xref: /openbsd-src/sys/dev/pci/if_age.c (revision 50b7afb2c2c0993b0894d4e34bf857cb13ed9c80)
1 /*	$OpenBSD: if_age.c,v 1.21 2013/08/07 01:06:33 bluhm Exp $	*/
2 
3 /*-
4  * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice unmodified, this list of conditions, and the following
12  *    disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 /* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */
31 
32 #include "bpfilter.h"
33 #include "vlan.h"
34 
35 #include <sys/param.h>
36 #include <sys/endian.h>
37 #include <sys/systm.h>
38 #include <sys/types.h>
39 #include <sys/sockio.h>
40 #include <sys/mbuf.h>
41 #include <sys/queue.h>
42 #include <sys/kernel.h>
43 #include <sys/device.h>
44 #include <sys/timeout.h>
45 #include <sys/socket.h>
46 
47 #include <machine/bus.h>
48 
49 #include <net/if.h>
50 #include <net/if_dl.h>
51 #include <net/if_media.h>
52 
53 #ifdef INET
54 #include <netinet/in.h>
55 #include <netinet/in_systm.h>
56 #include <netinet/ip.h>
57 #include <netinet/if_ether.h>
58 #endif
59 
60 #include <net/if_types.h>
61 #include <net/if_vlan_var.h>
62 
63 #if NBPFILTER > 0
64 #include <net/bpf.h>
65 #endif
66 
67 #include <dev/rndvar.h>
68 
69 #include <dev/mii/mii.h>
70 #include <dev/mii/miivar.h>
71 
72 #include <dev/pci/pcireg.h>
73 #include <dev/pci/pcivar.h>
74 #include <dev/pci/pcidevs.h>
75 
76 #include <dev/pci/if_agereg.h>
77 
78 int	age_match(struct device *, void *, void *);
79 void	age_attach(struct device *, struct device *, void *);
80 int	age_detach(struct device *, int);
81 
82 int	age_miibus_readreg(struct device *, int, int);
83 void	age_miibus_writereg(struct device *, int, int, int);
84 void	age_miibus_statchg(struct device *);
85 
86 int	age_init(struct ifnet *);
87 int	age_ioctl(struct ifnet *, u_long, caddr_t);
88 void	age_start(struct ifnet *);
89 void	age_watchdog(struct ifnet *);
90 void	age_mediastatus(struct ifnet *, struct ifmediareq *);
91 int	age_mediachange(struct ifnet *);
92 
93 int	age_intr(void *);
94 int	age_dma_alloc(struct age_softc *);
95 void	age_dma_free(struct age_softc *);
96 void	age_get_macaddr(struct age_softc *);
97 void	age_phy_reset(struct age_softc *);
98 
99 int	age_encap(struct age_softc *, struct mbuf **);
100 void	age_init_tx_ring(struct age_softc *);
101 int	age_init_rx_ring(struct age_softc *);
102 void	age_init_rr_ring(struct age_softc *);
103 void	age_init_cmb_block(struct age_softc *);
104 void	age_init_smb_block(struct age_softc *);
105 int	age_newbuf(struct age_softc *, struct age_rxdesc *);
106 void	age_mac_config(struct age_softc *);
107 void	age_txintr(struct age_softc *, int);
108 void	age_rxeof(struct age_softc *sc, struct rx_rdesc *);
109 void	age_rxintr(struct age_softc *, int);
110 void	age_tick(void *);
111 void	age_reset(struct age_softc *);
112 void	age_stop(struct age_softc *);
113 void	age_stats_update(struct age_softc *);
114 void	age_stop_txmac(struct age_softc *);
115 void	age_stop_rxmac(struct age_softc *);
116 void	age_rxvlan(struct age_softc *sc);
117 void	age_iff(struct age_softc *);
118 
119 const struct pci_matchid age_devices[] = {
120 	{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_L1 }
121 };
122 
123 struct cfattach age_ca = {
124 	sizeof (struct age_softc), age_match, age_attach
125 };
126 
127 struct cfdriver age_cd = {
128 	 NULL, "age", DV_IFNET
129 };
130 
131 int agedebug = 0;
132 #define	DPRINTF(x)	do { if (agedebug) printf x; } while (0)
133 
134 #define AGE_CSUM_FEATURES	(M_TCP_CSUM_OUT | M_UDP_CSUM_OUT)
135 
136 int
137 age_match(struct device *dev, void *match, void *aux)
138 {
139 	 return pci_matchbyid((struct pci_attach_args *)aux, age_devices,
140 	     sizeof (age_devices) / sizeof (age_devices[0]));
141 }
142 
143 void
144 age_attach(struct device *parent, struct device *self, void *aux)
145 {
146 	struct age_softc *sc = (struct age_softc *)self;
147 	struct pci_attach_args *pa = aux;
148 	pci_chipset_tag_t pc = pa->pa_pc;
149 	pci_intr_handle_t ih;
150 	const char *intrstr;
151 	struct ifnet *ifp;
152 	pcireg_t memtype;
153 	int error = 0;
154 
155 	/*
156 	 * Allocate IO memory
157 	 */
158 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, AGE_PCIR_BAR);
159 	if (pci_mapreg_map(pa, AGE_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
160 	    &sc->sc_mem_bh, NULL, &sc->sc_mem_size, 0)) {
161 		printf(": can't map mem space\n");
162 		return;
163 	}
164 
165 	if (pci_intr_map_msi(pa, &ih) != 0 && pci_intr_map(pa, &ih) != 0) {
166 		printf(": can't map interrupt\n");
167 		goto fail;
168 	}
169 
170 	/*
171 	 * Allocate IRQ
172 	 */
173 	intrstr = pci_intr_string(pc, ih);
174 	sc->sc_irq_handle = pci_intr_establish(pc, ih, IPL_NET, age_intr, sc,
175 	    sc->sc_dev.dv_xname);
176 	if (sc->sc_irq_handle == NULL) {
177 		printf(": could not establish interrupt");
178 		if (intrstr != NULL)
179 			printf(" at %s", intrstr);
180 		printf("\n");
181 		goto fail;
182 	}
183 	printf(": %s", intrstr);
184 
185 	sc->sc_dmat = pa->pa_dmat;
186 	sc->sc_pct = pa->pa_pc;
187 	sc->sc_pcitag = pa->pa_tag;
188 
189 	/* Set PHY address. */
190 	sc->age_phyaddr = AGE_PHY_ADDR;
191 
192 	/* Reset PHY. */
193 	age_phy_reset(sc);
194 
195 	/* Reset the ethernet controller. */
196 	age_reset(sc);
197 
198 	/* Get PCI and chip id/revision. */
199 	sc->age_rev = PCI_REVISION(pa->pa_class);
200 	sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >>
201 	    MASTER_CHIP_REV_SHIFT;
202 	if (agedebug) {
203 		printf("%s: PCI device revision : 0x%04x\n",
204 		    sc->sc_dev.dv_xname, sc->age_rev);
205 		printf("%s: Chip id/revision : 0x%04x\n",
206 		    sc->sc_dev.dv_xname, sc->age_chip_rev);
207 	}
208 
209 	if (agedebug) {
210 		printf("%s: %d Tx FIFO, %d Rx FIFO\n", sc->sc_dev.dv_xname,
211 		    CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN),
212 		    CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN));
213 	}
214 
215 	/* Set max allowable DMA size. */
216 	sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128;
217 	sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128;
218 
219 	/* Allocate DMA stuffs */
220 	error = age_dma_alloc(sc);
221 	if (error)
222 		goto fail;
223 
224 	/* Load station address. */
225 	age_get_macaddr(sc);
226 
227 	ifp = &sc->sc_arpcom.ac_if;
228 	ifp->if_softc = sc;
229 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
230 	ifp->if_ioctl = age_ioctl;
231 	ifp->if_start = age_start;
232 	ifp->if_watchdog = age_watchdog;
233 	IFQ_SET_MAXLEN(&ifp->if_snd, AGE_TX_RING_CNT - 1);
234 	IFQ_SET_READY(&ifp->if_snd);
235 	bcopy(sc->age_eaddr, sc->sc_arpcom.ac_enaddr, ETHER_ADDR_LEN);
236 	bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
237 
238 	ifp->if_capabilities = IFCAP_VLAN_MTU;
239 
240 #ifdef AGE_CHECKSUM
241 	ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 |
242 				IFCAP_CSUM_UDPv4;
243 #endif
244 
245 #if NVLAN > 0
246 	ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING;
247 #endif
248 
249 	printf(", address %s\n", ether_sprintf(sc->sc_arpcom.ac_enaddr));
250 
251 	/* Set up MII bus. */
252 	sc->sc_miibus.mii_ifp = ifp;
253 	sc->sc_miibus.mii_readreg = age_miibus_readreg;
254 	sc->sc_miibus.mii_writereg = age_miibus_writereg;
255 	sc->sc_miibus.mii_statchg = age_miibus_statchg;
256 
257 	ifmedia_init(&sc->sc_miibus.mii_media, 0, age_mediachange,
258 	    age_mediastatus);
259 	mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY,
260 	   MII_OFFSET_ANY, MIIF_DOPAUSE);
261 
262 	if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) {
263 		printf("%s: no PHY found!\n", sc->sc_dev.dv_xname);
264 		ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL,
265 		    0, NULL);
266 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL);
267 	} else
268 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO);
269 
270 	if_attach(ifp);
271 	ether_ifattach(ifp);
272 
273 	timeout_set(&sc->age_tick_ch, age_tick, sc);
274 
275 	return;
276 fail:
277 	age_dma_free(sc);
278 	if (sc->sc_irq_handle != NULL)
279 		pci_intr_disestablish(pc, sc->sc_irq_handle);
280 	if (sc->sc_mem_size)
281 		bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
282 }
283 
284 int
285 age_detach(struct device *self, int flags)
286 {
287 	struct age_softc *sc = (struct age_softc *)self;
288 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
289 	int s;
290 
291 	s = splnet();
292 	age_stop(sc);
293 	splx(s);
294 
295 	mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
296 
297 	/* Delete all remaining media. */
298 	ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
299 
300 	ether_ifdetach(ifp);
301 	if_detach(ifp);
302 	age_dma_free(sc);
303 
304 	if (sc->sc_irq_handle != NULL) {
305 		pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
306 		sc->sc_irq_handle = NULL;
307 	}
308 
309 	return (0);
310 }
311 
312 /*
313  *	Read a PHY register on the MII of the L1.
314  */
315 int
316 age_miibus_readreg(struct device *dev, int phy, int reg)
317 {
318 	struct age_softc *sc = (struct age_softc *)dev;
319 	uint32_t v;
320 	int i;
321 
322 	if (phy != sc->age_phyaddr)
323 		return (0);
324 
325 	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
326 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
327 	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
328 		DELAY(1);
329 		v = CSR_READ_4(sc, AGE_MDIO);
330 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
331 			break;
332 	}
333 
334 	if (i == 0) {
335 		printf("%s: phy read timeout: phy %d, reg %d\n",
336 			sc->sc_dev.dv_xname, phy, reg);
337 		return (0);
338 	}
339 
340 	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
341 }
342 
343 /*
344  * 	Write a PHY register on the MII of the L1.
345  */
346 void
347 age_miibus_writereg(struct device *dev, int phy, int reg, int val)
348 {
349 	struct age_softc *sc = (struct age_softc *)dev;
350 	uint32_t v;
351 	int i;
352 
353 	if (phy != sc->age_phyaddr)
354 		return;
355 
356 	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
357 	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
358 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
359 
360 	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
361 		DELAY(1);
362 		v = CSR_READ_4(sc, AGE_MDIO);
363 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
364 			break;
365 	}
366 
367 	if (i == 0) {
368 		printf("%s: phy write timeout: phy %d, reg %d\n",
369 		    sc->sc_dev.dv_xname, phy, reg);
370 	}
371 }
372 
373 /*
374  *	Callback from MII layer when media changes.
375  */
376 void
377 age_miibus_statchg(struct device *dev)
378 {
379 	struct age_softc *sc = (struct age_softc *)dev;
380 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
381 	struct mii_data *mii = &sc->sc_miibus;
382 
383 	if ((ifp->if_flags & IFF_RUNNING) == 0)
384 		return;
385 
386 	sc->age_flags &= ~AGE_FLAG_LINK;
387 	if ((mii->mii_media_status & IFM_AVALID) != 0) {
388 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
389 		case IFM_10_T:
390 		case IFM_100_TX:
391 		case IFM_1000_T:
392 			sc->age_flags |= AGE_FLAG_LINK;
393 			break;
394 		default:
395 			break;
396 		}
397 	}
398 
399 	/* Stop Rx/Tx MACs. */
400 	age_stop_rxmac(sc);
401 	age_stop_txmac(sc);
402 
403 	/* Program MACs with resolved speed/duplex/flow-control. */
404 	if ((sc->age_flags & AGE_FLAG_LINK) != 0) {
405 		uint32_t reg;
406 
407 		age_mac_config(sc);
408 		reg = CSR_READ_4(sc, AGE_MAC_CFG);
409 		/* Restart DMA engine and Tx/Rx MAC. */
410 		CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) |
411 		    DMA_CFG_RD_ENB | DMA_CFG_WR_ENB);
412 		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
413 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
414 	}
415 }
416 
417 /*
418  *	Get the current interface media status.
419  */
420 void
421 age_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
422 {
423 	struct age_softc *sc = ifp->if_softc;
424 	struct mii_data *mii = &sc->sc_miibus;
425 
426 	mii_pollstat(mii);
427 	ifmr->ifm_status = mii->mii_media_status;
428 	ifmr->ifm_active = mii->mii_media_active;
429 }
430 
431 /*
432  *	Set hardware to newly-selected media.
433  */
434 int
435 age_mediachange(struct ifnet *ifp)
436 {
437 	struct age_softc *sc = ifp->if_softc;
438 	struct mii_data *mii = &sc->sc_miibus;
439 	int error;
440 
441 	if (mii->mii_instance != 0) {
442 		struct mii_softc *miisc;
443 
444 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
445 			mii_phy_reset(miisc);
446 	}
447 	error = mii_mediachg(mii);
448 
449 	return (error);
450 }
451 
452 int
453 age_intr(void *arg)
454 {
455         struct age_softc *sc = arg;
456         struct ifnet *ifp = &sc->sc_arpcom.ac_if;
457 	struct cmb *cmb;
458         uint32_t status;
459 
460 	status = CSR_READ_4(sc, AGE_INTR_STATUS);
461 	if (status == 0 || (status & AGE_INTRS) == 0)
462 		return (0);
463 
464 	/* Disable interrupts. */
465 	CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
466 
467 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
468 	    sc->age_cdata.age_cmb_block_map->dm_mapsize,
469 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
470 	cmb = sc->age_rdata.age_cmb_block;
471 	status = letoh32(cmb->intr_status);
472 	if ((status & AGE_INTRS) == 0)
473 		goto back;
474 
475 	sc->age_tpd_cons = (letoh32(cmb->tpd_cons) & TPD_CONS_MASK) >>
476 	    TPD_CONS_SHIFT;
477 	sc->age_rr_prod = (letoh32(cmb->rprod_cons) & RRD_PROD_MASK) >>
478 	    RRD_PROD_SHIFT;
479 	/* Let hardware know CMB was served. */
480 	cmb->intr_status = 0;
481 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
482 	    sc->age_cdata.age_cmb_block_map->dm_mapsize,
483 	    BUS_DMASYNC_PREWRITE);
484 
485 	if (ifp->if_flags & IFF_RUNNING) {
486 		if (status & INTR_CMB_RX)
487 			age_rxintr(sc, sc->age_rr_prod);
488 
489 		if (status & INTR_CMB_TX)
490 			age_txintr(sc, sc->age_tpd_cons);
491 
492 		if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) {
493 			if (status & INTR_DMA_RD_TO_RST)
494 				printf("%s: DMA read error! -- resetting\n",
495 				    sc->sc_dev.dv_xname);
496 			if (status & INTR_DMA_WR_TO_RST)
497 				printf("%s: DMA write error! -- resetting\n",
498 				    sc->sc_dev.dv_xname);
499 			age_init(ifp);
500 		}
501 
502 		age_start(ifp);
503 
504 		if (status & INTR_SMB)
505 			age_stats_update(sc);
506 	}
507 
508 	/* Check whether CMB was updated while serving Tx/Rx/SMB handler. */
509 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
510 	    sc->age_cdata.age_cmb_block_map->dm_mapsize,
511 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
512 
513 back:
514 	/* Re-enable interrupts. */
515 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
516 
517 	return (1);
518 }
519 
520 void
521 age_get_macaddr(struct age_softc *sc)
522 {
523 	uint32_t ea[2], reg;
524 	int i, vpdc;
525 
526 	reg = CSR_READ_4(sc, AGE_SPI_CTRL);
527 	if ((reg & SPI_VPD_ENB) != 0) {
528 		/* Get VPD stored in TWSI EEPROM. */
529 		reg &= ~SPI_VPD_ENB;
530 		CSR_WRITE_4(sc, AGE_SPI_CTRL, reg);
531 	}
532 
533 	if (pci_get_capability(sc->sc_pct, sc->sc_pcitag,
534 	    PCI_CAP_VPD, &vpdc, NULL)) {
535 		/*
536 		 * PCI VPD capability found, let TWSI reload EEPROM.
537 		 * This will set Ethernet address of controller.
538 		 */
539 		CSR_WRITE_4(sc, AGE_TWSI_CTRL, CSR_READ_4(sc, AGE_TWSI_CTRL) |
540 		    TWSI_CTRL_SW_LD_START);
541 		for (i = 100; i > 0; i--) {
542 			DELAY(1000);
543 			reg = CSR_READ_4(sc, AGE_TWSI_CTRL);
544 			if ((reg & TWSI_CTRL_SW_LD_START) == 0)
545 				break;
546 		}
547 		if (i == 0)
548 			printf("%s: reloading EEPROM timeout!\n",
549 			    sc->sc_dev.dv_xname);
550 	} else {
551 		if (agedebug)
552 			printf("%s: PCI VPD capability not found!\n",
553 			    sc->sc_dev.dv_xname);
554 	}
555 
556 	ea[0] = CSR_READ_4(sc, AGE_PAR0);
557 	ea[1] = CSR_READ_4(sc, AGE_PAR1);
558 	sc->age_eaddr[0] = (ea[1] >> 8) & 0xFF;
559 	sc->age_eaddr[1] = (ea[1] >> 0) & 0xFF;
560 	sc->age_eaddr[2] = (ea[0] >> 24) & 0xFF;
561 	sc->age_eaddr[3] = (ea[0] >> 16) & 0xFF;
562 	sc->age_eaddr[4] = (ea[0] >> 8) & 0xFF;
563 	sc->age_eaddr[5] = (ea[0] >> 0) & 0xFF;
564 }
565 
566 void
567 age_phy_reset(struct age_softc *sc)
568 {
569 	uint16_t reg, pn;
570 	int i, linkup;
571 
572 	/* Reset PHY. */
573 	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST);
574 	DELAY(2000);
575 	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR);
576 	DELAY(2000);
577 
578 #define	ATPHY_DBG_ADDR		0x1D
579 #define	ATPHY_DBG_DATA		0x1E
580 #define	ATPHY_CDTC		0x16
581 #define	PHY_CDTC_ENB		0x0001
582 #define	PHY_CDTC_POFF		8
583 #define	ATPHY_CDTS		0x1C
584 #define	PHY_CDTS_STAT_OK	0x0000
585 #define	PHY_CDTS_STAT_SHORT	0x0100
586 #define	PHY_CDTS_STAT_OPEN	0x0200
587 #define	PHY_CDTS_STAT_INVAL	0x0300
588 #define	PHY_CDTS_STAT_MASK	0x0300
589 
590 	/* Check power saving mode. Magic from Linux. */
591 	age_miibus_writereg(&sc->sc_dev, sc->age_phyaddr, MII_BMCR, BMCR_RESET);
592 	for (linkup = 0, pn = 0; pn < 4; pn++) {
593 		age_miibus_writereg(&sc->sc_dev, sc->age_phyaddr, ATPHY_CDTC,
594 		    (pn << PHY_CDTC_POFF) | PHY_CDTC_ENB);
595 		for (i = 200; i > 0; i--) {
596 			DELAY(1000);
597 			reg = age_miibus_readreg(&sc->sc_dev, sc->age_phyaddr,
598 			    ATPHY_CDTC);
599 			if ((reg & PHY_CDTC_ENB) == 0)
600 				break;
601 		}
602 		DELAY(1000);
603 		reg = age_miibus_readreg(&sc->sc_dev, sc->age_phyaddr,
604 		    ATPHY_CDTS);
605 		if ((reg & PHY_CDTS_STAT_MASK) != PHY_CDTS_STAT_OPEN) {
606 			linkup++;
607 			break;
608 		}
609 	}
610 	age_miibus_writereg(&sc->sc_dev, sc->age_phyaddr, MII_BMCR,
611 	    BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
612 	if (linkup == 0) {
613 		age_miibus_writereg(&sc->sc_dev, sc->age_phyaddr,
614 		    ATPHY_DBG_ADDR, 0);
615 		age_miibus_writereg(&sc->sc_dev, sc->age_phyaddr,
616 		    ATPHY_DBG_DATA, 0x124E);
617 		age_miibus_writereg(&sc->sc_dev, sc->age_phyaddr,
618 		    ATPHY_DBG_ADDR, 1);
619 		reg = age_miibus_readreg(&sc->sc_dev, sc->age_phyaddr,
620 		    ATPHY_DBG_DATA);
621 		age_miibus_writereg(&sc->sc_dev, sc->age_phyaddr,
622 		    ATPHY_DBG_DATA, reg | 0x03);
623 		/* XXX */
624 		DELAY(1500 * 1000);
625 		age_miibus_writereg(&sc->sc_dev, sc->age_phyaddr,
626 		    ATPHY_DBG_ADDR, 0);
627 		age_miibus_writereg(&sc->sc_dev, sc->age_phyaddr,
628 		    ATPHY_DBG_DATA, 0x024E);
629 	}
630 
631 #undef	ATPHY_DBG_ADDR
632 #undef	ATPHY_DBG_DATA
633 #undef	ATPHY_CDTC
634 #undef	PHY_CDTC_ENB
635 #undef	PHY_CDTC_POFF
636 #undef	ATPHY_CDTS
637 #undef	PHY_CDTS_STAT_OK
638 #undef	PHY_CDTS_STAT_SHORT
639 #undef	PHY_CDTS_STAT_OPEN
640 #undef	PHY_CDTS_STAT_INVAL
641 #undef	PHY_CDTS_STAT_MASK
642 }
643 
644 int
645 age_dma_alloc(struct age_softc *sc)
646 {
647 	struct age_txdesc *txd;
648 	struct age_rxdesc *rxd;
649 	int nsegs, error, i;
650 
651 	/*
652 	 * Create DMA stuffs for TX ring
653 	 */
654 	error = bus_dmamap_create(sc->sc_dmat, AGE_TX_RING_SZ, 1,
655 	    AGE_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_tx_ring_map);
656 	if (error)
657 		return (ENOBUFS);
658 
659 	/* Allocate DMA'able memory for TX ring */
660 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_TX_RING_SZ,
661 	    ETHER_ALIGN, 0, &sc->age_rdata.age_tx_ring_seg, 1,
662 	    &nsegs, BUS_DMA_WAITOK | BUS_DMA_ZERO);
663 	if (error) {
664 		printf("%s: could not allocate DMA'able memory for Tx ring.\n",
665 		    sc->sc_dev.dv_xname);
666 		return error;
667 	}
668 
669 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_tx_ring_seg,
670 	    nsegs, AGE_TX_RING_SZ, (caddr_t *)&sc->age_rdata.age_tx_ring,
671 	    BUS_DMA_NOWAIT);
672 	if (error)
673 		return (ENOBUFS);
674 
675 	/*  Load the DMA map for Tx ring. */
676 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_tx_ring_map,
677 	    sc->age_rdata.age_tx_ring, AGE_TX_RING_SZ, NULL, BUS_DMA_WAITOK);
678 	if (error) {
679 		printf("%s: could not load DMA'able memory for Tx ring.\n",
680 		    sc->sc_dev.dv_xname);
681 		bus_dmamem_free(sc->sc_dmat,
682 		    (bus_dma_segment_t *)&sc->age_rdata.age_tx_ring, 1);
683 		return error;
684 	}
685 
686 	sc->age_rdata.age_tx_ring_paddr =
687 	    sc->age_cdata.age_tx_ring_map->dm_segs[0].ds_addr;
688 
689 	/*
690 	 * Create DMA stuffs for RX ring
691 	 */
692 	error = bus_dmamap_create(sc->sc_dmat, AGE_RX_RING_SZ, 1,
693 	    AGE_RX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_ring_map);
694 	if (error)
695 		return (ENOBUFS);
696 
697 	/* Allocate DMA'able memory for RX ring */
698 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_RX_RING_SZ,
699 	    ETHER_ALIGN, 0, &sc->age_rdata.age_rx_ring_seg, 1,
700 	    &nsegs, BUS_DMA_WAITOK | BUS_DMA_ZERO);
701 	if (error) {
702 		printf("%s: could not allocate DMA'able memory for Rx ring.\n",
703 		    sc->sc_dev.dv_xname);
704 		return error;
705 	}
706 
707 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rx_ring_seg,
708 	    nsegs, AGE_RX_RING_SZ, (caddr_t *)&sc->age_rdata.age_rx_ring,
709 	    BUS_DMA_NOWAIT);
710 	if (error)
711 		return (ENOBUFS);
712 
713 	/* Load the DMA map for Rx ring. */
714 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rx_ring_map,
715 	    sc->age_rdata.age_rx_ring, AGE_RX_RING_SZ, NULL, BUS_DMA_WAITOK);
716 	if (error) {
717 		printf("%s: could not load DMA'able memory for Rx ring.\n",
718 		    sc->sc_dev.dv_xname);
719 		bus_dmamem_free(sc->sc_dmat,
720 		    (bus_dma_segment_t *)sc->age_rdata.age_rx_ring, 1);
721 		return error;
722 	}
723 
724 	sc->age_rdata.age_rx_ring_paddr =
725 	    sc->age_cdata.age_rx_ring_map->dm_segs[0].ds_addr;
726 
727 	/*
728 	 * Create DMA stuffs for RX return ring
729 	 */
730 	error = bus_dmamap_create(sc->sc_dmat, AGE_RR_RING_SZ, 1,
731 	    AGE_RR_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rr_ring_map);
732 	if (error)
733 		return (ENOBUFS);
734 
735 	/* Allocate DMA'able memory for RX return ring */
736 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_RR_RING_SZ,
737 	    ETHER_ALIGN, 0, &sc->age_rdata.age_rr_ring_seg, 1,
738 	    &nsegs, BUS_DMA_WAITOK | BUS_DMA_ZERO);
739 	if (error) {
740 		printf("%s: could not allocate DMA'able memory for Rx "
741 		    "return ring.\n", sc->sc_dev.dv_xname);
742 		return error;
743 	}
744 
745 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rr_ring_seg,
746 	    nsegs, AGE_RR_RING_SZ, (caddr_t *)&sc->age_rdata.age_rr_ring,
747 	    BUS_DMA_NOWAIT);
748 	if (error)
749 		return (ENOBUFS);
750 
751 	/*  Load the DMA map for Rx return ring. */
752 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rr_ring_map,
753 	    sc->age_rdata.age_rr_ring, AGE_RR_RING_SZ, NULL, BUS_DMA_WAITOK);
754 	if (error) {
755 		printf("%s: could not load DMA'able memory for Rx return ring."
756 		    "\n", sc->sc_dev.dv_xname);
757 		bus_dmamem_free(sc->sc_dmat,
758 		    (bus_dma_segment_t *)&sc->age_rdata.age_rr_ring, 1);
759 		return error;
760 	}
761 
762 	sc->age_rdata.age_rr_ring_paddr =
763 	    sc->age_cdata.age_rr_ring_map->dm_segs[0].ds_addr;
764 
765 	/*
766 	 * Create DMA stuffs for CMB block
767 	 */
768 	error = bus_dmamap_create(sc->sc_dmat, AGE_CMB_BLOCK_SZ, 1,
769 	    AGE_CMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
770 	    &sc->age_cdata.age_cmb_block_map);
771 	if (error)
772 		return (ENOBUFS);
773 
774 	/* Allocate DMA'able memory for CMB block */
775 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_CMB_BLOCK_SZ,
776 	    ETHER_ALIGN, 0, &sc->age_rdata.age_cmb_block_seg, 1,
777 	    &nsegs, BUS_DMA_WAITOK | BUS_DMA_ZERO);
778 	if (error) {
779 		printf("%s: could not allocate DMA'able memory for "
780 		    "CMB block\n", sc->sc_dev.dv_xname);
781 		return error;
782 	}
783 
784 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_cmb_block_seg,
785 	    nsegs, AGE_CMB_BLOCK_SZ, (caddr_t *)&sc->age_rdata.age_cmb_block,
786 	    BUS_DMA_NOWAIT);
787 	if (error)
788 		return (ENOBUFS);
789 
790 	/*  Load the DMA map for CMB block. */
791 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_cmb_block_map,
792 	    sc->age_rdata.age_cmb_block, AGE_CMB_BLOCK_SZ, NULL,
793 	    BUS_DMA_WAITOK);
794 	if (error) {
795 		printf("%s: could not load DMA'able memory for CMB block\n",
796 		    sc->sc_dev.dv_xname);
797 		bus_dmamem_free(sc->sc_dmat,
798 		    (bus_dma_segment_t *)&sc->age_rdata.age_cmb_block, 1);
799 		return error;
800 	}
801 
802 	sc->age_rdata.age_cmb_block_paddr =
803 	    sc->age_cdata.age_cmb_block_map->dm_segs[0].ds_addr;
804 
805 	/*
806 	 * Create DMA stuffs for SMB block
807 	 */
808 	error = bus_dmamap_create(sc->sc_dmat, AGE_SMB_BLOCK_SZ, 1,
809 	    AGE_SMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
810 	    &sc->age_cdata.age_smb_block_map);
811 	if (error)
812 		return (ENOBUFS);
813 
814 	/* Allocate DMA'able memory for SMB block */
815 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_SMB_BLOCK_SZ,
816 	    ETHER_ALIGN, 0, &sc->age_rdata.age_smb_block_seg, 1,
817 	    &nsegs, BUS_DMA_WAITOK | BUS_DMA_ZERO);
818 	if (error) {
819 		printf("%s: could not allocate DMA'able memory for "
820 		    "SMB block\n", sc->sc_dev.dv_xname);
821 		return error;
822 	}
823 
824 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_smb_block_seg,
825 	    nsegs, AGE_SMB_BLOCK_SZ, (caddr_t *)&sc->age_rdata.age_smb_block,
826 	    BUS_DMA_NOWAIT);
827 	if (error)
828 		return (ENOBUFS);
829 
830 	/*  Load the DMA map for SMB block */
831 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_smb_block_map,
832 	    sc->age_rdata.age_smb_block, AGE_SMB_BLOCK_SZ, NULL,
833 	    BUS_DMA_WAITOK);
834 	if (error) {
835 		printf("%s: could not load DMA'able memory for SMB block\n",
836 		    sc->sc_dev.dv_xname);
837 		bus_dmamem_free(sc->sc_dmat,
838 		    (bus_dma_segment_t *)&sc->age_rdata.age_smb_block, 1);
839 		return error;
840 	}
841 
842 	sc->age_rdata.age_smb_block_paddr =
843 	    sc->age_cdata.age_smb_block_map->dm_segs[0].ds_addr;
844 
845 	/* Create DMA maps for Tx buffers. */
846 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
847 		txd = &sc->age_cdata.age_txdesc[i];
848 		txd->tx_m = NULL;
849 		txd->tx_dmamap = NULL;
850 		error = bus_dmamap_create(sc->sc_dmat, AGE_TSO_MAXSIZE,
851 		    AGE_MAXTXSEGS, AGE_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,
852 		    &txd->tx_dmamap);
853 		if (error) {
854 			printf("%s: could not create Tx dmamap.\n",
855 			    sc->sc_dev.dv_xname);
856 			return error;
857 		}
858 	}
859 
860 	/* Create DMA maps for Rx buffers. */
861 	error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
862 	    BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_sparemap);
863 	if (error) {
864 		printf("%s: could not create spare Rx dmamap.\n",
865 		    sc->sc_dev.dv_xname);
866 		return error;
867 	}
868 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
869 		rxd = &sc->age_cdata.age_rxdesc[i];
870 		rxd->rx_m = NULL;
871 		rxd->rx_dmamap = NULL;
872 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
873 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &rxd->rx_dmamap);
874 		if (error) {
875 			printf("%s: could not create Rx dmamap.\n",
876 			    sc->sc_dev.dv_xname);
877 			return error;
878 		}
879 	}
880 
881 	return (0);
882 }
883 
884 void
885 age_dma_free(struct age_softc *sc)
886 {
887 	struct age_txdesc *txd;
888 	struct age_rxdesc *rxd;
889 	int i;
890 
891 	/* Tx buffers */
892 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
893 		txd = &sc->age_cdata.age_txdesc[i];
894 		if (txd->tx_dmamap != NULL) {
895 			bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
896 			txd->tx_dmamap = NULL;
897 		}
898 	}
899 	/* Rx buffers */
900 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
901 		rxd = &sc->age_cdata.age_rxdesc[i];
902 		if (rxd->rx_dmamap != NULL) {
903 			bus_dmamap_destroy(sc->sc_dmat, rxd->rx_dmamap);
904 			rxd->rx_dmamap = NULL;
905 		}
906 	}
907 	if (sc->age_cdata.age_rx_sparemap != NULL) {
908 		bus_dmamap_destroy(sc->sc_dmat, sc->age_cdata.age_rx_sparemap);
909 		sc->age_cdata.age_rx_sparemap = NULL;
910 	}
911 
912 	/* Tx ring. */
913 	if (sc->age_cdata.age_tx_ring_map != NULL)
914 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_tx_ring_map);
915 	if (sc->age_cdata.age_tx_ring_map != NULL &&
916 	    sc->age_rdata.age_tx_ring != NULL)
917 		bus_dmamem_free(sc->sc_dmat,
918 		    (bus_dma_segment_t *)sc->age_rdata.age_tx_ring, 1);
919 	sc->age_rdata.age_tx_ring = NULL;
920 	sc->age_cdata.age_tx_ring_map = NULL;
921 
922 	/* Rx ring. */
923 	if (sc->age_cdata.age_rx_ring_map != NULL)
924 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rx_ring_map);
925 	if (sc->age_cdata.age_rx_ring_map != NULL &&
926 	    sc->age_rdata.age_rx_ring != NULL)
927 		bus_dmamem_free(sc->sc_dmat,
928 		    (bus_dma_segment_t *)sc->age_rdata.age_rx_ring, 1);
929 	sc->age_rdata.age_rx_ring = NULL;
930 	sc->age_cdata.age_rx_ring_map = NULL;
931 
932 	/* Rx return ring. */
933 	if (sc->age_cdata.age_rr_ring_map != NULL)
934 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rr_ring_map);
935 	if (sc->age_cdata.age_rr_ring_map != NULL &&
936 	    sc->age_rdata.age_rr_ring != NULL)
937 		bus_dmamem_free(sc->sc_dmat,
938 		    (bus_dma_segment_t *)sc->age_rdata.age_rr_ring, 1);
939 	sc->age_rdata.age_rr_ring = NULL;
940 	sc->age_cdata.age_rr_ring_map = NULL;
941 
942 	/* CMB block */
943 	if (sc->age_cdata.age_cmb_block_map != NULL)
944 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_cmb_block_map);
945 	if (sc->age_cdata.age_cmb_block_map != NULL &&
946 	    sc->age_rdata.age_cmb_block != NULL)
947 		bus_dmamem_free(sc->sc_dmat,
948 		    (bus_dma_segment_t *)sc->age_rdata.age_cmb_block, 1);
949 	sc->age_rdata.age_cmb_block = NULL;
950 	sc->age_cdata.age_cmb_block_map = NULL;
951 
952 	/* SMB block */
953 	if (sc->age_cdata.age_smb_block_map != NULL)
954 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_smb_block_map);
955 	if (sc->age_cdata.age_smb_block_map != NULL &&
956 	    sc->age_rdata.age_smb_block != NULL)
957 		bus_dmamem_free(sc->sc_dmat,
958 		    (bus_dma_segment_t *)sc->age_rdata.age_smb_block, 1);
959 	sc->age_rdata.age_smb_block = NULL;
960 	sc->age_cdata.age_smb_block_map = NULL;
961 }
962 
963 void
964 age_start(struct ifnet *ifp)
965 {
966         struct age_softc *sc = ifp->if_softc;
967         struct mbuf *m_head;
968 	int enq;
969 
970 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
971 		return;
972 	if ((sc->age_flags & AGE_FLAG_LINK) == 0)
973 		return;
974 	if (IFQ_IS_EMPTY(&ifp->if_snd))
975 		return;
976 
977 	enq = 0;
978 	for (;;) {
979 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
980 		if (m_head == NULL)
981 			break;
982 
983 		/*
984 		 * Pack the data into the transmit ring. If we
985 		 * don't have room, set the OACTIVE flag and wait
986 		 * for the NIC to drain the ring.
987 		 */
988 		if (age_encap(sc, &m_head)) {
989 			if (m_head == NULL)
990 				ifp->if_oerrors++;
991 			else {
992 				IF_PREPEND(&ifp->if_snd, m_head);
993 				ifp->if_flags |= IFF_OACTIVE;
994 			}
995 			break;
996 		}
997 		enq = 1;
998 
999 #if NBPFILTER > 0
1000 		/*
1001 		 * If there's a BPF listener, bounce a copy of this frame
1002 		 * to him.
1003 		 */
1004 		if (ifp->if_bpf != NULL)
1005 			bpf_mtap_ether(ifp->if_bpf, m_head, BPF_DIRECTION_OUT);
1006 #endif
1007 	}
1008 
1009 	if (enq) {
1010 		/* Update mbox. */
1011 		AGE_COMMIT_MBOX(sc);
1012 		/* Set a timeout in case the chip goes out to lunch. */
1013 		ifp->if_timer = AGE_TX_TIMEOUT;
1014 	}
1015 }
1016 
1017 void
1018 age_watchdog(struct ifnet *ifp)
1019 {
1020 	struct age_softc *sc = ifp->if_softc;
1021 
1022 	if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
1023 		printf("%s: watchdog timeout (missed link)\n",
1024 		    sc->sc_dev.dv_xname);
1025 		ifp->if_oerrors++;
1026 		age_init(ifp);
1027 		return;
1028 	}
1029 
1030 	if (sc->age_cdata.age_tx_cnt == 0) {
1031 		printf("%s: watchdog timeout (missed Tx interrupts) "
1032 		    "-- recovering\n", sc->sc_dev.dv_xname);
1033 		age_start(ifp);
1034 		return;
1035 	}
1036 
1037 	printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
1038 	ifp->if_oerrors++;
1039 	age_init(ifp);
1040 	age_start(ifp);
1041 }
1042 
1043 int
1044 age_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1045 {
1046 	struct age_softc *sc = ifp->if_softc;
1047 	struct mii_data *mii = &sc->sc_miibus;
1048 	struct ifaddr *ifa = (struct ifaddr *)data;
1049 	struct ifreq *ifr = (struct ifreq *)data;
1050 	int s, error = 0;
1051 
1052 	s = splnet();
1053 
1054 	switch (cmd) {
1055 	case SIOCSIFADDR:
1056 		ifp->if_flags |= IFF_UP;
1057 		if (!(ifp->if_flags & IFF_RUNNING))
1058 			 age_init(ifp);
1059 #ifdef INET
1060 		if (ifa->ifa_addr->sa_family == AF_INET)
1061 			arp_ifinit(&sc->sc_arpcom, ifa);
1062 #endif
1063 		break;
1064 
1065 	case SIOCSIFFLAGS:
1066 		if (ifp->if_flags & IFF_UP) {
1067 			if (ifp->if_flags & IFF_RUNNING)
1068 				error = ENETRESET;
1069 			else
1070 				age_init(ifp);
1071 		} else {
1072 			if (ifp->if_flags & IFF_RUNNING)
1073 				age_stop(sc);
1074 		}
1075 		break;
1076 
1077 	case SIOCSIFMEDIA:
1078 	case SIOCGIFMEDIA:
1079 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1080 		break;
1081 
1082 	default:
1083 		error = ether_ioctl(ifp, &sc->sc_arpcom, cmd, data);
1084 		break;
1085 	}
1086 
1087 	if (error == ENETRESET) {
1088 		if (ifp->if_flags & IFF_RUNNING)
1089 			age_iff(sc);
1090 		error = 0;
1091 	}
1092 
1093 	splx(s);
1094 	return (error);
1095 }
1096 
1097 void
1098 age_mac_config(struct age_softc *sc)
1099 {
1100 	struct mii_data *mii = &sc->sc_miibus;
1101 	uint32_t reg;
1102 
1103 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1104 	reg &= ~MAC_CFG_FULL_DUPLEX;
1105 	reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC);
1106 	reg &= ~MAC_CFG_SPEED_MASK;
1107 
1108 	/* Reprogram MAC with resolved speed/duplex. */
1109 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1110 	case IFM_10_T:
1111 	case IFM_100_TX:
1112 		reg |= MAC_CFG_SPEED_10_100;
1113 		break;
1114 	case IFM_1000_T:
1115 		reg |= MAC_CFG_SPEED_1000;
1116 		break;
1117 	}
1118 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1119 		reg |= MAC_CFG_FULL_DUPLEX;
1120 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1121 			reg |= MAC_CFG_TX_FC;
1122 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1123 			reg |= MAC_CFG_RX_FC;
1124 	}
1125 
1126 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1127 }
1128 
1129 int
1130 age_encap(struct age_softc *sc, struct mbuf **m_head)
1131 {
1132 	struct age_txdesc *txd, *txd_last;
1133 	struct tx_desc *desc;
1134 	struct mbuf *m;
1135 	bus_dmamap_t map;
1136 	uint32_t cflags, poff, vtag;
1137 	int error, i, prod;
1138 
1139 	m = *m_head;
1140 	cflags = vtag = 0;
1141 	poff = 0;
1142 
1143 	prod = sc->age_cdata.age_tx_prod;
1144 	txd = &sc->age_cdata.age_txdesc[prod];
1145 	txd_last = txd;
1146 	map = txd->tx_dmamap;
1147 
1148 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head, BUS_DMA_NOWAIT);
1149 	if (error != 0 && error != EFBIG)
1150 		goto drop;
1151 	if (error != 0) {
1152 		if (m_defrag(*m_head, M_DONTWAIT)) {
1153 			error = ENOBUFS;
1154 			goto drop;
1155 		}
1156 		error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head,
1157 		    BUS_DMA_NOWAIT);
1158 		if (error != 0)
1159 			goto drop;
1160 	}
1161 
1162 	/* Check descriptor overrun. */
1163 	if (sc->age_cdata.age_tx_cnt + map->dm_nsegs >= AGE_TX_RING_CNT - 2) {
1164 		bus_dmamap_unload(sc->sc_dmat, map);
1165 		return (ENOBUFS);
1166 	}
1167 
1168 	m = *m_head;
1169 	/* Configure Tx IP/TCP/UDP checksum offload. */
1170 	if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) {
1171 		cflags |= AGE_TD_CSUM;
1172 		if ((m->m_pkthdr.csum_flags & M_TCP_CSUM_OUT) != 0)
1173 			cflags |= AGE_TD_TCPCSUM;
1174 		if ((m->m_pkthdr.csum_flags & M_UDP_CSUM_OUT) != 0)
1175 			cflags |= AGE_TD_UDPCSUM;
1176 		/* Set checksum start offset. */
1177 		cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT);
1178 	}
1179 
1180 #if NVLAN > 0
1181 	/* Configure VLAN hardware tag insertion. */
1182 	if (m->m_flags & M_VLANTAG) {
1183 		vtag = AGE_TX_VLAN_TAG(m->m_pkthdr.ether_vtag);
1184 		vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK);
1185 		cflags |= AGE_TD_INSERT_VLAN_TAG;
1186 	}
1187 #endif
1188 
1189 	desc = NULL;
1190 	for (i = 0; i < map->dm_nsegs; i++) {
1191 		desc = &sc->age_rdata.age_tx_ring[prod];
1192 		desc->addr = htole64(map->dm_segs[i].ds_addr);
1193 		desc->len =
1194 		    htole32(AGE_TX_BYTES(map->dm_segs[i].ds_len) | vtag);
1195 		desc->flags = htole32(cflags);
1196 		sc->age_cdata.age_tx_cnt++;
1197 		AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1198 	}
1199 
1200 	/* Update producer index. */
1201 	sc->age_cdata.age_tx_prod = prod;
1202 
1203 	/* Set EOP on the last descriptor. */
1204 	prod = (prod + AGE_TX_RING_CNT - 1) % AGE_TX_RING_CNT;
1205 	desc = &sc->age_rdata.age_tx_ring[prod];
1206 	desc->flags |= htole32(AGE_TD_EOP);
1207 
1208 	/* Swap dmamap of the first and the last. */
1209 	txd = &sc->age_cdata.age_txdesc[prod];
1210 	map = txd_last->tx_dmamap;
1211 	txd_last->tx_dmamap = txd->tx_dmamap;
1212 	txd->tx_dmamap = map;
1213 	txd->tx_m = m;
1214 
1215 	/* Sync descriptors. */
1216 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1217 	    BUS_DMASYNC_PREWRITE);
1218 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
1219 	    sc->age_cdata.age_tx_ring_map->dm_mapsize,
1220 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1221 
1222 	return (0);
1223 
1224  drop:
1225 	m_freem(*m_head);
1226 	*m_head = NULL;
1227 	return (error);
1228 }
1229 
1230 void
1231 age_txintr(struct age_softc *sc, int tpd_cons)
1232 {
1233 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1234 	struct age_txdesc *txd;
1235 	int cons, prog;
1236 
1237 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
1238 	    sc->age_cdata.age_tx_ring_map->dm_mapsize,
1239 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1240 
1241 	/*
1242 	 * Go through our Tx list and free mbufs for those
1243 	 * frames which have been transmitted.
1244 	 */
1245 	cons = sc->age_cdata.age_tx_cons;
1246 	for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) {
1247 		if (sc->age_cdata.age_tx_cnt <= 0)
1248 			break;
1249 		prog++;
1250 		ifp->if_flags &= ~IFF_OACTIVE;
1251 		sc->age_cdata.age_tx_cnt--;
1252 		txd = &sc->age_cdata.age_txdesc[cons];
1253 		/*
1254 		 * Clear Tx descriptors, it's not required but would
1255 		 * help debugging in case of Tx issues.
1256 		 */
1257 		txd->tx_desc->addr = 0;
1258 		txd->tx_desc->len = 0;
1259 		txd->tx_desc->flags = 0;
1260 
1261 		if (txd->tx_m == NULL)
1262 			continue;
1263 		/* Reclaim transmitted mbufs. */
1264 		bus_dmamap_sync(sc->sc_dmat, txd->tx_dmamap, 0,
1265 		    txd->tx_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1266 		bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1267 		m_freem(txd->tx_m);
1268 		txd->tx_m = NULL;
1269 	}
1270 
1271 	if (prog > 0) {
1272 		sc->age_cdata.age_tx_cons = cons;
1273 
1274 		/*
1275 		 * Unarm watchdog timer only when there are no pending
1276 		 * Tx descriptors in queue.
1277 		 */
1278 		if (sc->age_cdata.age_tx_cnt == 0)
1279 			ifp->if_timer = 0;
1280 
1281 		bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
1282 		    sc->age_cdata.age_tx_ring_map->dm_mapsize,
1283 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1284 	}
1285 }
1286 
1287 /* Receive a frame. */
1288 void
1289 age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd)
1290 {
1291 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1292 	struct age_rxdesc *rxd;
1293 	struct rx_desc *desc;
1294 	struct mbuf *mp, *m;
1295 	uint32_t status, index;
1296 	int count, nsegs, pktlen;
1297 	int rx_cons;
1298 
1299 	status = letoh32(rxrd->flags);
1300 	index = letoh32(rxrd->index);
1301 	rx_cons = AGE_RX_CONS(index);
1302 	nsegs = AGE_RX_NSEGS(index);
1303 
1304 	sc->age_cdata.age_rxlen = AGE_RX_BYTES(letoh32(rxrd->len));
1305 	if ((status & AGE_RRD_ERROR) != 0 &&
1306 	    (status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE |
1307 	    AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0) {
1308 		/*
1309 		 * We want to pass the following frames to upper
1310 		 * layer regardless of error status of Rx return
1311 		 * ring.
1312 		 *
1313 		 *  o IP/TCP/UDP checksum is bad.
1314 		 *  o frame length and protocol specific length
1315 		 *     does not match.
1316 		 */
1317 		sc->age_cdata.age_rx_cons += nsegs;
1318 		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
1319 		return;
1320 	}
1321 
1322 	pktlen = 0;
1323 	for (count = 0; count < nsegs; count++,
1324 	    AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) {
1325 		rxd = &sc->age_cdata.age_rxdesc[rx_cons];
1326 		mp = rxd->rx_m;
1327 		desc = rxd->rx_desc;
1328 		/* Add a new receive buffer to the ring. */
1329 		if (age_newbuf(sc, rxd) != 0) {
1330 			ifp->if_iqdrops++;
1331 			/* Reuse Rx buffers. */
1332 			if (sc->age_cdata.age_rxhead != NULL) {
1333 				m_freem(sc->age_cdata.age_rxhead);
1334 				AGE_RXCHAIN_RESET(sc);
1335 			}
1336 			break;
1337 		}
1338 
1339 		/* The length of the first mbuf is computed last. */
1340 		if (count != 0) {
1341 			mp->m_len = AGE_RX_BYTES(letoh32(desc->len));
1342 			pktlen += mp->m_len;
1343 		}
1344 
1345 		/* Chain received mbufs. */
1346 		if (sc->age_cdata.age_rxhead == NULL) {
1347 			sc->age_cdata.age_rxhead = mp;
1348 			sc->age_cdata.age_rxtail = mp;
1349 		} else {
1350 			mp->m_flags &= ~M_PKTHDR;
1351 			sc->age_cdata.age_rxprev_tail =
1352 			    sc->age_cdata.age_rxtail;
1353 			sc->age_cdata.age_rxtail->m_next = mp;
1354 			sc->age_cdata.age_rxtail = mp;
1355 		}
1356 
1357 		if (count == nsegs - 1) {
1358 			/*
1359 			 * It seems that L1 controller has no way
1360 			 * to tell hardware to strip CRC bytes.
1361 			 */
1362 			sc->age_cdata.age_rxlen -= ETHER_CRC_LEN;
1363 			if (nsegs > 1) {
1364 				/* Remove the CRC bytes in chained mbufs. */
1365 				pktlen -= ETHER_CRC_LEN;
1366 				if (mp->m_len <= ETHER_CRC_LEN) {
1367 					sc->age_cdata.age_rxtail =
1368 					    sc->age_cdata.age_rxprev_tail;
1369 					sc->age_cdata.age_rxtail->m_len -=
1370 					    (ETHER_CRC_LEN - mp->m_len);
1371 					sc->age_cdata.age_rxtail->m_next = NULL;
1372 					m_freem(mp);
1373 				} else {
1374 					mp->m_len -= ETHER_CRC_LEN;
1375 				}
1376 			}
1377 
1378 			m = sc->age_cdata.age_rxhead;
1379 			m->m_flags |= M_PKTHDR;
1380 			m->m_pkthdr.rcvif = ifp;
1381 			m->m_pkthdr.len = sc->age_cdata.age_rxlen;
1382 			/* Set the first mbuf length. */
1383 			m->m_len = sc->age_cdata.age_rxlen - pktlen;
1384 
1385 			/*
1386 			 * Set checksum information.
1387 			 * It seems that L1 controller can compute partial
1388 			 * checksum. The partial checksum value can be used
1389 			 * to accelerate checksum computation for fragmented
1390 			 * TCP/UDP packets. Upper network stack already
1391 			 * takes advantage of the partial checksum value in
1392 			 * IP reassembly stage. But I'm not sure the
1393 			 * correctness of the partial hardware checksum
1394 			 * assistance due to lack of data sheet. If it is
1395 			 * proven to work on L1 I'll enable it.
1396 			 */
1397 			if (status & AGE_RRD_IPV4) {
1398 				if ((status & AGE_RRD_IPCSUM_NOK) == 0)
1399 					m->m_pkthdr.csum_flags |=
1400 					    M_IPV4_CSUM_IN_OK;
1401 				if ((status & (AGE_RRD_TCP | AGE_RRD_UDP)) &&
1402 				    (status & AGE_RRD_TCP_UDPCSUM_NOK) == 0) {
1403 					m->m_pkthdr.csum_flags |=
1404 					    M_TCP_CSUM_IN_OK | M_UDP_CSUM_IN_OK;
1405 				}
1406 				/*
1407 				 * Don't mark bad checksum for TCP/UDP frames
1408 				 * as fragmented frames may always have set
1409 				 * bad checksummed bit of descriptor status.
1410 				 */
1411 			}
1412 #if NVLAN > 0
1413 			/* Check for VLAN tagged frames. */
1414 			if (status & AGE_RRD_VLAN) {
1415 				u_int32_t vtag = AGE_RX_VLAN(letoh32(rxrd->vtags));
1416 				m->m_pkthdr.ether_vtag =
1417 				    AGE_RX_VLAN_TAG(vtag);
1418 				m->m_flags |= M_VLANTAG;
1419 			}
1420 #endif
1421 
1422 #if NBPFILTER > 0
1423 			if (ifp->if_bpf)
1424 				bpf_mtap_ether(ifp->if_bpf, m,
1425 				    BPF_DIRECTION_IN);
1426 #endif
1427 			/* Pass it on. */
1428 			ether_input_mbuf(ifp, m);
1429 
1430 			/* Reset mbuf chains. */
1431 			AGE_RXCHAIN_RESET(sc);
1432 		}
1433 	}
1434 
1435 	if (count != nsegs) {
1436 		sc->age_cdata.age_rx_cons += nsegs;
1437 		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
1438 	} else
1439 		sc->age_cdata.age_rx_cons = rx_cons;
1440 }
1441 
1442 void
1443 age_rxintr(struct age_softc *sc, int rr_prod)
1444 {
1445 	struct rx_rdesc *rxrd;
1446 	int rr_cons, nsegs, pktlen, prog;
1447 
1448 	rr_cons = sc->age_cdata.age_rr_cons;
1449 	if (rr_cons == rr_prod)
1450 		return;
1451 
1452 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
1453 	    sc->age_cdata.age_rr_ring_map->dm_mapsize,
1454 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1455 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rx_ring_map, 0,
1456 	    sc->age_cdata.age_rx_ring_map->dm_mapsize,
1457 	    BUS_DMASYNC_POSTWRITE);
1458 
1459 	for (prog = 0; rr_cons != rr_prod; prog++) {
1460 		rxrd = &sc->age_rdata.age_rr_ring[rr_cons];
1461 		nsegs = AGE_RX_NSEGS(letoh32(rxrd->index));
1462 		if (nsegs == 0)
1463 			break;
1464 		/*
1465 		 * Check number of segments against received bytes
1466 		 * Non-matching value would indicate that hardware
1467 		 * is still trying to update Rx return descriptors.
1468 		 * I'm not sure whether this check is really needed.
1469 		 */
1470 		pktlen = AGE_RX_BYTES(letoh32(rxrd->len));
1471 		if (nsegs != ((pktlen + (MCLBYTES - ETHER_ALIGN - 1)) /
1472 		    (MCLBYTES - ETHER_ALIGN)))
1473 			break;
1474 
1475 		/* Received a frame. */
1476 		age_rxeof(sc, rxrd);
1477 
1478 		/* Clear return ring. */
1479 		rxrd->index = 0;
1480 		AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT);
1481 	}
1482 
1483 	if (prog > 0) {
1484 		/* Update the consumer index. */
1485 		sc->age_cdata.age_rr_cons = rr_cons;
1486 
1487 		bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rx_ring_map, 0,
1488 		    sc->age_cdata.age_rx_ring_map->dm_mapsize,
1489 		    BUS_DMASYNC_PREWRITE);
1490 		/* Sync descriptors. */
1491 		bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
1492 		    sc->age_cdata.age_rr_ring_map->dm_mapsize,
1493 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1494 
1495 		/* Notify hardware availability of new Rx buffers. */
1496 		AGE_COMMIT_MBOX(sc);
1497 	}
1498 }
1499 
1500 void
1501 age_tick(void *xsc)
1502 {
1503 	struct age_softc *sc = xsc;
1504 	struct mii_data *mii = &sc->sc_miibus;
1505 	int s;
1506 
1507 	s = splnet();
1508 	mii_tick(mii);
1509 	timeout_add_sec(&sc->age_tick_ch, 1);
1510 	splx(s);
1511 }
1512 
1513 void
1514 age_reset(struct age_softc *sc)
1515 {
1516 	uint32_t reg;
1517 	int i;
1518 
1519 	CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET);
1520 	CSR_READ_4(sc, AGE_MASTER_CFG);
1521 	DELAY(1000);
1522 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
1523 		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
1524 			break;
1525 		DELAY(10);
1526 	}
1527 
1528 	if (i == 0)
1529 		printf("%s: reset timeout(0x%08x)!\n", sc->sc_dev.dv_xname,
1530 		    reg);
1531 
1532 	/* Initialize PCIe module. From Linux. */
1533 	CSR_WRITE_4(sc, 0x12FC, 0x6500);
1534 	CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
1535 }
1536 
1537 int
1538 age_init(struct ifnet *ifp)
1539 {
1540 	struct age_softc *sc = ifp->if_softc;
1541 	struct mii_data *mii = &sc->sc_miibus;
1542 	uint8_t eaddr[ETHER_ADDR_LEN];
1543 	bus_addr_t paddr;
1544 	uint32_t reg, fsize;
1545 	uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo;
1546 	int error;
1547 
1548 	/*
1549 	 * Cancel any pending I/O.
1550 	 */
1551 	age_stop(sc);
1552 
1553 	/*
1554 	 * Reset the chip to a known state.
1555 	 */
1556 	age_reset(sc);
1557 
1558 	/* Initialize descriptors. */
1559 	error = age_init_rx_ring(sc);
1560         if (error != 0) {
1561 		printf("%s: no memory for Rx buffers.\n", sc->sc_dev.dv_xname);
1562                 age_stop(sc);
1563 		return (error);
1564         }
1565 	age_init_rr_ring(sc);
1566 	age_init_tx_ring(sc);
1567 	age_init_cmb_block(sc);
1568 	age_init_smb_block(sc);
1569 
1570 	/* Reprogram the station address. */
1571 	bcopy(LLADDR(ifp->if_sadl), eaddr, ETHER_ADDR_LEN);
1572 	CSR_WRITE_4(sc, AGE_PAR0,
1573 	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
1574 	CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]);
1575 
1576 	/* Set descriptor base addresses. */
1577 	paddr = sc->age_rdata.age_tx_ring_paddr;
1578 	CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr));
1579 	paddr = sc->age_rdata.age_rx_ring_paddr;
1580 	CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr));
1581 	paddr = sc->age_rdata.age_rr_ring_paddr;
1582 	CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr));
1583 	paddr = sc->age_rdata.age_tx_ring_paddr;
1584 	CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr));
1585 	paddr = sc->age_rdata.age_cmb_block_paddr;
1586 	CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr));
1587 	paddr = sc->age_rdata.age_smb_block_paddr;
1588 	CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr));
1589 
1590 	/* Set Rx/Rx return descriptor counter. */
1591 	CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT,
1592 	    ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) &
1593 	    DESC_RRD_CNT_MASK) |
1594 	    ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK));
1595 
1596 	/* Set Tx descriptor counter. */
1597 	CSR_WRITE_4(sc, AGE_DESC_TPD_CNT,
1598 	    (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK);
1599 
1600 	/* Tell hardware that we're ready to load descriptors. */
1601 	CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD);
1602 
1603         /*
1604 	 * Initialize mailbox register.
1605 	 * Updated producer/consumer index information is exchanged
1606 	 * through this mailbox register. However Tx producer and
1607 	 * Rx return consumer/Rx producer are all shared such that
1608 	 * it's hard to separate code path between Tx and Rx without
1609 	 * locking. If L1 hardware have a separate mail box register
1610 	 * for Tx and Rx consumer/producer management we could have
1611 	 * indepent Tx/Rx handler which in turn Rx handler could have
1612 	 * been run without any locking.
1613 	*/
1614 	AGE_COMMIT_MBOX(sc);
1615 
1616 	/* Configure IPG/IFG parameters. */
1617 	CSR_WRITE_4(sc, AGE_IPG_IFG_CFG,
1618 	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) |
1619 	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
1620 	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
1621 	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK));
1622 
1623 	/* Set parameters for half-duplex media. */
1624 	CSR_WRITE_4(sc, AGE_HDPX_CFG,
1625 	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
1626 	    HDPX_CFG_LCOL_MASK) |
1627 	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
1628 	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
1629 	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
1630 	    HDPX_CFG_ABEBT_MASK) |
1631 	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
1632 	     HDPX_CFG_JAMIPG_MASK));
1633 
1634 	/* Configure interrupt moderation timer. */
1635 	sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
1636 	CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod));
1637 	reg = CSR_READ_4(sc, AGE_MASTER_CFG);
1638 	reg &= ~MASTER_MTIMER_ENB;
1639 	if (AGE_USECS(sc->age_int_mod) == 0)
1640 		reg &= ~MASTER_ITIMER_ENB;
1641 	else
1642 		reg |= MASTER_ITIMER_ENB;
1643 	CSR_WRITE_4(sc, AGE_MASTER_CFG, reg);
1644 	if (agedebug)
1645 		printf("%s: interrupt moderation is %d us.\n",
1646 		    sc->sc_dev.dv_xname, sc->age_int_mod);
1647 	CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000));
1648 
1649 	/* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
1650 	if (ifp->if_mtu < ETHERMTU)
1651 		sc->age_max_frame_size = ETHERMTU;
1652 	else
1653 		sc->age_max_frame_size = ifp->if_mtu;
1654 	sc->age_max_frame_size += ETHER_HDR_LEN +
1655 	    sizeof(struct ether_vlan_header) + ETHER_CRC_LEN;
1656 	CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size);
1657 
1658 	/* Configure jumbo frame. */
1659 	fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t));
1660 	CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG,
1661 	    (((fsize / sizeof(uint64_t)) <<
1662 	    RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) |
1663 	    ((RXQ_JUMBO_CFG_LKAH_DEFAULT <<
1664 	    RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) |
1665 	    ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) &
1666 	    RXQ_JUMBO_CFG_RRD_TIMER_MASK));
1667 
1668 	/* Configure flow-control parameters. From Linux. */
1669 	if ((sc->age_flags & AGE_FLAG_PCIE) != 0) {
1670 		/*
1671 		 * Magic workaround for old-L1.
1672 		 * Don't know which hw revision requires this magic.
1673 		 */
1674 		CSR_WRITE_4(sc, 0x12FC, 0x6500);
1675 		/*
1676 		 * Another magic workaround for flow-control mode
1677 		 * change. From Linux.
1678 		 */
1679 		CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
1680 	}
1681 	/*
1682 	 * TODO
1683 	 *  Should understand pause parameter relationships between FIFO
1684 	 *  size and number of Rx descriptors and Rx return descriptors.
1685 	 *
1686 	 *  Magic parameters came from Linux.
1687 	 */
1688 	switch (sc->age_chip_rev) {
1689 	case 0x8001:
1690 	case 0x9001:
1691 	case 0x9002:
1692 	case 0x9003:
1693 		rxf_hi = AGE_RX_RING_CNT / 16;
1694 		rxf_lo = (AGE_RX_RING_CNT * 7) / 8;
1695 		rrd_hi = (AGE_RR_RING_CNT * 7) / 8;
1696 		rrd_lo = AGE_RR_RING_CNT / 16;
1697 		break;
1698 	default:
1699 		reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN);
1700 		rxf_lo = reg / 16;
1701 		if (rxf_lo < 192)
1702 			rxf_lo = 192;
1703 		rxf_hi = (reg * 7) / 8;
1704 		if (rxf_hi < rxf_lo)
1705 			rxf_hi = rxf_lo + 16;
1706 		reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN);
1707 		rrd_lo = reg / 8;
1708 		rrd_hi = (reg * 7) / 8;
1709 		if (rrd_lo < 2)
1710 			rrd_lo = 2;
1711 		if (rrd_hi < rrd_lo)
1712 			rrd_hi = rrd_lo + 3;
1713 		break;
1714 	}
1715 	CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH,
1716 	    ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) &
1717 	    RXQ_FIFO_PAUSE_THRESH_LO_MASK) |
1718 	    ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) &
1719 	    RXQ_FIFO_PAUSE_THRESH_HI_MASK));
1720 	CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH,
1721 	    ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) &
1722 	    RXQ_RRD_PAUSE_THRESH_LO_MASK) |
1723 	    ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) &
1724 	    RXQ_RRD_PAUSE_THRESH_HI_MASK));
1725 
1726 	/* Configure RxQ. */
1727 	CSR_WRITE_4(sc, AGE_RXQ_CFG,
1728 	    ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
1729 	    RXQ_CFG_RD_BURST_MASK) |
1730 	    ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT <<
1731 	    RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) |
1732 	    ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT <<
1733 	    RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) |
1734 	    RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
1735 
1736 	/* Configure TxQ. */
1737 	CSR_WRITE_4(sc, AGE_TXQ_CFG,
1738 	    ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
1739 	    TXQ_CFG_TPD_BURST_MASK) |
1740 	    ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) &
1741 	    TXQ_CFG_TX_FIFO_BURST_MASK) |
1742 	    ((TXQ_CFG_TPD_FETCH_DEFAULT <<
1743 	    TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) |
1744 	    TXQ_CFG_ENB);
1745 
1746 	/* Configure DMA parameters. */
1747 	CSR_WRITE_4(sc, AGE_DMA_CFG,
1748 	    DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 |
1749 	    sc->age_dma_rd_burst | DMA_CFG_RD_ENB |
1750 	    sc->age_dma_wr_burst | DMA_CFG_WR_ENB);
1751 
1752 	/* Configure CMB DMA write threshold. */
1753 	CSR_WRITE_4(sc, AGE_CMB_WR_THRESH,
1754 	    ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) &
1755 	    CMB_WR_THRESH_RRD_MASK) |
1756 	    ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) &
1757 	    CMB_WR_THRESH_TPD_MASK));
1758 
1759 	/* Set CMB/SMB timer and enable them. */
1760 	CSR_WRITE_4(sc, AGE_CMB_WR_TIMER,
1761 	    ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) |
1762 	    ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK));
1763 
1764 	/* Request SMB updates for every seconds. */
1765 	CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000));
1766 	CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB);
1767 
1768 	/*
1769 	 * Disable all WOL bits as WOL can interfere normal Rx
1770 	 * operation.
1771 	 */
1772 	CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
1773 
1774         /*
1775 	 * Configure Tx/Rx MACs.
1776 	 *  - Auto-padding for short frames.
1777 	 *  - Enable CRC generation.
1778 	 *  Start with full-duplex/1000Mbps media. Actual reconfiguration
1779 	 *  of MAC is followed after link establishment.
1780 	 */
1781 	CSR_WRITE_4(sc, AGE_MAC_CFG,
1782 	    MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD |
1783 	    MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 |
1784 	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
1785 	    MAC_CFG_PREAMBLE_MASK));
1786 
1787 	/* Set up the receive filter. */
1788 	age_iff(sc);
1789 
1790 	age_rxvlan(sc);
1791 
1792 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1793 	reg |= MAC_CFG_RXCSUM_ENB;
1794 
1795 	/* Ack all pending interrupts and clear it. */
1796 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
1797 	CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS);
1798 
1799 	/* Finally enable Tx/Rx MAC. */
1800 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
1801 
1802 	sc->age_flags &= ~AGE_FLAG_LINK;
1803 
1804 	/* Switch to the current media. */
1805 	mii_mediachg(mii);
1806 
1807 	timeout_add_sec(&sc->age_tick_ch, 1);
1808 
1809 	ifp->if_flags |= IFF_RUNNING;
1810 	ifp->if_flags &= ~IFF_OACTIVE;
1811 
1812 	return (0);
1813 }
1814 
1815 void
1816 age_stop(struct age_softc *sc)
1817 {
1818 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1819 	struct age_txdesc *txd;
1820 	struct age_rxdesc *rxd;
1821 	uint32_t reg;
1822 	int i;
1823 
1824 	/*
1825 	 * Mark the interface down and cancel the watchdog timer.
1826 	 */
1827 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1828 	ifp->if_timer = 0;
1829 
1830 	sc->age_flags &= ~AGE_FLAG_LINK;
1831 	timeout_del(&sc->age_tick_ch);
1832 
1833 	/*
1834 	 * Disable interrupts.
1835 	 */
1836 	CSR_WRITE_4(sc, AGE_INTR_MASK, 0);
1837 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF);
1838 
1839 	/* Stop CMB/SMB updates. */
1840 	CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0);
1841 
1842 	/* Stop Rx/Tx MAC. */
1843 	age_stop_rxmac(sc);
1844 	age_stop_txmac(sc);
1845 
1846 	/* Stop DMA. */
1847 	CSR_WRITE_4(sc, AGE_DMA_CFG,
1848 	    CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB));
1849 
1850 	/* Stop TxQ/RxQ. */
1851 	CSR_WRITE_4(sc, AGE_TXQ_CFG,
1852 	    CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB);
1853 	CSR_WRITE_4(sc, AGE_RXQ_CFG,
1854 	    CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB);
1855 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
1856 		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
1857 			break;
1858 		DELAY(10);
1859 	}
1860 	if (i == 0)
1861 		printf("%s: stopping Rx/Tx MACs timed out(0x%08x)!\n",
1862 		    sc->sc_dev.dv_xname, reg);
1863 
1864 	/* Reclaim Rx buffers that have been processed. */
1865 	if (sc->age_cdata.age_rxhead != NULL)
1866 		m_freem(sc->age_cdata.age_rxhead);
1867 	AGE_RXCHAIN_RESET(sc);
1868 
1869 	/*
1870 	 * Free RX and TX mbufs still in the queues.
1871 	 */
1872 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
1873 		rxd = &sc->age_cdata.age_rxdesc[i];
1874 		if (rxd->rx_m != NULL) {
1875 			bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0,
1876 			    rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1877 			bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
1878 			m_freem(rxd->rx_m);
1879 			rxd->rx_m = NULL;
1880 		}
1881 	}
1882 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
1883 		txd = &sc->age_cdata.age_txdesc[i];
1884 		if (txd->tx_m != NULL) {
1885 			bus_dmamap_sync(sc->sc_dmat, txd->tx_dmamap, 0,
1886 			    txd->tx_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1887 			bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1888 			m_freem(txd->tx_m);
1889 			txd->tx_m = NULL;
1890 		}
1891 	}
1892 }
1893 
1894 void
1895 age_stats_update(struct age_softc *sc)
1896 {
1897 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1898 	struct age_stats *stat;
1899 	struct smb *smb;
1900 
1901 	stat = &sc->age_stat;
1902 
1903 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
1904 	    sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1905 
1906 	smb = sc->age_rdata.age_smb_block;
1907 	if (smb->updated == 0)
1908 		return;
1909 
1910 	/* Rx stats. */
1911 	stat->rx_frames += smb->rx_frames;
1912 	stat->rx_bcast_frames += smb->rx_bcast_frames;
1913 	stat->rx_mcast_frames += smb->rx_mcast_frames;
1914 	stat->rx_pause_frames += smb->rx_pause_frames;
1915 	stat->rx_control_frames += smb->rx_control_frames;
1916 	stat->rx_crcerrs += smb->rx_crcerrs;
1917 	stat->rx_lenerrs += smb->rx_lenerrs;
1918 	stat->rx_bytes += smb->rx_bytes;
1919 	stat->rx_runts += smb->rx_runts;
1920 	stat->rx_fragments += smb->rx_fragments;
1921 	stat->rx_pkts_64 += smb->rx_pkts_64;
1922 	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
1923 	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
1924 	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
1925 	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
1926 	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
1927 	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
1928 	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
1929 	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
1930 	stat->rx_desc_oflows += smb->rx_desc_oflows;
1931 	stat->rx_alignerrs += smb->rx_alignerrs;
1932 	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
1933 	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
1934 	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
1935 
1936 	/* Tx stats. */
1937 	stat->tx_frames += smb->tx_frames;
1938 	stat->tx_bcast_frames += smb->tx_bcast_frames;
1939 	stat->tx_mcast_frames += smb->tx_mcast_frames;
1940 	stat->tx_pause_frames += smb->tx_pause_frames;
1941 	stat->tx_excess_defer += smb->tx_excess_defer;
1942 	stat->tx_control_frames += smb->tx_control_frames;
1943 	stat->tx_deferred += smb->tx_deferred;
1944 	stat->tx_bytes += smb->tx_bytes;
1945 	stat->tx_pkts_64 += smb->tx_pkts_64;
1946 	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
1947 	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
1948 	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
1949 	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
1950 	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
1951 	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
1952 	stat->tx_single_colls += smb->tx_single_colls;
1953 	stat->tx_multi_colls += smb->tx_multi_colls;
1954 	stat->tx_late_colls += smb->tx_late_colls;
1955 	stat->tx_excess_colls += smb->tx_excess_colls;
1956 	stat->tx_underrun += smb->tx_underrun;
1957 	stat->tx_desc_underrun += smb->tx_desc_underrun;
1958 	stat->tx_lenerrs += smb->tx_lenerrs;
1959 	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
1960 	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
1961 	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
1962 
1963 	/* Update counters in ifnet. */
1964 	ifp->if_opackets += smb->tx_frames;
1965 
1966 	ifp->if_collisions += smb->tx_single_colls +
1967 	    smb->tx_multi_colls + smb->tx_late_colls +
1968 	    smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT;
1969 
1970 	ifp->if_oerrors += smb->tx_excess_colls +
1971 	    smb->tx_late_colls + smb->tx_underrun +
1972 	    smb->tx_pkts_truncated;
1973 
1974 	ifp->if_ipackets += smb->rx_frames;
1975 
1976 	ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
1977 	    smb->rx_runts + smb->rx_pkts_truncated +
1978 	    smb->rx_fifo_oflows + smb->rx_desc_oflows +
1979 	    smb->rx_alignerrs;
1980 
1981 	/* Update done, clear. */
1982 	smb->updated = 0;
1983 
1984 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
1985 	    sc->age_cdata.age_smb_block_map->dm_mapsize,
1986 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1987 }
1988 
1989 void
1990 age_stop_txmac(struct age_softc *sc)
1991 {
1992 	uint32_t reg;
1993 	int i;
1994 
1995 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1996 	if ((reg & MAC_CFG_TX_ENB) != 0) {
1997 		reg &= ~MAC_CFG_TX_ENB;
1998 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1999 	}
2000 	/* Stop Tx DMA engine. */
2001 	reg = CSR_READ_4(sc, AGE_DMA_CFG);
2002 	if ((reg & DMA_CFG_RD_ENB) != 0) {
2003 		reg &= ~DMA_CFG_RD_ENB;
2004 		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2005 	}
2006 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2007 		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2008 		    (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0)
2009 			break;
2010 		DELAY(10);
2011 	}
2012 	if (i == 0)
2013 		printf("%s: stopping TxMAC timeout!\n", sc->sc_dev.dv_xname);
2014 }
2015 
2016 void
2017 age_stop_rxmac(struct age_softc *sc)
2018 {
2019 	uint32_t reg;
2020 	int i;
2021 
2022 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2023 	if ((reg & MAC_CFG_RX_ENB) != 0) {
2024 		reg &= ~MAC_CFG_RX_ENB;
2025 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2026 	}
2027 	/* Stop Rx DMA engine. */
2028 	reg = CSR_READ_4(sc, AGE_DMA_CFG);
2029 	if ((reg & DMA_CFG_WR_ENB) != 0) {
2030 		reg &= ~DMA_CFG_WR_ENB;
2031 		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2032 	}
2033 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2034 		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2035 		    (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0)
2036 			break;
2037 		DELAY(10);
2038 	}
2039 	if (i == 0)
2040 		printf("%s: stopping RxMAC timeout!\n", sc->sc_dev.dv_xname);
2041 }
2042 
2043 void
2044 age_init_tx_ring(struct age_softc *sc)
2045 {
2046 	struct age_ring_data *rd;
2047 	struct age_txdesc *txd;
2048 	int i;
2049 
2050 	sc->age_cdata.age_tx_prod = 0;
2051 	sc->age_cdata.age_tx_cons = 0;
2052 	sc->age_cdata.age_tx_cnt = 0;
2053 
2054 	rd = &sc->age_rdata;
2055 	bzero(rd->age_tx_ring, AGE_TX_RING_SZ);
2056 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
2057 		txd = &sc->age_cdata.age_txdesc[i];
2058 		txd->tx_desc = &rd->age_tx_ring[i];
2059 		txd->tx_m = NULL;
2060 	}
2061 
2062 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
2063 	    sc->age_cdata.age_tx_ring_map->dm_mapsize,
2064 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2065 }
2066 
2067 int
2068 age_init_rx_ring(struct age_softc *sc)
2069 {
2070 	struct age_ring_data *rd;
2071 	struct age_rxdesc *rxd;
2072 	int i;
2073 
2074 	sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1;
2075 	rd = &sc->age_rdata;
2076 	bzero(rd->age_rx_ring, AGE_RX_RING_SZ);
2077 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
2078 		rxd = &sc->age_cdata.age_rxdesc[i];
2079 		rxd->rx_m = NULL;
2080 		rxd->rx_desc = &rd->age_rx_ring[i];
2081 		if (age_newbuf(sc, rxd) != 0)
2082 			return (ENOBUFS);
2083 	}
2084 
2085 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rx_ring_map, 0,
2086 	    sc->age_cdata.age_rx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2087 
2088 	return (0);
2089 }
2090 
2091 void
2092 age_init_rr_ring(struct age_softc *sc)
2093 {
2094 	struct age_ring_data *rd;
2095 
2096 	sc->age_cdata.age_rr_cons = 0;
2097 	AGE_RXCHAIN_RESET(sc);
2098 
2099 	rd = &sc->age_rdata;
2100 	bzero(rd->age_rr_ring, AGE_RR_RING_SZ);
2101 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
2102 	    sc->age_cdata.age_rr_ring_map->dm_mapsize,
2103 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2104 }
2105 
2106 void
2107 age_init_cmb_block(struct age_softc *sc)
2108 {
2109 	struct age_ring_data *rd;
2110 
2111 	rd = &sc->age_rdata;
2112 	bzero(rd->age_cmb_block, AGE_CMB_BLOCK_SZ);
2113 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
2114 	    sc->age_cdata.age_cmb_block_map->dm_mapsize,
2115 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2116 }
2117 
2118 void
2119 age_init_smb_block(struct age_softc *sc)
2120 {
2121 	struct age_ring_data *rd;
2122 
2123 	rd = &sc->age_rdata;
2124 	bzero(rd->age_smb_block, AGE_SMB_BLOCK_SZ);
2125 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
2126 	    sc->age_cdata.age_smb_block_map->dm_mapsize,
2127 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2128 }
2129 
2130 int
2131 age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd)
2132 {
2133 	struct rx_desc *desc;
2134 	struct mbuf *m;
2135 	bus_dmamap_t map;
2136 	int error;
2137 
2138 	MGETHDR(m, M_DONTWAIT, MT_DATA);
2139 	if (m == NULL)
2140 		return (ENOBUFS);
2141 	MCLGET(m, M_DONTWAIT);
2142 	if (!(m->m_flags & M_EXT)) {
2143 		 m_freem(m);
2144 		 return (ENOBUFS);
2145 	}
2146 
2147 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2148 	m_adj(m, ETHER_ALIGN);
2149 
2150 	error = bus_dmamap_load_mbuf(sc->sc_dmat,
2151 	    sc->age_cdata.age_rx_sparemap, m, BUS_DMA_NOWAIT);
2152 
2153 	if (error != 0) {
2154 		m_freem(m);
2155 		printf("%s: can't load RX mbuf\n", sc->sc_dev.dv_xname);
2156 		return (error);
2157 	}
2158 
2159 	if (rxd->rx_m != NULL) {
2160 		bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0,
2161 		    rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2162 		bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
2163 	}
2164 	map = rxd->rx_dmamap;
2165 	rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap;
2166 	sc->age_cdata.age_rx_sparemap = map;
2167 	bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0,
2168 	    rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2169 	rxd->rx_m = m;
2170 
2171 	desc = rxd->rx_desc;
2172 	desc->addr = htole64(rxd->rx_dmamap->dm_segs[0].ds_addr);
2173 	desc->len =
2174 	    htole32((rxd->rx_dmamap->dm_segs[0].ds_len & AGE_RD_LEN_MASK) <<
2175 	    AGE_RD_LEN_SHIFT);
2176 
2177 	return (0);
2178 }
2179 
2180 void
2181 age_rxvlan(struct age_softc *sc)
2182 {
2183 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
2184 	uint32_t reg;
2185 
2186 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2187 	reg &= ~MAC_CFG_VLAN_TAG_STRIP;
2188 	if (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING)
2189 		reg |= MAC_CFG_VLAN_TAG_STRIP;
2190 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2191 }
2192 
2193 void
2194 age_iff(struct age_softc *sc)
2195 {
2196 	struct arpcom *ac = &sc->sc_arpcom;
2197 	struct ifnet *ifp = &ac->ac_if;
2198 	struct ether_multi *enm;
2199 	struct ether_multistep step;
2200 	uint32_t crc;
2201 	uint32_t mchash[2];
2202 	uint32_t rxcfg;
2203 
2204 	rxcfg = CSR_READ_4(sc, AGE_MAC_CFG);
2205 	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
2206 	ifp->if_flags &= ~IFF_ALLMULTI;
2207 
2208 	/*
2209 	 * Always accept broadcast frames.
2210 	 */
2211 	rxcfg |= MAC_CFG_BCAST;
2212 
2213 	if (ifp->if_flags & IFF_PROMISC || ac->ac_multirangecnt > 0) {
2214 		ifp->if_flags |= IFF_ALLMULTI;
2215 		if (ifp->if_flags & IFF_PROMISC)
2216 			rxcfg |= MAC_CFG_PROMISC;
2217 		else
2218 			rxcfg |= MAC_CFG_ALLMULTI;
2219 		mchash[0] = mchash[1] = 0xFFFFFFFF;
2220 	} else {
2221 		/* Program new filter. */
2222 		bzero(mchash, sizeof(mchash));
2223 
2224 		ETHER_FIRST_MULTI(step, ac, enm);
2225 		while (enm != NULL) {
2226 			crc = ether_crc32_be(enm->enm_addrlo,
2227 			    ETHER_ADDR_LEN);
2228 
2229 			mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
2230 
2231 			ETHER_NEXT_MULTI(step, enm);
2232 		}
2233 	}
2234 
2235 	CSR_WRITE_4(sc, AGE_MAR0, mchash[0]);
2236 	CSR_WRITE_4(sc, AGE_MAR1, mchash[1]);
2237 	CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
2238 }
2239