xref: /openbsd-src/sys/dev/pci/if_age.c (revision 43003dfe3ad45d1698bed8a37f2b0f5b14f20d4f)
1 /*	$OpenBSD: if_age.c,v 1.7 2009/09/13 14:42:52 krw Exp $	*/
2 
3 /*-
4  * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice unmodified, this list of conditions, and the following
12  *    disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 /* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */
31 
32 #include "bpfilter.h"
33 #include "vlan.h"
34 
35 #include <sys/param.h>
36 #include <sys/proc.h>
37 #include <sys/endian.h>
38 #include <sys/systm.h>
39 #include <sys/types.h>
40 #include <sys/sockio.h>
41 #include <sys/mbuf.h>
42 #include <sys/queue.h>
43 #include <sys/kernel.h>
44 #include <sys/device.h>
45 #include <sys/timeout.h>
46 #include <sys/socket.h>
47 
48 #include <machine/bus.h>
49 
50 #include <net/if.h>
51 #include <net/if_dl.h>
52 #include <net/if_media.h>
53 
54 #ifdef INET
55 #include <netinet/in.h>
56 #include <netinet/in_systm.h>
57 #include <netinet/in_var.h>
58 #include <netinet/ip.h>
59 #include <netinet/if_ether.h>
60 #endif
61 
62 #include <net/if_types.h>
63 #include <net/if_vlan_var.h>
64 
65 #if NBPFILTER > 0
66 #include <net/bpf.h>
67 #endif
68 
69 #include <dev/rndvar.h>
70 
71 #include <dev/mii/mii.h>
72 #include <dev/mii/miivar.h>
73 
74 #include <dev/pci/pcireg.h>
75 #include <dev/pci/pcivar.h>
76 #include <dev/pci/pcidevs.h>
77 
78 #include <dev/pci/if_agereg.h>
79 
80 int	age_match(struct device *, void *, void *);
81 void	age_attach(struct device *, struct device *, void *);
82 int	age_detach(struct device *, int);
83 
84 int	age_miibus_readreg(struct device *, int, int);
85 void	age_miibus_writereg(struct device *, int, int, int);
86 void	age_miibus_statchg(struct device *);
87 
88 int	age_init(struct ifnet *);
89 int	age_ioctl(struct ifnet *, u_long, caddr_t);
90 void	age_start(struct ifnet *);
91 void	age_watchdog(struct ifnet *);
92 void	age_mediastatus(struct ifnet *, struct ifmediareq *);
93 int	age_mediachange(struct ifnet *);
94 
95 int	age_intr(void *);
96 int	age_dma_alloc(struct age_softc *);
97 void	age_dma_free(struct age_softc *);
98 void	age_get_macaddr(struct age_softc *);
99 void	age_phy_reset(struct age_softc *);
100 
101 int	age_encap(struct age_softc *, struct mbuf **);
102 void	age_init_tx_ring(struct age_softc *);
103 int	age_init_rx_ring(struct age_softc *);
104 void	age_init_rr_ring(struct age_softc *);
105 void	age_init_cmb_block(struct age_softc *);
106 void	age_init_smb_block(struct age_softc *);
107 int	age_newbuf(struct age_softc *, struct age_rxdesc *, int);
108 void	age_mac_config(struct age_softc *);
109 void	age_txintr(struct age_softc *, int);
110 void	age_rxeof(struct age_softc *sc, struct rx_rdesc *);
111 void	age_rxintr(struct age_softc *, int);
112 void	age_tick(void *);
113 void	age_reset(struct age_softc *);
114 void	age_stop(struct age_softc *);
115 void	age_stats_update(struct age_softc *);
116 void	age_stop_txmac(struct age_softc *);
117 void	age_stop_rxmac(struct age_softc *);
118 void	age_rxvlan(struct age_softc *sc);
119 void	age_rxfilter(struct age_softc *);
120 
121 const struct pci_matchid age_devices[] = {
122 	{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_L1 }
123 };
124 
125 struct cfattach age_ca = {
126 	sizeof (struct age_softc), age_match, age_attach
127 };
128 
129 struct cfdriver age_cd = {
130 	 NULL, "age", DV_IFNET
131 };
132 
133 int agedebug = 0;
134 #define	DPRINTF(x)	do { if (agedebug) printf x; } while (0)
135 
136 #define AGE_CSUM_FEATURES	(M_TCPV4_CSUM_OUT | M_UDPV4_CSUM_OUT)
137 
138 int
139 age_match(struct device *dev, void *match, void *aux)
140 {
141 	 return pci_matchbyid((struct pci_attach_args *)aux, age_devices,
142 	     sizeof (age_devices) / sizeof (age_devices[0]));
143 }
144 
145 void
146 age_attach(struct device *parent, struct device *self, void *aux)
147 {
148 	struct age_softc *sc = (struct age_softc *)self;
149 	struct pci_attach_args *pa = aux;
150 	pci_chipset_tag_t pc = pa->pa_pc;
151 	pci_intr_handle_t ih;
152 	const char *intrstr;
153 	struct ifnet *ifp;
154 	pcireg_t memtype;
155 	int error = 0;
156 
157 	/*
158 	 * Allocate IO memory
159 	 */
160 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, AGE_PCIR_BAR);
161 	if (pci_mapreg_map(pa, AGE_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
162 	    &sc->sc_mem_bh, NULL, &sc->sc_mem_size, 0)) {
163 		printf(": can't map mem space\n");
164 		return;
165 	}
166 
167 	if (pci_intr_map(pa, &ih) != 0) {
168 		printf(": can't map interrupt\n");
169 		goto fail;
170 	}
171 
172 	/*
173 	 * Allocate IRQ
174 	 */
175 	intrstr = pci_intr_string(pc, ih);
176 	sc->sc_irq_handle = pci_intr_establish(pc, ih, IPL_NET, age_intr, sc,
177 	    sc->sc_dev.dv_xname);
178 	if (sc->sc_irq_handle == NULL) {
179 		printf(": could not establish interrupt");
180 		if (intrstr != NULL)
181 			printf(" at %s", intrstr);
182 		printf("\n");
183 		goto fail;
184 	}
185 	printf(": %s", intrstr);
186 
187 	sc->sc_dmat = pa->pa_dmat;
188 	sc->sc_pct = pa->pa_pc;
189 	sc->sc_pcitag = pa->pa_tag;
190 
191 	/* Set PHY address. */
192 	sc->age_phyaddr = AGE_PHY_ADDR;
193 
194 	/* Reset PHY. */
195 	age_phy_reset(sc);
196 
197 	/* Reset the ethernet controller. */
198 	age_reset(sc);
199 
200 	/* Get PCI and chip id/revision. */
201 	sc->age_rev = PCI_REVISION(pa->pa_class);
202 	sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >>
203 	    MASTER_CHIP_REV_SHIFT;
204 	if (agedebug) {
205 		printf("%s: PCI device revision : 0x%04x\n",
206 		    sc->sc_dev.dv_xname, sc->age_rev);
207 		printf("%s: Chip id/revision : 0x%04x\n",
208 		    sc->sc_dev.dv_xname, sc->age_chip_rev);
209 	}
210 
211 	if (agedebug) {
212 		printf("%s: %d Tx FIFO, %d Rx FIFO\n", sc->sc_dev.dv_xname,
213 		    CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN),
214 		    CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN));
215 	}
216 
217 	/* Set max allowable DMA size. */
218 	sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128;
219 	sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128;
220 
221 	/* Allocate DMA stuffs */
222 	error = age_dma_alloc(sc);
223 	if (error)
224 		goto fail;
225 
226 	/* Load station address. */
227 	age_get_macaddr(sc);
228 
229 	ifp = &sc->sc_arpcom.ac_if;
230 	ifp->if_softc = sc;
231 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
232 	ifp->if_init = age_init;
233 	ifp->if_ioctl = age_ioctl;
234 	ifp->if_start = age_start;
235 	ifp->if_watchdog = age_watchdog;
236 	ifp->if_baudrate = IF_Gbps(1);
237 	IFQ_SET_MAXLEN(&ifp->if_snd, AGE_TX_RING_CNT - 1);
238 	IFQ_SET_READY(&ifp->if_snd);
239 	bcopy(sc->age_eaddr, sc->sc_arpcom.ac_enaddr, ETHER_ADDR_LEN);
240 	bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
241 
242 	ifp->if_capabilities = IFCAP_VLAN_MTU;
243 
244 #ifdef AGE_CHECKSUM
245 	ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 |
246 				IFCAP_CSUM_UDPv4;
247 #endif
248 
249 #if NVLAN > 0
250 	ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING;
251 #endif
252 
253 	printf(", address %s\n", ether_sprintf(sc->sc_arpcom.ac_enaddr));
254 
255 	/* Set up MII bus. */
256 	sc->sc_miibus.mii_ifp = ifp;
257 	sc->sc_miibus.mii_readreg = age_miibus_readreg;
258 	sc->sc_miibus.mii_writereg = age_miibus_writereg;
259 	sc->sc_miibus.mii_statchg = age_miibus_statchg;
260 
261 	ifmedia_init(&sc->sc_miibus.mii_media, 0, age_mediachange,
262 	    age_mediastatus);
263 	mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY,
264 	   MII_OFFSET_ANY, MIIF_DOPAUSE);
265 
266 	if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) {
267 		printf("%s: no PHY found!\n", sc->sc_dev.dv_xname);
268 		ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL,
269 		    0, NULL);
270 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL);
271 	} else
272 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO);
273 
274 	if_attach(ifp);
275 	ether_ifattach(ifp);
276 
277 	timeout_set(&sc->age_tick_ch, age_tick, sc);
278 
279 	return;
280 fail:
281 	age_dma_free(sc);
282 	if (sc->sc_irq_handle != NULL)
283 		pci_intr_disestablish(pc, sc->sc_irq_handle);
284 	if (sc->sc_mem_size)
285 		bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
286 }
287 
288 int
289 age_detach(struct device *self, int flags)
290 {
291 	struct age_softc *sc = (struct age_softc *)self;
292 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
293 	int s;
294 
295 	s = splnet();
296 	age_stop(sc);
297 	splx(s);
298 
299 	mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
300 
301 	/* Delete all remaining media. */
302 	ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
303 
304 	ether_ifdetach(ifp);
305 	if_detach(ifp);
306 	age_dma_free(sc);
307 
308 	if (sc->sc_irq_handle != NULL) {
309 		pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
310 		sc->sc_irq_handle = NULL;
311 	}
312 
313 	return (0);
314 }
315 
316 /*
317  *	Read a PHY register on the MII of the L1.
318  */
319 int
320 age_miibus_readreg(struct device *dev, int phy, int reg)
321 {
322 	struct age_softc *sc = (struct age_softc *)dev;
323 	uint32_t v;
324 	int i;
325 
326 	if (phy != sc->age_phyaddr)
327 		return (0);
328 
329 	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
330 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
331 	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
332 		DELAY(1);
333 		v = CSR_READ_4(sc, AGE_MDIO);
334 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
335 			break;
336 	}
337 
338 	if (i == 0) {
339 		printf("%s: phy read timeout: phy %d, reg %d\n",
340 			sc->sc_dev.dv_xname, phy, reg);
341 		return (0);
342 	}
343 
344 	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
345 }
346 
347 /*
348  * 	Write a PHY register on the MII of the L1.
349  */
350 void
351 age_miibus_writereg(struct device *dev, int phy, int reg, int val)
352 {
353 	struct age_softc *sc = (struct age_softc *)dev;
354 	uint32_t v;
355 	int i;
356 
357 	if (phy != sc->age_phyaddr)
358 		return;
359 
360 	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
361 	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
362 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
363 
364 	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
365 		DELAY(1);
366 		v = CSR_READ_4(sc, AGE_MDIO);
367 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
368 			break;
369 	}
370 
371 	if (i == 0) {
372 		printf("%s: phy write timeout: phy %d, reg %d\n",
373 		    sc->sc_dev.dv_xname, phy, reg);
374 	}
375 }
376 
377 /*
378  *	Callback from MII layer when media changes.
379  */
380 void
381 age_miibus_statchg(struct device *dev)
382 {
383 	struct age_softc *sc = (struct age_softc *)dev;
384 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
385 	struct mii_data *mii;
386 
387 	if ((ifp->if_flags & IFF_RUNNING) == 0)
388 		return;
389 
390 	mii = &sc->sc_miibus;
391 
392 	sc->age_flags &= ~AGE_FLAG_LINK;
393 	if ((mii->mii_media_status & IFM_AVALID) != 0) {
394 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
395 		case IFM_10_T:
396 		case IFM_100_TX:
397 		case IFM_1000_T:
398 			sc->age_flags |= AGE_FLAG_LINK;
399 			break;
400 		default:
401 			break;
402 		}
403 	}
404 
405 	/* Stop Rx/Tx MACs. */
406 	age_stop_rxmac(sc);
407 	age_stop_txmac(sc);
408 
409 	/* Program MACs with resolved speed/duplex/flow-control. */
410 	if ((sc->age_flags & AGE_FLAG_LINK) != 0) {
411 		uint32_t reg;
412 
413 		age_mac_config(sc);
414 		reg = CSR_READ_4(sc, AGE_MAC_CFG);
415 		/* Restart DMA engine and Tx/Rx MAC. */
416 		CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) |
417 		    DMA_CFG_RD_ENB | DMA_CFG_WR_ENB);
418 		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
419 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
420 	}
421 }
422 
423 /*
424  *	Get the current interface media status.
425  */
426 void
427 age_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
428 {
429 	struct age_softc *sc = ifp->if_softc;
430 	struct mii_data *mii = &sc->sc_miibus;
431 
432 	mii_pollstat(mii);
433 	ifmr->ifm_status = mii->mii_media_status;
434 	ifmr->ifm_active = mii->mii_media_active;
435 }
436 
437 /*
438  *	Set hardware to newly-selected media.
439  */
440 int
441 age_mediachange(struct ifnet *ifp)
442 {
443 	struct age_softc *sc = ifp->if_softc;
444 	struct mii_data *mii = &sc->sc_miibus;
445 	int error;
446 
447 	if (mii->mii_instance != 0) {
448 		struct mii_softc *miisc;
449 
450 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
451 			mii_phy_reset(miisc);
452 	}
453 	error = mii_mediachg(mii);
454 
455 	return (error);
456 }
457 
458 int
459 age_intr(void *arg)
460 {
461         struct age_softc *sc = arg;
462         struct ifnet *ifp = &sc->sc_arpcom.ac_if;
463 	struct cmb *cmb;
464         uint32_t status;
465 
466 	status = CSR_READ_4(sc, AGE_INTR_STATUS);
467 	if (status == 0 || (status & AGE_INTRS) == 0)
468 		return (0);
469 
470 	/* Disable interrupts. */
471 	CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
472 
473 	cmb = sc->age_rdata.age_cmb_block;
474 
475 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
476 	    sc->age_cdata.age_cmb_block_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
477 	status = letoh32(cmb->intr_status);
478 	if ((status & AGE_INTRS) == 0)
479 		goto back;
480 
481 	sc->age_tpd_cons = (letoh32(cmb->tpd_cons) & TPD_CONS_MASK) >>
482 	    TPD_CONS_SHIFT;
483 	sc->age_rr_prod = (letoh32(cmb->rprod_cons) & RRD_PROD_MASK) >>
484 	    RRD_PROD_SHIFT;
485 
486 	/* Let hardware know CMB was served. */
487 	cmb->intr_status = 0;
488 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
489 	    sc->age_cdata.age_cmb_block_map->dm_mapsize,
490 	    BUS_DMASYNC_PREWRITE);
491 
492 	if (ifp->if_flags & IFF_RUNNING) {
493 		if (status & INTR_CMB_RX)
494 			age_rxintr(sc, sc->age_rr_prod);
495 
496 		if (status & INTR_CMB_TX)
497 			age_txintr(sc, sc->age_tpd_cons);
498 
499 		if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) {
500 			if (status & INTR_DMA_RD_TO_RST)
501 				printf("%s: DMA read error! -- resetting\n",
502 				    sc->sc_dev.dv_xname);
503 			if (status & INTR_DMA_WR_TO_RST)
504 				printf("%s: DMA write error! -- resetting\n",
505 				    sc->sc_dev.dv_xname);
506 			age_init(ifp);
507 		}
508 
509 		if (!IFQ_IS_EMPTY(&ifp->if_snd))
510 			age_start(ifp);
511 
512 		if (status & INTR_SMB)
513 			age_stats_update(sc);
514 	}
515 
516 	/* Check whether CMB was updated while serving Tx/Rx/SMB handler. */
517 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
518 	    sc->age_cdata.age_cmb_block_map->dm_mapsize,
519 	    BUS_DMASYNC_POSTREAD);
520 
521 back:
522 	/* Re-enable interrupts. */
523 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
524 
525 	return (1);
526 }
527 
528 void
529 age_get_macaddr(struct age_softc *sc)
530 {
531 	uint32_t ea[2], reg;
532 	int i, vpdc;
533 
534 	reg = CSR_READ_4(sc, AGE_SPI_CTRL);
535 	if ((reg & SPI_VPD_ENB) != 0) {
536 		/* Get VPD stored in TWSI EEPROM. */
537 		reg &= ~SPI_VPD_ENB;
538 		CSR_WRITE_4(sc, AGE_SPI_CTRL, reg);
539 	}
540 
541 	if (pci_get_capability(sc->sc_pct, sc->sc_pcitag,
542 	    PCI_CAP_VPD, &vpdc, NULL)) {
543 		/*
544 		 * PCI VPD capability found, let TWSI reload EEPROM.
545 		 * This will set Ethernet address of controller.
546 		 */
547 		CSR_WRITE_4(sc, AGE_TWSI_CTRL, CSR_READ_4(sc, AGE_TWSI_CTRL) |
548 		    TWSI_CTRL_SW_LD_START);
549 		for (i = 100; i > 0; i--) {
550 			DELAY(1000);
551 			reg = CSR_READ_4(sc, AGE_TWSI_CTRL);
552 			if ((reg & TWSI_CTRL_SW_LD_START) == 0)
553 				break;
554 		}
555 		if (i == 0)
556 			printf("%s: reloading EEPROM timeout!\n",
557 			    sc->sc_dev.dv_xname);
558 	} else {
559 		if (agedebug)
560 			printf("%s: PCI VPD capability not found!\n",
561 			    sc->sc_dev.dv_xname);
562 	}
563 
564 	ea[0] = CSR_READ_4(sc, AGE_PAR0);
565 	ea[1] = CSR_READ_4(sc, AGE_PAR1);
566 	sc->age_eaddr[0] = (ea[1] >> 8) & 0xFF;
567 	sc->age_eaddr[1] = (ea[1] >> 0) & 0xFF;
568 	sc->age_eaddr[2] = (ea[0] >> 24) & 0xFF;
569 	sc->age_eaddr[3] = (ea[0] >> 16) & 0xFF;
570 	sc->age_eaddr[4] = (ea[0] >> 8) & 0xFF;
571 	sc->age_eaddr[5] = (ea[0] >> 0) & 0xFF;
572 }
573 
574 void
575 age_phy_reset(struct age_softc *sc)
576 {
577 	uint16_t reg, pn;
578 	int i, linkup;
579 
580 	/* Reset PHY. */
581 	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST);
582 	DELAY(2000);
583 	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR);
584 	DELAY(2000);
585 
586 #define	ATPHY_DBG_ADDR		0x1D
587 #define	ATPHY_DBG_DATA		0x1E
588 #define	ATPHY_CDTC		0x16
589 #define	PHY_CDTC_ENB		0x0001
590 #define	PHY_CDTC_POFF		8
591 #define	ATPHY_CDTS		0x1C
592 #define	PHY_CDTS_STAT_OK	0x0000
593 #define	PHY_CDTS_STAT_SHORT	0x0100
594 #define	PHY_CDTS_STAT_OPEN	0x0200
595 #define	PHY_CDTS_STAT_INVAL	0x0300
596 #define	PHY_CDTS_STAT_MASK	0x0300
597 
598 	/* Check power saving mode. Magic from Linux. */
599 	age_miibus_writereg(&sc->sc_dev, sc->age_phyaddr, MII_BMCR, BMCR_RESET);
600 	for (linkup = 0, pn = 0; pn < 4; pn++) {
601 		age_miibus_writereg(&sc->sc_dev, sc->age_phyaddr, ATPHY_CDTC,
602 		    (pn << PHY_CDTC_POFF) | PHY_CDTC_ENB);
603 		for (i = 200; i > 0; i--) {
604 			DELAY(1000);
605 			reg = age_miibus_readreg(&sc->sc_dev, sc->age_phyaddr,
606 			    ATPHY_CDTC);
607 			if ((reg & PHY_CDTC_ENB) == 0)
608 				break;
609 		}
610 		DELAY(1000);
611 		reg = age_miibus_readreg(&sc->sc_dev, sc->age_phyaddr,
612 		    ATPHY_CDTS);
613 		if ((reg & PHY_CDTS_STAT_MASK) != PHY_CDTS_STAT_OPEN) {
614 			linkup++;
615 			break;
616 		}
617 	}
618 	age_miibus_writereg(&sc->sc_dev, sc->age_phyaddr, MII_BMCR,
619 	    BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
620 	if (linkup == 0) {
621 		age_miibus_writereg(&sc->sc_dev, sc->age_phyaddr,
622 		    ATPHY_DBG_ADDR, 0);
623 		age_miibus_writereg(&sc->sc_dev, sc->age_phyaddr,
624 		    ATPHY_DBG_DATA, 0x124E);
625 		age_miibus_writereg(&sc->sc_dev, sc->age_phyaddr,
626 		    ATPHY_DBG_ADDR, 1);
627 		reg = age_miibus_readreg(&sc->sc_dev, sc->age_phyaddr,
628 		    ATPHY_DBG_DATA);
629 		age_miibus_writereg(&sc->sc_dev, sc->age_phyaddr,
630 		    ATPHY_DBG_DATA, reg | 0x03);
631 		/* XXX */
632 		DELAY(1500 * 1000);
633 		age_miibus_writereg(&sc->sc_dev, sc->age_phyaddr,
634 		    ATPHY_DBG_ADDR, 0);
635 		age_miibus_writereg(&sc->sc_dev, sc->age_phyaddr,
636 		    ATPHY_DBG_DATA, 0x024E);
637 	}
638 
639 #undef	ATPHY_DBG_ADDR
640 #undef	ATPHY_DBG_DATA
641 #undef	ATPHY_CDTC
642 #undef	PHY_CDTC_ENB
643 #undef	PHY_CDTC_POFF
644 #undef	ATPHY_CDTS
645 #undef	PHY_CDTS_STAT_OK
646 #undef	PHY_CDTS_STAT_SHORT
647 #undef	PHY_CDTS_STAT_OPEN
648 #undef	PHY_CDTS_STAT_INVAL
649 #undef	PHY_CDTS_STAT_MASK
650 }
651 
652 int
653 age_dma_alloc(struct age_softc *sc)
654 {
655 	struct age_txdesc *txd;
656 	struct age_rxdesc *rxd;
657 	int nsegs, error, i;
658 
659 	/*
660 	 * Create DMA stuffs for TX ring
661 	 */
662 	error = bus_dmamap_create(sc->sc_dmat, AGE_TX_RING_SZ, 1,
663 	    AGE_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_tx_ring_map);
664 	if (error)
665 		return (ENOBUFS);
666 
667 	/* Allocate DMA'able memory for TX ring */
668 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_TX_RING_SZ,
669 	    ETHER_ALIGN, 0, &sc->age_rdata.age_tx_ring_seg, 1,
670 	    &nsegs, BUS_DMA_WAITOK);
671 	if (error) {
672 		printf("%s: could not allocate DMA'able memory for Tx ring.\n",
673 		    sc->sc_dev.dv_xname);
674 		return error;
675 	}
676 
677 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_tx_ring_seg,
678 	    nsegs, AGE_TX_RING_SZ, (caddr_t *)&sc->age_rdata.age_tx_ring,
679 	    BUS_DMA_NOWAIT);
680 	if (error)
681 		return (ENOBUFS);
682 
683 	bzero(sc->age_rdata.age_tx_ring, AGE_TX_RING_SZ);
684 
685 	/*  Load the DMA map for Tx ring. */
686 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_tx_ring_map,
687 	    sc->age_rdata.age_tx_ring, AGE_TX_RING_SZ, NULL, BUS_DMA_WAITOK);
688 	if (error) {
689 		printf("%s: could not load DMA'able memory for Tx ring.\n",
690 		    sc->sc_dev.dv_xname);
691 		bus_dmamem_free(sc->sc_dmat,
692 		    (bus_dma_segment_t *)&sc->age_rdata.age_tx_ring, 1);
693 		return error;
694 	}
695 
696 	sc->age_rdata.age_tx_ring_paddr =
697 	    sc->age_cdata.age_tx_ring_map->dm_segs[0].ds_addr;
698 
699 	/*
700 	 * Create DMA stuffs for RX ring
701 	 */
702 	error = bus_dmamap_create(sc->sc_dmat, AGE_RX_RING_SZ, 1,
703 	    AGE_RX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_ring_map);
704 	if (error)
705 		return (ENOBUFS);
706 
707 	/* Allocate DMA'able memory for RX ring */
708 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_RX_RING_SZ,
709 	    ETHER_ALIGN, 0, &sc->age_rdata.age_rx_ring_seg, 1,
710 	    &nsegs, BUS_DMA_WAITOK);
711 	if (error) {
712 		printf("%s: could not allocate DMA'able memory for Rx ring.\n",
713 		    sc->sc_dev.dv_xname);
714 		return error;
715 	}
716 
717 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rx_ring_seg,
718 	    nsegs, AGE_RX_RING_SZ, (caddr_t *)&sc->age_rdata.age_rx_ring,
719 	    BUS_DMA_NOWAIT);
720 	if (error)
721 		return (ENOBUFS);
722 
723 	bzero(sc->age_rdata.age_rx_ring, AGE_RX_RING_SZ);
724 
725 	/* Load the DMA map for Rx ring. */
726 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rx_ring_map,
727 	    sc->age_rdata.age_rx_ring, AGE_RX_RING_SZ, NULL, BUS_DMA_WAITOK);
728 	if (error) {
729 		printf("%s: could not load DMA'able memory for Rx ring.\n",
730 		    sc->sc_dev.dv_xname);
731 		bus_dmamem_free(sc->sc_dmat,
732 		    (bus_dma_segment_t *)sc->age_rdata.age_rx_ring, 1);
733 		return error;
734 	}
735 
736 	sc->age_rdata.age_rx_ring_paddr =
737 	    sc->age_cdata.age_rx_ring_map->dm_segs[0].ds_addr;
738 
739 	/*
740 	 * Create DMA stuffs for RX return ring
741 	 */
742 	error = bus_dmamap_create(sc->sc_dmat, AGE_RR_RING_SZ, 1,
743 	    AGE_RR_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rr_ring_map);
744 	if (error)
745 		return (ENOBUFS);
746 
747 	/* Allocate DMA'able memory for RX return ring */
748 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_RR_RING_SZ,
749 	    ETHER_ALIGN, 0, &sc->age_rdata.age_rr_ring_seg, 1,
750 	    &nsegs, BUS_DMA_WAITOK);
751 	if (error) {
752 		printf("%s: could not allocate DMA'able memory for Rx "
753 		    "return ring.\n", sc->sc_dev.dv_xname);
754 		return error;
755 	}
756 
757 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rr_ring_seg,
758 	    nsegs, AGE_RR_RING_SZ, (caddr_t *)&sc->age_rdata.age_rr_ring,
759 	    BUS_DMA_NOWAIT);
760 	if (error)
761 		return (ENOBUFS);
762 
763 	bzero(sc->age_rdata.age_rr_ring, AGE_RR_RING_SZ);
764 
765 	/*  Load the DMA map for Rx return ring. */
766 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rr_ring_map,
767 	    sc->age_rdata.age_rr_ring, AGE_RR_RING_SZ, NULL, BUS_DMA_WAITOK);
768 	if (error) {
769 		printf("%s: could not load DMA'able memory for Rx return ring."
770 		    "\n", sc->sc_dev.dv_xname);
771 		bus_dmamem_free(sc->sc_dmat,
772 		    (bus_dma_segment_t *)&sc->age_rdata.age_rr_ring, 1);
773 		return error;
774 	}
775 
776 	sc->age_rdata.age_rr_ring_paddr =
777 	    sc->age_cdata.age_rr_ring_map->dm_segs[0].ds_addr;
778 
779 	/*
780 	 * Create DMA stuffs for CMB block
781 	 */
782 	error = bus_dmamap_create(sc->sc_dmat, AGE_CMB_BLOCK_SZ, 1,
783 	    AGE_CMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
784 	    &sc->age_cdata.age_cmb_block_map);
785 	if (error)
786 		return (ENOBUFS);
787 
788 	/* Allocate DMA'able memory for CMB block */
789 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_CMB_BLOCK_SZ,
790 	    ETHER_ALIGN, 0, &sc->age_rdata.age_cmb_block_seg, 1,
791 	    &nsegs, BUS_DMA_WAITOK);
792 	if (error) {
793 		printf("%s: could not allocate DMA'able memory for "
794 		    "CMB block\n", sc->sc_dev.dv_xname);
795 		return error;
796 	}
797 
798 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_cmb_block_seg,
799 	    nsegs, AGE_CMB_BLOCK_SZ, (caddr_t *)&sc->age_rdata.age_cmb_block,
800 	    BUS_DMA_NOWAIT);
801 	if (error)
802 		return (ENOBUFS);
803 
804 	bzero(sc->age_rdata.age_cmb_block, AGE_CMB_BLOCK_SZ);
805 
806 	/*  Load the DMA map for CMB block. */
807 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_cmb_block_map,
808 	    sc->age_rdata.age_cmb_block, AGE_CMB_BLOCK_SZ, NULL,
809 	    BUS_DMA_WAITOK);
810 	if (error) {
811 		printf("%s: could not load DMA'able memory for CMB block\n",
812 		    sc->sc_dev.dv_xname);
813 		bus_dmamem_free(sc->sc_dmat,
814 		    (bus_dma_segment_t *)&sc->age_rdata.age_cmb_block, 1);
815 		return error;
816 	}
817 
818 	sc->age_rdata.age_cmb_block_paddr =
819 	    sc->age_cdata.age_cmb_block_map->dm_segs[0].ds_addr;
820 
821 	/*
822 	 * Create DMA stuffs for SMB block
823 	 */
824 	error = bus_dmamap_create(sc->sc_dmat, AGE_SMB_BLOCK_SZ, 1,
825 	    AGE_SMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
826 	    &sc->age_cdata.age_smb_block_map);
827 	if (error)
828 		return (ENOBUFS);
829 
830 	/* Allocate DMA'able memory for SMB block */
831 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_SMB_BLOCK_SZ,
832 	    ETHER_ALIGN, 0, &sc->age_rdata.age_smb_block_seg, 1,
833 	    &nsegs, BUS_DMA_WAITOK);
834 	if (error) {
835 		printf("%s: could not allocate DMA'able memory for "
836 		    "SMB block\n", sc->sc_dev.dv_xname);
837 		return error;
838 	}
839 
840 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_smb_block_seg,
841 	    nsegs, AGE_SMB_BLOCK_SZ, (caddr_t *)&sc->age_rdata.age_smb_block,
842 	    BUS_DMA_NOWAIT);
843 	if (error)
844 		return (ENOBUFS);
845 
846 	bzero(sc->age_rdata.age_smb_block, AGE_SMB_BLOCK_SZ);
847 
848 	/*  Load the DMA map for SMB block */
849 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_smb_block_map,
850 	    sc->age_rdata.age_smb_block, AGE_SMB_BLOCK_SZ, NULL,
851 	    BUS_DMA_WAITOK);
852 	if (error) {
853 		printf("%s: could not load DMA'able memory for SMB block\n",
854 		    sc->sc_dev.dv_xname);
855 		bus_dmamem_free(sc->sc_dmat,
856 		    (bus_dma_segment_t *)&sc->age_rdata.age_smb_block, 1);
857 		return error;
858 	}
859 
860 	sc->age_rdata.age_smb_block_paddr =
861 	    sc->age_cdata.age_smb_block_map->dm_segs[0].ds_addr;
862 
863 	/* Create DMA maps for Tx buffers. */
864 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
865 		txd = &sc->age_cdata.age_txdesc[i];
866 		txd->tx_m = NULL;
867 		txd->tx_dmamap = NULL;
868 		error = bus_dmamap_create(sc->sc_dmat, AGE_TSO_MAXSIZE,
869 		    AGE_MAXTXSEGS, AGE_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,
870 		    &txd->tx_dmamap);
871 		if (error) {
872 			printf("%s: could not create Tx dmamap.\n",
873 			    sc->sc_dev.dv_xname);
874 			return error;
875 		}
876 	}
877 
878 	/* Create DMA maps for Rx buffers. */
879 	error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
880 	    BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_sparemap);
881 	if (error) {
882 		printf("%s: could not create spare Rx dmamap.\n",
883 		    sc->sc_dev.dv_xname);
884 		return error;
885 	}
886 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
887 		rxd = &sc->age_cdata.age_rxdesc[i];
888 		rxd->rx_m = NULL;
889 		rxd->rx_dmamap = NULL;
890 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
891 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &rxd->rx_dmamap);
892 		if (error) {
893 			printf("%s: could not create Rx dmamap.\n",
894 			    sc->sc_dev.dv_xname);
895 			return error;
896 		}
897 	}
898 
899 	return (0);
900 }
901 
902 void
903 age_dma_free(struct age_softc *sc)
904 {
905 	struct age_txdesc *txd;
906 	struct age_rxdesc *rxd;
907 	int i;
908 
909 	/* Tx buffers */
910 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
911 		txd = &sc->age_cdata.age_txdesc[i];
912 		if (txd->tx_dmamap != NULL) {
913 			bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
914 			txd->tx_dmamap = NULL;
915 		}
916 	}
917 	/* Rx buffers */
918 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
919 		rxd = &sc->age_cdata.age_rxdesc[i];
920 		if (rxd->rx_dmamap != NULL) {
921 			bus_dmamap_destroy(sc->sc_dmat, rxd->rx_dmamap);
922 			rxd->rx_dmamap = NULL;
923 		}
924 	}
925 	if (sc->age_cdata.age_rx_sparemap != NULL) {
926 		bus_dmamap_destroy(sc->sc_dmat, sc->age_cdata.age_rx_sparemap);
927 		sc->age_cdata.age_rx_sparemap = NULL;
928 	}
929 
930 	/* Tx ring. */
931 	if (sc->age_cdata.age_tx_ring_map != NULL)
932 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_tx_ring_map);
933 	if (sc->age_cdata.age_tx_ring_map != NULL &&
934 	    sc->age_rdata.age_tx_ring != NULL)
935 		bus_dmamem_free(sc->sc_dmat,
936 		    (bus_dma_segment_t *)sc->age_rdata.age_tx_ring, 1);
937 	sc->age_rdata.age_tx_ring = NULL;
938 	sc->age_cdata.age_tx_ring_map = NULL;
939 
940 	/* Rx ring. */
941 	if (sc->age_cdata.age_rx_ring_map != NULL)
942 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rx_ring_map);
943 	if (sc->age_cdata.age_rx_ring_map != NULL &&
944 	    sc->age_rdata.age_rx_ring != NULL)
945 		bus_dmamem_free(sc->sc_dmat,
946 		    (bus_dma_segment_t *)sc->age_rdata.age_rx_ring, 1);
947 	sc->age_rdata.age_rx_ring = NULL;
948 	sc->age_cdata.age_rx_ring_map = NULL;
949 
950 	/* Rx return ring. */
951 	if (sc->age_cdata.age_rr_ring_map != NULL)
952 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rr_ring_map);
953 	if (sc->age_cdata.age_rr_ring_map != NULL &&
954 	    sc->age_rdata.age_rr_ring != NULL)
955 		bus_dmamem_free(sc->sc_dmat,
956 		    (bus_dma_segment_t *)sc->age_rdata.age_rr_ring, 1);
957 	sc->age_rdata.age_rr_ring = NULL;
958 	sc->age_cdata.age_rr_ring_map = NULL;
959 
960 	/* CMB block */
961 	if (sc->age_cdata.age_cmb_block_map != NULL)
962 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_cmb_block_map);
963 	if (sc->age_cdata.age_cmb_block_map != NULL &&
964 	    sc->age_rdata.age_cmb_block != NULL)
965 		bus_dmamem_free(sc->sc_dmat,
966 		    (bus_dma_segment_t *)sc->age_rdata.age_cmb_block, 1);
967 	sc->age_rdata.age_cmb_block = NULL;
968 	sc->age_cdata.age_cmb_block_map = NULL;
969 
970 	/* SMB block */
971 	if (sc->age_cdata.age_smb_block_map != NULL)
972 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_smb_block_map);
973 	if (sc->age_cdata.age_smb_block_map != NULL &&
974 	    sc->age_rdata.age_smb_block != NULL)
975 		bus_dmamem_free(sc->sc_dmat,
976 		    (bus_dma_segment_t *)sc->age_rdata.age_smb_block, 1);
977 	sc->age_rdata.age_smb_block = NULL;
978 	sc->age_cdata.age_smb_block_map = NULL;
979 }
980 
981 void
982 age_start(struct ifnet *ifp)
983 {
984         struct age_softc *sc = ifp->if_softc;
985         struct mbuf *m_head;
986 	int enq;
987 
988 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
989 		return;
990 
991 	enq = 0;
992 	for (;;) {
993 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
994 		if (m_head == NULL)
995 			break;
996 
997 		/*
998 		 * Pack the data into the transmit ring. If we
999 		 * don't have room, set the OACTIVE flag and wait
1000 		 * for the NIC to drain the ring.
1001 		 */
1002 		if (age_encap(sc, &m_head)) {
1003 			if (m_head == NULL)
1004 				break;
1005 			ifp->if_flags |= IFF_OACTIVE;
1006 			break;
1007 		}
1008 		enq = 1;
1009 
1010 #if NBPFILTER > 0
1011 		/*
1012 		 * If there's a BPF listener, bounce a copy of this frame
1013 		 * to him.
1014 		 */
1015 		if (ifp->if_bpf != NULL)
1016 			bpf_mtap_ether(ifp->if_bpf, m_head, BPF_DIRECTION_OUT);
1017 #endif
1018 	}
1019 
1020 	if (enq) {
1021 		/* Update mbox. */
1022 		AGE_COMMIT_MBOX(sc);
1023 		/* Set a timeout in case the chip goes out to lunch. */
1024 		ifp->if_timer = AGE_TX_TIMEOUT;
1025 	}
1026 }
1027 
1028 void
1029 age_watchdog(struct ifnet *ifp)
1030 {
1031 	struct age_softc *sc = ifp->if_softc;
1032 
1033 	if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
1034 		printf("%s: watchdog timeout (missed link)\n",
1035 		    sc->sc_dev.dv_xname);
1036 		ifp->if_oerrors++;
1037 		age_init(ifp);
1038 		return;
1039 	}
1040 
1041 	if (sc->age_cdata.age_tx_cnt == 0) {
1042 		printf("%s: watchdog timeout (missed Tx interrupts) "
1043 		    "-- recovering\n", sc->sc_dev.dv_xname);
1044 		if (!IFQ_IS_EMPTY(&ifp->if_snd))
1045 			age_start(ifp);
1046 		return;
1047 	}
1048 
1049 	printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
1050 	ifp->if_oerrors++;
1051 	age_init(ifp);
1052 
1053 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
1054 		age_start(ifp);
1055 }
1056 
1057 int
1058 age_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1059 {
1060 	struct age_softc *sc = ifp->if_softc;
1061 	struct mii_data *mii = &sc->sc_miibus;
1062 	struct ifaddr *ifa = (struct ifaddr *)data;
1063 	struct ifreq *ifr = (struct ifreq *)data;
1064 	int s, error = 0;
1065 
1066 	s = splnet();
1067 
1068 	switch (cmd) {
1069 	case SIOCSIFADDR:
1070 		ifp->if_flags |= IFF_UP;
1071 		if (!(ifp->if_flags & IFF_RUNNING))
1072 			 age_init(ifp);
1073 #ifdef INET
1074 		if (ifa->ifa_addr->sa_family == AF_INET)
1075 			arp_ifinit(&sc->sc_arpcom, ifa);
1076 #endif
1077 		break;
1078 
1079 	case SIOCSIFFLAGS:
1080 		if (ifp->if_flags & IFF_UP) {
1081 			if (ifp->if_flags & IFF_RUNNING)
1082 				error = ENETRESET;
1083 			else
1084 				age_init(ifp);
1085 		} else {
1086 			if (ifp->if_flags & IFF_RUNNING)
1087 				age_stop(sc);
1088 		}
1089 		break;
1090 
1091 	case SIOCSIFMEDIA:
1092 	case SIOCGIFMEDIA:
1093 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1094 		break;
1095 
1096 	default:
1097 		error = ether_ioctl(ifp, &sc->sc_arpcom, cmd, data);
1098 		break;
1099 	}
1100 
1101 	if (error == ENETRESET) {
1102 		if (ifp->if_flags & IFF_RUNNING)
1103 			age_rxfilter(sc);
1104 		error = 0;
1105 	}
1106 
1107 	splx(s);
1108 	return (error);
1109 }
1110 
1111 void
1112 age_mac_config(struct age_softc *sc)
1113 {
1114 	struct mii_data *mii;
1115 	uint32_t reg;
1116 
1117 	mii = &sc->sc_miibus;
1118 
1119 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1120 	reg &= ~MAC_CFG_FULL_DUPLEX;
1121 	reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC);
1122 	reg &= ~MAC_CFG_SPEED_MASK;
1123 
1124 	/* Reprogram MAC with resolved speed/duplex. */
1125 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1126 	case IFM_10_T:
1127 	case IFM_100_TX:
1128 		reg |= MAC_CFG_SPEED_10_100;
1129 		break;
1130 	case IFM_1000_T:
1131 		reg |= MAC_CFG_SPEED_1000;
1132 		break;
1133 	}
1134 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1135 		reg |= MAC_CFG_FULL_DUPLEX;
1136 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1137 			reg |= MAC_CFG_TX_FC;
1138 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1139 			reg |= MAC_CFG_RX_FC;
1140 	}
1141 
1142 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1143 }
1144 
1145 int
1146 age_encap(struct age_softc *sc, struct mbuf **m_head)
1147 {
1148 	struct age_txdesc *txd, *txd_last;
1149 	struct tx_desc *desc;
1150 	struct mbuf *m;
1151 	bus_dmamap_t map;
1152 	uint32_t cflags, poff, vtag;
1153 	int error, i, nsegs, prod;
1154 
1155 	m = *m_head;
1156 	cflags = vtag = 0;
1157 	poff = 0;
1158 
1159 	prod = sc->age_cdata.age_tx_prod;
1160 	txd = &sc->age_cdata.age_txdesc[prod];
1161 	txd_last = txd;
1162 	map = txd->tx_dmamap;
1163 
1164 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head, BUS_DMA_NOWAIT);
1165 
1166 	if (error != 0) {
1167 		bus_dmamap_unload(sc->sc_dmat, map);
1168 		error = EFBIG;
1169 	}
1170 	if (error == EFBIG) {
1171 		if (m_defrag(*m_head, M_DONTWAIT)) {
1172 			printf("%s: can't defrag TX mbuf\n",
1173 			    sc->sc_dev.dv_xname);
1174 			m_freem(*m_head);
1175 			*m_head = NULL;
1176 			return (ENOBUFS);
1177 		}
1178 		error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head,
1179 		  	    BUS_DMA_NOWAIT);
1180 		if (error != 0) {
1181 			printf("%s: could not load defragged TX mbuf\n",
1182 			    sc->sc_dev.dv_xname);
1183 			m_freem(*m_head);
1184 			*m_head = NULL;
1185 			return (error);
1186 		}
1187 	} else if (error) {
1188 		printf("%s: could not load TX mbuf\n", sc->sc_dev.dv_xname);
1189 		return (error);
1190 	}
1191 
1192 	nsegs = map->dm_nsegs;
1193 
1194 	if (nsegs == 0) {
1195 		m_freem(*m_head);
1196 		*m_head = NULL;
1197 		return (EIO);
1198 	}
1199 
1200 	/* Check descriptor overrun. */
1201 	if (sc->age_cdata.age_tx_cnt + nsegs >= AGE_TX_RING_CNT - 2) {
1202 		bus_dmamap_unload(sc->sc_dmat, map);
1203 		return (ENOBUFS);
1204 	}
1205 
1206 	m = *m_head;
1207 	/* Configure Tx IP/TCP/UDP checksum offload. */
1208 	if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) {
1209 		cflags |= AGE_TD_CSUM;
1210 		if ((m->m_pkthdr.csum_flags & M_TCPV4_CSUM_OUT) != 0)
1211 			cflags |= AGE_TD_TCPCSUM;
1212 		if ((m->m_pkthdr.csum_flags & M_UDPV4_CSUM_OUT) != 0)
1213 			cflags |= AGE_TD_UDPCSUM;
1214 		/* Set checksum start offset. */
1215 		cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT);
1216 	}
1217 
1218 #if NVLAN > 0
1219 	/* Configure VLAN hardware tag insertion. */
1220 	if (m->m_flags & M_VLANTAG) {
1221 		vtag = AGE_TX_VLAN_TAG(m->m_pkthdr.ether_vtag);
1222 		vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK);
1223 		cflags |= AGE_TD_INSERT_VLAN_TAG;
1224 	}
1225 #endif
1226 
1227 	desc = NULL;
1228 	for (i = 0; i < nsegs; i++) {
1229 		desc = &sc->age_rdata.age_tx_ring[prod];
1230 		desc->addr = htole64(map->dm_segs[i].ds_addr);
1231 		desc->len =
1232 		    htole32(AGE_TX_BYTES(map->dm_segs[i].ds_len) | vtag);
1233 		desc->flags = htole32(cflags);
1234 		sc->age_cdata.age_tx_cnt++;
1235 		AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1236 	}
1237 
1238 	/* Update producer index. */
1239 	sc->age_cdata.age_tx_prod = prod;
1240 
1241 	/* Set EOP on the last descriptor. */
1242 	prod = (prod + AGE_TX_RING_CNT - 1) % AGE_TX_RING_CNT;
1243 	desc = &sc->age_rdata.age_tx_ring[prod];
1244 	desc->flags |= htole32(AGE_TD_EOP);
1245 
1246 	/* Swap dmamap of the first and the last. */
1247 	txd = &sc->age_cdata.age_txdesc[prod];
1248 	map = txd_last->tx_dmamap;
1249 	txd_last->tx_dmamap = txd->tx_dmamap;
1250 	txd->tx_dmamap = map;
1251 	txd->tx_m = m;
1252 
1253 	/* Sync descriptors. */
1254 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1255 	    BUS_DMASYNC_PREWRITE);
1256 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
1257 	    sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1258 
1259 	return (0);
1260 }
1261 
1262 void
1263 age_txintr(struct age_softc *sc, int tpd_cons)
1264 {
1265 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1266 	struct age_txdesc *txd;
1267 	int cons, prog;
1268 
1269 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
1270 	    sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1271 
1272 	/*
1273 	 * Go through our Tx list and free mbufs for those
1274 	 * frames which have been transmitted.
1275 	 */
1276 	cons = sc->age_cdata.age_tx_cons;
1277 	for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) {
1278 		if (sc->age_cdata.age_tx_cnt <= 0)
1279 			break;
1280 		prog++;
1281 		ifp->if_flags &= ~IFF_OACTIVE;
1282 		sc->age_cdata.age_tx_cnt--;
1283 		txd = &sc->age_cdata.age_txdesc[cons];
1284 		/*
1285 		 * Clear Tx descriptors, it's not required but would
1286 		 * help debugging in case of Tx issues.
1287 		 */
1288 		txd->tx_desc->addr = 0;
1289 		txd->tx_desc->len = 0;
1290 		txd->tx_desc->flags = 0;
1291 
1292 		if (txd->tx_m == NULL)
1293 			continue;
1294 		/* Reclaim transmitted mbufs. */
1295 		bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1296 		m_freem(txd->tx_m);
1297 		txd->tx_m = NULL;
1298 	}
1299 
1300 	if (prog > 0) {
1301 		sc->age_cdata.age_tx_cons = cons;
1302 
1303 		/*
1304 		 * Unarm watchdog timer only when there are no pending
1305 		 * Tx descriptors in queue.
1306 		 */
1307 		if (sc->age_cdata.age_tx_cnt == 0)
1308 			ifp->if_timer = 0;
1309 
1310 		bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
1311 		    sc->age_cdata.age_tx_ring_map->dm_mapsize,
1312 		    BUS_DMASYNC_PREWRITE);
1313 	}
1314 }
1315 
1316 /* Receive a frame. */
1317 void
1318 age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd)
1319 {
1320 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1321 	struct age_rxdesc *rxd;
1322 	struct rx_desc *desc;
1323 	struct mbuf *mp, *m;
1324 	uint32_t status, index;
1325 	int count, nsegs, pktlen;
1326 	int rx_cons;
1327 
1328 	status = letoh32(rxrd->flags);
1329 	index = letoh32(rxrd->index);
1330 	rx_cons = AGE_RX_CONS(index);
1331 	nsegs = AGE_RX_NSEGS(index);
1332 
1333 	sc->age_cdata.age_rxlen = AGE_RX_BYTES(letoh32(rxrd->len));
1334 	if ((status & AGE_RRD_ERROR) != 0 &&
1335 	    (status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE |
1336 	    AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0) {
1337 		/*
1338 		 * We want to pass the following frames to upper
1339 		 * layer regardless of error status of Rx return
1340 		 * ring.
1341 		 *
1342 		 *  o IP/TCP/UDP checksum is bad.
1343 		 *  o frame length and protocol specific length
1344 		 *     does not match.
1345 		 */
1346 		sc->age_cdata.age_rx_cons += nsegs;
1347 		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
1348 		return;
1349 	}
1350 
1351 	pktlen = 0;
1352 	for (count = 0; count < nsegs; count++,
1353 	    AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) {
1354 		rxd = &sc->age_cdata.age_rxdesc[rx_cons];
1355 		mp = rxd->rx_m;
1356 		desc = rxd->rx_desc;
1357 		/* Add a new receive buffer to the ring. */
1358 		if (age_newbuf(sc, rxd, 0) != 0) {
1359 			ifp->if_iqdrops++;
1360 			/* Reuse Rx buffers. */
1361 			if (sc->age_cdata.age_rxhead != NULL) {
1362 				m_freem(sc->age_cdata.age_rxhead);
1363 				AGE_RXCHAIN_RESET(sc);
1364 			}
1365 			break;
1366 		}
1367 
1368 		/* The length of the first mbuf is computed last. */
1369 		if (count != 0) {
1370 			mp->m_len = AGE_RX_BYTES(letoh32(desc->len));
1371 			pktlen += mp->m_len;
1372 		}
1373 
1374 		/* Chain received mbufs. */
1375 		if (sc->age_cdata.age_rxhead == NULL) {
1376 			sc->age_cdata.age_rxhead = mp;
1377 			sc->age_cdata.age_rxtail = mp;
1378 		} else {
1379 			mp->m_flags &= ~M_PKTHDR;
1380 			sc->age_cdata.age_rxprev_tail =
1381 			    sc->age_cdata.age_rxtail;
1382 			sc->age_cdata.age_rxtail->m_next = mp;
1383 			sc->age_cdata.age_rxtail = mp;
1384 		}
1385 
1386 		if (count == nsegs - 1) {
1387 			/*
1388 			 * It seems that L1 controller has no way
1389 			 * to tell hardware to strip CRC bytes.
1390 			 */
1391 			sc->age_cdata.age_rxlen -= ETHER_CRC_LEN;
1392 			if (nsegs > 1) {
1393 				/* Remove the CRC bytes in chained mbufs. */
1394 				pktlen -= ETHER_CRC_LEN;
1395 				if (mp->m_len <= ETHER_CRC_LEN) {
1396 					sc->age_cdata.age_rxtail =
1397 					    sc->age_cdata.age_rxprev_tail;
1398 					sc->age_cdata.age_rxtail->m_len -=
1399 					    (ETHER_CRC_LEN - mp->m_len);
1400 					sc->age_cdata.age_rxtail->m_next = NULL;
1401 					m_freem(mp);
1402 				} else {
1403 					mp->m_len -= ETHER_CRC_LEN;
1404 				}
1405 			}
1406 
1407 			m = sc->age_cdata.age_rxhead;
1408 			m->m_flags |= M_PKTHDR;
1409 			m->m_pkthdr.rcvif = ifp;
1410 			m->m_pkthdr.len = sc->age_cdata.age_rxlen;
1411 			/* Set the first mbuf length. */
1412 			m->m_len = sc->age_cdata.age_rxlen - pktlen;
1413 
1414 			/*
1415 			 * Set checksum information.
1416 			 * It seems that L1 controller can compute partial
1417 			 * checksum. The partial checksum value can be used
1418 			 * to accelerate checksum computation for fragmented
1419 			 * TCP/UDP packets. Upper network stack already
1420 			 * takes advantage of the partial checksum value in
1421 			 * IP reassembly stage. But I'm not sure the
1422 			 * correctness of the partial hardware checksum
1423 			 * assistance due to lack of data sheet. If it is
1424 			 * proven to work on L1 I'll enable it.
1425 			 */
1426 			if (status & AGE_RRD_IPV4) {
1427 				if ((status & AGE_RRD_IPCSUM_NOK) == 0)
1428 					m->m_pkthdr.csum_flags |=
1429 					    M_IPV4_CSUM_IN_OK;
1430 				if ((status & (AGE_RRD_TCP | AGE_RRD_UDP)) &&
1431 				    (status & AGE_RRD_TCP_UDPCSUM_NOK) == 0) {
1432 					m->m_pkthdr.csum_flags |=
1433 					    M_TCP_CSUM_IN_OK | M_UDP_CSUM_IN_OK;
1434 				}
1435 				/*
1436 				 * Don't mark bad checksum for TCP/UDP frames
1437 				 * as fragmented frames may always have set
1438 				 * bad checksummed bit of descriptor status.
1439 				 */
1440 			}
1441 #if NVLAN > 0
1442 			/* Check for VLAN tagged frames. */
1443 			if (status & AGE_RRD_VLAN) {
1444 				u_int32_t vtag = AGE_RX_VLAN(letoh32(rxrd->vtags));
1445 				m->m_pkthdr.ether_vtag =
1446 				    AGE_RX_VLAN_TAG(vtag);
1447 				m->m_flags |= M_VLANTAG;
1448 			}
1449 #endif
1450 
1451 #if NBPFILTER > 0
1452 			if (ifp->if_bpf)
1453 				bpf_mtap_ether(ifp->if_bpf, m,
1454 				    BPF_DIRECTION_IN);
1455 #endif
1456 			/* Pass it on. */
1457 			ether_input_mbuf(ifp, m);
1458 
1459 			/* Reset mbuf chains. */
1460 			AGE_RXCHAIN_RESET(sc);
1461 		}
1462 	}
1463 
1464 	if (count != nsegs) {
1465 		sc->age_cdata.age_rx_cons += nsegs;
1466 		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
1467 	} else
1468 		sc->age_cdata.age_rx_cons = rx_cons;
1469 }
1470 
1471 void
1472 age_rxintr(struct age_softc *sc, int rr_prod)
1473 {
1474 	struct rx_rdesc *rxrd;
1475 	int rr_cons, nsegs, pktlen, prog;
1476 
1477 	rr_cons = sc->age_cdata.age_rr_cons;
1478 	if (rr_cons == rr_prod)
1479 		return;
1480 
1481 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
1482 	    sc->age_cdata.age_rr_ring_map->dm_mapsize,
1483 	    BUS_DMASYNC_POSTREAD);
1484 
1485 	for (prog = 0; rr_cons != rr_prod; prog++) {
1486 		rxrd = &sc->age_rdata.age_rr_ring[rr_cons];
1487 		nsegs = AGE_RX_NSEGS(letoh32(rxrd->index));
1488 		if (nsegs == 0)
1489 			break;
1490 		/*
1491 		 * Check number of segments against received bytes
1492 		 * Non-matching value would indicate that hardware
1493 		 * is still trying to update Rx return descriptors.
1494 		 * I'm not sure whether this check is really needed.
1495 		 */
1496 		pktlen = AGE_RX_BYTES(letoh32(rxrd->len));
1497 		if (nsegs != ((pktlen + (MCLBYTES - ETHER_ALIGN - 1)) /
1498 		    (MCLBYTES - ETHER_ALIGN)))
1499 			break;
1500 
1501 		/* Received a frame. */
1502 		age_rxeof(sc, rxrd);
1503 
1504 		/* Clear return ring. */
1505 		rxrd->index = 0;
1506 		AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT);
1507 	}
1508 
1509 	if (prog > 0) {
1510 		/* Update the consumer index. */
1511 		sc->age_cdata.age_rr_cons = rr_cons;
1512 
1513 		/* Sync descriptors. */
1514 		bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
1515 		    sc->age_cdata.age_rr_ring_map->dm_mapsize,
1516 		    BUS_DMASYNC_PREWRITE);
1517 
1518 		/* Notify hardware availability of new Rx buffers. */
1519 		AGE_COMMIT_MBOX(sc);
1520 	}
1521 }
1522 
1523 void
1524 age_tick(void *xsc)
1525 {
1526 	struct age_softc *sc = xsc;
1527 	struct mii_data *mii = &sc->sc_miibus;
1528 	int s;
1529 
1530 	s = splnet();
1531 	mii_tick(mii);
1532 	timeout_add_sec(&sc->age_tick_ch, 1);
1533 	splx(s);
1534 }
1535 
1536 void
1537 age_reset(struct age_softc *sc)
1538 {
1539 	uint32_t reg;
1540 	int i;
1541 
1542 	CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET);
1543 	CSR_READ_4(sc, AGE_MASTER_CFG);
1544 	DELAY(1000);
1545 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
1546 		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
1547 			break;
1548 		DELAY(10);
1549 	}
1550 
1551 	if (i == 0)
1552 		printf("%s: reset timeout(0x%08x)!\n", sc->sc_dev.dv_xname,
1553 		    reg);
1554 
1555 	/* Initialize PCIe module. From Linux. */
1556 	CSR_WRITE_4(sc, 0x12FC, 0x6500);
1557 	CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
1558 }
1559 
1560 int
1561 age_init(struct ifnet *ifp)
1562 {
1563 	struct age_softc *sc = ifp->if_softc;
1564 	struct mii_data *mii;
1565 	uint8_t eaddr[ETHER_ADDR_LEN];
1566 	bus_addr_t paddr;
1567 	uint32_t reg, fsize;
1568 	uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo;
1569 	int error;
1570 
1571 	/*
1572 	 * Cancel any pending I/O.
1573 	 */
1574 	age_stop(sc);
1575 
1576 	/*
1577 	 * Reset the chip to a known state.
1578 	 */
1579 	age_reset(sc);
1580 
1581 	/* Initialize descriptors. */
1582 	error = age_init_rx_ring(sc);
1583         if (error != 0) {
1584 		printf("%s: no memory for Rx buffers.\n", sc->sc_dev.dv_xname);
1585                 age_stop(sc);
1586 		return (error);
1587         }
1588 	age_init_rr_ring(sc);
1589 	age_init_tx_ring(sc);
1590 	age_init_cmb_block(sc);
1591 	age_init_smb_block(sc);
1592 
1593 	/* Reprogram the station address. */
1594 	bcopy(LLADDR(ifp->if_sadl), eaddr, ETHER_ADDR_LEN);
1595 	CSR_WRITE_4(sc, AGE_PAR0,
1596 	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
1597 	CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]);
1598 
1599 	/* Set descriptor base addresses. */
1600 	paddr = sc->age_rdata.age_tx_ring_paddr;
1601 	CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr));
1602 	paddr = sc->age_rdata.age_rx_ring_paddr;
1603 	CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr));
1604 	paddr = sc->age_rdata.age_rr_ring_paddr;
1605 	CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr));
1606 	paddr = sc->age_rdata.age_tx_ring_paddr;
1607 	CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr));
1608 	paddr = sc->age_rdata.age_cmb_block_paddr;
1609 	CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr));
1610 	paddr = sc->age_rdata.age_smb_block_paddr;
1611 	CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr));
1612 
1613 	/* Set Rx/Rx return descriptor counter. */
1614 	CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT,
1615 	    ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) &
1616 	    DESC_RRD_CNT_MASK) |
1617 	    ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK));
1618 
1619 	/* Set Tx descriptor counter. */
1620 	CSR_WRITE_4(sc, AGE_DESC_TPD_CNT,
1621 	    (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK);
1622 
1623 	/* Tell hardware that we're ready to load descriptors. */
1624 	CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD);
1625 
1626         /*
1627 	 * Initialize mailbox register.
1628 	 * Updated producer/consumer index information is exchanged
1629 	 * through this mailbox register. However Tx producer and
1630 	 * Rx return consumer/Rx producer are all shared such that
1631 	 * it's hard to separate code path between Tx and Rx without
1632 	 * locking. If L1 hardware have a separate mail box register
1633 	 * for Tx and Rx consumer/producer management we could have
1634 	 * indepent Tx/Rx handler which in turn Rx handler could have
1635 	 * been run without any locking.
1636 	*/
1637 	AGE_COMMIT_MBOX(sc);
1638 
1639 	/* Configure IPG/IFG parameters. */
1640 	CSR_WRITE_4(sc, AGE_IPG_IFG_CFG,
1641 	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) |
1642 	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
1643 	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
1644 	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK));
1645 
1646 	/* Set parameters for half-duplex media. */
1647 	CSR_WRITE_4(sc, AGE_HDPX_CFG,
1648 	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
1649 	    HDPX_CFG_LCOL_MASK) |
1650 	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
1651 	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
1652 	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
1653 	    HDPX_CFG_ABEBT_MASK) |
1654 	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
1655 	     HDPX_CFG_JAMIPG_MASK));
1656 
1657 	/* Configure interrupt moderation timer. */
1658 	sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
1659 	CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod));
1660 	reg = CSR_READ_4(sc, AGE_MASTER_CFG);
1661 	reg &= ~MASTER_MTIMER_ENB;
1662 	if (AGE_USECS(sc->age_int_mod) == 0)
1663 		reg &= ~MASTER_ITIMER_ENB;
1664 	else
1665 		reg |= MASTER_ITIMER_ENB;
1666 	CSR_WRITE_4(sc, AGE_MASTER_CFG, reg);
1667 	if (agedebug)
1668 		printf("%s: interrupt moderation is %d us.\n",
1669 		    sc->sc_dev.dv_xname, sc->age_int_mod);
1670 	CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000));
1671 
1672 	/* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
1673 	if (ifp->if_mtu < ETHERMTU)
1674 		sc->age_max_frame_size = ETHERMTU;
1675 	else
1676 		sc->age_max_frame_size = ifp->if_mtu;
1677 	sc->age_max_frame_size += ETHER_HDR_LEN +
1678 	    sizeof(struct ether_vlan_header) + ETHER_CRC_LEN;
1679 	CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size);
1680 
1681 	/* Configure jumbo frame. */
1682 	fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t));
1683 	CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG,
1684 	    (((fsize / sizeof(uint64_t)) <<
1685 	    RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) |
1686 	    ((RXQ_JUMBO_CFG_LKAH_DEFAULT <<
1687 	    RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) |
1688 	    ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) &
1689 	    RXQ_JUMBO_CFG_RRD_TIMER_MASK));
1690 
1691 	/* Configure flow-control parameters. From Linux. */
1692 	if ((sc->age_flags & AGE_FLAG_PCIE) != 0) {
1693 		/*
1694 		 * Magic workaround for old-L1.
1695 		 * Don't know which hw revision requires this magic.
1696 		 */
1697 		CSR_WRITE_4(sc, 0x12FC, 0x6500);
1698 		/*
1699 		 * Another magic workaround for flow-control mode
1700 		 * change. From Linux.
1701 		 */
1702 		CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
1703 	}
1704 	/*
1705 	 * TODO
1706 	 *  Should understand pause parameter relationships between FIFO
1707 	 *  size and number of Rx descriptors and Rx return descriptors.
1708 	 *
1709 	 *  Magic parameters came from Linux.
1710 	 */
1711 	switch (sc->age_chip_rev) {
1712 	case 0x8001:
1713 	case 0x9001:
1714 	case 0x9002:
1715 	case 0x9003:
1716 		rxf_hi = AGE_RX_RING_CNT / 16;
1717 		rxf_lo = (AGE_RX_RING_CNT * 7) / 8;
1718 		rrd_hi = (AGE_RR_RING_CNT * 7) / 8;
1719 		rrd_lo = AGE_RR_RING_CNT / 16;
1720 		break;
1721 	default:
1722 		reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN);
1723 		rxf_lo = reg / 16;
1724 		if (rxf_lo < 192)
1725 			rxf_lo = 192;
1726 		rxf_hi = (reg * 7) / 8;
1727 		if (rxf_hi < rxf_lo)
1728 			rxf_hi = rxf_lo + 16;
1729 		reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN);
1730 		rrd_lo = reg / 8;
1731 		rrd_hi = (reg * 7) / 8;
1732 		if (rrd_lo < 2)
1733 			rrd_lo = 2;
1734 		if (rrd_hi < rrd_lo)
1735 			rrd_hi = rrd_lo + 3;
1736 		break;
1737 	}
1738 	CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH,
1739 	    ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) &
1740 	    RXQ_FIFO_PAUSE_THRESH_LO_MASK) |
1741 	    ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) &
1742 	    RXQ_FIFO_PAUSE_THRESH_HI_MASK));
1743 	CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH,
1744 	    ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) &
1745 	    RXQ_RRD_PAUSE_THRESH_LO_MASK) |
1746 	    ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) &
1747 	    RXQ_RRD_PAUSE_THRESH_HI_MASK));
1748 
1749 	/* Configure RxQ. */
1750 	CSR_WRITE_4(sc, AGE_RXQ_CFG,
1751 	    ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
1752 	    RXQ_CFG_RD_BURST_MASK) |
1753 	    ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT <<
1754 	    RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) |
1755 	    ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT <<
1756 	    RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) |
1757 	    RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
1758 
1759 	/* Configure TxQ. */
1760 	CSR_WRITE_4(sc, AGE_TXQ_CFG,
1761 	    ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
1762 	    TXQ_CFG_TPD_BURST_MASK) |
1763 	    ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) &
1764 	    TXQ_CFG_TX_FIFO_BURST_MASK) |
1765 	    ((TXQ_CFG_TPD_FETCH_DEFAULT <<
1766 	    TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) |
1767 	    TXQ_CFG_ENB);
1768 
1769 	/* Configure DMA parameters. */
1770 	CSR_WRITE_4(sc, AGE_DMA_CFG,
1771 	    DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 |
1772 	    sc->age_dma_rd_burst | DMA_CFG_RD_ENB |
1773 	    sc->age_dma_wr_burst | DMA_CFG_WR_ENB);
1774 
1775 	/* Configure CMB DMA write threshold. */
1776 	CSR_WRITE_4(sc, AGE_CMB_WR_THRESH,
1777 	    ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) &
1778 	    CMB_WR_THRESH_RRD_MASK) |
1779 	    ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) &
1780 	    CMB_WR_THRESH_TPD_MASK));
1781 
1782 	/* Set CMB/SMB timer and enable them. */
1783 	CSR_WRITE_4(sc, AGE_CMB_WR_TIMER,
1784 	    ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) |
1785 	    ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK));
1786 
1787 	/* Request SMB updates for every seconds. */
1788 	CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000));
1789 	CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB);
1790 
1791 	/*
1792 	 * Disable all WOL bits as WOL can interfere normal Rx
1793 	 * operation.
1794 	 */
1795 	CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
1796 
1797         /*
1798 	 * Configure Tx/Rx MACs.
1799 	 *  - Auto-padding for short frames.
1800 	 *  - Enable CRC generation.
1801 	 *  Start with full-duplex/1000Mbps media. Actual reconfiguration
1802 	 *  of MAC is followed after link establishment.
1803 	 */
1804 	CSR_WRITE_4(sc, AGE_MAC_CFG,
1805 	    MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD |
1806 	    MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 |
1807 	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
1808 	    MAC_CFG_PREAMBLE_MASK));
1809 
1810 	/* Set up the receive filter. */
1811 	age_rxfilter(sc);
1812 	age_rxvlan(sc);
1813 
1814 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1815 	reg |= MAC_CFG_RXCSUM_ENB;
1816 
1817 	/* Ack all pending interrupts and clear it. */
1818 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
1819 	CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS);
1820 
1821 	/* Finally enable Tx/Rx MAC. */
1822 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
1823 
1824 	sc->age_flags &= ~AGE_FLAG_LINK;
1825 
1826 	/* Switch to the current media. */
1827 	mii = &sc->sc_miibus;
1828 	mii_mediachg(mii);
1829 
1830 	timeout_add_sec(&sc->age_tick_ch, 1);
1831 
1832 	ifp->if_flags |= IFF_RUNNING;
1833 	ifp->if_flags &= ~IFF_OACTIVE;
1834 
1835 	return (0);
1836 }
1837 
1838 void
1839 age_stop(struct age_softc *sc)
1840 {
1841 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1842 	struct age_txdesc *txd;
1843 	struct age_rxdesc *rxd;
1844 	uint32_t reg;
1845 	int i;
1846 
1847 	/*
1848 	 * Mark the interface down and cancel the watchdog timer.
1849 	 */
1850 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1851 	ifp->if_timer = 0;
1852 
1853 	sc->age_flags &= ~AGE_FLAG_LINK;
1854 	timeout_del(&sc->age_tick_ch);
1855 
1856 	/*
1857 	 * Disable interrupts.
1858 	 */
1859 	CSR_WRITE_4(sc, AGE_INTR_MASK, 0);
1860 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF);
1861 
1862 	/* Stop CMB/SMB updates. */
1863 	CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0);
1864 
1865 	/* Stop Rx/Tx MAC. */
1866 	age_stop_rxmac(sc);
1867 	age_stop_txmac(sc);
1868 
1869 	/* Stop DMA. */
1870 	CSR_WRITE_4(sc, AGE_DMA_CFG,
1871 	    CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB));
1872 
1873 	/* Stop TxQ/RxQ. */
1874 	CSR_WRITE_4(sc, AGE_TXQ_CFG,
1875 	    CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB);
1876 	CSR_WRITE_4(sc, AGE_RXQ_CFG,
1877 	    CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB);
1878 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
1879 		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
1880 			break;
1881 		DELAY(10);
1882 	}
1883 	if (i == 0)
1884 		printf("%s: stopping Rx/Tx MACs timed out(0x%08x)!\n",
1885 		    sc->sc_dev.dv_xname, reg);
1886 
1887 	/* Reclaim Rx buffers that have been processed. */
1888 	if (sc->age_cdata.age_rxhead != NULL)
1889 		m_freem(sc->age_cdata.age_rxhead);
1890 	AGE_RXCHAIN_RESET(sc);
1891 
1892 	/*
1893 	 * Free RX and TX mbufs still in the queues.
1894 	 */
1895 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
1896 		rxd = &sc->age_cdata.age_rxdesc[i];
1897 		if (rxd->rx_m != NULL) {
1898 			bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
1899 			m_freem(rxd->rx_m);
1900 			rxd->rx_m = NULL;
1901 		}
1902 	}
1903 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
1904 		txd = &sc->age_cdata.age_txdesc[i];
1905 		if (txd->tx_m != NULL) {
1906 			bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1907 			m_freem(txd->tx_m);
1908 			txd->tx_m = NULL;
1909 		}
1910 	}
1911 }
1912 
1913 void
1914 age_stats_update(struct age_softc *sc)
1915 {
1916 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1917 	struct age_stats *stat;
1918 	struct smb *smb;
1919 
1920 	stat = &sc->age_stat;
1921 
1922 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
1923 	    sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1924 
1925 	smb = sc->age_rdata.age_smb_block;
1926 	if (smb->updated == 0)
1927 		return;
1928 
1929 	/* Rx stats. */
1930 	stat->rx_frames += smb->rx_frames;
1931 	stat->rx_bcast_frames += smb->rx_bcast_frames;
1932 	stat->rx_mcast_frames += smb->rx_mcast_frames;
1933 	stat->rx_pause_frames += smb->rx_pause_frames;
1934 	stat->rx_control_frames += smb->rx_control_frames;
1935 	stat->rx_crcerrs += smb->rx_crcerrs;
1936 	stat->rx_lenerrs += smb->rx_lenerrs;
1937 	stat->rx_bytes += smb->rx_bytes;
1938 	stat->rx_runts += smb->rx_runts;
1939 	stat->rx_fragments += smb->rx_fragments;
1940 	stat->rx_pkts_64 += smb->rx_pkts_64;
1941 	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
1942 	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
1943 	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
1944 	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
1945 	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
1946 	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
1947 	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
1948 	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
1949 	stat->rx_desc_oflows += smb->rx_desc_oflows;
1950 	stat->rx_alignerrs += smb->rx_alignerrs;
1951 	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
1952 	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
1953 	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
1954 
1955 	/* Tx stats. */
1956 	stat->tx_frames += smb->tx_frames;
1957 	stat->tx_bcast_frames += smb->tx_bcast_frames;
1958 	stat->tx_mcast_frames += smb->tx_mcast_frames;
1959 	stat->tx_pause_frames += smb->tx_pause_frames;
1960 	stat->tx_excess_defer += smb->tx_excess_defer;
1961 	stat->tx_control_frames += smb->tx_control_frames;
1962 	stat->tx_deferred += smb->tx_deferred;
1963 	stat->tx_bytes += smb->tx_bytes;
1964 	stat->tx_pkts_64 += smb->tx_pkts_64;
1965 	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
1966 	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
1967 	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
1968 	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
1969 	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
1970 	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
1971 	stat->tx_single_colls += smb->tx_single_colls;
1972 	stat->tx_multi_colls += smb->tx_multi_colls;
1973 	stat->tx_late_colls += smb->tx_late_colls;
1974 	stat->tx_excess_colls += smb->tx_excess_colls;
1975 	stat->tx_underrun += smb->tx_underrun;
1976 	stat->tx_desc_underrun += smb->tx_desc_underrun;
1977 	stat->tx_lenerrs += smb->tx_lenerrs;
1978 	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
1979 	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
1980 	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
1981 
1982 	/* Update counters in ifnet. */
1983 	ifp->if_opackets += smb->tx_frames;
1984 
1985 	ifp->if_collisions += smb->tx_single_colls +
1986 	    smb->tx_multi_colls + smb->tx_late_colls +
1987 	    smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT;
1988 
1989 	ifp->if_oerrors += smb->tx_excess_colls +
1990 	    smb->tx_late_colls + smb->tx_underrun +
1991 	    smb->tx_pkts_truncated;
1992 
1993 	ifp->if_ipackets += smb->rx_frames;
1994 
1995 	ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
1996 	    smb->rx_runts + smb->rx_pkts_truncated +
1997 	    smb->rx_fifo_oflows + smb->rx_desc_oflows +
1998 	    smb->rx_alignerrs;
1999 
2000 	/* Update done, clear. */
2001 	smb->updated = 0;
2002 
2003 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
2004 	    sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2005 }
2006 
2007 void
2008 age_stop_txmac(struct age_softc *sc)
2009 {
2010 	uint32_t reg;
2011 	int i;
2012 
2013 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2014 	if ((reg & MAC_CFG_TX_ENB) != 0) {
2015 		reg &= ~MAC_CFG_TX_ENB;
2016 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2017 	}
2018 	/* Stop Tx DMA engine. */
2019 	reg = CSR_READ_4(sc, AGE_DMA_CFG);
2020 	if ((reg & DMA_CFG_RD_ENB) != 0) {
2021 		reg &= ~DMA_CFG_RD_ENB;
2022 		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2023 	}
2024 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2025 		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2026 		    (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0)
2027 			break;
2028 		DELAY(10);
2029 	}
2030 	if (i == 0)
2031 		printf("%s: stopping TxMAC timeout!\n", sc->sc_dev.dv_xname);
2032 }
2033 
2034 void
2035 age_stop_rxmac(struct age_softc *sc)
2036 {
2037 	uint32_t reg;
2038 	int i;
2039 
2040 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2041 	if ((reg & MAC_CFG_RX_ENB) != 0) {
2042 		reg &= ~MAC_CFG_RX_ENB;
2043 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2044 	}
2045 	/* Stop Rx DMA engine. */
2046 	reg = CSR_READ_4(sc, AGE_DMA_CFG);
2047 	if ((reg & DMA_CFG_WR_ENB) != 0) {
2048 		reg &= ~DMA_CFG_WR_ENB;
2049 		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2050 	}
2051 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2052 		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2053 		    (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0)
2054 			break;
2055 		DELAY(10);
2056 	}
2057 	if (i == 0)
2058 		printf("%s: stopping RxMAC timeout!\n", sc->sc_dev.dv_xname);
2059 }
2060 
2061 void
2062 age_init_tx_ring(struct age_softc *sc)
2063 {
2064 	struct age_ring_data *rd;
2065 	struct age_txdesc *txd;
2066 	int i;
2067 
2068 	sc->age_cdata.age_tx_prod = 0;
2069 	sc->age_cdata.age_tx_cons = 0;
2070 	sc->age_cdata.age_tx_cnt = 0;
2071 
2072 	rd = &sc->age_rdata;
2073 	bzero(rd->age_tx_ring, AGE_TX_RING_SZ);
2074 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
2075 		txd = &sc->age_cdata.age_txdesc[i];
2076 		txd->tx_desc = &rd->age_tx_ring[i];
2077 		txd->tx_m = NULL;
2078 	}
2079 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
2080 	    sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2081 }
2082 
2083 int
2084 age_init_rx_ring(struct age_softc *sc)
2085 {
2086 	struct age_ring_data *rd;
2087 	struct age_rxdesc *rxd;
2088 	int i;
2089 
2090 	sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1;
2091 	rd = &sc->age_rdata;
2092 	bzero(rd->age_rx_ring, AGE_RX_RING_SZ);
2093 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
2094 		rxd = &sc->age_cdata.age_rxdesc[i];
2095 		rxd->rx_m = NULL;
2096 		rxd->rx_desc = &rd->age_rx_ring[i];
2097 		if (age_newbuf(sc, rxd, 1) != 0)
2098 			return (ENOBUFS);
2099 	}
2100 
2101 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rx_ring_map, 0,
2102 	    sc->age_cdata.age_rx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2103 
2104 	return (0);
2105 }
2106 
2107 void
2108 age_init_rr_ring(struct age_softc *sc)
2109 {
2110 	struct age_ring_data *rd;
2111 
2112 	sc->age_cdata.age_rr_cons = 0;
2113 	AGE_RXCHAIN_RESET(sc);
2114 
2115 	rd = &sc->age_rdata;
2116 	bzero(rd->age_rr_ring, AGE_RR_RING_SZ);
2117 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
2118 	    sc->age_cdata.age_rr_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2119 }
2120 
2121 void
2122 age_init_cmb_block(struct age_softc *sc)
2123 {
2124 	struct age_ring_data *rd;
2125 
2126 	rd = &sc->age_rdata;
2127 	bzero(rd->age_cmb_block, AGE_CMB_BLOCK_SZ);
2128 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
2129 	    sc->age_cdata.age_cmb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2130 }
2131 
2132 void
2133 age_init_smb_block(struct age_softc *sc)
2134 {
2135 	struct age_ring_data *rd;
2136 
2137 	rd = &sc->age_rdata;
2138 	bzero(rd->age_smb_block, AGE_SMB_BLOCK_SZ);
2139 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
2140 	    sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2141 }
2142 
2143 int
2144 age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd, int init)
2145 {
2146 	struct rx_desc *desc;
2147 	struct mbuf *m;
2148 	bus_dmamap_t map;
2149 	int error;
2150 
2151 	MGETHDR(m, init ? M_WAITOK : M_DONTWAIT, MT_DATA);
2152 	if (m == NULL)
2153 		return (ENOBUFS);
2154 	MCLGET(m, init ? M_WAITOK : M_DONTWAIT);
2155 	if (!(m->m_flags & M_EXT)) {
2156 		 m_freem(m);
2157 		 return (ENOBUFS);
2158 	}
2159 
2160 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2161 	m_adj(m, ETHER_ALIGN);
2162 
2163 	error = bus_dmamap_load_mbuf(sc->sc_dmat,
2164 	    sc->age_cdata.age_rx_sparemap, m, BUS_DMA_NOWAIT);
2165 
2166 	if (error != 0) {
2167 		if (!error) {
2168 			bus_dmamap_unload(sc->sc_dmat,
2169 			    sc->age_cdata.age_rx_sparemap);
2170 			error = EFBIG;
2171 			printf("%s: too many segments?!\n",
2172 			    sc->sc_dev.dv_xname);
2173 		}
2174 		m_freem(m);
2175 
2176 		if (init)
2177 			printf("%s: can't load RX mbuf\n", sc->sc_dev.dv_xname);
2178 		return (error);
2179 	}
2180 
2181 	if (rxd->rx_m != NULL) {
2182 		bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0,
2183 		    rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2184 		bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
2185 	}
2186 	map = rxd->rx_dmamap;
2187 	rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap;
2188 	sc->age_cdata.age_rx_sparemap = map;
2189 	rxd->rx_m = m;
2190 
2191 	desc = rxd->rx_desc;
2192 	desc->addr = htole64(rxd->rx_dmamap->dm_segs[0].ds_addr);
2193 	desc->len =
2194 	    htole32((rxd->rx_dmamap->dm_segs[0].ds_len & AGE_RD_LEN_MASK) <<
2195 	    AGE_RD_LEN_SHIFT);
2196 
2197 	return (0);
2198 }
2199 
2200 void
2201 age_rxvlan(struct age_softc *sc)
2202 {
2203 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
2204 	uint32_t reg;
2205 
2206 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2207 	reg &= ~MAC_CFG_VLAN_TAG_STRIP;
2208 	if (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING)
2209 		reg |= MAC_CFG_VLAN_TAG_STRIP;
2210 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2211 }
2212 
2213 void
2214 age_rxfilter(struct age_softc *sc)
2215 {
2216 	struct arpcom *ac = &sc->sc_arpcom;
2217 	struct ifnet *ifp = &ac->ac_if;
2218 	struct ether_multi *enm;
2219 	struct ether_multistep step;
2220 	uint32_t crc;
2221 	uint32_t mchash[2];
2222 	uint32_t rxcfg;
2223 
2224 	rxcfg = CSR_READ_4(sc, AGE_MAC_CFG);
2225 	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
2226 	ifp->if_flags &= ~IFF_ALLMULTI;
2227 
2228 	/*
2229 	 * Always accept broadcast frames.
2230 	 */
2231 	rxcfg |= MAC_CFG_BCAST;
2232 
2233 	if (ifp->if_flags & IFF_PROMISC || ac->ac_multirangecnt > 0) {
2234 		ifp->if_flags |= IFF_ALLMULTI;
2235 		if (ifp->if_flags & IFF_PROMISC)
2236 			rxcfg |= MAC_CFG_PROMISC;
2237 		else
2238 			rxcfg |= MAC_CFG_ALLMULTI;
2239 		mchash[0] = mchash[1] = 0xFFFFFFFF;
2240 	} else {
2241 		/* Program new filter. */
2242 		bzero(mchash, sizeof(mchash));
2243 
2244 		ETHER_FIRST_MULTI(step, ac, enm);
2245 		while (enm != NULL) {
2246 			crc = ether_crc32_le(enm->enm_addrlo,
2247 			    ETHER_ADDR_LEN);
2248 
2249 			mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
2250 
2251 			ETHER_NEXT_MULTI(step, enm);
2252 		}
2253 	}
2254 
2255 	CSR_WRITE_4(sc, AGE_MAR0, mchash[0]);
2256 	CSR_WRITE_4(sc, AGE_MAR1, mchash[1]);
2257 	CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
2258 }
2259