xref: /openbsd-src/sys/dev/pci/if_age.c (revision 2b0358df1d88d06ef4139321dd05bd5e05d91eaf)
1 /*	$OpenBSD: if_age.c,v 1.4 2009/03/29 21:53:52 sthen Exp $	*/
2 
3 /*-
4  * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice unmodified, this list of conditions, and the following
12  *    disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 /* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */
31 
32 #include "bpfilter.h"
33 #include "vlan.h"
34 
35 #include <sys/param.h>
36 #include <sys/proc.h>
37 #include <sys/endian.h>
38 #include <sys/systm.h>
39 #include <sys/types.h>
40 #include <sys/sockio.h>
41 #include <sys/mbuf.h>
42 #include <sys/queue.h>
43 #include <sys/kernel.h>
44 #include <sys/device.h>
45 #include <sys/timeout.h>
46 #include <sys/socket.h>
47 
48 #include <machine/bus.h>
49 
50 #include <net/if.h>
51 #include <net/if_dl.h>
52 #include <net/if_media.h>
53 
54 #ifdef INET
55 #include <netinet/in.h>
56 #include <netinet/in_systm.h>
57 #include <netinet/in_var.h>
58 #include <netinet/ip.h>
59 #include <netinet/if_ether.h>
60 #endif
61 
62 #include <net/if_types.h>
63 #include <net/if_vlan_var.h>
64 
65 #if NBPFILTER > 0
66 #include <net/bpf.h>
67 #endif
68 
69 #include <dev/rndvar.h>
70 
71 #include <dev/mii/mii.h>
72 #include <dev/mii/miivar.h>
73 
74 #include <dev/pci/pcireg.h>
75 #include <dev/pci/pcivar.h>
76 #include <dev/pci/pcidevs.h>
77 
78 #include <dev/pci/if_agereg.h>
79 
80 int	age_match(struct device *, void *, void *);
81 void	age_attach(struct device *, struct device *, void *);
82 int	age_detach(struct device *, int);
83 
84 int	age_miibus_readreg(struct device *, int, int);
85 void	age_miibus_writereg(struct device *, int, int, int);
86 void	age_miibus_statchg(struct device *);
87 
88 int	age_init(struct ifnet *);
89 int	age_ioctl(struct ifnet *, u_long, caddr_t);
90 void	age_start(struct ifnet *);
91 void	age_watchdog(struct ifnet *);
92 void	age_mediastatus(struct ifnet *, struct ifmediareq *);
93 int	age_mediachange(struct ifnet *);
94 
95 int	age_intr(void *);
96 int	age_read_vpd_word(struct age_softc *, uint32_t, uint32_t, uint32_t *);
97 int	age_dma_alloc(struct age_softc *);
98 void	age_dma_free(struct age_softc *);
99 void	age_get_macaddr(struct age_softc *);
100 void	age_phy_reset(struct age_softc *);
101 
102 int	age_encap(struct age_softc *, struct mbuf **);
103 void	age_init_tx_ring(struct age_softc *);
104 int	age_init_rx_ring(struct age_softc *);
105 void	age_init_rr_ring(struct age_softc *);
106 void	age_init_cmb_block(struct age_softc *);
107 void	age_init_smb_block(struct age_softc *);
108 int	age_newbuf(struct age_softc *, struct age_rxdesc *, int);
109 void	age_mac_config(struct age_softc *);
110 void	age_txintr(struct age_softc *, int);
111 void	age_rxeof(struct age_softc *sc, struct rx_rdesc *);
112 void	age_rxintr(struct age_softc *, int);
113 void	age_tick(void *);
114 void	age_reset(struct age_softc *);
115 void	age_stop(struct age_softc *);
116 void	age_stats_update(struct age_softc *);
117 void	age_stop_txmac(struct age_softc *);
118 void	age_stop_rxmac(struct age_softc *);
119 void	age_rxvlan(struct age_softc *sc);
120 void	age_rxfilter(struct age_softc *);
121 
122 const struct pci_matchid age_devices[] = {
123 	{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_L1 }
124 };
125 
126 struct cfattach age_ca = {
127 	sizeof (struct age_softc), age_match, age_attach
128 };
129 
130 struct cfdriver age_cd = {
131 	 NULL, "age", DV_IFNET
132 };
133 
134 int agedebug = 0;
135 #define	DPRINTF(x)	do { if (agedebug) printf x; } while (0)
136 
137 #define AGE_CSUM_FEATURES	(M_TCPV4_CSUM_OUT | M_UDPV4_CSUM_OUT)
138 
139 int
140 age_match(struct device *dev, void *match, void *aux)
141 {
142 	 return pci_matchbyid((struct pci_attach_args *)aux, age_devices,
143 	     sizeof (age_devices) / sizeof (age_devices[0]));
144 }
145 
146 void
147 age_attach(struct device *parent, struct device *self, void *aux)
148 {
149 	struct age_softc *sc = (struct age_softc *)self;
150 	struct pci_attach_args *pa = aux;
151 	pci_chipset_tag_t pc = pa->pa_pc;
152 	pci_intr_handle_t ih;
153 	const char *intrstr;
154 	struct ifnet *ifp;
155 	pcireg_t memtype;
156 	int error = 0;
157 
158 	/*
159 	 * Allocate IO memory
160 	 */
161 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, AGE_PCIR_BAR);
162 	if (pci_mapreg_map(pa, AGE_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
163 	    &sc->sc_mem_bh, NULL, &sc->sc_mem_size, 0)) {
164 		printf(": can't map mem space\n");
165 		return;
166 	}
167 
168 	if (pci_intr_map(pa, &ih) != 0) {
169 		printf(": can't map interrupt\n");
170 		goto fail;
171 	}
172 
173 	/*
174 	 * Allocate IRQ
175 	 */
176 	intrstr = pci_intr_string(pc, ih);
177 	sc->sc_irq_handle = pci_intr_establish(pc, ih, IPL_NET, age_intr, sc,
178 	    sc->sc_dev.dv_xname);
179 	if (sc->sc_irq_handle == NULL) {
180 		printf(": could not establish interrupt");
181 		if (intrstr != NULL)
182 			printf(" at %s", intrstr);
183 		printf("\n");
184 		goto fail;
185 	}
186 	printf(": %s", intrstr);
187 
188 	sc->sc_dmat = pa->pa_dmat;
189 	sc->sc_pct = pa->pa_pc;
190 	sc->sc_pcitag = pa->pa_tag;
191 
192 	/* Set PHY address. */
193 	sc->age_phyaddr = AGE_PHY_ADDR;
194 
195 	/* Reset PHY. */
196 	age_phy_reset(sc);
197 
198 	/* Reset the ethernet controller. */
199 	age_reset(sc);
200 
201 	/* Get PCI and chip id/revision. */
202 	sc->age_rev = PCI_REVISION(pa->pa_class);
203 	sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >>
204 	    MASTER_CHIP_REV_SHIFT;
205 	if (agedebug) {
206 		printf("%s: PCI device revision : 0x%04x\n",
207 		    sc->sc_dev.dv_xname, sc->age_rev);
208 		printf("%s: Chip id/revision : 0x%04x\n",
209 		    sc->sc_dev.dv_xname, sc->age_chip_rev);
210 	}
211 
212 	if (agedebug) {
213 		printf("%s: %d Tx FIFO, %d Rx FIFO\n", sc->sc_dev.dv_xname,
214 		    CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN),
215 		    CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN));
216 	}
217 
218 	/* Set max allowable DMA size. */
219 	sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128;
220 	sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128;
221 
222 	/* Allocate DMA stuffs */
223 	error = age_dma_alloc(sc);
224 	if (error)
225 		goto fail;
226 
227 	/* Load station address. */
228 	age_get_macaddr(sc);
229 
230 	ifp = &sc->sc_arpcom.ac_if;
231 	ifp->if_softc = sc;
232 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
233 	ifp->if_init = age_init;
234 	ifp->if_ioctl = age_ioctl;
235 	ifp->if_start = age_start;
236 	ifp->if_watchdog = age_watchdog;
237 	ifp->if_baudrate = IF_Gbps(1);
238 	IFQ_SET_MAXLEN(&ifp->if_snd, AGE_TX_RING_CNT - 1);
239 	IFQ_SET_READY(&ifp->if_snd);
240 	bcopy(sc->age_eaddr, sc->sc_arpcom.ac_enaddr, ETHER_ADDR_LEN);
241 	bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
242 
243 	ifp->if_capabilities = IFCAP_VLAN_MTU;
244 
245 #ifdef AGE_CHECKSUM
246 	ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 |
247 				IFCAP_CSUM_UDPv4;
248 #endif
249 
250 #if NVLAN > 0
251 	ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING;
252 #endif
253 
254 	printf(", address %s\n", ether_sprintf(sc->sc_arpcom.ac_enaddr));
255 
256 	/* Set up MII bus. */
257 	sc->sc_miibus.mii_ifp = ifp;
258 	sc->sc_miibus.mii_readreg = age_miibus_readreg;
259 	sc->sc_miibus.mii_writereg = age_miibus_writereg;
260 	sc->sc_miibus.mii_statchg = age_miibus_statchg;
261 
262 	ifmedia_init(&sc->sc_miibus.mii_media, 0, age_mediachange,
263 	    age_mediastatus);
264 	mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY,
265 	   MII_OFFSET_ANY, 0);
266 
267 	if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) {
268 		printf("%s: no PHY found!\n", sc->sc_dev.dv_xname);
269 		ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL,
270 		    0, NULL);
271 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL);
272 	} else
273 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO);
274 
275 	if_attach(ifp);
276 	ether_ifattach(ifp);
277 
278 	timeout_set(&sc->age_tick_ch, age_tick, sc);
279 
280 	return;
281 fail:
282 	age_dma_free(sc);
283 	if (sc->sc_irq_handle != NULL)
284 		pci_intr_disestablish(pc, sc->sc_irq_handle);
285 	if (sc->sc_mem_size)
286 		bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
287 }
288 
289 int
290 age_detach(struct device *self, int flags)
291 {
292 	struct age_softc *sc = (struct age_softc *)self;
293 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
294 	int s;
295 
296 	s = splnet();
297 	age_stop(sc);
298 	splx(s);
299 
300 	mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
301 
302 	/* Delete all remaining media. */
303 	ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
304 
305 	ether_ifdetach(ifp);
306 	if_detach(ifp);
307 	age_dma_free(sc);
308 
309 	if (sc->sc_irq_handle != NULL) {
310 		pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
311 		sc->sc_irq_handle = NULL;
312 	}
313 
314 	return (0);
315 }
316 
317 /*
318  *	Read a PHY register on the MII of the L1.
319  */
320 int
321 age_miibus_readreg(struct device *dev, int phy, int reg)
322 {
323 	struct age_softc *sc = (struct age_softc *)dev;
324 	uint32_t v;
325 	int i;
326 
327 	if (phy != sc->age_phyaddr)
328 		return (0);
329 
330 	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
331 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
332 	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
333 		DELAY(1);
334 		v = CSR_READ_4(sc, AGE_MDIO);
335 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
336 			break;
337 	}
338 
339 	if (i == 0) {
340 		printf("%s: phy read timeout: phy %d, reg %d\n",
341 			sc->sc_dev.dv_xname, phy, reg);
342 		return (0);
343 	}
344 
345 	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
346 }
347 
348 /*
349  * 	Write a PHY register on the MII of the L1.
350  */
351 void
352 age_miibus_writereg(struct device *dev, int phy, int reg, int val)
353 {
354 	struct age_softc *sc = (struct age_softc *)dev;
355 	uint32_t v;
356 	int i;
357 
358 	if (phy != sc->age_phyaddr)
359 		return;
360 
361 	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
362 	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
363 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
364 
365 	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
366 		DELAY(1);
367 		v = CSR_READ_4(sc, AGE_MDIO);
368 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
369 			break;
370 	}
371 
372 	if (i == 0) {
373 		printf("%s: phy write timeout: phy %d, reg %d\n",
374 		    sc->sc_dev.dv_xname, phy, reg);
375 	}
376 }
377 
378 /*
379  *	Callback from MII layer when media changes.
380  */
381 void
382 age_miibus_statchg(struct device *dev)
383 {
384 	struct age_softc *sc = (struct age_softc *)dev;
385 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
386 	struct mii_data *mii;
387 
388 	if ((ifp->if_flags & IFF_RUNNING) == 0)
389 		return;
390 
391 	mii = &sc->sc_miibus;
392 
393 	sc->age_flags &= ~AGE_FLAG_LINK;
394 	if ((mii->mii_media_status & IFM_AVALID) != 0) {
395 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
396 		case IFM_10_T:
397 		case IFM_100_TX:
398 		case IFM_1000_T:
399 			sc->age_flags |= AGE_FLAG_LINK;
400 			break;
401 		default:
402 			break;
403 		}
404 	}
405 
406 	/* Stop Rx/Tx MACs. */
407 	age_stop_rxmac(sc);
408 	age_stop_txmac(sc);
409 
410 	/* Program MACs with resolved speed/duplex/flow-control. */
411 	if ((sc->age_flags & AGE_FLAG_LINK) != 0) {
412 		uint32_t reg;
413 
414 		age_mac_config(sc);
415 		reg = CSR_READ_4(sc, AGE_MAC_CFG);
416 		/* Restart DMA engine and Tx/Rx MAC. */
417 		CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) |
418 		    DMA_CFG_RD_ENB | DMA_CFG_WR_ENB);
419 		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
420 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
421 	}
422 }
423 
424 /*
425  *	Get the current interface media status.
426  */
427 void
428 age_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
429 {
430 	struct age_softc *sc = ifp->if_softc;
431 	struct mii_data *mii = &sc->sc_miibus;
432 
433 	mii_pollstat(mii);
434 	ifmr->ifm_status = mii->mii_media_status;
435 	ifmr->ifm_active = mii->mii_media_active;
436 }
437 
438 /*
439  *	Set hardware to newly-selected media.
440  */
441 int
442 age_mediachange(struct ifnet *ifp)
443 {
444 	struct age_softc *sc = ifp->if_softc;
445 	struct mii_data *mii = &sc->sc_miibus;
446 	int error;
447 
448 	if (mii->mii_instance != 0) {
449 		struct mii_softc *miisc;
450 
451 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
452 			mii_phy_reset(miisc);
453 	}
454 	error = mii_mediachg(mii);
455 
456 	return (error);
457 }
458 
459 int
460 age_intr(void *arg)
461 {
462         struct age_softc *sc = arg;
463         struct ifnet *ifp = &sc->sc_arpcom.ac_if;
464 	struct cmb *cmb;
465         uint32_t status;
466 
467 	status = CSR_READ_4(sc, AGE_INTR_STATUS);
468 	if (status == 0 || (status & AGE_INTRS) == 0)
469 		return (0);
470 
471 	/* Disable interrupts. */
472 	CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
473 
474 	cmb = sc->age_rdata.age_cmb_block;
475 
476 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
477 	    sc->age_cdata.age_cmb_block_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
478 	status = letoh32(cmb->intr_status);
479 	if ((status & AGE_INTRS) == 0)
480 		goto back;
481 
482 	sc->age_tpd_cons = (letoh32(cmb->tpd_cons) & TPD_CONS_MASK) >>
483 	    TPD_CONS_SHIFT;
484 	sc->age_rr_prod = (letoh32(cmb->rprod_cons) & RRD_PROD_MASK) >>
485 	    RRD_PROD_SHIFT;
486 
487 	/* Let hardware know CMB was served. */
488 	cmb->intr_status = 0;
489 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
490 	    sc->age_cdata.age_cmb_block_map->dm_mapsize,
491 	    BUS_DMASYNC_PREWRITE);
492 
493 	if (ifp->if_flags & IFF_RUNNING) {
494 		if (status & INTR_CMB_RX)
495 			age_rxintr(sc, sc->age_rr_prod);
496 
497 		if (status & INTR_CMB_TX)
498 			age_txintr(sc, sc->age_tpd_cons);
499 
500 		if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) {
501 			if (status & INTR_DMA_RD_TO_RST)
502 				printf("%s: DMA read error! -- resetting\n",
503 				    sc->sc_dev.dv_xname);
504 			if (status & INTR_DMA_WR_TO_RST)
505 				printf("%s: DMA write error! -- resetting\n",
506 				    sc->sc_dev.dv_xname);
507 			age_init(ifp);
508 		}
509 
510 		if (!IFQ_IS_EMPTY(&ifp->if_snd))
511 			age_start(ifp);
512 
513 		if (status & INTR_SMB)
514 			age_stats_update(sc);
515 	}
516 
517 	/* Check whether CMB was updated while serving Tx/Rx/SMB handler. */
518 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
519 	    sc->age_cdata.age_cmb_block_map->dm_mapsize,
520 	    BUS_DMASYNC_POSTREAD);
521 
522 back:
523 	/* Re-enable interrupts. */
524 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
525 
526 	return (1);
527 }
528 
529 int
530 age_read_vpd_word(struct age_softc *sc, uint32_t vpdc, uint32_t offset,
531     uint32_t *word)
532 {
533 	int i;
534 	pcireg_t rv;
535 
536 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_VPD_ADDRESS(vpdc),
537 	    offset << PCI_VPD_ADDRESS_SHIFT);
538 
539 	for (i = AGE_TIMEOUT; i > 0; i--) {
540 		DELAY(10);
541 		rv = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
542 		    PCI_VPD_ADDRESS(vpdc));
543 		if ((rv & PCI_VPD_OPFLAG) == PCI_VPD_OPFLAG)
544 			break;
545 	}
546 	if (i == 0) {
547 		printf("%s: VPD read timeout!\n", sc->sc_dev.dv_xname);
548 		*word = 0;
549 		return (ETIMEDOUT);
550 	}
551 
552 	*word = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_VPD_DATAREG(vpdc));
553 	return (0);
554 }
555 
556 void
557 age_get_macaddr(struct age_softc *sc)
558 {
559 	uint32_t ea[2], off, reg, word;
560 	int vpd_error, match, vpdc;
561 
562 	reg = CSR_READ_4(sc, AGE_SPI_CTRL);
563 	if ((reg & SPI_VPD_ENB) != 0) {
564 		/* Get VPD stored in TWSI EEPROM. */
565 		reg &= ~SPI_VPD_ENB;
566 		CSR_WRITE_4(sc, AGE_SPI_CTRL, reg);
567 	}
568 
569 	vpd_error = 0;
570 	ea[0] = ea[1] = 0;
571 	if ((vpd_error = pci_get_capability(sc->sc_pct, sc->sc_pcitag,
572 	    PCI_CAP_VPD, &vpdc, NULL))) {
573 		/*
574 		 * PCI VPD capability exists, but it seems that it's
575 		 * not in the standard form as stated in PCI VPD
576 		 * specification such that driver could not use
577 		 * pci_get_vpd_readonly(9) with keyword 'NA'.
578 		 * Search VPD data starting at address 0x0100. The data
579 		 * should be used as initializers to set AGE_PAR0,
580 		 * AGE_PAR1 register including other PCI configuration
581 		 * registers.
582 		 */
583 		word = 0;
584 		match = 0;
585 		reg = 0;
586 		for (off = AGE_VPD_REG_CONF_START; off < AGE_VPD_REG_CONF_END;
587 		    off += sizeof(uint32_t)) {
588 			vpd_error = age_read_vpd_word(sc, vpdc, off, &word);
589 			if (vpd_error != 0)
590 				break;
591 			if (match != 0) {
592 				switch (reg) {
593 				case AGE_PAR0:
594 					ea[0] = word;
595 					break;
596 				case AGE_PAR1:
597 					ea[1] = word;
598 					break;
599 				default:
600 					break;
601 				}
602 				match = 0;
603 			} else if ((word & 0xFF) == AGE_VPD_REG_CONF_SIG) {
604 				match = 1;
605 				reg = word >> 16;
606 			} else
607 				break;
608 		}
609 		if (off >= AGE_VPD_REG_CONF_END)
610 			vpd_error = ENOENT;
611 		if (vpd_error == 0) {
612 			/*
613 			 * Don't blindly trust ethernet address obtained
614 			 * from VPD. Check whether ethernet address is
615 			 * valid one. Otherwise fall-back to reading
616 			 * PAR register.
617 			 */
618 			ea[1] &= 0xFFFF;
619 			if ((ea[0] == 0 && ea[1] == 0) ||
620 			    (ea[0] == 0xFFFFFFFF && ea[1] == 0xFFFF)) {
621 				if (agedebug)
622 					printf("%s: invalid ethernet address "
623 				    	    "returned from VPD.\n",
624 				    	    sc->sc_dev.dv_xname);
625 				vpd_error = EINVAL;
626 			}
627 		}
628 		if (vpd_error != 0 && (agedebug))
629 			printf("%s: VPD access failure!\n",
630 			    sc->sc_dev.dv_xname);
631 	} else {
632 		if (agedebug)
633 			printf("%s: PCI VPD capability not found!\n",
634 			    sc->sc_dev.dv_xname);
635 	}
636 
637 	/*
638 	 * It seems that L1 also provides a way to extract ethernet
639 	 * address via SPI flash interface. Because SPI flash memory
640 	 * device of different vendors vary in their instruction
641 	 * codes for read ID instruction, it's very hard to get
642 	 * instructions codes without detailed information for the
643 	 * flash memory device used on ethernet controller. To simplify
644 	 * code, just read AGE_PAR0/AGE_PAR1 register to get ethernet
645 	 * address which is supposed to be set by hardware during
646 	 * power on reset.
647 	 */
648 	if (vpd_error != 0) {
649 		/*
650 		 * VPD is mapped to SPI flash memory or BIOS set it.
651 		 */
652 		ea[0] = CSR_READ_4(sc, AGE_PAR0);
653 		ea[1] = CSR_READ_4(sc, AGE_PAR1);
654 	}
655 
656 	ea[1] &= 0xFFFF;
657 	sc->age_eaddr[0] = (ea[1] >> 8) & 0xFF;
658 	sc->age_eaddr[1] = (ea[1] >> 0) & 0xFF;
659 	sc->age_eaddr[2] = (ea[0] >> 24) & 0xFF;
660 	sc->age_eaddr[3] = (ea[0] >> 16) & 0xFF;
661 	sc->age_eaddr[4] = (ea[0] >> 8) & 0xFF;
662 	sc->age_eaddr[5] = (ea[0] >> 0) & 0xFF;
663 }
664 
665 void
666 age_phy_reset(struct age_softc *sc)
667 {
668 	/* Reset PHY. */
669 	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST);
670 	DELAY(1000);
671 	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR);
672 	DELAY(1000);
673 }
674 
675 int
676 age_dma_alloc(struct age_softc *sc)
677 {
678 	struct age_txdesc *txd;
679 	struct age_rxdesc *rxd;
680 	int nsegs, error, i;
681 
682 	/*
683 	 * Create DMA stuffs for TX ring
684 	 */
685 	error = bus_dmamap_create(sc->sc_dmat, AGE_TX_RING_SZ, 1,
686 	    AGE_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_tx_ring_map);
687 	if (error)
688 		return (ENOBUFS);
689 
690 	/* Allocate DMA'able memory for TX ring */
691 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_TX_RING_SZ,
692 	    ETHER_ALIGN, 0, &sc->age_rdata.age_tx_ring_seg, 1,
693 	    &nsegs, BUS_DMA_WAITOK);
694 	if (error) {
695 		printf("%s: could not allocate DMA'able memory for Tx ring.\n",
696 		    sc->sc_dev.dv_xname);
697 		return error;
698 	}
699 
700 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_tx_ring_seg,
701 	    nsegs, AGE_TX_RING_SZ, (caddr_t *)&sc->age_rdata.age_tx_ring,
702 	    BUS_DMA_NOWAIT);
703 	if (error)
704 		return (ENOBUFS);
705 
706 	bzero(sc->age_rdata.age_tx_ring, AGE_TX_RING_SZ);
707 
708 	/*  Load the DMA map for Tx ring. */
709 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_tx_ring_map,
710 	    sc->age_rdata.age_tx_ring, AGE_TX_RING_SZ, NULL, BUS_DMA_WAITOK);
711 	if (error) {
712 		printf("%s: could not load DMA'able memory for Tx ring.\n",
713 		    sc->sc_dev.dv_xname);
714 		bus_dmamem_free(sc->sc_dmat,
715 		    (bus_dma_segment_t *)&sc->age_rdata.age_tx_ring, 1);
716 		return error;
717 	}
718 
719 	sc->age_rdata.age_tx_ring_paddr =
720 	    sc->age_cdata.age_tx_ring_map->dm_segs[0].ds_addr;
721 
722 	/*
723 	 * Create DMA stuffs for RX ring
724 	 */
725 	error = bus_dmamap_create(sc->sc_dmat, AGE_RX_RING_SZ, 1,
726 	    AGE_RX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_ring_map);
727 	if (error)
728 		return (ENOBUFS);
729 
730 	/* Allocate DMA'able memory for RX ring */
731 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_RX_RING_SZ,
732 	    ETHER_ALIGN, 0, &sc->age_rdata.age_rx_ring_seg, 1,
733 	    &nsegs, BUS_DMA_WAITOK);
734 	if (error) {
735 		printf("%s: could not allocate DMA'able memory for Rx ring.\n",
736 		    sc->sc_dev.dv_xname);
737 		return error;
738 	}
739 
740 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rx_ring_seg,
741 	    nsegs, AGE_RX_RING_SZ, (caddr_t *)&sc->age_rdata.age_rx_ring,
742 	    BUS_DMA_NOWAIT);
743 	if (error)
744 		return (ENOBUFS);
745 
746 	bzero(sc->age_rdata.age_rx_ring, AGE_RX_RING_SZ);
747 
748 	/* Load the DMA map for Rx ring. */
749 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rx_ring_map,
750 	    sc->age_rdata.age_rx_ring, AGE_RX_RING_SZ, NULL, BUS_DMA_WAITOK);
751 	if (error) {
752 		printf("%s: could not load DMA'able memory for Rx ring.\n",
753 		    sc->sc_dev.dv_xname);
754 		bus_dmamem_free(sc->sc_dmat,
755 		    (bus_dma_segment_t *)sc->age_rdata.age_rx_ring, 1);
756 		return error;
757 	}
758 
759 	sc->age_rdata.age_rx_ring_paddr =
760 	    sc->age_cdata.age_rx_ring_map->dm_segs[0].ds_addr;
761 
762 	/*
763 	 * Create DMA stuffs for RX return ring
764 	 */
765 	error = bus_dmamap_create(sc->sc_dmat, AGE_RR_RING_SZ, 1,
766 	    AGE_RR_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rr_ring_map);
767 	if (error)
768 		return (ENOBUFS);
769 
770 	/* Allocate DMA'able memory for RX return ring */
771 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_RR_RING_SZ,
772 	    ETHER_ALIGN, 0, &sc->age_rdata.age_rr_ring_seg, 1,
773 	    &nsegs, BUS_DMA_WAITOK);
774 	if (error) {
775 		printf("%s: could not allocate DMA'able memory for Rx "
776 		    "return ring.\n", sc->sc_dev.dv_xname);
777 		return error;
778 	}
779 
780 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rr_ring_seg,
781 	    nsegs, AGE_RR_RING_SZ, (caddr_t *)&sc->age_rdata.age_rr_ring,
782 	    BUS_DMA_NOWAIT);
783 	if (error)
784 		return (ENOBUFS);
785 
786 	bzero(sc->age_rdata.age_rr_ring, AGE_RR_RING_SZ);
787 
788 	/*  Load the DMA map for Rx return ring. */
789 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rr_ring_map,
790 	    sc->age_rdata.age_rr_ring, AGE_RR_RING_SZ, NULL, BUS_DMA_WAITOK);
791 	if (error) {
792 		printf("%s: could not load DMA'able memory for Rx return ring."
793 		    "\n", sc->sc_dev.dv_xname);
794 		bus_dmamem_free(sc->sc_dmat,
795 		    (bus_dma_segment_t *)&sc->age_rdata.age_rr_ring, 1);
796 		return error;
797 	}
798 
799 	sc->age_rdata.age_rr_ring_paddr =
800 	    sc->age_cdata.age_rr_ring_map->dm_segs[0].ds_addr;
801 
802 	/*
803 	 * Create DMA stuffs for CMB block
804 	 */
805 	error = bus_dmamap_create(sc->sc_dmat, AGE_CMB_BLOCK_SZ, 1,
806 	    AGE_CMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
807 	    &sc->age_cdata.age_cmb_block_map);
808 	if (error)
809 		return (ENOBUFS);
810 
811 	/* Allocate DMA'able memory for CMB block */
812 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_CMB_BLOCK_SZ,
813 	    ETHER_ALIGN, 0, &sc->age_rdata.age_cmb_block_seg, 1,
814 	    &nsegs, BUS_DMA_WAITOK);
815 	if (error) {
816 		printf("%s: could not allocate DMA'able memory for "
817 		    "CMB block\n", sc->sc_dev.dv_xname);
818 		return error;
819 	}
820 
821 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_cmb_block_seg,
822 	    nsegs, AGE_CMB_BLOCK_SZ, (caddr_t *)&sc->age_rdata.age_cmb_block,
823 	    BUS_DMA_NOWAIT);
824 	if (error)
825 		return (ENOBUFS);
826 
827 	bzero(sc->age_rdata.age_cmb_block, AGE_CMB_BLOCK_SZ);
828 
829 	/*  Load the DMA map for CMB block. */
830 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_cmb_block_map,
831 	    sc->age_rdata.age_cmb_block, AGE_CMB_BLOCK_SZ, NULL,
832 	    BUS_DMA_WAITOK);
833 	if (error) {
834 		printf("%s: could not load DMA'able memory for CMB block\n",
835 		    sc->sc_dev.dv_xname);
836 		bus_dmamem_free(sc->sc_dmat,
837 		    (bus_dma_segment_t *)&sc->age_rdata.age_cmb_block, 1);
838 		return error;
839 	}
840 
841 	sc->age_rdata.age_cmb_block_paddr =
842 	    sc->age_cdata.age_cmb_block_map->dm_segs[0].ds_addr;
843 
844 	/*
845 	 * Create DMA stuffs for SMB block
846 	 */
847 	error = bus_dmamap_create(sc->sc_dmat, AGE_SMB_BLOCK_SZ, 1,
848 	    AGE_SMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
849 	    &sc->age_cdata.age_smb_block_map);
850 	if (error)
851 		return (ENOBUFS);
852 
853 	/* Allocate DMA'able memory for SMB block */
854 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_SMB_BLOCK_SZ,
855 	    ETHER_ALIGN, 0, &sc->age_rdata.age_smb_block_seg, 1,
856 	    &nsegs, BUS_DMA_WAITOK);
857 	if (error) {
858 		printf("%s: could not allocate DMA'able memory for "
859 		    "SMB block\n", sc->sc_dev.dv_xname);
860 		return error;
861 	}
862 
863 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_smb_block_seg,
864 	    nsegs, AGE_SMB_BLOCK_SZ, (caddr_t *)&sc->age_rdata.age_smb_block,
865 	    BUS_DMA_NOWAIT);
866 	if (error)
867 		return (ENOBUFS);
868 
869 	bzero(sc->age_rdata.age_smb_block, AGE_SMB_BLOCK_SZ);
870 
871 	/*  Load the DMA map for SMB block */
872 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_smb_block_map,
873 	    sc->age_rdata.age_smb_block, AGE_SMB_BLOCK_SZ, NULL,
874 	    BUS_DMA_WAITOK);
875 	if (error) {
876 		printf("%s: could not load DMA'able memory for SMB block\n",
877 		    sc->sc_dev.dv_xname);
878 		bus_dmamem_free(sc->sc_dmat,
879 		    (bus_dma_segment_t *)&sc->age_rdata.age_smb_block, 1);
880 		return error;
881 	}
882 
883 	sc->age_rdata.age_smb_block_paddr =
884 	    sc->age_cdata.age_smb_block_map->dm_segs[0].ds_addr;
885 
886 	/* Create DMA maps for Tx buffers. */
887 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
888 		txd = &sc->age_cdata.age_txdesc[i];
889 		txd->tx_m = NULL;
890 		txd->tx_dmamap = NULL;
891 		error = bus_dmamap_create(sc->sc_dmat, AGE_TSO_MAXSIZE,
892 		    AGE_MAXTXSEGS, AGE_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,
893 		    &txd->tx_dmamap);
894 		if (error) {
895 			printf("%s: could not create Tx dmamap.\n",
896 			    sc->sc_dev.dv_xname);
897 			return error;
898 		}
899 	}
900 
901 	/* Create DMA maps for Rx buffers. */
902 	error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
903 	    BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_sparemap);
904 	if (error) {
905 		printf("%s: could not create spare Rx dmamap.\n",
906 		    sc->sc_dev.dv_xname);
907 		return error;
908 	}
909 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
910 		rxd = &sc->age_cdata.age_rxdesc[i];
911 		rxd->rx_m = NULL;
912 		rxd->rx_dmamap = NULL;
913 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
914 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &rxd->rx_dmamap);
915 		if (error) {
916 			printf("%s: could not create Rx dmamap.\n",
917 			    sc->sc_dev.dv_xname);
918 			return error;
919 		}
920 	}
921 
922 	return (0);
923 }
924 
925 void
926 age_dma_free(struct age_softc *sc)
927 {
928 	struct age_txdesc *txd;
929 	struct age_rxdesc *rxd;
930 	int i;
931 
932 	/* Tx buffers */
933 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
934 		txd = &sc->age_cdata.age_txdesc[i];
935 		if (txd->tx_dmamap != NULL) {
936 			bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
937 			txd->tx_dmamap = NULL;
938 		}
939 	}
940 	/* Rx buffers */
941 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
942 		rxd = &sc->age_cdata.age_rxdesc[i];
943 		if (rxd->rx_dmamap != NULL) {
944 			bus_dmamap_destroy(sc->sc_dmat, rxd->rx_dmamap);
945 			rxd->rx_dmamap = NULL;
946 		}
947 	}
948 	if (sc->age_cdata.age_rx_sparemap != NULL) {
949 		bus_dmamap_destroy(sc->sc_dmat, sc->age_cdata.age_rx_sparemap);
950 		sc->age_cdata.age_rx_sparemap = NULL;
951 	}
952 
953 	/* Tx ring. */
954 	if (sc->age_cdata.age_tx_ring_map != NULL)
955 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_tx_ring_map);
956 	if (sc->age_cdata.age_tx_ring_map != NULL &&
957 	    sc->age_rdata.age_tx_ring != NULL)
958 		bus_dmamem_free(sc->sc_dmat,
959 		    (bus_dma_segment_t *)sc->age_rdata.age_tx_ring, 1);
960 	sc->age_rdata.age_tx_ring = NULL;
961 	sc->age_cdata.age_tx_ring_map = NULL;
962 
963 	/* Rx ring. */
964 	if (sc->age_cdata.age_rx_ring_map != NULL)
965 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rx_ring_map);
966 	if (sc->age_cdata.age_rx_ring_map != NULL &&
967 	    sc->age_rdata.age_rx_ring != NULL)
968 		bus_dmamem_free(sc->sc_dmat,
969 		    (bus_dma_segment_t *)sc->age_rdata.age_rx_ring, 1);
970 	sc->age_rdata.age_rx_ring = NULL;
971 	sc->age_cdata.age_rx_ring_map = NULL;
972 
973 	/* Rx return ring. */
974 	if (sc->age_cdata.age_rr_ring_map != NULL)
975 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rr_ring_map);
976 	if (sc->age_cdata.age_rr_ring_map != NULL &&
977 	    sc->age_rdata.age_rr_ring != NULL)
978 		bus_dmamem_free(sc->sc_dmat,
979 		    (bus_dma_segment_t *)sc->age_rdata.age_rr_ring, 1);
980 	sc->age_rdata.age_rr_ring = NULL;
981 	sc->age_cdata.age_rr_ring_map = NULL;
982 
983 	/* CMB block */
984 	if (sc->age_cdata.age_cmb_block_map != NULL)
985 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_cmb_block_map);
986 	if (sc->age_cdata.age_cmb_block_map != NULL &&
987 	    sc->age_rdata.age_cmb_block != NULL)
988 		bus_dmamem_free(sc->sc_dmat,
989 		    (bus_dma_segment_t *)sc->age_rdata.age_cmb_block, 1);
990 	sc->age_rdata.age_cmb_block = NULL;
991 	sc->age_cdata.age_cmb_block_map = NULL;
992 
993 	/* SMB block */
994 	if (sc->age_cdata.age_smb_block_map != NULL)
995 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_smb_block_map);
996 	if (sc->age_cdata.age_smb_block_map != NULL &&
997 	    sc->age_rdata.age_smb_block != NULL)
998 		bus_dmamem_free(sc->sc_dmat,
999 		    (bus_dma_segment_t *)sc->age_rdata.age_smb_block, 1);
1000 	sc->age_rdata.age_smb_block = NULL;
1001 	sc->age_cdata.age_smb_block_map = NULL;
1002 }
1003 
1004 void
1005 age_start(struct ifnet *ifp)
1006 {
1007         struct age_softc *sc = ifp->if_softc;
1008         struct mbuf *m_head;
1009 	int enq;
1010 
1011 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1012 		return;
1013 
1014 	enq = 0;
1015 	for (;;) {
1016 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
1017 		if (m_head == NULL)
1018 			break;
1019 
1020 		/*
1021 		 * Pack the data into the transmit ring. If we
1022 		 * don't have room, set the OACTIVE flag and wait
1023 		 * for the NIC to drain the ring.
1024 		 */
1025 		if (age_encap(sc, &m_head)) {
1026 			if (m_head == NULL)
1027 				break;
1028 			ifp->if_flags |= IFF_OACTIVE;
1029 			break;
1030 		}
1031 		enq = 1;
1032 
1033 #if NBPFILTER > 0
1034 		/*
1035 		 * If there's a BPF listener, bounce a copy of this frame
1036 		 * to him.
1037 		 */
1038 		if (ifp->if_bpf != NULL)
1039 			bpf_mtap_ether(ifp->if_bpf, m_head, BPF_DIRECTION_OUT);
1040 #endif
1041 	}
1042 
1043 	if (enq) {
1044 		/* Update mbox. */
1045 		AGE_COMMIT_MBOX(sc);
1046 		/* Set a timeout in case the chip goes out to lunch. */
1047 		ifp->if_timer = AGE_TX_TIMEOUT;
1048 	}
1049 }
1050 
1051 void
1052 age_watchdog(struct ifnet *ifp)
1053 {
1054 	struct age_softc *sc = ifp->if_softc;
1055 
1056 	if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
1057 		printf("%s: watchdog timeout (missed link)\n",
1058 		    sc->sc_dev.dv_xname);
1059 		ifp->if_oerrors++;
1060 		age_init(ifp);
1061 		return;
1062 	}
1063 
1064 	if (sc->age_cdata.age_tx_cnt == 0) {
1065 		printf("%s: watchdog timeout (missed Tx interrupts) "
1066 		    "-- recovering\n", sc->sc_dev.dv_xname);
1067 		if (!IFQ_IS_EMPTY(&ifp->if_snd))
1068 			age_start(ifp);
1069 		return;
1070 	}
1071 
1072 	printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
1073 	ifp->if_oerrors++;
1074 	age_init(ifp);
1075 
1076 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
1077 		age_start(ifp);
1078 }
1079 
1080 int
1081 age_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1082 {
1083 	struct age_softc *sc = ifp->if_softc;
1084 	struct mii_data *mii = &sc->sc_miibus;
1085 	struct ifaddr *ifa = (struct ifaddr *)data;
1086 	struct ifreq *ifr = (struct ifreq *)data;
1087 	int s, error = 0;
1088 
1089 	s = splnet();
1090 
1091 	switch (cmd) {
1092 	case SIOCSIFADDR:
1093 		ifp->if_flags |= IFF_UP;
1094 		if (!(ifp->if_flags & IFF_RUNNING))
1095 			 age_init(ifp);
1096 #ifdef INET
1097 		if (ifa->ifa_addr->sa_family == AF_INET)
1098 			arp_ifinit(&sc->sc_arpcom, ifa);
1099 #endif
1100 		break;
1101 
1102 	case SIOCSIFFLAGS:
1103 		if (ifp->if_flags & IFF_UP) {
1104 			if (ifp->if_flags & IFF_RUNNING)
1105 				error = ENETRESET;
1106 			else
1107 				age_init(ifp);
1108 		} else {
1109 			if (ifp->if_flags & IFF_RUNNING)
1110 				age_stop(sc);
1111 		}
1112 		break;
1113 
1114 	case SIOCSIFMEDIA:
1115 	case SIOCGIFMEDIA:
1116 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1117 		break;
1118 
1119 	default:
1120 		error = ether_ioctl(ifp, &sc->sc_arpcom, cmd, data);
1121 		break;
1122 	}
1123 
1124 	if (error == ENETRESET) {
1125 		if (ifp->if_flags & IFF_RUNNING)
1126 			age_rxfilter(sc);
1127 		error = 0;
1128 	}
1129 
1130 	splx(s);
1131 	return (error);
1132 }
1133 
1134 void
1135 age_mac_config(struct age_softc *sc)
1136 {
1137 	struct mii_data *mii;
1138 	uint32_t reg;
1139 
1140 	mii = &sc->sc_miibus;
1141 
1142 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1143 	reg &= ~MAC_CFG_FULL_DUPLEX;
1144 	reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC);
1145 	reg &= ~MAC_CFG_SPEED_MASK;
1146 
1147 	/* Reprogram MAC with resolved speed/duplex. */
1148 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1149 	case IFM_10_T:
1150 	case IFM_100_TX:
1151 		reg |= MAC_CFG_SPEED_10_100;
1152 		break;
1153 	case IFM_1000_T:
1154 		reg |= MAC_CFG_SPEED_1000;
1155 		break;
1156 	}
1157 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1158 		reg |= MAC_CFG_FULL_DUPLEX;
1159 #ifdef notyet
1160 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1161 			reg |= MAC_CFG_TX_FC;
1162 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1163 			reg |= MAC_CFG_RX_FC;
1164 #endif
1165 	}
1166 
1167 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1168 }
1169 
1170 int
1171 age_encap(struct age_softc *sc, struct mbuf **m_head)
1172 {
1173 	struct age_txdesc *txd, *txd_last;
1174 	struct tx_desc *desc;
1175 	struct mbuf *m;
1176 	bus_dmamap_t map;
1177 	uint32_t cflags, poff, vtag;
1178 	int error, i, nsegs, prod;
1179 
1180 	m = *m_head;
1181 	cflags = vtag = 0;
1182 	poff = 0;
1183 
1184 	prod = sc->age_cdata.age_tx_prod;
1185 	txd = &sc->age_cdata.age_txdesc[prod];
1186 	txd_last = txd;
1187 	map = txd->tx_dmamap;
1188 
1189 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head, BUS_DMA_NOWAIT);
1190 
1191 	if (error != 0) {
1192 		bus_dmamap_unload(sc->sc_dmat, map);
1193 		error = EFBIG;
1194 	}
1195 	if (error == EFBIG) {
1196 		error = 0;
1197 
1198 		MGETHDR(m, M_DONTWAIT, MT_DATA);
1199 		if (m == NULL) {
1200 			printf("%s: can't defrag TX mbuf\n",
1201 			    sc->sc_dev.dv_xname);
1202 			m_freem(*m_head);
1203 			*m_head = NULL;
1204 			return (ENOBUFS);
1205 		}
1206 
1207 		M_DUP_PKTHDR(m, *m_head);
1208 		if ((*m_head)->m_pkthdr.len > MHLEN) {
1209 			MCLGET(m, M_DONTWAIT);
1210 			if (!(m->m_flags & M_EXT)) {
1211 				m_freem(*m_head);
1212 				m_freem(m);
1213 				*m_head = NULL;
1214 				return (ENOBUFS);
1215 			}
1216 		}
1217 		m_copydata(*m_head, 0, (*m_head)->m_pkthdr.len,
1218 		    mtod(m, caddr_t));
1219 		m_freem(*m_head);
1220 		m->m_len = m->m_pkthdr.len;
1221 		*m_head = m;
1222 
1223 		error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head,
1224 		  	    BUS_DMA_NOWAIT);
1225 
1226 		if (error != 0) {
1227 			printf("%s: could not load defragged TX mbuf\n",
1228 			    sc->sc_dev.dv_xname);
1229 			if (!error) {
1230 				bus_dmamap_unload(sc->sc_dmat, map);
1231 				error = EFBIG;
1232 			}
1233 			m_freem(*m_head);
1234 			*m_head = NULL;
1235 			return (error);
1236 		}
1237 	} else if (error) {
1238 		printf("%s: could not load TX mbuf\n", sc->sc_dev.dv_xname);
1239 		return (error);
1240 	}
1241 
1242 	nsegs = map->dm_nsegs;
1243 
1244 	if (nsegs == 0) {
1245 		m_freem(*m_head);
1246 		*m_head = NULL;
1247 		return (EIO);
1248 	}
1249 
1250 	/* Check descriptor overrun. */
1251 	if (sc->age_cdata.age_tx_cnt + nsegs >= AGE_TX_RING_CNT - 2) {
1252 		bus_dmamap_unload(sc->sc_dmat, map);
1253 		return (ENOBUFS);
1254 	}
1255 
1256 	m = *m_head;
1257 	/* Configure Tx IP/TCP/UDP checksum offload. */
1258 	if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) {
1259 		cflags |= AGE_TD_CSUM;
1260 		if ((m->m_pkthdr.csum_flags & M_TCPV4_CSUM_OUT) != 0)
1261 			cflags |= AGE_TD_TCPCSUM;
1262 		if ((m->m_pkthdr.csum_flags & M_UDPV4_CSUM_OUT) != 0)
1263 			cflags |= AGE_TD_UDPCSUM;
1264 		/* Set checksum start offset. */
1265 		cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT);
1266 	}
1267 
1268 #if NVLAN > 0
1269 	/* Configure VLAN hardware tag insertion. */
1270 	if (m->m_flags & M_VLANTAG) {
1271 		vtag = AGE_TX_VLAN_TAG(m->m_pkthdr.ether_vtag);
1272 		vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK);
1273 		cflags |= AGE_TD_INSERT_VLAN_TAG;
1274 	}
1275 #endif
1276 
1277 	desc = NULL;
1278 	for (i = 0; i < nsegs; i++) {
1279 		desc = &sc->age_rdata.age_tx_ring[prod];
1280 		desc->addr = htole64(map->dm_segs[i].ds_addr);
1281 		desc->len =
1282 		    htole32(AGE_TX_BYTES(map->dm_segs[i].ds_len) | vtag);
1283 		desc->flags = htole32(cflags);
1284 		sc->age_cdata.age_tx_cnt++;
1285 		AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1286 	}
1287 
1288 	/* Update producer index. */
1289 	sc->age_cdata.age_tx_prod = prod;
1290 
1291 	/* Set EOP on the last descriptor. */
1292 	prod = (prod + AGE_TX_RING_CNT - 1) % AGE_TX_RING_CNT;
1293 	desc = &sc->age_rdata.age_tx_ring[prod];
1294 	desc->flags |= htole32(AGE_TD_EOP);
1295 
1296 	/* Swap dmamap of the first and the last. */
1297 	txd = &sc->age_cdata.age_txdesc[prod];
1298 	map = txd_last->tx_dmamap;
1299 	txd_last->tx_dmamap = txd->tx_dmamap;
1300 	txd->tx_dmamap = map;
1301 	txd->tx_m = m;
1302 
1303 	/* Sync descriptors. */
1304 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1305 	    BUS_DMASYNC_PREWRITE);
1306 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
1307 	    sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1308 
1309 	return (0);
1310 }
1311 
1312 void
1313 age_txintr(struct age_softc *sc, int tpd_cons)
1314 {
1315 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1316 	struct age_txdesc *txd;
1317 	int cons, prog;
1318 
1319 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
1320 	    sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1321 
1322 	/*
1323 	 * Go through our Tx list and free mbufs for those
1324 	 * frames which have been transmitted.
1325 	 */
1326 	cons = sc->age_cdata.age_tx_cons;
1327 	for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) {
1328 		if (sc->age_cdata.age_tx_cnt <= 0)
1329 			break;
1330 		prog++;
1331 		ifp->if_flags &= ~IFF_OACTIVE;
1332 		sc->age_cdata.age_tx_cnt--;
1333 		txd = &sc->age_cdata.age_txdesc[cons];
1334 		/*
1335 		 * Clear Tx descriptors, it's not required but would
1336 		 * help debugging in case of Tx issues.
1337 		 */
1338 		txd->tx_desc->addr = 0;
1339 		txd->tx_desc->len = 0;
1340 		txd->tx_desc->flags = 0;
1341 
1342 		if (txd->tx_m == NULL)
1343 			continue;
1344 		/* Reclaim transmitted mbufs. */
1345 		bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1346 		m_freem(txd->tx_m);
1347 		txd->tx_m = NULL;
1348 	}
1349 
1350 	if (prog > 0) {
1351 		sc->age_cdata.age_tx_cons = cons;
1352 
1353 		/*
1354 		 * Unarm watchdog timer only when there are no pending
1355 		 * Tx descriptors in queue.
1356 		 */
1357 		if (sc->age_cdata.age_tx_cnt == 0)
1358 			ifp->if_timer = 0;
1359 
1360 		bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
1361 		    sc->age_cdata.age_tx_ring_map->dm_mapsize,
1362 		    BUS_DMASYNC_PREWRITE);
1363 	}
1364 }
1365 
1366 /* Receive a frame. */
1367 void
1368 age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd)
1369 {
1370 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1371 	struct age_rxdesc *rxd;
1372 	struct rx_desc *desc;
1373 	struct mbuf *mp, *m;
1374 	uint32_t status, index;
1375 	int count, nsegs, pktlen;
1376 	int rx_cons;
1377 
1378 	status = letoh32(rxrd->flags);
1379 	index = letoh32(rxrd->index);
1380 	rx_cons = AGE_RX_CONS(index);
1381 	nsegs = AGE_RX_NSEGS(index);
1382 
1383 	sc->age_cdata.age_rxlen = AGE_RX_BYTES(letoh32(rxrd->len));
1384 	if ((status & AGE_RRD_ERROR) != 0 &&
1385 	    (status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE |
1386 	    AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0) {
1387 		/*
1388 		 * We want to pass the following frames to upper
1389 		 * layer regardless of error status of Rx return
1390 		 * ring.
1391 		 *
1392 		 *  o IP/TCP/UDP checksum is bad.
1393 		 *  o frame length and protocol specific length
1394 		 *     does not match.
1395 		 */
1396 		sc->age_cdata.age_rx_cons += nsegs;
1397 		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
1398 		return;
1399 	}
1400 
1401 	pktlen = 0;
1402 	for (count = 0; count < nsegs; count++,
1403 	    AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) {
1404 		rxd = &sc->age_cdata.age_rxdesc[rx_cons];
1405 		mp = rxd->rx_m;
1406 		desc = rxd->rx_desc;
1407 		/* Add a new receive buffer to the ring. */
1408 		if (age_newbuf(sc, rxd, 0) != 0) {
1409 			ifp->if_iqdrops++;
1410 			/* Reuse Rx buffers. */
1411 			if (sc->age_cdata.age_rxhead != NULL) {
1412 				m_freem(sc->age_cdata.age_rxhead);
1413 				AGE_RXCHAIN_RESET(sc);
1414 			}
1415 			break;
1416 		}
1417 
1418 		/* The length of the first mbuf is computed last. */
1419 		if (count != 0) {
1420 			mp->m_len = AGE_RX_BYTES(letoh32(desc->len));
1421 			pktlen += mp->m_len;
1422 		}
1423 
1424 		/* Chain received mbufs. */
1425 		if (sc->age_cdata.age_rxhead == NULL) {
1426 			sc->age_cdata.age_rxhead = mp;
1427 			sc->age_cdata.age_rxtail = mp;
1428 		} else {
1429 			mp->m_flags &= ~M_PKTHDR;
1430 			sc->age_cdata.age_rxprev_tail =
1431 			    sc->age_cdata.age_rxtail;
1432 			sc->age_cdata.age_rxtail->m_next = mp;
1433 			sc->age_cdata.age_rxtail = mp;
1434 		}
1435 
1436 		if (count == nsegs - 1) {
1437 			/*
1438 			 * It seems that L1 controller has no way
1439 			 * to tell hardware to strip CRC bytes.
1440 			 */
1441 			sc->age_cdata.age_rxlen -= ETHER_CRC_LEN;
1442 			if (nsegs > 1) {
1443 				/* Remove the CRC bytes in chained mbufs. */
1444 				pktlen -= ETHER_CRC_LEN;
1445 				if (mp->m_len <= ETHER_CRC_LEN) {
1446 					sc->age_cdata.age_rxtail =
1447 					    sc->age_cdata.age_rxprev_tail;
1448 					sc->age_cdata.age_rxtail->m_len -=
1449 					    (ETHER_CRC_LEN - mp->m_len);
1450 					sc->age_cdata.age_rxtail->m_next = NULL;
1451 					m_freem(mp);
1452 				} else {
1453 					mp->m_len -= ETHER_CRC_LEN;
1454 				}
1455 			}
1456 
1457 			m = sc->age_cdata.age_rxhead;
1458 			m->m_flags |= M_PKTHDR;
1459 			m->m_pkthdr.rcvif = ifp;
1460 			m->m_pkthdr.len = sc->age_cdata.age_rxlen;
1461 			/* Set the first mbuf length. */
1462 			m->m_len = sc->age_cdata.age_rxlen - pktlen;
1463 
1464 			/*
1465 			 * Set checksum information.
1466 			 * It seems that L1 controller can compute partial
1467 			 * checksum. The partial checksum value can be used
1468 			 * to accelerate checksum computation for fragmented
1469 			 * TCP/UDP packets. Upper network stack already
1470 			 * takes advantage of the partial checksum value in
1471 			 * IP reassembly stage. But I'm not sure the
1472 			 * correctness of the partial hardware checksum
1473 			 * assistance due to lack of data sheet. If it is
1474 			 * proven to work on L1 I'll enable it.
1475 			 */
1476 			if (status & AGE_RRD_IPV4) {
1477 				if ((status & AGE_RRD_IPCSUM_NOK) == 0)
1478 					m->m_pkthdr.csum_flags |=
1479 					    M_IPV4_CSUM_IN_OK;
1480 				if ((status & (AGE_RRD_TCP | AGE_RRD_UDP)) &&
1481 				    (status & AGE_RRD_TCP_UDPCSUM_NOK) == 0) {
1482 					m->m_pkthdr.csum_flags |=
1483 					    M_TCP_CSUM_IN_OK | M_UDP_CSUM_IN_OK;
1484 				}
1485 				/*
1486 				 * Don't mark bad checksum for TCP/UDP frames
1487 				 * as fragmented frames may always have set
1488 				 * bad checksummed bit of descriptor status.
1489 				 */
1490 			}
1491 #if NVLAN > 0
1492 			/* Check for VLAN tagged frames. */
1493 			if (status & AGE_RRD_VLAN) {
1494 				u_int32_t vtag = AGE_RX_VLAN(letoh32(rxrd->vtags));
1495 				m->m_pkthdr.ether_vtag =
1496 				    AGE_RX_VLAN_TAG(vtag);
1497 				m->m_flags |= M_VLANTAG;
1498 			}
1499 #endif
1500 
1501 #if NBPFILTER > 0
1502 			if (ifp->if_bpf)
1503 				bpf_mtap_ether(ifp->if_bpf, m,
1504 				    BPF_DIRECTION_IN);
1505 #endif
1506 			/* Pass it on. */
1507 			ether_input_mbuf(ifp, m);
1508 
1509 			/* Reset mbuf chains. */
1510 			AGE_RXCHAIN_RESET(sc);
1511 		}
1512 	}
1513 
1514 	if (count != nsegs) {
1515 		sc->age_cdata.age_rx_cons += nsegs;
1516 		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
1517 	} else
1518 		sc->age_cdata.age_rx_cons = rx_cons;
1519 }
1520 
1521 void
1522 age_rxintr(struct age_softc *sc, int rr_prod)
1523 {
1524 	struct rx_rdesc *rxrd;
1525 	int rr_cons, nsegs, pktlen, prog;
1526 
1527 	rr_cons = sc->age_cdata.age_rr_cons;
1528 	if (rr_cons == rr_prod)
1529 		return;
1530 
1531 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
1532 	    sc->age_cdata.age_rr_ring_map->dm_mapsize,
1533 	    BUS_DMASYNC_POSTREAD);
1534 
1535 	for (prog = 0; rr_cons != rr_prod; prog++) {
1536 		rxrd = &sc->age_rdata.age_rr_ring[rr_cons];
1537 		nsegs = AGE_RX_NSEGS(letoh32(rxrd->index));
1538 		if (nsegs == 0)
1539 			break;
1540 		/*
1541 		 * Check number of segments against received bytes
1542 		 * Non-matching value would indicate that hardware
1543 		 * is still trying to update Rx return descriptors.
1544 		 * I'm not sure whether this check is really needed.
1545 		 */
1546 		pktlen = AGE_RX_BYTES(letoh32(rxrd->len));
1547 		if (nsegs != ((pktlen + (MCLBYTES - ETHER_ALIGN - 1)) /
1548 		    (MCLBYTES - ETHER_ALIGN)))
1549 			break;
1550 
1551 		/* Received a frame. */
1552 		age_rxeof(sc, rxrd);
1553 
1554 		/* Clear return ring. */
1555 		rxrd->index = 0;
1556 		AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT);
1557 	}
1558 
1559 	if (prog > 0) {
1560 		/* Update the consumer index. */
1561 		sc->age_cdata.age_rr_cons = rr_cons;
1562 
1563 		/* Sync descriptors. */
1564 		bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
1565 		    sc->age_cdata.age_rr_ring_map->dm_mapsize,
1566 		    BUS_DMASYNC_PREWRITE);
1567 
1568 		/* Notify hardware availability of new Rx buffers. */
1569 		AGE_COMMIT_MBOX(sc);
1570 	}
1571 }
1572 
1573 void
1574 age_tick(void *xsc)
1575 {
1576 	struct age_softc *sc = xsc;
1577 	struct mii_data *mii = &sc->sc_miibus;
1578 	int s;
1579 
1580 	s = splnet();
1581 	mii_tick(mii);
1582 	timeout_add_sec(&sc->age_tick_ch, 1);
1583 	splx(s);
1584 }
1585 
1586 void
1587 age_reset(struct age_softc *sc)
1588 {
1589 	uint32_t reg;
1590 	int i;
1591 
1592 	CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET);
1593 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
1594 		DELAY(1);
1595 		if ((CSR_READ_4(sc, AGE_MASTER_CFG) & MASTER_RESET) == 0)
1596 			break;
1597 	}
1598 	if (i == 0)
1599 		printf("%s: master reset timeout!\n", sc->sc_dev.dv_xname);
1600 
1601 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
1602 		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
1603 			break;
1604 		DELAY(10);
1605 	}
1606 
1607 	if (i == 0)
1608 		printf("%s: reset timeout(0x%08x)!\n", sc->sc_dev.dv_xname,
1609 		    reg);
1610 
1611 	/* Initialize PCIe module. From Linux. */
1612 	CSR_WRITE_4(sc, 0x12FC, 0x6500);
1613 	CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
1614 }
1615 
1616 int
1617 age_init(struct ifnet *ifp)
1618 {
1619 	struct age_softc *sc = ifp->if_softc;
1620 	struct mii_data *mii;
1621 	uint8_t eaddr[ETHER_ADDR_LEN];
1622 	bus_addr_t paddr;
1623 	uint32_t reg, fsize;
1624 	uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo;
1625 	int error;
1626 
1627 	/*
1628 	 * Cancel any pending I/O.
1629 	 */
1630 	age_stop(sc);
1631 
1632 	/*
1633 	 * Reset the chip to a known state.
1634 	 */
1635 	age_reset(sc);
1636 
1637 	/* Initialize descriptors. */
1638 	error = age_init_rx_ring(sc);
1639         if (error != 0) {
1640 		printf("%s: no memory for Rx buffers.\n", sc->sc_dev.dv_xname);
1641                 age_stop(sc);
1642 		return (error);
1643         }
1644 	age_init_rr_ring(sc);
1645 	age_init_tx_ring(sc);
1646 	age_init_cmb_block(sc);
1647 	age_init_smb_block(sc);
1648 
1649 	/* Reprogram the station address. */
1650 	bcopy(LLADDR(ifp->if_sadl), eaddr, ETHER_ADDR_LEN);
1651 	CSR_WRITE_4(sc, AGE_PAR0,
1652 	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
1653 	CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]);
1654 
1655 	/* Set descriptor base addresses. */
1656 	paddr = sc->age_rdata.age_tx_ring_paddr;
1657 	CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr));
1658 	paddr = sc->age_rdata.age_rx_ring_paddr;
1659 	CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr));
1660 	paddr = sc->age_rdata.age_rr_ring_paddr;
1661 	CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr));
1662 	paddr = sc->age_rdata.age_tx_ring_paddr;
1663 	CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr));
1664 	paddr = sc->age_rdata.age_cmb_block_paddr;
1665 	CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr));
1666 	paddr = sc->age_rdata.age_smb_block_paddr;
1667 	CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr));
1668 
1669 	/* Set Rx/Rx return descriptor counter. */
1670 	CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT,
1671 	    ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) &
1672 	    DESC_RRD_CNT_MASK) |
1673 	    ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK));
1674 
1675 	/* Set Tx descriptor counter. */
1676 	CSR_WRITE_4(sc, AGE_DESC_TPD_CNT,
1677 	    (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK);
1678 
1679 	/* Tell hardware that we're ready to load descriptors. */
1680 	CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD);
1681 
1682         /*
1683 	 * Initialize mailbox register.
1684 	 * Updated producer/consumer index information is exchanged
1685 	 * through this mailbox register. However Tx producer and
1686 	 * Rx return consumer/Rx producer are all shared such that
1687 	 * it's hard to separate code path between Tx and Rx without
1688 	 * locking. If L1 hardware have a separate mail box register
1689 	 * for Tx and Rx consumer/producer management we could have
1690 	 * indepent Tx/Rx handler which in turn Rx handler could have
1691 	 * been run without any locking.
1692 	*/
1693 	AGE_COMMIT_MBOX(sc);
1694 
1695 	/* Configure IPG/IFG parameters. */
1696 	CSR_WRITE_4(sc, AGE_IPG_IFG_CFG,
1697 	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) |
1698 	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
1699 	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
1700 	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK));
1701 
1702 	/* Set parameters for half-duplex media. */
1703 	CSR_WRITE_4(sc, AGE_HDPX_CFG,
1704 	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
1705 	    HDPX_CFG_LCOL_MASK) |
1706 	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
1707 	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
1708 	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
1709 	    HDPX_CFG_ABEBT_MASK) |
1710 	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
1711 	     HDPX_CFG_JAMIPG_MASK));
1712 
1713 	/* Configure interrupt moderation timer. */
1714 	sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
1715 	CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod));
1716 	reg = CSR_READ_4(sc, AGE_MASTER_CFG);
1717 	reg &= ~MASTER_MTIMER_ENB;
1718 	if (AGE_USECS(sc->age_int_mod) == 0)
1719 		reg &= ~MASTER_ITIMER_ENB;
1720 	else
1721 		reg |= MASTER_ITIMER_ENB;
1722 	CSR_WRITE_4(sc, AGE_MASTER_CFG, reg);
1723 	if (agedebug)
1724 		printf("%s: interrupt moderation is %d us.\n",
1725 		    sc->sc_dev.dv_xname, sc->age_int_mod);
1726 	CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000));
1727 
1728 	/* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
1729 	if (ifp->if_mtu < ETHERMTU)
1730 		sc->age_max_frame_size = ETHERMTU;
1731 	else
1732 		sc->age_max_frame_size = ifp->if_mtu;
1733 	sc->age_max_frame_size += ETHER_HDR_LEN +
1734 	    sizeof(struct ether_vlan_header) + ETHER_CRC_LEN;
1735 	CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size);
1736 
1737 	/* Configure jumbo frame. */
1738 	fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t));
1739 	CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG,
1740 	    (((fsize / sizeof(uint64_t)) <<
1741 	    RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) |
1742 	    ((RXQ_JUMBO_CFG_LKAH_DEFAULT <<
1743 	    RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) |
1744 	    ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) &
1745 	    RXQ_JUMBO_CFG_RRD_TIMER_MASK));
1746 
1747 	/* Configure flow-control parameters. From Linux. */
1748 	if ((sc->age_flags & AGE_FLAG_PCIE) != 0) {
1749 		/*
1750 		 * Magic workaround for old-L1.
1751 		 * Don't know which hw revision requires this magic.
1752 		 */
1753 		CSR_WRITE_4(sc, 0x12FC, 0x6500);
1754 		/*
1755 		 * Another magic workaround for flow-control mode
1756 		 * change. From Linux.
1757 		 */
1758 		CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
1759 	}
1760 	/*
1761 	 * TODO
1762 	 *  Should understand pause parameter relationships between FIFO
1763 	 *  size and number of Rx descriptors and Rx return descriptors.
1764 	 *
1765 	 *  Magic parameters came from Linux.
1766 	 */
1767 	switch (sc->age_chip_rev) {
1768 	case 0x8001:
1769 	case 0x9001:
1770 	case 0x9002:
1771 	case 0x9003:
1772 		rxf_hi = AGE_RX_RING_CNT / 16;
1773 		rxf_lo = (AGE_RX_RING_CNT * 7) / 8;
1774 		rrd_hi = (AGE_RR_RING_CNT * 7) / 8;
1775 		rrd_lo = AGE_RR_RING_CNT / 16;
1776 		break;
1777 	default:
1778 		reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN);
1779 		rxf_lo = reg / 16;
1780 		if (rxf_lo < 192)
1781 			rxf_lo = 192;
1782 		rxf_hi = (reg * 7) / 8;
1783 		if (rxf_hi < rxf_lo)
1784 			rxf_hi = rxf_lo + 16;
1785 		reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN);
1786 		rrd_lo = reg / 8;
1787 		rrd_hi = (reg * 7) / 8;
1788 		if (rrd_lo < 2)
1789 			rrd_lo = 2;
1790 		if (rrd_hi < rrd_lo)
1791 			rrd_hi = rrd_lo + 3;
1792 		break;
1793 	}
1794 	CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH,
1795 	    ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) &
1796 	    RXQ_FIFO_PAUSE_THRESH_LO_MASK) |
1797 	    ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) &
1798 	    RXQ_FIFO_PAUSE_THRESH_HI_MASK));
1799 	CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH,
1800 	    ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) &
1801 	    RXQ_RRD_PAUSE_THRESH_LO_MASK) |
1802 	    ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) &
1803 	    RXQ_RRD_PAUSE_THRESH_HI_MASK));
1804 
1805 	/* Configure RxQ. */
1806 	CSR_WRITE_4(sc, AGE_RXQ_CFG,
1807 	    ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
1808 	    RXQ_CFG_RD_BURST_MASK) |
1809 	    ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT <<
1810 	    RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) |
1811 	    ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT <<
1812 	    RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) |
1813 	    RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
1814 
1815 	/* Configure TxQ. */
1816 	CSR_WRITE_4(sc, AGE_TXQ_CFG,
1817 	    ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
1818 	    TXQ_CFG_TPD_BURST_MASK) |
1819 	    ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) &
1820 	    TXQ_CFG_TX_FIFO_BURST_MASK) |
1821 	    ((TXQ_CFG_TPD_FETCH_DEFAULT <<
1822 	    TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) |
1823 	    TXQ_CFG_ENB);
1824 
1825 	/* Configure DMA parameters. */
1826 	CSR_WRITE_4(sc, AGE_DMA_CFG,
1827 	    DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 |
1828 	    sc->age_dma_rd_burst | DMA_CFG_RD_ENB |
1829 	    sc->age_dma_wr_burst | DMA_CFG_WR_ENB);
1830 
1831 	/* Configure CMB DMA write threshold. */
1832 	CSR_WRITE_4(sc, AGE_CMB_WR_THRESH,
1833 	    ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) &
1834 	    CMB_WR_THRESH_RRD_MASK) |
1835 	    ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) &
1836 	    CMB_WR_THRESH_TPD_MASK));
1837 
1838 	/* Set CMB/SMB timer and enable them. */
1839 	CSR_WRITE_4(sc, AGE_CMB_WR_TIMER,
1840 	    ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) |
1841 	    ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK));
1842 
1843 	/* Request SMB updates for every seconds. */
1844 	CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000));
1845 	CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB);
1846 
1847 	/*
1848 	 * Disable all WOL bits as WOL can interfere normal Rx
1849 	 * operation.
1850 	 */
1851 	CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
1852 
1853         /*
1854 	 * Configure Tx/Rx MACs.
1855 	 *  - Auto-padding for short frames.
1856 	 *  - Enable CRC generation.
1857 	 *  Start with full-duplex/1000Mbps media. Actual reconfiguration
1858 	 *  of MAC is followed after link establishment.
1859 	 */
1860 	CSR_WRITE_4(sc, AGE_MAC_CFG,
1861 	    MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD |
1862 	    MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 |
1863 	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
1864 	    MAC_CFG_PREAMBLE_MASK));
1865 
1866 	/* Set up the receive filter. */
1867 	age_rxfilter(sc);
1868 	age_rxvlan(sc);
1869 
1870 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1871 	reg |= MAC_CFG_RXCSUM_ENB;
1872 
1873 	/* Ack all pending interrupts and clear it. */
1874 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
1875 	CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS);
1876 
1877 	/* Finally enable Tx/Rx MAC. */
1878 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
1879 
1880 	sc->age_flags &= ~AGE_FLAG_LINK;
1881 
1882 	/* Switch to the current media. */
1883 	mii = &sc->sc_miibus;
1884 	mii_mediachg(mii);
1885 
1886 	timeout_add_sec(&sc->age_tick_ch, 1);
1887 
1888 	ifp->if_flags |= IFF_RUNNING;
1889 	ifp->if_flags &= ~IFF_OACTIVE;
1890 
1891 	return (0);
1892 }
1893 
1894 void
1895 age_stop(struct age_softc *sc)
1896 {
1897 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1898 	struct age_txdesc *txd;
1899 	struct age_rxdesc *rxd;
1900 	uint32_t reg;
1901 	int i;
1902 
1903 	/*
1904 	 * Mark the interface down and cancel the watchdog timer.
1905 	 */
1906 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1907 	ifp->if_timer = 0;
1908 
1909 	sc->age_flags &= ~AGE_FLAG_LINK;
1910 	timeout_del(&sc->age_tick_ch);
1911 
1912 	/*
1913 	 * Disable interrupts.
1914 	 */
1915 	CSR_WRITE_4(sc, AGE_INTR_MASK, 0);
1916 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF);
1917 
1918 	/* Stop CMB/SMB updates. */
1919 	CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0);
1920 
1921 	/* Stop Rx/Tx MAC. */
1922 	age_stop_rxmac(sc);
1923 	age_stop_txmac(sc);
1924 
1925 	/* Stop DMA. */
1926 	CSR_WRITE_4(sc, AGE_DMA_CFG,
1927 	    CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB));
1928 
1929 	/* Stop TxQ/RxQ. */
1930 	CSR_WRITE_4(sc, AGE_TXQ_CFG,
1931 	    CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB);
1932 	CSR_WRITE_4(sc, AGE_RXQ_CFG,
1933 	    CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB);
1934 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
1935 		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
1936 			break;
1937 		DELAY(10);
1938 	}
1939 	if (i == 0)
1940 		printf("%s: stopping Rx/Tx MACs timed out(0x%08x)!\n",
1941 		    sc->sc_dev.dv_xname, reg);
1942 
1943 	/* Reclaim Rx buffers that have been processed. */
1944 	if (sc->age_cdata.age_rxhead != NULL)
1945 		m_freem(sc->age_cdata.age_rxhead);
1946 	AGE_RXCHAIN_RESET(sc);
1947 
1948 	/*
1949 	 * Free RX and TX mbufs still in the queues.
1950 	 */
1951 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
1952 		rxd = &sc->age_cdata.age_rxdesc[i];
1953 		if (rxd->rx_m != NULL) {
1954 			bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
1955 			m_freem(rxd->rx_m);
1956 			rxd->rx_m = NULL;
1957 		}
1958 	}
1959 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
1960 		txd = &sc->age_cdata.age_txdesc[i];
1961 		if (txd->tx_m != NULL) {
1962 			bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1963 			m_freem(txd->tx_m);
1964 			txd->tx_m = NULL;
1965 		}
1966 	}
1967 }
1968 
1969 void
1970 age_stats_update(struct age_softc *sc)
1971 {
1972 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1973 	struct age_stats *stat;
1974 	struct smb *smb;
1975 
1976 	stat = &sc->age_stat;
1977 
1978 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
1979 	    sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1980 
1981 	smb = sc->age_rdata.age_smb_block;
1982 	if (smb->updated == 0)
1983 		return;
1984 
1985 	/* Rx stats. */
1986 	stat->rx_frames += smb->rx_frames;
1987 	stat->rx_bcast_frames += smb->rx_bcast_frames;
1988 	stat->rx_mcast_frames += smb->rx_mcast_frames;
1989 	stat->rx_pause_frames += smb->rx_pause_frames;
1990 	stat->rx_control_frames += smb->rx_control_frames;
1991 	stat->rx_crcerrs += smb->rx_crcerrs;
1992 	stat->rx_lenerrs += smb->rx_lenerrs;
1993 	stat->rx_bytes += smb->rx_bytes;
1994 	stat->rx_runts += smb->rx_runts;
1995 	stat->rx_fragments += smb->rx_fragments;
1996 	stat->rx_pkts_64 += smb->rx_pkts_64;
1997 	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
1998 	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
1999 	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
2000 	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
2001 	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
2002 	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
2003 	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
2004 	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
2005 	stat->rx_desc_oflows += smb->rx_desc_oflows;
2006 	stat->rx_alignerrs += smb->rx_alignerrs;
2007 	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
2008 	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
2009 	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
2010 
2011 	/* Tx stats. */
2012 	stat->tx_frames += smb->tx_frames;
2013 	stat->tx_bcast_frames += smb->tx_bcast_frames;
2014 	stat->tx_mcast_frames += smb->tx_mcast_frames;
2015 	stat->tx_pause_frames += smb->tx_pause_frames;
2016 	stat->tx_excess_defer += smb->tx_excess_defer;
2017 	stat->tx_control_frames += smb->tx_control_frames;
2018 	stat->tx_deferred += smb->tx_deferred;
2019 	stat->tx_bytes += smb->tx_bytes;
2020 	stat->tx_pkts_64 += smb->tx_pkts_64;
2021 	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2022 	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2023 	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2024 	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2025 	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2026 	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2027 	stat->tx_single_colls += smb->tx_single_colls;
2028 	stat->tx_multi_colls += smb->tx_multi_colls;
2029 	stat->tx_late_colls += smb->tx_late_colls;
2030 	stat->tx_excess_colls += smb->tx_excess_colls;
2031 	stat->tx_underrun += smb->tx_underrun;
2032 	stat->tx_desc_underrun += smb->tx_desc_underrun;
2033 	stat->tx_lenerrs += smb->tx_lenerrs;
2034 	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2035 	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2036 	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2037 
2038 	/* Update counters in ifnet. */
2039 	ifp->if_opackets += smb->tx_frames;
2040 
2041 	ifp->if_collisions += smb->tx_single_colls +
2042 	    smb->tx_multi_colls + smb->tx_late_colls +
2043 	    smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT;
2044 
2045 	ifp->if_oerrors += smb->tx_excess_colls +
2046 	    smb->tx_late_colls + smb->tx_underrun +
2047 	    smb->tx_pkts_truncated;
2048 
2049 	ifp->if_ipackets += smb->rx_frames;
2050 
2051 	ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
2052 	    smb->rx_runts + smb->rx_pkts_truncated +
2053 	    smb->rx_fifo_oflows + smb->rx_desc_oflows +
2054 	    smb->rx_alignerrs;
2055 
2056 	/* Update done, clear. */
2057 	smb->updated = 0;
2058 
2059 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
2060 	    sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2061 }
2062 
2063 void
2064 age_stop_txmac(struct age_softc *sc)
2065 {
2066 	uint32_t reg;
2067 	int i;
2068 
2069 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2070 	if ((reg & MAC_CFG_TX_ENB) != 0) {
2071 		reg &= ~MAC_CFG_TX_ENB;
2072 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2073 	}
2074 	/* Stop Tx DMA engine. */
2075 	reg = CSR_READ_4(sc, AGE_DMA_CFG);
2076 	if ((reg & DMA_CFG_RD_ENB) != 0) {
2077 		reg &= ~DMA_CFG_RD_ENB;
2078 		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2079 	}
2080 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2081 		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2082 		    (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0)
2083 			break;
2084 		DELAY(10);
2085 	}
2086 	if (i == 0)
2087 		printf("%s: stopping TxMAC timeout!\n", sc->sc_dev.dv_xname);
2088 }
2089 
2090 void
2091 age_stop_rxmac(struct age_softc *sc)
2092 {
2093 	uint32_t reg;
2094 	int i;
2095 
2096 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2097 	if ((reg & MAC_CFG_RX_ENB) != 0) {
2098 		reg &= ~MAC_CFG_RX_ENB;
2099 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2100 	}
2101 	/* Stop Rx DMA engine. */
2102 	reg = CSR_READ_4(sc, AGE_DMA_CFG);
2103 	if ((reg & DMA_CFG_WR_ENB) != 0) {
2104 		reg &= ~DMA_CFG_WR_ENB;
2105 		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2106 	}
2107 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2108 		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2109 		    (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0)
2110 			break;
2111 		DELAY(10);
2112 	}
2113 	if (i == 0)
2114 		printf("%s: stopping RxMAC timeout!\n", sc->sc_dev.dv_xname);
2115 }
2116 
2117 void
2118 age_init_tx_ring(struct age_softc *sc)
2119 {
2120 	struct age_ring_data *rd;
2121 	struct age_txdesc *txd;
2122 	int i;
2123 
2124 	sc->age_cdata.age_tx_prod = 0;
2125 	sc->age_cdata.age_tx_cons = 0;
2126 	sc->age_cdata.age_tx_cnt = 0;
2127 
2128 	rd = &sc->age_rdata;
2129 	bzero(rd->age_tx_ring, AGE_TX_RING_SZ);
2130 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
2131 		txd = &sc->age_cdata.age_txdesc[i];
2132 		txd->tx_desc = &rd->age_tx_ring[i];
2133 		txd->tx_m = NULL;
2134 	}
2135 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
2136 	    sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2137 }
2138 
2139 int
2140 age_init_rx_ring(struct age_softc *sc)
2141 {
2142 	struct age_ring_data *rd;
2143 	struct age_rxdesc *rxd;
2144 	int i;
2145 
2146 	sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1;
2147 	rd = &sc->age_rdata;
2148 	bzero(rd->age_rx_ring, AGE_RX_RING_SZ);
2149 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
2150 		rxd = &sc->age_cdata.age_rxdesc[i];
2151 		rxd->rx_m = NULL;
2152 		rxd->rx_desc = &rd->age_rx_ring[i];
2153 		if (age_newbuf(sc, rxd, 1) != 0)
2154 			return (ENOBUFS);
2155 	}
2156 
2157 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rx_ring_map, 0,
2158 	    sc->age_cdata.age_rx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2159 
2160 	return (0);
2161 }
2162 
2163 void
2164 age_init_rr_ring(struct age_softc *sc)
2165 {
2166 	struct age_ring_data *rd;
2167 
2168 	sc->age_cdata.age_rr_cons = 0;
2169 	AGE_RXCHAIN_RESET(sc);
2170 
2171 	rd = &sc->age_rdata;
2172 	bzero(rd->age_rr_ring, AGE_RR_RING_SZ);
2173 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
2174 	    sc->age_cdata.age_rr_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2175 }
2176 
2177 void
2178 age_init_cmb_block(struct age_softc *sc)
2179 {
2180 	struct age_ring_data *rd;
2181 
2182 	rd = &sc->age_rdata;
2183 	bzero(rd->age_cmb_block, AGE_CMB_BLOCK_SZ);
2184 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
2185 	    sc->age_cdata.age_cmb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2186 }
2187 
2188 void
2189 age_init_smb_block(struct age_softc *sc)
2190 {
2191 	struct age_ring_data *rd;
2192 
2193 	rd = &sc->age_rdata;
2194 	bzero(rd->age_smb_block, AGE_SMB_BLOCK_SZ);
2195 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
2196 	    sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2197 }
2198 
2199 int
2200 age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd, int init)
2201 {
2202 	struct rx_desc *desc;
2203 	struct mbuf *m;
2204 	bus_dmamap_t map;
2205 	int error;
2206 
2207 	MGETHDR(m, init ? M_WAITOK : M_DONTWAIT, MT_DATA);
2208 	if (m == NULL)
2209 		return (ENOBUFS);
2210 	MCLGET(m, init ? M_WAITOK : M_DONTWAIT);
2211 	if (!(m->m_flags & M_EXT)) {
2212 		 m_freem(m);
2213 		 return (ENOBUFS);
2214 	}
2215 
2216 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2217 	m_adj(m, ETHER_ALIGN);
2218 
2219 	error = bus_dmamap_load_mbuf(sc->sc_dmat,
2220 	    sc->age_cdata.age_rx_sparemap, m, BUS_DMA_NOWAIT);
2221 
2222 	if (error != 0) {
2223 		if (!error) {
2224 			bus_dmamap_unload(sc->sc_dmat,
2225 			    sc->age_cdata.age_rx_sparemap);
2226 			error = EFBIG;
2227 			printf("%s: too many segments?!\n",
2228 			    sc->sc_dev.dv_xname);
2229 		}
2230 		m_freem(m);
2231 
2232 		if (init)
2233 			printf("%s: can't load RX mbuf\n", sc->sc_dev.dv_xname);
2234 		return (error);
2235 	}
2236 
2237 	if (rxd->rx_m != NULL) {
2238 		bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0,
2239 		    rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2240 		bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
2241 	}
2242 	map = rxd->rx_dmamap;
2243 	rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap;
2244 	sc->age_cdata.age_rx_sparemap = map;
2245 	rxd->rx_m = m;
2246 
2247 	desc = rxd->rx_desc;
2248 	desc->addr = htole64(rxd->rx_dmamap->dm_segs[0].ds_addr);
2249 	desc->len =
2250 	    htole32((rxd->rx_dmamap->dm_segs[0].ds_len & AGE_RD_LEN_MASK) <<
2251 	    AGE_RD_LEN_SHIFT);
2252 
2253 	return (0);
2254 }
2255 
2256 void
2257 age_rxvlan(struct age_softc *sc)
2258 {
2259 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
2260 	uint32_t reg;
2261 
2262 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2263 	reg &= ~MAC_CFG_VLAN_TAG_STRIP;
2264 	if (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING)
2265 		reg |= MAC_CFG_VLAN_TAG_STRIP;
2266 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2267 }
2268 
2269 void
2270 age_rxfilter(struct age_softc *sc)
2271 {
2272 	struct arpcom *ac = &sc->sc_arpcom;
2273 	struct ifnet *ifp = &ac->ac_if;
2274 	struct ether_multi *enm;
2275 	struct ether_multistep step;
2276 	uint32_t crc;
2277 	uint32_t mchash[2];
2278 	uint32_t rxcfg;
2279 
2280 	rxcfg = CSR_READ_4(sc, AGE_MAC_CFG);
2281 	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
2282 	ifp->if_flags &= ~IFF_ALLMULTI;
2283 
2284 	/*
2285 	 * Always accept broadcast frames.
2286 	 */
2287 	rxcfg |= MAC_CFG_BCAST;
2288 
2289 	if (ifp->if_flags & IFF_PROMISC || ac->ac_multirangecnt > 0) {
2290 		ifp->if_flags |= IFF_ALLMULTI;
2291 		if (ifp->if_flags & IFF_PROMISC)
2292 			rxcfg |= MAC_CFG_PROMISC;
2293 		else
2294 			rxcfg |= MAC_CFG_ALLMULTI;
2295 		mchash[0] = mchash[1] = 0xFFFFFFFF;
2296 	} else {
2297 		/* Program new filter. */
2298 		bzero(mchash, sizeof(mchash));
2299 
2300 		ETHER_FIRST_MULTI(step, ac, enm);
2301 		while (enm != NULL) {
2302 			crc = ether_crc32_le(enm->enm_addrlo,
2303 			    ETHER_ADDR_LEN);
2304 
2305 			mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
2306 
2307 			ETHER_NEXT_MULTI(step, enm);
2308 		}
2309 	}
2310 
2311 	CSR_WRITE_4(sc, AGE_MAR0, mchash[0]);
2312 	CSR_WRITE_4(sc, AGE_MAR1, mchash[1]);
2313 	CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
2314 }
2315