xref: /openbsd-src/sys/dev/pci/if_age.c (revision d13be5d47e4149db2549a9828e244d59dbc43f15)
1 /*	$OpenBSD: if_age.c,v 1.16 2011/08/26 07:52:22 kevlo Exp $	*/
2 
3 /*-
4  * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice unmodified, this list of conditions, and the following
12  *    disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 /* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */
31 
32 #include "bpfilter.h"
33 #include "vlan.h"
34 
35 #include <sys/param.h>
36 #include <sys/endian.h>
37 #include <sys/systm.h>
38 #include <sys/types.h>
39 #include <sys/sockio.h>
40 #include <sys/mbuf.h>
41 #include <sys/queue.h>
42 #include <sys/kernel.h>
43 #include <sys/device.h>
44 #include <sys/timeout.h>
45 #include <sys/socket.h>
46 
47 #include <machine/bus.h>
48 
49 #include <net/if.h>
50 #include <net/if_dl.h>
51 #include <net/if_media.h>
52 
53 #ifdef INET
54 #include <netinet/in.h>
55 #include <netinet/in_systm.h>
56 #include <netinet/in_var.h>
57 #include <netinet/ip.h>
58 #include <netinet/if_ether.h>
59 #endif
60 
61 #include <net/if_types.h>
62 #include <net/if_vlan_var.h>
63 
64 #if NBPFILTER > 0
65 #include <net/bpf.h>
66 #endif
67 
68 #include <dev/rndvar.h>
69 
70 #include <dev/mii/mii.h>
71 #include <dev/mii/miivar.h>
72 
73 #include <dev/pci/pcireg.h>
74 #include <dev/pci/pcivar.h>
75 #include <dev/pci/pcidevs.h>
76 
77 #include <dev/pci/if_agereg.h>
78 
79 int	age_match(struct device *, void *, void *);
80 void	age_attach(struct device *, struct device *, void *);
81 int	age_detach(struct device *, int);
82 
83 int	age_miibus_readreg(struct device *, int, int);
84 void	age_miibus_writereg(struct device *, int, int, int);
85 void	age_miibus_statchg(struct device *);
86 
87 int	age_init(struct ifnet *);
88 int	age_ioctl(struct ifnet *, u_long, caddr_t);
89 void	age_start(struct ifnet *);
90 void	age_watchdog(struct ifnet *);
91 void	age_mediastatus(struct ifnet *, struct ifmediareq *);
92 int	age_mediachange(struct ifnet *);
93 
94 int	age_intr(void *);
95 int	age_dma_alloc(struct age_softc *);
96 void	age_dma_free(struct age_softc *);
97 void	age_get_macaddr(struct age_softc *);
98 void	age_phy_reset(struct age_softc *);
99 
100 int	age_encap(struct age_softc *, struct mbuf **);
101 void	age_init_tx_ring(struct age_softc *);
102 int	age_init_rx_ring(struct age_softc *);
103 void	age_init_rr_ring(struct age_softc *);
104 void	age_init_cmb_block(struct age_softc *);
105 void	age_init_smb_block(struct age_softc *);
106 int	age_newbuf(struct age_softc *, struct age_rxdesc *);
107 void	age_mac_config(struct age_softc *);
108 void	age_txintr(struct age_softc *, int);
109 void	age_rxeof(struct age_softc *sc, struct rx_rdesc *);
110 void	age_rxintr(struct age_softc *, int);
111 void	age_tick(void *);
112 void	age_reset(struct age_softc *);
113 void	age_stop(struct age_softc *);
114 void	age_stats_update(struct age_softc *);
115 void	age_stop_txmac(struct age_softc *);
116 void	age_stop_rxmac(struct age_softc *);
117 void	age_rxvlan(struct age_softc *sc);
118 void	age_iff(struct age_softc *);
119 
120 const struct pci_matchid age_devices[] = {
121 	{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_L1 }
122 };
123 
124 struct cfattach age_ca = {
125 	sizeof (struct age_softc), age_match, age_attach
126 };
127 
128 struct cfdriver age_cd = {
129 	 NULL, "age", DV_IFNET
130 };
131 
132 int agedebug = 0;
133 #define	DPRINTF(x)	do { if (agedebug) printf x; } while (0)
134 
135 #define AGE_CSUM_FEATURES	(M_TCP_CSUM_OUT | M_UDP_CSUM_OUT)
136 
137 int
138 age_match(struct device *dev, void *match, void *aux)
139 {
140 	 return pci_matchbyid((struct pci_attach_args *)aux, age_devices,
141 	     sizeof (age_devices) / sizeof (age_devices[0]));
142 }
143 
144 void
145 age_attach(struct device *parent, struct device *self, void *aux)
146 {
147 	struct age_softc *sc = (struct age_softc *)self;
148 	struct pci_attach_args *pa = aux;
149 	pci_chipset_tag_t pc = pa->pa_pc;
150 	pci_intr_handle_t ih;
151 	const char *intrstr;
152 	struct ifnet *ifp;
153 	pcireg_t memtype;
154 	int error = 0;
155 
156 	/*
157 	 * Allocate IO memory
158 	 */
159 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, AGE_PCIR_BAR);
160 	if (pci_mapreg_map(pa, AGE_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
161 	    &sc->sc_mem_bh, NULL, &sc->sc_mem_size, 0)) {
162 		printf(": can't map mem space\n");
163 		return;
164 	}
165 
166 	if (pci_intr_map_msi(pa, &ih) != 0 && pci_intr_map(pa, &ih) != 0) {
167 		printf(": can't map interrupt\n");
168 		goto fail;
169 	}
170 
171 	/*
172 	 * Allocate IRQ
173 	 */
174 	intrstr = pci_intr_string(pc, ih);
175 	sc->sc_irq_handle = pci_intr_establish(pc, ih, IPL_NET, age_intr, sc,
176 	    sc->sc_dev.dv_xname);
177 	if (sc->sc_irq_handle == NULL) {
178 		printf(": could not establish interrupt");
179 		if (intrstr != NULL)
180 			printf(" at %s", intrstr);
181 		printf("\n");
182 		goto fail;
183 	}
184 	printf(": %s", intrstr);
185 
186 	sc->sc_dmat = pa->pa_dmat;
187 	sc->sc_pct = pa->pa_pc;
188 	sc->sc_pcitag = pa->pa_tag;
189 
190 	/* Set PHY address. */
191 	sc->age_phyaddr = AGE_PHY_ADDR;
192 
193 	/* Reset PHY. */
194 	age_phy_reset(sc);
195 
196 	/* Reset the ethernet controller. */
197 	age_reset(sc);
198 
199 	/* Get PCI and chip id/revision. */
200 	sc->age_rev = PCI_REVISION(pa->pa_class);
201 	sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >>
202 	    MASTER_CHIP_REV_SHIFT;
203 	if (agedebug) {
204 		printf("%s: PCI device revision : 0x%04x\n",
205 		    sc->sc_dev.dv_xname, sc->age_rev);
206 		printf("%s: Chip id/revision : 0x%04x\n",
207 		    sc->sc_dev.dv_xname, sc->age_chip_rev);
208 	}
209 
210 	if (agedebug) {
211 		printf("%s: %d Tx FIFO, %d Rx FIFO\n", sc->sc_dev.dv_xname,
212 		    CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN),
213 		    CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN));
214 	}
215 
216 	/* Set max allowable DMA size. */
217 	sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128;
218 	sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128;
219 
220 	/* Allocate DMA stuffs */
221 	error = age_dma_alloc(sc);
222 	if (error)
223 		goto fail;
224 
225 	/* Load station address. */
226 	age_get_macaddr(sc);
227 
228 	ifp = &sc->sc_arpcom.ac_if;
229 	ifp->if_softc = sc;
230 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
231 	ifp->if_ioctl = age_ioctl;
232 	ifp->if_start = age_start;
233 	ifp->if_watchdog = age_watchdog;
234 	ifp->if_baudrate = IF_Gbps(1);
235 	IFQ_SET_MAXLEN(&ifp->if_snd, AGE_TX_RING_CNT - 1);
236 	IFQ_SET_READY(&ifp->if_snd);
237 	bcopy(sc->age_eaddr, sc->sc_arpcom.ac_enaddr, ETHER_ADDR_LEN);
238 	bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
239 
240 	ifp->if_capabilities = IFCAP_VLAN_MTU;
241 
242 #ifdef AGE_CHECKSUM
243 	ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 |
244 				IFCAP_CSUM_UDPv4;
245 #endif
246 
247 #if NVLAN > 0
248 	ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING;
249 #endif
250 
251 	printf(", address %s\n", ether_sprintf(sc->sc_arpcom.ac_enaddr));
252 
253 	/* Set up MII bus. */
254 	sc->sc_miibus.mii_ifp = ifp;
255 	sc->sc_miibus.mii_readreg = age_miibus_readreg;
256 	sc->sc_miibus.mii_writereg = age_miibus_writereg;
257 	sc->sc_miibus.mii_statchg = age_miibus_statchg;
258 
259 	ifmedia_init(&sc->sc_miibus.mii_media, 0, age_mediachange,
260 	    age_mediastatus);
261 	mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY,
262 	   MII_OFFSET_ANY, MIIF_DOPAUSE);
263 
264 	if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) {
265 		printf("%s: no PHY found!\n", sc->sc_dev.dv_xname);
266 		ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL,
267 		    0, NULL);
268 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL);
269 	} else
270 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO);
271 
272 	if_attach(ifp);
273 	ether_ifattach(ifp);
274 
275 	timeout_set(&sc->age_tick_ch, age_tick, sc);
276 
277 	return;
278 fail:
279 	age_dma_free(sc);
280 	if (sc->sc_irq_handle != NULL)
281 		pci_intr_disestablish(pc, sc->sc_irq_handle);
282 	if (sc->sc_mem_size)
283 		bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
284 }
285 
286 int
287 age_detach(struct device *self, int flags)
288 {
289 	struct age_softc *sc = (struct age_softc *)self;
290 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
291 	int s;
292 
293 	s = splnet();
294 	age_stop(sc);
295 	splx(s);
296 
297 	mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
298 
299 	/* Delete all remaining media. */
300 	ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
301 
302 	ether_ifdetach(ifp);
303 	if_detach(ifp);
304 	age_dma_free(sc);
305 
306 	if (sc->sc_irq_handle != NULL) {
307 		pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
308 		sc->sc_irq_handle = NULL;
309 	}
310 
311 	return (0);
312 }
313 
314 /*
315  *	Read a PHY register on the MII of the L1.
316  */
317 int
318 age_miibus_readreg(struct device *dev, int phy, int reg)
319 {
320 	struct age_softc *sc = (struct age_softc *)dev;
321 	uint32_t v;
322 	int i;
323 
324 	if (phy != sc->age_phyaddr)
325 		return (0);
326 
327 	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
328 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
329 	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
330 		DELAY(1);
331 		v = CSR_READ_4(sc, AGE_MDIO);
332 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
333 			break;
334 	}
335 
336 	if (i == 0) {
337 		printf("%s: phy read timeout: phy %d, reg %d\n",
338 			sc->sc_dev.dv_xname, phy, reg);
339 		return (0);
340 	}
341 
342 	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
343 }
344 
345 /*
346  * 	Write a PHY register on the MII of the L1.
347  */
348 void
349 age_miibus_writereg(struct device *dev, int phy, int reg, int val)
350 {
351 	struct age_softc *sc = (struct age_softc *)dev;
352 	uint32_t v;
353 	int i;
354 
355 	if (phy != sc->age_phyaddr)
356 		return;
357 
358 	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
359 	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
360 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
361 
362 	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
363 		DELAY(1);
364 		v = CSR_READ_4(sc, AGE_MDIO);
365 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
366 			break;
367 	}
368 
369 	if (i == 0) {
370 		printf("%s: phy write timeout: phy %d, reg %d\n",
371 		    sc->sc_dev.dv_xname, phy, reg);
372 	}
373 }
374 
375 /*
376  *	Callback from MII layer when media changes.
377  */
378 void
379 age_miibus_statchg(struct device *dev)
380 {
381 	struct age_softc *sc = (struct age_softc *)dev;
382 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
383 	struct mii_data *mii = &sc->sc_miibus;
384 
385 	if ((ifp->if_flags & IFF_RUNNING) == 0)
386 		return;
387 
388 	sc->age_flags &= ~AGE_FLAG_LINK;
389 	if ((mii->mii_media_status & IFM_AVALID) != 0) {
390 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
391 		case IFM_10_T:
392 		case IFM_100_TX:
393 		case IFM_1000_T:
394 			sc->age_flags |= AGE_FLAG_LINK;
395 			break;
396 		default:
397 			break;
398 		}
399 	}
400 
401 	/* Stop Rx/Tx MACs. */
402 	age_stop_rxmac(sc);
403 	age_stop_txmac(sc);
404 
405 	/* Program MACs with resolved speed/duplex/flow-control. */
406 	if ((sc->age_flags & AGE_FLAG_LINK) != 0) {
407 		uint32_t reg;
408 
409 		age_mac_config(sc);
410 		reg = CSR_READ_4(sc, AGE_MAC_CFG);
411 		/* Restart DMA engine and Tx/Rx MAC. */
412 		CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) |
413 		    DMA_CFG_RD_ENB | DMA_CFG_WR_ENB);
414 		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
415 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
416 	}
417 }
418 
419 /*
420  *	Get the current interface media status.
421  */
422 void
423 age_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
424 {
425 	struct age_softc *sc = ifp->if_softc;
426 	struct mii_data *mii = &sc->sc_miibus;
427 
428 	mii_pollstat(mii);
429 	ifmr->ifm_status = mii->mii_media_status;
430 	ifmr->ifm_active = mii->mii_media_active;
431 }
432 
433 /*
434  *	Set hardware to newly-selected media.
435  */
436 int
437 age_mediachange(struct ifnet *ifp)
438 {
439 	struct age_softc *sc = ifp->if_softc;
440 	struct mii_data *mii = &sc->sc_miibus;
441 	int error;
442 
443 	if (mii->mii_instance != 0) {
444 		struct mii_softc *miisc;
445 
446 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
447 			mii_phy_reset(miisc);
448 	}
449 	error = mii_mediachg(mii);
450 
451 	return (error);
452 }
453 
454 int
455 age_intr(void *arg)
456 {
457         struct age_softc *sc = arg;
458         struct ifnet *ifp = &sc->sc_arpcom.ac_if;
459 	struct cmb *cmb;
460         uint32_t status;
461 
462 	status = CSR_READ_4(sc, AGE_INTR_STATUS);
463 	if (status == 0 || (status & AGE_INTRS) == 0)
464 		return (0);
465 
466 	/* Disable interrupts. */
467 	CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
468 
469 	cmb = sc->age_rdata.age_cmb_block;
470 
471 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
472 	    sc->age_cdata.age_cmb_block_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
473 	status = letoh32(cmb->intr_status);
474 	if ((status & AGE_INTRS) == 0)
475 		goto back;
476 
477 	sc->age_tpd_cons = (letoh32(cmb->tpd_cons) & TPD_CONS_MASK) >>
478 	    TPD_CONS_SHIFT;
479 	sc->age_rr_prod = (letoh32(cmb->rprod_cons) & RRD_PROD_MASK) >>
480 	    RRD_PROD_SHIFT;
481 
482 	/* Let hardware know CMB was served. */
483 	cmb->intr_status = 0;
484 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
485 	    sc->age_cdata.age_cmb_block_map->dm_mapsize,
486 	    BUS_DMASYNC_PREWRITE);
487 
488 	if (ifp->if_flags & IFF_RUNNING) {
489 		if (status & INTR_CMB_RX)
490 			age_rxintr(sc, sc->age_rr_prod);
491 
492 		if (status & INTR_CMB_TX)
493 			age_txintr(sc, sc->age_tpd_cons);
494 
495 		if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) {
496 			if (status & INTR_DMA_RD_TO_RST)
497 				printf("%s: DMA read error! -- resetting\n",
498 				    sc->sc_dev.dv_xname);
499 			if (status & INTR_DMA_WR_TO_RST)
500 				printf("%s: DMA write error! -- resetting\n",
501 				    sc->sc_dev.dv_xname);
502 			age_init(ifp);
503 		}
504 
505 		age_start(ifp);
506 
507 		if (status & INTR_SMB)
508 			age_stats_update(sc);
509 	}
510 
511 	/* Check whether CMB was updated while serving Tx/Rx/SMB handler. */
512 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
513 	    sc->age_cdata.age_cmb_block_map->dm_mapsize,
514 	    BUS_DMASYNC_POSTREAD);
515 
516 back:
517 	/* Re-enable interrupts. */
518 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
519 
520 	return (1);
521 }
522 
523 void
524 age_get_macaddr(struct age_softc *sc)
525 {
526 	uint32_t ea[2], reg;
527 	int i, vpdc;
528 
529 	reg = CSR_READ_4(sc, AGE_SPI_CTRL);
530 	if ((reg & SPI_VPD_ENB) != 0) {
531 		/* Get VPD stored in TWSI EEPROM. */
532 		reg &= ~SPI_VPD_ENB;
533 		CSR_WRITE_4(sc, AGE_SPI_CTRL, reg);
534 	}
535 
536 	if (pci_get_capability(sc->sc_pct, sc->sc_pcitag,
537 	    PCI_CAP_VPD, &vpdc, NULL)) {
538 		/*
539 		 * PCI VPD capability found, let TWSI reload EEPROM.
540 		 * This will set Ethernet address of controller.
541 		 */
542 		CSR_WRITE_4(sc, AGE_TWSI_CTRL, CSR_READ_4(sc, AGE_TWSI_CTRL) |
543 		    TWSI_CTRL_SW_LD_START);
544 		for (i = 100; i > 0; i--) {
545 			DELAY(1000);
546 			reg = CSR_READ_4(sc, AGE_TWSI_CTRL);
547 			if ((reg & TWSI_CTRL_SW_LD_START) == 0)
548 				break;
549 		}
550 		if (i == 0)
551 			printf("%s: reloading EEPROM timeout!\n",
552 			    sc->sc_dev.dv_xname);
553 	} else {
554 		if (agedebug)
555 			printf("%s: PCI VPD capability not found!\n",
556 			    sc->sc_dev.dv_xname);
557 	}
558 
559 	ea[0] = CSR_READ_4(sc, AGE_PAR0);
560 	ea[1] = CSR_READ_4(sc, AGE_PAR1);
561 	sc->age_eaddr[0] = (ea[1] >> 8) & 0xFF;
562 	sc->age_eaddr[1] = (ea[1] >> 0) & 0xFF;
563 	sc->age_eaddr[2] = (ea[0] >> 24) & 0xFF;
564 	sc->age_eaddr[3] = (ea[0] >> 16) & 0xFF;
565 	sc->age_eaddr[4] = (ea[0] >> 8) & 0xFF;
566 	sc->age_eaddr[5] = (ea[0] >> 0) & 0xFF;
567 }
568 
569 void
570 age_phy_reset(struct age_softc *sc)
571 {
572 	uint16_t reg, pn;
573 	int i, linkup;
574 
575 	/* Reset PHY. */
576 	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST);
577 	DELAY(2000);
578 	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR);
579 	DELAY(2000);
580 
581 #define	ATPHY_DBG_ADDR		0x1D
582 #define	ATPHY_DBG_DATA		0x1E
583 #define	ATPHY_CDTC		0x16
584 #define	PHY_CDTC_ENB		0x0001
585 #define	PHY_CDTC_POFF		8
586 #define	ATPHY_CDTS		0x1C
587 #define	PHY_CDTS_STAT_OK	0x0000
588 #define	PHY_CDTS_STAT_SHORT	0x0100
589 #define	PHY_CDTS_STAT_OPEN	0x0200
590 #define	PHY_CDTS_STAT_INVAL	0x0300
591 #define	PHY_CDTS_STAT_MASK	0x0300
592 
593 	/* Check power saving mode. Magic from Linux. */
594 	age_miibus_writereg(&sc->sc_dev, sc->age_phyaddr, MII_BMCR, BMCR_RESET);
595 	for (linkup = 0, pn = 0; pn < 4; pn++) {
596 		age_miibus_writereg(&sc->sc_dev, sc->age_phyaddr, ATPHY_CDTC,
597 		    (pn << PHY_CDTC_POFF) | PHY_CDTC_ENB);
598 		for (i = 200; i > 0; i--) {
599 			DELAY(1000);
600 			reg = age_miibus_readreg(&sc->sc_dev, sc->age_phyaddr,
601 			    ATPHY_CDTC);
602 			if ((reg & PHY_CDTC_ENB) == 0)
603 				break;
604 		}
605 		DELAY(1000);
606 		reg = age_miibus_readreg(&sc->sc_dev, sc->age_phyaddr,
607 		    ATPHY_CDTS);
608 		if ((reg & PHY_CDTS_STAT_MASK) != PHY_CDTS_STAT_OPEN) {
609 			linkup++;
610 			break;
611 		}
612 	}
613 	age_miibus_writereg(&sc->sc_dev, sc->age_phyaddr, MII_BMCR,
614 	    BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
615 	if (linkup == 0) {
616 		age_miibus_writereg(&sc->sc_dev, sc->age_phyaddr,
617 		    ATPHY_DBG_ADDR, 0);
618 		age_miibus_writereg(&sc->sc_dev, sc->age_phyaddr,
619 		    ATPHY_DBG_DATA, 0x124E);
620 		age_miibus_writereg(&sc->sc_dev, sc->age_phyaddr,
621 		    ATPHY_DBG_ADDR, 1);
622 		reg = age_miibus_readreg(&sc->sc_dev, sc->age_phyaddr,
623 		    ATPHY_DBG_DATA);
624 		age_miibus_writereg(&sc->sc_dev, sc->age_phyaddr,
625 		    ATPHY_DBG_DATA, reg | 0x03);
626 		/* XXX */
627 		DELAY(1500 * 1000);
628 		age_miibus_writereg(&sc->sc_dev, sc->age_phyaddr,
629 		    ATPHY_DBG_ADDR, 0);
630 		age_miibus_writereg(&sc->sc_dev, sc->age_phyaddr,
631 		    ATPHY_DBG_DATA, 0x024E);
632 	}
633 
634 #undef	ATPHY_DBG_ADDR
635 #undef	ATPHY_DBG_DATA
636 #undef	ATPHY_CDTC
637 #undef	PHY_CDTC_ENB
638 #undef	PHY_CDTC_POFF
639 #undef	ATPHY_CDTS
640 #undef	PHY_CDTS_STAT_OK
641 #undef	PHY_CDTS_STAT_SHORT
642 #undef	PHY_CDTS_STAT_OPEN
643 #undef	PHY_CDTS_STAT_INVAL
644 #undef	PHY_CDTS_STAT_MASK
645 }
646 
647 int
648 age_dma_alloc(struct age_softc *sc)
649 {
650 	struct age_txdesc *txd;
651 	struct age_rxdesc *rxd;
652 	int nsegs, error, i;
653 
654 	/*
655 	 * Create DMA stuffs for TX ring
656 	 */
657 	error = bus_dmamap_create(sc->sc_dmat, AGE_TX_RING_SZ, 1,
658 	    AGE_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_tx_ring_map);
659 	if (error)
660 		return (ENOBUFS);
661 
662 	/* Allocate DMA'able memory for TX ring */
663 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_TX_RING_SZ,
664 	    ETHER_ALIGN, 0, &sc->age_rdata.age_tx_ring_seg, 1,
665 	    &nsegs, BUS_DMA_WAITOK | BUS_DMA_ZERO);
666 	if (error) {
667 		printf("%s: could not allocate DMA'able memory for Tx ring.\n",
668 		    sc->sc_dev.dv_xname);
669 		return error;
670 	}
671 
672 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_tx_ring_seg,
673 	    nsegs, AGE_TX_RING_SZ, (caddr_t *)&sc->age_rdata.age_tx_ring,
674 	    BUS_DMA_NOWAIT);
675 	if (error)
676 		return (ENOBUFS);
677 
678 	/*  Load the DMA map for Tx ring. */
679 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_tx_ring_map,
680 	    sc->age_rdata.age_tx_ring, AGE_TX_RING_SZ, NULL, BUS_DMA_WAITOK);
681 	if (error) {
682 		printf("%s: could not load DMA'able memory for Tx ring.\n",
683 		    sc->sc_dev.dv_xname);
684 		bus_dmamem_free(sc->sc_dmat,
685 		    (bus_dma_segment_t *)&sc->age_rdata.age_tx_ring, 1);
686 		return error;
687 	}
688 
689 	sc->age_rdata.age_tx_ring_paddr =
690 	    sc->age_cdata.age_tx_ring_map->dm_segs[0].ds_addr;
691 
692 	/*
693 	 * Create DMA stuffs for RX ring
694 	 */
695 	error = bus_dmamap_create(sc->sc_dmat, AGE_RX_RING_SZ, 1,
696 	    AGE_RX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_ring_map);
697 	if (error)
698 		return (ENOBUFS);
699 
700 	/* Allocate DMA'able memory for RX ring */
701 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_RX_RING_SZ,
702 	    ETHER_ALIGN, 0, &sc->age_rdata.age_rx_ring_seg, 1,
703 	    &nsegs, BUS_DMA_WAITOK | BUS_DMA_ZERO);
704 	if (error) {
705 		printf("%s: could not allocate DMA'able memory for Rx ring.\n",
706 		    sc->sc_dev.dv_xname);
707 		return error;
708 	}
709 
710 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rx_ring_seg,
711 	    nsegs, AGE_RX_RING_SZ, (caddr_t *)&sc->age_rdata.age_rx_ring,
712 	    BUS_DMA_NOWAIT);
713 	if (error)
714 		return (ENOBUFS);
715 
716 	/* Load the DMA map for Rx ring. */
717 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rx_ring_map,
718 	    sc->age_rdata.age_rx_ring, AGE_RX_RING_SZ, NULL, BUS_DMA_WAITOK);
719 	if (error) {
720 		printf("%s: could not load DMA'able memory for Rx ring.\n",
721 		    sc->sc_dev.dv_xname);
722 		bus_dmamem_free(sc->sc_dmat,
723 		    (bus_dma_segment_t *)sc->age_rdata.age_rx_ring, 1);
724 		return error;
725 	}
726 
727 	sc->age_rdata.age_rx_ring_paddr =
728 	    sc->age_cdata.age_rx_ring_map->dm_segs[0].ds_addr;
729 
730 	/*
731 	 * Create DMA stuffs for RX return ring
732 	 */
733 	error = bus_dmamap_create(sc->sc_dmat, AGE_RR_RING_SZ, 1,
734 	    AGE_RR_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rr_ring_map);
735 	if (error)
736 		return (ENOBUFS);
737 
738 	/* Allocate DMA'able memory for RX return ring */
739 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_RR_RING_SZ,
740 	    ETHER_ALIGN, 0, &sc->age_rdata.age_rr_ring_seg, 1,
741 	    &nsegs, BUS_DMA_WAITOK | BUS_DMA_ZERO);
742 	if (error) {
743 		printf("%s: could not allocate DMA'able memory for Rx "
744 		    "return ring.\n", sc->sc_dev.dv_xname);
745 		return error;
746 	}
747 
748 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rr_ring_seg,
749 	    nsegs, AGE_RR_RING_SZ, (caddr_t *)&sc->age_rdata.age_rr_ring,
750 	    BUS_DMA_NOWAIT);
751 	if (error)
752 		return (ENOBUFS);
753 
754 	/*  Load the DMA map for Rx return ring. */
755 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rr_ring_map,
756 	    sc->age_rdata.age_rr_ring, AGE_RR_RING_SZ, NULL, BUS_DMA_WAITOK);
757 	if (error) {
758 		printf("%s: could not load DMA'able memory for Rx return ring."
759 		    "\n", sc->sc_dev.dv_xname);
760 		bus_dmamem_free(sc->sc_dmat,
761 		    (bus_dma_segment_t *)&sc->age_rdata.age_rr_ring, 1);
762 		return error;
763 	}
764 
765 	sc->age_rdata.age_rr_ring_paddr =
766 	    sc->age_cdata.age_rr_ring_map->dm_segs[0].ds_addr;
767 
768 	/*
769 	 * Create DMA stuffs for CMB block
770 	 */
771 	error = bus_dmamap_create(sc->sc_dmat, AGE_CMB_BLOCK_SZ, 1,
772 	    AGE_CMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
773 	    &sc->age_cdata.age_cmb_block_map);
774 	if (error)
775 		return (ENOBUFS);
776 
777 	/* Allocate DMA'able memory for CMB block */
778 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_CMB_BLOCK_SZ,
779 	    ETHER_ALIGN, 0, &sc->age_rdata.age_cmb_block_seg, 1,
780 	    &nsegs, BUS_DMA_WAITOK | BUS_DMA_ZERO);
781 	if (error) {
782 		printf("%s: could not allocate DMA'able memory for "
783 		    "CMB block\n", sc->sc_dev.dv_xname);
784 		return error;
785 	}
786 
787 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_cmb_block_seg,
788 	    nsegs, AGE_CMB_BLOCK_SZ, (caddr_t *)&sc->age_rdata.age_cmb_block,
789 	    BUS_DMA_NOWAIT);
790 	if (error)
791 		return (ENOBUFS);
792 
793 	/*  Load the DMA map for CMB block. */
794 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_cmb_block_map,
795 	    sc->age_rdata.age_cmb_block, AGE_CMB_BLOCK_SZ, NULL,
796 	    BUS_DMA_WAITOK);
797 	if (error) {
798 		printf("%s: could not load DMA'able memory for CMB block\n",
799 		    sc->sc_dev.dv_xname);
800 		bus_dmamem_free(sc->sc_dmat,
801 		    (bus_dma_segment_t *)&sc->age_rdata.age_cmb_block, 1);
802 		return error;
803 	}
804 
805 	sc->age_rdata.age_cmb_block_paddr =
806 	    sc->age_cdata.age_cmb_block_map->dm_segs[0].ds_addr;
807 
808 	/*
809 	 * Create DMA stuffs for SMB block
810 	 */
811 	error = bus_dmamap_create(sc->sc_dmat, AGE_SMB_BLOCK_SZ, 1,
812 	    AGE_SMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
813 	    &sc->age_cdata.age_smb_block_map);
814 	if (error)
815 		return (ENOBUFS);
816 
817 	/* Allocate DMA'able memory for SMB block */
818 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_SMB_BLOCK_SZ,
819 	    ETHER_ALIGN, 0, &sc->age_rdata.age_smb_block_seg, 1,
820 	    &nsegs, BUS_DMA_WAITOK | BUS_DMA_ZERO);
821 	if (error) {
822 		printf("%s: could not allocate DMA'able memory for "
823 		    "SMB block\n", sc->sc_dev.dv_xname);
824 		return error;
825 	}
826 
827 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_smb_block_seg,
828 	    nsegs, AGE_SMB_BLOCK_SZ, (caddr_t *)&sc->age_rdata.age_smb_block,
829 	    BUS_DMA_NOWAIT);
830 	if (error)
831 		return (ENOBUFS);
832 
833 	/*  Load the DMA map for SMB block */
834 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_smb_block_map,
835 	    sc->age_rdata.age_smb_block, AGE_SMB_BLOCK_SZ, NULL,
836 	    BUS_DMA_WAITOK);
837 	if (error) {
838 		printf("%s: could not load DMA'able memory for SMB block\n",
839 		    sc->sc_dev.dv_xname);
840 		bus_dmamem_free(sc->sc_dmat,
841 		    (bus_dma_segment_t *)&sc->age_rdata.age_smb_block, 1);
842 		return error;
843 	}
844 
845 	sc->age_rdata.age_smb_block_paddr =
846 	    sc->age_cdata.age_smb_block_map->dm_segs[0].ds_addr;
847 
848 	/* Create DMA maps for Tx buffers. */
849 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
850 		txd = &sc->age_cdata.age_txdesc[i];
851 		txd->tx_m = NULL;
852 		txd->tx_dmamap = NULL;
853 		error = bus_dmamap_create(sc->sc_dmat, AGE_TSO_MAXSIZE,
854 		    AGE_MAXTXSEGS, AGE_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,
855 		    &txd->tx_dmamap);
856 		if (error) {
857 			printf("%s: could not create Tx dmamap.\n",
858 			    sc->sc_dev.dv_xname);
859 			return error;
860 		}
861 	}
862 
863 	/* Create DMA maps for Rx buffers. */
864 	error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
865 	    BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_sparemap);
866 	if (error) {
867 		printf("%s: could not create spare Rx dmamap.\n",
868 		    sc->sc_dev.dv_xname);
869 		return error;
870 	}
871 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
872 		rxd = &sc->age_cdata.age_rxdesc[i];
873 		rxd->rx_m = NULL;
874 		rxd->rx_dmamap = NULL;
875 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
876 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &rxd->rx_dmamap);
877 		if (error) {
878 			printf("%s: could not create Rx dmamap.\n",
879 			    sc->sc_dev.dv_xname);
880 			return error;
881 		}
882 	}
883 
884 	return (0);
885 }
886 
887 void
888 age_dma_free(struct age_softc *sc)
889 {
890 	struct age_txdesc *txd;
891 	struct age_rxdesc *rxd;
892 	int i;
893 
894 	/* Tx buffers */
895 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
896 		txd = &sc->age_cdata.age_txdesc[i];
897 		if (txd->tx_dmamap != NULL) {
898 			bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
899 			txd->tx_dmamap = NULL;
900 		}
901 	}
902 	/* Rx buffers */
903 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
904 		rxd = &sc->age_cdata.age_rxdesc[i];
905 		if (rxd->rx_dmamap != NULL) {
906 			bus_dmamap_destroy(sc->sc_dmat, rxd->rx_dmamap);
907 			rxd->rx_dmamap = NULL;
908 		}
909 	}
910 	if (sc->age_cdata.age_rx_sparemap != NULL) {
911 		bus_dmamap_destroy(sc->sc_dmat, sc->age_cdata.age_rx_sparemap);
912 		sc->age_cdata.age_rx_sparemap = NULL;
913 	}
914 
915 	/* Tx ring. */
916 	if (sc->age_cdata.age_tx_ring_map != NULL)
917 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_tx_ring_map);
918 	if (sc->age_cdata.age_tx_ring_map != NULL &&
919 	    sc->age_rdata.age_tx_ring != NULL)
920 		bus_dmamem_free(sc->sc_dmat,
921 		    (bus_dma_segment_t *)sc->age_rdata.age_tx_ring, 1);
922 	sc->age_rdata.age_tx_ring = NULL;
923 	sc->age_cdata.age_tx_ring_map = NULL;
924 
925 	/* Rx ring. */
926 	if (sc->age_cdata.age_rx_ring_map != NULL)
927 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rx_ring_map);
928 	if (sc->age_cdata.age_rx_ring_map != NULL &&
929 	    sc->age_rdata.age_rx_ring != NULL)
930 		bus_dmamem_free(sc->sc_dmat,
931 		    (bus_dma_segment_t *)sc->age_rdata.age_rx_ring, 1);
932 	sc->age_rdata.age_rx_ring = NULL;
933 	sc->age_cdata.age_rx_ring_map = NULL;
934 
935 	/* Rx return ring. */
936 	if (sc->age_cdata.age_rr_ring_map != NULL)
937 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rr_ring_map);
938 	if (sc->age_cdata.age_rr_ring_map != NULL &&
939 	    sc->age_rdata.age_rr_ring != NULL)
940 		bus_dmamem_free(sc->sc_dmat,
941 		    (bus_dma_segment_t *)sc->age_rdata.age_rr_ring, 1);
942 	sc->age_rdata.age_rr_ring = NULL;
943 	sc->age_cdata.age_rr_ring_map = NULL;
944 
945 	/* CMB block */
946 	if (sc->age_cdata.age_cmb_block_map != NULL)
947 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_cmb_block_map);
948 	if (sc->age_cdata.age_cmb_block_map != NULL &&
949 	    sc->age_rdata.age_cmb_block != NULL)
950 		bus_dmamem_free(sc->sc_dmat,
951 		    (bus_dma_segment_t *)sc->age_rdata.age_cmb_block, 1);
952 	sc->age_rdata.age_cmb_block = NULL;
953 	sc->age_cdata.age_cmb_block_map = NULL;
954 
955 	/* SMB block */
956 	if (sc->age_cdata.age_smb_block_map != NULL)
957 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_smb_block_map);
958 	if (sc->age_cdata.age_smb_block_map != NULL &&
959 	    sc->age_rdata.age_smb_block != NULL)
960 		bus_dmamem_free(sc->sc_dmat,
961 		    (bus_dma_segment_t *)sc->age_rdata.age_smb_block, 1);
962 	sc->age_rdata.age_smb_block = NULL;
963 	sc->age_cdata.age_smb_block_map = NULL;
964 }
965 
966 void
967 age_start(struct ifnet *ifp)
968 {
969         struct age_softc *sc = ifp->if_softc;
970         struct mbuf *m_head;
971 	int enq;
972 
973 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
974 		return;
975 	if ((sc->age_flags & AGE_FLAG_LINK) == 0)
976 		return;
977 	if (IFQ_IS_EMPTY(&ifp->if_snd))
978 		return;
979 
980 	enq = 0;
981 	for (;;) {
982 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
983 		if (m_head == NULL)
984 			break;
985 
986 		/*
987 		 * Pack the data into the transmit ring. If we
988 		 * don't have room, set the OACTIVE flag and wait
989 		 * for the NIC to drain the ring.
990 		 */
991 		if (age_encap(sc, &m_head)) {
992 			if (m_head == NULL)
993 				break;
994 			ifp->if_flags |= IFF_OACTIVE;
995 			break;
996 		}
997 		enq = 1;
998 
999 #if NBPFILTER > 0
1000 		/*
1001 		 * If there's a BPF listener, bounce a copy of this frame
1002 		 * to him.
1003 		 */
1004 		if (ifp->if_bpf != NULL)
1005 			bpf_mtap_ether(ifp->if_bpf, m_head, BPF_DIRECTION_OUT);
1006 #endif
1007 	}
1008 
1009 	if (enq) {
1010 		/* Update mbox. */
1011 		AGE_COMMIT_MBOX(sc);
1012 		/* Set a timeout in case the chip goes out to lunch. */
1013 		ifp->if_timer = AGE_TX_TIMEOUT;
1014 	}
1015 }
1016 
1017 void
1018 age_watchdog(struct ifnet *ifp)
1019 {
1020 	struct age_softc *sc = ifp->if_softc;
1021 
1022 	if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
1023 		printf("%s: watchdog timeout (missed link)\n",
1024 		    sc->sc_dev.dv_xname);
1025 		ifp->if_oerrors++;
1026 		age_init(ifp);
1027 		return;
1028 	}
1029 
1030 	if (sc->age_cdata.age_tx_cnt == 0) {
1031 		printf("%s: watchdog timeout (missed Tx interrupts) "
1032 		    "-- recovering\n", sc->sc_dev.dv_xname);
1033 		age_start(ifp);
1034 		return;
1035 	}
1036 
1037 	printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
1038 	ifp->if_oerrors++;
1039 	age_init(ifp);
1040 	age_start(ifp);
1041 }
1042 
1043 int
1044 age_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1045 {
1046 	struct age_softc *sc = ifp->if_softc;
1047 	struct mii_data *mii = &sc->sc_miibus;
1048 	struct ifaddr *ifa = (struct ifaddr *)data;
1049 	struct ifreq *ifr = (struct ifreq *)data;
1050 	int s, error = 0;
1051 
1052 	s = splnet();
1053 
1054 	switch (cmd) {
1055 	case SIOCSIFADDR:
1056 		ifp->if_flags |= IFF_UP;
1057 		if (!(ifp->if_flags & IFF_RUNNING))
1058 			 age_init(ifp);
1059 #ifdef INET
1060 		if (ifa->ifa_addr->sa_family == AF_INET)
1061 			arp_ifinit(&sc->sc_arpcom, ifa);
1062 #endif
1063 		break;
1064 
1065 	case SIOCSIFFLAGS:
1066 		if (ifp->if_flags & IFF_UP) {
1067 			if (ifp->if_flags & IFF_RUNNING)
1068 				error = ENETRESET;
1069 			else
1070 				age_init(ifp);
1071 		} else {
1072 			if (ifp->if_flags & IFF_RUNNING)
1073 				age_stop(sc);
1074 		}
1075 		break;
1076 
1077 	case SIOCSIFMEDIA:
1078 	case SIOCGIFMEDIA:
1079 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1080 		break;
1081 
1082 	default:
1083 		error = ether_ioctl(ifp, &sc->sc_arpcom, cmd, data);
1084 		break;
1085 	}
1086 
1087 	if (error == ENETRESET) {
1088 		if (ifp->if_flags & IFF_RUNNING)
1089 			age_iff(sc);
1090 		error = 0;
1091 	}
1092 
1093 	splx(s);
1094 	return (error);
1095 }
1096 
1097 void
1098 age_mac_config(struct age_softc *sc)
1099 {
1100 	struct mii_data *mii = &sc->sc_miibus;
1101 	uint32_t reg;
1102 
1103 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1104 	reg &= ~MAC_CFG_FULL_DUPLEX;
1105 	reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC);
1106 	reg &= ~MAC_CFG_SPEED_MASK;
1107 
1108 	/* Reprogram MAC with resolved speed/duplex. */
1109 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1110 	case IFM_10_T:
1111 	case IFM_100_TX:
1112 		reg |= MAC_CFG_SPEED_10_100;
1113 		break;
1114 	case IFM_1000_T:
1115 		reg |= MAC_CFG_SPEED_1000;
1116 		break;
1117 	}
1118 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1119 		reg |= MAC_CFG_FULL_DUPLEX;
1120 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1121 			reg |= MAC_CFG_TX_FC;
1122 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1123 			reg |= MAC_CFG_RX_FC;
1124 	}
1125 
1126 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1127 }
1128 
1129 int
1130 age_encap(struct age_softc *sc, struct mbuf **m_head)
1131 {
1132 	struct age_txdesc *txd, *txd_last;
1133 	struct tx_desc *desc;
1134 	struct mbuf *m;
1135 	bus_dmamap_t map;
1136 	uint32_t cflags, poff, vtag;
1137 	int error, i, nsegs, prod;
1138 
1139 	m = *m_head;
1140 	cflags = vtag = 0;
1141 	poff = 0;
1142 
1143 	prod = sc->age_cdata.age_tx_prod;
1144 	txd = &sc->age_cdata.age_txdesc[prod];
1145 	txd_last = txd;
1146 	map = txd->tx_dmamap;
1147 
1148 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head, BUS_DMA_NOWAIT);
1149 
1150 	if (error != 0) {
1151 		bus_dmamap_unload(sc->sc_dmat, map);
1152 		error = EFBIG;
1153 	}
1154 	if (error == EFBIG) {
1155 		if (m_defrag(*m_head, M_DONTWAIT)) {
1156 			printf("%s: can't defrag TX mbuf\n",
1157 			    sc->sc_dev.dv_xname);
1158 			m_freem(*m_head);
1159 			*m_head = NULL;
1160 			return (ENOBUFS);
1161 		}
1162 		error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head,
1163 		  	    BUS_DMA_NOWAIT);
1164 		if (error != 0) {
1165 			printf("%s: could not load defragged TX mbuf\n",
1166 			    sc->sc_dev.dv_xname);
1167 			m_freem(*m_head);
1168 			*m_head = NULL;
1169 			return (error);
1170 		}
1171 	} else if (error) {
1172 		printf("%s: could not load TX mbuf\n", sc->sc_dev.dv_xname);
1173 		return (error);
1174 	}
1175 
1176 	nsegs = map->dm_nsegs;
1177 
1178 	if (nsegs == 0) {
1179 		m_freem(*m_head);
1180 		*m_head = NULL;
1181 		return (EIO);
1182 	}
1183 
1184 	/* Check descriptor overrun. */
1185 	if (sc->age_cdata.age_tx_cnt + nsegs >= AGE_TX_RING_CNT - 2) {
1186 		bus_dmamap_unload(sc->sc_dmat, map);
1187 		return (ENOBUFS);
1188 	}
1189 
1190 	m = *m_head;
1191 	/* Configure Tx IP/TCP/UDP checksum offload. */
1192 	if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) {
1193 		cflags |= AGE_TD_CSUM;
1194 		if ((m->m_pkthdr.csum_flags & M_TCP_CSUM_OUT) != 0)
1195 			cflags |= AGE_TD_TCPCSUM;
1196 		if ((m->m_pkthdr.csum_flags & M_UDP_CSUM_OUT) != 0)
1197 			cflags |= AGE_TD_UDPCSUM;
1198 		/* Set checksum start offset. */
1199 		cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT);
1200 	}
1201 
1202 #if NVLAN > 0
1203 	/* Configure VLAN hardware tag insertion. */
1204 	if (m->m_flags & M_VLANTAG) {
1205 		vtag = AGE_TX_VLAN_TAG(m->m_pkthdr.ether_vtag);
1206 		vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK);
1207 		cflags |= AGE_TD_INSERT_VLAN_TAG;
1208 	}
1209 #endif
1210 
1211 	desc = NULL;
1212 	for (i = 0; i < nsegs; i++) {
1213 		desc = &sc->age_rdata.age_tx_ring[prod];
1214 		desc->addr = htole64(map->dm_segs[i].ds_addr);
1215 		desc->len =
1216 		    htole32(AGE_TX_BYTES(map->dm_segs[i].ds_len) | vtag);
1217 		desc->flags = htole32(cflags);
1218 		sc->age_cdata.age_tx_cnt++;
1219 		AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1220 	}
1221 
1222 	/* Update producer index. */
1223 	sc->age_cdata.age_tx_prod = prod;
1224 
1225 	/* Set EOP on the last descriptor. */
1226 	prod = (prod + AGE_TX_RING_CNT - 1) % AGE_TX_RING_CNT;
1227 	desc = &sc->age_rdata.age_tx_ring[prod];
1228 	desc->flags |= htole32(AGE_TD_EOP);
1229 
1230 	/* Swap dmamap of the first and the last. */
1231 	txd = &sc->age_cdata.age_txdesc[prod];
1232 	map = txd_last->tx_dmamap;
1233 	txd_last->tx_dmamap = txd->tx_dmamap;
1234 	txd->tx_dmamap = map;
1235 	txd->tx_m = m;
1236 
1237 	/* Sync descriptors. */
1238 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1239 	    BUS_DMASYNC_PREWRITE);
1240 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
1241 	    sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1242 
1243 	return (0);
1244 }
1245 
1246 void
1247 age_txintr(struct age_softc *sc, int tpd_cons)
1248 {
1249 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1250 	struct age_txdesc *txd;
1251 	int cons, prog;
1252 
1253 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
1254 	    sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1255 
1256 	/*
1257 	 * Go through our Tx list and free mbufs for those
1258 	 * frames which have been transmitted.
1259 	 */
1260 	cons = sc->age_cdata.age_tx_cons;
1261 	for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) {
1262 		if (sc->age_cdata.age_tx_cnt <= 0)
1263 			break;
1264 		prog++;
1265 		ifp->if_flags &= ~IFF_OACTIVE;
1266 		sc->age_cdata.age_tx_cnt--;
1267 		txd = &sc->age_cdata.age_txdesc[cons];
1268 		/*
1269 		 * Clear Tx descriptors, it's not required but would
1270 		 * help debugging in case of Tx issues.
1271 		 */
1272 		txd->tx_desc->addr = 0;
1273 		txd->tx_desc->len = 0;
1274 		txd->tx_desc->flags = 0;
1275 
1276 		if (txd->tx_m == NULL)
1277 			continue;
1278 		/* Reclaim transmitted mbufs. */
1279 		bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1280 		m_freem(txd->tx_m);
1281 		txd->tx_m = NULL;
1282 	}
1283 
1284 	if (prog > 0) {
1285 		sc->age_cdata.age_tx_cons = cons;
1286 
1287 		/*
1288 		 * Unarm watchdog timer only when there are no pending
1289 		 * Tx descriptors in queue.
1290 		 */
1291 		if (sc->age_cdata.age_tx_cnt == 0)
1292 			ifp->if_timer = 0;
1293 
1294 		bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
1295 		    sc->age_cdata.age_tx_ring_map->dm_mapsize,
1296 		    BUS_DMASYNC_PREWRITE);
1297 	}
1298 }
1299 
1300 /* Receive a frame. */
1301 void
1302 age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd)
1303 {
1304 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1305 	struct age_rxdesc *rxd;
1306 	struct rx_desc *desc;
1307 	struct mbuf *mp, *m;
1308 	uint32_t status, index;
1309 	int count, nsegs, pktlen;
1310 	int rx_cons;
1311 
1312 	status = letoh32(rxrd->flags);
1313 	index = letoh32(rxrd->index);
1314 	rx_cons = AGE_RX_CONS(index);
1315 	nsegs = AGE_RX_NSEGS(index);
1316 
1317 	sc->age_cdata.age_rxlen = AGE_RX_BYTES(letoh32(rxrd->len));
1318 	if ((status & AGE_RRD_ERROR) != 0 &&
1319 	    (status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE |
1320 	    AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0) {
1321 		/*
1322 		 * We want to pass the following frames to upper
1323 		 * layer regardless of error status of Rx return
1324 		 * ring.
1325 		 *
1326 		 *  o IP/TCP/UDP checksum is bad.
1327 		 *  o frame length and protocol specific length
1328 		 *     does not match.
1329 		 */
1330 		sc->age_cdata.age_rx_cons += nsegs;
1331 		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
1332 		return;
1333 	}
1334 
1335 	pktlen = 0;
1336 	for (count = 0; count < nsegs; count++,
1337 	    AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) {
1338 		rxd = &sc->age_cdata.age_rxdesc[rx_cons];
1339 		mp = rxd->rx_m;
1340 		desc = rxd->rx_desc;
1341 		/* Add a new receive buffer to the ring. */
1342 		if (age_newbuf(sc, rxd) != 0) {
1343 			ifp->if_iqdrops++;
1344 			/* Reuse Rx buffers. */
1345 			if (sc->age_cdata.age_rxhead != NULL) {
1346 				m_freem(sc->age_cdata.age_rxhead);
1347 				AGE_RXCHAIN_RESET(sc);
1348 			}
1349 			break;
1350 		}
1351 
1352 		/* The length of the first mbuf is computed last. */
1353 		if (count != 0) {
1354 			mp->m_len = AGE_RX_BYTES(letoh32(desc->len));
1355 			pktlen += mp->m_len;
1356 		}
1357 
1358 		/* Chain received mbufs. */
1359 		if (sc->age_cdata.age_rxhead == NULL) {
1360 			sc->age_cdata.age_rxhead = mp;
1361 			sc->age_cdata.age_rxtail = mp;
1362 		} else {
1363 			mp->m_flags &= ~M_PKTHDR;
1364 			sc->age_cdata.age_rxprev_tail =
1365 			    sc->age_cdata.age_rxtail;
1366 			sc->age_cdata.age_rxtail->m_next = mp;
1367 			sc->age_cdata.age_rxtail = mp;
1368 		}
1369 
1370 		if (count == nsegs - 1) {
1371 			/*
1372 			 * It seems that L1 controller has no way
1373 			 * to tell hardware to strip CRC bytes.
1374 			 */
1375 			sc->age_cdata.age_rxlen -= ETHER_CRC_LEN;
1376 			if (nsegs > 1) {
1377 				/* Remove the CRC bytes in chained mbufs. */
1378 				pktlen -= ETHER_CRC_LEN;
1379 				if (mp->m_len <= ETHER_CRC_LEN) {
1380 					sc->age_cdata.age_rxtail =
1381 					    sc->age_cdata.age_rxprev_tail;
1382 					sc->age_cdata.age_rxtail->m_len -=
1383 					    (ETHER_CRC_LEN - mp->m_len);
1384 					sc->age_cdata.age_rxtail->m_next = NULL;
1385 					m_freem(mp);
1386 				} else {
1387 					mp->m_len -= ETHER_CRC_LEN;
1388 				}
1389 			}
1390 
1391 			m = sc->age_cdata.age_rxhead;
1392 			m->m_flags |= M_PKTHDR;
1393 			m->m_pkthdr.rcvif = ifp;
1394 			m->m_pkthdr.len = sc->age_cdata.age_rxlen;
1395 			/* Set the first mbuf length. */
1396 			m->m_len = sc->age_cdata.age_rxlen - pktlen;
1397 
1398 			/*
1399 			 * Set checksum information.
1400 			 * It seems that L1 controller can compute partial
1401 			 * checksum. The partial checksum value can be used
1402 			 * to accelerate checksum computation for fragmented
1403 			 * TCP/UDP packets. Upper network stack already
1404 			 * takes advantage of the partial checksum value in
1405 			 * IP reassembly stage. But I'm not sure the
1406 			 * correctness of the partial hardware checksum
1407 			 * assistance due to lack of data sheet. If it is
1408 			 * proven to work on L1 I'll enable it.
1409 			 */
1410 			if (status & AGE_RRD_IPV4) {
1411 				if ((status & AGE_RRD_IPCSUM_NOK) == 0)
1412 					m->m_pkthdr.csum_flags |=
1413 					    M_IPV4_CSUM_IN_OK;
1414 				if ((status & (AGE_RRD_TCP | AGE_RRD_UDP)) &&
1415 				    (status & AGE_RRD_TCP_UDPCSUM_NOK) == 0) {
1416 					m->m_pkthdr.csum_flags |=
1417 					    M_TCP_CSUM_IN_OK | M_UDP_CSUM_IN_OK;
1418 				}
1419 				/*
1420 				 * Don't mark bad checksum for TCP/UDP frames
1421 				 * as fragmented frames may always have set
1422 				 * bad checksummed bit of descriptor status.
1423 				 */
1424 			}
1425 #if NVLAN > 0
1426 			/* Check for VLAN tagged frames. */
1427 			if (status & AGE_RRD_VLAN) {
1428 				u_int32_t vtag = AGE_RX_VLAN(letoh32(rxrd->vtags));
1429 				m->m_pkthdr.ether_vtag =
1430 				    AGE_RX_VLAN_TAG(vtag);
1431 				m->m_flags |= M_VLANTAG;
1432 			}
1433 #endif
1434 
1435 #if NBPFILTER > 0
1436 			if (ifp->if_bpf)
1437 				bpf_mtap_ether(ifp->if_bpf, m,
1438 				    BPF_DIRECTION_IN);
1439 #endif
1440 			/* Pass it on. */
1441 			ether_input_mbuf(ifp, m);
1442 
1443 			/* Reset mbuf chains. */
1444 			AGE_RXCHAIN_RESET(sc);
1445 		}
1446 	}
1447 
1448 	if (count != nsegs) {
1449 		sc->age_cdata.age_rx_cons += nsegs;
1450 		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
1451 	} else
1452 		sc->age_cdata.age_rx_cons = rx_cons;
1453 }
1454 
1455 void
1456 age_rxintr(struct age_softc *sc, int rr_prod)
1457 {
1458 	struct rx_rdesc *rxrd;
1459 	int rr_cons, nsegs, pktlen, prog;
1460 
1461 	rr_cons = sc->age_cdata.age_rr_cons;
1462 	if (rr_cons == rr_prod)
1463 		return;
1464 
1465 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
1466 	    sc->age_cdata.age_rr_ring_map->dm_mapsize,
1467 	    BUS_DMASYNC_POSTREAD);
1468 
1469 	for (prog = 0; rr_cons != rr_prod; prog++) {
1470 		rxrd = &sc->age_rdata.age_rr_ring[rr_cons];
1471 		nsegs = AGE_RX_NSEGS(letoh32(rxrd->index));
1472 		if (nsegs == 0)
1473 			break;
1474 		/*
1475 		 * Check number of segments against received bytes
1476 		 * Non-matching value would indicate that hardware
1477 		 * is still trying to update Rx return descriptors.
1478 		 * I'm not sure whether this check is really needed.
1479 		 */
1480 		pktlen = AGE_RX_BYTES(letoh32(rxrd->len));
1481 		if (nsegs != ((pktlen + (MCLBYTES - ETHER_ALIGN - 1)) /
1482 		    (MCLBYTES - ETHER_ALIGN)))
1483 			break;
1484 
1485 		/* Received a frame. */
1486 		age_rxeof(sc, rxrd);
1487 
1488 		/* Clear return ring. */
1489 		rxrd->index = 0;
1490 		AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT);
1491 	}
1492 
1493 	if (prog > 0) {
1494 		/* Update the consumer index. */
1495 		sc->age_cdata.age_rr_cons = rr_cons;
1496 
1497 		/* Sync descriptors. */
1498 		bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
1499 		    sc->age_cdata.age_rr_ring_map->dm_mapsize,
1500 		    BUS_DMASYNC_PREWRITE);
1501 
1502 		/* Notify hardware availability of new Rx buffers. */
1503 		AGE_COMMIT_MBOX(sc);
1504 	}
1505 }
1506 
1507 void
1508 age_tick(void *xsc)
1509 {
1510 	struct age_softc *sc = xsc;
1511 	struct mii_data *mii = &sc->sc_miibus;
1512 	int s;
1513 
1514 	s = splnet();
1515 	mii_tick(mii);
1516 	timeout_add_sec(&sc->age_tick_ch, 1);
1517 	splx(s);
1518 }
1519 
1520 void
1521 age_reset(struct age_softc *sc)
1522 {
1523 	uint32_t reg;
1524 	int i;
1525 
1526 	CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET);
1527 	CSR_READ_4(sc, AGE_MASTER_CFG);
1528 	DELAY(1000);
1529 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
1530 		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
1531 			break;
1532 		DELAY(10);
1533 	}
1534 
1535 	if (i == 0)
1536 		printf("%s: reset timeout(0x%08x)!\n", sc->sc_dev.dv_xname,
1537 		    reg);
1538 
1539 	/* Initialize PCIe module. From Linux. */
1540 	CSR_WRITE_4(sc, 0x12FC, 0x6500);
1541 	CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
1542 }
1543 
1544 int
1545 age_init(struct ifnet *ifp)
1546 {
1547 	struct age_softc *sc = ifp->if_softc;
1548 	struct mii_data *mii = &sc->sc_miibus;
1549 	uint8_t eaddr[ETHER_ADDR_LEN];
1550 	bus_addr_t paddr;
1551 	uint32_t reg, fsize;
1552 	uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo;
1553 	int error;
1554 
1555 	/*
1556 	 * Cancel any pending I/O.
1557 	 */
1558 	age_stop(sc);
1559 
1560 	/*
1561 	 * Reset the chip to a known state.
1562 	 */
1563 	age_reset(sc);
1564 
1565 	/* Initialize descriptors. */
1566 	error = age_init_rx_ring(sc);
1567         if (error != 0) {
1568 		printf("%s: no memory for Rx buffers.\n", sc->sc_dev.dv_xname);
1569                 age_stop(sc);
1570 		return (error);
1571         }
1572 	age_init_rr_ring(sc);
1573 	age_init_tx_ring(sc);
1574 	age_init_cmb_block(sc);
1575 	age_init_smb_block(sc);
1576 
1577 	/* Reprogram the station address. */
1578 	bcopy(LLADDR(ifp->if_sadl), eaddr, ETHER_ADDR_LEN);
1579 	CSR_WRITE_4(sc, AGE_PAR0,
1580 	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
1581 	CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]);
1582 
1583 	/* Set descriptor base addresses. */
1584 	paddr = sc->age_rdata.age_tx_ring_paddr;
1585 	CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr));
1586 	paddr = sc->age_rdata.age_rx_ring_paddr;
1587 	CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr));
1588 	paddr = sc->age_rdata.age_rr_ring_paddr;
1589 	CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr));
1590 	paddr = sc->age_rdata.age_tx_ring_paddr;
1591 	CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr));
1592 	paddr = sc->age_rdata.age_cmb_block_paddr;
1593 	CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr));
1594 	paddr = sc->age_rdata.age_smb_block_paddr;
1595 	CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr));
1596 
1597 	/* Set Rx/Rx return descriptor counter. */
1598 	CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT,
1599 	    ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) &
1600 	    DESC_RRD_CNT_MASK) |
1601 	    ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK));
1602 
1603 	/* Set Tx descriptor counter. */
1604 	CSR_WRITE_4(sc, AGE_DESC_TPD_CNT,
1605 	    (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK);
1606 
1607 	/* Tell hardware that we're ready to load descriptors. */
1608 	CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD);
1609 
1610         /*
1611 	 * Initialize mailbox register.
1612 	 * Updated producer/consumer index information is exchanged
1613 	 * through this mailbox register. However Tx producer and
1614 	 * Rx return consumer/Rx producer are all shared such that
1615 	 * it's hard to separate code path between Tx and Rx without
1616 	 * locking. If L1 hardware have a separate mail box register
1617 	 * for Tx and Rx consumer/producer management we could have
1618 	 * indepent Tx/Rx handler which in turn Rx handler could have
1619 	 * been run without any locking.
1620 	*/
1621 	AGE_COMMIT_MBOX(sc);
1622 
1623 	/* Configure IPG/IFG parameters. */
1624 	CSR_WRITE_4(sc, AGE_IPG_IFG_CFG,
1625 	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) |
1626 	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
1627 	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
1628 	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK));
1629 
1630 	/* Set parameters for half-duplex media. */
1631 	CSR_WRITE_4(sc, AGE_HDPX_CFG,
1632 	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
1633 	    HDPX_CFG_LCOL_MASK) |
1634 	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
1635 	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
1636 	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
1637 	    HDPX_CFG_ABEBT_MASK) |
1638 	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
1639 	     HDPX_CFG_JAMIPG_MASK));
1640 
1641 	/* Configure interrupt moderation timer. */
1642 	sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
1643 	CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod));
1644 	reg = CSR_READ_4(sc, AGE_MASTER_CFG);
1645 	reg &= ~MASTER_MTIMER_ENB;
1646 	if (AGE_USECS(sc->age_int_mod) == 0)
1647 		reg &= ~MASTER_ITIMER_ENB;
1648 	else
1649 		reg |= MASTER_ITIMER_ENB;
1650 	CSR_WRITE_4(sc, AGE_MASTER_CFG, reg);
1651 	if (agedebug)
1652 		printf("%s: interrupt moderation is %d us.\n",
1653 		    sc->sc_dev.dv_xname, sc->age_int_mod);
1654 	CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000));
1655 
1656 	/* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
1657 	if (ifp->if_mtu < ETHERMTU)
1658 		sc->age_max_frame_size = ETHERMTU;
1659 	else
1660 		sc->age_max_frame_size = ifp->if_mtu;
1661 	sc->age_max_frame_size += ETHER_HDR_LEN +
1662 	    sizeof(struct ether_vlan_header) + ETHER_CRC_LEN;
1663 	CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size);
1664 
1665 	/* Configure jumbo frame. */
1666 	fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t));
1667 	CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG,
1668 	    (((fsize / sizeof(uint64_t)) <<
1669 	    RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) |
1670 	    ((RXQ_JUMBO_CFG_LKAH_DEFAULT <<
1671 	    RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) |
1672 	    ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) &
1673 	    RXQ_JUMBO_CFG_RRD_TIMER_MASK));
1674 
1675 	/* Configure flow-control parameters. From Linux. */
1676 	if ((sc->age_flags & AGE_FLAG_PCIE) != 0) {
1677 		/*
1678 		 * Magic workaround for old-L1.
1679 		 * Don't know which hw revision requires this magic.
1680 		 */
1681 		CSR_WRITE_4(sc, 0x12FC, 0x6500);
1682 		/*
1683 		 * Another magic workaround for flow-control mode
1684 		 * change. From Linux.
1685 		 */
1686 		CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
1687 	}
1688 	/*
1689 	 * TODO
1690 	 *  Should understand pause parameter relationships between FIFO
1691 	 *  size and number of Rx descriptors and Rx return descriptors.
1692 	 *
1693 	 *  Magic parameters came from Linux.
1694 	 */
1695 	switch (sc->age_chip_rev) {
1696 	case 0x8001:
1697 	case 0x9001:
1698 	case 0x9002:
1699 	case 0x9003:
1700 		rxf_hi = AGE_RX_RING_CNT / 16;
1701 		rxf_lo = (AGE_RX_RING_CNT * 7) / 8;
1702 		rrd_hi = (AGE_RR_RING_CNT * 7) / 8;
1703 		rrd_lo = AGE_RR_RING_CNT / 16;
1704 		break;
1705 	default:
1706 		reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN);
1707 		rxf_lo = reg / 16;
1708 		if (rxf_lo < 192)
1709 			rxf_lo = 192;
1710 		rxf_hi = (reg * 7) / 8;
1711 		if (rxf_hi < rxf_lo)
1712 			rxf_hi = rxf_lo + 16;
1713 		reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN);
1714 		rrd_lo = reg / 8;
1715 		rrd_hi = (reg * 7) / 8;
1716 		if (rrd_lo < 2)
1717 			rrd_lo = 2;
1718 		if (rrd_hi < rrd_lo)
1719 			rrd_hi = rrd_lo + 3;
1720 		break;
1721 	}
1722 	CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH,
1723 	    ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) &
1724 	    RXQ_FIFO_PAUSE_THRESH_LO_MASK) |
1725 	    ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) &
1726 	    RXQ_FIFO_PAUSE_THRESH_HI_MASK));
1727 	CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH,
1728 	    ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) &
1729 	    RXQ_RRD_PAUSE_THRESH_LO_MASK) |
1730 	    ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) &
1731 	    RXQ_RRD_PAUSE_THRESH_HI_MASK));
1732 
1733 	/* Configure RxQ. */
1734 	CSR_WRITE_4(sc, AGE_RXQ_CFG,
1735 	    ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
1736 	    RXQ_CFG_RD_BURST_MASK) |
1737 	    ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT <<
1738 	    RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) |
1739 	    ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT <<
1740 	    RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) |
1741 	    RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
1742 
1743 	/* Configure TxQ. */
1744 	CSR_WRITE_4(sc, AGE_TXQ_CFG,
1745 	    ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
1746 	    TXQ_CFG_TPD_BURST_MASK) |
1747 	    ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) &
1748 	    TXQ_CFG_TX_FIFO_BURST_MASK) |
1749 	    ((TXQ_CFG_TPD_FETCH_DEFAULT <<
1750 	    TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) |
1751 	    TXQ_CFG_ENB);
1752 
1753 	/* Configure DMA parameters. */
1754 	CSR_WRITE_4(sc, AGE_DMA_CFG,
1755 	    DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 |
1756 	    sc->age_dma_rd_burst | DMA_CFG_RD_ENB |
1757 	    sc->age_dma_wr_burst | DMA_CFG_WR_ENB);
1758 
1759 	/* Configure CMB DMA write threshold. */
1760 	CSR_WRITE_4(sc, AGE_CMB_WR_THRESH,
1761 	    ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) &
1762 	    CMB_WR_THRESH_RRD_MASK) |
1763 	    ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) &
1764 	    CMB_WR_THRESH_TPD_MASK));
1765 
1766 	/* Set CMB/SMB timer and enable them. */
1767 	CSR_WRITE_4(sc, AGE_CMB_WR_TIMER,
1768 	    ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) |
1769 	    ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK));
1770 
1771 	/* Request SMB updates for every seconds. */
1772 	CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000));
1773 	CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB);
1774 
1775 	/*
1776 	 * Disable all WOL bits as WOL can interfere normal Rx
1777 	 * operation.
1778 	 */
1779 	CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
1780 
1781         /*
1782 	 * Configure Tx/Rx MACs.
1783 	 *  - Auto-padding for short frames.
1784 	 *  - Enable CRC generation.
1785 	 *  Start with full-duplex/1000Mbps media. Actual reconfiguration
1786 	 *  of MAC is followed after link establishment.
1787 	 */
1788 	CSR_WRITE_4(sc, AGE_MAC_CFG,
1789 	    MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD |
1790 	    MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 |
1791 	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
1792 	    MAC_CFG_PREAMBLE_MASK));
1793 
1794 	/* Set up the receive filter. */
1795 	age_iff(sc);
1796 
1797 	age_rxvlan(sc);
1798 
1799 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1800 	reg |= MAC_CFG_RXCSUM_ENB;
1801 
1802 	/* Ack all pending interrupts and clear it. */
1803 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
1804 	CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS);
1805 
1806 	/* Finally enable Tx/Rx MAC. */
1807 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
1808 
1809 	sc->age_flags &= ~AGE_FLAG_LINK;
1810 
1811 	/* Switch to the current media. */
1812 	mii_mediachg(mii);
1813 
1814 	timeout_add_sec(&sc->age_tick_ch, 1);
1815 
1816 	ifp->if_flags |= IFF_RUNNING;
1817 	ifp->if_flags &= ~IFF_OACTIVE;
1818 
1819 	return (0);
1820 }
1821 
1822 void
1823 age_stop(struct age_softc *sc)
1824 {
1825 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1826 	struct age_txdesc *txd;
1827 	struct age_rxdesc *rxd;
1828 	uint32_t reg;
1829 	int i;
1830 
1831 	/*
1832 	 * Mark the interface down and cancel the watchdog timer.
1833 	 */
1834 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1835 	ifp->if_timer = 0;
1836 
1837 	sc->age_flags &= ~AGE_FLAG_LINK;
1838 	timeout_del(&sc->age_tick_ch);
1839 
1840 	/*
1841 	 * Disable interrupts.
1842 	 */
1843 	CSR_WRITE_4(sc, AGE_INTR_MASK, 0);
1844 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF);
1845 
1846 	/* Stop CMB/SMB updates. */
1847 	CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0);
1848 
1849 	/* Stop Rx/Tx MAC. */
1850 	age_stop_rxmac(sc);
1851 	age_stop_txmac(sc);
1852 
1853 	/* Stop DMA. */
1854 	CSR_WRITE_4(sc, AGE_DMA_CFG,
1855 	    CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB));
1856 
1857 	/* Stop TxQ/RxQ. */
1858 	CSR_WRITE_4(sc, AGE_TXQ_CFG,
1859 	    CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB);
1860 	CSR_WRITE_4(sc, AGE_RXQ_CFG,
1861 	    CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB);
1862 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
1863 		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
1864 			break;
1865 		DELAY(10);
1866 	}
1867 	if (i == 0)
1868 		printf("%s: stopping Rx/Tx MACs timed out(0x%08x)!\n",
1869 		    sc->sc_dev.dv_xname, reg);
1870 
1871 	/* Reclaim Rx buffers that have been processed. */
1872 	if (sc->age_cdata.age_rxhead != NULL)
1873 		m_freem(sc->age_cdata.age_rxhead);
1874 	AGE_RXCHAIN_RESET(sc);
1875 
1876 	/*
1877 	 * Free RX and TX mbufs still in the queues.
1878 	 */
1879 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
1880 		rxd = &sc->age_cdata.age_rxdesc[i];
1881 		if (rxd->rx_m != NULL) {
1882 			bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
1883 			m_freem(rxd->rx_m);
1884 			rxd->rx_m = NULL;
1885 		}
1886 	}
1887 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
1888 		txd = &sc->age_cdata.age_txdesc[i];
1889 		if (txd->tx_m != NULL) {
1890 			bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1891 			m_freem(txd->tx_m);
1892 			txd->tx_m = NULL;
1893 		}
1894 	}
1895 }
1896 
1897 void
1898 age_stats_update(struct age_softc *sc)
1899 {
1900 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1901 	struct age_stats *stat;
1902 	struct smb *smb;
1903 
1904 	stat = &sc->age_stat;
1905 
1906 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
1907 	    sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1908 
1909 	smb = sc->age_rdata.age_smb_block;
1910 	if (smb->updated == 0)
1911 		return;
1912 
1913 	/* Rx stats. */
1914 	stat->rx_frames += smb->rx_frames;
1915 	stat->rx_bcast_frames += smb->rx_bcast_frames;
1916 	stat->rx_mcast_frames += smb->rx_mcast_frames;
1917 	stat->rx_pause_frames += smb->rx_pause_frames;
1918 	stat->rx_control_frames += smb->rx_control_frames;
1919 	stat->rx_crcerrs += smb->rx_crcerrs;
1920 	stat->rx_lenerrs += smb->rx_lenerrs;
1921 	stat->rx_bytes += smb->rx_bytes;
1922 	stat->rx_runts += smb->rx_runts;
1923 	stat->rx_fragments += smb->rx_fragments;
1924 	stat->rx_pkts_64 += smb->rx_pkts_64;
1925 	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
1926 	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
1927 	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
1928 	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
1929 	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
1930 	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
1931 	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
1932 	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
1933 	stat->rx_desc_oflows += smb->rx_desc_oflows;
1934 	stat->rx_alignerrs += smb->rx_alignerrs;
1935 	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
1936 	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
1937 	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
1938 
1939 	/* Tx stats. */
1940 	stat->tx_frames += smb->tx_frames;
1941 	stat->tx_bcast_frames += smb->tx_bcast_frames;
1942 	stat->tx_mcast_frames += smb->tx_mcast_frames;
1943 	stat->tx_pause_frames += smb->tx_pause_frames;
1944 	stat->tx_excess_defer += smb->tx_excess_defer;
1945 	stat->tx_control_frames += smb->tx_control_frames;
1946 	stat->tx_deferred += smb->tx_deferred;
1947 	stat->tx_bytes += smb->tx_bytes;
1948 	stat->tx_pkts_64 += smb->tx_pkts_64;
1949 	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
1950 	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
1951 	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
1952 	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
1953 	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
1954 	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
1955 	stat->tx_single_colls += smb->tx_single_colls;
1956 	stat->tx_multi_colls += smb->tx_multi_colls;
1957 	stat->tx_late_colls += smb->tx_late_colls;
1958 	stat->tx_excess_colls += smb->tx_excess_colls;
1959 	stat->tx_underrun += smb->tx_underrun;
1960 	stat->tx_desc_underrun += smb->tx_desc_underrun;
1961 	stat->tx_lenerrs += smb->tx_lenerrs;
1962 	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
1963 	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
1964 	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
1965 
1966 	/* Update counters in ifnet. */
1967 	ifp->if_opackets += smb->tx_frames;
1968 
1969 	ifp->if_collisions += smb->tx_single_colls +
1970 	    smb->tx_multi_colls + smb->tx_late_colls +
1971 	    smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT;
1972 
1973 	ifp->if_oerrors += smb->tx_excess_colls +
1974 	    smb->tx_late_colls + smb->tx_underrun +
1975 	    smb->tx_pkts_truncated;
1976 
1977 	ifp->if_ipackets += smb->rx_frames;
1978 
1979 	ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
1980 	    smb->rx_runts + smb->rx_pkts_truncated +
1981 	    smb->rx_fifo_oflows + smb->rx_desc_oflows +
1982 	    smb->rx_alignerrs;
1983 
1984 	/* Update done, clear. */
1985 	smb->updated = 0;
1986 
1987 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
1988 	    sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1989 }
1990 
1991 void
1992 age_stop_txmac(struct age_softc *sc)
1993 {
1994 	uint32_t reg;
1995 	int i;
1996 
1997 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1998 	if ((reg & MAC_CFG_TX_ENB) != 0) {
1999 		reg &= ~MAC_CFG_TX_ENB;
2000 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2001 	}
2002 	/* Stop Tx DMA engine. */
2003 	reg = CSR_READ_4(sc, AGE_DMA_CFG);
2004 	if ((reg & DMA_CFG_RD_ENB) != 0) {
2005 		reg &= ~DMA_CFG_RD_ENB;
2006 		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2007 	}
2008 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2009 		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2010 		    (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0)
2011 			break;
2012 		DELAY(10);
2013 	}
2014 	if (i == 0)
2015 		printf("%s: stopping TxMAC timeout!\n", sc->sc_dev.dv_xname);
2016 }
2017 
2018 void
2019 age_stop_rxmac(struct age_softc *sc)
2020 {
2021 	uint32_t reg;
2022 	int i;
2023 
2024 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2025 	if ((reg & MAC_CFG_RX_ENB) != 0) {
2026 		reg &= ~MAC_CFG_RX_ENB;
2027 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2028 	}
2029 	/* Stop Rx DMA engine. */
2030 	reg = CSR_READ_4(sc, AGE_DMA_CFG);
2031 	if ((reg & DMA_CFG_WR_ENB) != 0) {
2032 		reg &= ~DMA_CFG_WR_ENB;
2033 		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2034 	}
2035 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2036 		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2037 		    (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0)
2038 			break;
2039 		DELAY(10);
2040 	}
2041 	if (i == 0)
2042 		printf("%s: stopping RxMAC timeout!\n", sc->sc_dev.dv_xname);
2043 }
2044 
2045 void
2046 age_init_tx_ring(struct age_softc *sc)
2047 {
2048 	struct age_ring_data *rd;
2049 	struct age_txdesc *txd;
2050 	int i;
2051 
2052 	sc->age_cdata.age_tx_prod = 0;
2053 	sc->age_cdata.age_tx_cons = 0;
2054 	sc->age_cdata.age_tx_cnt = 0;
2055 
2056 	rd = &sc->age_rdata;
2057 	bzero(rd->age_tx_ring, AGE_TX_RING_SZ);
2058 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
2059 		txd = &sc->age_cdata.age_txdesc[i];
2060 		txd->tx_desc = &rd->age_tx_ring[i];
2061 		txd->tx_m = NULL;
2062 	}
2063 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
2064 	    sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2065 }
2066 
2067 int
2068 age_init_rx_ring(struct age_softc *sc)
2069 {
2070 	struct age_ring_data *rd;
2071 	struct age_rxdesc *rxd;
2072 	int i;
2073 
2074 	sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1;
2075 	rd = &sc->age_rdata;
2076 	bzero(rd->age_rx_ring, AGE_RX_RING_SZ);
2077 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
2078 		rxd = &sc->age_cdata.age_rxdesc[i];
2079 		rxd->rx_m = NULL;
2080 		rxd->rx_desc = &rd->age_rx_ring[i];
2081 		if (age_newbuf(sc, rxd) != 0)
2082 			return (ENOBUFS);
2083 	}
2084 
2085 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rx_ring_map, 0,
2086 	    sc->age_cdata.age_rx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2087 
2088 	return (0);
2089 }
2090 
2091 void
2092 age_init_rr_ring(struct age_softc *sc)
2093 {
2094 	struct age_ring_data *rd;
2095 
2096 	sc->age_cdata.age_rr_cons = 0;
2097 	AGE_RXCHAIN_RESET(sc);
2098 
2099 	rd = &sc->age_rdata;
2100 	bzero(rd->age_rr_ring, AGE_RR_RING_SZ);
2101 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
2102 	    sc->age_cdata.age_rr_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2103 }
2104 
2105 void
2106 age_init_cmb_block(struct age_softc *sc)
2107 {
2108 	struct age_ring_data *rd;
2109 
2110 	rd = &sc->age_rdata;
2111 	bzero(rd->age_cmb_block, AGE_CMB_BLOCK_SZ);
2112 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
2113 	    sc->age_cdata.age_cmb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2114 }
2115 
2116 void
2117 age_init_smb_block(struct age_softc *sc)
2118 {
2119 	struct age_ring_data *rd;
2120 
2121 	rd = &sc->age_rdata;
2122 	bzero(rd->age_smb_block, AGE_SMB_BLOCK_SZ);
2123 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
2124 	    sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2125 }
2126 
2127 int
2128 age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd)
2129 {
2130 	struct rx_desc *desc;
2131 	struct mbuf *m;
2132 	bus_dmamap_t map;
2133 	int error;
2134 
2135 	MGETHDR(m, M_DONTWAIT, MT_DATA);
2136 	if (m == NULL)
2137 		return (ENOBUFS);
2138 	MCLGET(m, M_DONTWAIT);
2139 	if (!(m->m_flags & M_EXT)) {
2140 		 m_freem(m);
2141 		 return (ENOBUFS);
2142 	}
2143 
2144 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2145 	m_adj(m, ETHER_ALIGN);
2146 
2147 	error = bus_dmamap_load_mbuf(sc->sc_dmat,
2148 	    sc->age_cdata.age_rx_sparemap, m, BUS_DMA_NOWAIT);
2149 
2150 	if (error != 0) {
2151 		m_freem(m);
2152 		printf("%s: can't load RX mbuf\n", sc->sc_dev.dv_xname);
2153 		return (error);
2154 	}
2155 
2156 	if (rxd->rx_m != NULL) {
2157 		bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0,
2158 		    rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2159 		bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
2160 	}
2161 	map = rxd->rx_dmamap;
2162 	rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap;
2163 	sc->age_cdata.age_rx_sparemap = map;
2164 	rxd->rx_m = m;
2165 
2166 	desc = rxd->rx_desc;
2167 	desc->addr = htole64(rxd->rx_dmamap->dm_segs[0].ds_addr);
2168 	desc->len =
2169 	    htole32((rxd->rx_dmamap->dm_segs[0].ds_len & AGE_RD_LEN_MASK) <<
2170 	    AGE_RD_LEN_SHIFT);
2171 
2172 	return (0);
2173 }
2174 
2175 void
2176 age_rxvlan(struct age_softc *sc)
2177 {
2178 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
2179 	uint32_t reg;
2180 
2181 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2182 	reg &= ~MAC_CFG_VLAN_TAG_STRIP;
2183 	if (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING)
2184 		reg |= MAC_CFG_VLAN_TAG_STRIP;
2185 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2186 }
2187 
2188 void
2189 age_iff(struct age_softc *sc)
2190 {
2191 	struct arpcom *ac = &sc->sc_arpcom;
2192 	struct ifnet *ifp = &ac->ac_if;
2193 	struct ether_multi *enm;
2194 	struct ether_multistep step;
2195 	uint32_t crc;
2196 	uint32_t mchash[2];
2197 	uint32_t rxcfg;
2198 
2199 	rxcfg = CSR_READ_4(sc, AGE_MAC_CFG);
2200 	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
2201 	ifp->if_flags &= ~IFF_ALLMULTI;
2202 
2203 	/*
2204 	 * Always accept broadcast frames.
2205 	 */
2206 	rxcfg |= MAC_CFG_BCAST;
2207 
2208 	if (ifp->if_flags & IFF_PROMISC || ac->ac_multirangecnt > 0) {
2209 		ifp->if_flags |= IFF_ALLMULTI;
2210 		if (ifp->if_flags & IFF_PROMISC)
2211 			rxcfg |= MAC_CFG_PROMISC;
2212 		else
2213 			rxcfg |= MAC_CFG_ALLMULTI;
2214 		mchash[0] = mchash[1] = 0xFFFFFFFF;
2215 	} else {
2216 		/* Program new filter. */
2217 		bzero(mchash, sizeof(mchash));
2218 
2219 		ETHER_FIRST_MULTI(step, ac, enm);
2220 		while (enm != NULL) {
2221 			crc = ether_crc32_be(enm->enm_addrlo,
2222 			    ETHER_ADDR_LEN);
2223 
2224 			mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
2225 
2226 			ETHER_NEXT_MULTI(step, enm);
2227 		}
2228 	}
2229 
2230 	CSR_WRITE_4(sc, AGE_MAR0, mchash[0]);
2231 	CSR_WRITE_4(sc, AGE_MAR1, mchash[1]);
2232 	CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
2233 }
2234