xref: /openbsd-src/sys/dev/pci/if_age.c (revision 4c1e55dc91edd6e69ccc60ce855900fbc12cf34f)
1 /*	$OpenBSD: if_age.c,v 1.19 2011/10/19 05:23:44 kevlo Exp $	*/
2 
3 /*-
4  * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice unmodified, this list of conditions, and the following
12  *    disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 /* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */
31 
32 #include "bpfilter.h"
33 #include "vlan.h"
34 
35 #include <sys/param.h>
36 #include <sys/endian.h>
37 #include <sys/systm.h>
38 #include <sys/types.h>
39 #include <sys/sockio.h>
40 #include <sys/mbuf.h>
41 #include <sys/queue.h>
42 #include <sys/kernel.h>
43 #include <sys/device.h>
44 #include <sys/timeout.h>
45 #include <sys/socket.h>
46 
47 #include <machine/bus.h>
48 
49 #include <net/if.h>
50 #include <net/if_dl.h>
51 #include <net/if_media.h>
52 
53 #ifdef INET
54 #include <netinet/in.h>
55 #include <netinet/in_systm.h>
56 #include <netinet/in_var.h>
57 #include <netinet/ip.h>
58 #include <netinet/if_ether.h>
59 #endif
60 
61 #include <net/if_types.h>
62 #include <net/if_vlan_var.h>
63 
64 #if NBPFILTER > 0
65 #include <net/bpf.h>
66 #endif
67 
68 #include <dev/rndvar.h>
69 
70 #include <dev/mii/mii.h>
71 #include <dev/mii/miivar.h>
72 
73 #include <dev/pci/pcireg.h>
74 #include <dev/pci/pcivar.h>
75 #include <dev/pci/pcidevs.h>
76 
77 #include <dev/pci/if_agereg.h>
78 
79 int	age_match(struct device *, void *, void *);
80 void	age_attach(struct device *, struct device *, void *);
81 int	age_detach(struct device *, int);
82 
83 int	age_miibus_readreg(struct device *, int, int);
84 void	age_miibus_writereg(struct device *, int, int, int);
85 void	age_miibus_statchg(struct device *);
86 
87 int	age_init(struct ifnet *);
88 int	age_ioctl(struct ifnet *, u_long, caddr_t);
89 void	age_start(struct ifnet *);
90 void	age_watchdog(struct ifnet *);
91 void	age_mediastatus(struct ifnet *, struct ifmediareq *);
92 int	age_mediachange(struct ifnet *);
93 
94 int	age_intr(void *);
95 int	age_dma_alloc(struct age_softc *);
96 void	age_dma_free(struct age_softc *);
97 void	age_get_macaddr(struct age_softc *);
98 void	age_phy_reset(struct age_softc *);
99 
100 int	age_encap(struct age_softc *, struct mbuf **);
101 void	age_init_tx_ring(struct age_softc *);
102 int	age_init_rx_ring(struct age_softc *);
103 void	age_init_rr_ring(struct age_softc *);
104 void	age_init_cmb_block(struct age_softc *);
105 void	age_init_smb_block(struct age_softc *);
106 int	age_newbuf(struct age_softc *, struct age_rxdesc *);
107 void	age_mac_config(struct age_softc *);
108 void	age_txintr(struct age_softc *, int);
109 void	age_rxeof(struct age_softc *sc, struct rx_rdesc *);
110 void	age_rxintr(struct age_softc *, int);
111 void	age_tick(void *);
112 void	age_reset(struct age_softc *);
113 void	age_stop(struct age_softc *);
114 void	age_stats_update(struct age_softc *);
115 void	age_stop_txmac(struct age_softc *);
116 void	age_stop_rxmac(struct age_softc *);
117 void	age_rxvlan(struct age_softc *sc);
118 void	age_iff(struct age_softc *);
119 
120 const struct pci_matchid age_devices[] = {
121 	{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_L1 }
122 };
123 
124 struct cfattach age_ca = {
125 	sizeof (struct age_softc), age_match, age_attach
126 };
127 
128 struct cfdriver age_cd = {
129 	 NULL, "age", DV_IFNET
130 };
131 
132 int agedebug = 0;
133 #define	DPRINTF(x)	do { if (agedebug) printf x; } while (0)
134 
135 #define AGE_CSUM_FEATURES	(M_TCP_CSUM_OUT | M_UDP_CSUM_OUT)
136 
137 int
138 age_match(struct device *dev, void *match, void *aux)
139 {
140 	 return pci_matchbyid((struct pci_attach_args *)aux, age_devices,
141 	     sizeof (age_devices) / sizeof (age_devices[0]));
142 }
143 
144 void
145 age_attach(struct device *parent, struct device *self, void *aux)
146 {
147 	struct age_softc *sc = (struct age_softc *)self;
148 	struct pci_attach_args *pa = aux;
149 	pci_chipset_tag_t pc = pa->pa_pc;
150 	pci_intr_handle_t ih;
151 	const char *intrstr;
152 	struct ifnet *ifp;
153 	pcireg_t memtype;
154 	int error = 0;
155 
156 	/*
157 	 * Allocate IO memory
158 	 */
159 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, AGE_PCIR_BAR);
160 	if (pci_mapreg_map(pa, AGE_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
161 	    &sc->sc_mem_bh, NULL, &sc->sc_mem_size, 0)) {
162 		printf(": can't map mem space\n");
163 		return;
164 	}
165 
166 	if (pci_intr_map_msi(pa, &ih) != 0 && pci_intr_map(pa, &ih) != 0) {
167 		printf(": can't map interrupt\n");
168 		goto fail;
169 	}
170 
171 	/*
172 	 * Allocate IRQ
173 	 */
174 	intrstr = pci_intr_string(pc, ih);
175 	sc->sc_irq_handle = pci_intr_establish(pc, ih, IPL_NET, age_intr, sc,
176 	    sc->sc_dev.dv_xname);
177 	if (sc->sc_irq_handle == NULL) {
178 		printf(": could not establish interrupt");
179 		if (intrstr != NULL)
180 			printf(" at %s", intrstr);
181 		printf("\n");
182 		goto fail;
183 	}
184 	printf(": %s", intrstr);
185 
186 	sc->sc_dmat = pa->pa_dmat;
187 	sc->sc_pct = pa->pa_pc;
188 	sc->sc_pcitag = pa->pa_tag;
189 
190 	/* Set PHY address. */
191 	sc->age_phyaddr = AGE_PHY_ADDR;
192 
193 	/* Reset PHY. */
194 	age_phy_reset(sc);
195 
196 	/* Reset the ethernet controller. */
197 	age_reset(sc);
198 
199 	/* Get PCI and chip id/revision. */
200 	sc->age_rev = PCI_REVISION(pa->pa_class);
201 	sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >>
202 	    MASTER_CHIP_REV_SHIFT;
203 	if (agedebug) {
204 		printf("%s: PCI device revision : 0x%04x\n",
205 		    sc->sc_dev.dv_xname, sc->age_rev);
206 		printf("%s: Chip id/revision : 0x%04x\n",
207 		    sc->sc_dev.dv_xname, sc->age_chip_rev);
208 	}
209 
210 	if (agedebug) {
211 		printf("%s: %d Tx FIFO, %d Rx FIFO\n", sc->sc_dev.dv_xname,
212 		    CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN),
213 		    CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN));
214 	}
215 
216 	/* Set max allowable DMA size. */
217 	sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128;
218 	sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128;
219 
220 	/* Allocate DMA stuffs */
221 	error = age_dma_alloc(sc);
222 	if (error)
223 		goto fail;
224 
225 	/* Load station address. */
226 	age_get_macaddr(sc);
227 
228 	ifp = &sc->sc_arpcom.ac_if;
229 	ifp->if_softc = sc;
230 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
231 	ifp->if_ioctl = age_ioctl;
232 	ifp->if_start = age_start;
233 	ifp->if_watchdog = age_watchdog;
234 	ifp->if_baudrate = IF_Gbps(1);
235 	IFQ_SET_MAXLEN(&ifp->if_snd, AGE_TX_RING_CNT - 1);
236 	IFQ_SET_READY(&ifp->if_snd);
237 	bcopy(sc->age_eaddr, sc->sc_arpcom.ac_enaddr, ETHER_ADDR_LEN);
238 	bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
239 
240 	ifp->if_capabilities = IFCAP_VLAN_MTU;
241 
242 #ifdef AGE_CHECKSUM
243 	ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 |
244 				IFCAP_CSUM_UDPv4;
245 #endif
246 
247 #if NVLAN > 0
248 	ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING;
249 #endif
250 
251 	printf(", address %s\n", ether_sprintf(sc->sc_arpcom.ac_enaddr));
252 
253 	/* Set up MII bus. */
254 	sc->sc_miibus.mii_ifp = ifp;
255 	sc->sc_miibus.mii_readreg = age_miibus_readreg;
256 	sc->sc_miibus.mii_writereg = age_miibus_writereg;
257 	sc->sc_miibus.mii_statchg = age_miibus_statchg;
258 
259 	ifmedia_init(&sc->sc_miibus.mii_media, 0, age_mediachange,
260 	    age_mediastatus);
261 	mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY,
262 	   MII_OFFSET_ANY, MIIF_DOPAUSE);
263 
264 	if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) {
265 		printf("%s: no PHY found!\n", sc->sc_dev.dv_xname);
266 		ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL,
267 		    0, NULL);
268 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL);
269 	} else
270 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO);
271 
272 	if_attach(ifp);
273 	ether_ifattach(ifp);
274 
275 	timeout_set(&sc->age_tick_ch, age_tick, sc);
276 
277 	return;
278 fail:
279 	age_dma_free(sc);
280 	if (sc->sc_irq_handle != NULL)
281 		pci_intr_disestablish(pc, sc->sc_irq_handle);
282 	if (sc->sc_mem_size)
283 		bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
284 }
285 
286 int
287 age_detach(struct device *self, int flags)
288 {
289 	struct age_softc *sc = (struct age_softc *)self;
290 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
291 	int s;
292 
293 	s = splnet();
294 	age_stop(sc);
295 	splx(s);
296 
297 	mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
298 
299 	/* Delete all remaining media. */
300 	ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
301 
302 	ether_ifdetach(ifp);
303 	if_detach(ifp);
304 	age_dma_free(sc);
305 
306 	if (sc->sc_irq_handle != NULL) {
307 		pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
308 		sc->sc_irq_handle = NULL;
309 	}
310 
311 	return (0);
312 }
313 
314 /*
315  *	Read a PHY register on the MII of the L1.
316  */
317 int
318 age_miibus_readreg(struct device *dev, int phy, int reg)
319 {
320 	struct age_softc *sc = (struct age_softc *)dev;
321 	uint32_t v;
322 	int i;
323 
324 	if (phy != sc->age_phyaddr)
325 		return (0);
326 
327 	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
328 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
329 	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
330 		DELAY(1);
331 		v = CSR_READ_4(sc, AGE_MDIO);
332 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
333 			break;
334 	}
335 
336 	if (i == 0) {
337 		printf("%s: phy read timeout: phy %d, reg %d\n",
338 			sc->sc_dev.dv_xname, phy, reg);
339 		return (0);
340 	}
341 
342 	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
343 }
344 
345 /*
346  * 	Write a PHY register on the MII of the L1.
347  */
348 void
349 age_miibus_writereg(struct device *dev, int phy, int reg, int val)
350 {
351 	struct age_softc *sc = (struct age_softc *)dev;
352 	uint32_t v;
353 	int i;
354 
355 	if (phy != sc->age_phyaddr)
356 		return;
357 
358 	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
359 	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
360 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
361 
362 	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
363 		DELAY(1);
364 		v = CSR_READ_4(sc, AGE_MDIO);
365 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
366 			break;
367 	}
368 
369 	if (i == 0) {
370 		printf("%s: phy write timeout: phy %d, reg %d\n",
371 		    sc->sc_dev.dv_xname, phy, reg);
372 	}
373 }
374 
375 /*
376  *	Callback from MII layer when media changes.
377  */
378 void
379 age_miibus_statchg(struct device *dev)
380 {
381 	struct age_softc *sc = (struct age_softc *)dev;
382 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
383 	struct mii_data *mii = &sc->sc_miibus;
384 
385 	if ((ifp->if_flags & IFF_RUNNING) == 0)
386 		return;
387 
388 	sc->age_flags &= ~AGE_FLAG_LINK;
389 	if ((mii->mii_media_status & IFM_AVALID) != 0) {
390 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
391 		case IFM_10_T:
392 		case IFM_100_TX:
393 		case IFM_1000_T:
394 			sc->age_flags |= AGE_FLAG_LINK;
395 			break;
396 		default:
397 			break;
398 		}
399 	}
400 
401 	/* Stop Rx/Tx MACs. */
402 	age_stop_rxmac(sc);
403 	age_stop_txmac(sc);
404 
405 	/* Program MACs with resolved speed/duplex/flow-control. */
406 	if ((sc->age_flags & AGE_FLAG_LINK) != 0) {
407 		uint32_t reg;
408 
409 		age_mac_config(sc);
410 		reg = CSR_READ_4(sc, AGE_MAC_CFG);
411 		/* Restart DMA engine and Tx/Rx MAC. */
412 		CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) |
413 		    DMA_CFG_RD_ENB | DMA_CFG_WR_ENB);
414 		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
415 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
416 	}
417 }
418 
419 /*
420  *	Get the current interface media status.
421  */
422 void
423 age_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
424 {
425 	struct age_softc *sc = ifp->if_softc;
426 	struct mii_data *mii = &sc->sc_miibus;
427 
428 	mii_pollstat(mii);
429 	ifmr->ifm_status = mii->mii_media_status;
430 	ifmr->ifm_active = mii->mii_media_active;
431 }
432 
433 /*
434  *	Set hardware to newly-selected media.
435  */
436 int
437 age_mediachange(struct ifnet *ifp)
438 {
439 	struct age_softc *sc = ifp->if_softc;
440 	struct mii_data *mii = &sc->sc_miibus;
441 	int error;
442 
443 	if (mii->mii_instance != 0) {
444 		struct mii_softc *miisc;
445 
446 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
447 			mii_phy_reset(miisc);
448 	}
449 	error = mii_mediachg(mii);
450 
451 	return (error);
452 }
453 
454 int
455 age_intr(void *arg)
456 {
457         struct age_softc *sc = arg;
458         struct ifnet *ifp = &sc->sc_arpcom.ac_if;
459 	struct cmb *cmb;
460         uint32_t status;
461 
462 	status = CSR_READ_4(sc, AGE_INTR_STATUS);
463 	if (status == 0 || (status & AGE_INTRS) == 0)
464 		return (0);
465 
466 	/* Disable interrupts. */
467 	CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
468 
469 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
470 	    sc->age_cdata.age_cmb_block_map->dm_mapsize,
471 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
472 	cmb = sc->age_rdata.age_cmb_block;
473 	status = letoh32(cmb->intr_status);
474 	if ((status & AGE_INTRS) == 0)
475 		goto back;
476 
477 	sc->age_tpd_cons = (letoh32(cmb->tpd_cons) & TPD_CONS_MASK) >>
478 	    TPD_CONS_SHIFT;
479 	sc->age_rr_prod = (letoh32(cmb->rprod_cons) & RRD_PROD_MASK) >>
480 	    RRD_PROD_SHIFT;
481 	/* Let hardware know CMB was served. */
482 	cmb->intr_status = 0;
483 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
484 	    sc->age_cdata.age_cmb_block_map->dm_mapsize,
485 	    BUS_DMASYNC_PREWRITE);
486 
487 	if (ifp->if_flags & IFF_RUNNING) {
488 		if (status & INTR_CMB_RX)
489 			age_rxintr(sc, sc->age_rr_prod);
490 
491 		if (status & INTR_CMB_TX)
492 			age_txintr(sc, sc->age_tpd_cons);
493 
494 		if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) {
495 			if (status & INTR_DMA_RD_TO_RST)
496 				printf("%s: DMA read error! -- resetting\n",
497 				    sc->sc_dev.dv_xname);
498 			if (status & INTR_DMA_WR_TO_RST)
499 				printf("%s: DMA write error! -- resetting\n",
500 				    sc->sc_dev.dv_xname);
501 			age_init(ifp);
502 		}
503 
504 		age_start(ifp);
505 
506 		if (status & INTR_SMB)
507 			age_stats_update(sc);
508 	}
509 
510 	/* Check whether CMB was updated while serving Tx/Rx/SMB handler. */
511 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
512 	    sc->age_cdata.age_cmb_block_map->dm_mapsize,
513 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
514 
515 back:
516 	/* Re-enable interrupts. */
517 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
518 
519 	return (1);
520 }
521 
522 void
523 age_get_macaddr(struct age_softc *sc)
524 {
525 	uint32_t ea[2], reg;
526 	int i, vpdc;
527 
528 	reg = CSR_READ_4(sc, AGE_SPI_CTRL);
529 	if ((reg & SPI_VPD_ENB) != 0) {
530 		/* Get VPD stored in TWSI EEPROM. */
531 		reg &= ~SPI_VPD_ENB;
532 		CSR_WRITE_4(sc, AGE_SPI_CTRL, reg);
533 	}
534 
535 	if (pci_get_capability(sc->sc_pct, sc->sc_pcitag,
536 	    PCI_CAP_VPD, &vpdc, NULL)) {
537 		/*
538 		 * PCI VPD capability found, let TWSI reload EEPROM.
539 		 * This will set Ethernet address of controller.
540 		 */
541 		CSR_WRITE_4(sc, AGE_TWSI_CTRL, CSR_READ_4(sc, AGE_TWSI_CTRL) |
542 		    TWSI_CTRL_SW_LD_START);
543 		for (i = 100; i > 0; i--) {
544 			DELAY(1000);
545 			reg = CSR_READ_4(sc, AGE_TWSI_CTRL);
546 			if ((reg & TWSI_CTRL_SW_LD_START) == 0)
547 				break;
548 		}
549 		if (i == 0)
550 			printf("%s: reloading EEPROM timeout!\n",
551 			    sc->sc_dev.dv_xname);
552 	} else {
553 		if (agedebug)
554 			printf("%s: PCI VPD capability not found!\n",
555 			    sc->sc_dev.dv_xname);
556 	}
557 
558 	ea[0] = CSR_READ_4(sc, AGE_PAR0);
559 	ea[1] = CSR_READ_4(sc, AGE_PAR1);
560 	sc->age_eaddr[0] = (ea[1] >> 8) & 0xFF;
561 	sc->age_eaddr[1] = (ea[1] >> 0) & 0xFF;
562 	sc->age_eaddr[2] = (ea[0] >> 24) & 0xFF;
563 	sc->age_eaddr[3] = (ea[0] >> 16) & 0xFF;
564 	sc->age_eaddr[4] = (ea[0] >> 8) & 0xFF;
565 	sc->age_eaddr[5] = (ea[0] >> 0) & 0xFF;
566 }
567 
568 void
569 age_phy_reset(struct age_softc *sc)
570 {
571 	uint16_t reg, pn;
572 	int i, linkup;
573 
574 	/* Reset PHY. */
575 	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST);
576 	DELAY(2000);
577 	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR);
578 	DELAY(2000);
579 
580 #define	ATPHY_DBG_ADDR		0x1D
581 #define	ATPHY_DBG_DATA		0x1E
582 #define	ATPHY_CDTC		0x16
583 #define	PHY_CDTC_ENB		0x0001
584 #define	PHY_CDTC_POFF		8
585 #define	ATPHY_CDTS		0x1C
586 #define	PHY_CDTS_STAT_OK	0x0000
587 #define	PHY_CDTS_STAT_SHORT	0x0100
588 #define	PHY_CDTS_STAT_OPEN	0x0200
589 #define	PHY_CDTS_STAT_INVAL	0x0300
590 #define	PHY_CDTS_STAT_MASK	0x0300
591 
592 	/* Check power saving mode. Magic from Linux. */
593 	age_miibus_writereg(&sc->sc_dev, sc->age_phyaddr, MII_BMCR, BMCR_RESET);
594 	for (linkup = 0, pn = 0; pn < 4; pn++) {
595 		age_miibus_writereg(&sc->sc_dev, sc->age_phyaddr, ATPHY_CDTC,
596 		    (pn << PHY_CDTC_POFF) | PHY_CDTC_ENB);
597 		for (i = 200; i > 0; i--) {
598 			DELAY(1000);
599 			reg = age_miibus_readreg(&sc->sc_dev, sc->age_phyaddr,
600 			    ATPHY_CDTC);
601 			if ((reg & PHY_CDTC_ENB) == 0)
602 				break;
603 		}
604 		DELAY(1000);
605 		reg = age_miibus_readreg(&sc->sc_dev, sc->age_phyaddr,
606 		    ATPHY_CDTS);
607 		if ((reg & PHY_CDTS_STAT_MASK) != PHY_CDTS_STAT_OPEN) {
608 			linkup++;
609 			break;
610 		}
611 	}
612 	age_miibus_writereg(&sc->sc_dev, sc->age_phyaddr, MII_BMCR,
613 	    BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
614 	if (linkup == 0) {
615 		age_miibus_writereg(&sc->sc_dev, sc->age_phyaddr,
616 		    ATPHY_DBG_ADDR, 0);
617 		age_miibus_writereg(&sc->sc_dev, sc->age_phyaddr,
618 		    ATPHY_DBG_DATA, 0x124E);
619 		age_miibus_writereg(&sc->sc_dev, sc->age_phyaddr,
620 		    ATPHY_DBG_ADDR, 1);
621 		reg = age_miibus_readreg(&sc->sc_dev, sc->age_phyaddr,
622 		    ATPHY_DBG_DATA);
623 		age_miibus_writereg(&sc->sc_dev, sc->age_phyaddr,
624 		    ATPHY_DBG_DATA, reg | 0x03);
625 		/* XXX */
626 		DELAY(1500 * 1000);
627 		age_miibus_writereg(&sc->sc_dev, sc->age_phyaddr,
628 		    ATPHY_DBG_ADDR, 0);
629 		age_miibus_writereg(&sc->sc_dev, sc->age_phyaddr,
630 		    ATPHY_DBG_DATA, 0x024E);
631 	}
632 
633 #undef	ATPHY_DBG_ADDR
634 #undef	ATPHY_DBG_DATA
635 #undef	ATPHY_CDTC
636 #undef	PHY_CDTC_ENB
637 #undef	PHY_CDTC_POFF
638 #undef	ATPHY_CDTS
639 #undef	PHY_CDTS_STAT_OK
640 #undef	PHY_CDTS_STAT_SHORT
641 #undef	PHY_CDTS_STAT_OPEN
642 #undef	PHY_CDTS_STAT_INVAL
643 #undef	PHY_CDTS_STAT_MASK
644 }
645 
646 int
647 age_dma_alloc(struct age_softc *sc)
648 {
649 	struct age_txdesc *txd;
650 	struct age_rxdesc *rxd;
651 	int nsegs, error, i;
652 
653 	/*
654 	 * Create DMA stuffs for TX ring
655 	 */
656 	error = bus_dmamap_create(sc->sc_dmat, AGE_TX_RING_SZ, 1,
657 	    AGE_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_tx_ring_map);
658 	if (error)
659 		return (ENOBUFS);
660 
661 	/* Allocate DMA'able memory for TX ring */
662 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_TX_RING_SZ,
663 	    ETHER_ALIGN, 0, &sc->age_rdata.age_tx_ring_seg, 1,
664 	    &nsegs, BUS_DMA_WAITOK | BUS_DMA_ZERO);
665 	if (error) {
666 		printf("%s: could not allocate DMA'able memory for Tx ring.\n",
667 		    sc->sc_dev.dv_xname);
668 		return error;
669 	}
670 
671 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_tx_ring_seg,
672 	    nsegs, AGE_TX_RING_SZ, (caddr_t *)&sc->age_rdata.age_tx_ring,
673 	    BUS_DMA_NOWAIT);
674 	if (error)
675 		return (ENOBUFS);
676 
677 	/*  Load the DMA map for Tx ring. */
678 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_tx_ring_map,
679 	    sc->age_rdata.age_tx_ring, AGE_TX_RING_SZ, NULL, BUS_DMA_WAITOK);
680 	if (error) {
681 		printf("%s: could not load DMA'able memory for Tx ring.\n",
682 		    sc->sc_dev.dv_xname);
683 		bus_dmamem_free(sc->sc_dmat,
684 		    (bus_dma_segment_t *)&sc->age_rdata.age_tx_ring, 1);
685 		return error;
686 	}
687 
688 	sc->age_rdata.age_tx_ring_paddr =
689 	    sc->age_cdata.age_tx_ring_map->dm_segs[0].ds_addr;
690 
691 	/*
692 	 * Create DMA stuffs for RX ring
693 	 */
694 	error = bus_dmamap_create(sc->sc_dmat, AGE_RX_RING_SZ, 1,
695 	    AGE_RX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_ring_map);
696 	if (error)
697 		return (ENOBUFS);
698 
699 	/* Allocate DMA'able memory for RX ring */
700 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_RX_RING_SZ,
701 	    ETHER_ALIGN, 0, &sc->age_rdata.age_rx_ring_seg, 1,
702 	    &nsegs, BUS_DMA_WAITOK | BUS_DMA_ZERO);
703 	if (error) {
704 		printf("%s: could not allocate DMA'able memory for Rx ring.\n",
705 		    sc->sc_dev.dv_xname);
706 		return error;
707 	}
708 
709 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rx_ring_seg,
710 	    nsegs, AGE_RX_RING_SZ, (caddr_t *)&sc->age_rdata.age_rx_ring,
711 	    BUS_DMA_NOWAIT);
712 	if (error)
713 		return (ENOBUFS);
714 
715 	/* Load the DMA map for Rx ring. */
716 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rx_ring_map,
717 	    sc->age_rdata.age_rx_ring, AGE_RX_RING_SZ, NULL, BUS_DMA_WAITOK);
718 	if (error) {
719 		printf("%s: could not load DMA'able memory for Rx ring.\n",
720 		    sc->sc_dev.dv_xname);
721 		bus_dmamem_free(sc->sc_dmat,
722 		    (bus_dma_segment_t *)sc->age_rdata.age_rx_ring, 1);
723 		return error;
724 	}
725 
726 	sc->age_rdata.age_rx_ring_paddr =
727 	    sc->age_cdata.age_rx_ring_map->dm_segs[0].ds_addr;
728 
729 	/*
730 	 * Create DMA stuffs for RX return ring
731 	 */
732 	error = bus_dmamap_create(sc->sc_dmat, AGE_RR_RING_SZ, 1,
733 	    AGE_RR_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rr_ring_map);
734 	if (error)
735 		return (ENOBUFS);
736 
737 	/* Allocate DMA'able memory for RX return ring */
738 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_RR_RING_SZ,
739 	    ETHER_ALIGN, 0, &sc->age_rdata.age_rr_ring_seg, 1,
740 	    &nsegs, BUS_DMA_WAITOK | BUS_DMA_ZERO);
741 	if (error) {
742 		printf("%s: could not allocate DMA'able memory for Rx "
743 		    "return ring.\n", sc->sc_dev.dv_xname);
744 		return error;
745 	}
746 
747 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rr_ring_seg,
748 	    nsegs, AGE_RR_RING_SZ, (caddr_t *)&sc->age_rdata.age_rr_ring,
749 	    BUS_DMA_NOWAIT);
750 	if (error)
751 		return (ENOBUFS);
752 
753 	/*  Load the DMA map for Rx return ring. */
754 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rr_ring_map,
755 	    sc->age_rdata.age_rr_ring, AGE_RR_RING_SZ, NULL, BUS_DMA_WAITOK);
756 	if (error) {
757 		printf("%s: could not load DMA'able memory for Rx return ring."
758 		    "\n", sc->sc_dev.dv_xname);
759 		bus_dmamem_free(sc->sc_dmat,
760 		    (bus_dma_segment_t *)&sc->age_rdata.age_rr_ring, 1);
761 		return error;
762 	}
763 
764 	sc->age_rdata.age_rr_ring_paddr =
765 	    sc->age_cdata.age_rr_ring_map->dm_segs[0].ds_addr;
766 
767 	/*
768 	 * Create DMA stuffs for CMB block
769 	 */
770 	error = bus_dmamap_create(sc->sc_dmat, AGE_CMB_BLOCK_SZ, 1,
771 	    AGE_CMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
772 	    &sc->age_cdata.age_cmb_block_map);
773 	if (error)
774 		return (ENOBUFS);
775 
776 	/* Allocate DMA'able memory for CMB block */
777 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_CMB_BLOCK_SZ,
778 	    ETHER_ALIGN, 0, &sc->age_rdata.age_cmb_block_seg, 1,
779 	    &nsegs, BUS_DMA_WAITOK | BUS_DMA_ZERO);
780 	if (error) {
781 		printf("%s: could not allocate DMA'able memory for "
782 		    "CMB block\n", sc->sc_dev.dv_xname);
783 		return error;
784 	}
785 
786 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_cmb_block_seg,
787 	    nsegs, AGE_CMB_BLOCK_SZ, (caddr_t *)&sc->age_rdata.age_cmb_block,
788 	    BUS_DMA_NOWAIT);
789 	if (error)
790 		return (ENOBUFS);
791 
792 	/*  Load the DMA map for CMB block. */
793 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_cmb_block_map,
794 	    sc->age_rdata.age_cmb_block, AGE_CMB_BLOCK_SZ, NULL,
795 	    BUS_DMA_WAITOK);
796 	if (error) {
797 		printf("%s: could not load DMA'able memory for CMB block\n",
798 		    sc->sc_dev.dv_xname);
799 		bus_dmamem_free(sc->sc_dmat,
800 		    (bus_dma_segment_t *)&sc->age_rdata.age_cmb_block, 1);
801 		return error;
802 	}
803 
804 	sc->age_rdata.age_cmb_block_paddr =
805 	    sc->age_cdata.age_cmb_block_map->dm_segs[0].ds_addr;
806 
807 	/*
808 	 * Create DMA stuffs for SMB block
809 	 */
810 	error = bus_dmamap_create(sc->sc_dmat, AGE_SMB_BLOCK_SZ, 1,
811 	    AGE_SMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
812 	    &sc->age_cdata.age_smb_block_map);
813 	if (error)
814 		return (ENOBUFS);
815 
816 	/* Allocate DMA'able memory for SMB block */
817 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_SMB_BLOCK_SZ,
818 	    ETHER_ALIGN, 0, &sc->age_rdata.age_smb_block_seg, 1,
819 	    &nsegs, BUS_DMA_WAITOK | BUS_DMA_ZERO);
820 	if (error) {
821 		printf("%s: could not allocate DMA'able memory for "
822 		    "SMB block\n", sc->sc_dev.dv_xname);
823 		return error;
824 	}
825 
826 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_smb_block_seg,
827 	    nsegs, AGE_SMB_BLOCK_SZ, (caddr_t *)&sc->age_rdata.age_smb_block,
828 	    BUS_DMA_NOWAIT);
829 	if (error)
830 		return (ENOBUFS);
831 
832 	/*  Load the DMA map for SMB block */
833 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_smb_block_map,
834 	    sc->age_rdata.age_smb_block, AGE_SMB_BLOCK_SZ, NULL,
835 	    BUS_DMA_WAITOK);
836 	if (error) {
837 		printf("%s: could not load DMA'able memory for SMB block\n",
838 		    sc->sc_dev.dv_xname);
839 		bus_dmamem_free(sc->sc_dmat,
840 		    (bus_dma_segment_t *)&sc->age_rdata.age_smb_block, 1);
841 		return error;
842 	}
843 
844 	sc->age_rdata.age_smb_block_paddr =
845 	    sc->age_cdata.age_smb_block_map->dm_segs[0].ds_addr;
846 
847 	/* Create DMA maps for Tx buffers. */
848 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
849 		txd = &sc->age_cdata.age_txdesc[i];
850 		txd->tx_m = NULL;
851 		txd->tx_dmamap = NULL;
852 		error = bus_dmamap_create(sc->sc_dmat, AGE_TSO_MAXSIZE,
853 		    AGE_MAXTXSEGS, AGE_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,
854 		    &txd->tx_dmamap);
855 		if (error) {
856 			printf("%s: could not create Tx dmamap.\n",
857 			    sc->sc_dev.dv_xname);
858 			return error;
859 		}
860 	}
861 
862 	/* Create DMA maps for Rx buffers. */
863 	error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
864 	    BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_sparemap);
865 	if (error) {
866 		printf("%s: could not create spare Rx dmamap.\n",
867 		    sc->sc_dev.dv_xname);
868 		return error;
869 	}
870 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
871 		rxd = &sc->age_cdata.age_rxdesc[i];
872 		rxd->rx_m = NULL;
873 		rxd->rx_dmamap = NULL;
874 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
875 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &rxd->rx_dmamap);
876 		if (error) {
877 			printf("%s: could not create Rx dmamap.\n",
878 			    sc->sc_dev.dv_xname);
879 			return error;
880 		}
881 	}
882 
883 	return (0);
884 }
885 
886 void
887 age_dma_free(struct age_softc *sc)
888 {
889 	struct age_txdesc *txd;
890 	struct age_rxdesc *rxd;
891 	int i;
892 
893 	/* Tx buffers */
894 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
895 		txd = &sc->age_cdata.age_txdesc[i];
896 		if (txd->tx_dmamap != NULL) {
897 			bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
898 			txd->tx_dmamap = NULL;
899 		}
900 	}
901 	/* Rx buffers */
902 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
903 		rxd = &sc->age_cdata.age_rxdesc[i];
904 		if (rxd->rx_dmamap != NULL) {
905 			bus_dmamap_destroy(sc->sc_dmat, rxd->rx_dmamap);
906 			rxd->rx_dmamap = NULL;
907 		}
908 	}
909 	if (sc->age_cdata.age_rx_sparemap != NULL) {
910 		bus_dmamap_destroy(sc->sc_dmat, sc->age_cdata.age_rx_sparemap);
911 		sc->age_cdata.age_rx_sparemap = NULL;
912 	}
913 
914 	/* Tx ring. */
915 	if (sc->age_cdata.age_tx_ring_map != NULL)
916 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_tx_ring_map);
917 	if (sc->age_cdata.age_tx_ring_map != NULL &&
918 	    sc->age_rdata.age_tx_ring != NULL)
919 		bus_dmamem_free(sc->sc_dmat,
920 		    (bus_dma_segment_t *)sc->age_rdata.age_tx_ring, 1);
921 	sc->age_rdata.age_tx_ring = NULL;
922 	sc->age_cdata.age_tx_ring_map = NULL;
923 
924 	/* Rx ring. */
925 	if (sc->age_cdata.age_rx_ring_map != NULL)
926 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rx_ring_map);
927 	if (sc->age_cdata.age_rx_ring_map != NULL &&
928 	    sc->age_rdata.age_rx_ring != NULL)
929 		bus_dmamem_free(sc->sc_dmat,
930 		    (bus_dma_segment_t *)sc->age_rdata.age_rx_ring, 1);
931 	sc->age_rdata.age_rx_ring = NULL;
932 	sc->age_cdata.age_rx_ring_map = NULL;
933 
934 	/* Rx return ring. */
935 	if (sc->age_cdata.age_rr_ring_map != NULL)
936 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rr_ring_map);
937 	if (sc->age_cdata.age_rr_ring_map != NULL &&
938 	    sc->age_rdata.age_rr_ring != NULL)
939 		bus_dmamem_free(sc->sc_dmat,
940 		    (bus_dma_segment_t *)sc->age_rdata.age_rr_ring, 1);
941 	sc->age_rdata.age_rr_ring = NULL;
942 	sc->age_cdata.age_rr_ring_map = NULL;
943 
944 	/* CMB block */
945 	if (sc->age_cdata.age_cmb_block_map != NULL)
946 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_cmb_block_map);
947 	if (sc->age_cdata.age_cmb_block_map != NULL &&
948 	    sc->age_rdata.age_cmb_block != NULL)
949 		bus_dmamem_free(sc->sc_dmat,
950 		    (bus_dma_segment_t *)sc->age_rdata.age_cmb_block, 1);
951 	sc->age_rdata.age_cmb_block = NULL;
952 	sc->age_cdata.age_cmb_block_map = NULL;
953 
954 	/* SMB block */
955 	if (sc->age_cdata.age_smb_block_map != NULL)
956 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_smb_block_map);
957 	if (sc->age_cdata.age_smb_block_map != NULL &&
958 	    sc->age_rdata.age_smb_block != NULL)
959 		bus_dmamem_free(sc->sc_dmat,
960 		    (bus_dma_segment_t *)sc->age_rdata.age_smb_block, 1);
961 	sc->age_rdata.age_smb_block = NULL;
962 	sc->age_cdata.age_smb_block_map = NULL;
963 }
964 
965 void
966 age_start(struct ifnet *ifp)
967 {
968         struct age_softc *sc = ifp->if_softc;
969         struct mbuf *m_head;
970 	int enq;
971 
972 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
973 		return;
974 	if ((sc->age_flags & AGE_FLAG_LINK) == 0)
975 		return;
976 	if (IFQ_IS_EMPTY(&ifp->if_snd))
977 		return;
978 
979 	enq = 0;
980 	for (;;) {
981 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
982 		if (m_head == NULL)
983 			break;
984 
985 		/*
986 		 * Pack the data into the transmit ring. If we
987 		 * don't have room, set the OACTIVE flag and wait
988 		 * for the NIC to drain the ring.
989 		 */
990 		if (age_encap(sc, &m_head)) {
991 			if (m_head == NULL)
992 				ifp->if_oerrors++;
993 			else {
994 				IF_PREPEND(&ifp->if_snd, m_head);
995 				ifp->if_flags |= IFF_OACTIVE;
996 			}
997 			break;
998 		}
999 		enq = 1;
1000 
1001 #if NBPFILTER > 0
1002 		/*
1003 		 * If there's a BPF listener, bounce a copy of this frame
1004 		 * to him.
1005 		 */
1006 		if (ifp->if_bpf != NULL)
1007 			bpf_mtap_ether(ifp->if_bpf, m_head, BPF_DIRECTION_OUT);
1008 #endif
1009 	}
1010 
1011 	if (enq) {
1012 		/* Update mbox. */
1013 		AGE_COMMIT_MBOX(sc);
1014 		/* Set a timeout in case the chip goes out to lunch. */
1015 		ifp->if_timer = AGE_TX_TIMEOUT;
1016 	}
1017 }
1018 
1019 void
1020 age_watchdog(struct ifnet *ifp)
1021 {
1022 	struct age_softc *sc = ifp->if_softc;
1023 
1024 	if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
1025 		printf("%s: watchdog timeout (missed link)\n",
1026 		    sc->sc_dev.dv_xname);
1027 		ifp->if_oerrors++;
1028 		age_init(ifp);
1029 		return;
1030 	}
1031 
1032 	if (sc->age_cdata.age_tx_cnt == 0) {
1033 		printf("%s: watchdog timeout (missed Tx interrupts) "
1034 		    "-- recovering\n", sc->sc_dev.dv_xname);
1035 		age_start(ifp);
1036 		return;
1037 	}
1038 
1039 	printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
1040 	ifp->if_oerrors++;
1041 	age_init(ifp);
1042 	age_start(ifp);
1043 }
1044 
1045 int
1046 age_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1047 {
1048 	struct age_softc *sc = ifp->if_softc;
1049 	struct mii_data *mii = &sc->sc_miibus;
1050 	struct ifaddr *ifa = (struct ifaddr *)data;
1051 	struct ifreq *ifr = (struct ifreq *)data;
1052 	int s, error = 0;
1053 
1054 	s = splnet();
1055 
1056 	switch (cmd) {
1057 	case SIOCSIFADDR:
1058 		ifp->if_flags |= IFF_UP;
1059 		if (!(ifp->if_flags & IFF_RUNNING))
1060 			 age_init(ifp);
1061 #ifdef INET
1062 		if (ifa->ifa_addr->sa_family == AF_INET)
1063 			arp_ifinit(&sc->sc_arpcom, ifa);
1064 #endif
1065 		break;
1066 
1067 	case SIOCSIFFLAGS:
1068 		if (ifp->if_flags & IFF_UP) {
1069 			if (ifp->if_flags & IFF_RUNNING)
1070 				error = ENETRESET;
1071 			else
1072 				age_init(ifp);
1073 		} else {
1074 			if (ifp->if_flags & IFF_RUNNING)
1075 				age_stop(sc);
1076 		}
1077 		break;
1078 
1079 	case SIOCSIFMEDIA:
1080 	case SIOCGIFMEDIA:
1081 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1082 		break;
1083 
1084 	default:
1085 		error = ether_ioctl(ifp, &sc->sc_arpcom, cmd, data);
1086 		break;
1087 	}
1088 
1089 	if (error == ENETRESET) {
1090 		if (ifp->if_flags & IFF_RUNNING)
1091 			age_iff(sc);
1092 		error = 0;
1093 	}
1094 
1095 	splx(s);
1096 	return (error);
1097 }
1098 
1099 void
1100 age_mac_config(struct age_softc *sc)
1101 {
1102 	struct mii_data *mii = &sc->sc_miibus;
1103 	uint32_t reg;
1104 
1105 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1106 	reg &= ~MAC_CFG_FULL_DUPLEX;
1107 	reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC);
1108 	reg &= ~MAC_CFG_SPEED_MASK;
1109 
1110 	/* Reprogram MAC with resolved speed/duplex. */
1111 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1112 	case IFM_10_T:
1113 	case IFM_100_TX:
1114 		reg |= MAC_CFG_SPEED_10_100;
1115 		break;
1116 	case IFM_1000_T:
1117 		reg |= MAC_CFG_SPEED_1000;
1118 		break;
1119 	}
1120 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1121 		reg |= MAC_CFG_FULL_DUPLEX;
1122 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1123 			reg |= MAC_CFG_TX_FC;
1124 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1125 			reg |= MAC_CFG_RX_FC;
1126 	}
1127 
1128 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1129 }
1130 
1131 int
1132 age_encap(struct age_softc *sc, struct mbuf **m_head)
1133 {
1134 	struct age_txdesc *txd, *txd_last;
1135 	struct tx_desc *desc;
1136 	struct mbuf *m;
1137 	bus_dmamap_t map;
1138 	uint32_t cflags, poff, vtag;
1139 	int error, i, prod;
1140 
1141 	m = *m_head;
1142 	cflags = vtag = 0;
1143 	poff = 0;
1144 
1145 	prod = sc->age_cdata.age_tx_prod;
1146 	txd = &sc->age_cdata.age_txdesc[prod];
1147 	txd_last = txd;
1148 	map = txd->tx_dmamap;
1149 
1150 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head, BUS_DMA_NOWAIT);
1151 	if (error != 0 && error != EFBIG)
1152 		goto drop;
1153 	if (error != 0) {
1154 		if (m_defrag(*m_head, M_DONTWAIT)) {
1155 			error = ENOBUFS;
1156 			goto drop;
1157 		}
1158 		error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head,
1159 		    BUS_DMA_NOWAIT);
1160 		if (error != 0)
1161 			goto drop;
1162 	}
1163 
1164 	/* Check descriptor overrun. */
1165 	if (sc->age_cdata.age_tx_cnt + map->dm_nsegs >= AGE_TX_RING_CNT - 2) {
1166 		bus_dmamap_unload(sc->sc_dmat, map);
1167 		return (ENOBUFS);
1168 	}
1169 
1170 	m = *m_head;
1171 	/* Configure Tx IP/TCP/UDP checksum offload. */
1172 	if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) {
1173 		cflags |= AGE_TD_CSUM;
1174 		if ((m->m_pkthdr.csum_flags & M_TCP_CSUM_OUT) != 0)
1175 			cflags |= AGE_TD_TCPCSUM;
1176 		if ((m->m_pkthdr.csum_flags & M_UDP_CSUM_OUT) != 0)
1177 			cflags |= AGE_TD_UDPCSUM;
1178 		/* Set checksum start offset. */
1179 		cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT);
1180 	}
1181 
1182 #if NVLAN > 0
1183 	/* Configure VLAN hardware tag insertion. */
1184 	if (m->m_flags & M_VLANTAG) {
1185 		vtag = AGE_TX_VLAN_TAG(m->m_pkthdr.ether_vtag);
1186 		vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK);
1187 		cflags |= AGE_TD_INSERT_VLAN_TAG;
1188 	}
1189 #endif
1190 
1191 	desc = NULL;
1192 	for (i = 0; i < map->dm_nsegs; i++) {
1193 		desc = &sc->age_rdata.age_tx_ring[prod];
1194 		desc->addr = htole64(map->dm_segs[i].ds_addr);
1195 		desc->len =
1196 		    htole32(AGE_TX_BYTES(map->dm_segs[i].ds_len) | vtag);
1197 		desc->flags = htole32(cflags);
1198 		sc->age_cdata.age_tx_cnt++;
1199 		AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1200 	}
1201 
1202 	/* Update producer index. */
1203 	sc->age_cdata.age_tx_prod = prod;
1204 
1205 	/* Set EOP on the last descriptor. */
1206 	prod = (prod + AGE_TX_RING_CNT - 1) % AGE_TX_RING_CNT;
1207 	desc = &sc->age_rdata.age_tx_ring[prod];
1208 	desc->flags |= htole32(AGE_TD_EOP);
1209 
1210 	/* Swap dmamap of the first and the last. */
1211 	txd = &sc->age_cdata.age_txdesc[prod];
1212 	map = txd_last->tx_dmamap;
1213 	txd_last->tx_dmamap = txd->tx_dmamap;
1214 	txd->tx_dmamap = map;
1215 	txd->tx_m = m;
1216 
1217 	/* Sync descriptors. */
1218 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1219 	    BUS_DMASYNC_PREWRITE);
1220 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
1221 	    sc->age_cdata.age_tx_ring_map->dm_mapsize,
1222 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1223 
1224 	return (0);
1225 
1226  drop:
1227 	m_freem(*m_head);
1228 	*m_head = NULL;
1229 	return (error);
1230 }
1231 
1232 void
1233 age_txintr(struct age_softc *sc, int tpd_cons)
1234 {
1235 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1236 	struct age_txdesc *txd;
1237 	int cons, prog;
1238 
1239 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
1240 	    sc->age_cdata.age_tx_ring_map->dm_mapsize,
1241 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1242 
1243 	/*
1244 	 * Go through our Tx list and free mbufs for those
1245 	 * frames which have been transmitted.
1246 	 */
1247 	cons = sc->age_cdata.age_tx_cons;
1248 	for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) {
1249 		if (sc->age_cdata.age_tx_cnt <= 0)
1250 			break;
1251 		prog++;
1252 		ifp->if_flags &= ~IFF_OACTIVE;
1253 		sc->age_cdata.age_tx_cnt--;
1254 		txd = &sc->age_cdata.age_txdesc[cons];
1255 		/*
1256 		 * Clear Tx descriptors, it's not required but would
1257 		 * help debugging in case of Tx issues.
1258 		 */
1259 		txd->tx_desc->addr = 0;
1260 		txd->tx_desc->len = 0;
1261 		txd->tx_desc->flags = 0;
1262 
1263 		if (txd->tx_m == NULL)
1264 			continue;
1265 		/* Reclaim transmitted mbufs. */
1266 		bus_dmamap_sync(sc->sc_dmat, txd->tx_dmamap, 0,
1267 		    txd->tx_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1268 		bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1269 		m_freem(txd->tx_m);
1270 		txd->tx_m = NULL;
1271 	}
1272 
1273 	if (prog > 0) {
1274 		sc->age_cdata.age_tx_cons = cons;
1275 
1276 		/*
1277 		 * Unarm watchdog timer only when there are no pending
1278 		 * Tx descriptors in queue.
1279 		 */
1280 		if (sc->age_cdata.age_tx_cnt == 0)
1281 			ifp->if_timer = 0;
1282 
1283 		bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
1284 		    sc->age_cdata.age_tx_ring_map->dm_mapsize,
1285 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1286 	}
1287 }
1288 
1289 /* Receive a frame. */
1290 void
1291 age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd)
1292 {
1293 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1294 	struct age_rxdesc *rxd;
1295 	struct rx_desc *desc;
1296 	struct mbuf *mp, *m;
1297 	uint32_t status, index;
1298 	int count, nsegs, pktlen;
1299 	int rx_cons;
1300 
1301 	status = letoh32(rxrd->flags);
1302 	index = letoh32(rxrd->index);
1303 	rx_cons = AGE_RX_CONS(index);
1304 	nsegs = AGE_RX_NSEGS(index);
1305 
1306 	sc->age_cdata.age_rxlen = AGE_RX_BYTES(letoh32(rxrd->len));
1307 	if ((status & AGE_RRD_ERROR) != 0 &&
1308 	    (status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE |
1309 	    AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0) {
1310 		/*
1311 		 * We want to pass the following frames to upper
1312 		 * layer regardless of error status of Rx return
1313 		 * ring.
1314 		 *
1315 		 *  o IP/TCP/UDP checksum is bad.
1316 		 *  o frame length and protocol specific length
1317 		 *     does not match.
1318 		 */
1319 		sc->age_cdata.age_rx_cons += nsegs;
1320 		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
1321 		return;
1322 	}
1323 
1324 	pktlen = 0;
1325 	for (count = 0; count < nsegs; count++,
1326 	    AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) {
1327 		rxd = &sc->age_cdata.age_rxdesc[rx_cons];
1328 		mp = rxd->rx_m;
1329 		desc = rxd->rx_desc;
1330 		/* Add a new receive buffer to the ring. */
1331 		if (age_newbuf(sc, rxd) != 0) {
1332 			ifp->if_iqdrops++;
1333 			/* Reuse Rx buffers. */
1334 			if (sc->age_cdata.age_rxhead != NULL) {
1335 				m_freem(sc->age_cdata.age_rxhead);
1336 				AGE_RXCHAIN_RESET(sc);
1337 			}
1338 			break;
1339 		}
1340 
1341 		/* The length of the first mbuf is computed last. */
1342 		if (count != 0) {
1343 			mp->m_len = AGE_RX_BYTES(letoh32(desc->len));
1344 			pktlen += mp->m_len;
1345 		}
1346 
1347 		/* Chain received mbufs. */
1348 		if (sc->age_cdata.age_rxhead == NULL) {
1349 			sc->age_cdata.age_rxhead = mp;
1350 			sc->age_cdata.age_rxtail = mp;
1351 		} else {
1352 			mp->m_flags &= ~M_PKTHDR;
1353 			sc->age_cdata.age_rxprev_tail =
1354 			    sc->age_cdata.age_rxtail;
1355 			sc->age_cdata.age_rxtail->m_next = mp;
1356 			sc->age_cdata.age_rxtail = mp;
1357 		}
1358 
1359 		if (count == nsegs - 1) {
1360 			/*
1361 			 * It seems that L1 controller has no way
1362 			 * to tell hardware to strip CRC bytes.
1363 			 */
1364 			sc->age_cdata.age_rxlen -= ETHER_CRC_LEN;
1365 			if (nsegs > 1) {
1366 				/* Remove the CRC bytes in chained mbufs. */
1367 				pktlen -= ETHER_CRC_LEN;
1368 				if (mp->m_len <= ETHER_CRC_LEN) {
1369 					sc->age_cdata.age_rxtail =
1370 					    sc->age_cdata.age_rxprev_tail;
1371 					sc->age_cdata.age_rxtail->m_len -=
1372 					    (ETHER_CRC_LEN - mp->m_len);
1373 					sc->age_cdata.age_rxtail->m_next = NULL;
1374 					m_freem(mp);
1375 				} else {
1376 					mp->m_len -= ETHER_CRC_LEN;
1377 				}
1378 			}
1379 
1380 			m = sc->age_cdata.age_rxhead;
1381 			m->m_flags |= M_PKTHDR;
1382 			m->m_pkthdr.rcvif = ifp;
1383 			m->m_pkthdr.len = sc->age_cdata.age_rxlen;
1384 			/* Set the first mbuf length. */
1385 			m->m_len = sc->age_cdata.age_rxlen - pktlen;
1386 
1387 			/*
1388 			 * Set checksum information.
1389 			 * It seems that L1 controller can compute partial
1390 			 * checksum. The partial checksum value can be used
1391 			 * to accelerate checksum computation for fragmented
1392 			 * TCP/UDP packets. Upper network stack already
1393 			 * takes advantage of the partial checksum value in
1394 			 * IP reassembly stage. But I'm not sure the
1395 			 * correctness of the partial hardware checksum
1396 			 * assistance due to lack of data sheet. If it is
1397 			 * proven to work on L1 I'll enable it.
1398 			 */
1399 			if (status & AGE_RRD_IPV4) {
1400 				if ((status & AGE_RRD_IPCSUM_NOK) == 0)
1401 					m->m_pkthdr.csum_flags |=
1402 					    M_IPV4_CSUM_IN_OK;
1403 				if ((status & (AGE_RRD_TCP | AGE_RRD_UDP)) &&
1404 				    (status & AGE_RRD_TCP_UDPCSUM_NOK) == 0) {
1405 					m->m_pkthdr.csum_flags |=
1406 					    M_TCP_CSUM_IN_OK | M_UDP_CSUM_IN_OK;
1407 				}
1408 				/*
1409 				 * Don't mark bad checksum for TCP/UDP frames
1410 				 * as fragmented frames may always have set
1411 				 * bad checksummed bit of descriptor status.
1412 				 */
1413 			}
1414 #if NVLAN > 0
1415 			/* Check for VLAN tagged frames. */
1416 			if (status & AGE_RRD_VLAN) {
1417 				u_int32_t vtag = AGE_RX_VLAN(letoh32(rxrd->vtags));
1418 				m->m_pkthdr.ether_vtag =
1419 				    AGE_RX_VLAN_TAG(vtag);
1420 				m->m_flags |= M_VLANTAG;
1421 			}
1422 #endif
1423 
1424 #if NBPFILTER > 0
1425 			if (ifp->if_bpf)
1426 				bpf_mtap_ether(ifp->if_bpf, m,
1427 				    BPF_DIRECTION_IN);
1428 #endif
1429 			/* Pass it on. */
1430 			ether_input_mbuf(ifp, m);
1431 
1432 			/* Reset mbuf chains. */
1433 			AGE_RXCHAIN_RESET(sc);
1434 		}
1435 	}
1436 
1437 	if (count != nsegs) {
1438 		sc->age_cdata.age_rx_cons += nsegs;
1439 		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
1440 	} else
1441 		sc->age_cdata.age_rx_cons = rx_cons;
1442 }
1443 
1444 void
1445 age_rxintr(struct age_softc *sc, int rr_prod)
1446 {
1447 	struct rx_rdesc *rxrd;
1448 	int rr_cons, nsegs, pktlen, prog;
1449 
1450 	rr_cons = sc->age_cdata.age_rr_cons;
1451 	if (rr_cons == rr_prod)
1452 		return;
1453 
1454 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
1455 	    sc->age_cdata.age_rr_ring_map->dm_mapsize,
1456 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1457 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rx_ring_map, 0,
1458 	    sc->age_cdata.age_rx_ring_map->dm_mapsize,
1459 	    BUS_DMASYNC_POSTWRITE);
1460 
1461 	for (prog = 0; rr_cons != rr_prod; prog++) {
1462 		rxrd = &sc->age_rdata.age_rr_ring[rr_cons];
1463 		nsegs = AGE_RX_NSEGS(letoh32(rxrd->index));
1464 		if (nsegs == 0)
1465 			break;
1466 		/*
1467 		 * Check number of segments against received bytes
1468 		 * Non-matching value would indicate that hardware
1469 		 * is still trying to update Rx return descriptors.
1470 		 * I'm not sure whether this check is really needed.
1471 		 */
1472 		pktlen = AGE_RX_BYTES(letoh32(rxrd->len));
1473 		if (nsegs != ((pktlen + (MCLBYTES - ETHER_ALIGN - 1)) /
1474 		    (MCLBYTES - ETHER_ALIGN)))
1475 			break;
1476 
1477 		/* Received a frame. */
1478 		age_rxeof(sc, rxrd);
1479 
1480 		/* Clear return ring. */
1481 		rxrd->index = 0;
1482 		AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT);
1483 	}
1484 
1485 	if (prog > 0) {
1486 		/* Update the consumer index. */
1487 		sc->age_cdata.age_rr_cons = rr_cons;
1488 
1489 		bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rx_ring_map, 0,
1490 		    sc->age_cdata.age_rx_ring_map->dm_mapsize,
1491 		    BUS_DMASYNC_PREWRITE);
1492 		/* Sync descriptors. */
1493 		bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
1494 		    sc->age_cdata.age_rr_ring_map->dm_mapsize,
1495 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1496 
1497 		/* Notify hardware availability of new Rx buffers. */
1498 		AGE_COMMIT_MBOX(sc);
1499 	}
1500 }
1501 
1502 void
1503 age_tick(void *xsc)
1504 {
1505 	struct age_softc *sc = xsc;
1506 	struct mii_data *mii = &sc->sc_miibus;
1507 	int s;
1508 
1509 	s = splnet();
1510 	mii_tick(mii);
1511 	timeout_add_sec(&sc->age_tick_ch, 1);
1512 	splx(s);
1513 }
1514 
1515 void
1516 age_reset(struct age_softc *sc)
1517 {
1518 	uint32_t reg;
1519 	int i;
1520 
1521 	CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET);
1522 	CSR_READ_4(sc, AGE_MASTER_CFG);
1523 	DELAY(1000);
1524 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
1525 		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
1526 			break;
1527 		DELAY(10);
1528 	}
1529 
1530 	if (i == 0)
1531 		printf("%s: reset timeout(0x%08x)!\n", sc->sc_dev.dv_xname,
1532 		    reg);
1533 
1534 	/* Initialize PCIe module. From Linux. */
1535 	CSR_WRITE_4(sc, 0x12FC, 0x6500);
1536 	CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
1537 }
1538 
1539 int
1540 age_init(struct ifnet *ifp)
1541 {
1542 	struct age_softc *sc = ifp->if_softc;
1543 	struct mii_data *mii = &sc->sc_miibus;
1544 	uint8_t eaddr[ETHER_ADDR_LEN];
1545 	bus_addr_t paddr;
1546 	uint32_t reg, fsize;
1547 	uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo;
1548 	int error;
1549 
1550 	/*
1551 	 * Cancel any pending I/O.
1552 	 */
1553 	age_stop(sc);
1554 
1555 	/*
1556 	 * Reset the chip to a known state.
1557 	 */
1558 	age_reset(sc);
1559 
1560 	/* Initialize descriptors. */
1561 	error = age_init_rx_ring(sc);
1562         if (error != 0) {
1563 		printf("%s: no memory for Rx buffers.\n", sc->sc_dev.dv_xname);
1564                 age_stop(sc);
1565 		return (error);
1566         }
1567 	age_init_rr_ring(sc);
1568 	age_init_tx_ring(sc);
1569 	age_init_cmb_block(sc);
1570 	age_init_smb_block(sc);
1571 
1572 	/* Reprogram the station address. */
1573 	bcopy(LLADDR(ifp->if_sadl), eaddr, ETHER_ADDR_LEN);
1574 	CSR_WRITE_4(sc, AGE_PAR0,
1575 	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
1576 	CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]);
1577 
1578 	/* Set descriptor base addresses. */
1579 	paddr = sc->age_rdata.age_tx_ring_paddr;
1580 	CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr));
1581 	paddr = sc->age_rdata.age_rx_ring_paddr;
1582 	CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr));
1583 	paddr = sc->age_rdata.age_rr_ring_paddr;
1584 	CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr));
1585 	paddr = sc->age_rdata.age_tx_ring_paddr;
1586 	CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr));
1587 	paddr = sc->age_rdata.age_cmb_block_paddr;
1588 	CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr));
1589 	paddr = sc->age_rdata.age_smb_block_paddr;
1590 	CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr));
1591 
1592 	/* Set Rx/Rx return descriptor counter. */
1593 	CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT,
1594 	    ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) &
1595 	    DESC_RRD_CNT_MASK) |
1596 	    ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK));
1597 
1598 	/* Set Tx descriptor counter. */
1599 	CSR_WRITE_4(sc, AGE_DESC_TPD_CNT,
1600 	    (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK);
1601 
1602 	/* Tell hardware that we're ready to load descriptors. */
1603 	CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD);
1604 
1605         /*
1606 	 * Initialize mailbox register.
1607 	 * Updated producer/consumer index information is exchanged
1608 	 * through this mailbox register. However Tx producer and
1609 	 * Rx return consumer/Rx producer are all shared such that
1610 	 * it's hard to separate code path between Tx and Rx without
1611 	 * locking. If L1 hardware have a separate mail box register
1612 	 * for Tx and Rx consumer/producer management we could have
1613 	 * indepent Tx/Rx handler which in turn Rx handler could have
1614 	 * been run without any locking.
1615 	*/
1616 	AGE_COMMIT_MBOX(sc);
1617 
1618 	/* Configure IPG/IFG parameters. */
1619 	CSR_WRITE_4(sc, AGE_IPG_IFG_CFG,
1620 	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) |
1621 	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
1622 	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
1623 	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK));
1624 
1625 	/* Set parameters for half-duplex media. */
1626 	CSR_WRITE_4(sc, AGE_HDPX_CFG,
1627 	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
1628 	    HDPX_CFG_LCOL_MASK) |
1629 	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
1630 	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
1631 	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
1632 	    HDPX_CFG_ABEBT_MASK) |
1633 	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
1634 	     HDPX_CFG_JAMIPG_MASK));
1635 
1636 	/* Configure interrupt moderation timer. */
1637 	sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
1638 	CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod));
1639 	reg = CSR_READ_4(sc, AGE_MASTER_CFG);
1640 	reg &= ~MASTER_MTIMER_ENB;
1641 	if (AGE_USECS(sc->age_int_mod) == 0)
1642 		reg &= ~MASTER_ITIMER_ENB;
1643 	else
1644 		reg |= MASTER_ITIMER_ENB;
1645 	CSR_WRITE_4(sc, AGE_MASTER_CFG, reg);
1646 	if (agedebug)
1647 		printf("%s: interrupt moderation is %d us.\n",
1648 		    sc->sc_dev.dv_xname, sc->age_int_mod);
1649 	CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000));
1650 
1651 	/* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
1652 	if (ifp->if_mtu < ETHERMTU)
1653 		sc->age_max_frame_size = ETHERMTU;
1654 	else
1655 		sc->age_max_frame_size = ifp->if_mtu;
1656 	sc->age_max_frame_size += ETHER_HDR_LEN +
1657 	    sizeof(struct ether_vlan_header) + ETHER_CRC_LEN;
1658 	CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size);
1659 
1660 	/* Configure jumbo frame. */
1661 	fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t));
1662 	CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG,
1663 	    (((fsize / sizeof(uint64_t)) <<
1664 	    RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) |
1665 	    ((RXQ_JUMBO_CFG_LKAH_DEFAULT <<
1666 	    RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) |
1667 	    ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) &
1668 	    RXQ_JUMBO_CFG_RRD_TIMER_MASK));
1669 
1670 	/* Configure flow-control parameters. From Linux. */
1671 	if ((sc->age_flags & AGE_FLAG_PCIE) != 0) {
1672 		/*
1673 		 * Magic workaround for old-L1.
1674 		 * Don't know which hw revision requires this magic.
1675 		 */
1676 		CSR_WRITE_4(sc, 0x12FC, 0x6500);
1677 		/*
1678 		 * Another magic workaround for flow-control mode
1679 		 * change. From Linux.
1680 		 */
1681 		CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
1682 	}
1683 	/*
1684 	 * TODO
1685 	 *  Should understand pause parameter relationships between FIFO
1686 	 *  size and number of Rx descriptors and Rx return descriptors.
1687 	 *
1688 	 *  Magic parameters came from Linux.
1689 	 */
1690 	switch (sc->age_chip_rev) {
1691 	case 0x8001:
1692 	case 0x9001:
1693 	case 0x9002:
1694 	case 0x9003:
1695 		rxf_hi = AGE_RX_RING_CNT / 16;
1696 		rxf_lo = (AGE_RX_RING_CNT * 7) / 8;
1697 		rrd_hi = (AGE_RR_RING_CNT * 7) / 8;
1698 		rrd_lo = AGE_RR_RING_CNT / 16;
1699 		break;
1700 	default:
1701 		reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN);
1702 		rxf_lo = reg / 16;
1703 		if (rxf_lo < 192)
1704 			rxf_lo = 192;
1705 		rxf_hi = (reg * 7) / 8;
1706 		if (rxf_hi < rxf_lo)
1707 			rxf_hi = rxf_lo + 16;
1708 		reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN);
1709 		rrd_lo = reg / 8;
1710 		rrd_hi = (reg * 7) / 8;
1711 		if (rrd_lo < 2)
1712 			rrd_lo = 2;
1713 		if (rrd_hi < rrd_lo)
1714 			rrd_hi = rrd_lo + 3;
1715 		break;
1716 	}
1717 	CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH,
1718 	    ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) &
1719 	    RXQ_FIFO_PAUSE_THRESH_LO_MASK) |
1720 	    ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) &
1721 	    RXQ_FIFO_PAUSE_THRESH_HI_MASK));
1722 	CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH,
1723 	    ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) &
1724 	    RXQ_RRD_PAUSE_THRESH_LO_MASK) |
1725 	    ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) &
1726 	    RXQ_RRD_PAUSE_THRESH_HI_MASK));
1727 
1728 	/* Configure RxQ. */
1729 	CSR_WRITE_4(sc, AGE_RXQ_CFG,
1730 	    ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
1731 	    RXQ_CFG_RD_BURST_MASK) |
1732 	    ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT <<
1733 	    RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) |
1734 	    ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT <<
1735 	    RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) |
1736 	    RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
1737 
1738 	/* Configure TxQ. */
1739 	CSR_WRITE_4(sc, AGE_TXQ_CFG,
1740 	    ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
1741 	    TXQ_CFG_TPD_BURST_MASK) |
1742 	    ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) &
1743 	    TXQ_CFG_TX_FIFO_BURST_MASK) |
1744 	    ((TXQ_CFG_TPD_FETCH_DEFAULT <<
1745 	    TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) |
1746 	    TXQ_CFG_ENB);
1747 
1748 	/* Configure DMA parameters. */
1749 	CSR_WRITE_4(sc, AGE_DMA_CFG,
1750 	    DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 |
1751 	    sc->age_dma_rd_burst | DMA_CFG_RD_ENB |
1752 	    sc->age_dma_wr_burst | DMA_CFG_WR_ENB);
1753 
1754 	/* Configure CMB DMA write threshold. */
1755 	CSR_WRITE_4(sc, AGE_CMB_WR_THRESH,
1756 	    ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) &
1757 	    CMB_WR_THRESH_RRD_MASK) |
1758 	    ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) &
1759 	    CMB_WR_THRESH_TPD_MASK));
1760 
1761 	/* Set CMB/SMB timer and enable them. */
1762 	CSR_WRITE_4(sc, AGE_CMB_WR_TIMER,
1763 	    ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) |
1764 	    ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK));
1765 
1766 	/* Request SMB updates for every seconds. */
1767 	CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000));
1768 	CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB);
1769 
1770 	/*
1771 	 * Disable all WOL bits as WOL can interfere normal Rx
1772 	 * operation.
1773 	 */
1774 	CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
1775 
1776         /*
1777 	 * Configure Tx/Rx MACs.
1778 	 *  - Auto-padding for short frames.
1779 	 *  - Enable CRC generation.
1780 	 *  Start with full-duplex/1000Mbps media. Actual reconfiguration
1781 	 *  of MAC is followed after link establishment.
1782 	 */
1783 	CSR_WRITE_4(sc, AGE_MAC_CFG,
1784 	    MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD |
1785 	    MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 |
1786 	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
1787 	    MAC_CFG_PREAMBLE_MASK));
1788 
1789 	/* Set up the receive filter. */
1790 	age_iff(sc);
1791 
1792 	age_rxvlan(sc);
1793 
1794 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1795 	reg |= MAC_CFG_RXCSUM_ENB;
1796 
1797 	/* Ack all pending interrupts and clear it. */
1798 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
1799 	CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS);
1800 
1801 	/* Finally enable Tx/Rx MAC. */
1802 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
1803 
1804 	sc->age_flags &= ~AGE_FLAG_LINK;
1805 
1806 	/* Switch to the current media. */
1807 	mii_mediachg(mii);
1808 
1809 	timeout_add_sec(&sc->age_tick_ch, 1);
1810 
1811 	ifp->if_flags |= IFF_RUNNING;
1812 	ifp->if_flags &= ~IFF_OACTIVE;
1813 
1814 	return (0);
1815 }
1816 
1817 void
1818 age_stop(struct age_softc *sc)
1819 {
1820 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1821 	struct age_txdesc *txd;
1822 	struct age_rxdesc *rxd;
1823 	uint32_t reg;
1824 	int i;
1825 
1826 	/*
1827 	 * Mark the interface down and cancel the watchdog timer.
1828 	 */
1829 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1830 	ifp->if_timer = 0;
1831 
1832 	sc->age_flags &= ~AGE_FLAG_LINK;
1833 	timeout_del(&sc->age_tick_ch);
1834 
1835 	/*
1836 	 * Disable interrupts.
1837 	 */
1838 	CSR_WRITE_4(sc, AGE_INTR_MASK, 0);
1839 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF);
1840 
1841 	/* Stop CMB/SMB updates. */
1842 	CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0);
1843 
1844 	/* Stop Rx/Tx MAC. */
1845 	age_stop_rxmac(sc);
1846 	age_stop_txmac(sc);
1847 
1848 	/* Stop DMA. */
1849 	CSR_WRITE_4(sc, AGE_DMA_CFG,
1850 	    CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB));
1851 
1852 	/* Stop TxQ/RxQ. */
1853 	CSR_WRITE_4(sc, AGE_TXQ_CFG,
1854 	    CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB);
1855 	CSR_WRITE_4(sc, AGE_RXQ_CFG,
1856 	    CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB);
1857 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
1858 		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
1859 			break;
1860 		DELAY(10);
1861 	}
1862 	if (i == 0)
1863 		printf("%s: stopping Rx/Tx MACs timed out(0x%08x)!\n",
1864 		    sc->sc_dev.dv_xname, reg);
1865 
1866 	/* Reclaim Rx buffers that have been processed. */
1867 	if (sc->age_cdata.age_rxhead != NULL)
1868 		m_freem(sc->age_cdata.age_rxhead);
1869 	AGE_RXCHAIN_RESET(sc);
1870 
1871 	/*
1872 	 * Free RX and TX mbufs still in the queues.
1873 	 */
1874 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
1875 		rxd = &sc->age_cdata.age_rxdesc[i];
1876 		if (rxd->rx_m != NULL) {
1877 			bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0,
1878 			    rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1879 			bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
1880 			m_freem(rxd->rx_m);
1881 			rxd->rx_m = NULL;
1882 		}
1883 	}
1884 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
1885 		txd = &sc->age_cdata.age_txdesc[i];
1886 		if (txd->tx_m != NULL) {
1887 			bus_dmamap_sync(sc->sc_dmat, txd->tx_dmamap, 0,
1888 			    txd->tx_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1889 			bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1890 			m_freem(txd->tx_m);
1891 			txd->tx_m = NULL;
1892 		}
1893 	}
1894 }
1895 
1896 void
1897 age_stats_update(struct age_softc *sc)
1898 {
1899 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1900 	struct age_stats *stat;
1901 	struct smb *smb;
1902 
1903 	stat = &sc->age_stat;
1904 
1905 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
1906 	    sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1907 
1908 	smb = sc->age_rdata.age_smb_block;
1909 	if (smb->updated == 0)
1910 		return;
1911 
1912 	/* Rx stats. */
1913 	stat->rx_frames += smb->rx_frames;
1914 	stat->rx_bcast_frames += smb->rx_bcast_frames;
1915 	stat->rx_mcast_frames += smb->rx_mcast_frames;
1916 	stat->rx_pause_frames += smb->rx_pause_frames;
1917 	stat->rx_control_frames += smb->rx_control_frames;
1918 	stat->rx_crcerrs += smb->rx_crcerrs;
1919 	stat->rx_lenerrs += smb->rx_lenerrs;
1920 	stat->rx_bytes += smb->rx_bytes;
1921 	stat->rx_runts += smb->rx_runts;
1922 	stat->rx_fragments += smb->rx_fragments;
1923 	stat->rx_pkts_64 += smb->rx_pkts_64;
1924 	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
1925 	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
1926 	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
1927 	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
1928 	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
1929 	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
1930 	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
1931 	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
1932 	stat->rx_desc_oflows += smb->rx_desc_oflows;
1933 	stat->rx_alignerrs += smb->rx_alignerrs;
1934 	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
1935 	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
1936 	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
1937 
1938 	/* Tx stats. */
1939 	stat->tx_frames += smb->tx_frames;
1940 	stat->tx_bcast_frames += smb->tx_bcast_frames;
1941 	stat->tx_mcast_frames += smb->tx_mcast_frames;
1942 	stat->tx_pause_frames += smb->tx_pause_frames;
1943 	stat->tx_excess_defer += smb->tx_excess_defer;
1944 	stat->tx_control_frames += smb->tx_control_frames;
1945 	stat->tx_deferred += smb->tx_deferred;
1946 	stat->tx_bytes += smb->tx_bytes;
1947 	stat->tx_pkts_64 += smb->tx_pkts_64;
1948 	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
1949 	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
1950 	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
1951 	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
1952 	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
1953 	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
1954 	stat->tx_single_colls += smb->tx_single_colls;
1955 	stat->tx_multi_colls += smb->tx_multi_colls;
1956 	stat->tx_late_colls += smb->tx_late_colls;
1957 	stat->tx_excess_colls += smb->tx_excess_colls;
1958 	stat->tx_underrun += smb->tx_underrun;
1959 	stat->tx_desc_underrun += smb->tx_desc_underrun;
1960 	stat->tx_lenerrs += smb->tx_lenerrs;
1961 	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
1962 	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
1963 	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
1964 
1965 	/* Update counters in ifnet. */
1966 	ifp->if_opackets += smb->tx_frames;
1967 
1968 	ifp->if_collisions += smb->tx_single_colls +
1969 	    smb->tx_multi_colls + smb->tx_late_colls +
1970 	    smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT;
1971 
1972 	ifp->if_oerrors += smb->tx_excess_colls +
1973 	    smb->tx_late_colls + smb->tx_underrun +
1974 	    smb->tx_pkts_truncated;
1975 
1976 	ifp->if_ipackets += smb->rx_frames;
1977 
1978 	ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
1979 	    smb->rx_runts + smb->rx_pkts_truncated +
1980 	    smb->rx_fifo_oflows + smb->rx_desc_oflows +
1981 	    smb->rx_alignerrs;
1982 
1983 	/* Update done, clear. */
1984 	smb->updated = 0;
1985 
1986 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
1987 	    sc->age_cdata.age_smb_block_map->dm_mapsize,
1988 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1989 }
1990 
1991 void
1992 age_stop_txmac(struct age_softc *sc)
1993 {
1994 	uint32_t reg;
1995 	int i;
1996 
1997 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1998 	if ((reg & MAC_CFG_TX_ENB) != 0) {
1999 		reg &= ~MAC_CFG_TX_ENB;
2000 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2001 	}
2002 	/* Stop Tx DMA engine. */
2003 	reg = CSR_READ_4(sc, AGE_DMA_CFG);
2004 	if ((reg & DMA_CFG_RD_ENB) != 0) {
2005 		reg &= ~DMA_CFG_RD_ENB;
2006 		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2007 	}
2008 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2009 		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2010 		    (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0)
2011 			break;
2012 		DELAY(10);
2013 	}
2014 	if (i == 0)
2015 		printf("%s: stopping TxMAC timeout!\n", sc->sc_dev.dv_xname);
2016 }
2017 
2018 void
2019 age_stop_rxmac(struct age_softc *sc)
2020 {
2021 	uint32_t reg;
2022 	int i;
2023 
2024 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2025 	if ((reg & MAC_CFG_RX_ENB) != 0) {
2026 		reg &= ~MAC_CFG_RX_ENB;
2027 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2028 	}
2029 	/* Stop Rx DMA engine. */
2030 	reg = CSR_READ_4(sc, AGE_DMA_CFG);
2031 	if ((reg & DMA_CFG_WR_ENB) != 0) {
2032 		reg &= ~DMA_CFG_WR_ENB;
2033 		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2034 	}
2035 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2036 		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2037 		    (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0)
2038 			break;
2039 		DELAY(10);
2040 	}
2041 	if (i == 0)
2042 		printf("%s: stopping RxMAC timeout!\n", sc->sc_dev.dv_xname);
2043 }
2044 
2045 void
2046 age_init_tx_ring(struct age_softc *sc)
2047 {
2048 	struct age_ring_data *rd;
2049 	struct age_txdesc *txd;
2050 	int i;
2051 
2052 	sc->age_cdata.age_tx_prod = 0;
2053 	sc->age_cdata.age_tx_cons = 0;
2054 	sc->age_cdata.age_tx_cnt = 0;
2055 
2056 	rd = &sc->age_rdata;
2057 	bzero(rd->age_tx_ring, AGE_TX_RING_SZ);
2058 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
2059 		txd = &sc->age_cdata.age_txdesc[i];
2060 		txd->tx_desc = &rd->age_tx_ring[i];
2061 		txd->tx_m = NULL;
2062 	}
2063 
2064 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
2065 	    sc->age_cdata.age_tx_ring_map->dm_mapsize,
2066 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2067 }
2068 
2069 int
2070 age_init_rx_ring(struct age_softc *sc)
2071 {
2072 	struct age_ring_data *rd;
2073 	struct age_rxdesc *rxd;
2074 	int i;
2075 
2076 	sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1;
2077 	rd = &sc->age_rdata;
2078 	bzero(rd->age_rx_ring, AGE_RX_RING_SZ);
2079 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
2080 		rxd = &sc->age_cdata.age_rxdesc[i];
2081 		rxd->rx_m = NULL;
2082 		rxd->rx_desc = &rd->age_rx_ring[i];
2083 		if (age_newbuf(sc, rxd) != 0)
2084 			return (ENOBUFS);
2085 	}
2086 
2087 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rx_ring_map, 0,
2088 	    sc->age_cdata.age_rx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2089 
2090 	return (0);
2091 }
2092 
2093 void
2094 age_init_rr_ring(struct age_softc *sc)
2095 {
2096 	struct age_ring_data *rd;
2097 
2098 	sc->age_cdata.age_rr_cons = 0;
2099 	AGE_RXCHAIN_RESET(sc);
2100 
2101 	rd = &sc->age_rdata;
2102 	bzero(rd->age_rr_ring, AGE_RR_RING_SZ);
2103 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
2104 	    sc->age_cdata.age_rr_ring_map->dm_mapsize,
2105 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2106 }
2107 
2108 void
2109 age_init_cmb_block(struct age_softc *sc)
2110 {
2111 	struct age_ring_data *rd;
2112 
2113 	rd = &sc->age_rdata;
2114 	bzero(rd->age_cmb_block, AGE_CMB_BLOCK_SZ);
2115 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
2116 	    sc->age_cdata.age_cmb_block_map->dm_mapsize,
2117 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2118 }
2119 
2120 void
2121 age_init_smb_block(struct age_softc *sc)
2122 {
2123 	struct age_ring_data *rd;
2124 
2125 	rd = &sc->age_rdata;
2126 	bzero(rd->age_smb_block, AGE_SMB_BLOCK_SZ);
2127 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
2128 	    sc->age_cdata.age_smb_block_map->dm_mapsize,
2129 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2130 }
2131 
2132 int
2133 age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd)
2134 {
2135 	struct rx_desc *desc;
2136 	struct mbuf *m;
2137 	bus_dmamap_t map;
2138 	int error;
2139 
2140 	MGETHDR(m, M_DONTWAIT, MT_DATA);
2141 	if (m == NULL)
2142 		return (ENOBUFS);
2143 	MCLGET(m, M_DONTWAIT);
2144 	if (!(m->m_flags & M_EXT)) {
2145 		 m_freem(m);
2146 		 return (ENOBUFS);
2147 	}
2148 
2149 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2150 	m_adj(m, ETHER_ALIGN);
2151 
2152 	error = bus_dmamap_load_mbuf(sc->sc_dmat,
2153 	    sc->age_cdata.age_rx_sparemap, m, BUS_DMA_NOWAIT);
2154 
2155 	if (error != 0) {
2156 		m_freem(m);
2157 		printf("%s: can't load RX mbuf\n", sc->sc_dev.dv_xname);
2158 		return (error);
2159 	}
2160 
2161 	if (rxd->rx_m != NULL) {
2162 		bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0,
2163 		    rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2164 		bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
2165 	}
2166 	map = rxd->rx_dmamap;
2167 	rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap;
2168 	sc->age_cdata.age_rx_sparemap = map;
2169 	bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0,
2170 	    rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2171 	rxd->rx_m = m;
2172 
2173 	desc = rxd->rx_desc;
2174 	desc->addr = htole64(rxd->rx_dmamap->dm_segs[0].ds_addr);
2175 	desc->len =
2176 	    htole32((rxd->rx_dmamap->dm_segs[0].ds_len & AGE_RD_LEN_MASK) <<
2177 	    AGE_RD_LEN_SHIFT);
2178 
2179 	return (0);
2180 }
2181 
2182 void
2183 age_rxvlan(struct age_softc *sc)
2184 {
2185 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
2186 	uint32_t reg;
2187 
2188 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2189 	reg &= ~MAC_CFG_VLAN_TAG_STRIP;
2190 	if (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING)
2191 		reg |= MAC_CFG_VLAN_TAG_STRIP;
2192 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2193 }
2194 
2195 void
2196 age_iff(struct age_softc *sc)
2197 {
2198 	struct arpcom *ac = &sc->sc_arpcom;
2199 	struct ifnet *ifp = &ac->ac_if;
2200 	struct ether_multi *enm;
2201 	struct ether_multistep step;
2202 	uint32_t crc;
2203 	uint32_t mchash[2];
2204 	uint32_t rxcfg;
2205 
2206 	rxcfg = CSR_READ_4(sc, AGE_MAC_CFG);
2207 	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
2208 	ifp->if_flags &= ~IFF_ALLMULTI;
2209 
2210 	/*
2211 	 * Always accept broadcast frames.
2212 	 */
2213 	rxcfg |= MAC_CFG_BCAST;
2214 
2215 	if (ifp->if_flags & IFF_PROMISC || ac->ac_multirangecnt > 0) {
2216 		ifp->if_flags |= IFF_ALLMULTI;
2217 		if (ifp->if_flags & IFF_PROMISC)
2218 			rxcfg |= MAC_CFG_PROMISC;
2219 		else
2220 			rxcfg |= MAC_CFG_ALLMULTI;
2221 		mchash[0] = mchash[1] = 0xFFFFFFFF;
2222 	} else {
2223 		/* Program new filter. */
2224 		bzero(mchash, sizeof(mchash));
2225 
2226 		ETHER_FIRST_MULTI(step, ac, enm);
2227 		while (enm != NULL) {
2228 			crc = ether_crc32_be(enm->enm_addrlo,
2229 			    ETHER_ADDR_LEN);
2230 
2231 			mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
2232 
2233 			ETHER_NEXT_MULTI(step, enm);
2234 		}
2235 	}
2236 
2237 	CSR_WRITE_4(sc, AGE_MAR0, mchash[0]);
2238 	CSR_WRITE_4(sc, AGE_MAR1, mchash[1]);
2239 	CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
2240 }
2241