xref: /openbsd-src/sys/dev/pci/if_age.c (revision be38755c412cc72cb8d40f51ea70c9893196afff)
1 /*	$OpenBSD: if_age.c,v 1.17 2011/09/15 01:51:40 kevlo Exp $	*/
2 
3 /*-
4  * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice unmodified, this list of conditions, and the following
12  *    disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 /* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */
31 
32 #include "bpfilter.h"
33 #include "vlan.h"
34 
35 #include <sys/param.h>
36 #include <sys/endian.h>
37 #include <sys/systm.h>
38 #include <sys/types.h>
39 #include <sys/sockio.h>
40 #include <sys/mbuf.h>
41 #include <sys/queue.h>
42 #include <sys/kernel.h>
43 #include <sys/device.h>
44 #include <sys/timeout.h>
45 #include <sys/socket.h>
46 
47 #include <machine/bus.h>
48 
49 #include <net/if.h>
50 #include <net/if_dl.h>
51 #include <net/if_media.h>
52 
53 #ifdef INET
54 #include <netinet/in.h>
55 #include <netinet/in_systm.h>
56 #include <netinet/in_var.h>
57 #include <netinet/ip.h>
58 #include <netinet/if_ether.h>
59 #endif
60 
61 #include <net/if_types.h>
62 #include <net/if_vlan_var.h>
63 
64 #if NBPFILTER > 0
65 #include <net/bpf.h>
66 #endif
67 
68 #include <dev/rndvar.h>
69 
70 #include <dev/mii/mii.h>
71 #include <dev/mii/miivar.h>
72 
73 #include <dev/pci/pcireg.h>
74 #include <dev/pci/pcivar.h>
75 #include <dev/pci/pcidevs.h>
76 
77 #include <dev/pci/if_agereg.h>
78 
79 int	age_match(struct device *, void *, void *);
80 void	age_attach(struct device *, struct device *, void *);
81 int	age_detach(struct device *, int);
82 
83 int	age_miibus_readreg(struct device *, int, int);
84 void	age_miibus_writereg(struct device *, int, int, int);
85 void	age_miibus_statchg(struct device *);
86 
87 int	age_init(struct ifnet *);
88 int	age_ioctl(struct ifnet *, u_long, caddr_t);
89 void	age_start(struct ifnet *);
90 void	age_watchdog(struct ifnet *);
91 void	age_mediastatus(struct ifnet *, struct ifmediareq *);
92 int	age_mediachange(struct ifnet *);
93 
94 int	age_intr(void *);
95 int	age_dma_alloc(struct age_softc *);
96 void	age_dma_free(struct age_softc *);
97 void	age_get_macaddr(struct age_softc *);
98 void	age_phy_reset(struct age_softc *);
99 
100 int	age_encap(struct age_softc *, struct mbuf **);
101 void	age_init_tx_ring(struct age_softc *);
102 int	age_init_rx_ring(struct age_softc *);
103 void	age_init_rr_ring(struct age_softc *);
104 void	age_init_cmb_block(struct age_softc *);
105 void	age_init_smb_block(struct age_softc *);
106 int	age_newbuf(struct age_softc *, struct age_rxdesc *);
107 void	age_mac_config(struct age_softc *);
108 void	age_txintr(struct age_softc *, int);
109 void	age_rxeof(struct age_softc *sc, struct rx_rdesc *);
110 void	age_rxintr(struct age_softc *, int);
111 void	age_tick(void *);
112 void	age_reset(struct age_softc *);
113 void	age_stop(struct age_softc *);
114 void	age_stats_update(struct age_softc *);
115 void	age_stop_txmac(struct age_softc *);
116 void	age_stop_rxmac(struct age_softc *);
117 void	age_rxvlan(struct age_softc *sc);
118 void	age_iff(struct age_softc *);
119 
120 const struct pci_matchid age_devices[] = {
121 	{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_L1 }
122 };
123 
124 struct cfattach age_ca = {
125 	sizeof (struct age_softc), age_match, age_attach
126 };
127 
128 struct cfdriver age_cd = {
129 	 NULL, "age", DV_IFNET
130 };
131 
132 int agedebug = 0;
133 #define	DPRINTF(x)	do { if (agedebug) printf x; } while (0)
134 
135 #define AGE_CSUM_FEATURES	(M_TCP_CSUM_OUT | M_UDP_CSUM_OUT)
136 
137 int
138 age_match(struct device *dev, void *match, void *aux)
139 {
140 	 return pci_matchbyid((struct pci_attach_args *)aux, age_devices,
141 	     sizeof (age_devices) / sizeof (age_devices[0]));
142 }
143 
144 void
145 age_attach(struct device *parent, struct device *self, void *aux)
146 {
147 	struct age_softc *sc = (struct age_softc *)self;
148 	struct pci_attach_args *pa = aux;
149 	pci_chipset_tag_t pc = pa->pa_pc;
150 	pci_intr_handle_t ih;
151 	const char *intrstr;
152 	struct ifnet *ifp;
153 	pcireg_t memtype;
154 	int error = 0;
155 
156 	/*
157 	 * Allocate IO memory
158 	 */
159 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, AGE_PCIR_BAR);
160 	if (pci_mapreg_map(pa, AGE_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
161 	    &sc->sc_mem_bh, NULL, &sc->sc_mem_size, 0)) {
162 		printf(": can't map mem space\n");
163 		return;
164 	}
165 
166 	if (pci_intr_map_msi(pa, &ih) != 0 && pci_intr_map(pa, &ih) != 0) {
167 		printf(": can't map interrupt\n");
168 		goto fail;
169 	}
170 
171 	/*
172 	 * Allocate IRQ
173 	 */
174 	intrstr = pci_intr_string(pc, ih);
175 	sc->sc_irq_handle = pci_intr_establish(pc, ih, IPL_NET, age_intr, sc,
176 	    sc->sc_dev.dv_xname);
177 	if (sc->sc_irq_handle == NULL) {
178 		printf(": could not establish interrupt");
179 		if (intrstr != NULL)
180 			printf(" at %s", intrstr);
181 		printf("\n");
182 		goto fail;
183 	}
184 	printf(": %s", intrstr);
185 
186 	sc->sc_dmat = pa->pa_dmat;
187 	sc->sc_pct = pa->pa_pc;
188 	sc->sc_pcitag = pa->pa_tag;
189 
190 	/* Set PHY address. */
191 	sc->age_phyaddr = AGE_PHY_ADDR;
192 
193 	/* Reset PHY. */
194 	age_phy_reset(sc);
195 
196 	/* Reset the ethernet controller. */
197 	age_reset(sc);
198 
199 	/* Get PCI and chip id/revision. */
200 	sc->age_rev = PCI_REVISION(pa->pa_class);
201 	sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >>
202 	    MASTER_CHIP_REV_SHIFT;
203 	if (agedebug) {
204 		printf("%s: PCI device revision : 0x%04x\n",
205 		    sc->sc_dev.dv_xname, sc->age_rev);
206 		printf("%s: Chip id/revision : 0x%04x\n",
207 		    sc->sc_dev.dv_xname, sc->age_chip_rev);
208 	}
209 
210 	if (agedebug) {
211 		printf("%s: %d Tx FIFO, %d Rx FIFO\n", sc->sc_dev.dv_xname,
212 		    CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN),
213 		    CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN));
214 	}
215 
216 	/* Set max allowable DMA size. */
217 	sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128;
218 	sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128;
219 
220 	/* Allocate DMA stuffs */
221 	error = age_dma_alloc(sc);
222 	if (error)
223 		goto fail;
224 
225 	/* Load station address. */
226 	age_get_macaddr(sc);
227 
228 	ifp = &sc->sc_arpcom.ac_if;
229 	ifp->if_softc = sc;
230 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
231 	ifp->if_ioctl = age_ioctl;
232 	ifp->if_start = age_start;
233 	ifp->if_watchdog = age_watchdog;
234 	ifp->if_baudrate = IF_Gbps(1);
235 	IFQ_SET_MAXLEN(&ifp->if_snd, AGE_TX_RING_CNT - 1);
236 	IFQ_SET_READY(&ifp->if_snd);
237 	bcopy(sc->age_eaddr, sc->sc_arpcom.ac_enaddr, ETHER_ADDR_LEN);
238 	bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
239 
240 	ifp->if_capabilities = IFCAP_VLAN_MTU;
241 
242 #ifdef AGE_CHECKSUM
243 	ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 |
244 				IFCAP_CSUM_UDPv4;
245 #endif
246 
247 #if NVLAN > 0
248 	ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING;
249 #endif
250 
251 	printf(", address %s\n", ether_sprintf(sc->sc_arpcom.ac_enaddr));
252 
253 	/* Set up MII bus. */
254 	sc->sc_miibus.mii_ifp = ifp;
255 	sc->sc_miibus.mii_readreg = age_miibus_readreg;
256 	sc->sc_miibus.mii_writereg = age_miibus_writereg;
257 	sc->sc_miibus.mii_statchg = age_miibus_statchg;
258 
259 	ifmedia_init(&sc->sc_miibus.mii_media, 0, age_mediachange,
260 	    age_mediastatus);
261 	mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY,
262 	   MII_OFFSET_ANY, MIIF_DOPAUSE);
263 
264 	if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) {
265 		printf("%s: no PHY found!\n", sc->sc_dev.dv_xname);
266 		ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL,
267 		    0, NULL);
268 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL);
269 	} else
270 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO);
271 
272 	if_attach(ifp);
273 	ether_ifattach(ifp);
274 
275 	timeout_set(&sc->age_tick_ch, age_tick, sc);
276 
277 	return;
278 fail:
279 	age_dma_free(sc);
280 	if (sc->sc_irq_handle != NULL)
281 		pci_intr_disestablish(pc, sc->sc_irq_handle);
282 	if (sc->sc_mem_size)
283 		bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
284 }
285 
286 int
287 age_detach(struct device *self, int flags)
288 {
289 	struct age_softc *sc = (struct age_softc *)self;
290 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
291 	int s;
292 
293 	s = splnet();
294 	age_stop(sc);
295 	splx(s);
296 
297 	mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
298 
299 	/* Delete all remaining media. */
300 	ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
301 
302 	ether_ifdetach(ifp);
303 	if_detach(ifp);
304 	age_dma_free(sc);
305 
306 	if (sc->sc_irq_handle != NULL) {
307 		pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
308 		sc->sc_irq_handle = NULL;
309 	}
310 
311 	return (0);
312 }
313 
314 /*
315  *	Read a PHY register on the MII of the L1.
316  */
317 int
318 age_miibus_readreg(struct device *dev, int phy, int reg)
319 {
320 	struct age_softc *sc = (struct age_softc *)dev;
321 	uint32_t v;
322 	int i;
323 
324 	if (phy != sc->age_phyaddr)
325 		return (0);
326 
327 	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
328 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
329 	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
330 		DELAY(1);
331 		v = CSR_READ_4(sc, AGE_MDIO);
332 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
333 			break;
334 	}
335 
336 	if (i == 0) {
337 		printf("%s: phy read timeout: phy %d, reg %d\n",
338 			sc->sc_dev.dv_xname, phy, reg);
339 		return (0);
340 	}
341 
342 	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
343 }
344 
345 /*
346  * 	Write a PHY register on the MII of the L1.
347  */
348 void
349 age_miibus_writereg(struct device *dev, int phy, int reg, int val)
350 {
351 	struct age_softc *sc = (struct age_softc *)dev;
352 	uint32_t v;
353 	int i;
354 
355 	if (phy != sc->age_phyaddr)
356 		return;
357 
358 	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
359 	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
360 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
361 
362 	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
363 		DELAY(1);
364 		v = CSR_READ_4(sc, AGE_MDIO);
365 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
366 			break;
367 	}
368 
369 	if (i == 0) {
370 		printf("%s: phy write timeout: phy %d, reg %d\n",
371 		    sc->sc_dev.dv_xname, phy, reg);
372 	}
373 }
374 
375 /*
376  *	Callback from MII layer when media changes.
377  */
378 void
379 age_miibus_statchg(struct device *dev)
380 {
381 	struct age_softc *sc = (struct age_softc *)dev;
382 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
383 	struct mii_data *mii = &sc->sc_miibus;
384 
385 	if ((ifp->if_flags & IFF_RUNNING) == 0)
386 		return;
387 
388 	sc->age_flags &= ~AGE_FLAG_LINK;
389 	if ((mii->mii_media_status & IFM_AVALID) != 0) {
390 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
391 		case IFM_10_T:
392 		case IFM_100_TX:
393 		case IFM_1000_T:
394 			sc->age_flags |= AGE_FLAG_LINK;
395 			break;
396 		default:
397 			break;
398 		}
399 	}
400 
401 	/* Stop Rx/Tx MACs. */
402 	age_stop_rxmac(sc);
403 	age_stop_txmac(sc);
404 
405 	/* Program MACs with resolved speed/duplex/flow-control. */
406 	if ((sc->age_flags & AGE_FLAG_LINK) != 0) {
407 		uint32_t reg;
408 
409 		age_mac_config(sc);
410 		reg = CSR_READ_4(sc, AGE_MAC_CFG);
411 		/* Restart DMA engine and Tx/Rx MAC. */
412 		CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) |
413 		    DMA_CFG_RD_ENB | DMA_CFG_WR_ENB);
414 		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
415 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
416 	}
417 }
418 
419 /*
420  *	Get the current interface media status.
421  */
422 void
423 age_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
424 {
425 	struct age_softc *sc = ifp->if_softc;
426 	struct mii_data *mii = &sc->sc_miibus;
427 
428 	mii_pollstat(mii);
429 	ifmr->ifm_status = mii->mii_media_status;
430 	ifmr->ifm_active = mii->mii_media_active;
431 }
432 
433 /*
434  *	Set hardware to newly-selected media.
435  */
436 int
437 age_mediachange(struct ifnet *ifp)
438 {
439 	struct age_softc *sc = ifp->if_softc;
440 	struct mii_data *mii = &sc->sc_miibus;
441 	int error;
442 
443 	if (mii->mii_instance != 0) {
444 		struct mii_softc *miisc;
445 
446 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
447 			mii_phy_reset(miisc);
448 	}
449 	error = mii_mediachg(mii);
450 
451 	return (error);
452 }
453 
454 int
455 age_intr(void *arg)
456 {
457         struct age_softc *sc = arg;
458         struct ifnet *ifp = &sc->sc_arpcom.ac_if;
459 	struct cmb *cmb;
460         uint32_t status;
461 
462 	status = CSR_READ_4(sc, AGE_INTR_STATUS);
463 	if (status == 0 || (status & AGE_INTRS) == 0)
464 		return (0);
465 
466 	/* Disable interrupts. */
467 	CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
468 
469 	cmb = sc->age_rdata.age_cmb_block;
470 
471 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
472 	    sc->age_cdata.age_cmb_block_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
473 	status = letoh32(cmb->intr_status);
474 	if ((status & AGE_INTRS) == 0)
475 		goto back;
476 
477 	sc->age_tpd_cons = (letoh32(cmb->tpd_cons) & TPD_CONS_MASK) >>
478 	    TPD_CONS_SHIFT;
479 	sc->age_rr_prod = (letoh32(cmb->rprod_cons) & RRD_PROD_MASK) >>
480 	    RRD_PROD_SHIFT;
481 
482 	/* Let hardware know CMB was served. */
483 	cmb->intr_status = 0;
484 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
485 	    sc->age_cdata.age_cmb_block_map->dm_mapsize,
486 	    BUS_DMASYNC_PREWRITE);
487 
488 	if (ifp->if_flags & IFF_RUNNING) {
489 		if (status & INTR_CMB_RX)
490 			age_rxintr(sc, sc->age_rr_prod);
491 
492 		if (status & INTR_CMB_TX)
493 			age_txintr(sc, sc->age_tpd_cons);
494 
495 		if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) {
496 			if (status & INTR_DMA_RD_TO_RST)
497 				printf("%s: DMA read error! -- resetting\n",
498 				    sc->sc_dev.dv_xname);
499 			if (status & INTR_DMA_WR_TO_RST)
500 				printf("%s: DMA write error! -- resetting\n",
501 				    sc->sc_dev.dv_xname);
502 			age_init(ifp);
503 		}
504 
505 		age_start(ifp);
506 
507 		if (status & INTR_SMB)
508 			age_stats_update(sc);
509 	}
510 
511 	/* Check whether CMB was updated while serving Tx/Rx/SMB handler. */
512 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
513 	    sc->age_cdata.age_cmb_block_map->dm_mapsize,
514 	    BUS_DMASYNC_POSTREAD);
515 
516 back:
517 	/* Re-enable interrupts. */
518 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
519 
520 	return (1);
521 }
522 
523 void
524 age_get_macaddr(struct age_softc *sc)
525 {
526 	uint32_t ea[2], reg;
527 	int i, vpdc;
528 
529 	reg = CSR_READ_4(sc, AGE_SPI_CTRL);
530 	if ((reg & SPI_VPD_ENB) != 0) {
531 		/* Get VPD stored in TWSI EEPROM. */
532 		reg &= ~SPI_VPD_ENB;
533 		CSR_WRITE_4(sc, AGE_SPI_CTRL, reg);
534 	}
535 
536 	if (pci_get_capability(sc->sc_pct, sc->sc_pcitag,
537 	    PCI_CAP_VPD, &vpdc, NULL)) {
538 		/*
539 		 * PCI VPD capability found, let TWSI reload EEPROM.
540 		 * This will set Ethernet address of controller.
541 		 */
542 		CSR_WRITE_4(sc, AGE_TWSI_CTRL, CSR_READ_4(sc, AGE_TWSI_CTRL) |
543 		    TWSI_CTRL_SW_LD_START);
544 		for (i = 100; i > 0; i--) {
545 			DELAY(1000);
546 			reg = CSR_READ_4(sc, AGE_TWSI_CTRL);
547 			if ((reg & TWSI_CTRL_SW_LD_START) == 0)
548 				break;
549 		}
550 		if (i == 0)
551 			printf("%s: reloading EEPROM timeout!\n",
552 			    sc->sc_dev.dv_xname);
553 	} else {
554 		if (agedebug)
555 			printf("%s: PCI VPD capability not found!\n",
556 			    sc->sc_dev.dv_xname);
557 	}
558 
559 	ea[0] = CSR_READ_4(sc, AGE_PAR0);
560 	ea[1] = CSR_READ_4(sc, AGE_PAR1);
561 	sc->age_eaddr[0] = (ea[1] >> 8) & 0xFF;
562 	sc->age_eaddr[1] = (ea[1] >> 0) & 0xFF;
563 	sc->age_eaddr[2] = (ea[0] >> 24) & 0xFF;
564 	sc->age_eaddr[3] = (ea[0] >> 16) & 0xFF;
565 	sc->age_eaddr[4] = (ea[0] >> 8) & 0xFF;
566 	sc->age_eaddr[5] = (ea[0] >> 0) & 0xFF;
567 }
568 
569 void
570 age_phy_reset(struct age_softc *sc)
571 {
572 	uint16_t reg, pn;
573 	int i, linkup;
574 
575 	/* Reset PHY. */
576 	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST);
577 	DELAY(2000);
578 	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR);
579 	DELAY(2000);
580 
581 #define	ATPHY_DBG_ADDR		0x1D
582 #define	ATPHY_DBG_DATA		0x1E
583 #define	ATPHY_CDTC		0x16
584 #define	PHY_CDTC_ENB		0x0001
585 #define	PHY_CDTC_POFF		8
586 #define	ATPHY_CDTS		0x1C
587 #define	PHY_CDTS_STAT_OK	0x0000
588 #define	PHY_CDTS_STAT_SHORT	0x0100
589 #define	PHY_CDTS_STAT_OPEN	0x0200
590 #define	PHY_CDTS_STAT_INVAL	0x0300
591 #define	PHY_CDTS_STAT_MASK	0x0300
592 
593 	/* Check power saving mode. Magic from Linux. */
594 	age_miibus_writereg(&sc->sc_dev, sc->age_phyaddr, MII_BMCR, BMCR_RESET);
595 	for (linkup = 0, pn = 0; pn < 4; pn++) {
596 		age_miibus_writereg(&sc->sc_dev, sc->age_phyaddr, ATPHY_CDTC,
597 		    (pn << PHY_CDTC_POFF) | PHY_CDTC_ENB);
598 		for (i = 200; i > 0; i--) {
599 			DELAY(1000);
600 			reg = age_miibus_readreg(&sc->sc_dev, sc->age_phyaddr,
601 			    ATPHY_CDTC);
602 			if ((reg & PHY_CDTC_ENB) == 0)
603 				break;
604 		}
605 		DELAY(1000);
606 		reg = age_miibus_readreg(&sc->sc_dev, sc->age_phyaddr,
607 		    ATPHY_CDTS);
608 		if ((reg & PHY_CDTS_STAT_MASK) != PHY_CDTS_STAT_OPEN) {
609 			linkup++;
610 			break;
611 		}
612 	}
613 	age_miibus_writereg(&sc->sc_dev, sc->age_phyaddr, MII_BMCR,
614 	    BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
615 	if (linkup == 0) {
616 		age_miibus_writereg(&sc->sc_dev, sc->age_phyaddr,
617 		    ATPHY_DBG_ADDR, 0);
618 		age_miibus_writereg(&sc->sc_dev, sc->age_phyaddr,
619 		    ATPHY_DBG_DATA, 0x124E);
620 		age_miibus_writereg(&sc->sc_dev, sc->age_phyaddr,
621 		    ATPHY_DBG_ADDR, 1);
622 		reg = age_miibus_readreg(&sc->sc_dev, sc->age_phyaddr,
623 		    ATPHY_DBG_DATA);
624 		age_miibus_writereg(&sc->sc_dev, sc->age_phyaddr,
625 		    ATPHY_DBG_DATA, reg | 0x03);
626 		/* XXX */
627 		DELAY(1500 * 1000);
628 		age_miibus_writereg(&sc->sc_dev, sc->age_phyaddr,
629 		    ATPHY_DBG_ADDR, 0);
630 		age_miibus_writereg(&sc->sc_dev, sc->age_phyaddr,
631 		    ATPHY_DBG_DATA, 0x024E);
632 	}
633 
634 #undef	ATPHY_DBG_ADDR
635 #undef	ATPHY_DBG_DATA
636 #undef	ATPHY_CDTC
637 #undef	PHY_CDTC_ENB
638 #undef	PHY_CDTC_POFF
639 #undef	ATPHY_CDTS
640 #undef	PHY_CDTS_STAT_OK
641 #undef	PHY_CDTS_STAT_SHORT
642 #undef	PHY_CDTS_STAT_OPEN
643 #undef	PHY_CDTS_STAT_INVAL
644 #undef	PHY_CDTS_STAT_MASK
645 }
646 
647 int
648 age_dma_alloc(struct age_softc *sc)
649 {
650 	struct age_txdesc *txd;
651 	struct age_rxdesc *rxd;
652 	int nsegs, error, i;
653 
654 	/*
655 	 * Create DMA stuffs for TX ring
656 	 */
657 	error = bus_dmamap_create(sc->sc_dmat, AGE_TX_RING_SZ, 1,
658 	    AGE_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_tx_ring_map);
659 	if (error)
660 		return (ENOBUFS);
661 
662 	/* Allocate DMA'able memory for TX ring */
663 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_TX_RING_SZ,
664 	    ETHER_ALIGN, 0, &sc->age_rdata.age_tx_ring_seg, 1,
665 	    &nsegs, BUS_DMA_WAITOK | BUS_DMA_ZERO);
666 	if (error) {
667 		printf("%s: could not allocate DMA'able memory for Tx ring.\n",
668 		    sc->sc_dev.dv_xname);
669 		return error;
670 	}
671 
672 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_tx_ring_seg,
673 	    nsegs, AGE_TX_RING_SZ, (caddr_t *)&sc->age_rdata.age_tx_ring,
674 	    BUS_DMA_NOWAIT);
675 	if (error)
676 		return (ENOBUFS);
677 
678 	/*  Load the DMA map for Tx ring. */
679 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_tx_ring_map,
680 	    sc->age_rdata.age_tx_ring, AGE_TX_RING_SZ, NULL, BUS_DMA_WAITOK);
681 	if (error) {
682 		printf("%s: could not load DMA'able memory for Tx ring.\n",
683 		    sc->sc_dev.dv_xname);
684 		bus_dmamem_free(sc->sc_dmat,
685 		    (bus_dma_segment_t *)&sc->age_rdata.age_tx_ring, 1);
686 		return error;
687 	}
688 
689 	sc->age_rdata.age_tx_ring_paddr =
690 	    sc->age_cdata.age_tx_ring_map->dm_segs[0].ds_addr;
691 
692 	/*
693 	 * Create DMA stuffs for RX ring
694 	 */
695 	error = bus_dmamap_create(sc->sc_dmat, AGE_RX_RING_SZ, 1,
696 	    AGE_RX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_ring_map);
697 	if (error)
698 		return (ENOBUFS);
699 
700 	/* Allocate DMA'able memory for RX ring */
701 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_RX_RING_SZ,
702 	    ETHER_ALIGN, 0, &sc->age_rdata.age_rx_ring_seg, 1,
703 	    &nsegs, BUS_DMA_WAITOK | BUS_DMA_ZERO);
704 	if (error) {
705 		printf("%s: could not allocate DMA'able memory for Rx ring.\n",
706 		    sc->sc_dev.dv_xname);
707 		return error;
708 	}
709 
710 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rx_ring_seg,
711 	    nsegs, AGE_RX_RING_SZ, (caddr_t *)&sc->age_rdata.age_rx_ring,
712 	    BUS_DMA_NOWAIT);
713 	if (error)
714 		return (ENOBUFS);
715 
716 	/* Load the DMA map for Rx ring. */
717 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rx_ring_map,
718 	    sc->age_rdata.age_rx_ring, AGE_RX_RING_SZ, NULL, BUS_DMA_WAITOK);
719 	if (error) {
720 		printf("%s: could not load DMA'able memory for Rx ring.\n",
721 		    sc->sc_dev.dv_xname);
722 		bus_dmamem_free(sc->sc_dmat,
723 		    (bus_dma_segment_t *)sc->age_rdata.age_rx_ring, 1);
724 		return error;
725 	}
726 
727 	sc->age_rdata.age_rx_ring_paddr =
728 	    sc->age_cdata.age_rx_ring_map->dm_segs[0].ds_addr;
729 
730 	/*
731 	 * Create DMA stuffs for RX return ring
732 	 */
733 	error = bus_dmamap_create(sc->sc_dmat, AGE_RR_RING_SZ, 1,
734 	    AGE_RR_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rr_ring_map);
735 	if (error)
736 		return (ENOBUFS);
737 
738 	/* Allocate DMA'able memory for RX return ring */
739 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_RR_RING_SZ,
740 	    ETHER_ALIGN, 0, &sc->age_rdata.age_rr_ring_seg, 1,
741 	    &nsegs, BUS_DMA_WAITOK | BUS_DMA_ZERO);
742 	if (error) {
743 		printf("%s: could not allocate DMA'able memory for Rx "
744 		    "return ring.\n", sc->sc_dev.dv_xname);
745 		return error;
746 	}
747 
748 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rr_ring_seg,
749 	    nsegs, AGE_RR_RING_SZ, (caddr_t *)&sc->age_rdata.age_rr_ring,
750 	    BUS_DMA_NOWAIT);
751 	if (error)
752 		return (ENOBUFS);
753 
754 	/*  Load the DMA map for Rx return ring. */
755 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rr_ring_map,
756 	    sc->age_rdata.age_rr_ring, AGE_RR_RING_SZ, NULL, BUS_DMA_WAITOK);
757 	if (error) {
758 		printf("%s: could not load DMA'able memory for Rx return ring."
759 		    "\n", sc->sc_dev.dv_xname);
760 		bus_dmamem_free(sc->sc_dmat,
761 		    (bus_dma_segment_t *)&sc->age_rdata.age_rr_ring, 1);
762 		return error;
763 	}
764 
765 	sc->age_rdata.age_rr_ring_paddr =
766 	    sc->age_cdata.age_rr_ring_map->dm_segs[0].ds_addr;
767 
768 	/*
769 	 * Create DMA stuffs for CMB block
770 	 */
771 	error = bus_dmamap_create(sc->sc_dmat, AGE_CMB_BLOCK_SZ, 1,
772 	    AGE_CMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
773 	    &sc->age_cdata.age_cmb_block_map);
774 	if (error)
775 		return (ENOBUFS);
776 
777 	/* Allocate DMA'able memory for CMB block */
778 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_CMB_BLOCK_SZ,
779 	    ETHER_ALIGN, 0, &sc->age_rdata.age_cmb_block_seg, 1,
780 	    &nsegs, BUS_DMA_WAITOK | BUS_DMA_ZERO);
781 	if (error) {
782 		printf("%s: could not allocate DMA'able memory for "
783 		    "CMB block\n", sc->sc_dev.dv_xname);
784 		return error;
785 	}
786 
787 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_cmb_block_seg,
788 	    nsegs, AGE_CMB_BLOCK_SZ, (caddr_t *)&sc->age_rdata.age_cmb_block,
789 	    BUS_DMA_NOWAIT);
790 	if (error)
791 		return (ENOBUFS);
792 
793 	/*  Load the DMA map for CMB block. */
794 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_cmb_block_map,
795 	    sc->age_rdata.age_cmb_block, AGE_CMB_BLOCK_SZ, NULL,
796 	    BUS_DMA_WAITOK);
797 	if (error) {
798 		printf("%s: could not load DMA'able memory for CMB block\n",
799 		    sc->sc_dev.dv_xname);
800 		bus_dmamem_free(sc->sc_dmat,
801 		    (bus_dma_segment_t *)&sc->age_rdata.age_cmb_block, 1);
802 		return error;
803 	}
804 
805 	sc->age_rdata.age_cmb_block_paddr =
806 	    sc->age_cdata.age_cmb_block_map->dm_segs[0].ds_addr;
807 
808 	/*
809 	 * Create DMA stuffs for SMB block
810 	 */
811 	error = bus_dmamap_create(sc->sc_dmat, AGE_SMB_BLOCK_SZ, 1,
812 	    AGE_SMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
813 	    &sc->age_cdata.age_smb_block_map);
814 	if (error)
815 		return (ENOBUFS);
816 
817 	/* Allocate DMA'able memory for SMB block */
818 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_SMB_BLOCK_SZ,
819 	    ETHER_ALIGN, 0, &sc->age_rdata.age_smb_block_seg, 1,
820 	    &nsegs, BUS_DMA_WAITOK | BUS_DMA_ZERO);
821 	if (error) {
822 		printf("%s: could not allocate DMA'able memory for "
823 		    "SMB block\n", sc->sc_dev.dv_xname);
824 		return error;
825 	}
826 
827 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_smb_block_seg,
828 	    nsegs, AGE_SMB_BLOCK_SZ, (caddr_t *)&sc->age_rdata.age_smb_block,
829 	    BUS_DMA_NOWAIT);
830 	if (error)
831 		return (ENOBUFS);
832 
833 	/*  Load the DMA map for SMB block */
834 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_smb_block_map,
835 	    sc->age_rdata.age_smb_block, AGE_SMB_BLOCK_SZ, NULL,
836 	    BUS_DMA_WAITOK);
837 	if (error) {
838 		printf("%s: could not load DMA'able memory for SMB block\n",
839 		    sc->sc_dev.dv_xname);
840 		bus_dmamem_free(sc->sc_dmat,
841 		    (bus_dma_segment_t *)&sc->age_rdata.age_smb_block, 1);
842 		return error;
843 	}
844 
845 	sc->age_rdata.age_smb_block_paddr =
846 	    sc->age_cdata.age_smb_block_map->dm_segs[0].ds_addr;
847 
848 	/* Create DMA maps for Tx buffers. */
849 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
850 		txd = &sc->age_cdata.age_txdesc[i];
851 		txd->tx_m = NULL;
852 		txd->tx_dmamap = NULL;
853 		error = bus_dmamap_create(sc->sc_dmat, AGE_TSO_MAXSIZE,
854 		    AGE_MAXTXSEGS, AGE_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,
855 		    &txd->tx_dmamap);
856 		if (error) {
857 			printf("%s: could not create Tx dmamap.\n",
858 			    sc->sc_dev.dv_xname);
859 			return error;
860 		}
861 	}
862 
863 	/* Create DMA maps for Rx buffers. */
864 	error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
865 	    BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_sparemap);
866 	if (error) {
867 		printf("%s: could not create spare Rx dmamap.\n",
868 		    sc->sc_dev.dv_xname);
869 		return error;
870 	}
871 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
872 		rxd = &sc->age_cdata.age_rxdesc[i];
873 		rxd->rx_m = NULL;
874 		rxd->rx_dmamap = NULL;
875 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
876 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &rxd->rx_dmamap);
877 		if (error) {
878 			printf("%s: could not create Rx dmamap.\n",
879 			    sc->sc_dev.dv_xname);
880 			return error;
881 		}
882 	}
883 
884 	return (0);
885 }
886 
887 void
888 age_dma_free(struct age_softc *sc)
889 {
890 	struct age_txdesc *txd;
891 	struct age_rxdesc *rxd;
892 	int i;
893 
894 	/* Tx buffers */
895 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
896 		txd = &sc->age_cdata.age_txdesc[i];
897 		if (txd->tx_dmamap != NULL) {
898 			bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
899 			txd->tx_dmamap = NULL;
900 		}
901 	}
902 	/* Rx buffers */
903 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
904 		rxd = &sc->age_cdata.age_rxdesc[i];
905 		if (rxd->rx_dmamap != NULL) {
906 			bus_dmamap_destroy(sc->sc_dmat, rxd->rx_dmamap);
907 			rxd->rx_dmamap = NULL;
908 		}
909 	}
910 	if (sc->age_cdata.age_rx_sparemap != NULL) {
911 		bus_dmamap_destroy(sc->sc_dmat, sc->age_cdata.age_rx_sparemap);
912 		sc->age_cdata.age_rx_sparemap = NULL;
913 	}
914 
915 	/* Tx ring. */
916 	if (sc->age_cdata.age_tx_ring_map != NULL)
917 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_tx_ring_map);
918 	if (sc->age_cdata.age_tx_ring_map != NULL &&
919 	    sc->age_rdata.age_tx_ring != NULL)
920 		bus_dmamem_free(sc->sc_dmat,
921 		    (bus_dma_segment_t *)sc->age_rdata.age_tx_ring, 1);
922 	sc->age_rdata.age_tx_ring = NULL;
923 	sc->age_cdata.age_tx_ring_map = NULL;
924 
925 	/* Rx ring. */
926 	if (sc->age_cdata.age_rx_ring_map != NULL)
927 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rx_ring_map);
928 	if (sc->age_cdata.age_rx_ring_map != NULL &&
929 	    sc->age_rdata.age_rx_ring != NULL)
930 		bus_dmamem_free(sc->sc_dmat,
931 		    (bus_dma_segment_t *)sc->age_rdata.age_rx_ring, 1);
932 	sc->age_rdata.age_rx_ring = NULL;
933 	sc->age_cdata.age_rx_ring_map = NULL;
934 
935 	/* Rx return ring. */
936 	if (sc->age_cdata.age_rr_ring_map != NULL)
937 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rr_ring_map);
938 	if (sc->age_cdata.age_rr_ring_map != NULL &&
939 	    sc->age_rdata.age_rr_ring != NULL)
940 		bus_dmamem_free(sc->sc_dmat,
941 		    (bus_dma_segment_t *)sc->age_rdata.age_rr_ring, 1);
942 	sc->age_rdata.age_rr_ring = NULL;
943 	sc->age_cdata.age_rr_ring_map = NULL;
944 
945 	/* CMB block */
946 	if (sc->age_cdata.age_cmb_block_map != NULL)
947 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_cmb_block_map);
948 	if (sc->age_cdata.age_cmb_block_map != NULL &&
949 	    sc->age_rdata.age_cmb_block != NULL)
950 		bus_dmamem_free(sc->sc_dmat,
951 		    (bus_dma_segment_t *)sc->age_rdata.age_cmb_block, 1);
952 	sc->age_rdata.age_cmb_block = NULL;
953 	sc->age_cdata.age_cmb_block_map = NULL;
954 
955 	/* SMB block */
956 	if (sc->age_cdata.age_smb_block_map != NULL)
957 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_smb_block_map);
958 	if (sc->age_cdata.age_smb_block_map != NULL &&
959 	    sc->age_rdata.age_smb_block != NULL)
960 		bus_dmamem_free(sc->sc_dmat,
961 		    (bus_dma_segment_t *)sc->age_rdata.age_smb_block, 1);
962 	sc->age_rdata.age_smb_block = NULL;
963 	sc->age_cdata.age_smb_block_map = NULL;
964 }
965 
966 void
967 age_start(struct ifnet *ifp)
968 {
969         struct age_softc *sc = ifp->if_softc;
970         struct mbuf *m_head;
971 	int enq;
972 
973 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
974 		return;
975 	if ((sc->age_flags & AGE_FLAG_LINK) == 0)
976 		return;
977 	if (IFQ_IS_EMPTY(&ifp->if_snd))
978 		return;
979 
980 	enq = 0;
981 	for (;;) {
982 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
983 		if (m_head == NULL)
984 			break;
985 
986 		/*
987 		 * Pack the data into the transmit ring. If we
988 		 * don't have room, set the OACTIVE flag and wait
989 		 * for the NIC to drain the ring.
990 		 */
991 		if (age_encap(sc, &m_head)) {
992 			if (m_head == NULL) {
993 				ifp->if_oerrors++;
994 				break;
995 			}
996 			IF_PREPEND(&ifp->if_snd, m_head);
997 			ifp->if_flags |= IFF_OACTIVE;
998 			break;
999 		}
1000 		enq = 1;
1001 
1002 #if NBPFILTER > 0
1003 		/*
1004 		 * If there's a BPF listener, bounce a copy of this frame
1005 		 * to him.
1006 		 */
1007 		if (ifp->if_bpf != NULL)
1008 			bpf_mtap_ether(ifp->if_bpf, m_head, BPF_DIRECTION_OUT);
1009 #endif
1010 	}
1011 
1012 	if (enq) {
1013 		/* Update mbox. */
1014 		AGE_COMMIT_MBOX(sc);
1015 		/* Set a timeout in case the chip goes out to lunch. */
1016 		ifp->if_timer = AGE_TX_TIMEOUT;
1017 	}
1018 }
1019 
1020 void
1021 age_watchdog(struct ifnet *ifp)
1022 {
1023 	struct age_softc *sc = ifp->if_softc;
1024 
1025 	if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
1026 		printf("%s: watchdog timeout (missed link)\n",
1027 		    sc->sc_dev.dv_xname);
1028 		ifp->if_oerrors++;
1029 		age_init(ifp);
1030 		return;
1031 	}
1032 
1033 	if (sc->age_cdata.age_tx_cnt == 0) {
1034 		printf("%s: watchdog timeout (missed Tx interrupts) "
1035 		    "-- recovering\n", sc->sc_dev.dv_xname);
1036 		age_start(ifp);
1037 		return;
1038 	}
1039 
1040 	printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
1041 	ifp->if_oerrors++;
1042 	age_init(ifp);
1043 	age_start(ifp);
1044 }
1045 
1046 int
1047 age_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1048 {
1049 	struct age_softc *sc = ifp->if_softc;
1050 	struct mii_data *mii = &sc->sc_miibus;
1051 	struct ifaddr *ifa = (struct ifaddr *)data;
1052 	struct ifreq *ifr = (struct ifreq *)data;
1053 	int s, error = 0;
1054 
1055 	s = splnet();
1056 
1057 	switch (cmd) {
1058 	case SIOCSIFADDR:
1059 		ifp->if_flags |= IFF_UP;
1060 		if (!(ifp->if_flags & IFF_RUNNING))
1061 			 age_init(ifp);
1062 #ifdef INET
1063 		if (ifa->ifa_addr->sa_family == AF_INET)
1064 			arp_ifinit(&sc->sc_arpcom, ifa);
1065 #endif
1066 		break;
1067 
1068 	case SIOCSIFFLAGS:
1069 		if (ifp->if_flags & IFF_UP) {
1070 			if (ifp->if_flags & IFF_RUNNING)
1071 				error = ENETRESET;
1072 			else
1073 				age_init(ifp);
1074 		} else {
1075 			if (ifp->if_flags & IFF_RUNNING)
1076 				age_stop(sc);
1077 		}
1078 		break;
1079 
1080 	case SIOCSIFMEDIA:
1081 	case SIOCGIFMEDIA:
1082 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1083 		break;
1084 
1085 	default:
1086 		error = ether_ioctl(ifp, &sc->sc_arpcom, cmd, data);
1087 		break;
1088 	}
1089 
1090 	if (error == ENETRESET) {
1091 		if (ifp->if_flags & IFF_RUNNING)
1092 			age_iff(sc);
1093 		error = 0;
1094 	}
1095 
1096 	splx(s);
1097 	return (error);
1098 }
1099 
1100 void
1101 age_mac_config(struct age_softc *sc)
1102 {
1103 	struct mii_data *mii = &sc->sc_miibus;
1104 	uint32_t reg;
1105 
1106 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1107 	reg &= ~MAC_CFG_FULL_DUPLEX;
1108 	reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC);
1109 	reg &= ~MAC_CFG_SPEED_MASK;
1110 
1111 	/* Reprogram MAC with resolved speed/duplex. */
1112 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1113 	case IFM_10_T:
1114 	case IFM_100_TX:
1115 		reg |= MAC_CFG_SPEED_10_100;
1116 		break;
1117 	case IFM_1000_T:
1118 		reg |= MAC_CFG_SPEED_1000;
1119 		break;
1120 	}
1121 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1122 		reg |= MAC_CFG_FULL_DUPLEX;
1123 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1124 			reg |= MAC_CFG_TX_FC;
1125 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1126 			reg |= MAC_CFG_RX_FC;
1127 	}
1128 
1129 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1130 }
1131 
1132 int
1133 age_encap(struct age_softc *sc, struct mbuf **m_head)
1134 {
1135 	struct age_txdesc *txd, *txd_last;
1136 	struct tx_desc *desc;
1137 	struct mbuf *m;
1138 	bus_dmamap_t map;
1139 	uint32_t cflags, poff, vtag;
1140 	int error, i, prod;
1141 
1142 	m = *m_head;
1143 	cflags = vtag = 0;
1144 	poff = 0;
1145 
1146 	prod = sc->age_cdata.age_tx_prod;
1147 	txd = &sc->age_cdata.age_txdesc[prod];
1148 	txd_last = txd;
1149 	map = txd->tx_dmamap;
1150 
1151 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head, BUS_DMA_NOWAIT);
1152 	if (error != 0 && error != EFBIG)
1153 		goto drop;
1154 	if (error != 0) {
1155 		if (m_defrag(*m_head, M_DONTWAIT)) {
1156 			error = ENOBUFS;
1157 			goto drop;
1158 		}
1159 		error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head,
1160 		    BUS_DMA_NOWAIT);
1161 		if (error != 0)
1162 			goto drop;
1163 	}
1164 
1165 	/* Check descriptor overrun. */
1166 	if (sc->age_cdata.age_tx_cnt + map->dm_nsegs >= AGE_TX_RING_CNT - 2) {
1167 		bus_dmamap_unload(sc->sc_dmat, map);
1168 		return (ENOBUFS);
1169 	}
1170 
1171 	m = *m_head;
1172 	/* Configure Tx IP/TCP/UDP checksum offload. */
1173 	if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) {
1174 		cflags |= AGE_TD_CSUM;
1175 		if ((m->m_pkthdr.csum_flags & M_TCP_CSUM_OUT) != 0)
1176 			cflags |= AGE_TD_TCPCSUM;
1177 		if ((m->m_pkthdr.csum_flags & M_UDP_CSUM_OUT) != 0)
1178 			cflags |= AGE_TD_UDPCSUM;
1179 		/* Set checksum start offset. */
1180 		cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT);
1181 	}
1182 
1183 #if NVLAN > 0
1184 	/* Configure VLAN hardware tag insertion. */
1185 	if (m->m_flags & M_VLANTAG) {
1186 		vtag = AGE_TX_VLAN_TAG(m->m_pkthdr.ether_vtag);
1187 		vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK);
1188 		cflags |= AGE_TD_INSERT_VLAN_TAG;
1189 	}
1190 #endif
1191 
1192 	desc = NULL;
1193 	for (i = 0; i < map->dm_nsegs; i++) {
1194 		desc = &sc->age_rdata.age_tx_ring[prod];
1195 		desc->addr = htole64(map->dm_segs[i].ds_addr);
1196 		desc->len =
1197 		    htole32(AGE_TX_BYTES(map->dm_segs[i].ds_len) | vtag);
1198 		desc->flags = htole32(cflags);
1199 		sc->age_cdata.age_tx_cnt++;
1200 		AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1201 	}
1202 
1203 	/* Update producer index. */
1204 	sc->age_cdata.age_tx_prod = prod;
1205 
1206 	/* Set EOP on the last descriptor. */
1207 	prod = (prod + AGE_TX_RING_CNT - 1) % AGE_TX_RING_CNT;
1208 	desc = &sc->age_rdata.age_tx_ring[prod];
1209 	desc->flags |= htole32(AGE_TD_EOP);
1210 
1211 	/* Swap dmamap of the first and the last. */
1212 	txd = &sc->age_cdata.age_txdesc[prod];
1213 	map = txd_last->tx_dmamap;
1214 	txd_last->tx_dmamap = txd->tx_dmamap;
1215 	txd->tx_dmamap = map;
1216 	txd->tx_m = m;
1217 
1218 	/* Sync descriptors. */
1219 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1220 	    BUS_DMASYNC_PREWRITE);
1221 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
1222 	    sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1223 
1224 	return (0);
1225 
1226  drop:
1227 	m_freem(*m_head);
1228 	*m_head = NULL;
1229 	return (error);
1230 }
1231 
1232 void
1233 age_txintr(struct age_softc *sc, int tpd_cons)
1234 {
1235 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1236 	struct age_txdesc *txd;
1237 	int cons, prog;
1238 
1239 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
1240 	    sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1241 
1242 	/*
1243 	 * Go through our Tx list and free mbufs for those
1244 	 * frames which have been transmitted.
1245 	 */
1246 	cons = sc->age_cdata.age_tx_cons;
1247 	for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) {
1248 		if (sc->age_cdata.age_tx_cnt <= 0)
1249 			break;
1250 		prog++;
1251 		ifp->if_flags &= ~IFF_OACTIVE;
1252 		sc->age_cdata.age_tx_cnt--;
1253 		txd = &sc->age_cdata.age_txdesc[cons];
1254 		/*
1255 		 * Clear Tx descriptors, it's not required but would
1256 		 * help debugging in case of Tx issues.
1257 		 */
1258 		txd->tx_desc->addr = 0;
1259 		txd->tx_desc->len = 0;
1260 		txd->tx_desc->flags = 0;
1261 
1262 		if (txd->tx_m == NULL)
1263 			continue;
1264 		/* Reclaim transmitted mbufs. */
1265 		bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1266 		m_freem(txd->tx_m);
1267 		txd->tx_m = NULL;
1268 	}
1269 
1270 	if (prog > 0) {
1271 		sc->age_cdata.age_tx_cons = cons;
1272 
1273 		/*
1274 		 * Unarm watchdog timer only when there are no pending
1275 		 * Tx descriptors in queue.
1276 		 */
1277 		if (sc->age_cdata.age_tx_cnt == 0)
1278 			ifp->if_timer = 0;
1279 
1280 		bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
1281 		    sc->age_cdata.age_tx_ring_map->dm_mapsize,
1282 		    BUS_DMASYNC_PREWRITE);
1283 	}
1284 }
1285 
1286 /* Receive a frame. */
1287 void
1288 age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd)
1289 {
1290 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1291 	struct age_rxdesc *rxd;
1292 	struct rx_desc *desc;
1293 	struct mbuf *mp, *m;
1294 	uint32_t status, index;
1295 	int count, nsegs, pktlen;
1296 	int rx_cons;
1297 
1298 	status = letoh32(rxrd->flags);
1299 	index = letoh32(rxrd->index);
1300 	rx_cons = AGE_RX_CONS(index);
1301 	nsegs = AGE_RX_NSEGS(index);
1302 
1303 	sc->age_cdata.age_rxlen = AGE_RX_BYTES(letoh32(rxrd->len));
1304 	if ((status & AGE_RRD_ERROR) != 0 &&
1305 	    (status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE |
1306 	    AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0) {
1307 		/*
1308 		 * We want to pass the following frames to upper
1309 		 * layer regardless of error status of Rx return
1310 		 * ring.
1311 		 *
1312 		 *  o IP/TCP/UDP checksum is bad.
1313 		 *  o frame length and protocol specific length
1314 		 *     does not match.
1315 		 */
1316 		sc->age_cdata.age_rx_cons += nsegs;
1317 		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
1318 		return;
1319 	}
1320 
1321 	pktlen = 0;
1322 	for (count = 0; count < nsegs; count++,
1323 	    AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) {
1324 		rxd = &sc->age_cdata.age_rxdesc[rx_cons];
1325 		mp = rxd->rx_m;
1326 		desc = rxd->rx_desc;
1327 		/* Add a new receive buffer to the ring. */
1328 		if (age_newbuf(sc, rxd) != 0) {
1329 			ifp->if_iqdrops++;
1330 			/* Reuse Rx buffers. */
1331 			if (sc->age_cdata.age_rxhead != NULL) {
1332 				m_freem(sc->age_cdata.age_rxhead);
1333 				AGE_RXCHAIN_RESET(sc);
1334 			}
1335 			break;
1336 		}
1337 
1338 		/* The length of the first mbuf is computed last. */
1339 		if (count != 0) {
1340 			mp->m_len = AGE_RX_BYTES(letoh32(desc->len));
1341 			pktlen += mp->m_len;
1342 		}
1343 
1344 		/* Chain received mbufs. */
1345 		if (sc->age_cdata.age_rxhead == NULL) {
1346 			sc->age_cdata.age_rxhead = mp;
1347 			sc->age_cdata.age_rxtail = mp;
1348 		} else {
1349 			mp->m_flags &= ~M_PKTHDR;
1350 			sc->age_cdata.age_rxprev_tail =
1351 			    sc->age_cdata.age_rxtail;
1352 			sc->age_cdata.age_rxtail->m_next = mp;
1353 			sc->age_cdata.age_rxtail = mp;
1354 		}
1355 
1356 		if (count == nsegs - 1) {
1357 			/*
1358 			 * It seems that L1 controller has no way
1359 			 * to tell hardware to strip CRC bytes.
1360 			 */
1361 			sc->age_cdata.age_rxlen -= ETHER_CRC_LEN;
1362 			if (nsegs > 1) {
1363 				/* Remove the CRC bytes in chained mbufs. */
1364 				pktlen -= ETHER_CRC_LEN;
1365 				if (mp->m_len <= ETHER_CRC_LEN) {
1366 					sc->age_cdata.age_rxtail =
1367 					    sc->age_cdata.age_rxprev_tail;
1368 					sc->age_cdata.age_rxtail->m_len -=
1369 					    (ETHER_CRC_LEN - mp->m_len);
1370 					sc->age_cdata.age_rxtail->m_next = NULL;
1371 					m_freem(mp);
1372 				} else {
1373 					mp->m_len -= ETHER_CRC_LEN;
1374 				}
1375 			}
1376 
1377 			m = sc->age_cdata.age_rxhead;
1378 			m->m_flags |= M_PKTHDR;
1379 			m->m_pkthdr.rcvif = ifp;
1380 			m->m_pkthdr.len = sc->age_cdata.age_rxlen;
1381 			/* Set the first mbuf length. */
1382 			m->m_len = sc->age_cdata.age_rxlen - pktlen;
1383 
1384 			/*
1385 			 * Set checksum information.
1386 			 * It seems that L1 controller can compute partial
1387 			 * checksum. The partial checksum value can be used
1388 			 * to accelerate checksum computation for fragmented
1389 			 * TCP/UDP packets. Upper network stack already
1390 			 * takes advantage of the partial checksum value in
1391 			 * IP reassembly stage. But I'm not sure the
1392 			 * correctness of the partial hardware checksum
1393 			 * assistance due to lack of data sheet. If it is
1394 			 * proven to work on L1 I'll enable it.
1395 			 */
1396 			if (status & AGE_RRD_IPV4) {
1397 				if ((status & AGE_RRD_IPCSUM_NOK) == 0)
1398 					m->m_pkthdr.csum_flags |=
1399 					    M_IPV4_CSUM_IN_OK;
1400 				if ((status & (AGE_RRD_TCP | AGE_RRD_UDP)) &&
1401 				    (status & AGE_RRD_TCP_UDPCSUM_NOK) == 0) {
1402 					m->m_pkthdr.csum_flags |=
1403 					    M_TCP_CSUM_IN_OK | M_UDP_CSUM_IN_OK;
1404 				}
1405 				/*
1406 				 * Don't mark bad checksum for TCP/UDP frames
1407 				 * as fragmented frames may always have set
1408 				 * bad checksummed bit of descriptor status.
1409 				 */
1410 			}
1411 #if NVLAN > 0
1412 			/* Check for VLAN tagged frames. */
1413 			if (status & AGE_RRD_VLAN) {
1414 				u_int32_t vtag = AGE_RX_VLAN(letoh32(rxrd->vtags));
1415 				m->m_pkthdr.ether_vtag =
1416 				    AGE_RX_VLAN_TAG(vtag);
1417 				m->m_flags |= M_VLANTAG;
1418 			}
1419 #endif
1420 
1421 #if NBPFILTER > 0
1422 			if (ifp->if_bpf)
1423 				bpf_mtap_ether(ifp->if_bpf, m,
1424 				    BPF_DIRECTION_IN);
1425 #endif
1426 			/* Pass it on. */
1427 			ether_input_mbuf(ifp, m);
1428 
1429 			/* Reset mbuf chains. */
1430 			AGE_RXCHAIN_RESET(sc);
1431 		}
1432 	}
1433 
1434 	if (count != nsegs) {
1435 		sc->age_cdata.age_rx_cons += nsegs;
1436 		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
1437 	} else
1438 		sc->age_cdata.age_rx_cons = rx_cons;
1439 }
1440 
1441 void
1442 age_rxintr(struct age_softc *sc, int rr_prod)
1443 {
1444 	struct rx_rdesc *rxrd;
1445 	int rr_cons, nsegs, pktlen, prog;
1446 
1447 	rr_cons = sc->age_cdata.age_rr_cons;
1448 	if (rr_cons == rr_prod)
1449 		return;
1450 
1451 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
1452 	    sc->age_cdata.age_rr_ring_map->dm_mapsize,
1453 	    BUS_DMASYNC_POSTREAD);
1454 
1455 	for (prog = 0; rr_cons != rr_prod; prog++) {
1456 		rxrd = &sc->age_rdata.age_rr_ring[rr_cons];
1457 		nsegs = AGE_RX_NSEGS(letoh32(rxrd->index));
1458 		if (nsegs == 0)
1459 			break;
1460 		/*
1461 		 * Check number of segments against received bytes
1462 		 * Non-matching value would indicate that hardware
1463 		 * is still trying to update Rx return descriptors.
1464 		 * I'm not sure whether this check is really needed.
1465 		 */
1466 		pktlen = AGE_RX_BYTES(letoh32(rxrd->len));
1467 		if (nsegs != ((pktlen + (MCLBYTES - ETHER_ALIGN - 1)) /
1468 		    (MCLBYTES - ETHER_ALIGN)))
1469 			break;
1470 
1471 		/* Received a frame. */
1472 		age_rxeof(sc, rxrd);
1473 
1474 		/* Clear return ring. */
1475 		rxrd->index = 0;
1476 		AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT);
1477 	}
1478 
1479 	if (prog > 0) {
1480 		/* Update the consumer index. */
1481 		sc->age_cdata.age_rr_cons = rr_cons;
1482 
1483 		/* Sync descriptors. */
1484 		bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
1485 		    sc->age_cdata.age_rr_ring_map->dm_mapsize,
1486 		    BUS_DMASYNC_PREWRITE);
1487 
1488 		/* Notify hardware availability of new Rx buffers. */
1489 		AGE_COMMIT_MBOX(sc);
1490 	}
1491 }
1492 
1493 void
1494 age_tick(void *xsc)
1495 {
1496 	struct age_softc *sc = xsc;
1497 	struct mii_data *mii = &sc->sc_miibus;
1498 	int s;
1499 
1500 	s = splnet();
1501 	mii_tick(mii);
1502 	timeout_add_sec(&sc->age_tick_ch, 1);
1503 	splx(s);
1504 }
1505 
1506 void
1507 age_reset(struct age_softc *sc)
1508 {
1509 	uint32_t reg;
1510 	int i;
1511 
1512 	CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET);
1513 	CSR_READ_4(sc, AGE_MASTER_CFG);
1514 	DELAY(1000);
1515 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
1516 		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
1517 			break;
1518 		DELAY(10);
1519 	}
1520 
1521 	if (i == 0)
1522 		printf("%s: reset timeout(0x%08x)!\n", sc->sc_dev.dv_xname,
1523 		    reg);
1524 
1525 	/* Initialize PCIe module. From Linux. */
1526 	CSR_WRITE_4(sc, 0x12FC, 0x6500);
1527 	CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
1528 }
1529 
1530 int
1531 age_init(struct ifnet *ifp)
1532 {
1533 	struct age_softc *sc = ifp->if_softc;
1534 	struct mii_data *mii = &sc->sc_miibus;
1535 	uint8_t eaddr[ETHER_ADDR_LEN];
1536 	bus_addr_t paddr;
1537 	uint32_t reg, fsize;
1538 	uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo;
1539 	int error;
1540 
1541 	/*
1542 	 * Cancel any pending I/O.
1543 	 */
1544 	age_stop(sc);
1545 
1546 	/*
1547 	 * Reset the chip to a known state.
1548 	 */
1549 	age_reset(sc);
1550 
1551 	/* Initialize descriptors. */
1552 	error = age_init_rx_ring(sc);
1553         if (error != 0) {
1554 		printf("%s: no memory for Rx buffers.\n", sc->sc_dev.dv_xname);
1555                 age_stop(sc);
1556 		return (error);
1557         }
1558 	age_init_rr_ring(sc);
1559 	age_init_tx_ring(sc);
1560 	age_init_cmb_block(sc);
1561 	age_init_smb_block(sc);
1562 
1563 	/* Reprogram the station address. */
1564 	bcopy(LLADDR(ifp->if_sadl), eaddr, ETHER_ADDR_LEN);
1565 	CSR_WRITE_4(sc, AGE_PAR0,
1566 	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
1567 	CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]);
1568 
1569 	/* Set descriptor base addresses. */
1570 	paddr = sc->age_rdata.age_tx_ring_paddr;
1571 	CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr));
1572 	paddr = sc->age_rdata.age_rx_ring_paddr;
1573 	CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr));
1574 	paddr = sc->age_rdata.age_rr_ring_paddr;
1575 	CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr));
1576 	paddr = sc->age_rdata.age_tx_ring_paddr;
1577 	CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr));
1578 	paddr = sc->age_rdata.age_cmb_block_paddr;
1579 	CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr));
1580 	paddr = sc->age_rdata.age_smb_block_paddr;
1581 	CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr));
1582 
1583 	/* Set Rx/Rx return descriptor counter. */
1584 	CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT,
1585 	    ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) &
1586 	    DESC_RRD_CNT_MASK) |
1587 	    ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK));
1588 
1589 	/* Set Tx descriptor counter. */
1590 	CSR_WRITE_4(sc, AGE_DESC_TPD_CNT,
1591 	    (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK);
1592 
1593 	/* Tell hardware that we're ready to load descriptors. */
1594 	CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD);
1595 
1596         /*
1597 	 * Initialize mailbox register.
1598 	 * Updated producer/consumer index information is exchanged
1599 	 * through this mailbox register. However Tx producer and
1600 	 * Rx return consumer/Rx producer are all shared such that
1601 	 * it's hard to separate code path between Tx and Rx without
1602 	 * locking. If L1 hardware have a separate mail box register
1603 	 * for Tx and Rx consumer/producer management we could have
1604 	 * indepent Tx/Rx handler which in turn Rx handler could have
1605 	 * been run without any locking.
1606 	*/
1607 	AGE_COMMIT_MBOX(sc);
1608 
1609 	/* Configure IPG/IFG parameters. */
1610 	CSR_WRITE_4(sc, AGE_IPG_IFG_CFG,
1611 	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) |
1612 	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
1613 	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
1614 	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK));
1615 
1616 	/* Set parameters for half-duplex media. */
1617 	CSR_WRITE_4(sc, AGE_HDPX_CFG,
1618 	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
1619 	    HDPX_CFG_LCOL_MASK) |
1620 	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
1621 	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
1622 	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
1623 	    HDPX_CFG_ABEBT_MASK) |
1624 	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
1625 	     HDPX_CFG_JAMIPG_MASK));
1626 
1627 	/* Configure interrupt moderation timer. */
1628 	sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
1629 	CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod));
1630 	reg = CSR_READ_4(sc, AGE_MASTER_CFG);
1631 	reg &= ~MASTER_MTIMER_ENB;
1632 	if (AGE_USECS(sc->age_int_mod) == 0)
1633 		reg &= ~MASTER_ITIMER_ENB;
1634 	else
1635 		reg |= MASTER_ITIMER_ENB;
1636 	CSR_WRITE_4(sc, AGE_MASTER_CFG, reg);
1637 	if (agedebug)
1638 		printf("%s: interrupt moderation is %d us.\n",
1639 		    sc->sc_dev.dv_xname, sc->age_int_mod);
1640 	CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000));
1641 
1642 	/* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
1643 	if (ifp->if_mtu < ETHERMTU)
1644 		sc->age_max_frame_size = ETHERMTU;
1645 	else
1646 		sc->age_max_frame_size = ifp->if_mtu;
1647 	sc->age_max_frame_size += ETHER_HDR_LEN +
1648 	    sizeof(struct ether_vlan_header) + ETHER_CRC_LEN;
1649 	CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size);
1650 
1651 	/* Configure jumbo frame. */
1652 	fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t));
1653 	CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG,
1654 	    (((fsize / sizeof(uint64_t)) <<
1655 	    RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) |
1656 	    ((RXQ_JUMBO_CFG_LKAH_DEFAULT <<
1657 	    RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) |
1658 	    ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) &
1659 	    RXQ_JUMBO_CFG_RRD_TIMER_MASK));
1660 
1661 	/* Configure flow-control parameters. From Linux. */
1662 	if ((sc->age_flags & AGE_FLAG_PCIE) != 0) {
1663 		/*
1664 		 * Magic workaround for old-L1.
1665 		 * Don't know which hw revision requires this magic.
1666 		 */
1667 		CSR_WRITE_4(sc, 0x12FC, 0x6500);
1668 		/*
1669 		 * Another magic workaround for flow-control mode
1670 		 * change. From Linux.
1671 		 */
1672 		CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
1673 	}
1674 	/*
1675 	 * TODO
1676 	 *  Should understand pause parameter relationships between FIFO
1677 	 *  size and number of Rx descriptors and Rx return descriptors.
1678 	 *
1679 	 *  Magic parameters came from Linux.
1680 	 */
1681 	switch (sc->age_chip_rev) {
1682 	case 0x8001:
1683 	case 0x9001:
1684 	case 0x9002:
1685 	case 0x9003:
1686 		rxf_hi = AGE_RX_RING_CNT / 16;
1687 		rxf_lo = (AGE_RX_RING_CNT * 7) / 8;
1688 		rrd_hi = (AGE_RR_RING_CNT * 7) / 8;
1689 		rrd_lo = AGE_RR_RING_CNT / 16;
1690 		break;
1691 	default:
1692 		reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN);
1693 		rxf_lo = reg / 16;
1694 		if (rxf_lo < 192)
1695 			rxf_lo = 192;
1696 		rxf_hi = (reg * 7) / 8;
1697 		if (rxf_hi < rxf_lo)
1698 			rxf_hi = rxf_lo + 16;
1699 		reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN);
1700 		rrd_lo = reg / 8;
1701 		rrd_hi = (reg * 7) / 8;
1702 		if (rrd_lo < 2)
1703 			rrd_lo = 2;
1704 		if (rrd_hi < rrd_lo)
1705 			rrd_hi = rrd_lo + 3;
1706 		break;
1707 	}
1708 	CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH,
1709 	    ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) &
1710 	    RXQ_FIFO_PAUSE_THRESH_LO_MASK) |
1711 	    ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) &
1712 	    RXQ_FIFO_PAUSE_THRESH_HI_MASK));
1713 	CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH,
1714 	    ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) &
1715 	    RXQ_RRD_PAUSE_THRESH_LO_MASK) |
1716 	    ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) &
1717 	    RXQ_RRD_PAUSE_THRESH_HI_MASK));
1718 
1719 	/* Configure RxQ. */
1720 	CSR_WRITE_4(sc, AGE_RXQ_CFG,
1721 	    ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
1722 	    RXQ_CFG_RD_BURST_MASK) |
1723 	    ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT <<
1724 	    RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) |
1725 	    ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT <<
1726 	    RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) |
1727 	    RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
1728 
1729 	/* Configure TxQ. */
1730 	CSR_WRITE_4(sc, AGE_TXQ_CFG,
1731 	    ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
1732 	    TXQ_CFG_TPD_BURST_MASK) |
1733 	    ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) &
1734 	    TXQ_CFG_TX_FIFO_BURST_MASK) |
1735 	    ((TXQ_CFG_TPD_FETCH_DEFAULT <<
1736 	    TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) |
1737 	    TXQ_CFG_ENB);
1738 
1739 	/* Configure DMA parameters. */
1740 	CSR_WRITE_4(sc, AGE_DMA_CFG,
1741 	    DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 |
1742 	    sc->age_dma_rd_burst | DMA_CFG_RD_ENB |
1743 	    sc->age_dma_wr_burst | DMA_CFG_WR_ENB);
1744 
1745 	/* Configure CMB DMA write threshold. */
1746 	CSR_WRITE_4(sc, AGE_CMB_WR_THRESH,
1747 	    ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) &
1748 	    CMB_WR_THRESH_RRD_MASK) |
1749 	    ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) &
1750 	    CMB_WR_THRESH_TPD_MASK));
1751 
1752 	/* Set CMB/SMB timer and enable them. */
1753 	CSR_WRITE_4(sc, AGE_CMB_WR_TIMER,
1754 	    ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) |
1755 	    ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK));
1756 
1757 	/* Request SMB updates for every seconds. */
1758 	CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000));
1759 	CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB);
1760 
1761 	/*
1762 	 * Disable all WOL bits as WOL can interfere normal Rx
1763 	 * operation.
1764 	 */
1765 	CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
1766 
1767         /*
1768 	 * Configure Tx/Rx MACs.
1769 	 *  - Auto-padding for short frames.
1770 	 *  - Enable CRC generation.
1771 	 *  Start with full-duplex/1000Mbps media. Actual reconfiguration
1772 	 *  of MAC is followed after link establishment.
1773 	 */
1774 	CSR_WRITE_4(sc, AGE_MAC_CFG,
1775 	    MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD |
1776 	    MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 |
1777 	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
1778 	    MAC_CFG_PREAMBLE_MASK));
1779 
1780 	/* Set up the receive filter. */
1781 	age_iff(sc);
1782 
1783 	age_rxvlan(sc);
1784 
1785 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1786 	reg |= MAC_CFG_RXCSUM_ENB;
1787 
1788 	/* Ack all pending interrupts and clear it. */
1789 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
1790 	CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS);
1791 
1792 	/* Finally enable Tx/Rx MAC. */
1793 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
1794 
1795 	sc->age_flags &= ~AGE_FLAG_LINK;
1796 
1797 	/* Switch to the current media. */
1798 	mii_mediachg(mii);
1799 
1800 	timeout_add_sec(&sc->age_tick_ch, 1);
1801 
1802 	ifp->if_flags |= IFF_RUNNING;
1803 	ifp->if_flags &= ~IFF_OACTIVE;
1804 
1805 	return (0);
1806 }
1807 
1808 void
1809 age_stop(struct age_softc *sc)
1810 {
1811 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1812 	struct age_txdesc *txd;
1813 	struct age_rxdesc *rxd;
1814 	uint32_t reg;
1815 	int i;
1816 
1817 	/*
1818 	 * Mark the interface down and cancel the watchdog timer.
1819 	 */
1820 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1821 	ifp->if_timer = 0;
1822 
1823 	sc->age_flags &= ~AGE_FLAG_LINK;
1824 	timeout_del(&sc->age_tick_ch);
1825 
1826 	/*
1827 	 * Disable interrupts.
1828 	 */
1829 	CSR_WRITE_4(sc, AGE_INTR_MASK, 0);
1830 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF);
1831 
1832 	/* Stop CMB/SMB updates. */
1833 	CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0);
1834 
1835 	/* Stop Rx/Tx MAC. */
1836 	age_stop_rxmac(sc);
1837 	age_stop_txmac(sc);
1838 
1839 	/* Stop DMA. */
1840 	CSR_WRITE_4(sc, AGE_DMA_CFG,
1841 	    CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB));
1842 
1843 	/* Stop TxQ/RxQ. */
1844 	CSR_WRITE_4(sc, AGE_TXQ_CFG,
1845 	    CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB);
1846 	CSR_WRITE_4(sc, AGE_RXQ_CFG,
1847 	    CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB);
1848 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
1849 		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
1850 			break;
1851 		DELAY(10);
1852 	}
1853 	if (i == 0)
1854 		printf("%s: stopping Rx/Tx MACs timed out(0x%08x)!\n",
1855 		    sc->sc_dev.dv_xname, reg);
1856 
1857 	/* Reclaim Rx buffers that have been processed. */
1858 	if (sc->age_cdata.age_rxhead != NULL)
1859 		m_freem(sc->age_cdata.age_rxhead);
1860 	AGE_RXCHAIN_RESET(sc);
1861 
1862 	/*
1863 	 * Free RX and TX mbufs still in the queues.
1864 	 */
1865 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
1866 		rxd = &sc->age_cdata.age_rxdesc[i];
1867 		if (rxd->rx_m != NULL) {
1868 			bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
1869 			m_freem(rxd->rx_m);
1870 			rxd->rx_m = NULL;
1871 		}
1872 	}
1873 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
1874 		txd = &sc->age_cdata.age_txdesc[i];
1875 		if (txd->tx_m != NULL) {
1876 			bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1877 			m_freem(txd->tx_m);
1878 			txd->tx_m = NULL;
1879 		}
1880 	}
1881 }
1882 
1883 void
1884 age_stats_update(struct age_softc *sc)
1885 {
1886 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1887 	struct age_stats *stat;
1888 	struct smb *smb;
1889 
1890 	stat = &sc->age_stat;
1891 
1892 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
1893 	    sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1894 
1895 	smb = sc->age_rdata.age_smb_block;
1896 	if (smb->updated == 0)
1897 		return;
1898 
1899 	/* Rx stats. */
1900 	stat->rx_frames += smb->rx_frames;
1901 	stat->rx_bcast_frames += smb->rx_bcast_frames;
1902 	stat->rx_mcast_frames += smb->rx_mcast_frames;
1903 	stat->rx_pause_frames += smb->rx_pause_frames;
1904 	stat->rx_control_frames += smb->rx_control_frames;
1905 	stat->rx_crcerrs += smb->rx_crcerrs;
1906 	stat->rx_lenerrs += smb->rx_lenerrs;
1907 	stat->rx_bytes += smb->rx_bytes;
1908 	stat->rx_runts += smb->rx_runts;
1909 	stat->rx_fragments += smb->rx_fragments;
1910 	stat->rx_pkts_64 += smb->rx_pkts_64;
1911 	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
1912 	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
1913 	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
1914 	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
1915 	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
1916 	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
1917 	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
1918 	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
1919 	stat->rx_desc_oflows += smb->rx_desc_oflows;
1920 	stat->rx_alignerrs += smb->rx_alignerrs;
1921 	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
1922 	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
1923 	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
1924 
1925 	/* Tx stats. */
1926 	stat->tx_frames += smb->tx_frames;
1927 	stat->tx_bcast_frames += smb->tx_bcast_frames;
1928 	stat->tx_mcast_frames += smb->tx_mcast_frames;
1929 	stat->tx_pause_frames += smb->tx_pause_frames;
1930 	stat->tx_excess_defer += smb->tx_excess_defer;
1931 	stat->tx_control_frames += smb->tx_control_frames;
1932 	stat->tx_deferred += smb->tx_deferred;
1933 	stat->tx_bytes += smb->tx_bytes;
1934 	stat->tx_pkts_64 += smb->tx_pkts_64;
1935 	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
1936 	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
1937 	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
1938 	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
1939 	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
1940 	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
1941 	stat->tx_single_colls += smb->tx_single_colls;
1942 	stat->tx_multi_colls += smb->tx_multi_colls;
1943 	stat->tx_late_colls += smb->tx_late_colls;
1944 	stat->tx_excess_colls += smb->tx_excess_colls;
1945 	stat->tx_underrun += smb->tx_underrun;
1946 	stat->tx_desc_underrun += smb->tx_desc_underrun;
1947 	stat->tx_lenerrs += smb->tx_lenerrs;
1948 	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
1949 	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
1950 	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
1951 
1952 	/* Update counters in ifnet. */
1953 	ifp->if_opackets += smb->tx_frames;
1954 
1955 	ifp->if_collisions += smb->tx_single_colls +
1956 	    smb->tx_multi_colls + smb->tx_late_colls +
1957 	    smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT;
1958 
1959 	ifp->if_oerrors += smb->tx_excess_colls +
1960 	    smb->tx_late_colls + smb->tx_underrun +
1961 	    smb->tx_pkts_truncated;
1962 
1963 	ifp->if_ipackets += smb->rx_frames;
1964 
1965 	ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
1966 	    smb->rx_runts + smb->rx_pkts_truncated +
1967 	    smb->rx_fifo_oflows + smb->rx_desc_oflows +
1968 	    smb->rx_alignerrs;
1969 
1970 	/* Update done, clear. */
1971 	smb->updated = 0;
1972 
1973 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
1974 	    sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1975 }
1976 
1977 void
1978 age_stop_txmac(struct age_softc *sc)
1979 {
1980 	uint32_t reg;
1981 	int i;
1982 
1983 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1984 	if ((reg & MAC_CFG_TX_ENB) != 0) {
1985 		reg &= ~MAC_CFG_TX_ENB;
1986 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1987 	}
1988 	/* Stop Tx DMA engine. */
1989 	reg = CSR_READ_4(sc, AGE_DMA_CFG);
1990 	if ((reg & DMA_CFG_RD_ENB) != 0) {
1991 		reg &= ~DMA_CFG_RD_ENB;
1992 		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
1993 	}
1994 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
1995 		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
1996 		    (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0)
1997 			break;
1998 		DELAY(10);
1999 	}
2000 	if (i == 0)
2001 		printf("%s: stopping TxMAC timeout!\n", sc->sc_dev.dv_xname);
2002 }
2003 
2004 void
2005 age_stop_rxmac(struct age_softc *sc)
2006 {
2007 	uint32_t reg;
2008 	int i;
2009 
2010 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2011 	if ((reg & MAC_CFG_RX_ENB) != 0) {
2012 		reg &= ~MAC_CFG_RX_ENB;
2013 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2014 	}
2015 	/* Stop Rx DMA engine. */
2016 	reg = CSR_READ_4(sc, AGE_DMA_CFG);
2017 	if ((reg & DMA_CFG_WR_ENB) != 0) {
2018 		reg &= ~DMA_CFG_WR_ENB;
2019 		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2020 	}
2021 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2022 		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2023 		    (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0)
2024 			break;
2025 		DELAY(10);
2026 	}
2027 	if (i == 0)
2028 		printf("%s: stopping RxMAC timeout!\n", sc->sc_dev.dv_xname);
2029 }
2030 
2031 void
2032 age_init_tx_ring(struct age_softc *sc)
2033 {
2034 	struct age_ring_data *rd;
2035 	struct age_txdesc *txd;
2036 	int i;
2037 
2038 	sc->age_cdata.age_tx_prod = 0;
2039 	sc->age_cdata.age_tx_cons = 0;
2040 	sc->age_cdata.age_tx_cnt = 0;
2041 
2042 	rd = &sc->age_rdata;
2043 	bzero(rd->age_tx_ring, AGE_TX_RING_SZ);
2044 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
2045 		txd = &sc->age_cdata.age_txdesc[i];
2046 		txd->tx_desc = &rd->age_tx_ring[i];
2047 		txd->tx_m = NULL;
2048 	}
2049 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
2050 	    sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2051 }
2052 
2053 int
2054 age_init_rx_ring(struct age_softc *sc)
2055 {
2056 	struct age_ring_data *rd;
2057 	struct age_rxdesc *rxd;
2058 	int i;
2059 
2060 	sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1;
2061 	rd = &sc->age_rdata;
2062 	bzero(rd->age_rx_ring, AGE_RX_RING_SZ);
2063 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
2064 		rxd = &sc->age_cdata.age_rxdesc[i];
2065 		rxd->rx_m = NULL;
2066 		rxd->rx_desc = &rd->age_rx_ring[i];
2067 		if (age_newbuf(sc, rxd) != 0)
2068 			return (ENOBUFS);
2069 	}
2070 
2071 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rx_ring_map, 0,
2072 	    sc->age_cdata.age_rx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2073 
2074 	return (0);
2075 }
2076 
2077 void
2078 age_init_rr_ring(struct age_softc *sc)
2079 {
2080 	struct age_ring_data *rd;
2081 
2082 	sc->age_cdata.age_rr_cons = 0;
2083 	AGE_RXCHAIN_RESET(sc);
2084 
2085 	rd = &sc->age_rdata;
2086 	bzero(rd->age_rr_ring, AGE_RR_RING_SZ);
2087 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
2088 	    sc->age_cdata.age_rr_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2089 }
2090 
2091 void
2092 age_init_cmb_block(struct age_softc *sc)
2093 {
2094 	struct age_ring_data *rd;
2095 
2096 	rd = &sc->age_rdata;
2097 	bzero(rd->age_cmb_block, AGE_CMB_BLOCK_SZ);
2098 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
2099 	    sc->age_cdata.age_cmb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2100 }
2101 
2102 void
2103 age_init_smb_block(struct age_softc *sc)
2104 {
2105 	struct age_ring_data *rd;
2106 
2107 	rd = &sc->age_rdata;
2108 	bzero(rd->age_smb_block, AGE_SMB_BLOCK_SZ);
2109 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
2110 	    sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2111 }
2112 
2113 int
2114 age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd)
2115 {
2116 	struct rx_desc *desc;
2117 	struct mbuf *m;
2118 	bus_dmamap_t map;
2119 	int error;
2120 
2121 	MGETHDR(m, M_DONTWAIT, MT_DATA);
2122 	if (m == NULL)
2123 		return (ENOBUFS);
2124 	MCLGET(m, M_DONTWAIT);
2125 	if (!(m->m_flags & M_EXT)) {
2126 		 m_freem(m);
2127 		 return (ENOBUFS);
2128 	}
2129 
2130 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2131 	m_adj(m, ETHER_ALIGN);
2132 
2133 	error = bus_dmamap_load_mbuf(sc->sc_dmat,
2134 	    sc->age_cdata.age_rx_sparemap, m, BUS_DMA_NOWAIT);
2135 
2136 	if (error != 0) {
2137 		m_freem(m);
2138 		printf("%s: can't load RX mbuf\n", sc->sc_dev.dv_xname);
2139 		return (error);
2140 	}
2141 
2142 	if (rxd->rx_m != NULL) {
2143 		bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0,
2144 		    rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2145 		bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
2146 	}
2147 	map = rxd->rx_dmamap;
2148 	rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap;
2149 	sc->age_cdata.age_rx_sparemap = map;
2150 	rxd->rx_m = m;
2151 
2152 	desc = rxd->rx_desc;
2153 	desc->addr = htole64(rxd->rx_dmamap->dm_segs[0].ds_addr);
2154 	desc->len =
2155 	    htole32((rxd->rx_dmamap->dm_segs[0].ds_len & AGE_RD_LEN_MASK) <<
2156 	    AGE_RD_LEN_SHIFT);
2157 
2158 	return (0);
2159 }
2160 
2161 void
2162 age_rxvlan(struct age_softc *sc)
2163 {
2164 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
2165 	uint32_t reg;
2166 
2167 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2168 	reg &= ~MAC_CFG_VLAN_TAG_STRIP;
2169 	if (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING)
2170 		reg |= MAC_CFG_VLAN_TAG_STRIP;
2171 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2172 }
2173 
2174 void
2175 age_iff(struct age_softc *sc)
2176 {
2177 	struct arpcom *ac = &sc->sc_arpcom;
2178 	struct ifnet *ifp = &ac->ac_if;
2179 	struct ether_multi *enm;
2180 	struct ether_multistep step;
2181 	uint32_t crc;
2182 	uint32_t mchash[2];
2183 	uint32_t rxcfg;
2184 
2185 	rxcfg = CSR_READ_4(sc, AGE_MAC_CFG);
2186 	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
2187 	ifp->if_flags &= ~IFF_ALLMULTI;
2188 
2189 	/*
2190 	 * Always accept broadcast frames.
2191 	 */
2192 	rxcfg |= MAC_CFG_BCAST;
2193 
2194 	if (ifp->if_flags & IFF_PROMISC || ac->ac_multirangecnt > 0) {
2195 		ifp->if_flags |= IFF_ALLMULTI;
2196 		if (ifp->if_flags & IFF_PROMISC)
2197 			rxcfg |= MAC_CFG_PROMISC;
2198 		else
2199 			rxcfg |= MAC_CFG_ALLMULTI;
2200 		mchash[0] = mchash[1] = 0xFFFFFFFF;
2201 	} else {
2202 		/* Program new filter. */
2203 		bzero(mchash, sizeof(mchash));
2204 
2205 		ETHER_FIRST_MULTI(step, ac, enm);
2206 		while (enm != NULL) {
2207 			crc = ether_crc32_be(enm->enm_addrlo,
2208 			    ETHER_ADDR_LEN);
2209 
2210 			mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
2211 
2212 			ETHER_NEXT_MULTI(step, enm);
2213 		}
2214 	}
2215 
2216 	CSR_WRITE_4(sc, AGE_MAR0, mchash[0]);
2217 	CSR_WRITE_4(sc, AGE_MAR1, mchash[1]);
2218 	CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
2219 }
2220