xref: /openbsd-src/sys/dev/pci/if_age.c (revision 1a8dbaac879b9f3335ad7fb25429ce63ac1d6bac)
1 /*	$OpenBSD: if_age.c,v 1.37 2020/07/10 13:26:37 patrick Exp $	*/
2 
3 /*-
4  * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice unmodified, this list of conditions, and the following
12  *    disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 /* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */
31 
32 #include "bpfilter.h"
33 #include "vlan.h"
34 
35 #include <sys/param.h>
36 #include <sys/endian.h>
37 #include <sys/systm.h>
38 #include <sys/sockio.h>
39 #include <sys/mbuf.h>
40 #include <sys/queue.h>
41 #include <sys/kernel.h>
42 #include <sys/device.h>
43 #include <sys/timeout.h>
44 #include <sys/socket.h>
45 
46 #include <machine/bus.h>
47 
48 #include <net/if.h>
49 #include <net/if_dl.h>
50 #include <net/if_media.h>
51 
52 #include <netinet/in.h>
53 #include <netinet/if_ether.h>
54 
55 #if NBPFILTER > 0
56 #include <net/bpf.h>
57 #endif
58 
59 #include <dev/mii/mii.h>
60 #include <dev/mii/miivar.h>
61 
62 #include <dev/pci/pcireg.h>
63 #include <dev/pci/pcivar.h>
64 #include <dev/pci/pcidevs.h>
65 
66 #include <dev/pci/if_agereg.h>
67 
68 int	age_match(struct device *, void *, void *);
69 void	age_attach(struct device *, struct device *, void *);
70 int	age_detach(struct device *, int);
71 
72 int	age_miibus_readreg(struct device *, int, int);
73 void	age_miibus_writereg(struct device *, int, int, int);
74 void	age_miibus_statchg(struct device *);
75 
76 int	age_init(struct ifnet *);
77 int	age_ioctl(struct ifnet *, u_long, caddr_t);
78 void	age_start(struct ifnet *);
79 void	age_watchdog(struct ifnet *);
80 void	age_mediastatus(struct ifnet *, struct ifmediareq *);
81 int	age_mediachange(struct ifnet *);
82 
83 int	age_intr(void *);
84 int	age_dma_alloc(struct age_softc *);
85 void	age_dma_free(struct age_softc *);
86 void	age_get_macaddr(struct age_softc *);
87 void	age_phy_reset(struct age_softc *);
88 
89 int	age_encap(struct age_softc *, struct mbuf *);
90 void	age_init_tx_ring(struct age_softc *);
91 int	age_init_rx_ring(struct age_softc *);
92 void	age_init_rr_ring(struct age_softc *);
93 void	age_init_cmb_block(struct age_softc *);
94 void	age_init_smb_block(struct age_softc *);
95 int	age_newbuf(struct age_softc *, struct age_rxdesc *);
96 void	age_mac_config(struct age_softc *);
97 void	age_txintr(struct age_softc *, int);
98 void	age_rxeof(struct age_softc *sc, struct rx_rdesc *);
99 void	age_rxintr(struct age_softc *, int);
100 void	age_tick(void *);
101 void	age_reset(struct age_softc *);
102 void	age_stop(struct age_softc *);
103 void	age_stats_update(struct age_softc *);
104 void	age_stop_txmac(struct age_softc *);
105 void	age_stop_rxmac(struct age_softc *);
106 void	age_rxvlan(struct age_softc *sc);
107 void	age_iff(struct age_softc *);
108 
109 const struct pci_matchid age_devices[] = {
110 	{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_L1 }
111 };
112 
113 struct cfattach age_ca = {
114 	sizeof (struct age_softc), age_match, age_attach
115 };
116 
117 struct cfdriver age_cd = {
118 	 NULL, "age", DV_IFNET
119 };
120 
121 int agedebug = 0;
122 #define	DPRINTF(x)	do { if (agedebug) printf x; } while (0)
123 
124 #define AGE_CSUM_FEATURES	(M_TCP_CSUM_OUT | M_UDP_CSUM_OUT)
125 
126 int
127 age_match(struct device *dev, void *match, void *aux)
128 {
129 	 return pci_matchbyid((struct pci_attach_args *)aux, age_devices,
130 	     sizeof (age_devices) / sizeof (age_devices[0]));
131 }
132 
133 void
134 age_attach(struct device *parent, struct device *self, void *aux)
135 {
136 	struct age_softc *sc = (struct age_softc *)self;
137 	struct pci_attach_args *pa = aux;
138 	pci_chipset_tag_t pc = pa->pa_pc;
139 	pci_intr_handle_t ih;
140 	const char *intrstr;
141 	struct ifnet *ifp;
142 	pcireg_t memtype;
143 	int error = 0;
144 
145 	/*
146 	 * Allocate IO memory
147 	 */
148 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, AGE_PCIR_BAR);
149 	if (pci_mapreg_map(pa, AGE_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
150 	    &sc->sc_mem_bh, NULL, &sc->sc_mem_size, 0)) {
151 		printf(": can't map mem space\n");
152 		return;
153 	}
154 
155 	if (pci_intr_map_msi(pa, &ih) != 0 && pci_intr_map(pa, &ih) != 0) {
156 		printf(": can't map interrupt\n");
157 		goto fail;
158 	}
159 
160 	/*
161 	 * Allocate IRQ
162 	 */
163 	intrstr = pci_intr_string(pc, ih);
164 	sc->sc_irq_handle = pci_intr_establish(pc, ih, IPL_NET, age_intr, sc,
165 	    sc->sc_dev.dv_xname);
166 	if (sc->sc_irq_handle == NULL) {
167 		printf(": could not establish interrupt");
168 		if (intrstr != NULL)
169 			printf(" at %s", intrstr);
170 		printf("\n");
171 		goto fail;
172 	}
173 	printf(": %s", intrstr);
174 
175 	sc->sc_dmat = pa->pa_dmat;
176 	sc->sc_pct = pa->pa_pc;
177 	sc->sc_pcitag = pa->pa_tag;
178 
179 	/* Set PHY address. */
180 	sc->age_phyaddr = AGE_PHY_ADDR;
181 
182 	/* Reset PHY. */
183 	age_phy_reset(sc);
184 
185 	/* Reset the ethernet controller. */
186 	age_reset(sc);
187 
188 	/* Get PCI and chip id/revision. */
189 	sc->age_rev = PCI_REVISION(pa->pa_class);
190 	sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >>
191 	    MASTER_CHIP_REV_SHIFT;
192 	if (agedebug) {
193 		printf("%s: PCI device revision : 0x%04x\n",
194 		    sc->sc_dev.dv_xname, sc->age_rev);
195 		printf("%s: Chip id/revision : 0x%04x\n",
196 		    sc->sc_dev.dv_xname, sc->age_chip_rev);
197 	}
198 
199 	if (agedebug) {
200 		printf("%s: %d Tx FIFO, %d Rx FIFO\n", sc->sc_dev.dv_xname,
201 		    CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN),
202 		    CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN));
203 	}
204 
205 	/* Set max allowable DMA size. */
206 	sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128;
207 	sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128;
208 
209 	/* Allocate DMA stuffs */
210 	error = age_dma_alloc(sc);
211 	if (error)
212 		goto fail;
213 
214 	/* Load station address. */
215 	age_get_macaddr(sc);
216 
217 	ifp = &sc->sc_arpcom.ac_if;
218 	ifp->if_softc = sc;
219 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
220 	ifp->if_ioctl = age_ioctl;
221 	ifp->if_start = age_start;
222 	ifp->if_watchdog = age_watchdog;
223 	ifq_set_maxlen(&ifp->if_snd, AGE_TX_RING_CNT - 1);
224 	bcopy(sc->age_eaddr, sc->sc_arpcom.ac_enaddr, ETHER_ADDR_LEN);
225 	bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
226 
227 	ifp->if_capabilities = IFCAP_VLAN_MTU;
228 
229 #ifdef AGE_CHECKSUM
230 	ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 |
231 				IFCAP_CSUM_UDPv4;
232 #endif
233 
234 #if NVLAN > 0
235 	ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING;
236 #endif
237 
238 	printf(", address %s\n", ether_sprintf(sc->sc_arpcom.ac_enaddr));
239 
240 	/* Set up MII bus. */
241 	sc->sc_miibus.mii_ifp = ifp;
242 	sc->sc_miibus.mii_readreg = age_miibus_readreg;
243 	sc->sc_miibus.mii_writereg = age_miibus_writereg;
244 	sc->sc_miibus.mii_statchg = age_miibus_statchg;
245 
246 	ifmedia_init(&sc->sc_miibus.mii_media, 0, age_mediachange,
247 	    age_mediastatus);
248 	mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY,
249 	   MII_OFFSET_ANY, MIIF_DOPAUSE);
250 
251 	if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) {
252 		printf("%s: no PHY found!\n", sc->sc_dev.dv_xname);
253 		ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL,
254 		    0, NULL);
255 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL);
256 	} else
257 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO);
258 
259 	if_attach(ifp);
260 	ether_ifattach(ifp);
261 
262 	timeout_set(&sc->age_tick_ch, age_tick, sc);
263 
264 	return;
265 fail:
266 	age_dma_free(sc);
267 	if (sc->sc_irq_handle != NULL)
268 		pci_intr_disestablish(pc, sc->sc_irq_handle);
269 	if (sc->sc_mem_size)
270 		bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
271 }
272 
273 int
274 age_detach(struct device *self, int flags)
275 {
276 	struct age_softc *sc = (struct age_softc *)self;
277 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
278 	int s;
279 
280 	s = splnet();
281 	age_stop(sc);
282 	splx(s);
283 
284 	mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
285 
286 	/* Delete all remaining media. */
287 	ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
288 
289 	ether_ifdetach(ifp);
290 	if_detach(ifp);
291 	age_dma_free(sc);
292 
293 	if (sc->sc_irq_handle != NULL) {
294 		pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
295 		sc->sc_irq_handle = NULL;
296 	}
297 
298 	return (0);
299 }
300 
301 /*
302  *	Read a PHY register on the MII of the L1.
303  */
304 int
305 age_miibus_readreg(struct device *dev, int phy, int reg)
306 {
307 	struct age_softc *sc = (struct age_softc *)dev;
308 	uint32_t v;
309 	int i;
310 
311 	if (phy != sc->age_phyaddr)
312 		return (0);
313 
314 	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
315 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
316 	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
317 		DELAY(1);
318 		v = CSR_READ_4(sc, AGE_MDIO);
319 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
320 			break;
321 	}
322 
323 	if (i == 0) {
324 		printf("%s: phy read timeout: phy %d, reg %d\n",
325 			sc->sc_dev.dv_xname, phy, reg);
326 		return (0);
327 	}
328 
329 	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
330 }
331 
332 /*
333  * 	Write a PHY register on the MII of the L1.
334  */
335 void
336 age_miibus_writereg(struct device *dev, int phy, int reg, int val)
337 {
338 	struct age_softc *sc = (struct age_softc *)dev;
339 	uint32_t v;
340 	int i;
341 
342 	if (phy != sc->age_phyaddr)
343 		return;
344 
345 	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
346 	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
347 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
348 
349 	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
350 		DELAY(1);
351 		v = CSR_READ_4(sc, AGE_MDIO);
352 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
353 			break;
354 	}
355 
356 	if (i == 0) {
357 		printf("%s: phy write timeout: phy %d, reg %d\n",
358 		    sc->sc_dev.dv_xname, phy, reg);
359 	}
360 }
361 
362 /*
363  *	Callback from MII layer when media changes.
364  */
365 void
366 age_miibus_statchg(struct device *dev)
367 {
368 	struct age_softc *sc = (struct age_softc *)dev;
369 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
370 	struct mii_data *mii = &sc->sc_miibus;
371 
372 	if ((ifp->if_flags & IFF_RUNNING) == 0)
373 		return;
374 
375 	sc->age_flags &= ~AGE_FLAG_LINK;
376 	if ((mii->mii_media_status & IFM_AVALID) != 0) {
377 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
378 		case IFM_10_T:
379 		case IFM_100_TX:
380 		case IFM_1000_T:
381 			sc->age_flags |= AGE_FLAG_LINK;
382 			break;
383 		default:
384 			break;
385 		}
386 	}
387 
388 	/* Stop Rx/Tx MACs. */
389 	age_stop_rxmac(sc);
390 	age_stop_txmac(sc);
391 
392 	/* Program MACs with resolved speed/duplex/flow-control. */
393 	if ((sc->age_flags & AGE_FLAG_LINK) != 0) {
394 		uint32_t reg;
395 
396 		age_mac_config(sc);
397 		reg = CSR_READ_4(sc, AGE_MAC_CFG);
398 		/* Restart DMA engine and Tx/Rx MAC. */
399 		CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) |
400 		    DMA_CFG_RD_ENB | DMA_CFG_WR_ENB);
401 		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
402 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
403 	}
404 }
405 
406 /*
407  *	Get the current interface media status.
408  */
409 void
410 age_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
411 {
412 	struct age_softc *sc = ifp->if_softc;
413 	struct mii_data *mii = &sc->sc_miibus;
414 
415 	mii_pollstat(mii);
416 	ifmr->ifm_status = mii->mii_media_status;
417 	ifmr->ifm_active = mii->mii_media_active;
418 }
419 
420 /*
421  *	Set hardware to newly-selected media.
422  */
423 int
424 age_mediachange(struct ifnet *ifp)
425 {
426 	struct age_softc *sc = ifp->if_softc;
427 	struct mii_data *mii = &sc->sc_miibus;
428 	int error;
429 
430 	if (mii->mii_instance != 0) {
431 		struct mii_softc *miisc;
432 
433 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
434 			mii_phy_reset(miisc);
435 	}
436 	error = mii_mediachg(mii);
437 
438 	return (error);
439 }
440 
441 int
442 age_intr(void *arg)
443 {
444         struct age_softc *sc = arg;
445         struct ifnet *ifp = &sc->sc_arpcom.ac_if;
446 	struct cmb *cmb;
447         uint32_t status;
448 
449 	status = CSR_READ_4(sc, AGE_INTR_STATUS);
450 	if (status == 0 || (status & AGE_INTRS) == 0)
451 		return (0);
452 
453 	/* Disable interrupts. */
454 	CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
455 
456 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
457 	    sc->age_cdata.age_cmb_block_map->dm_mapsize,
458 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
459 	cmb = sc->age_rdata.age_cmb_block;
460 	status = letoh32(cmb->intr_status);
461 	if ((status & AGE_INTRS) == 0)
462 		goto back;
463 
464 	sc->age_tpd_cons = (letoh32(cmb->tpd_cons) & TPD_CONS_MASK) >>
465 	    TPD_CONS_SHIFT;
466 	sc->age_rr_prod = (letoh32(cmb->rprod_cons) & RRD_PROD_MASK) >>
467 	    RRD_PROD_SHIFT;
468 	/* Let hardware know CMB was served. */
469 	cmb->intr_status = 0;
470 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
471 	    sc->age_cdata.age_cmb_block_map->dm_mapsize,
472 	    BUS_DMASYNC_PREWRITE);
473 
474 	if (ifp->if_flags & IFF_RUNNING) {
475 		if (status & INTR_CMB_RX)
476 			age_rxintr(sc, sc->age_rr_prod);
477 
478 		if (status & INTR_CMB_TX)
479 			age_txintr(sc, sc->age_tpd_cons);
480 
481 		if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) {
482 			if (status & INTR_DMA_RD_TO_RST)
483 				printf("%s: DMA read error! -- resetting\n",
484 				    sc->sc_dev.dv_xname);
485 			if (status & INTR_DMA_WR_TO_RST)
486 				printf("%s: DMA write error! -- resetting\n",
487 				    sc->sc_dev.dv_xname);
488 			age_init(ifp);
489 		}
490 
491 		age_start(ifp);
492 
493 		if (status & INTR_SMB)
494 			age_stats_update(sc);
495 	}
496 
497 	/* Check whether CMB was updated while serving Tx/Rx/SMB handler. */
498 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
499 	    sc->age_cdata.age_cmb_block_map->dm_mapsize,
500 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
501 
502 back:
503 	/* Re-enable interrupts. */
504 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
505 
506 	return (1);
507 }
508 
509 void
510 age_get_macaddr(struct age_softc *sc)
511 {
512 	uint32_t ea[2], reg;
513 	int i, vpdc;
514 
515 	reg = CSR_READ_4(sc, AGE_SPI_CTRL);
516 	if ((reg & SPI_VPD_ENB) != 0) {
517 		/* Get VPD stored in TWSI EEPROM. */
518 		reg &= ~SPI_VPD_ENB;
519 		CSR_WRITE_4(sc, AGE_SPI_CTRL, reg);
520 	}
521 
522 	if (pci_get_capability(sc->sc_pct, sc->sc_pcitag,
523 	    PCI_CAP_VPD, &vpdc, NULL)) {
524 		/*
525 		 * PCI VPD capability found, let TWSI reload EEPROM.
526 		 * This will set Ethernet address of controller.
527 		 */
528 		CSR_WRITE_4(sc, AGE_TWSI_CTRL, CSR_READ_4(sc, AGE_TWSI_CTRL) |
529 		    TWSI_CTRL_SW_LD_START);
530 		for (i = 100; i > 0; i--) {
531 			DELAY(1000);
532 			reg = CSR_READ_4(sc, AGE_TWSI_CTRL);
533 			if ((reg & TWSI_CTRL_SW_LD_START) == 0)
534 				break;
535 		}
536 		if (i == 0)
537 			printf("%s: reloading EEPROM timeout!\n",
538 			    sc->sc_dev.dv_xname);
539 	} else {
540 		if (agedebug)
541 			printf("%s: PCI VPD capability not found!\n",
542 			    sc->sc_dev.dv_xname);
543 	}
544 
545 	ea[0] = CSR_READ_4(sc, AGE_PAR0);
546 	ea[1] = CSR_READ_4(sc, AGE_PAR1);
547 	sc->age_eaddr[0] = (ea[1] >> 8) & 0xFF;
548 	sc->age_eaddr[1] = (ea[1] >> 0) & 0xFF;
549 	sc->age_eaddr[2] = (ea[0] >> 24) & 0xFF;
550 	sc->age_eaddr[3] = (ea[0] >> 16) & 0xFF;
551 	sc->age_eaddr[4] = (ea[0] >> 8) & 0xFF;
552 	sc->age_eaddr[5] = (ea[0] >> 0) & 0xFF;
553 }
554 
555 void
556 age_phy_reset(struct age_softc *sc)
557 {
558 	uint16_t reg, pn;
559 	int i, linkup;
560 
561 	/* Reset PHY. */
562 	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST);
563 	DELAY(2000);
564 	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR);
565 	DELAY(2000);
566 
567 #define	ATPHY_DBG_ADDR		0x1D
568 #define	ATPHY_DBG_DATA		0x1E
569 #define	ATPHY_CDTC		0x16
570 #define	PHY_CDTC_ENB		0x0001
571 #define	PHY_CDTC_POFF		8
572 #define	ATPHY_CDTS		0x1C
573 #define	PHY_CDTS_STAT_OK	0x0000
574 #define	PHY_CDTS_STAT_SHORT	0x0100
575 #define	PHY_CDTS_STAT_OPEN	0x0200
576 #define	PHY_CDTS_STAT_INVAL	0x0300
577 #define	PHY_CDTS_STAT_MASK	0x0300
578 
579 	/* Check power saving mode. Magic from Linux. */
580 	age_miibus_writereg(&sc->sc_dev, sc->age_phyaddr, MII_BMCR, BMCR_RESET);
581 	for (linkup = 0, pn = 0; pn < 4; pn++) {
582 		age_miibus_writereg(&sc->sc_dev, sc->age_phyaddr, ATPHY_CDTC,
583 		    (pn << PHY_CDTC_POFF) | PHY_CDTC_ENB);
584 		for (i = 200; i > 0; i--) {
585 			DELAY(1000);
586 			reg = age_miibus_readreg(&sc->sc_dev, sc->age_phyaddr,
587 			    ATPHY_CDTC);
588 			if ((reg & PHY_CDTC_ENB) == 0)
589 				break;
590 		}
591 		DELAY(1000);
592 		reg = age_miibus_readreg(&sc->sc_dev, sc->age_phyaddr,
593 		    ATPHY_CDTS);
594 		if ((reg & PHY_CDTS_STAT_MASK) != PHY_CDTS_STAT_OPEN) {
595 			linkup++;
596 			break;
597 		}
598 	}
599 	age_miibus_writereg(&sc->sc_dev, sc->age_phyaddr, MII_BMCR,
600 	    BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
601 	if (linkup == 0) {
602 		age_miibus_writereg(&sc->sc_dev, sc->age_phyaddr,
603 		    ATPHY_DBG_ADDR, 0);
604 		age_miibus_writereg(&sc->sc_dev, sc->age_phyaddr,
605 		    ATPHY_DBG_DATA, 0x124E);
606 		age_miibus_writereg(&sc->sc_dev, sc->age_phyaddr,
607 		    ATPHY_DBG_ADDR, 1);
608 		reg = age_miibus_readreg(&sc->sc_dev, sc->age_phyaddr,
609 		    ATPHY_DBG_DATA);
610 		age_miibus_writereg(&sc->sc_dev, sc->age_phyaddr,
611 		    ATPHY_DBG_DATA, reg | 0x03);
612 		/* XXX */
613 		DELAY(1500 * 1000);
614 		age_miibus_writereg(&sc->sc_dev, sc->age_phyaddr,
615 		    ATPHY_DBG_ADDR, 0);
616 		age_miibus_writereg(&sc->sc_dev, sc->age_phyaddr,
617 		    ATPHY_DBG_DATA, 0x024E);
618 	}
619 
620 #undef	ATPHY_DBG_ADDR
621 #undef	ATPHY_DBG_DATA
622 #undef	ATPHY_CDTC
623 #undef	PHY_CDTC_ENB
624 #undef	PHY_CDTC_POFF
625 #undef	ATPHY_CDTS
626 #undef	PHY_CDTS_STAT_OK
627 #undef	PHY_CDTS_STAT_SHORT
628 #undef	PHY_CDTS_STAT_OPEN
629 #undef	PHY_CDTS_STAT_INVAL
630 #undef	PHY_CDTS_STAT_MASK
631 }
632 
633 int
634 age_dma_alloc(struct age_softc *sc)
635 {
636 	struct age_txdesc *txd;
637 	struct age_rxdesc *rxd;
638 	int nsegs, error, i;
639 
640 	/*
641 	 * Create DMA stuffs for TX ring
642 	 */
643 	error = bus_dmamap_create(sc->sc_dmat, AGE_TX_RING_SZ, 1,
644 	    AGE_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_tx_ring_map);
645 	if (error)
646 		return (ENOBUFS);
647 
648 	/* Allocate DMA'able memory for TX ring */
649 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_TX_RING_SZ,
650 	    ETHER_ALIGN, 0, &sc->age_rdata.age_tx_ring_seg, 1,
651 	    &nsegs, BUS_DMA_WAITOK | BUS_DMA_ZERO);
652 	if (error) {
653 		printf("%s: could not allocate DMA'able memory for Tx ring.\n",
654 		    sc->sc_dev.dv_xname);
655 		return error;
656 	}
657 
658 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_tx_ring_seg,
659 	    nsegs, AGE_TX_RING_SZ, (caddr_t *)&sc->age_rdata.age_tx_ring,
660 	    BUS_DMA_NOWAIT);
661 	if (error)
662 		return (ENOBUFS);
663 
664 	/*  Load the DMA map for Tx ring. */
665 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_tx_ring_map,
666 	    sc->age_rdata.age_tx_ring, AGE_TX_RING_SZ, NULL, BUS_DMA_WAITOK);
667 	if (error) {
668 		printf("%s: could not load DMA'able memory for Tx ring.\n",
669 		    sc->sc_dev.dv_xname);
670 		bus_dmamem_free(sc->sc_dmat,
671 		    (bus_dma_segment_t *)&sc->age_rdata.age_tx_ring, 1);
672 		return error;
673 	}
674 
675 	sc->age_rdata.age_tx_ring_paddr =
676 	    sc->age_cdata.age_tx_ring_map->dm_segs[0].ds_addr;
677 
678 	/*
679 	 * Create DMA stuffs for RX ring
680 	 */
681 	error = bus_dmamap_create(sc->sc_dmat, AGE_RX_RING_SZ, 1,
682 	    AGE_RX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_ring_map);
683 	if (error)
684 		return (ENOBUFS);
685 
686 	/* Allocate DMA'able memory for RX ring */
687 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_RX_RING_SZ,
688 	    ETHER_ALIGN, 0, &sc->age_rdata.age_rx_ring_seg, 1,
689 	    &nsegs, BUS_DMA_WAITOK | BUS_DMA_ZERO);
690 	if (error) {
691 		printf("%s: could not allocate DMA'able memory for Rx ring.\n",
692 		    sc->sc_dev.dv_xname);
693 		return error;
694 	}
695 
696 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rx_ring_seg,
697 	    nsegs, AGE_RX_RING_SZ, (caddr_t *)&sc->age_rdata.age_rx_ring,
698 	    BUS_DMA_NOWAIT);
699 	if (error)
700 		return (ENOBUFS);
701 
702 	/* Load the DMA map for Rx ring. */
703 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rx_ring_map,
704 	    sc->age_rdata.age_rx_ring, AGE_RX_RING_SZ, NULL, BUS_DMA_WAITOK);
705 	if (error) {
706 		printf("%s: could not load DMA'able memory for Rx ring.\n",
707 		    sc->sc_dev.dv_xname);
708 		bus_dmamem_free(sc->sc_dmat,
709 		    (bus_dma_segment_t *)sc->age_rdata.age_rx_ring, 1);
710 		return error;
711 	}
712 
713 	sc->age_rdata.age_rx_ring_paddr =
714 	    sc->age_cdata.age_rx_ring_map->dm_segs[0].ds_addr;
715 
716 	/*
717 	 * Create DMA stuffs for RX return ring
718 	 */
719 	error = bus_dmamap_create(sc->sc_dmat, AGE_RR_RING_SZ, 1,
720 	    AGE_RR_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rr_ring_map);
721 	if (error)
722 		return (ENOBUFS);
723 
724 	/* Allocate DMA'able memory for RX return ring */
725 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_RR_RING_SZ,
726 	    ETHER_ALIGN, 0, &sc->age_rdata.age_rr_ring_seg, 1,
727 	    &nsegs, BUS_DMA_WAITOK | BUS_DMA_ZERO);
728 	if (error) {
729 		printf("%s: could not allocate DMA'able memory for Rx "
730 		    "return ring.\n", sc->sc_dev.dv_xname);
731 		return error;
732 	}
733 
734 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rr_ring_seg,
735 	    nsegs, AGE_RR_RING_SZ, (caddr_t *)&sc->age_rdata.age_rr_ring,
736 	    BUS_DMA_NOWAIT);
737 	if (error)
738 		return (ENOBUFS);
739 
740 	/*  Load the DMA map for Rx return ring. */
741 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rr_ring_map,
742 	    sc->age_rdata.age_rr_ring, AGE_RR_RING_SZ, NULL, BUS_DMA_WAITOK);
743 	if (error) {
744 		printf("%s: could not load DMA'able memory for Rx return ring."
745 		    "\n", sc->sc_dev.dv_xname);
746 		bus_dmamem_free(sc->sc_dmat,
747 		    (bus_dma_segment_t *)&sc->age_rdata.age_rr_ring, 1);
748 		return error;
749 	}
750 
751 	sc->age_rdata.age_rr_ring_paddr =
752 	    sc->age_cdata.age_rr_ring_map->dm_segs[0].ds_addr;
753 
754 	/*
755 	 * Create DMA stuffs for CMB block
756 	 */
757 	error = bus_dmamap_create(sc->sc_dmat, AGE_CMB_BLOCK_SZ, 1,
758 	    AGE_CMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
759 	    &sc->age_cdata.age_cmb_block_map);
760 	if (error)
761 		return (ENOBUFS);
762 
763 	/* Allocate DMA'able memory for CMB block */
764 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_CMB_BLOCK_SZ,
765 	    ETHER_ALIGN, 0, &sc->age_rdata.age_cmb_block_seg, 1,
766 	    &nsegs, BUS_DMA_WAITOK | BUS_DMA_ZERO);
767 	if (error) {
768 		printf("%s: could not allocate DMA'able memory for "
769 		    "CMB block\n", sc->sc_dev.dv_xname);
770 		return error;
771 	}
772 
773 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_cmb_block_seg,
774 	    nsegs, AGE_CMB_BLOCK_SZ, (caddr_t *)&sc->age_rdata.age_cmb_block,
775 	    BUS_DMA_NOWAIT);
776 	if (error)
777 		return (ENOBUFS);
778 
779 	/*  Load the DMA map for CMB block. */
780 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_cmb_block_map,
781 	    sc->age_rdata.age_cmb_block, AGE_CMB_BLOCK_SZ, NULL,
782 	    BUS_DMA_WAITOK);
783 	if (error) {
784 		printf("%s: could not load DMA'able memory for CMB block\n",
785 		    sc->sc_dev.dv_xname);
786 		bus_dmamem_free(sc->sc_dmat,
787 		    (bus_dma_segment_t *)&sc->age_rdata.age_cmb_block, 1);
788 		return error;
789 	}
790 
791 	sc->age_rdata.age_cmb_block_paddr =
792 	    sc->age_cdata.age_cmb_block_map->dm_segs[0].ds_addr;
793 
794 	/*
795 	 * Create DMA stuffs for SMB block
796 	 */
797 	error = bus_dmamap_create(sc->sc_dmat, AGE_SMB_BLOCK_SZ, 1,
798 	    AGE_SMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
799 	    &sc->age_cdata.age_smb_block_map);
800 	if (error)
801 		return (ENOBUFS);
802 
803 	/* Allocate DMA'able memory for SMB block */
804 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_SMB_BLOCK_SZ,
805 	    ETHER_ALIGN, 0, &sc->age_rdata.age_smb_block_seg, 1,
806 	    &nsegs, BUS_DMA_WAITOK | BUS_DMA_ZERO);
807 	if (error) {
808 		printf("%s: could not allocate DMA'able memory for "
809 		    "SMB block\n", sc->sc_dev.dv_xname);
810 		return error;
811 	}
812 
813 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_smb_block_seg,
814 	    nsegs, AGE_SMB_BLOCK_SZ, (caddr_t *)&sc->age_rdata.age_smb_block,
815 	    BUS_DMA_NOWAIT);
816 	if (error)
817 		return (ENOBUFS);
818 
819 	/*  Load the DMA map for SMB block */
820 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_smb_block_map,
821 	    sc->age_rdata.age_smb_block, AGE_SMB_BLOCK_SZ, NULL,
822 	    BUS_DMA_WAITOK);
823 	if (error) {
824 		printf("%s: could not load DMA'able memory for SMB block\n",
825 		    sc->sc_dev.dv_xname);
826 		bus_dmamem_free(sc->sc_dmat,
827 		    (bus_dma_segment_t *)&sc->age_rdata.age_smb_block, 1);
828 		return error;
829 	}
830 
831 	sc->age_rdata.age_smb_block_paddr =
832 	    sc->age_cdata.age_smb_block_map->dm_segs[0].ds_addr;
833 
834 	/* Create DMA maps for Tx buffers. */
835 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
836 		txd = &sc->age_cdata.age_txdesc[i];
837 		txd->tx_m = NULL;
838 		txd->tx_dmamap = NULL;
839 		error = bus_dmamap_create(sc->sc_dmat, AGE_TSO_MAXSIZE,
840 		    AGE_MAXTXSEGS, AGE_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,
841 		    &txd->tx_dmamap);
842 		if (error) {
843 			printf("%s: could not create Tx dmamap.\n",
844 			    sc->sc_dev.dv_xname);
845 			return error;
846 		}
847 	}
848 
849 	/* Create DMA maps for Rx buffers. */
850 	error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
851 	    BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_sparemap);
852 	if (error) {
853 		printf("%s: could not create spare Rx dmamap.\n",
854 		    sc->sc_dev.dv_xname);
855 		return error;
856 	}
857 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
858 		rxd = &sc->age_cdata.age_rxdesc[i];
859 		rxd->rx_m = NULL;
860 		rxd->rx_dmamap = NULL;
861 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
862 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &rxd->rx_dmamap);
863 		if (error) {
864 			printf("%s: could not create Rx dmamap.\n",
865 			    sc->sc_dev.dv_xname);
866 			return error;
867 		}
868 	}
869 
870 	return (0);
871 }
872 
873 void
874 age_dma_free(struct age_softc *sc)
875 {
876 	struct age_txdesc *txd;
877 	struct age_rxdesc *rxd;
878 	int i;
879 
880 	/* Tx buffers */
881 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
882 		txd = &sc->age_cdata.age_txdesc[i];
883 		if (txd->tx_dmamap != NULL) {
884 			bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
885 			txd->tx_dmamap = NULL;
886 		}
887 	}
888 	/* Rx buffers */
889 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
890 		rxd = &sc->age_cdata.age_rxdesc[i];
891 		if (rxd->rx_dmamap != NULL) {
892 			bus_dmamap_destroy(sc->sc_dmat, rxd->rx_dmamap);
893 			rxd->rx_dmamap = NULL;
894 		}
895 	}
896 	if (sc->age_cdata.age_rx_sparemap != NULL) {
897 		bus_dmamap_destroy(sc->sc_dmat, sc->age_cdata.age_rx_sparemap);
898 		sc->age_cdata.age_rx_sparemap = NULL;
899 	}
900 
901 	/* Tx ring. */
902 	if (sc->age_cdata.age_tx_ring_map != NULL)
903 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_tx_ring_map);
904 	if (sc->age_cdata.age_tx_ring_map != NULL &&
905 	    sc->age_rdata.age_tx_ring != NULL)
906 		bus_dmamem_free(sc->sc_dmat,
907 		    (bus_dma_segment_t *)sc->age_rdata.age_tx_ring, 1);
908 	sc->age_rdata.age_tx_ring = NULL;
909 	sc->age_cdata.age_tx_ring_map = NULL;
910 
911 	/* Rx ring. */
912 	if (sc->age_cdata.age_rx_ring_map != NULL)
913 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rx_ring_map);
914 	if (sc->age_cdata.age_rx_ring_map != NULL &&
915 	    sc->age_rdata.age_rx_ring != NULL)
916 		bus_dmamem_free(sc->sc_dmat,
917 		    (bus_dma_segment_t *)sc->age_rdata.age_rx_ring, 1);
918 	sc->age_rdata.age_rx_ring = NULL;
919 	sc->age_cdata.age_rx_ring_map = NULL;
920 
921 	/* Rx return ring. */
922 	if (sc->age_cdata.age_rr_ring_map != NULL)
923 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rr_ring_map);
924 	if (sc->age_cdata.age_rr_ring_map != NULL &&
925 	    sc->age_rdata.age_rr_ring != NULL)
926 		bus_dmamem_free(sc->sc_dmat,
927 		    (bus_dma_segment_t *)sc->age_rdata.age_rr_ring, 1);
928 	sc->age_rdata.age_rr_ring = NULL;
929 	sc->age_cdata.age_rr_ring_map = NULL;
930 
931 	/* CMB block */
932 	if (sc->age_cdata.age_cmb_block_map != NULL)
933 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_cmb_block_map);
934 	if (sc->age_cdata.age_cmb_block_map != NULL &&
935 	    sc->age_rdata.age_cmb_block != NULL)
936 		bus_dmamem_free(sc->sc_dmat,
937 		    (bus_dma_segment_t *)sc->age_rdata.age_cmb_block, 1);
938 	sc->age_rdata.age_cmb_block = NULL;
939 	sc->age_cdata.age_cmb_block_map = NULL;
940 
941 	/* SMB block */
942 	if (sc->age_cdata.age_smb_block_map != NULL)
943 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_smb_block_map);
944 	if (sc->age_cdata.age_smb_block_map != NULL &&
945 	    sc->age_rdata.age_smb_block != NULL)
946 		bus_dmamem_free(sc->sc_dmat,
947 		    (bus_dma_segment_t *)sc->age_rdata.age_smb_block, 1);
948 	sc->age_rdata.age_smb_block = NULL;
949 	sc->age_cdata.age_smb_block_map = NULL;
950 }
951 
952 void
953 age_start(struct ifnet *ifp)
954 {
955         struct age_softc *sc = ifp->if_softc;
956         struct mbuf *m;
957 	int enq;
958 
959 	if (!(ifp->if_flags & IFF_RUNNING) || ifq_is_oactive(&ifp->if_snd))
960 		return;
961 	if ((sc->age_flags & AGE_FLAG_LINK) == 0)
962 		return;
963 	if (ifq_empty(&ifp->if_snd))
964 		return;
965 
966 	enq = 0;
967 	for (;;) {
968 		if (sc->age_cdata.age_tx_cnt + AGE_MAXTXSEGS >=
969 		    AGE_TX_RING_CNT - 2) {
970 			ifq_set_oactive(&ifp->if_snd);
971 			break;
972 		}
973 
974 		m = ifq_dequeue(&ifp->if_snd);
975 		if (m == NULL)
976 			break;
977 
978 		/*
979 		 * Pack the data into the transmit ring. If we
980 		 * don't have room, set the OACTIVE flag and wait
981 		 * for the NIC to drain the ring.
982 		 */
983 		if (age_encap(sc, m) != 0) {
984 			ifp->if_oerrors++;
985 			continue;
986 		}
987 		enq = 1;
988 
989 #if NBPFILTER > 0
990 		/*
991 		 * If there's a BPF listener, bounce a copy of this frame
992 		 * to him.
993 		 */
994 		if (ifp->if_bpf != NULL)
995 			bpf_mtap_ether(ifp->if_bpf, m, BPF_DIRECTION_OUT);
996 #endif
997 	}
998 
999 	if (enq) {
1000 		/* Update mbox. */
1001 		AGE_COMMIT_MBOX(sc);
1002 		/* Set a timeout in case the chip goes out to lunch. */
1003 		ifp->if_timer = AGE_TX_TIMEOUT;
1004 	}
1005 }
1006 
1007 void
1008 age_watchdog(struct ifnet *ifp)
1009 {
1010 	struct age_softc *sc = ifp->if_softc;
1011 
1012 	if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
1013 		printf("%s: watchdog timeout (missed link)\n",
1014 		    sc->sc_dev.dv_xname);
1015 		ifp->if_oerrors++;
1016 		age_init(ifp);
1017 		return;
1018 	}
1019 
1020 	if (sc->age_cdata.age_tx_cnt == 0) {
1021 		printf("%s: watchdog timeout (missed Tx interrupts) "
1022 		    "-- recovering\n", sc->sc_dev.dv_xname);
1023 		age_start(ifp);
1024 		return;
1025 	}
1026 
1027 	printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
1028 	ifp->if_oerrors++;
1029 	age_init(ifp);
1030 	age_start(ifp);
1031 }
1032 
1033 int
1034 age_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1035 {
1036 	struct age_softc *sc = ifp->if_softc;
1037 	struct mii_data *mii = &sc->sc_miibus;
1038 	struct ifreq *ifr = (struct ifreq *)data;
1039 	int s, error = 0;
1040 
1041 	s = splnet();
1042 
1043 	switch (cmd) {
1044 	case SIOCSIFADDR:
1045 		ifp->if_flags |= IFF_UP;
1046 		if (!(ifp->if_flags & IFF_RUNNING))
1047 			 age_init(ifp);
1048 		break;
1049 
1050 	case SIOCSIFFLAGS:
1051 		if (ifp->if_flags & IFF_UP) {
1052 			if (ifp->if_flags & IFF_RUNNING)
1053 				error = ENETRESET;
1054 			else
1055 				age_init(ifp);
1056 		} else {
1057 			if (ifp->if_flags & IFF_RUNNING)
1058 				age_stop(sc);
1059 		}
1060 		break;
1061 
1062 	case SIOCSIFMEDIA:
1063 	case SIOCGIFMEDIA:
1064 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1065 		break;
1066 
1067 	default:
1068 		error = ether_ioctl(ifp, &sc->sc_arpcom, cmd, data);
1069 		break;
1070 	}
1071 
1072 	if (error == ENETRESET) {
1073 		if (ifp->if_flags & IFF_RUNNING)
1074 			age_iff(sc);
1075 		error = 0;
1076 	}
1077 
1078 	splx(s);
1079 	return (error);
1080 }
1081 
1082 void
1083 age_mac_config(struct age_softc *sc)
1084 {
1085 	struct mii_data *mii = &sc->sc_miibus;
1086 	uint32_t reg;
1087 
1088 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1089 	reg &= ~MAC_CFG_FULL_DUPLEX;
1090 	reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC);
1091 	reg &= ~MAC_CFG_SPEED_MASK;
1092 
1093 	/* Reprogram MAC with resolved speed/duplex. */
1094 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1095 	case IFM_10_T:
1096 	case IFM_100_TX:
1097 		reg |= MAC_CFG_SPEED_10_100;
1098 		break;
1099 	case IFM_1000_T:
1100 		reg |= MAC_CFG_SPEED_1000;
1101 		break;
1102 	}
1103 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1104 		reg |= MAC_CFG_FULL_DUPLEX;
1105 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1106 			reg |= MAC_CFG_TX_FC;
1107 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1108 			reg |= MAC_CFG_RX_FC;
1109 	}
1110 
1111 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1112 }
1113 
1114 int
1115 age_encap(struct age_softc *sc, struct mbuf *m)
1116 {
1117 	struct age_txdesc *txd, *txd_last;
1118 	struct tx_desc *desc;
1119 	bus_dmamap_t map;
1120 	uint32_t cflags, poff, vtag;
1121 	int error, i, prod;
1122 
1123 	cflags = vtag = 0;
1124 	poff = 0;
1125 
1126 	prod = sc->age_cdata.age_tx_prod;
1127 	txd = &sc->age_cdata.age_txdesc[prod];
1128 	txd_last = txd;
1129 	map = txd->tx_dmamap;
1130 
1131 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m, BUS_DMA_NOWAIT);
1132 	if (error != 0 && error != EFBIG)
1133 		goto drop;
1134 	if (error != 0) {
1135 		if (m_defrag(m, M_DONTWAIT)) {
1136 			error = ENOBUFS;
1137 			goto drop;
1138 		}
1139 		error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1140 		    BUS_DMA_NOWAIT);
1141 		if (error != 0)
1142 			goto drop;
1143 	}
1144 
1145 	/* Configure Tx IP/TCP/UDP checksum offload. */
1146 	if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) {
1147 		cflags |= AGE_TD_CSUM;
1148 		if ((m->m_pkthdr.csum_flags & M_TCP_CSUM_OUT) != 0)
1149 			cflags |= AGE_TD_TCPCSUM;
1150 		if ((m->m_pkthdr.csum_flags & M_UDP_CSUM_OUT) != 0)
1151 			cflags |= AGE_TD_UDPCSUM;
1152 		/* Set checksum start offset. */
1153 		cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT);
1154 	}
1155 
1156 #if NVLAN > 0
1157 	/* Configure VLAN hardware tag insertion. */
1158 	if (m->m_flags & M_VLANTAG) {
1159 		vtag = AGE_TX_VLAN_TAG(m->m_pkthdr.ether_vtag);
1160 		vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK);
1161 		cflags |= AGE_TD_INSERT_VLAN_TAG;
1162 	}
1163 #endif
1164 
1165 	desc = NULL;
1166 	for (i = 0; i < map->dm_nsegs; i++) {
1167 		desc = &sc->age_rdata.age_tx_ring[prod];
1168 		desc->addr = htole64(map->dm_segs[i].ds_addr);
1169 		desc->len =
1170 		    htole32(AGE_TX_BYTES(map->dm_segs[i].ds_len) | vtag);
1171 		desc->flags = htole32(cflags);
1172 		sc->age_cdata.age_tx_cnt++;
1173 		AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1174 	}
1175 
1176 	/* Update producer index. */
1177 	sc->age_cdata.age_tx_prod = prod;
1178 
1179 	/* Set EOP on the last descriptor. */
1180 	prod = (prod + AGE_TX_RING_CNT - 1) % AGE_TX_RING_CNT;
1181 	desc = &sc->age_rdata.age_tx_ring[prod];
1182 	desc->flags |= htole32(AGE_TD_EOP);
1183 
1184 	/* Swap dmamap of the first and the last. */
1185 	txd = &sc->age_cdata.age_txdesc[prod];
1186 	map = txd_last->tx_dmamap;
1187 	txd_last->tx_dmamap = txd->tx_dmamap;
1188 	txd->tx_dmamap = map;
1189 	txd->tx_m = m;
1190 
1191 	/* Sync descriptors. */
1192 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1193 	    BUS_DMASYNC_PREWRITE);
1194 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
1195 	    sc->age_cdata.age_tx_ring_map->dm_mapsize,
1196 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1197 
1198 	return (0);
1199 
1200  drop:
1201 	m_freem(m);
1202 	return (error);
1203 }
1204 
1205 void
1206 age_txintr(struct age_softc *sc, int tpd_cons)
1207 {
1208 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1209 	struct age_txdesc *txd;
1210 	int cons, prog;
1211 
1212 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
1213 	    sc->age_cdata.age_tx_ring_map->dm_mapsize,
1214 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1215 
1216 	/*
1217 	 * Go through our Tx list and free mbufs for those
1218 	 * frames which have been transmitted.
1219 	 */
1220 	cons = sc->age_cdata.age_tx_cons;
1221 	for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) {
1222 		if (sc->age_cdata.age_tx_cnt <= 0)
1223 			break;
1224 		prog++;
1225 		ifq_clr_oactive(&ifp->if_snd);
1226 		sc->age_cdata.age_tx_cnt--;
1227 		txd = &sc->age_cdata.age_txdesc[cons];
1228 		/*
1229 		 * Clear Tx descriptors, it's not required but would
1230 		 * help debugging in case of Tx issues.
1231 		 */
1232 		txd->tx_desc->addr = 0;
1233 		txd->tx_desc->len = 0;
1234 		txd->tx_desc->flags = 0;
1235 
1236 		if (txd->tx_m == NULL)
1237 			continue;
1238 		/* Reclaim transmitted mbufs. */
1239 		bus_dmamap_sync(sc->sc_dmat, txd->tx_dmamap, 0,
1240 		    txd->tx_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1241 		bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1242 		m_freem(txd->tx_m);
1243 		txd->tx_m = NULL;
1244 	}
1245 
1246 	if (prog > 0) {
1247 		sc->age_cdata.age_tx_cons = cons;
1248 
1249 		/*
1250 		 * Unarm watchdog timer only when there are no pending
1251 		 * Tx descriptors in queue.
1252 		 */
1253 		if (sc->age_cdata.age_tx_cnt == 0)
1254 			ifp->if_timer = 0;
1255 
1256 		bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
1257 		    sc->age_cdata.age_tx_ring_map->dm_mapsize,
1258 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1259 	}
1260 }
1261 
1262 /* Receive a frame. */
1263 void
1264 age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd)
1265 {
1266 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1267 	struct age_rxdesc *rxd;
1268 	struct rx_desc *desc;
1269 	struct mbuf_list ml = MBUF_LIST_INITIALIZER();
1270 	struct mbuf *mp, *m;
1271 	uint32_t status, index;
1272 	int count, nsegs, pktlen;
1273 	int rx_cons;
1274 
1275 	status = letoh32(rxrd->flags);
1276 	index = letoh32(rxrd->index);
1277 	rx_cons = AGE_RX_CONS(index);
1278 	nsegs = AGE_RX_NSEGS(index);
1279 
1280 	sc->age_cdata.age_rxlen = AGE_RX_BYTES(letoh32(rxrd->len));
1281 	if ((status & AGE_RRD_ERROR) != 0 &&
1282 	    (status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE |
1283 	    AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0) {
1284 		/*
1285 		 * We want to pass the following frames to upper
1286 		 * layer regardless of error status of Rx return
1287 		 * ring.
1288 		 *
1289 		 *  o IP/TCP/UDP checksum is bad.
1290 		 *  o frame length and protocol specific length
1291 		 *     does not match.
1292 		 */
1293 		sc->age_cdata.age_rx_cons += nsegs;
1294 		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
1295 		return;
1296 	}
1297 
1298 	pktlen = 0;
1299 	for (count = 0; count < nsegs; count++,
1300 	    AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) {
1301 		rxd = &sc->age_cdata.age_rxdesc[rx_cons];
1302 		mp = rxd->rx_m;
1303 		desc = rxd->rx_desc;
1304 		/* Add a new receive buffer to the ring. */
1305 		if (age_newbuf(sc, rxd) != 0) {
1306 			ifp->if_iqdrops++;
1307 			/* Reuse Rx buffers. */
1308 			if (sc->age_cdata.age_rxhead != NULL) {
1309 				m_freem(sc->age_cdata.age_rxhead);
1310 				AGE_RXCHAIN_RESET(sc);
1311 			}
1312 			break;
1313 		}
1314 
1315 		/* The length of the first mbuf is computed last. */
1316 		if (count != 0) {
1317 			mp->m_len = AGE_RX_BYTES(letoh32(desc->len));
1318 			pktlen += mp->m_len;
1319 		}
1320 
1321 		/* Chain received mbufs. */
1322 		if (sc->age_cdata.age_rxhead == NULL) {
1323 			sc->age_cdata.age_rxhead = mp;
1324 			sc->age_cdata.age_rxtail = mp;
1325 		} else {
1326 			mp->m_flags &= ~M_PKTHDR;
1327 			sc->age_cdata.age_rxprev_tail =
1328 			    sc->age_cdata.age_rxtail;
1329 			sc->age_cdata.age_rxtail->m_next = mp;
1330 			sc->age_cdata.age_rxtail = mp;
1331 		}
1332 
1333 		if (count == nsegs - 1) {
1334 			/*
1335 			 * It seems that L1 controller has no way
1336 			 * to tell hardware to strip CRC bytes.
1337 			 */
1338 			sc->age_cdata.age_rxlen -= ETHER_CRC_LEN;
1339 			if (nsegs > 1) {
1340 				/* Remove the CRC bytes in chained mbufs. */
1341 				pktlen -= ETHER_CRC_LEN;
1342 				if (mp->m_len <= ETHER_CRC_LEN) {
1343 					sc->age_cdata.age_rxtail =
1344 					    sc->age_cdata.age_rxprev_tail;
1345 					sc->age_cdata.age_rxtail->m_len -=
1346 					    (ETHER_CRC_LEN - mp->m_len);
1347 					sc->age_cdata.age_rxtail->m_next = NULL;
1348 					m_freem(mp);
1349 				} else {
1350 					mp->m_len -= ETHER_CRC_LEN;
1351 				}
1352 			}
1353 
1354 			m = sc->age_cdata.age_rxhead;
1355 			m->m_flags |= M_PKTHDR;
1356 			m->m_pkthdr.len = sc->age_cdata.age_rxlen;
1357 			/* Set the first mbuf length. */
1358 			m->m_len = sc->age_cdata.age_rxlen - pktlen;
1359 
1360 			/*
1361 			 * Set checksum information.
1362 			 * It seems that L1 controller can compute partial
1363 			 * checksum. The partial checksum value can be used
1364 			 * to accelerate checksum computation for fragmented
1365 			 * TCP/UDP packets. Upper network stack already
1366 			 * takes advantage of the partial checksum value in
1367 			 * IP reassembly stage. But I'm not sure the
1368 			 * correctness of the partial hardware checksum
1369 			 * assistance due to lack of data sheet. If it is
1370 			 * proven to work on L1 I'll enable it.
1371 			 */
1372 			if (status & AGE_RRD_IPV4) {
1373 				if ((status & AGE_RRD_IPCSUM_NOK) == 0)
1374 					m->m_pkthdr.csum_flags |=
1375 					    M_IPV4_CSUM_IN_OK;
1376 				if ((status & (AGE_RRD_TCP | AGE_RRD_UDP)) &&
1377 				    (status & AGE_RRD_TCP_UDPCSUM_NOK) == 0) {
1378 					m->m_pkthdr.csum_flags |=
1379 					    M_TCP_CSUM_IN_OK | M_UDP_CSUM_IN_OK;
1380 				}
1381 				/*
1382 				 * Don't mark bad checksum for TCP/UDP frames
1383 				 * as fragmented frames may always have set
1384 				 * bad checksummed bit of descriptor status.
1385 				 */
1386 			}
1387 #if NVLAN > 0
1388 			/* Check for VLAN tagged frames. */
1389 			if (status & AGE_RRD_VLAN) {
1390 				u_int32_t vtag = AGE_RX_VLAN(letoh32(rxrd->vtags));
1391 				m->m_pkthdr.ether_vtag =
1392 				    AGE_RX_VLAN_TAG(vtag);
1393 				m->m_flags |= M_VLANTAG;
1394 			}
1395 #endif
1396 
1397 			ml_enqueue(&ml, m);
1398 
1399 			/* Reset mbuf chains. */
1400 			AGE_RXCHAIN_RESET(sc);
1401 		}
1402 	}
1403 
1404 	if_input(ifp, &ml);
1405 
1406 	if (count != nsegs) {
1407 		sc->age_cdata.age_rx_cons += nsegs;
1408 		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
1409 	} else
1410 		sc->age_cdata.age_rx_cons = rx_cons;
1411 }
1412 
1413 void
1414 age_rxintr(struct age_softc *sc, int rr_prod)
1415 {
1416 	struct rx_rdesc *rxrd;
1417 	int rr_cons, nsegs, pktlen, prog;
1418 
1419 	rr_cons = sc->age_cdata.age_rr_cons;
1420 	if (rr_cons == rr_prod)
1421 		return;
1422 
1423 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
1424 	    sc->age_cdata.age_rr_ring_map->dm_mapsize,
1425 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1426 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rx_ring_map, 0,
1427 	    sc->age_cdata.age_rx_ring_map->dm_mapsize,
1428 	    BUS_DMASYNC_POSTWRITE);
1429 
1430 	for (prog = 0; rr_cons != rr_prod; prog++) {
1431 		rxrd = &sc->age_rdata.age_rr_ring[rr_cons];
1432 		nsegs = AGE_RX_NSEGS(letoh32(rxrd->index));
1433 		if (nsegs == 0)
1434 			break;
1435 		/*
1436 		 * Check number of segments against received bytes
1437 		 * Non-matching value would indicate that hardware
1438 		 * is still trying to update Rx return descriptors.
1439 		 * I'm not sure whether this check is really needed.
1440 		 */
1441 		pktlen = AGE_RX_BYTES(letoh32(rxrd->len));
1442 		if (nsegs != ((pktlen + (MCLBYTES - ETHER_ALIGN - 1)) /
1443 		    (MCLBYTES - ETHER_ALIGN)))
1444 			break;
1445 
1446 		/* Received a frame. */
1447 		age_rxeof(sc, rxrd);
1448 
1449 		/* Clear return ring. */
1450 		rxrd->index = 0;
1451 		AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT);
1452 	}
1453 
1454 	if (prog > 0) {
1455 		/* Update the consumer index. */
1456 		sc->age_cdata.age_rr_cons = rr_cons;
1457 
1458 		bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rx_ring_map, 0,
1459 		    sc->age_cdata.age_rx_ring_map->dm_mapsize,
1460 		    BUS_DMASYNC_PREWRITE);
1461 		/* Sync descriptors. */
1462 		bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
1463 		    sc->age_cdata.age_rr_ring_map->dm_mapsize,
1464 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1465 
1466 		/* Notify hardware availability of new Rx buffers. */
1467 		AGE_COMMIT_MBOX(sc);
1468 	}
1469 }
1470 
1471 void
1472 age_tick(void *xsc)
1473 {
1474 	struct age_softc *sc = xsc;
1475 	struct mii_data *mii = &sc->sc_miibus;
1476 	int s;
1477 
1478 	s = splnet();
1479 	mii_tick(mii);
1480 	timeout_add_sec(&sc->age_tick_ch, 1);
1481 	splx(s);
1482 }
1483 
1484 void
1485 age_reset(struct age_softc *sc)
1486 {
1487 	uint32_t reg;
1488 	int i;
1489 
1490 	CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET);
1491 	CSR_READ_4(sc, AGE_MASTER_CFG);
1492 	DELAY(1000);
1493 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
1494 		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
1495 			break;
1496 		DELAY(10);
1497 	}
1498 
1499 	if (i == 0)
1500 		printf("%s: reset timeout(0x%08x)!\n", sc->sc_dev.dv_xname,
1501 		    reg);
1502 
1503 	/* Initialize PCIe module. From Linux. */
1504 	CSR_WRITE_4(sc, 0x12FC, 0x6500);
1505 	CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
1506 }
1507 
1508 int
1509 age_init(struct ifnet *ifp)
1510 {
1511 	struct age_softc *sc = ifp->if_softc;
1512 	struct mii_data *mii = &sc->sc_miibus;
1513 	uint8_t eaddr[ETHER_ADDR_LEN];
1514 	bus_addr_t paddr;
1515 	uint32_t reg, fsize;
1516 	uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo;
1517 	int error;
1518 
1519 	/*
1520 	 * Cancel any pending I/O.
1521 	 */
1522 	age_stop(sc);
1523 
1524 	/*
1525 	 * Reset the chip to a known state.
1526 	 */
1527 	age_reset(sc);
1528 
1529 	/* Initialize descriptors. */
1530 	error = age_init_rx_ring(sc);
1531         if (error != 0) {
1532 		printf("%s: no memory for Rx buffers.\n", sc->sc_dev.dv_xname);
1533                 age_stop(sc);
1534 		return (error);
1535         }
1536 	age_init_rr_ring(sc);
1537 	age_init_tx_ring(sc);
1538 	age_init_cmb_block(sc);
1539 	age_init_smb_block(sc);
1540 
1541 	/* Reprogram the station address. */
1542 	bcopy(LLADDR(ifp->if_sadl), eaddr, ETHER_ADDR_LEN);
1543 	CSR_WRITE_4(sc, AGE_PAR0,
1544 	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
1545 	CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]);
1546 
1547 	/* Set descriptor base addresses. */
1548 	paddr = sc->age_rdata.age_tx_ring_paddr;
1549 	CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr));
1550 	paddr = sc->age_rdata.age_rx_ring_paddr;
1551 	CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr));
1552 	paddr = sc->age_rdata.age_rr_ring_paddr;
1553 	CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr));
1554 	paddr = sc->age_rdata.age_tx_ring_paddr;
1555 	CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr));
1556 	paddr = sc->age_rdata.age_cmb_block_paddr;
1557 	CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr));
1558 	paddr = sc->age_rdata.age_smb_block_paddr;
1559 	CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr));
1560 
1561 	/* Set Rx/Rx return descriptor counter. */
1562 	CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT,
1563 	    ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) &
1564 	    DESC_RRD_CNT_MASK) |
1565 	    ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK));
1566 
1567 	/* Set Tx descriptor counter. */
1568 	CSR_WRITE_4(sc, AGE_DESC_TPD_CNT,
1569 	    (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK);
1570 
1571 	/* Tell hardware that we're ready to load descriptors. */
1572 	CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD);
1573 
1574         /*
1575 	 * Initialize mailbox register.
1576 	 * Updated producer/consumer index information is exchanged
1577 	 * through this mailbox register. However Tx producer and
1578 	 * Rx return consumer/Rx producer are all shared such that
1579 	 * it's hard to separate code path between Tx and Rx without
1580 	 * locking. If L1 hardware have a separate mail box register
1581 	 * for Tx and Rx consumer/producer management we could have
1582 	 * independent Tx/Rx handler which in turn Rx handler could have
1583 	 * been run without any locking.
1584 	*/
1585 	AGE_COMMIT_MBOX(sc);
1586 
1587 	/* Configure IPG/IFG parameters. */
1588 	CSR_WRITE_4(sc, AGE_IPG_IFG_CFG,
1589 	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) |
1590 	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
1591 	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
1592 	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK));
1593 
1594 	/* Set parameters for half-duplex media. */
1595 	CSR_WRITE_4(sc, AGE_HDPX_CFG,
1596 	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
1597 	    HDPX_CFG_LCOL_MASK) |
1598 	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
1599 	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
1600 	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
1601 	    HDPX_CFG_ABEBT_MASK) |
1602 	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
1603 	     HDPX_CFG_JAMIPG_MASK));
1604 
1605 	/* Configure interrupt moderation timer. */
1606 	sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
1607 	CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod));
1608 	reg = CSR_READ_4(sc, AGE_MASTER_CFG);
1609 	reg &= ~MASTER_MTIMER_ENB;
1610 	if (AGE_USECS(sc->age_int_mod) == 0)
1611 		reg &= ~MASTER_ITIMER_ENB;
1612 	else
1613 		reg |= MASTER_ITIMER_ENB;
1614 	CSR_WRITE_4(sc, AGE_MASTER_CFG, reg);
1615 	if (agedebug)
1616 		printf("%s: interrupt moderation is %d us.\n",
1617 		    sc->sc_dev.dv_xname, sc->age_int_mod);
1618 	CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000));
1619 
1620 	/* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
1621 	if (ifp->if_mtu < ETHERMTU)
1622 		sc->age_max_frame_size = ETHERMTU;
1623 	else
1624 		sc->age_max_frame_size = ifp->if_mtu;
1625 	sc->age_max_frame_size += ETHER_HDR_LEN +
1626 	    sizeof(struct ether_vlan_header) + ETHER_CRC_LEN;
1627 	CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size);
1628 
1629 	/* Configure jumbo frame. */
1630 	fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t));
1631 	CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG,
1632 	    (((fsize / sizeof(uint64_t)) <<
1633 	    RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) |
1634 	    ((RXQ_JUMBO_CFG_LKAH_DEFAULT <<
1635 	    RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) |
1636 	    ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) &
1637 	    RXQ_JUMBO_CFG_RRD_TIMER_MASK));
1638 
1639 	/* Configure flow-control parameters. From Linux. */
1640 	if ((sc->age_flags & AGE_FLAG_PCIE) != 0) {
1641 		/*
1642 		 * Magic workaround for old-L1.
1643 		 * Don't know which hw revision requires this magic.
1644 		 */
1645 		CSR_WRITE_4(sc, 0x12FC, 0x6500);
1646 		/*
1647 		 * Another magic workaround for flow-control mode
1648 		 * change. From Linux.
1649 		 */
1650 		CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
1651 	}
1652 	/*
1653 	 * TODO
1654 	 *  Should understand pause parameter relationships between FIFO
1655 	 *  size and number of Rx descriptors and Rx return descriptors.
1656 	 *
1657 	 *  Magic parameters came from Linux.
1658 	 */
1659 	switch (sc->age_chip_rev) {
1660 	case 0x8001:
1661 	case 0x9001:
1662 	case 0x9002:
1663 	case 0x9003:
1664 		rxf_hi = AGE_RX_RING_CNT / 16;
1665 		rxf_lo = (AGE_RX_RING_CNT * 7) / 8;
1666 		rrd_hi = (AGE_RR_RING_CNT * 7) / 8;
1667 		rrd_lo = AGE_RR_RING_CNT / 16;
1668 		break;
1669 	default:
1670 		reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN);
1671 		rxf_lo = reg / 16;
1672 		if (rxf_lo < 192)
1673 			rxf_lo = 192;
1674 		rxf_hi = (reg * 7) / 8;
1675 		if (rxf_hi < rxf_lo)
1676 			rxf_hi = rxf_lo + 16;
1677 		reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN);
1678 		rrd_lo = reg / 8;
1679 		rrd_hi = (reg * 7) / 8;
1680 		if (rrd_lo < 2)
1681 			rrd_lo = 2;
1682 		if (rrd_hi < rrd_lo)
1683 			rrd_hi = rrd_lo + 3;
1684 		break;
1685 	}
1686 	CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH,
1687 	    ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) &
1688 	    RXQ_FIFO_PAUSE_THRESH_LO_MASK) |
1689 	    ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) &
1690 	    RXQ_FIFO_PAUSE_THRESH_HI_MASK));
1691 	CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH,
1692 	    ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) &
1693 	    RXQ_RRD_PAUSE_THRESH_LO_MASK) |
1694 	    ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) &
1695 	    RXQ_RRD_PAUSE_THRESH_HI_MASK));
1696 
1697 	/* Configure RxQ. */
1698 	CSR_WRITE_4(sc, AGE_RXQ_CFG,
1699 	    ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
1700 	    RXQ_CFG_RD_BURST_MASK) |
1701 	    ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT <<
1702 	    RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) |
1703 	    ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT <<
1704 	    RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) |
1705 	    RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
1706 
1707 	/* Configure TxQ. */
1708 	CSR_WRITE_4(sc, AGE_TXQ_CFG,
1709 	    ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
1710 	    TXQ_CFG_TPD_BURST_MASK) |
1711 	    ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) &
1712 	    TXQ_CFG_TX_FIFO_BURST_MASK) |
1713 	    ((TXQ_CFG_TPD_FETCH_DEFAULT <<
1714 	    TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) |
1715 	    TXQ_CFG_ENB);
1716 
1717 	/* Configure DMA parameters. */
1718 	CSR_WRITE_4(sc, AGE_DMA_CFG,
1719 	    DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 |
1720 	    sc->age_dma_rd_burst | DMA_CFG_RD_ENB |
1721 	    sc->age_dma_wr_burst | DMA_CFG_WR_ENB);
1722 
1723 	/* Configure CMB DMA write threshold. */
1724 	CSR_WRITE_4(sc, AGE_CMB_WR_THRESH,
1725 	    ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) &
1726 	    CMB_WR_THRESH_RRD_MASK) |
1727 	    ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) &
1728 	    CMB_WR_THRESH_TPD_MASK));
1729 
1730 	/* Set CMB/SMB timer and enable them. */
1731 	CSR_WRITE_4(sc, AGE_CMB_WR_TIMER,
1732 	    ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) |
1733 	    ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK));
1734 
1735 	/* Request SMB updates for every seconds. */
1736 	CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000));
1737 	CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB);
1738 
1739 	/*
1740 	 * Disable all WOL bits as WOL can interfere normal Rx
1741 	 * operation.
1742 	 */
1743 	CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
1744 
1745         /*
1746 	 * Configure Tx/Rx MACs.
1747 	 *  - Auto-padding for short frames.
1748 	 *  - Enable CRC generation.
1749 	 *  Start with full-duplex/1000Mbps media. Actual reconfiguration
1750 	 *  of MAC is followed after link establishment.
1751 	 */
1752 	CSR_WRITE_4(sc, AGE_MAC_CFG,
1753 	    MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD |
1754 	    MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 |
1755 	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
1756 	    MAC_CFG_PREAMBLE_MASK));
1757 
1758 	/* Set up the receive filter. */
1759 	age_iff(sc);
1760 
1761 	age_rxvlan(sc);
1762 
1763 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1764 	reg |= MAC_CFG_RXCSUM_ENB;
1765 
1766 	/* Ack all pending interrupts and clear it. */
1767 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
1768 	CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS);
1769 
1770 	/* Finally enable Tx/Rx MAC. */
1771 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
1772 
1773 	sc->age_flags &= ~AGE_FLAG_LINK;
1774 
1775 	/* Switch to the current media. */
1776 	mii_mediachg(mii);
1777 
1778 	timeout_add_sec(&sc->age_tick_ch, 1);
1779 
1780 	ifp->if_flags |= IFF_RUNNING;
1781 	ifq_clr_oactive(&ifp->if_snd);
1782 
1783 	return (0);
1784 }
1785 
1786 void
1787 age_stop(struct age_softc *sc)
1788 {
1789 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1790 	struct age_txdesc *txd;
1791 	struct age_rxdesc *rxd;
1792 	uint32_t reg;
1793 	int i;
1794 
1795 	/*
1796 	 * Mark the interface down and cancel the watchdog timer.
1797 	 */
1798 	ifp->if_flags &= ~IFF_RUNNING;
1799 	ifq_clr_oactive(&ifp->if_snd);
1800 	ifp->if_timer = 0;
1801 
1802 	sc->age_flags &= ~AGE_FLAG_LINK;
1803 	timeout_del(&sc->age_tick_ch);
1804 
1805 	/*
1806 	 * Disable interrupts.
1807 	 */
1808 	CSR_WRITE_4(sc, AGE_INTR_MASK, 0);
1809 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF);
1810 
1811 	/* Stop CMB/SMB updates. */
1812 	CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0);
1813 
1814 	/* Stop Rx/Tx MAC. */
1815 	age_stop_rxmac(sc);
1816 	age_stop_txmac(sc);
1817 
1818 	/* Stop DMA. */
1819 	CSR_WRITE_4(sc, AGE_DMA_CFG,
1820 	    CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB));
1821 
1822 	/* Stop TxQ/RxQ. */
1823 	CSR_WRITE_4(sc, AGE_TXQ_CFG,
1824 	    CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB);
1825 	CSR_WRITE_4(sc, AGE_RXQ_CFG,
1826 	    CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB);
1827 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
1828 		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
1829 			break;
1830 		DELAY(10);
1831 	}
1832 	if (i == 0)
1833 		printf("%s: stopping Rx/Tx MACs timed out(0x%08x)!\n",
1834 		    sc->sc_dev.dv_xname, reg);
1835 
1836 	/* Reclaim Rx buffers that have been processed. */
1837 	if (sc->age_cdata.age_rxhead != NULL)
1838 		m_freem(sc->age_cdata.age_rxhead);
1839 	AGE_RXCHAIN_RESET(sc);
1840 
1841 	/*
1842 	 * Free RX and TX mbufs still in the queues.
1843 	 */
1844 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
1845 		rxd = &sc->age_cdata.age_rxdesc[i];
1846 		if (rxd->rx_m != NULL) {
1847 			bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0,
1848 			    rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1849 			bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
1850 			m_freem(rxd->rx_m);
1851 			rxd->rx_m = NULL;
1852 		}
1853 	}
1854 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
1855 		txd = &sc->age_cdata.age_txdesc[i];
1856 		if (txd->tx_m != NULL) {
1857 			bus_dmamap_sync(sc->sc_dmat, txd->tx_dmamap, 0,
1858 			    txd->tx_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1859 			bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1860 			m_freem(txd->tx_m);
1861 			txd->tx_m = NULL;
1862 		}
1863 	}
1864 }
1865 
1866 void
1867 age_stats_update(struct age_softc *sc)
1868 {
1869 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1870 	struct age_stats *stat;
1871 	struct smb *smb;
1872 
1873 	stat = &sc->age_stat;
1874 
1875 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
1876 	    sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1877 
1878 	smb = sc->age_rdata.age_smb_block;
1879 	if (smb->updated == 0)
1880 		return;
1881 
1882 	/* Rx stats. */
1883 	stat->rx_frames += smb->rx_frames;
1884 	stat->rx_bcast_frames += smb->rx_bcast_frames;
1885 	stat->rx_mcast_frames += smb->rx_mcast_frames;
1886 	stat->rx_pause_frames += smb->rx_pause_frames;
1887 	stat->rx_control_frames += smb->rx_control_frames;
1888 	stat->rx_crcerrs += smb->rx_crcerrs;
1889 	stat->rx_lenerrs += smb->rx_lenerrs;
1890 	stat->rx_bytes += smb->rx_bytes;
1891 	stat->rx_runts += smb->rx_runts;
1892 	stat->rx_fragments += smb->rx_fragments;
1893 	stat->rx_pkts_64 += smb->rx_pkts_64;
1894 	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
1895 	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
1896 	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
1897 	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
1898 	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
1899 	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
1900 	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
1901 	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
1902 	stat->rx_desc_oflows += smb->rx_desc_oflows;
1903 	stat->rx_alignerrs += smb->rx_alignerrs;
1904 	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
1905 	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
1906 	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
1907 
1908 	/* Tx stats. */
1909 	stat->tx_frames += smb->tx_frames;
1910 	stat->tx_bcast_frames += smb->tx_bcast_frames;
1911 	stat->tx_mcast_frames += smb->tx_mcast_frames;
1912 	stat->tx_pause_frames += smb->tx_pause_frames;
1913 	stat->tx_excess_defer += smb->tx_excess_defer;
1914 	stat->tx_control_frames += smb->tx_control_frames;
1915 	stat->tx_deferred += smb->tx_deferred;
1916 	stat->tx_bytes += smb->tx_bytes;
1917 	stat->tx_pkts_64 += smb->tx_pkts_64;
1918 	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
1919 	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
1920 	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
1921 	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
1922 	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
1923 	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
1924 	stat->tx_single_colls += smb->tx_single_colls;
1925 	stat->tx_multi_colls += smb->tx_multi_colls;
1926 	stat->tx_late_colls += smb->tx_late_colls;
1927 	stat->tx_excess_colls += smb->tx_excess_colls;
1928 	stat->tx_underrun += smb->tx_underrun;
1929 	stat->tx_desc_underrun += smb->tx_desc_underrun;
1930 	stat->tx_lenerrs += smb->tx_lenerrs;
1931 	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
1932 	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
1933 	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
1934 
1935 	ifp->if_collisions += smb->tx_single_colls +
1936 	    smb->tx_multi_colls + smb->tx_late_colls +
1937 	    smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT;
1938 
1939 	ifp->if_oerrors += smb->tx_excess_colls +
1940 	    smb->tx_late_colls + smb->tx_underrun +
1941 	    smb->tx_pkts_truncated;
1942 
1943 	ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
1944 	    smb->rx_runts + smb->rx_pkts_truncated +
1945 	    smb->rx_fifo_oflows + smb->rx_desc_oflows +
1946 	    smb->rx_alignerrs;
1947 
1948 	/* Update done, clear. */
1949 	smb->updated = 0;
1950 
1951 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
1952 	    sc->age_cdata.age_smb_block_map->dm_mapsize,
1953 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1954 }
1955 
1956 void
1957 age_stop_txmac(struct age_softc *sc)
1958 {
1959 	uint32_t reg;
1960 	int i;
1961 
1962 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1963 	if ((reg & MAC_CFG_TX_ENB) != 0) {
1964 		reg &= ~MAC_CFG_TX_ENB;
1965 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1966 	}
1967 	/* Stop Tx DMA engine. */
1968 	reg = CSR_READ_4(sc, AGE_DMA_CFG);
1969 	if ((reg & DMA_CFG_RD_ENB) != 0) {
1970 		reg &= ~DMA_CFG_RD_ENB;
1971 		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
1972 	}
1973 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
1974 		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
1975 		    (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0)
1976 			break;
1977 		DELAY(10);
1978 	}
1979 	if (i == 0)
1980 		printf("%s: stopping TxMAC timeout!\n", sc->sc_dev.dv_xname);
1981 }
1982 
1983 void
1984 age_stop_rxmac(struct age_softc *sc)
1985 {
1986 	uint32_t reg;
1987 	int i;
1988 
1989 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1990 	if ((reg & MAC_CFG_RX_ENB) != 0) {
1991 		reg &= ~MAC_CFG_RX_ENB;
1992 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1993 	}
1994 	/* Stop Rx DMA engine. */
1995 	reg = CSR_READ_4(sc, AGE_DMA_CFG);
1996 	if ((reg & DMA_CFG_WR_ENB) != 0) {
1997 		reg &= ~DMA_CFG_WR_ENB;
1998 		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
1999 	}
2000 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2001 		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2002 		    (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0)
2003 			break;
2004 		DELAY(10);
2005 	}
2006 	if (i == 0)
2007 		printf("%s: stopping RxMAC timeout!\n", sc->sc_dev.dv_xname);
2008 }
2009 
2010 void
2011 age_init_tx_ring(struct age_softc *sc)
2012 {
2013 	struct age_ring_data *rd;
2014 	struct age_txdesc *txd;
2015 	int i;
2016 
2017 	sc->age_cdata.age_tx_prod = 0;
2018 	sc->age_cdata.age_tx_cons = 0;
2019 	sc->age_cdata.age_tx_cnt = 0;
2020 
2021 	rd = &sc->age_rdata;
2022 	bzero(rd->age_tx_ring, AGE_TX_RING_SZ);
2023 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
2024 		txd = &sc->age_cdata.age_txdesc[i];
2025 		txd->tx_desc = &rd->age_tx_ring[i];
2026 		txd->tx_m = NULL;
2027 	}
2028 
2029 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
2030 	    sc->age_cdata.age_tx_ring_map->dm_mapsize,
2031 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2032 }
2033 
2034 int
2035 age_init_rx_ring(struct age_softc *sc)
2036 {
2037 	struct age_ring_data *rd;
2038 	struct age_rxdesc *rxd;
2039 	int i;
2040 
2041 	sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1;
2042 	rd = &sc->age_rdata;
2043 	bzero(rd->age_rx_ring, AGE_RX_RING_SZ);
2044 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
2045 		rxd = &sc->age_cdata.age_rxdesc[i];
2046 		rxd->rx_m = NULL;
2047 		rxd->rx_desc = &rd->age_rx_ring[i];
2048 		if (age_newbuf(sc, rxd) != 0)
2049 			return (ENOBUFS);
2050 	}
2051 
2052 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rx_ring_map, 0,
2053 	    sc->age_cdata.age_rx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2054 
2055 	return (0);
2056 }
2057 
2058 void
2059 age_init_rr_ring(struct age_softc *sc)
2060 {
2061 	struct age_ring_data *rd;
2062 
2063 	sc->age_cdata.age_rr_cons = 0;
2064 	AGE_RXCHAIN_RESET(sc);
2065 
2066 	rd = &sc->age_rdata;
2067 	bzero(rd->age_rr_ring, AGE_RR_RING_SZ);
2068 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
2069 	    sc->age_cdata.age_rr_ring_map->dm_mapsize,
2070 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2071 }
2072 
2073 void
2074 age_init_cmb_block(struct age_softc *sc)
2075 {
2076 	struct age_ring_data *rd;
2077 
2078 	rd = &sc->age_rdata;
2079 	bzero(rd->age_cmb_block, AGE_CMB_BLOCK_SZ);
2080 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
2081 	    sc->age_cdata.age_cmb_block_map->dm_mapsize,
2082 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2083 }
2084 
2085 void
2086 age_init_smb_block(struct age_softc *sc)
2087 {
2088 	struct age_ring_data *rd;
2089 
2090 	rd = &sc->age_rdata;
2091 	bzero(rd->age_smb_block, AGE_SMB_BLOCK_SZ);
2092 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
2093 	    sc->age_cdata.age_smb_block_map->dm_mapsize,
2094 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2095 }
2096 
2097 int
2098 age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd)
2099 {
2100 	struct rx_desc *desc;
2101 	struct mbuf *m;
2102 	bus_dmamap_t map;
2103 	int error;
2104 
2105 	MGETHDR(m, M_DONTWAIT, MT_DATA);
2106 	if (m == NULL)
2107 		return (ENOBUFS);
2108 	MCLGET(m, M_DONTWAIT);
2109 	if (!(m->m_flags & M_EXT)) {
2110 		 m_freem(m);
2111 		 return (ENOBUFS);
2112 	}
2113 
2114 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2115 	m_adj(m, ETHER_ALIGN);
2116 
2117 	error = bus_dmamap_load_mbuf(sc->sc_dmat,
2118 	    sc->age_cdata.age_rx_sparemap, m, BUS_DMA_NOWAIT);
2119 
2120 	if (error != 0) {
2121 		m_freem(m);
2122 		printf("%s: can't load RX mbuf\n", sc->sc_dev.dv_xname);
2123 		return (error);
2124 	}
2125 
2126 	if (rxd->rx_m != NULL) {
2127 		bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0,
2128 		    rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2129 		bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
2130 	}
2131 	map = rxd->rx_dmamap;
2132 	rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap;
2133 	sc->age_cdata.age_rx_sparemap = map;
2134 	bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0,
2135 	    rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2136 	rxd->rx_m = m;
2137 
2138 	desc = rxd->rx_desc;
2139 	desc->addr = htole64(rxd->rx_dmamap->dm_segs[0].ds_addr);
2140 	desc->len =
2141 	    htole32((rxd->rx_dmamap->dm_segs[0].ds_len & AGE_RD_LEN_MASK) <<
2142 	    AGE_RD_LEN_SHIFT);
2143 
2144 	return (0);
2145 }
2146 
2147 void
2148 age_rxvlan(struct age_softc *sc)
2149 {
2150 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
2151 	uint32_t reg;
2152 
2153 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2154 	reg &= ~MAC_CFG_VLAN_TAG_STRIP;
2155 	if (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING)
2156 		reg |= MAC_CFG_VLAN_TAG_STRIP;
2157 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2158 }
2159 
2160 void
2161 age_iff(struct age_softc *sc)
2162 {
2163 	struct arpcom *ac = &sc->sc_arpcom;
2164 	struct ifnet *ifp = &ac->ac_if;
2165 	struct ether_multi *enm;
2166 	struct ether_multistep step;
2167 	uint32_t crc;
2168 	uint32_t mchash[2];
2169 	uint32_t rxcfg;
2170 
2171 	rxcfg = CSR_READ_4(sc, AGE_MAC_CFG);
2172 	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
2173 	ifp->if_flags &= ~IFF_ALLMULTI;
2174 
2175 	/*
2176 	 * Always accept broadcast frames.
2177 	 */
2178 	rxcfg |= MAC_CFG_BCAST;
2179 
2180 	if (ifp->if_flags & IFF_PROMISC || ac->ac_multirangecnt > 0) {
2181 		ifp->if_flags |= IFF_ALLMULTI;
2182 		if (ifp->if_flags & IFF_PROMISC)
2183 			rxcfg |= MAC_CFG_PROMISC;
2184 		else
2185 			rxcfg |= MAC_CFG_ALLMULTI;
2186 		mchash[0] = mchash[1] = 0xFFFFFFFF;
2187 	} else {
2188 		/* Program new filter. */
2189 		bzero(mchash, sizeof(mchash));
2190 
2191 		ETHER_FIRST_MULTI(step, ac, enm);
2192 		while (enm != NULL) {
2193 			crc = ether_crc32_be(enm->enm_addrlo,
2194 			    ETHER_ADDR_LEN);
2195 
2196 			mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
2197 
2198 			ETHER_NEXT_MULTI(step, enm);
2199 		}
2200 	}
2201 
2202 	CSR_WRITE_4(sc, AGE_MAR0, mchash[0]);
2203 	CSR_WRITE_4(sc, AGE_MAR1, mchash[1]);
2204 	CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
2205 }
2206