xref: /openbsd-src/sys/dev/pci/if_age.c (revision 0b7734b3d77bb9b21afec6f4621cae6c805dbd45)
1 /*	$OpenBSD: if_age.c,v 1.33 2016/04/13 10:34:32 mpi Exp $	*/
2 
3 /*-
4  * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice unmodified, this list of conditions, and the following
12  *    disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 /* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */
31 
32 #include "bpfilter.h"
33 #include "vlan.h"
34 
35 #include <sys/param.h>
36 #include <sys/endian.h>
37 #include <sys/systm.h>
38 #include <sys/types.h>
39 #include <sys/sockio.h>
40 #include <sys/mbuf.h>
41 #include <sys/queue.h>
42 #include <sys/kernel.h>
43 #include <sys/device.h>
44 #include <sys/timeout.h>
45 #include <sys/socket.h>
46 
47 #include <machine/bus.h>
48 
49 #include <net/if.h>
50 #include <net/if_dl.h>
51 #include <net/if_media.h>
52 
53 #include <netinet/in.h>
54 #include <netinet/if_ether.h>
55 
56 #if NBPFILTER > 0
57 #include <net/bpf.h>
58 #endif
59 
60 #include <dev/mii/mii.h>
61 #include <dev/mii/miivar.h>
62 
63 #include <dev/pci/pcireg.h>
64 #include <dev/pci/pcivar.h>
65 #include <dev/pci/pcidevs.h>
66 
67 #include <dev/pci/if_agereg.h>
68 
69 int	age_match(struct device *, void *, void *);
70 void	age_attach(struct device *, struct device *, void *);
71 int	age_detach(struct device *, int);
72 
73 int	age_miibus_readreg(struct device *, int, int);
74 void	age_miibus_writereg(struct device *, int, int, int);
75 void	age_miibus_statchg(struct device *);
76 
77 int	age_init(struct ifnet *);
78 int	age_ioctl(struct ifnet *, u_long, caddr_t);
79 void	age_start(struct ifnet *);
80 void	age_watchdog(struct ifnet *);
81 void	age_mediastatus(struct ifnet *, struct ifmediareq *);
82 int	age_mediachange(struct ifnet *);
83 
84 int	age_intr(void *);
85 int	age_dma_alloc(struct age_softc *);
86 void	age_dma_free(struct age_softc *);
87 void	age_get_macaddr(struct age_softc *);
88 void	age_phy_reset(struct age_softc *);
89 
90 int	age_encap(struct age_softc *, struct mbuf *);
91 void	age_init_tx_ring(struct age_softc *);
92 int	age_init_rx_ring(struct age_softc *);
93 void	age_init_rr_ring(struct age_softc *);
94 void	age_init_cmb_block(struct age_softc *);
95 void	age_init_smb_block(struct age_softc *);
96 int	age_newbuf(struct age_softc *, struct age_rxdesc *);
97 void	age_mac_config(struct age_softc *);
98 void	age_txintr(struct age_softc *, int);
99 void	age_rxeof(struct age_softc *sc, struct rx_rdesc *);
100 void	age_rxintr(struct age_softc *, int);
101 void	age_tick(void *);
102 void	age_reset(struct age_softc *);
103 void	age_stop(struct age_softc *);
104 void	age_stats_update(struct age_softc *);
105 void	age_stop_txmac(struct age_softc *);
106 void	age_stop_rxmac(struct age_softc *);
107 void	age_rxvlan(struct age_softc *sc);
108 void	age_iff(struct age_softc *);
109 
110 const struct pci_matchid age_devices[] = {
111 	{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_L1 }
112 };
113 
114 struct cfattach age_ca = {
115 	sizeof (struct age_softc), age_match, age_attach
116 };
117 
118 struct cfdriver age_cd = {
119 	 NULL, "age", DV_IFNET
120 };
121 
122 int agedebug = 0;
123 #define	DPRINTF(x)	do { if (agedebug) printf x; } while (0)
124 
125 #define AGE_CSUM_FEATURES	(M_TCP_CSUM_OUT | M_UDP_CSUM_OUT)
126 
127 int
128 age_match(struct device *dev, void *match, void *aux)
129 {
130 	 return pci_matchbyid((struct pci_attach_args *)aux, age_devices,
131 	     sizeof (age_devices) / sizeof (age_devices[0]));
132 }
133 
134 void
135 age_attach(struct device *parent, struct device *self, void *aux)
136 {
137 	struct age_softc *sc = (struct age_softc *)self;
138 	struct pci_attach_args *pa = aux;
139 	pci_chipset_tag_t pc = pa->pa_pc;
140 	pci_intr_handle_t ih;
141 	const char *intrstr;
142 	struct ifnet *ifp;
143 	pcireg_t memtype;
144 	int error = 0;
145 
146 	/*
147 	 * Allocate IO memory
148 	 */
149 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, AGE_PCIR_BAR);
150 	if (pci_mapreg_map(pa, AGE_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
151 	    &sc->sc_mem_bh, NULL, &sc->sc_mem_size, 0)) {
152 		printf(": can't map mem space\n");
153 		return;
154 	}
155 
156 	if (pci_intr_map_msi(pa, &ih) != 0 && pci_intr_map(pa, &ih) != 0) {
157 		printf(": can't map interrupt\n");
158 		goto fail;
159 	}
160 
161 	/*
162 	 * Allocate IRQ
163 	 */
164 	intrstr = pci_intr_string(pc, ih);
165 	sc->sc_irq_handle = pci_intr_establish(pc, ih, IPL_NET, age_intr, sc,
166 	    sc->sc_dev.dv_xname);
167 	if (sc->sc_irq_handle == NULL) {
168 		printf(": could not establish interrupt");
169 		if (intrstr != NULL)
170 			printf(" at %s", intrstr);
171 		printf("\n");
172 		goto fail;
173 	}
174 	printf(": %s", intrstr);
175 
176 	sc->sc_dmat = pa->pa_dmat;
177 	sc->sc_pct = pa->pa_pc;
178 	sc->sc_pcitag = pa->pa_tag;
179 
180 	/* Set PHY address. */
181 	sc->age_phyaddr = AGE_PHY_ADDR;
182 
183 	/* Reset PHY. */
184 	age_phy_reset(sc);
185 
186 	/* Reset the ethernet controller. */
187 	age_reset(sc);
188 
189 	/* Get PCI and chip id/revision. */
190 	sc->age_rev = PCI_REVISION(pa->pa_class);
191 	sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >>
192 	    MASTER_CHIP_REV_SHIFT;
193 	if (agedebug) {
194 		printf("%s: PCI device revision : 0x%04x\n",
195 		    sc->sc_dev.dv_xname, sc->age_rev);
196 		printf("%s: Chip id/revision : 0x%04x\n",
197 		    sc->sc_dev.dv_xname, sc->age_chip_rev);
198 	}
199 
200 	if (agedebug) {
201 		printf("%s: %d Tx FIFO, %d Rx FIFO\n", sc->sc_dev.dv_xname,
202 		    CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN),
203 		    CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN));
204 	}
205 
206 	/* Set max allowable DMA size. */
207 	sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128;
208 	sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128;
209 
210 	/* Allocate DMA stuffs */
211 	error = age_dma_alloc(sc);
212 	if (error)
213 		goto fail;
214 
215 	/* Load station address. */
216 	age_get_macaddr(sc);
217 
218 	ifp = &sc->sc_arpcom.ac_if;
219 	ifp->if_softc = sc;
220 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
221 	ifp->if_ioctl = age_ioctl;
222 	ifp->if_start = age_start;
223 	ifp->if_watchdog = age_watchdog;
224 	IFQ_SET_MAXLEN(&ifp->if_snd, AGE_TX_RING_CNT - 1);
225 	bcopy(sc->age_eaddr, sc->sc_arpcom.ac_enaddr, ETHER_ADDR_LEN);
226 	bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
227 
228 	ifp->if_capabilities = IFCAP_VLAN_MTU;
229 
230 #ifdef AGE_CHECKSUM
231 	ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 |
232 				IFCAP_CSUM_UDPv4;
233 #endif
234 
235 #if NVLAN > 0
236 	ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING;
237 #endif
238 
239 	printf(", address %s\n", ether_sprintf(sc->sc_arpcom.ac_enaddr));
240 
241 	/* Set up MII bus. */
242 	sc->sc_miibus.mii_ifp = ifp;
243 	sc->sc_miibus.mii_readreg = age_miibus_readreg;
244 	sc->sc_miibus.mii_writereg = age_miibus_writereg;
245 	sc->sc_miibus.mii_statchg = age_miibus_statchg;
246 
247 	ifmedia_init(&sc->sc_miibus.mii_media, 0, age_mediachange,
248 	    age_mediastatus);
249 	mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY,
250 	   MII_OFFSET_ANY, MIIF_DOPAUSE);
251 
252 	if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) {
253 		printf("%s: no PHY found!\n", sc->sc_dev.dv_xname);
254 		ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL,
255 		    0, NULL);
256 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL);
257 	} else
258 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO);
259 
260 	if_attach(ifp);
261 	ether_ifattach(ifp);
262 
263 	timeout_set(&sc->age_tick_ch, age_tick, sc);
264 
265 	return;
266 fail:
267 	age_dma_free(sc);
268 	if (sc->sc_irq_handle != NULL)
269 		pci_intr_disestablish(pc, sc->sc_irq_handle);
270 	if (sc->sc_mem_size)
271 		bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
272 }
273 
274 int
275 age_detach(struct device *self, int flags)
276 {
277 	struct age_softc *sc = (struct age_softc *)self;
278 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
279 	int s;
280 
281 	s = splnet();
282 	age_stop(sc);
283 	splx(s);
284 
285 	mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
286 
287 	/* Delete all remaining media. */
288 	ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
289 
290 	ether_ifdetach(ifp);
291 	if_detach(ifp);
292 	age_dma_free(sc);
293 
294 	if (sc->sc_irq_handle != NULL) {
295 		pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
296 		sc->sc_irq_handle = NULL;
297 	}
298 
299 	return (0);
300 }
301 
302 /*
303  *	Read a PHY register on the MII of the L1.
304  */
305 int
306 age_miibus_readreg(struct device *dev, int phy, int reg)
307 {
308 	struct age_softc *sc = (struct age_softc *)dev;
309 	uint32_t v;
310 	int i;
311 
312 	if (phy != sc->age_phyaddr)
313 		return (0);
314 
315 	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
316 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
317 	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
318 		DELAY(1);
319 		v = CSR_READ_4(sc, AGE_MDIO);
320 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
321 			break;
322 	}
323 
324 	if (i == 0) {
325 		printf("%s: phy read timeout: phy %d, reg %d\n",
326 			sc->sc_dev.dv_xname, phy, reg);
327 		return (0);
328 	}
329 
330 	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
331 }
332 
333 /*
334  * 	Write a PHY register on the MII of the L1.
335  */
336 void
337 age_miibus_writereg(struct device *dev, int phy, int reg, int val)
338 {
339 	struct age_softc *sc = (struct age_softc *)dev;
340 	uint32_t v;
341 	int i;
342 
343 	if (phy != sc->age_phyaddr)
344 		return;
345 
346 	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
347 	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
348 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
349 
350 	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
351 		DELAY(1);
352 		v = CSR_READ_4(sc, AGE_MDIO);
353 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
354 			break;
355 	}
356 
357 	if (i == 0) {
358 		printf("%s: phy write timeout: phy %d, reg %d\n",
359 		    sc->sc_dev.dv_xname, phy, reg);
360 	}
361 }
362 
363 /*
364  *	Callback from MII layer when media changes.
365  */
366 void
367 age_miibus_statchg(struct device *dev)
368 {
369 	struct age_softc *sc = (struct age_softc *)dev;
370 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
371 	struct mii_data *mii = &sc->sc_miibus;
372 
373 	if ((ifp->if_flags & IFF_RUNNING) == 0)
374 		return;
375 
376 	sc->age_flags &= ~AGE_FLAG_LINK;
377 	if ((mii->mii_media_status & IFM_AVALID) != 0) {
378 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
379 		case IFM_10_T:
380 		case IFM_100_TX:
381 		case IFM_1000_T:
382 			sc->age_flags |= AGE_FLAG_LINK;
383 			break;
384 		default:
385 			break;
386 		}
387 	}
388 
389 	/* Stop Rx/Tx MACs. */
390 	age_stop_rxmac(sc);
391 	age_stop_txmac(sc);
392 
393 	/* Program MACs with resolved speed/duplex/flow-control. */
394 	if ((sc->age_flags & AGE_FLAG_LINK) != 0) {
395 		uint32_t reg;
396 
397 		age_mac_config(sc);
398 		reg = CSR_READ_4(sc, AGE_MAC_CFG);
399 		/* Restart DMA engine and Tx/Rx MAC. */
400 		CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) |
401 		    DMA_CFG_RD_ENB | DMA_CFG_WR_ENB);
402 		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
403 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
404 	}
405 }
406 
407 /*
408  *	Get the current interface media status.
409  */
410 void
411 age_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
412 {
413 	struct age_softc *sc = ifp->if_softc;
414 	struct mii_data *mii = &sc->sc_miibus;
415 
416 	mii_pollstat(mii);
417 	ifmr->ifm_status = mii->mii_media_status;
418 	ifmr->ifm_active = mii->mii_media_active;
419 }
420 
421 /*
422  *	Set hardware to newly-selected media.
423  */
424 int
425 age_mediachange(struct ifnet *ifp)
426 {
427 	struct age_softc *sc = ifp->if_softc;
428 	struct mii_data *mii = &sc->sc_miibus;
429 	int error;
430 
431 	if (mii->mii_instance != 0) {
432 		struct mii_softc *miisc;
433 
434 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
435 			mii_phy_reset(miisc);
436 	}
437 	error = mii_mediachg(mii);
438 
439 	return (error);
440 }
441 
442 int
443 age_intr(void *arg)
444 {
445         struct age_softc *sc = arg;
446         struct ifnet *ifp = &sc->sc_arpcom.ac_if;
447 	struct cmb *cmb;
448         uint32_t status;
449 
450 	status = CSR_READ_4(sc, AGE_INTR_STATUS);
451 	if (status == 0 || (status & AGE_INTRS) == 0)
452 		return (0);
453 
454 	/* Disable interrupts. */
455 	CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
456 
457 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
458 	    sc->age_cdata.age_cmb_block_map->dm_mapsize,
459 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
460 	cmb = sc->age_rdata.age_cmb_block;
461 	status = letoh32(cmb->intr_status);
462 	if ((status & AGE_INTRS) == 0)
463 		goto back;
464 
465 	sc->age_tpd_cons = (letoh32(cmb->tpd_cons) & TPD_CONS_MASK) >>
466 	    TPD_CONS_SHIFT;
467 	sc->age_rr_prod = (letoh32(cmb->rprod_cons) & RRD_PROD_MASK) >>
468 	    RRD_PROD_SHIFT;
469 	/* Let hardware know CMB was served. */
470 	cmb->intr_status = 0;
471 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
472 	    sc->age_cdata.age_cmb_block_map->dm_mapsize,
473 	    BUS_DMASYNC_PREWRITE);
474 
475 	if (ifp->if_flags & IFF_RUNNING) {
476 		if (status & INTR_CMB_RX)
477 			age_rxintr(sc, sc->age_rr_prod);
478 
479 		if (status & INTR_CMB_TX)
480 			age_txintr(sc, sc->age_tpd_cons);
481 
482 		if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) {
483 			if (status & INTR_DMA_RD_TO_RST)
484 				printf("%s: DMA read error! -- resetting\n",
485 				    sc->sc_dev.dv_xname);
486 			if (status & INTR_DMA_WR_TO_RST)
487 				printf("%s: DMA write error! -- resetting\n",
488 				    sc->sc_dev.dv_xname);
489 			age_init(ifp);
490 		}
491 
492 		age_start(ifp);
493 
494 		if (status & INTR_SMB)
495 			age_stats_update(sc);
496 	}
497 
498 	/* Check whether CMB was updated while serving Tx/Rx/SMB handler. */
499 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
500 	    sc->age_cdata.age_cmb_block_map->dm_mapsize,
501 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
502 
503 back:
504 	/* Re-enable interrupts. */
505 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
506 
507 	return (1);
508 }
509 
510 void
511 age_get_macaddr(struct age_softc *sc)
512 {
513 	uint32_t ea[2], reg;
514 	int i, vpdc;
515 
516 	reg = CSR_READ_4(sc, AGE_SPI_CTRL);
517 	if ((reg & SPI_VPD_ENB) != 0) {
518 		/* Get VPD stored in TWSI EEPROM. */
519 		reg &= ~SPI_VPD_ENB;
520 		CSR_WRITE_4(sc, AGE_SPI_CTRL, reg);
521 	}
522 
523 	if (pci_get_capability(sc->sc_pct, sc->sc_pcitag,
524 	    PCI_CAP_VPD, &vpdc, NULL)) {
525 		/*
526 		 * PCI VPD capability found, let TWSI reload EEPROM.
527 		 * This will set Ethernet address of controller.
528 		 */
529 		CSR_WRITE_4(sc, AGE_TWSI_CTRL, CSR_READ_4(sc, AGE_TWSI_CTRL) |
530 		    TWSI_CTRL_SW_LD_START);
531 		for (i = 100; i > 0; i--) {
532 			DELAY(1000);
533 			reg = CSR_READ_4(sc, AGE_TWSI_CTRL);
534 			if ((reg & TWSI_CTRL_SW_LD_START) == 0)
535 				break;
536 		}
537 		if (i == 0)
538 			printf("%s: reloading EEPROM timeout!\n",
539 			    sc->sc_dev.dv_xname);
540 	} else {
541 		if (agedebug)
542 			printf("%s: PCI VPD capability not found!\n",
543 			    sc->sc_dev.dv_xname);
544 	}
545 
546 	ea[0] = CSR_READ_4(sc, AGE_PAR0);
547 	ea[1] = CSR_READ_4(sc, AGE_PAR1);
548 	sc->age_eaddr[0] = (ea[1] >> 8) & 0xFF;
549 	sc->age_eaddr[1] = (ea[1] >> 0) & 0xFF;
550 	sc->age_eaddr[2] = (ea[0] >> 24) & 0xFF;
551 	sc->age_eaddr[3] = (ea[0] >> 16) & 0xFF;
552 	sc->age_eaddr[4] = (ea[0] >> 8) & 0xFF;
553 	sc->age_eaddr[5] = (ea[0] >> 0) & 0xFF;
554 }
555 
556 void
557 age_phy_reset(struct age_softc *sc)
558 {
559 	uint16_t reg, pn;
560 	int i, linkup;
561 
562 	/* Reset PHY. */
563 	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST);
564 	DELAY(2000);
565 	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR);
566 	DELAY(2000);
567 
568 #define	ATPHY_DBG_ADDR		0x1D
569 #define	ATPHY_DBG_DATA		0x1E
570 #define	ATPHY_CDTC		0x16
571 #define	PHY_CDTC_ENB		0x0001
572 #define	PHY_CDTC_POFF		8
573 #define	ATPHY_CDTS		0x1C
574 #define	PHY_CDTS_STAT_OK	0x0000
575 #define	PHY_CDTS_STAT_SHORT	0x0100
576 #define	PHY_CDTS_STAT_OPEN	0x0200
577 #define	PHY_CDTS_STAT_INVAL	0x0300
578 #define	PHY_CDTS_STAT_MASK	0x0300
579 
580 	/* Check power saving mode. Magic from Linux. */
581 	age_miibus_writereg(&sc->sc_dev, sc->age_phyaddr, MII_BMCR, BMCR_RESET);
582 	for (linkup = 0, pn = 0; pn < 4; pn++) {
583 		age_miibus_writereg(&sc->sc_dev, sc->age_phyaddr, ATPHY_CDTC,
584 		    (pn << PHY_CDTC_POFF) | PHY_CDTC_ENB);
585 		for (i = 200; i > 0; i--) {
586 			DELAY(1000);
587 			reg = age_miibus_readreg(&sc->sc_dev, sc->age_phyaddr,
588 			    ATPHY_CDTC);
589 			if ((reg & PHY_CDTC_ENB) == 0)
590 				break;
591 		}
592 		DELAY(1000);
593 		reg = age_miibus_readreg(&sc->sc_dev, sc->age_phyaddr,
594 		    ATPHY_CDTS);
595 		if ((reg & PHY_CDTS_STAT_MASK) != PHY_CDTS_STAT_OPEN) {
596 			linkup++;
597 			break;
598 		}
599 	}
600 	age_miibus_writereg(&sc->sc_dev, sc->age_phyaddr, MII_BMCR,
601 	    BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
602 	if (linkup == 0) {
603 		age_miibus_writereg(&sc->sc_dev, sc->age_phyaddr,
604 		    ATPHY_DBG_ADDR, 0);
605 		age_miibus_writereg(&sc->sc_dev, sc->age_phyaddr,
606 		    ATPHY_DBG_DATA, 0x124E);
607 		age_miibus_writereg(&sc->sc_dev, sc->age_phyaddr,
608 		    ATPHY_DBG_ADDR, 1);
609 		reg = age_miibus_readreg(&sc->sc_dev, sc->age_phyaddr,
610 		    ATPHY_DBG_DATA);
611 		age_miibus_writereg(&sc->sc_dev, sc->age_phyaddr,
612 		    ATPHY_DBG_DATA, reg | 0x03);
613 		/* XXX */
614 		DELAY(1500 * 1000);
615 		age_miibus_writereg(&sc->sc_dev, sc->age_phyaddr,
616 		    ATPHY_DBG_ADDR, 0);
617 		age_miibus_writereg(&sc->sc_dev, sc->age_phyaddr,
618 		    ATPHY_DBG_DATA, 0x024E);
619 	}
620 
621 #undef	ATPHY_DBG_ADDR
622 #undef	ATPHY_DBG_DATA
623 #undef	ATPHY_CDTC
624 #undef	PHY_CDTC_ENB
625 #undef	PHY_CDTC_POFF
626 #undef	ATPHY_CDTS
627 #undef	PHY_CDTS_STAT_OK
628 #undef	PHY_CDTS_STAT_SHORT
629 #undef	PHY_CDTS_STAT_OPEN
630 #undef	PHY_CDTS_STAT_INVAL
631 #undef	PHY_CDTS_STAT_MASK
632 }
633 
634 int
635 age_dma_alloc(struct age_softc *sc)
636 {
637 	struct age_txdesc *txd;
638 	struct age_rxdesc *rxd;
639 	int nsegs, error, i;
640 
641 	/*
642 	 * Create DMA stuffs for TX ring
643 	 */
644 	error = bus_dmamap_create(sc->sc_dmat, AGE_TX_RING_SZ, 1,
645 	    AGE_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_tx_ring_map);
646 	if (error)
647 		return (ENOBUFS);
648 
649 	/* Allocate DMA'able memory for TX ring */
650 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_TX_RING_SZ,
651 	    ETHER_ALIGN, 0, &sc->age_rdata.age_tx_ring_seg, 1,
652 	    &nsegs, BUS_DMA_WAITOK | BUS_DMA_ZERO);
653 	if (error) {
654 		printf("%s: could not allocate DMA'able memory for Tx ring.\n",
655 		    sc->sc_dev.dv_xname);
656 		return error;
657 	}
658 
659 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_tx_ring_seg,
660 	    nsegs, AGE_TX_RING_SZ, (caddr_t *)&sc->age_rdata.age_tx_ring,
661 	    BUS_DMA_NOWAIT);
662 	if (error)
663 		return (ENOBUFS);
664 
665 	/*  Load the DMA map for Tx ring. */
666 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_tx_ring_map,
667 	    sc->age_rdata.age_tx_ring, AGE_TX_RING_SZ, NULL, BUS_DMA_WAITOK);
668 	if (error) {
669 		printf("%s: could not load DMA'able memory for Tx ring.\n",
670 		    sc->sc_dev.dv_xname);
671 		bus_dmamem_free(sc->sc_dmat,
672 		    (bus_dma_segment_t *)&sc->age_rdata.age_tx_ring, 1);
673 		return error;
674 	}
675 
676 	sc->age_rdata.age_tx_ring_paddr =
677 	    sc->age_cdata.age_tx_ring_map->dm_segs[0].ds_addr;
678 
679 	/*
680 	 * Create DMA stuffs for RX ring
681 	 */
682 	error = bus_dmamap_create(sc->sc_dmat, AGE_RX_RING_SZ, 1,
683 	    AGE_RX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_ring_map);
684 	if (error)
685 		return (ENOBUFS);
686 
687 	/* Allocate DMA'able memory for RX ring */
688 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_RX_RING_SZ,
689 	    ETHER_ALIGN, 0, &sc->age_rdata.age_rx_ring_seg, 1,
690 	    &nsegs, BUS_DMA_WAITOK | BUS_DMA_ZERO);
691 	if (error) {
692 		printf("%s: could not allocate DMA'able memory for Rx ring.\n",
693 		    sc->sc_dev.dv_xname);
694 		return error;
695 	}
696 
697 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rx_ring_seg,
698 	    nsegs, AGE_RX_RING_SZ, (caddr_t *)&sc->age_rdata.age_rx_ring,
699 	    BUS_DMA_NOWAIT);
700 	if (error)
701 		return (ENOBUFS);
702 
703 	/* Load the DMA map for Rx ring. */
704 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rx_ring_map,
705 	    sc->age_rdata.age_rx_ring, AGE_RX_RING_SZ, NULL, BUS_DMA_WAITOK);
706 	if (error) {
707 		printf("%s: could not load DMA'able memory for Rx ring.\n",
708 		    sc->sc_dev.dv_xname);
709 		bus_dmamem_free(sc->sc_dmat,
710 		    (bus_dma_segment_t *)sc->age_rdata.age_rx_ring, 1);
711 		return error;
712 	}
713 
714 	sc->age_rdata.age_rx_ring_paddr =
715 	    sc->age_cdata.age_rx_ring_map->dm_segs[0].ds_addr;
716 
717 	/*
718 	 * Create DMA stuffs for RX return ring
719 	 */
720 	error = bus_dmamap_create(sc->sc_dmat, AGE_RR_RING_SZ, 1,
721 	    AGE_RR_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rr_ring_map);
722 	if (error)
723 		return (ENOBUFS);
724 
725 	/* Allocate DMA'able memory for RX return ring */
726 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_RR_RING_SZ,
727 	    ETHER_ALIGN, 0, &sc->age_rdata.age_rr_ring_seg, 1,
728 	    &nsegs, BUS_DMA_WAITOK | BUS_DMA_ZERO);
729 	if (error) {
730 		printf("%s: could not allocate DMA'able memory for Rx "
731 		    "return ring.\n", sc->sc_dev.dv_xname);
732 		return error;
733 	}
734 
735 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rr_ring_seg,
736 	    nsegs, AGE_RR_RING_SZ, (caddr_t *)&sc->age_rdata.age_rr_ring,
737 	    BUS_DMA_NOWAIT);
738 	if (error)
739 		return (ENOBUFS);
740 
741 	/*  Load the DMA map for Rx return ring. */
742 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rr_ring_map,
743 	    sc->age_rdata.age_rr_ring, AGE_RR_RING_SZ, NULL, BUS_DMA_WAITOK);
744 	if (error) {
745 		printf("%s: could not load DMA'able memory for Rx return ring."
746 		    "\n", sc->sc_dev.dv_xname);
747 		bus_dmamem_free(sc->sc_dmat,
748 		    (bus_dma_segment_t *)&sc->age_rdata.age_rr_ring, 1);
749 		return error;
750 	}
751 
752 	sc->age_rdata.age_rr_ring_paddr =
753 	    sc->age_cdata.age_rr_ring_map->dm_segs[0].ds_addr;
754 
755 	/*
756 	 * Create DMA stuffs for CMB block
757 	 */
758 	error = bus_dmamap_create(sc->sc_dmat, AGE_CMB_BLOCK_SZ, 1,
759 	    AGE_CMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
760 	    &sc->age_cdata.age_cmb_block_map);
761 	if (error)
762 		return (ENOBUFS);
763 
764 	/* Allocate DMA'able memory for CMB block */
765 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_CMB_BLOCK_SZ,
766 	    ETHER_ALIGN, 0, &sc->age_rdata.age_cmb_block_seg, 1,
767 	    &nsegs, BUS_DMA_WAITOK | BUS_DMA_ZERO);
768 	if (error) {
769 		printf("%s: could not allocate DMA'able memory for "
770 		    "CMB block\n", sc->sc_dev.dv_xname);
771 		return error;
772 	}
773 
774 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_cmb_block_seg,
775 	    nsegs, AGE_CMB_BLOCK_SZ, (caddr_t *)&sc->age_rdata.age_cmb_block,
776 	    BUS_DMA_NOWAIT);
777 	if (error)
778 		return (ENOBUFS);
779 
780 	/*  Load the DMA map for CMB block. */
781 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_cmb_block_map,
782 	    sc->age_rdata.age_cmb_block, AGE_CMB_BLOCK_SZ, NULL,
783 	    BUS_DMA_WAITOK);
784 	if (error) {
785 		printf("%s: could not load DMA'able memory for CMB block\n",
786 		    sc->sc_dev.dv_xname);
787 		bus_dmamem_free(sc->sc_dmat,
788 		    (bus_dma_segment_t *)&sc->age_rdata.age_cmb_block, 1);
789 		return error;
790 	}
791 
792 	sc->age_rdata.age_cmb_block_paddr =
793 	    sc->age_cdata.age_cmb_block_map->dm_segs[0].ds_addr;
794 
795 	/*
796 	 * Create DMA stuffs for SMB block
797 	 */
798 	error = bus_dmamap_create(sc->sc_dmat, AGE_SMB_BLOCK_SZ, 1,
799 	    AGE_SMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
800 	    &sc->age_cdata.age_smb_block_map);
801 	if (error)
802 		return (ENOBUFS);
803 
804 	/* Allocate DMA'able memory for SMB block */
805 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_SMB_BLOCK_SZ,
806 	    ETHER_ALIGN, 0, &sc->age_rdata.age_smb_block_seg, 1,
807 	    &nsegs, BUS_DMA_WAITOK | BUS_DMA_ZERO);
808 	if (error) {
809 		printf("%s: could not allocate DMA'able memory for "
810 		    "SMB block\n", sc->sc_dev.dv_xname);
811 		return error;
812 	}
813 
814 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_smb_block_seg,
815 	    nsegs, AGE_SMB_BLOCK_SZ, (caddr_t *)&sc->age_rdata.age_smb_block,
816 	    BUS_DMA_NOWAIT);
817 	if (error)
818 		return (ENOBUFS);
819 
820 	/*  Load the DMA map for SMB block */
821 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_smb_block_map,
822 	    sc->age_rdata.age_smb_block, AGE_SMB_BLOCK_SZ, NULL,
823 	    BUS_DMA_WAITOK);
824 	if (error) {
825 		printf("%s: could not load DMA'able memory for SMB block\n",
826 		    sc->sc_dev.dv_xname);
827 		bus_dmamem_free(sc->sc_dmat,
828 		    (bus_dma_segment_t *)&sc->age_rdata.age_smb_block, 1);
829 		return error;
830 	}
831 
832 	sc->age_rdata.age_smb_block_paddr =
833 	    sc->age_cdata.age_smb_block_map->dm_segs[0].ds_addr;
834 
835 	/* Create DMA maps for Tx buffers. */
836 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
837 		txd = &sc->age_cdata.age_txdesc[i];
838 		txd->tx_m = NULL;
839 		txd->tx_dmamap = NULL;
840 		error = bus_dmamap_create(sc->sc_dmat, AGE_TSO_MAXSIZE,
841 		    AGE_MAXTXSEGS, AGE_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,
842 		    &txd->tx_dmamap);
843 		if (error) {
844 			printf("%s: could not create Tx dmamap.\n",
845 			    sc->sc_dev.dv_xname);
846 			return error;
847 		}
848 	}
849 
850 	/* Create DMA maps for Rx buffers. */
851 	error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
852 	    BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_sparemap);
853 	if (error) {
854 		printf("%s: could not create spare Rx dmamap.\n",
855 		    sc->sc_dev.dv_xname);
856 		return error;
857 	}
858 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
859 		rxd = &sc->age_cdata.age_rxdesc[i];
860 		rxd->rx_m = NULL;
861 		rxd->rx_dmamap = NULL;
862 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
863 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &rxd->rx_dmamap);
864 		if (error) {
865 			printf("%s: could not create Rx dmamap.\n",
866 			    sc->sc_dev.dv_xname);
867 			return error;
868 		}
869 	}
870 
871 	return (0);
872 }
873 
874 void
875 age_dma_free(struct age_softc *sc)
876 {
877 	struct age_txdesc *txd;
878 	struct age_rxdesc *rxd;
879 	int i;
880 
881 	/* Tx buffers */
882 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
883 		txd = &sc->age_cdata.age_txdesc[i];
884 		if (txd->tx_dmamap != NULL) {
885 			bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
886 			txd->tx_dmamap = NULL;
887 		}
888 	}
889 	/* Rx buffers */
890 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
891 		rxd = &sc->age_cdata.age_rxdesc[i];
892 		if (rxd->rx_dmamap != NULL) {
893 			bus_dmamap_destroy(sc->sc_dmat, rxd->rx_dmamap);
894 			rxd->rx_dmamap = NULL;
895 		}
896 	}
897 	if (sc->age_cdata.age_rx_sparemap != NULL) {
898 		bus_dmamap_destroy(sc->sc_dmat, sc->age_cdata.age_rx_sparemap);
899 		sc->age_cdata.age_rx_sparemap = NULL;
900 	}
901 
902 	/* Tx ring. */
903 	if (sc->age_cdata.age_tx_ring_map != NULL)
904 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_tx_ring_map);
905 	if (sc->age_cdata.age_tx_ring_map != NULL &&
906 	    sc->age_rdata.age_tx_ring != NULL)
907 		bus_dmamem_free(sc->sc_dmat,
908 		    (bus_dma_segment_t *)sc->age_rdata.age_tx_ring, 1);
909 	sc->age_rdata.age_tx_ring = NULL;
910 	sc->age_cdata.age_tx_ring_map = NULL;
911 
912 	/* Rx ring. */
913 	if (sc->age_cdata.age_rx_ring_map != NULL)
914 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rx_ring_map);
915 	if (sc->age_cdata.age_rx_ring_map != NULL &&
916 	    sc->age_rdata.age_rx_ring != NULL)
917 		bus_dmamem_free(sc->sc_dmat,
918 		    (bus_dma_segment_t *)sc->age_rdata.age_rx_ring, 1);
919 	sc->age_rdata.age_rx_ring = NULL;
920 	sc->age_cdata.age_rx_ring_map = NULL;
921 
922 	/* Rx return ring. */
923 	if (sc->age_cdata.age_rr_ring_map != NULL)
924 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rr_ring_map);
925 	if (sc->age_cdata.age_rr_ring_map != NULL &&
926 	    sc->age_rdata.age_rr_ring != NULL)
927 		bus_dmamem_free(sc->sc_dmat,
928 		    (bus_dma_segment_t *)sc->age_rdata.age_rr_ring, 1);
929 	sc->age_rdata.age_rr_ring = NULL;
930 	sc->age_cdata.age_rr_ring_map = NULL;
931 
932 	/* CMB block */
933 	if (sc->age_cdata.age_cmb_block_map != NULL)
934 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_cmb_block_map);
935 	if (sc->age_cdata.age_cmb_block_map != NULL &&
936 	    sc->age_rdata.age_cmb_block != NULL)
937 		bus_dmamem_free(sc->sc_dmat,
938 		    (bus_dma_segment_t *)sc->age_rdata.age_cmb_block, 1);
939 	sc->age_rdata.age_cmb_block = NULL;
940 	sc->age_cdata.age_cmb_block_map = NULL;
941 
942 	/* SMB block */
943 	if (sc->age_cdata.age_smb_block_map != NULL)
944 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_smb_block_map);
945 	if (sc->age_cdata.age_smb_block_map != NULL &&
946 	    sc->age_rdata.age_smb_block != NULL)
947 		bus_dmamem_free(sc->sc_dmat,
948 		    (bus_dma_segment_t *)sc->age_rdata.age_smb_block, 1);
949 	sc->age_rdata.age_smb_block = NULL;
950 	sc->age_cdata.age_smb_block_map = NULL;
951 }
952 
953 void
954 age_start(struct ifnet *ifp)
955 {
956         struct age_softc *sc = ifp->if_softc;
957         struct mbuf *m;
958 	int enq;
959 
960 	if (!(ifp->if_flags & IFF_RUNNING) || ifq_is_oactive(&ifp->if_snd))
961 		return;
962 	if ((sc->age_flags & AGE_FLAG_LINK) == 0)
963 		return;
964 	if (IFQ_IS_EMPTY(&ifp->if_snd))
965 		return;
966 
967 	enq = 0;
968 	for (;;) {
969 		if (sc->age_cdata.age_tx_cnt + AGE_MAXTXSEGS >=
970 		    AGE_TX_RING_CNT - 2) {
971 			ifq_set_oactive(&ifp->if_snd);
972 			break;
973 		}
974 
975 		IFQ_DEQUEUE(&ifp->if_snd, m);
976 		if (m == NULL)
977 			break;
978 
979 		/*
980 		 * Pack the data into the transmit ring. If we
981 		 * don't have room, set the OACTIVE flag and wait
982 		 * for the NIC to drain the ring.
983 		 */
984 		if (age_encap(sc, m) != 0) {
985 			ifp->if_oerrors++;
986 			continue;
987 		}
988 		enq = 1;
989 
990 #if NBPFILTER > 0
991 		/*
992 		 * If there's a BPF listener, bounce a copy of this frame
993 		 * to him.
994 		 */
995 		if (ifp->if_bpf != NULL)
996 			bpf_mtap_ether(ifp->if_bpf, m, BPF_DIRECTION_OUT);
997 #endif
998 	}
999 
1000 	if (enq) {
1001 		/* Update mbox. */
1002 		AGE_COMMIT_MBOX(sc);
1003 		/* Set a timeout in case the chip goes out to lunch. */
1004 		ifp->if_timer = AGE_TX_TIMEOUT;
1005 	}
1006 }
1007 
1008 void
1009 age_watchdog(struct ifnet *ifp)
1010 {
1011 	struct age_softc *sc = ifp->if_softc;
1012 
1013 	if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
1014 		printf("%s: watchdog timeout (missed link)\n",
1015 		    sc->sc_dev.dv_xname);
1016 		ifp->if_oerrors++;
1017 		age_init(ifp);
1018 		return;
1019 	}
1020 
1021 	if (sc->age_cdata.age_tx_cnt == 0) {
1022 		printf("%s: watchdog timeout (missed Tx interrupts) "
1023 		    "-- recovering\n", sc->sc_dev.dv_xname);
1024 		age_start(ifp);
1025 		return;
1026 	}
1027 
1028 	printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
1029 	ifp->if_oerrors++;
1030 	age_init(ifp);
1031 	age_start(ifp);
1032 }
1033 
1034 int
1035 age_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1036 {
1037 	struct age_softc *sc = ifp->if_softc;
1038 	struct mii_data *mii = &sc->sc_miibus;
1039 	struct ifreq *ifr = (struct ifreq *)data;
1040 	int s, error = 0;
1041 
1042 	s = splnet();
1043 
1044 	switch (cmd) {
1045 	case SIOCSIFADDR:
1046 		ifp->if_flags |= IFF_UP;
1047 		if (!(ifp->if_flags & IFF_RUNNING))
1048 			 age_init(ifp);
1049 		break;
1050 
1051 	case SIOCSIFFLAGS:
1052 		if (ifp->if_flags & IFF_UP) {
1053 			if (ifp->if_flags & IFF_RUNNING)
1054 				error = ENETRESET;
1055 			else
1056 				age_init(ifp);
1057 		} else {
1058 			if (ifp->if_flags & IFF_RUNNING)
1059 				age_stop(sc);
1060 		}
1061 		break;
1062 
1063 	case SIOCSIFMEDIA:
1064 	case SIOCGIFMEDIA:
1065 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1066 		break;
1067 
1068 	default:
1069 		error = ether_ioctl(ifp, &sc->sc_arpcom, cmd, data);
1070 		break;
1071 	}
1072 
1073 	if (error == ENETRESET) {
1074 		if (ifp->if_flags & IFF_RUNNING)
1075 			age_iff(sc);
1076 		error = 0;
1077 	}
1078 
1079 	splx(s);
1080 	return (error);
1081 }
1082 
1083 void
1084 age_mac_config(struct age_softc *sc)
1085 {
1086 	struct mii_data *mii = &sc->sc_miibus;
1087 	uint32_t reg;
1088 
1089 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1090 	reg &= ~MAC_CFG_FULL_DUPLEX;
1091 	reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC);
1092 	reg &= ~MAC_CFG_SPEED_MASK;
1093 
1094 	/* Reprogram MAC with resolved speed/duplex. */
1095 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1096 	case IFM_10_T:
1097 	case IFM_100_TX:
1098 		reg |= MAC_CFG_SPEED_10_100;
1099 		break;
1100 	case IFM_1000_T:
1101 		reg |= MAC_CFG_SPEED_1000;
1102 		break;
1103 	}
1104 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1105 		reg |= MAC_CFG_FULL_DUPLEX;
1106 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1107 			reg |= MAC_CFG_TX_FC;
1108 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1109 			reg |= MAC_CFG_RX_FC;
1110 	}
1111 
1112 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1113 }
1114 
1115 int
1116 age_encap(struct age_softc *sc, struct mbuf *m)
1117 {
1118 	struct age_txdesc *txd, *txd_last;
1119 	struct tx_desc *desc;
1120 	bus_dmamap_t map;
1121 	uint32_t cflags, poff, vtag;
1122 	int error, i, prod;
1123 
1124 	cflags = vtag = 0;
1125 	poff = 0;
1126 
1127 	prod = sc->age_cdata.age_tx_prod;
1128 	txd = &sc->age_cdata.age_txdesc[prod];
1129 	txd_last = txd;
1130 	map = txd->tx_dmamap;
1131 
1132 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m, BUS_DMA_NOWAIT);
1133 	if (error != 0 && error != EFBIG)
1134 		goto drop;
1135 	if (error != 0) {
1136 		if (m_defrag(m, M_DONTWAIT)) {
1137 			error = ENOBUFS;
1138 			goto drop;
1139 		}
1140 		error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1141 		    BUS_DMA_NOWAIT);
1142 		if (error != 0)
1143 			goto drop;
1144 	}
1145 
1146 	/* Configure Tx IP/TCP/UDP checksum offload. */
1147 	if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) {
1148 		cflags |= AGE_TD_CSUM;
1149 		if ((m->m_pkthdr.csum_flags & M_TCP_CSUM_OUT) != 0)
1150 			cflags |= AGE_TD_TCPCSUM;
1151 		if ((m->m_pkthdr.csum_flags & M_UDP_CSUM_OUT) != 0)
1152 			cflags |= AGE_TD_UDPCSUM;
1153 		/* Set checksum start offset. */
1154 		cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT);
1155 	}
1156 
1157 #if NVLAN > 0
1158 	/* Configure VLAN hardware tag insertion. */
1159 	if (m->m_flags & M_VLANTAG) {
1160 		vtag = AGE_TX_VLAN_TAG(m->m_pkthdr.ether_vtag);
1161 		vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK);
1162 		cflags |= AGE_TD_INSERT_VLAN_TAG;
1163 	}
1164 #endif
1165 
1166 	desc = NULL;
1167 	for (i = 0; i < map->dm_nsegs; i++) {
1168 		desc = &sc->age_rdata.age_tx_ring[prod];
1169 		desc->addr = htole64(map->dm_segs[i].ds_addr);
1170 		desc->len =
1171 		    htole32(AGE_TX_BYTES(map->dm_segs[i].ds_len) | vtag);
1172 		desc->flags = htole32(cflags);
1173 		sc->age_cdata.age_tx_cnt++;
1174 		AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1175 	}
1176 
1177 	/* Update producer index. */
1178 	sc->age_cdata.age_tx_prod = prod;
1179 
1180 	/* Set EOP on the last descriptor. */
1181 	prod = (prod + AGE_TX_RING_CNT - 1) % AGE_TX_RING_CNT;
1182 	desc = &sc->age_rdata.age_tx_ring[prod];
1183 	desc->flags |= htole32(AGE_TD_EOP);
1184 
1185 	/* Swap dmamap of the first and the last. */
1186 	txd = &sc->age_cdata.age_txdesc[prod];
1187 	map = txd_last->tx_dmamap;
1188 	txd_last->tx_dmamap = txd->tx_dmamap;
1189 	txd->tx_dmamap = map;
1190 	txd->tx_m = m;
1191 
1192 	/* Sync descriptors. */
1193 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1194 	    BUS_DMASYNC_PREWRITE);
1195 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
1196 	    sc->age_cdata.age_tx_ring_map->dm_mapsize,
1197 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1198 
1199 	return (0);
1200 
1201  drop:
1202 	m_freem(m);
1203 	return (error);
1204 }
1205 
1206 void
1207 age_txintr(struct age_softc *sc, int tpd_cons)
1208 {
1209 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1210 	struct age_txdesc *txd;
1211 	int cons, prog;
1212 
1213 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
1214 	    sc->age_cdata.age_tx_ring_map->dm_mapsize,
1215 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1216 
1217 	/*
1218 	 * Go through our Tx list and free mbufs for those
1219 	 * frames which have been transmitted.
1220 	 */
1221 	cons = sc->age_cdata.age_tx_cons;
1222 	for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) {
1223 		if (sc->age_cdata.age_tx_cnt <= 0)
1224 			break;
1225 		prog++;
1226 		ifq_clr_oactive(&ifp->if_snd);
1227 		sc->age_cdata.age_tx_cnt--;
1228 		txd = &sc->age_cdata.age_txdesc[cons];
1229 		/*
1230 		 * Clear Tx descriptors, it's not required but would
1231 		 * help debugging in case of Tx issues.
1232 		 */
1233 		txd->tx_desc->addr = 0;
1234 		txd->tx_desc->len = 0;
1235 		txd->tx_desc->flags = 0;
1236 
1237 		if (txd->tx_m == NULL)
1238 			continue;
1239 		/* Reclaim transmitted mbufs. */
1240 		bus_dmamap_sync(sc->sc_dmat, txd->tx_dmamap, 0,
1241 		    txd->tx_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1242 		bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1243 		m_freem(txd->tx_m);
1244 		txd->tx_m = NULL;
1245 	}
1246 
1247 	if (prog > 0) {
1248 		sc->age_cdata.age_tx_cons = cons;
1249 
1250 		/*
1251 		 * Unarm watchdog timer only when there are no pending
1252 		 * Tx descriptors in queue.
1253 		 */
1254 		if (sc->age_cdata.age_tx_cnt == 0)
1255 			ifp->if_timer = 0;
1256 
1257 		bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
1258 		    sc->age_cdata.age_tx_ring_map->dm_mapsize,
1259 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1260 	}
1261 }
1262 
1263 /* Receive a frame. */
1264 void
1265 age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd)
1266 {
1267 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1268 	struct age_rxdesc *rxd;
1269 	struct rx_desc *desc;
1270 	struct mbuf_list ml = MBUF_LIST_INITIALIZER();
1271 	struct mbuf *mp, *m;
1272 	uint32_t status, index;
1273 	int count, nsegs, pktlen;
1274 	int rx_cons;
1275 
1276 	status = letoh32(rxrd->flags);
1277 	index = letoh32(rxrd->index);
1278 	rx_cons = AGE_RX_CONS(index);
1279 	nsegs = AGE_RX_NSEGS(index);
1280 
1281 	sc->age_cdata.age_rxlen = AGE_RX_BYTES(letoh32(rxrd->len));
1282 	if ((status & AGE_RRD_ERROR) != 0 &&
1283 	    (status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE |
1284 	    AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0) {
1285 		/*
1286 		 * We want to pass the following frames to upper
1287 		 * layer regardless of error status of Rx return
1288 		 * ring.
1289 		 *
1290 		 *  o IP/TCP/UDP checksum is bad.
1291 		 *  o frame length and protocol specific length
1292 		 *     does not match.
1293 		 */
1294 		sc->age_cdata.age_rx_cons += nsegs;
1295 		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
1296 		return;
1297 	}
1298 
1299 	pktlen = 0;
1300 	for (count = 0; count < nsegs; count++,
1301 	    AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) {
1302 		rxd = &sc->age_cdata.age_rxdesc[rx_cons];
1303 		mp = rxd->rx_m;
1304 		desc = rxd->rx_desc;
1305 		/* Add a new receive buffer to the ring. */
1306 		if (age_newbuf(sc, rxd) != 0) {
1307 			ifp->if_iqdrops++;
1308 			/* Reuse Rx buffers. */
1309 			if (sc->age_cdata.age_rxhead != NULL) {
1310 				m_freem(sc->age_cdata.age_rxhead);
1311 				AGE_RXCHAIN_RESET(sc);
1312 			}
1313 			break;
1314 		}
1315 
1316 		/* The length of the first mbuf is computed last. */
1317 		if (count != 0) {
1318 			mp->m_len = AGE_RX_BYTES(letoh32(desc->len));
1319 			pktlen += mp->m_len;
1320 		}
1321 
1322 		/* Chain received mbufs. */
1323 		if (sc->age_cdata.age_rxhead == NULL) {
1324 			sc->age_cdata.age_rxhead = mp;
1325 			sc->age_cdata.age_rxtail = mp;
1326 		} else {
1327 			mp->m_flags &= ~M_PKTHDR;
1328 			sc->age_cdata.age_rxprev_tail =
1329 			    sc->age_cdata.age_rxtail;
1330 			sc->age_cdata.age_rxtail->m_next = mp;
1331 			sc->age_cdata.age_rxtail = mp;
1332 		}
1333 
1334 		if (count == nsegs - 1) {
1335 			/*
1336 			 * It seems that L1 controller has no way
1337 			 * to tell hardware to strip CRC bytes.
1338 			 */
1339 			sc->age_cdata.age_rxlen -= ETHER_CRC_LEN;
1340 			if (nsegs > 1) {
1341 				/* Remove the CRC bytes in chained mbufs. */
1342 				pktlen -= ETHER_CRC_LEN;
1343 				if (mp->m_len <= ETHER_CRC_LEN) {
1344 					sc->age_cdata.age_rxtail =
1345 					    sc->age_cdata.age_rxprev_tail;
1346 					sc->age_cdata.age_rxtail->m_len -=
1347 					    (ETHER_CRC_LEN - mp->m_len);
1348 					sc->age_cdata.age_rxtail->m_next = NULL;
1349 					m_freem(mp);
1350 				} else {
1351 					mp->m_len -= ETHER_CRC_LEN;
1352 				}
1353 			}
1354 
1355 			m = sc->age_cdata.age_rxhead;
1356 			m->m_flags |= M_PKTHDR;
1357 			m->m_pkthdr.len = sc->age_cdata.age_rxlen;
1358 			/* Set the first mbuf length. */
1359 			m->m_len = sc->age_cdata.age_rxlen - pktlen;
1360 
1361 			/*
1362 			 * Set checksum information.
1363 			 * It seems that L1 controller can compute partial
1364 			 * checksum. The partial checksum value can be used
1365 			 * to accelerate checksum computation for fragmented
1366 			 * TCP/UDP packets. Upper network stack already
1367 			 * takes advantage of the partial checksum value in
1368 			 * IP reassembly stage. But I'm not sure the
1369 			 * correctness of the partial hardware checksum
1370 			 * assistance due to lack of data sheet. If it is
1371 			 * proven to work on L1 I'll enable it.
1372 			 */
1373 			if (status & AGE_RRD_IPV4) {
1374 				if ((status & AGE_RRD_IPCSUM_NOK) == 0)
1375 					m->m_pkthdr.csum_flags |=
1376 					    M_IPV4_CSUM_IN_OK;
1377 				if ((status & (AGE_RRD_TCP | AGE_RRD_UDP)) &&
1378 				    (status & AGE_RRD_TCP_UDPCSUM_NOK) == 0) {
1379 					m->m_pkthdr.csum_flags |=
1380 					    M_TCP_CSUM_IN_OK | M_UDP_CSUM_IN_OK;
1381 				}
1382 				/*
1383 				 * Don't mark bad checksum for TCP/UDP frames
1384 				 * as fragmented frames may always have set
1385 				 * bad checksummed bit of descriptor status.
1386 				 */
1387 			}
1388 #if NVLAN > 0
1389 			/* Check for VLAN tagged frames. */
1390 			if (status & AGE_RRD_VLAN) {
1391 				u_int32_t vtag = AGE_RX_VLAN(letoh32(rxrd->vtags));
1392 				m->m_pkthdr.ether_vtag =
1393 				    AGE_RX_VLAN_TAG(vtag);
1394 				m->m_flags |= M_VLANTAG;
1395 			}
1396 #endif
1397 
1398 			ml_enqueue(&ml, m);
1399 
1400 			/* Reset mbuf chains. */
1401 			AGE_RXCHAIN_RESET(sc);
1402 		}
1403 	}
1404 
1405 	if_input(ifp, &ml);
1406 
1407 	if (count != nsegs) {
1408 		sc->age_cdata.age_rx_cons += nsegs;
1409 		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
1410 	} else
1411 		sc->age_cdata.age_rx_cons = rx_cons;
1412 }
1413 
1414 void
1415 age_rxintr(struct age_softc *sc, int rr_prod)
1416 {
1417 	struct rx_rdesc *rxrd;
1418 	int rr_cons, nsegs, pktlen, prog;
1419 
1420 	rr_cons = sc->age_cdata.age_rr_cons;
1421 	if (rr_cons == rr_prod)
1422 		return;
1423 
1424 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
1425 	    sc->age_cdata.age_rr_ring_map->dm_mapsize,
1426 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1427 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rx_ring_map, 0,
1428 	    sc->age_cdata.age_rx_ring_map->dm_mapsize,
1429 	    BUS_DMASYNC_POSTWRITE);
1430 
1431 	for (prog = 0; rr_cons != rr_prod; prog++) {
1432 		rxrd = &sc->age_rdata.age_rr_ring[rr_cons];
1433 		nsegs = AGE_RX_NSEGS(letoh32(rxrd->index));
1434 		if (nsegs == 0)
1435 			break;
1436 		/*
1437 		 * Check number of segments against received bytes
1438 		 * Non-matching value would indicate that hardware
1439 		 * is still trying to update Rx return descriptors.
1440 		 * I'm not sure whether this check is really needed.
1441 		 */
1442 		pktlen = AGE_RX_BYTES(letoh32(rxrd->len));
1443 		if (nsegs != ((pktlen + (MCLBYTES - ETHER_ALIGN - 1)) /
1444 		    (MCLBYTES - ETHER_ALIGN)))
1445 			break;
1446 
1447 		/* Received a frame. */
1448 		age_rxeof(sc, rxrd);
1449 
1450 		/* Clear return ring. */
1451 		rxrd->index = 0;
1452 		AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT);
1453 	}
1454 
1455 	if (prog > 0) {
1456 		/* Update the consumer index. */
1457 		sc->age_cdata.age_rr_cons = rr_cons;
1458 
1459 		bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rx_ring_map, 0,
1460 		    sc->age_cdata.age_rx_ring_map->dm_mapsize,
1461 		    BUS_DMASYNC_PREWRITE);
1462 		/* Sync descriptors. */
1463 		bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
1464 		    sc->age_cdata.age_rr_ring_map->dm_mapsize,
1465 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1466 
1467 		/* Notify hardware availability of new Rx buffers. */
1468 		AGE_COMMIT_MBOX(sc);
1469 	}
1470 }
1471 
1472 void
1473 age_tick(void *xsc)
1474 {
1475 	struct age_softc *sc = xsc;
1476 	struct mii_data *mii = &sc->sc_miibus;
1477 	int s;
1478 
1479 	s = splnet();
1480 	mii_tick(mii);
1481 	timeout_add_sec(&sc->age_tick_ch, 1);
1482 	splx(s);
1483 }
1484 
1485 void
1486 age_reset(struct age_softc *sc)
1487 {
1488 	uint32_t reg;
1489 	int i;
1490 
1491 	CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET);
1492 	CSR_READ_4(sc, AGE_MASTER_CFG);
1493 	DELAY(1000);
1494 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
1495 		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
1496 			break;
1497 		DELAY(10);
1498 	}
1499 
1500 	if (i == 0)
1501 		printf("%s: reset timeout(0x%08x)!\n", sc->sc_dev.dv_xname,
1502 		    reg);
1503 
1504 	/* Initialize PCIe module. From Linux. */
1505 	CSR_WRITE_4(sc, 0x12FC, 0x6500);
1506 	CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
1507 }
1508 
1509 int
1510 age_init(struct ifnet *ifp)
1511 {
1512 	struct age_softc *sc = ifp->if_softc;
1513 	struct mii_data *mii = &sc->sc_miibus;
1514 	uint8_t eaddr[ETHER_ADDR_LEN];
1515 	bus_addr_t paddr;
1516 	uint32_t reg, fsize;
1517 	uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo;
1518 	int error;
1519 
1520 	/*
1521 	 * Cancel any pending I/O.
1522 	 */
1523 	age_stop(sc);
1524 
1525 	/*
1526 	 * Reset the chip to a known state.
1527 	 */
1528 	age_reset(sc);
1529 
1530 	/* Initialize descriptors. */
1531 	error = age_init_rx_ring(sc);
1532         if (error != 0) {
1533 		printf("%s: no memory for Rx buffers.\n", sc->sc_dev.dv_xname);
1534                 age_stop(sc);
1535 		return (error);
1536         }
1537 	age_init_rr_ring(sc);
1538 	age_init_tx_ring(sc);
1539 	age_init_cmb_block(sc);
1540 	age_init_smb_block(sc);
1541 
1542 	/* Reprogram the station address. */
1543 	bcopy(LLADDR(ifp->if_sadl), eaddr, ETHER_ADDR_LEN);
1544 	CSR_WRITE_4(sc, AGE_PAR0,
1545 	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
1546 	CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]);
1547 
1548 	/* Set descriptor base addresses. */
1549 	paddr = sc->age_rdata.age_tx_ring_paddr;
1550 	CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr));
1551 	paddr = sc->age_rdata.age_rx_ring_paddr;
1552 	CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr));
1553 	paddr = sc->age_rdata.age_rr_ring_paddr;
1554 	CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr));
1555 	paddr = sc->age_rdata.age_tx_ring_paddr;
1556 	CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr));
1557 	paddr = sc->age_rdata.age_cmb_block_paddr;
1558 	CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr));
1559 	paddr = sc->age_rdata.age_smb_block_paddr;
1560 	CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr));
1561 
1562 	/* Set Rx/Rx return descriptor counter. */
1563 	CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT,
1564 	    ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) &
1565 	    DESC_RRD_CNT_MASK) |
1566 	    ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK));
1567 
1568 	/* Set Tx descriptor counter. */
1569 	CSR_WRITE_4(sc, AGE_DESC_TPD_CNT,
1570 	    (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK);
1571 
1572 	/* Tell hardware that we're ready to load descriptors. */
1573 	CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD);
1574 
1575         /*
1576 	 * Initialize mailbox register.
1577 	 * Updated producer/consumer index information is exchanged
1578 	 * through this mailbox register. However Tx producer and
1579 	 * Rx return consumer/Rx producer are all shared such that
1580 	 * it's hard to separate code path between Tx and Rx without
1581 	 * locking. If L1 hardware have a separate mail box register
1582 	 * for Tx and Rx consumer/producer management we could have
1583 	 * independent Tx/Rx handler which in turn Rx handler could have
1584 	 * been run without any locking.
1585 	*/
1586 	AGE_COMMIT_MBOX(sc);
1587 
1588 	/* Configure IPG/IFG parameters. */
1589 	CSR_WRITE_4(sc, AGE_IPG_IFG_CFG,
1590 	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) |
1591 	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
1592 	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
1593 	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK));
1594 
1595 	/* Set parameters for half-duplex media. */
1596 	CSR_WRITE_4(sc, AGE_HDPX_CFG,
1597 	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
1598 	    HDPX_CFG_LCOL_MASK) |
1599 	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
1600 	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
1601 	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
1602 	    HDPX_CFG_ABEBT_MASK) |
1603 	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
1604 	     HDPX_CFG_JAMIPG_MASK));
1605 
1606 	/* Configure interrupt moderation timer. */
1607 	sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
1608 	CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod));
1609 	reg = CSR_READ_4(sc, AGE_MASTER_CFG);
1610 	reg &= ~MASTER_MTIMER_ENB;
1611 	if (AGE_USECS(sc->age_int_mod) == 0)
1612 		reg &= ~MASTER_ITIMER_ENB;
1613 	else
1614 		reg |= MASTER_ITIMER_ENB;
1615 	CSR_WRITE_4(sc, AGE_MASTER_CFG, reg);
1616 	if (agedebug)
1617 		printf("%s: interrupt moderation is %d us.\n",
1618 		    sc->sc_dev.dv_xname, sc->age_int_mod);
1619 	CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000));
1620 
1621 	/* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
1622 	if (ifp->if_mtu < ETHERMTU)
1623 		sc->age_max_frame_size = ETHERMTU;
1624 	else
1625 		sc->age_max_frame_size = ifp->if_mtu;
1626 	sc->age_max_frame_size += ETHER_HDR_LEN +
1627 	    sizeof(struct ether_vlan_header) + ETHER_CRC_LEN;
1628 	CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size);
1629 
1630 	/* Configure jumbo frame. */
1631 	fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t));
1632 	CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG,
1633 	    (((fsize / sizeof(uint64_t)) <<
1634 	    RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) |
1635 	    ((RXQ_JUMBO_CFG_LKAH_DEFAULT <<
1636 	    RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) |
1637 	    ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) &
1638 	    RXQ_JUMBO_CFG_RRD_TIMER_MASK));
1639 
1640 	/* Configure flow-control parameters. From Linux. */
1641 	if ((sc->age_flags & AGE_FLAG_PCIE) != 0) {
1642 		/*
1643 		 * Magic workaround for old-L1.
1644 		 * Don't know which hw revision requires this magic.
1645 		 */
1646 		CSR_WRITE_4(sc, 0x12FC, 0x6500);
1647 		/*
1648 		 * Another magic workaround for flow-control mode
1649 		 * change. From Linux.
1650 		 */
1651 		CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
1652 	}
1653 	/*
1654 	 * TODO
1655 	 *  Should understand pause parameter relationships between FIFO
1656 	 *  size and number of Rx descriptors and Rx return descriptors.
1657 	 *
1658 	 *  Magic parameters came from Linux.
1659 	 */
1660 	switch (sc->age_chip_rev) {
1661 	case 0x8001:
1662 	case 0x9001:
1663 	case 0x9002:
1664 	case 0x9003:
1665 		rxf_hi = AGE_RX_RING_CNT / 16;
1666 		rxf_lo = (AGE_RX_RING_CNT * 7) / 8;
1667 		rrd_hi = (AGE_RR_RING_CNT * 7) / 8;
1668 		rrd_lo = AGE_RR_RING_CNT / 16;
1669 		break;
1670 	default:
1671 		reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN);
1672 		rxf_lo = reg / 16;
1673 		if (rxf_lo < 192)
1674 			rxf_lo = 192;
1675 		rxf_hi = (reg * 7) / 8;
1676 		if (rxf_hi < rxf_lo)
1677 			rxf_hi = rxf_lo + 16;
1678 		reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN);
1679 		rrd_lo = reg / 8;
1680 		rrd_hi = (reg * 7) / 8;
1681 		if (rrd_lo < 2)
1682 			rrd_lo = 2;
1683 		if (rrd_hi < rrd_lo)
1684 			rrd_hi = rrd_lo + 3;
1685 		break;
1686 	}
1687 	CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH,
1688 	    ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) &
1689 	    RXQ_FIFO_PAUSE_THRESH_LO_MASK) |
1690 	    ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) &
1691 	    RXQ_FIFO_PAUSE_THRESH_HI_MASK));
1692 	CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH,
1693 	    ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) &
1694 	    RXQ_RRD_PAUSE_THRESH_LO_MASK) |
1695 	    ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) &
1696 	    RXQ_RRD_PAUSE_THRESH_HI_MASK));
1697 
1698 	/* Configure RxQ. */
1699 	CSR_WRITE_4(sc, AGE_RXQ_CFG,
1700 	    ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
1701 	    RXQ_CFG_RD_BURST_MASK) |
1702 	    ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT <<
1703 	    RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) |
1704 	    ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT <<
1705 	    RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) |
1706 	    RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
1707 
1708 	/* Configure TxQ. */
1709 	CSR_WRITE_4(sc, AGE_TXQ_CFG,
1710 	    ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
1711 	    TXQ_CFG_TPD_BURST_MASK) |
1712 	    ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) &
1713 	    TXQ_CFG_TX_FIFO_BURST_MASK) |
1714 	    ((TXQ_CFG_TPD_FETCH_DEFAULT <<
1715 	    TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) |
1716 	    TXQ_CFG_ENB);
1717 
1718 	/* Configure DMA parameters. */
1719 	CSR_WRITE_4(sc, AGE_DMA_CFG,
1720 	    DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 |
1721 	    sc->age_dma_rd_burst | DMA_CFG_RD_ENB |
1722 	    sc->age_dma_wr_burst | DMA_CFG_WR_ENB);
1723 
1724 	/* Configure CMB DMA write threshold. */
1725 	CSR_WRITE_4(sc, AGE_CMB_WR_THRESH,
1726 	    ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) &
1727 	    CMB_WR_THRESH_RRD_MASK) |
1728 	    ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) &
1729 	    CMB_WR_THRESH_TPD_MASK));
1730 
1731 	/* Set CMB/SMB timer and enable them. */
1732 	CSR_WRITE_4(sc, AGE_CMB_WR_TIMER,
1733 	    ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) |
1734 	    ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK));
1735 
1736 	/* Request SMB updates for every seconds. */
1737 	CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000));
1738 	CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB);
1739 
1740 	/*
1741 	 * Disable all WOL bits as WOL can interfere normal Rx
1742 	 * operation.
1743 	 */
1744 	CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
1745 
1746         /*
1747 	 * Configure Tx/Rx MACs.
1748 	 *  - Auto-padding for short frames.
1749 	 *  - Enable CRC generation.
1750 	 *  Start with full-duplex/1000Mbps media. Actual reconfiguration
1751 	 *  of MAC is followed after link establishment.
1752 	 */
1753 	CSR_WRITE_4(sc, AGE_MAC_CFG,
1754 	    MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD |
1755 	    MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 |
1756 	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
1757 	    MAC_CFG_PREAMBLE_MASK));
1758 
1759 	/* Set up the receive filter. */
1760 	age_iff(sc);
1761 
1762 	age_rxvlan(sc);
1763 
1764 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1765 	reg |= MAC_CFG_RXCSUM_ENB;
1766 
1767 	/* Ack all pending interrupts and clear it. */
1768 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
1769 	CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS);
1770 
1771 	/* Finally enable Tx/Rx MAC. */
1772 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
1773 
1774 	sc->age_flags &= ~AGE_FLAG_LINK;
1775 
1776 	/* Switch to the current media. */
1777 	mii_mediachg(mii);
1778 
1779 	timeout_add_sec(&sc->age_tick_ch, 1);
1780 
1781 	ifp->if_flags |= IFF_RUNNING;
1782 	ifq_clr_oactive(&ifp->if_snd);
1783 
1784 	return (0);
1785 }
1786 
1787 void
1788 age_stop(struct age_softc *sc)
1789 {
1790 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1791 	struct age_txdesc *txd;
1792 	struct age_rxdesc *rxd;
1793 	uint32_t reg;
1794 	int i;
1795 
1796 	/*
1797 	 * Mark the interface down and cancel the watchdog timer.
1798 	 */
1799 	ifp->if_flags &= ~IFF_RUNNING;
1800 	ifq_clr_oactive(&ifp->if_snd);
1801 	ifp->if_timer = 0;
1802 
1803 	sc->age_flags &= ~AGE_FLAG_LINK;
1804 	timeout_del(&sc->age_tick_ch);
1805 
1806 	/*
1807 	 * Disable interrupts.
1808 	 */
1809 	CSR_WRITE_4(sc, AGE_INTR_MASK, 0);
1810 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF);
1811 
1812 	/* Stop CMB/SMB updates. */
1813 	CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0);
1814 
1815 	/* Stop Rx/Tx MAC. */
1816 	age_stop_rxmac(sc);
1817 	age_stop_txmac(sc);
1818 
1819 	/* Stop DMA. */
1820 	CSR_WRITE_4(sc, AGE_DMA_CFG,
1821 	    CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB));
1822 
1823 	/* Stop TxQ/RxQ. */
1824 	CSR_WRITE_4(sc, AGE_TXQ_CFG,
1825 	    CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB);
1826 	CSR_WRITE_4(sc, AGE_RXQ_CFG,
1827 	    CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB);
1828 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
1829 		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
1830 			break;
1831 		DELAY(10);
1832 	}
1833 	if (i == 0)
1834 		printf("%s: stopping Rx/Tx MACs timed out(0x%08x)!\n",
1835 		    sc->sc_dev.dv_xname, reg);
1836 
1837 	/* Reclaim Rx buffers that have been processed. */
1838 	if (sc->age_cdata.age_rxhead != NULL)
1839 		m_freem(sc->age_cdata.age_rxhead);
1840 	AGE_RXCHAIN_RESET(sc);
1841 
1842 	/*
1843 	 * Free RX and TX mbufs still in the queues.
1844 	 */
1845 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
1846 		rxd = &sc->age_cdata.age_rxdesc[i];
1847 		if (rxd->rx_m != NULL) {
1848 			bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0,
1849 			    rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1850 			bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
1851 			m_freem(rxd->rx_m);
1852 			rxd->rx_m = NULL;
1853 		}
1854 	}
1855 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
1856 		txd = &sc->age_cdata.age_txdesc[i];
1857 		if (txd->tx_m != NULL) {
1858 			bus_dmamap_sync(sc->sc_dmat, txd->tx_dmamap, 0,
1859 			    txd->tx_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1860 			bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1861 			m_freem(txd->tx_m);
1862 			txd->tx_m = NULL;
1863 		}
1864 	}
1865 }
1866 
1867 void
1868 age_stats_update(struct age_softc *sc)
1869 {
1870 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1871 	struct age_stats *stat;
1872 	struct smb *smb;
1873 
1874 	stat = &sc->age_stat;
1875 
1876 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
1877 	    sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1878 
1879 	smb = sc->age_rdata.age_smb_block;
1880 	if (smb->updated == 0)
1881 		return;
1882 
1883 	/* Rx stats. */
1884 	stat->rx_frames += smb->rx_frames;
1885 	stat->rx_bcast_frames += smb->rx_bcast_frames;
1886 	stat->rx_mcast_frames += smb->rx_mcast_frames;
1887 	stat->rx_pause_frames += smb->rx_pause_frames;
1888 	stat->rx_control_frames += smb->rx_control_frames;
1889 	stat->rx_crcerrs += smb->rx_crcerrs;
1890 	stat->rx_lenerrs += smb->rx_lenerrs;
1891 	stat->rx_bytes += smb->rx_bytes;
1892 	stat->rx_runts += smb->rx_runts;
1893 	stat->rx_fragments += smb->rx_fragments;
1894 	stat->rx_pkts_64 += smb->rx_pkts_64;
1895 	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
1896 	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
1897 	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
1898 	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
1899 	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
1900 	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
1901 	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
1902 	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
1903 	stat->rx_desc_oflows += smb->rx_desc_oflows;
1904 	stat->rx_alignerrs += smb->rx_alignerrs;
1905 	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
1906 	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
1907 	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
1908 
1909 	/* Tx stats. */
1910 	stat->tx_frames += smb->tx_frames;
1911 	stat->tx_bcast_frames += smb->tx_bcast_frames;
1912 	stat->tx_mcast_frames += smb->tx_mcast_frames;
1913 	stat->tx_pause_frames += smb->tx_pause_frames;
1914 	stat->tx_excess_defer += smb->tx_excess_defer;
1915 	stat->tx_control_frames += smb->tx_control_frames;
1916 	stat->tx_deferred += smb->tx_deferred;
1917 	stat->tx_bytes += smb->tx_bytes;
1918 	stat->tx_pkts_64 += smb->tx_pkts_64;
1919 	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
1920 	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
1921 	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
1922 	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
1923 	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
1924 	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
1925 	stat->tx_single_colls += smb->tx_single_colls;
1926 	stat->tx_multi_colls += smb->tx_multi_colls;
1927 	stat->tx_late_colls += smb->tx_late_colls;
1928 	stat->tx_excess_colls += smb->tx_excess_colls;
1929 	stat->tx_underrun += smb->tx_underrun;
1930 	stat->tx_desc_underrun += smb->tx_desc_underrun;
1931 	stat->tx_lenerrs += smb->tx_lenerrs;
1932 	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
1933 	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
1934 	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
1935 
1936 	/* Update counters in ifnet. */
1937 	ifp->if_opackets += smb->tx_frames;
1938 
1939 	ifp->if_collisions += smb->tx_single_colls +
1940 	    smb->tx_multi_colls + smb->tx_late_colls +
1941 	    smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT;
1942 
1943 	ifp->if_oerrors += smb->tx_excess_colls +
1944 	    smb->tx_late_colls + smb->tx_underrun +
1945 	    smb->tx_pkts_truncated;
1946 
1947 	ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
1948 	    smb->rx_runts + smb->rx_pkts_truncated +
1949 	    smb->rx_fifo_oflows + smb->rx_desc_oflows +
1950 	    smb->rx_alignerrs;
1951 
1952 	/* Update done, clear. */
1953 	smb->updated = 0;
1954 
1955 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
1956 	    sc->age_cdata.age_smb_block_map->dm_mapsize,
1957 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1958 }
1959 
1960 void
1961 age_stop_txmac(struct age_softc *sc)
1962 {
1963 	uint32_t reg;
1964 	int i;
1965 
1966 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1967 	if ((reg & MAC_CFG_TX_ENB) != 0) {
1968 		reg &= ~MAC_CFG_TX_ENB;
1969 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1970 	}
1971 	/* Stop Tx DMA engine. */
1972 	reg = CSR_READ_4(sc, AGE_DMA_CFG);
1973 	if ((reg & DMA_CFG_RD_ENB) != 0) {
1974 		reg &= ~DMA_CFG_RD_ENB;
1975 		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
1976 	}
1977 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
1978 		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
1979 		    (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0)
1980 			break;
1981 		DELAY(10);
1982 	}
1983 	if (i == 0)
1984 		printf("%s: stopping TxMAC timeout!\n", sc->sc_dev.dv_xname);
1985 }
1986 
1987 void
1988 age_stop_rxmac(struct age_softc *sc)
1989 {
1990 	uint32_t reg;
1991 	int i;
1992 
1993 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1994 	if ((reg & MAC_CFG_RX_ENB) != 0) {
1995 		reg &= ~MAC_CFG_RX_ENB;
1996 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1997 	}
1998 	/* Stop Rx DMA engine. */
1999 	reg = CSR_READ_4(sc, AGE_DMA_CFG);
2000 	if ((reg & DMA_CFG_WR_ENB) != 0) {
2001 		reg &= ~DMA_CFG_WR_ENB;
2002 		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2003 	}
2004 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2005 		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2006 		    (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0)
2007 			break;
2008 		DELAY(10);
2009 	}
2010 	if (i == 0)
2011 		printf("%s: stopping RxMAC timeout!\n", sc->sc_dev.dv_xname);
2012 }
2013 
2014 void
2015 age_init_tx_ring(struct age_softc *sc)
2016 {
2017 	struct age_ring_data *rd;
2018 	struct age_txdesc *txd;
2019 	int i;
2020 
2021 	sc->age_cdata.age_tx_prod = 0;
2022 	sc->age_cdata.age_tx_cons = 0;
2023 	sc->age_cdata.age_tx_cnt = 0;
2024 
2025 	rd = &sc->age_rdata;
2026 	bzero(rd->age_tx_ring, AGE_TX_RING_SZ);
2027 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
2028 		txd = &sc->age_cdata.age_txdesc[i];
2029 		txd->tx_desc = &rd->age_tx_ring[i];
2030 		txd->tx_m = NULL;
2031 	}
2032 
2033 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
2034 	    sc->age_cdata.age_tx_ring_map->dm_mapsize,
2035 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2036 }
2037 
2038 int
2039 age_init_rx_ring(struct age_softc *sc)
2040 {
2041 	struct age_ring_data *rd;
2042 	struct age_rxdesc *rxd;
2043 	int i;
2044 
2045 	sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1;
2046 	rd = &sc->age_rdata;
2047 	bzero(rd->age_rx_ring, AGE_RX_RING_SZ);
2048 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
2049 		rxd = &sc->age_cdata.age_rxdesc[i];
2050 		rxd->rx_m = NULL;
2051 		rxd->rx_desc = &rd->age_rx_ring[i];
2052 		if (age_newbuf(sc, rxd) != 0)
2053 			return (ENOBUFS);
2054 	}
2055 
2056 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rx_ring_map, 0,
2057 	    sc->age_cdata.age_rx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2058 
2059 	return (0);
2060 }
2061 
2062 void
2063 age_init_rr_ring(struct age_softc *sc)
2064 {
2065 	struct age_ring_data *rd;
2066 
2067 	sc->age_cdata.age_rr_cons = 0;
2068 	AGE_RXCHAIN_RESET(sc);
2069 
2070 	rd = &sc->age_rdata;
2071 	bzero(rd->age_rr_ring, AGE_RR_RING_SZ);
2072 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
2073 	    sc->age_cdata.age_rr_ring_map->dm_mapsize,
2074 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2075 }
2076 
2077 void
2078 age_init_cmb_block(struct age_softc *sc)
2079 {
2080 	struct age_ring_data *rd;
2081 
2082 	rd = &sc->age_rdata;
2083 	bzero(rd->age_cmb_block, AGE_CMB_BLOCK_SZ);
2084 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
2085 	    sc->age_cdata.age_cmb_block_map->dm_mapsize,
2086 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2087 }
2088 
2089 void
2090 age_init_smb_block(struct age_softc *sc)
2091 {
2092 	struct age_ring_data *rd;
2093 
2094 	rd = &sc->age_rdata;
2095 	bzero(rd->age_smb_block, AGE_SMB_BLOCK_SZ);
2096 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
2097 	    sc->age_cdata.age_smb_block_map->dm_mapsize,
2098 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2099 }
2100 
2101 int
2102 age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd)
2103 {
2104 	struct rx_desc *desc;
2105 	struct mbuf *m;
2106 	bus_dmamap_t map;
2107 	int error;
2108 
2109 	MGETHDR(m, M_DONTWAIT, MT_DATA);
2110 	if (m == NULL)
2111 		return (ENOBUFS);
2112 	MCLGET(m, M_DONTWAIT);
2113 	if (!(m->m_flags & M_EXT)) {
2114 		 m_freem(m);
2115 		 return (ENOBUFS);
2116 	}
2117 
2118 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2119 	m_adj(m, ETHER_ALIGN);
2120 
2121 	error = bus_dmamap_load_mbuf(sc->sc_dmat,
2122 	    sc->age_cdata.age_rx_sparemap, m, BUS_DMA_NOWAIT);
2123 
2124 	if (error != 0) {
2125 		m_freem(m);
2126 		printf("%s: can't load RX mbuf\n", sc->sc_dev.dv_xname);
2127 		return (error);
2128 	}
2129 
2130 	if (rxd->rx_m != NULL) {
2131 		bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0,
2132 		    rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2133 		bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
2134 	}
2135 	map = rxd->rx_dmamap;
2136 	rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap;
2137 	sc->age_cdata.age_rx_sparemap = map;
2138 	bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0,
2139 	    rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2140 	rxd->rx_m = m;
2141 
2142 	desc = rxd->rx_desc;
2143 	desc->addr = htole64(rxd->rx_dmamap->dm_segs[0].ds_addr);
2144 	desc->len =
2145 	    htole32((rxd->rx_dmamap->dm_segs[0].ds_len & AGE_RD_LEN_MASK) <<
2146 	    AGE_RD_LEN_SHIFT);
2147 
2148 	return (0);
2149 }
2150 
2151 void
2152 age_rxvlan(struct age_softc *sc)
2153 {
2154 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
2155 	uint32_t reg;
2156 
2157 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2158 	reg &= ~MAC_CFG_VLAN_TAG_STRIP;
2159 	if (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING)
2160 		reg |= MAC_CFG_VLAN_TAG_STRIP;
2161 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2162 }
2163 
2164 void
2165 age_iff(struct age_softc *sc)
2166 {
2167 	struct arpcom *ac = &sc->sc_arpcom;
2168 	struct ifnet *ifp = &ac->ac_if;
2169 	struct ether_multi *enm;
2170 	struct ether_multistep step;
2171 	uint32_t crc;
2172 	uint32_t mchash[2];
2173 	uint32_t rxcfg;
2174 
2175 	rxcfg = CSR_READ_4(sc, AGE_MAC_CFG);
2176 	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
2177 	ifp->if_flags &= ~IFF_ALLMULTI;
2178 
2179 	/*
2180 	 * Always accept broadcast frames.
2181 	 */
2182 	rxcfg |= MAC_CFG_BCAST;
2183 
2184 	if (ifp->if_flags & IFF_PROMISC || ac->ac_multirangecnt > 0) {
2185 		ifp->if_flags |= IFF_ALLMULTI;
2186 		if (ifp->if_flags & IFF_PROMISC)
2187 			rxcfg |= MAC_CFG_PROMISC;
2188 		else
2189 			rxcfg |= MAC_CFG_ALLMULTI;
2190 		mchash[0] = mchash[1] = 0xFFFFFFFF;
2191 	} else {
2192 		/* Program new filter. */
2193 		bzero(mchash, sizeof(mchash));
2194 
2195 		ETHER_FIRST_MULTI(step, ac, enm);
2196 		while (enm != NULL) {
2197 			crc = ether_crc32_be(enm->enm_addrlo,
2198 			    ETHER_ADDR_LEN);
2199 
2200 			mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
2201 
2202 			ETHER_NEXT_MULTI(step, enm);
2203 		}
2204 	}
2205 
2206 	CSR_WRITE_4(sc, AGE_MAR0, mchash[0]);
2207 	CSR_WRITE_4(sc, AGE_MAR1, mchash[1]);
2208 	CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
2209 }
2210