx_alignerrs;
1275 }
1276 
1277 int
1278 ale_intr(void *xsc)
1279 {
1280 	struct ale_softc *sc = xsc;
1281 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1282 	uint32_t status;
1283 
1284 	status = CSR_READ_4(sc, ALE_INTR_STATUS);
1285 	if ((status & ALE_INTRS) == 0)
1286 		return (0);
1287 
1288 	/* Acknowledge and disable interrupts. */
1289 	CSR_WRITE_4(sc, ALE_INTR_STATUS, status | INTR_DIS_INT);
1290 
1291 	if (ifp->if_flags & IFF_RUNNING) {
1292 		int error;
1293 
1294 		error = ale_rxeof(sc);
1295 		if (error) {
1296 			sc->ale_stats.reset_brk_seq++;
1297 			ale_init(ifp);
1298 			return (0);
1299 		}
1300 
1301 		if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) {
1302 			if (status & INTR_DMA_RD_TO_RST)
1303 				printf("%s: DMA read error! -- resetting\n",
1304 				    sc->sc_dev.dv_xname);
1305 			if (status & INTR_DMA_WR_TO_RST)
1306 				printf("%s: DMA write error! -- resetting\n",
1307 				    sc->sc_dev.dv_xname);
1308 			ale_init(ifp);
1309 			return (0);
1310 		}
1311 
1312 		ale_txeof(sc);
1313 		ale_start(ifp);
1314 	}
1315 
1316 	/* Re-enable interrupts. */
1317 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0x7FFFFFFF);
1318 	return (1);
1319 }
1320 
1321 void
1322 ale_txeof(struct ale_softc *sc)
1323 {
1324 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1325 	struct ale_txdesc *txd;
1326 	uint32_t cons, prod;
1327 	int prog;
1328 
1329 	if (sc->ale_cdata.ale_tx_cnt == 0)
1330 		return;
1331 
1332 	bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map, 0,
1333 	    sc->ale_cdata.ale_tx_ring_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1334 	if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0) {
1335 		bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map, 0,
1336 		    sc->ale_cdata.ale_tx_cmb_map->dm_mapsize,
1337 		    BUS_DMASYNC_POSTREAD);
1338 		prod = *sc->ale_cdata.ale_tx_cmb & TPD_CNT_MASK;
1339 	} else
1340 		prod = CSR_READ_2(sc, ALE_TPD_CONS_IDX);
1341 	cons = sc->ale_cdata.ale_tx_cons;
1342 	/*
1343 	 * Go through our Tx list and free mbufs for those
1344 	 * frames which have been transmitted.
1345 	 */
1346 	for (prog = 0; cons != prod; prog++,
1347 	     ALE_DESC_INC(cons, ALE_TX_RING_CNT)) {
1348 		if (sc->ale_cdata.ale_tx_cnt <= 0)
1349 			break;
1350 		prog++;
1351 		ifp->if_flags &= ~IFF_OACTIVE;
1352 		sc->ale_cdata.ale_tx_cnt--;
1353 		txd = &sc->ale_cdata.ale_txdesc[cons];
1354 		if (txd->tx_m != NULL) {
1355 			/* Reclaim transmitted mbufs. */
1356 			bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1357 			m_freem(txd->tx_m);
1358 			txd->tx_m = NULL;
1359 		}
1360 	}
1361 
1362 	if (prog > 0) {
1363 		sc->ale_cdata.ale_tx_cons = cons;
1364 		/*
1365 		 * Unarm watchdog timer only when there is no pending
1366 		 * Tx descriptors in queue.
1367 		 */
1368 		if (sc->ale_cdata.ale_tx_cnt == 0)
1369 			ifp->if_timer = 0;
1370 	}
1371 }
1372 
1373 void
1374 ale_rx_update_page(struct ale_softc *sc, struct ale_rx_page **page,
1375     uint32_t length, uint32_t *prod)
1376 {
1377 	struct ale_rx_page *rx_page;
1378 
1379 	rx_page = *page;
1380 	/* Update consumer position. */
1381 	rx_page->cons += roundup(length + sizeof(struct rx_rs),
1382 	    ALE_RX_PAGE_ALIGN);
1383 	if (rx_page->cons >= ALE_RX_PAGE_SZ) {
1384 		/*
1385 		 * End of Rx page reached, let hardware reuse
1386 		 * this page.
1387 		 */
1388 		rx_page->cons = 0;
1389 		*rx_page->cmb_addr = 0;
1390 		bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
1391 		    rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1392 		CSR_WRITE_1(sc, ALE_RXF0_PAGE0 + sc->ale_cdata.ale_rx_curp,
1393 		    RXF_VALID);
1394 		/* Switch to alternate Rx page. */
1395 		sc->ale_cdata.ale_rx_curp ^= 1;
1396 		rx_page = *page =
1397 		    &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
1398 		/* Page flipped, sync CMB and Rx page. */
1399 		bus_dmamap_sync(sc->sc_dmat, rx_page->page_map, 0,
1400 		    rx_page->page_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1401 		bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
1402 		    rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1403 		/* Sync completed, cache updated producer index. */
1404 		*prod = *rx_page->cmb_addr;
1405 	}
1406 }
1407 
1408 
1409 /*
1410  * It seems that AR81xx controller can compute partial checksum.
1411  * The partial checksum value can be used to accelerate checksum
1412  * computation for fragmented TCP/UDP packets. Upper network stack
1413  * already takes advantage of the partial checksum value in IP
1414  * reassembly stage. But I'm not sure the correctness of the
1415  * partial hardware checksum assistance due to lack of data sheet.
1416  * In addition, the Rx feature of controller that requires copying
1417  * for every frames effectively nullifies one of most nice offload
1418  * capability of controller.
1419  */
1420 void
1421 ale_rxcsum(struct ale_softc *sc, struct mbuf *m, uint32_t status)
1422 {
1423 	struct ip *ip;
1424 	char *p;
1425 
1426 	if ((status & ALE_RD_IPCSUM_NOK) == 0)
1427 		m->m_pkthdr.csum_flags |= M_IPV4_CSUM_IN_OK;
1428 
1429 	if ((sc->ale_flags & ALE_FLAG_RXCSUM_BUG) == 0) {
1430 		if (((status & ALE_RD_IPV4_FRAG) == 0) &&
1431 		    ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0) &&
1432 		    ((status & ALE_RD_TCP_UDPCSUM_NOK) == 0)) {
1433 			m->m_pkthdr.csum_flags |=
1434 			    M_TCP_CSUM_IN_OK | M_UDP_CSUM_IN_OK;
1435 		}
1436 	} else {
1437 		if ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0 &&
1438 		    (status & ALE_RD_TCP_UDPCSUM_NOK) == 0) {
1439 			p = mtod(m, char *);
1440 			p += ETHER_HDR_LEN;
1441 			if ((status & ALE_RD_802_3) != 0)
1442 				p += LLC_SNAPFRAMELEN;
1443 #if NVLAN > 0
1444 			if (status & ALE_RD_VLAN)
1445 				p += EVL_ENCAPLEN;
1446 #endif
1447 			ip = (struct ip *)p;
1448 			if (ip->ip_off != 0 && (status & ALE_RD_IPV4_DF) == 0)
1449 				return;
1450 			m->m_pkthdr.csum_flags |=
1451 			    M_TCP_CSUM_IN_OK | M_UDP_CSUM_IN_OK;
1452 		}
1453 	}
1454 	/*
1455 	 * Don't mark bad checksum for TCP/UDP frames
1456 	 * as fragmented frames may always have set
1457 	 * bad checksummed bit of frame status.
1458 	 */
1459 }
1460 
1461 /* Process received frames. */
1462 int
1463 ale_rxeof(struct ale_softc *sc)
1464 {
1465 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1466 	struct ale_rx_page *rx_page;
1467 	struct rx_rs *rs;
1468 	struct mbuf *m;
1469 	uint32_t length, prod, seqno, status;
1470 	int prog;
1471 
1472 	rx_page = &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
1473 	bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
1474 	    rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1475 	bus_dmamap_sync(sc->sc_dmat, rx_page->page_map, 0,
1476 	    rx_page->page_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1477 	/*
1478 	 * Don't directly access producer index as hardware may
1479 	 * update it while Rx handler is in progress. It would
1480 	 * be even better if there is a way to let hardware
1481 	 * know how far driver processed its received frames.
1482 	 * Alternatively, hardware could provide a way to disable
1483 	 * CMB updates until driver acknowledges the end of CMB
1484 	 * access.
1485 	 */
1486 	prod = *rx_page->cmb_addr;
1487 	for (prog = 0; ; prog++) {
1488 		if (rx_page->cons >= prod)
1489 			break;
1490 		rs = (struct rx_rs *)(rx_page->page_addr + rx_page->cons);
1491 		seqno = ALE_RX_SEQNO(letoh32(rs->seqno));
1492 		if (sc->ale_cdata.ale_rx_seqno != seqno) {
1493 			/*
1494 			 * Normally I believe this should not happen unless
1495 			 * severe driver bug or corrupted memory. However
1496 			 * it seems to happen under certain conditions which
1497 			 * is triggered by abrupt Rx events such as initiation
1498 			 * of bulk transfer of remote host. It's not easy to
1499 			 * reproduce this and I doubt it could be related
1500 			 * with FIFO overflow of hardware or activity of Tx
1501 			 * CMB updates. I also remember similar behaviour
1502 			 * seen on RealTek 8139 which uses resembling Rx
1503 			 * scheme.
1504 			 */
1505 			if (aledebug)
1506 				printf("%s: garbled seq: %u, expected: %u -- "
1507 				    "resetting!\n", sc->sc_dev.dv_xname,
1508 				    seqno, sc->ale_cdata.ale_rx_seqno);
1509 			return (EIO);
1510 		}
1511 		/* Frame received. */
1512 		sc->ale_cdata.ale_rx_seqno++;
1513 		length = ALE_RX_BYTES(letoh32(rs->length));
1514 		status = letoh32(rs->flags);
1515 		if (status & ALE_RD_ERROR) {
1516 			/*
1517 			 * We want to pass the following frames to upper
1518 			 * layer regardless of error status of Rx return
1519 			 * status.
1520 			 *
1521 			 *  o IP/TCP/UDP checksum is bad.
1522 			 *  o frame length and protocol specific length
1523 			 *     does not match.
1524 			 */
1525 			if (status & (ALE_RD_CRC | ALE_RD_CODE |
1526 			    ALE_RD_DRIBBLE | ALE_RD_RUNT | ALE_RD_OFLOW |
1527 			    ALE_RD_TRUNC)) {
1528 				ale_rx_update_page(sc, &rx_page, length, &prod);
1529 				continue;
1530 			}
1531 		}
1532 		/*
1533 		 * m_devget(9) is major bottle-neck of ale(4)(It comes
1534 		 * from hardware limitation). For jumbo frames we could
1535 		 * get a slightly better performance if driver use
1536 		 * m_getjcl(9) with proper buffer size argument. However
1537 		 * that would make code more complicated and I don't
1538 		 * think users would expect good Rx performance numbers
1539 		 * on these low-end consumer ethernet controller.
1540 		 */
1541 		m = m_devget((char *)(rs + 1), length - ETHER_CRC_LEN,
1542 		    ETHER_ALIGN, ifp, NULL);
1543 		if (m == NULL) {
1544 			ifp->if_iqdrops++;
1545 			ale_rx_update_page(sc, &rx_page, length, &prod);
1546 			continue;
1547 		}
1548 		if (status & ALE_RD_IPV4)
1549 			ale_rxcsum(sc, m, status);
1550 #if NVLAN > 0
1551 		if (status & ALE_RD_VLAN) {
1552 			uint32_t vtags = ALE_RX_VLAN(letoh32(rs->vtags));
1553 			m->m_pkthdr.ether_vtag = ALE_RX_VLAN_TAG(vtags);
1554 			m->m_flags |= M_VLANTAG;
1555 		}
1556 #endif
1557 
1558 
1559 #if NBPFILTER > 0
1560 		if (ifp->if_bpf)
1561 			bpf_mtap_ether(ifp->if_bpf, m, BPF_DIRECTION_IN);
1562 #endif
1563 
1564 		/* Pass it to upper layer. */
1565 		ether_input_mbuf(ifp, m);
1566 
1567 		ale_rx_update_page(sc, &rx_page, length, &prod);
1568 	}
1569 
1570 	return 0;
1571 }
1572 
1573 void
1574 ale_tick(void *xsc)
1575 {
1576 	struct ale_softc *sc = xsc;
1577 	struct mii_data *mii = &sc->sc_miibus;
1578 	int s;
1579 
1580 	s = splnet();
1581 	mii_tick(mii);
1582 	ale_stats_update(sc);
1583 
1584 	timeout_add_sec(&sc->ale_tick_ch, 1);
1585 	splx(s);
1586 }
1587 
1588 void
1589 ale_reset(struct ale_softc *sc)
1590 {
1591 	uint32_t reg;
1592 	int i;
1593 
1594 	/* Initialize PCIe module. From Linux. */
1595 	CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
1596 
1597 	CSR_WRITE_4(sc, ALE_MASTER_CFG, MASTER_RESET);
1598 	for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
1599 		DELAY(10);
1600 		if ((CSR_READ_4(sc, ALE_MASTER_CFG) & MASTER_RESET) == 0)
1601 			break;
1602 	}
1603 	if (i == 0)
1604 		printf("%s: master reset timeout!\n", sc->sc_dev.dv_xname);
1605 
1606 	for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
1607 		if ((reg = CSR_READ_4(sc, ALE_IDLE_STATUS)) == 0)
1608 			break;
1609 		DELAY(10);
1610 	}
1611 
1612 	if (i == 0)
1613 		printf("%s: reset timeout(0x%08x)!\n", sc->sc_dev.dv_xname,
1614 		    reg);
1615 }
1616 
1617 int
1618 ale_init(struct ifnet *ifp)
1619 {
1620 	struct ale_softc *sc = ifp->if_softc;
1621 	struct mii_data *mii;
1622 	uint8_t eaddr[ETHER_ADDR_LEN];
1623 	bus_addr_t paddr;
1624 	uint32_t reg, rxf_hi, rxf_lo;
1625 
1626 	/*
1627 	 * Cancel any pending I/O.
1628 	 */
1629 	ale_stop(sc);
1630 
1631 	/*
1632 	 * Reset the chip to a known state.
1633 	 */
1634 	ale_reset(sc);
1635 
1636 	/* Initialize Tx descriptors, DMA memory blocks. */
1637 	ale_init_rx_pages(sc);
1638 	ale_init_tx_ring(sc);
1639 
1640 	/* Reprogram the station address. */
1641 	bcopy(LLADDR(ifp->if_sadl), eaddr, ETHER_ADDR_LEN);
1642 	CSR_WRITE_4(sc, ALE_PAR0,
1643 	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
1644 	CSR_WRITE_4(sc, ALE_PAR1, eaddr[0] << 8 | eaddr[1]);
1645 
1646 	/*
1647 	 * Clear WOL status and disable all WOL feature as WOL
1648 	 * would interfere Rx operation under normal environments.
1649 	 */
1650 	CSR_READ_4(sc, ALE_WOL_CFG);
1651 	CSR_WRITE_4(sc, ALE_WOL_CFG, 0);
1652 
1653 	/*
1654 	 * Set Tx descriptor/RXF0/CMB base addresses. They share
1655 	 * the same high address part of DMAable region.
1656 	 */
1657 	paddr = sc->ale_cdata.ale_tx_ring_paddr;
1658 	CSR_WRITE_4(sc, ALE_TPD_ADDR_HI, ALE_ADDR_HI(paddr));
1659 	CSR_WRITE_4(sc, ALE_TPD_ADDR_LO, ALE_ADDR_LO(paddr));
1660 	CSR_WRITE_4(sc, ALE_TPD_CNT,
1661 	    (ALE_TX_RING_CNT << TPD_CNT_SHIFT) & TPD_CNT_MASK);
1662 
1663 	/* Set Rx page base address, note we use single queue. */
1664 	paddr = sc->ale_cdata.ale_rx_page[0].page_paddr;
1665 	CSR_WRITE_4(sc, ALE_RXF0_PAGE0_ADDR_LO, ALE_ADDR_LO(paddr));
1666 	paddr = sc->ale_cdata.ale_rx_page[1].page_paddr;
1667 	CSR_WRITE_4(sc, ALE_RXF0_PAGE1_ADDR_LO, ALE_ADDR_LO(paddr));
1668 
1669 	/* Set Tx/Rx CMB addresses. */
1670 	paddr = sc->ale_cdata.ale_tx_cmb_paddr;
1671 	CSR_WRITE_4(sc, ALE_TX_CMB_ADDR_LO, ALE_ADDR_LO(paddr));
1672 	paddr = sc->ale_cdata.ale_rx_page[0].cmb_paddr;
1673 	CSR_WRITE_4(sc, ALE_RXF0_CMB0_ADDR_LO, ALE_ADDR_LO(paddr));
1674 	paddr = sc->ale_cdata.ale_rx_page[1].cmb_paddr;
1675 	CSR_WRITE_4(sc, ALE_RXF0_CMB1_ADDR_LO, ALE_ADDR_LO(paddr));
1676 
1677 	/* Mark RXF0 is valid. */
1678 	CSR_WRITE_1(sc, ALE_RXF0_PAGE0, RXF_VALID);
1679 	CSR_WRITE_1(sc, ALE_RXF0_PAGE1, RXF_VALID);
1680 	/*
1681 	 * No need to initialize RFX1/RXF2/RXF3. We don't use
1682 	 * multi-queue yet.
1683 	 */
1684 
1685 	/* Set Rx page size, excluding guard frame size. */
1686 	CSR_WRITE_4(sc, ALE_RXF_PAGE_SIZE, ALE_RX_PAGE_SZ);
1687 
1688 	/* Tell hardware that we're ready to load DMA blocks. */
1689 	CSR_WRITE_4(sc, ALE_DMA_BLOCK, DMA_BLOCK_LOAD);
1690 
1691 	/* Set Rx/Tx interrupt trigger threshold. */
1692 	CSR_WRITE_4(sc, ALE_INT_TRIG_THRESH, (1 << INT_TRIG_RX_THRESH_SHIFT) |
1693 	    (4 << INT_TRIG_TX_THRESH_SHIFT));
1694 	/*
1695 	 * XXX
1696 	 * Set interrupt trigger timer, its purpose and relation
1697 	 * with interrupt moderation mechanism is not clear yet.
1698 	 */
1699 	CSR_WRITE_4(sc, ALE_INT_TRIG_TIMER,
1700 	    ((ALE_USECS(10) << INT_TRIG_RX_TIMER_SHIFT) |
1701 	    (ALE_USECS(1000) << INT_TRIG_TX_TIMER_SHIFT)));
1702 
1703 	/* Configure interrupt moderation timer. */
1704 	sc->ale_int_rx_mod = ALE_IM_RX_TIMER_DEFAULT;
1705 	sc->ale_int_tx_mod = ALE_IM_TX_TIMER_DEFAULT;
1706 	reg = ALE_USECS(sc->ale_int_rx_mod) << IM_TIMER_RX_SHIFT;
1707 	reg |= ALE_USECS(sc->ale_int_tx_mod) << IM_TIMER_TX_SHIFT;
1708 	CSR_WRITE_4(sc, ALE_IM_TIMER, reg);
1709 	reg = CSR_READ_4(sc, ALE_MASTER_CFG);
1710 	reg &= ~(MASTER_CHIP_REV_MASK | MASTER_CHIP_ID_MASK);
1711 	reg &= ~(MASTER_IM_RX_TIMER_ENB | MASTER_IM_TX_TIMER_ENB);
1712 	if (ALE_USECS(sc->ale_int_rx_mod) != 0)
1713 		reg |= MASTER_IM_RX_TIMER_ENB;
1714 	if (ALE_USECS(sc->ale_int_tx_mod) != 0)
1715 		reg |= MASTER_IM_TX_TIMER_ENB;
1716 	CSR_WRITE_4(sc, ALE_MASTER_CFG, reg);
1717 	CSR_WRITE_2(sc, ALE_INTR_CLR_TIMER, ALE_USECS(1000));
1718 
1719 	/* Set Maximum frame size of controller. */
1720 	if (ifp->if_mtu < ETHERMTU)
1721 		sc->ale_max_frame_size = ETHERMTU;
1722 	else
1723 		sc->ale_max_frame_size = ifp->if_mtu;
1724 	sc->ale_max_frame_size += ETHER_HDR_LEN + EVL_ENCAPLEN + ETHER_CRC_LEN;
1725 	CSR_WRITE_4(sc, ALE_FRAME_SIZE, sc->ale_max_frame_size);
1726 
1727 	/* Configure IPG/IFG parameters. */
1728 	CSR_WRITE_4(sc, ALE_IPG_IFG_CFG,
1729 	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK) |
1730 	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
1731 	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
1732 	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK));
1733 
1734 	/* Set parameters for half-duplex media. */
1735 	CSR_WRITE_4(sc, ALE_HDPX_CFG,
1736 	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
1737 	    HDPX_CFG_LCOL_MASK) |
1738 	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
1739 	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
1740 	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
1741 	    HDPX_CFG_ABEBT_MASK) |
1742 	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
1743 	    HDPX_CFG_JAMIPG_MASK));
1744 
1745 	/* Configure Tx jumbo frame parameters. */
1746 	if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
1747 		if (ifp->if_mtu < ETHERMTU)
1748 			reg = sc->ale_max_frame_size;
1749 		else if (ifp->if_mtu < 6 * 1024)
1750 			reg = (sc->ale_max_frame_size * 2) / 3;
1751 		else
1752 			reg = sc->ale_max_frame_size / 2;
1753 		CSR_WRITE_4(sc, ALE_TX_JUMBO_THRESH,
1754 		    roundup(reg, TX_JUMBO_THRESH_UNIT) >>
1755 		    TX_JUMBO_THRESH_UNIT_SHIFT);
1756 	}
1757 
1758 	/* Configure TxQ. */
1759 	reg = (128 << (sc->ale_dma_rd_burst >> DMA_CFG_RD_BURST_SHIFT))
1760 	    << TXQ_CFG_TX_FIFO_BURST_SHIFT;
1761 	reg |= (TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
1762 	    TXQ_CFG_TPD_BURST_MASK;
1763 	CSR_WRITE_4(sc, ALE_TXQ_CFG, reg | TXQ_CFG_ENHANCED_MODE | TXQ_CFG_ENB);
1764 
1765 	/* Configure Rx jumbo frame & flow control parameters. */
1766 	if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
1767 		reg = roundup(sc->ale_max_frame_size, RX_JUMBO_THRESH_UNIT);
1768 		CSR_WRITE_4(sc, ALE_RX_JUMBO_THRESH,
1769 		    (((reg >> RX_JUMBO_THRESH_UNIT_SHIFT) <<
1770 		    RX_JUMBO_THRESH_MASK_SHIFT) & RX_JUMBO_THRESH_MASK) |
1771 		    ((RX_JUMBO_LKAH_DEFAULT << RX_JUMBO_LKAH_SHIFT) &
1772 		    RX_JUMBO_LKAH_MASK));
1773 		reg = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
1774 		rxf_hi = (reg * 7) / 10;
1775 		rxf_lo = (reg * 3)/ 10;
1776 		CSR_WRITE_4(sc, ALE_RX_FIFO_PAUSE_THRESH,
1777 		    ((rxf_lo << RX_FIFO_PAUSE_THRESH_LO_SHIFT) &
1778 		    RX_FIFO_PAUSE_THRESH_LO_MASK) |
1779 		    ((rxf_hi << RX_FIFO_PAUSE_THRESH_HI_SHIFT) &
1780 		     RX_FIFO_PAUSE_THRESH_HI_MASK));
1781 	}
1782 
1783 	/* Disable RSS. */
1784 	CSR_WRITE_4(sc, ALE_RSS_IDT_TABLE0, 0);
1785 	CSR_WRITE_4(sc, ALE_RSS_CPU, 0);
1786 
1787 	/* Configure RxQ. */
1788 	CSR_WRITE_4(sc, ALE_RXQ_CFG,
1789 	    RXQ_CFG_ALIGN_32 | RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
1790 
1791 	/* Configure DMA parameters. */
1792 	reg = 0;
1793 	if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0)
1794 		reg |= DMA_CFG_TXCMB_ENB;
1795 	CSR_WRITE_4(sc, ALE_DMA_CFG,
1796 	    DMA_CFG_OUT_ORDER | DMA_CFG_RD_REQ_PRI | DMA_CFG_RCB_64 |
1797 	    sc->ale_dma_rd_burst | reg |
1798 	    sc->ale_dma_wr_burst | DMA_CFG_RXCMB_ENB |
1799 	    ((DMA_CFG_RD_DELAY_CNT_DEFAULT << DMA_CFG_RD_DELAY_CNT_SHIFT) &
1800 	    DMA_CFG_RD_DELAY_CNT_MASK) |
1801 	    ((DMA_CFG_WR_DELAY_CNT_DEFAULT << DMA_CFG_WR_DELAY_CNT_SHIFT) &
1802 	    DMA_CFG_WR_DELAY_CNT_MASK));
1803 
1804 	/*
1805 	 * Hardware can be configured to issue SMB interrupt based
1806 	 * on programmed interval. Since there is a callout that is
1807 	 * invoked for every hz in driver we use that instead of
1808 	 * relying on periodic SMB interrupt.
1809 	 */
1810 	CSR_WRITE_4(sc, ALE_SMB_STAT_TIMER, ALE_USECS(0));
1811 
1812 	/* Clear MAC statistics. */
1813 	ale_stats_clear(sc);
1814 
1815 	/*
1816 	 * Configure Tx/Rx MACs.
1817 	 *  - Auto-padding for short frames.
1818 	 *  - Enable CRC generation.
1819 	 *  Actual reconfiguration of MAC for resolved speed/duplex
1820 	 *  is followed after detection of link establishment.
1821 	 *  AR81xx always does checksum computation regardless of
1822 	 *  MAC_CFG_RXCSUM_ENB bit. In fact, setting the bit will
1823 	 *  cause Rx handling issue for fragmented IP datagrams due
1824 	 *  to silicon bug.
1825 	 */
1826 	reg = MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | MAC_CFG_FULL_DUPLEX |
1827 	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
1828 	    MAC_CFG_PREAMBLE_MASK);
1829 	if ((sc->ale_flags & ALE_FLAG_FASTETHER) != 0)
1830 		reg |= MAC_CFG_SPEED_10_100;
1831 	else
1832 		reg |= MAC_CFG_SPEED_1000;
1833 	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1834 
1835 	/* Set up the receive filter. */
1836 	ale_iff(sc);
1837 
1838 	ale_rxvlan(sc);
1839 
1840 	/* Acknowledge all pending interrupts and clear it. */
1841 	CSR_WRITE_4(sc, ALE_INTR_MASK, ALE_INTRS);
1842 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
1843 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0);
1844 
1845 	sc->ale_flags &= ~ALE_FLAG_LINK;
1846 
1847 	/* Switch to the current media. */
1848 	mii = &sc->sc_miibus;
1849 	mii_mediachg(mii);
1850 
1851 	timeout_add_sec(&sc->ale_tick_ch, 1);
1852 
1853 	ifp->if_flags |= IFF_RUNNING;
1854 	ifp->if_flags &= ~IFF_OACTIVE;
1855 
1856 	return 0;
1857 }
1858 
1859 void
1860 ale_stop(struct ale_softc *sc)
1861 {
1862 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1863 	struct ale_txdesc *txd;
1864 	uint32_t reg;
1865 	int i;
1866 
1867 	/*
1868 	 * Mark the interface down and cancel the watchdog timer.
1869 	 */
1870 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1871 	ifp->if_timer = 0;
1872 
1873 	timeout_del(&sc->ale_tick_ch);
1874 	sc->ale_flags &= ~ALE_FLAG_LINK;
1875 
1876 	ale_stats_update(sc);
1877 
1878 	/* Disable interrupts. */
1879 	CSR_WRITE_4(sc, ALE_INTR_MASK, 0);
1880 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
1881 
1882 	/* Disable queue processing and DMA. */
1883 	reg = CSR_READ_4(sc, ALE_TXQ_CFG);
1884 	reg &= ~TXQ_CFG_ENB;
1885 	CSR_WRITE_4(sc, ALE_TXQ_CFG, reg);
1886 	reg = CSR_READ_4(sc, ALE_RXQ_CFG);
1887 	reg &= ~RXQ_CFG_ENB;
1888 	CSR_WRITE_4(sc, ALE_RXQ_CFG, reg);
1889 	reg = CSR_READ_4(sc, ALE_DMA_CFG);
1890 	reg &= ~(DMA_CFG_TXCMB_ENB | DMA_CFG_RXCMB_ENB);
1891 	CSR_WRITE_4(sc, ALE_DMA_CFG, reg);
1892 	DELAY(1000);
1893 
1894 	/* Stop Rx/Tx MACs. */
1895 	ale_stop_mac(sc);
1896 
1897 	/* Disable interrupts again? XXX */
1898 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
1899 
1900 	/*
1901 	 * Free TX mbufs still in the queues.
1902 	 */
1903 	for (i = 0; i < ALE_TX_RING_CNT; i++) {
1904 		txd = &sc->ale_cdata.ale_txdesc[i];
1905 		if (txd->tx_m != NULL) {
1906 			bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1907 			m_freem(txd->tx_m);
1908 			txd->tx_m = NULL;
1909 		}
1910         }
1911 }
1912 
1913 void
1914 ale_stop_mac(struct ale_softc *sc)
1915 {
1916 	uint32_t reg;
1917 	int i;
1918 
1919 	reg = CSR_READ_4(sc, ALE_MAC_CFG);
1920 	if ((reg & (MAC_CFG_TX_ENB | MAC_CFG_RX_ENB)) != 0) {
1921 		reg &= ~MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
1922 		CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1923 	}
1924 
1925 	for (i = ALE_TIMEOUT; i > 0; i--) {
1926 		reg = CSR_READ_4(sc, ALE_IDLE_STATUS);
1927 		if (reg == 0)
1928 			break;
1929 		DELAY(10);
1930 	}
1931 	if (i == 0)
1932 		printf("%s: could not disable Tx/Rx MAC(0x%08x)!\n",
1933 		    sc->sc_dev.dv_xname, reg);
1934 }
1935 
1936 void
1937 ale_init_tx_ring(struct ale_softc *sc)
1938 {
1939 	struct ale_txdesc *txd;
1940 	int i;
1941 
1942 	sc->ale_cdata.ale_tx_prod = 0;
1943 	sc->ale_cdata.ale_tx_cons = 0;
1944 	sc->ale_cdata.ale_tx_cnt = 0;
1945 
1946 	bzero(sc->ale_cdata.ale_tx_ring, ALE_TX_RING_SZ);
1947 	bzero(sc->ale_cdata.ale_tx_cmb, ALE_TX_CMB_SZ);
1948 	for (i = 0; i < ALE_TX_RING_CNT; i++) {
1949 		txd = &sc->ale_cdata.ale_txdesc[i];
1950 		txd->tx_m = NULL;
1951 	}
1952 	*sc->ale_cdata.ale_tx_cmb = 0;
1953 	bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map, 0,
1954 	    sc->ale_cdata.ale_tx_cmb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1955 	bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map, 0,
1956 	    sc->ale_cdata.ale_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1957 }
1958 
1959 void
1960 ale_init_rx_pages(struct ale_softc *sc)
1961 {
1962 	struct ale_rx_page *rx_page;
1963 	int i;
1964 
1965 	sc->ale_cdata.ale_rx_seqno = 0;
1966 	sc->ale_cdata.ale_rx_curp = 0;
1967 
1968 	for (i = 0; i < ALE_RX_PAGES; i++) {
1969 		rx_page = &sc->ale_cdata.ale_rx_page[i];
1970 		bzero(rx_page->page_addr, sc->ale_pagesize);
1971 		bzero(rx_page->cmb_addr, ALE_RX_CMB_SZ);
1972 		rx_page->cons = 0;
1973 		*rx_page->cmb_addr = 0;
1974 		bus_dmamap_sync(sc->sc_dmat, rx_page->page_map, 0,
1975 		    rx_page->page_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1976 		bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
1977 		    rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1978 	}
1979 }
1980 
1981 void
1982 ale_rxvlan(struct ale_softc *sc)
1983 {
1984 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1985 	uint32_t reg;
1986 
1987 	reg = CSR_READ_4(sc, ALE_MAC_CFG);
1988 	reg &= ~MAC_CFG_VLAN_TAG_STRIP;
1989 	if (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING)
1990 		reg |= MAC_CFG_VLAN_TAG_STRIP;
1991 	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1992 }
1993 
1994 void
1995 ale_iff(struct ale_softc *sc)
1996 {
1997 	struct arpcom *ac = &sc->sc_arpcom;
1998 	struct ifnet *ifp = &ac->ac_if;
1999 	struct ether_multi *enm;
2000 	struct ether_multistep step;
2001 	uint32_t crc;
2002 	uint32_t mchash[2];
2003 	uint32_t rxcfg;
2004 
2005 	rxcfg = CSR_READ_4(sc, ALE_MAC_CFG);
2006 	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
2007 	ifp->if_flags &= ~IFF_ALLMULTI;
2008 
2009 	/*
2010 	 * Always accept broadcast frames.
2011 	 */
2012 	rxcfg |= MAC_CFG_BCAST;
2013 
2014 	if (ifp->if_flags & IFF_PROMISC || ac->ac_multirangecnt > 0) {
2015 		ifp->if_flags |= IFF_ALLMULTI;
2016 		if (ifp->if_flags & IFF_PROMISC)
2017 			rxcfg |= MAC_CFG_PROMISC;
2018 		else
2019 			rxcfg |= MAC_CFG_ALLMULTI;
2020 		mchash[0] = mchash[1] = 0xFFFFFFFF;
2021 	} else {
2022 		/* Program new filter. */
2023 		bzero(mchash, sizeof(mchash));
2024 
2025 		ETHER_FIRST_MULTI(step, ac, enm);
2026 		while (enm != NULL) {
2027 			crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
2028 
2029 			mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
2030 
2031 			ETHER_NEXT_MULTI(step, enm);
2032 		}
2033 	}
2034 
2035 	CSR_WRITE_4(sc, ALE_MAR0, mchash[0]);
2036 	CSR_WRITE_4(sc, ALE_MAR1, mchash[1]);
2037 	CSR_WRITE_4(sc, ALE_MAC_CFG, rxcfg);
2038 }
2039