xref: /openbsd-src/sys/dev/pci/drm/ttm/ttm_bo_util.c (revision f6246b7f478ea7b2b6df549ae5998f8112d22650)
1 /* SPDX-License-Identifier: GPL-2.0 OR MIT */
2 /**************************************************************************
3  *
4  * Copyright (c) 2007-2009 VMware, Inc., Palo Alto, CA., USA
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
22  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
23  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
24  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
25  * USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  **************************************************************************/
28 /*
29  * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
30  */
31 
32 #include <drm/ttm/ttm_bo_driver.h>
33 #include <drm/ttm/ttm_placement.h>
34 #include <drm/drm_vma_manager.h>
35 #include <linux/io.h>
36 #include <linux/highmem.h>
37 #include <linux/wait.h>
38 #include <linux/slab.h>
39 #include <linux/vmalloc.h>
40 #include <linux/module.h>
41 #include <linux/dma-resv.h>
42 
43 struct ttm_transfer_obj {
44 	struct ttm_buffer_object base;
45 	struct ttm_buffer_object *bo;
46 };
47 
48 void ttm_bo_free_old_node(struct ttm_buffer_object *bo)
49 {
50 	ttm_bo_mem_put(bo, &bo->mem);
51 }
52 
53 int ttm_bo_move_ttm(struct ttm_buffer_object *bo,
54 		   struct ttm_operation_ctx *ctx,
55 		    struct ttm_mem_reg *new_mem)
56 {
57 	struct ttm_tt *ttm = bo->ttm;
58 	struct ttm_mem_reg *old_mem = &bo->mem;
59 	int ret;
60 
61 	if (old_mem->mem_type != TTM_PL_SYSTEM) {
62 		ret = ttm_bo_wait(bo, ctx->interruptible, ctx->no_wait_gpu);
63 
64 		if (unlikely(ret != 0)) {
65 			if (ret != -ERESTARTSYS)
66 				pr_err("Failed to expire sync object before unbinding TTM\n");
67 			return ret;
68 		}
69 
70 		ttm_tt_unbind(ttm);
71 		ttm_bo_free_old_node(bo);
72 		ttm_flag_masked(&old_mem->placement, TTM_PL_FLAG_SYSTEM,
73 				TTM_PL_MASK_MEM);
74 		old_mem->mem_type = TTM_PL_SYSTEM;
75 	}
76 
77 	ret = ttm_tt_set_placement_caching(ttm, new_mem->placement);
78 	if (unlikely(ret != 0))
79 		return ret;
80 
81 	if (new_mem->mem_type != TTM_PL_SYSTEM) {
82 		ret = ttm_tt_bind(ttm, new_mem, ctx);
83 		if (unlikely(ret != 0))
84 			return ret;
85 	}
86 
87 	*old_mem = *new_mem;
88 	new_mem->mm_node = NULL;
89 
90 	return 0;
91 }
92 EXPORT_SYMBOL(ttm_bo_move_ttm);
93 
94 int ttm_mem_io_lock(struct ttm_mem_type_manager *man, bool interruptible)
95 {
96 	if (likely(man->io_reserve_fastpath))
97 		return 0;
98 
99 	if (interruptible)
100 		return mutex_lock_interruptible(&man->io_reserve_mutex);
101 
102 	mutex_lock(&man->io_reserve_mutex);
103 	return 0;
104 }
105 
106 void ttm_mem_io_unlock(struct ttm_mem_type_manager *man)
107 {
108 	if (likely(man->io_reserve_fastpath))
109 		return;
110 
111 	mutex_unlock(&man->io_reserve_mutex);
112 }
113 
114 static int ttm_mem_io_evict(struct ttm_mem_type_manager *man)
115 {
116 	struct ttm_buffer_object *bo;
117 
118 	if (!man->use_io_reserve_lru || list_empty(&man->io_reserve_lru))
119 		return -EAGAIN;
120 
121 	bo = list_first_entry(&man->io_reserve_lru,
122 			      struct ttm_buffer_object,
123 			      io_reserve_lru);
124 	list_del_init(&bo->io_reserve_lru);
125 	ttm_bo_unmap_virtual_locked(bo);
126 
127 	return 0;
128 }
129 
130 
131 int ttm_mem_io_reserve(struct ttm_bo_device *bdev,
132 		       struct ttm_mem_reg *mem)
133 {
134 	struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
135 	int ret = 0;
136 
137 	if (!bdev->driver->io_mem_reserve)
138 		return 0;
139 	if (likely(man->io_reserve_fastpath))
140 		return bdev->driver->io_mem_reserve(bdev, mem);
141 
142 	if (bdev->driver->io_mem_reserve &&
143 	    mem->bus.io_reserved_count++ == 0) {
144 retry:
145 		ret = bdev->driver->io_mem_reserve(bdev, mem);
146 		if (ret == -EAGAIN) {
147 			ret = ttm_mem_io_evict(man);
148 			if (ret == 0)
149 				goto retry;
150 		}
151 	}
152 	return ret;
153 }
154 
155 void ttm_mem_io_free(struct ttm_bo_device *bdev,
156 		     struct ttm_mem_reg *mem)
157 {
158 	struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
159 
160 	if (likely(man->io_reserve_fastpath))
161 		return;
162 
163 	if (bdev->driver->io_mem_reserve &&
164 	    --mem->bus.io_reserved_count == 0 &&
165 	    bdev->driver->io_mem_free)
166 		bdev->driver->io_mem_free(bdev, mem);
167 
168 }
169 
170 int ttm_mem_io_reserve_vm(struct ttm_buffer_object *bo)
171 {
172 	struct ttm_mem_reg *mem = &bo->mem;
173 	int ret;
174 
175 	if (!mem->bus.io_reserved_vm) {
176 		struct ttm_mem_type_manager *man =
177 			&bo->bdev->man[mem->mem_type];
178 
179 		ret = ttm_mem_io_reserve(bo->bdev, mem);
180 		if (unlikely(ret != 0))
181 			return ret;
182 		mem->bus.io_reserved_vm = true;
183 		if (man->use_io_reserve_lru)
184 			list_add_tail(&bo->io_reserve_lru,
185 				      &man->io_reserve_lru);
186 	}
187 	return 0;
188 }
189 
190 void ttm_mem_io_free_vm(struct ttm_buffer_object *bo)
191 {
192 	struct ttm_mem_reg *mem = &bo->mem;
193 
194 	if (mem->bus.io_reserved_vm) {
195 		mem->bus.io_reserved_vm = false;
196 		list_del_init(&bo->io_reserve_lru);
197 		ttm_mem_io_free(bo->bdev, mem);
198 	}
199 }
200 
201 static int ttm_mem_reg_ioremap(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem,
202 			void **virtual)
203 {
204 	struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
205 	int ret;
206 	void *addr;
207 	int flags;
208 
209 	*virtual = NULL;
210 	(void) ttm_mem_io_lock(man, false);
211 	ret = ttm_mem_io_reserve(bdev, mem);
212 	ttm_mem_io_unlock(man);
213 	if (ret || !mem->bus.is_iomem)
214 		return ret;
215 
216 	if (mem->bus.addr) {
217 		addr = mem->bus.addr;
218 	} else {
219 		if (mem->placement & TTM_PL_FLAG_WC)
220 			flags = BUS_SPACE_MAP_PREFETCHABLE;
221 		else
222 			flags = 0;
223 
224 		if (bus_space_map(bdev->memt, mem->bus.base + mem->bus.offset,
225 		    mem->bus.size, BUS_SPACE_MAP_LINEAR | flags,
226 		    &mem->bus.bsh)) {
227 			printf("%s bus_space_map failed\n", __func__);
228 			return -ENOMEM;
229 		}
230 
231 		addr = bus_space_vaddr(bdev->memt, mem->bus.bsh);
232 
233 		if (!addr) {
234 			(void) ttm_mem_io_lock(man, false);
235 			ttm_mem_io_free(bdev, mem);
236 			ttm_mem_io_unlock(man);
237 			return -ENOMEM;
238 		}
239 	}
240 	*virtual = addr;
241 	return 0;
242 }
243 
244 static void ttm_mem_reg_iounmap(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem,
245 			 void *virtual)
246 {
247 	struct ttm_mem_type_manager *man;
248 
249 	man = &bdev->man[mem->mem_type];
250 
251 	if (virtual && mem->bus.addr == NULL)
252 		bus_space_unmap(bdev->memt, mem->bus.bsh, mem->bus.size);
253 	(void) ttm_mem_io_lock(man, false);
254 	ttm_mem_io_free(bdev, mem);
255 	ttm_mem_io_unlock(man);
256 }
257 
258 static int ttm_copy_io_page(void *dst, void *src, unsigned long page)
259 {
260 	uint32_t *dstP =
261 	    (uint32_t *) ((unsigned long)dst + (page << PAGE_SHIFT));
262 	uint32_t *srcP =
263 	    (uint32_t *) ((unsigned long)src + (page << PAGE_SHIFT));
264 
265 	int i;
266 	for (i = 0; i < PAGE_SIZE / sizeof(uint32_t); ++i)
267 		iowrite32(ioread32(srcP++), dstP++);
268 	return 0;
269 }
270 
271 #if defined(CONFIG_X86) && defined(__linux__)
272 #define __ttm_kmap_atomic_prot(__page, __prot) kmap_atomic_prot(__page, __prot)
273 #define __ttm_kunmap_atomic(__addr) kunmap_atomic(__addr)
274 #else
275 #define __ttm_kmap_atomic_prot(__page, __prot) vmap(&__page, 1, 0,  __prot)
276 #define __ttm_kunmap_atomic(__addr) vunmap(__addr, PAGE_SIZE)
277 #endif
278 
279 
280 /**
281  * ttm_kmap_atomic_prot - Efficient kernel map of a single page with
282  * specified page protection.
283  *
284  * @page: The page to map.
285  * @prot: The page protection.
286  *
287  * This function maps a TTM page using the kmap_atomic api if available,
288  * otherwise falls back to vmap. The user must make sure that the
289  * specified page does not have an aliased mapping with a different caching
290  * policy unless the architecture explicitly allows it. Also mapping and
291  * unmapping using this api must be correctly nested. Unmapping should
292  * occur in the reverse order of mapping.
293  */
294 void *ttm_kmap_atomic_prot(struct vm_page *page, pgprot_t prot)
295 {
296 #if defined(__amd64__) || defined(__i386__)
297 	if (pgprot_val(prot) == pgprot_val(PAGE_KERNEL))
298 		return kmap_atomic(page);
299 	else
300 #endif
301 		return __ttm_kmap_atomic_prot(page, prot);
302 }
303 EXPORT_SYMBOL(ttm_kmap_atomic_prot);
304 
305 /**
306  * ttm_kunmap_atomic_prot - Unmap a page that was mapped using
307  * ttm_kmap_atomic_prot.
308  *
309  * @addr: The virtual address from the map.
310  * @prot: The page protection.
311  */
312 void ttm_kunmap_atomic_prot(void *addr, pgprot_t prot)
313 {
314 #if defined(__amd64__) || defined(__i386__)
315 	if (pgprot_val(prot) == pgprot_val(PAGE_KERNEL))
316 		kunmap_atomic(addr);
317 	else
318 #endif
319 		__ttm_kunmap_atomic(addr);
320 }
321 EXPORT_SYMBOL(ttm_kunmap_atomic_prot);
322 
323 static int ttm_copy_io_ttm_page(struct ttm_tt *ttm, void *src,
324 				unsigned long page,
325 				pgprot_t prot)
326 {
327 	struct vm_page *d = ttm->pages[page];
328 	void *dst;
329 
330 	if (!d)
331 		return -ENOMEM;
332 
333 	src = (void *)((unsigned long)src + (page << PAGE_SHIFT));
334 	dst = ttm_kmap_atomic_prot(d, prot);
335 	if (!dst)
336 		return -ENOMEM;
337 
338 	memcpy_fromio(dst, src, PAGE_SIZE);
339 
340 	ttm_kunmap_atomic_prot(dst, prot);
341 
342 	return 0;
343 }
344 
345 static int ttm_copy_ttm_io_page(struct ttm_tt *ttm, void *dst,
346 				unsigned long page,
347 				pgprot_t prot)
348 {
349 	struct vm_page *s = ttm->pages[page];
350 	void *src;
351 
352 	if (!s)
353 		return -ENOMEM;
354 
355 	dst = (void *)((unsigned long)dst + (page << PAGE_SHIFT));
356 	src = ttm_kmap_atomic_prot(s, prot);
357 	if (!src)
358 		return -ENOMEM;
359 
360 	memcpy_toio(dst, src, PAGE_SIZE);
361 
362 	ttm_kunmap_atomic_prot(src, prot);
363 
364 	return 0;
365 }
366 
367 int ttm_bo_move_memcpy(struct ttm_buffer_object *bo,
368 		       struct ttm_operation_ctx *ctx,
369 		       struct ttm_mem_reg *new_mem)
370 {
371 	struct ttm_bo_device *bdev = bo->bdev;
372 	struct ttm_mem_type_manager *man = &bdev->man[new_mem->mem_type];
373 	struct ttm_tt *ttm = bo->ttm;
374 	struct ttm_mem_reg *old_mem = &bo->mem;
375 	struct ttm_mem_reg old_copy = *old_mem;
376 	void *old_iomap;
377 	void *new_iomap;
378 	int ret;
379 	unsigned long i;
380 	unsigned long page;
381 	unsigned long add = 0;
382 	int dir;
383 
384 	ret = ttm_bo_wait(bo, ctx->interruptible, ctx->no_wait_gpu);
385 	if (ret)
386 		return ret;
387 
388 	ret = ttm_mem_reg_ioremap(bdev, old_mem, &old_iomap);
389 	if (ret)
390 		return ret;
391 	ret = ttm_mem_reg_ioremap(bdev, new_mem, &new_iomap);
392 	if (ret)
393 		goto out;
394 
395 	/*
396 	 * Single TTM move. NOP.
397 	 */
398 	if (old_iomap == NULL && new_iomap == NULL)
399 		goto out2;
400 
401 	/*
402 	 * Don't move nonexistent data. Clear destination instead.
403 	 */
404 	if (old_iomap == NULL &&
405 	    (ttm == NULL || (ttm->state == tt_unpopulated &&
406 			     !(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)))) {
407 		memset_io(new_iomap, 0, new_mem->num_pages*PAGE_SIZE);
408 		goto out2;
409 	}
410 
411 	/*
412 	 * TTM might be null for moves within the same region.
413 	 */
414 	if (ttm) {
415 		ret = ttm_tt_populate(ttm, ctx);
416 		if (ret)
417 			goto out1;
418 	}
419 
420 	add = 0;
421 	dir = 1;
422 
423 	if ((old_mem->mem_type == new_mem->mem_type) &&
424 	    (new_mem->start < old_mem->start + old_mem->size)) {
425 		dir = -1;
426 		add = new_mem->num_pages - 1;
427 	}
428 
429 	for (i = 0; i < new_mem->num_pages; ++i) {
430 		page = i * dir + add;
431 		if (old_iomap == NULL) {
432 			pgprot_t prot = ttm_io_prot(old_mem->placement,
433 						    PAGE_KERNEL);
434 			ret = ttm_copy_ttm_io_page(ttm, new_iomap, page,
435 						   prot);
436 		} else if (new_iomap == NULL) {
437 			pgprot_t prot = ttm_io_prot(new_mem->placement,
438 						    PAGE_KERNEL);
439 			ret = ttm_copy_io_ttm_page(ttm, old_iomap, page,
440 						   prot);
441 		} else {
442 			ret = ttm_copy_io_page(new_iomap, old_iomap, page);
443 		}
444 		if (ret)
445 			goto out1;
446 	}
447 	mb();
448 out2:
449 	old_copy = *old_mem;
450 	*old_mem = *new_mem;
451 	new_mem->mm_node = NULL;
452 
453 	if (man->flags & TTM_MEMTYPE_FLAG_FIXED) {
454 		ttm_tt_destroy(ttm);
455 		bo->ttm = NULL;
456 	}
457 
458 out1:
459 	ttm_mem_reg_iounmap(bdev, old_mem, new_iomap);
460 out:
461 	ttm_mem_reg_iounmap(bdev, &old_copy, old_iomap);
462 
463 	/*
464 	 * On error, keep the mm node!
465 	 */
466 	if (!ret)
467 		ttm_bo_mem_put(bo, &old_copy);
468 	return ret;
469 }
470 EXPORT_SYMBOL(ttm_bo_move_memcpy);
471 
472 static void ttm_transfered_destroy(struct ttm_buffer_object *bo)
473 {
474 	struct ttm_transfer_obj *fbo;
475 
476 	fbo = container_of(bo, struct ttm_transfer_obj, base);
477 	ttm_bo_put(fbo->bo);
478 	kfree(fbo);
479 }
480 
481 /**
482  * ttm_buffer_object_transfer
483  *
484  * @bo: A pointer to a struct ttm_buffer_object.
485  * @new_obj: A pointer to a pointer to a newly created ttm_buffer_object,
486  * holding the data of @bo with the old placement.
487  *
488  * This is a utility function that may be called after an accelerated move
489  * has been scheduled. A new buffer object is created as a placeholder for
490  * the old data while it's being copied. When that buffer object is idle,
491  * it can be destroyed, releasing the space of the old placement.
492  * Returns:
493  * !0: Failure.
494  */
495 
496 static int ttm_buffer_object_transfer(struct ttm_buffer_object *bo,
497 				      struct ttm_buffer_object **new_obj)
498 {
499 	struct ttm_transfer_obj *fbo;
500 	int ret;
501 
502 	fbo = kmalloc(sizeof(*fbo), GFP_KERNEL);
503 	if (!fbo)
504 		return -ENOMEM;
505 
506 	fbo->base = *bo;
507 	fbo->base.mem.placement |= TTM_PL_FLAG_NO_EVICT;
508 
509 	ttm_bo_get(bo);
510 	fbo->bo = bo;
511 
512 	/**
513 	 * Fix up members that we shouldn't copy directly:
514 	 * TODO: Explicit member copy would probably be better here.
515 	 */
516 
517 	atomic_inc(&ttm_bo_glob.bo_count);
518 	INIT_LIST_HEAD(&fbo->base.ddestroy);
519 	INIT_LIST_HEAD(&fbo->base.lru);
520 	INIT_LIST_HEAD(&fbo->base.swap);
521 	INIT_LIST_HEAD(&fbo->base.io_reserve_lru);
522 	fbo->base.moving = NULL;
523 	drm_vma_node_reset(&fbo->base.base.vma_node);
524 
525 	kref_init(&fbo->base.kref);
526 	fbo->base.destroy = &ttm_transfered_destroy;
527 	fbo->base.acc_size = 0;
528 	if (bo->type != ttm_bo_type_sg)
529 		fbo->base.base.resv = &fbo->base.base._resv;
530 
531 	dma_resv_init(&fbo->base.base._resv);
532 	fbo->base.base.dev = NULL;
533 	ret = dma_resv_trylock(&fbo->base.base._resv);
534 	WARN_ON(!ret);
535 
536 	*new_obj = &fbo->base;
537 	return 0;
538 }
539 
540 #ifdef __linux__
541 pgprot_t ttm_io_prot(uint32_t caching_flags, pgprot_t tmp)
542 {
543 	/* Cached mappings need no adjustment */
544 	if (caching_flags & TTM_PL_FLAG_CACHED)
545 		return tmp;
546 
547 #if defined(__i386__) || defined(__x86_64__)
548 	if (caching_flags & TTM_PL_FLAG_WC)
549 		tmp = pgprot_writecombine(tmp);
550 	else if (boot_cpu_data.x86 > 3)
551 		tmp = pgprot_noncached(tmp);
552 #endif
553 #if defined(__ia64__) || defined(__arm__) || defined(__aarch64__) || \
554     defined(__powerpc__) || defined(__mips__)
555 	if (caching_flags & TTM_PL_FLAG_WC)
556 		tmp = pgprot_writecombine(tmp);
557 	else
558 		tmp = pgprot_noncached(tmp);
559 #endif
560 #if defined(__sparc__)
561 	tmp = pgprot_noncached(tmp);
562 #endif
563 	return tmp;
564 }
565 EXPORT_SYMBOL(ttm_io_prot);
566 #endif
567 
568 pgprot_t ttm_io_prot(uint32_t caching_flags, pgprot_t tmp)
569 {
570 	/* Cached mappings need no adjustment */
571 	if (caching_flags & TTM_PL_FLAG_CACHED)
572 		return tmp;
573 
574 	if (caching_flags & TTM_PL_FLAG_WC)
575 		tmp = pgprot_writecombine(tmp);
576 	else
577 		tmp = pgprot_noncached(tmp);
578 
579 	return tmp;
580 }
581 
582 static int ttm_bo_ioremap(struct ttm_buffer_object *bo,
583 			  unsigned long offset,
584 			  unsigned long size,
585 			  struct ttm_bo_kmap_obj *map)
586 {
587 	int flags;
588 	struct ttm_mem_reg *mem = &bo->mem;
589 
590 	if (bo->mem.bus.addr) {
591 		map->bo_kmap_type = ttm_bo_map_premapped;
592 		map->virtual = (void *)(((u8 *)bo->mem.bus.addr) + offset);
593 	} else {
594 		map->bo_kmap_type = ttm_bo_map_iomap;
595 		if (mem->placement & TTM_PL_FLAG_WC)
596 			flags = BUS_SPACE_MAP_PREFETCHABLE;
597 		else
598 			flags = 0;
599 
600 		if (bus_space_map(bo->bdev->memt,
601 		    mem->bus.base + bo->mem.bus.offset + offset,
602 		    size, BUS_SPACE_MAP_LINEAR | flags,
603 		    &bo->mem.bus.bsh)) {
604 			printf("%s bus_space_map failed\n", __func__);
605 			map->virtual = 0;
606 		} else
607 			map->virtual = bus_space_vaddr(bo->bdev->memt,
608 			    bo->mem.bus.bsh);
609 	}
610 	return (!map->virtual) ? -ENOMEM : 0;
611 }
612 
613 static int ttm_bo_kmap_ttm(struct ttm_buffer_object *bo,
614 			   unsigned long start_page,
615 			   unsigned long num_pages,
616 			   struct ttm_bo_kmap_obj *map)
617 {
618 	struct ttm_mem_reg *mem = &bo->mem;
619 	struct ttm_operation_ctx ctx = {
620 		.interruptible = false,
621 		.no_wait_gpu = false
622 	};
623 	struct ttm_tt *ttm = bo->ttm;
624 	pgprot_t prot;
625 	int ret;
626 
627 	BUG_ON(!ttm);
628 
629 	ret = ttm_tt_populate(ttm, &ctx);
630 	if (ret)
631 		return ret;
632 
633 	if (num_pages == 1 && (mem->placement & TTM_PL_FLAG_CACHED)) {
634 		/*
635 		 * We're mapping a single page, and the desired
636 		 * page protection is consistent with the bo.
637 		 */
638 
639 		map->bo_kmap_type = ttm_bo_map_kmap;
640 		map->page = ttm->pages[start_page];
641 		map->virtual = kmap(map->page);
642 	} else {
643 		/*
644 		 * We need to use vmap to get the desired page protection
645 		 * or to make the buffer object look contiguous.
646 		 */
647 		prot = ttm_io_prot(mem->placement, PAGE_KERNEL);
648 		map->bo_kmap_type = ttm_bo_map_vmap;
649 		map->virtual = vmap(ttm->pages + start_page, num_pages,
650 				    0, prot);
651 	}
652 	return (!map->virtual) ? -ENOMEM : 0;
653 }
654 
655 int ttm_bo_kmap(struct ttm_buffer_object *bo,
656 		unsigned long start_page, unsigned long num_pages,
657 		struct ttm_bo_kmap_obj *map)
658 {
659 	struct ttm_mem_type_manager *man =
660 		&bo->bdev->man[bo->mem.mem_type];
661 	unsigned long offset, size;
662 	int ret;
663 
664 	map->virtual = NULL;
665 	map->bo = bo;
666 	if (num_pages > bo->num_pages)
667 		return -EINVAL;
668 	if (start_page > bo->num_pages)
669 		return -EINVAL;
670 
671 	(void) ttm_mem_io_lock(man, false);
672 	ret = ttm_mem_io_reserve(bo->bdev, &bo->mem);
673 	ttm_mem_io_unlock(man);
674 	if (ret)
675 		return ret;
676 	if (!bo->mem.bus.is_iomem) {
677 		return ttm_bo_kmap_ttm(bo, start_page, num_pages, map);
678 	} else {
679 		offset = start_page << PAGE_SHIFT;
680 		size = num_pages << PAGE_SHIFT;
681 		return ttm_bo_ioremap(bo, offset, size, map);
682 	}
683 }
684 EXPORT_SYMBOL(ttm_bo_kmap);
685 
686 void ttm_bo_kunmap(struct ttm_bo_kmap_obj *map)
687 {
688 	struct ttm_buffer_object *bo = map->bo;
689 	struct ttm_mem_type_manager *man =
690 		&bo->bdev->man[bo->mem.mem_type];
691 
692 	if (!map->virtual)
693 		return;
694 	switch (map->bo_kmap_type) {
695 	case ttm_bo_map_iomap:
696 		bus_space_unmap(bo->bdev->memt, bo->mem.bus.bsh,
697 		    bo->mem.bus.size);
698 		break;
699 	case ttm_bo_map_vmap:
700 		vunmap(map->virtual, bo->mem.bus.size);
701 		break;
702 	case ttm_bo_map_kmap:
703 		kunmap_va(map->virtual);
704 		break;
705 	case ttm_bo_map_premapped:
706 		break;
707 	default:
708 		BUG();
709 	}
710 	(void) ttm_mem_io_lock(man, false);
711 	ttm_mem_io_free(map->bo->bdev, &map->bo->mem);
712 	ttm_mem_io_unlock(man);
713 	map->virtual = NULL;
714 	map->page = NULL;
715 }
716 EXPORT_SYMBOL(ttm_bo_kunmap);
717 
718 int ttm_bo_move_accel_cleanup(struct ttm_buffer_object *bo,
719 			      struct dma_fence *fence,
720 			      bool evict,
721 			      struct ttm_mem_reg *new_mem)
722 {
723 	struct ttm_bo_device *bdev = bo->bdev;
724 	struct ttm_mem_type_manager *man = &bdev->man[new_mem->mem_type];
725 	struct ttm_mem_reg *old_mem = &bo->mem;
726 	int ret;
727 	struct ttm_buffer_object *ghost_obj;
728 
729 	dma_resv_add_excl_fence(bo->base.resv, fence);
730 	if (evict) {
731 		ret = ttm_bo_wait(bo, false, false);
732 		if (ret)
733 			return ret;
734 
735 		if (man->flags & TTM_MEMTYPE_FLAG_FIXED) {
736 			ttm_tt_destroy(bo->ttm);
737 			bo->ttm = NULL;
738 		}
739 		ttm_bo_free_old_node(bo);
740 	} else {
741 		/**
742 		 * This should help pipeline ordinary buffer moves.
743 		 *
744 		 * Hang old buffer memory on a new buffer object,
745 		 * and leave it to be released when the GPU
746 		 * operation has completed.
747 		 */
748 
749 		dma_fence_put(bo->moving);
750 		bo->moving = dma_fence_get(fence);
751 
752 		ret = ttm_buffer_object_transfer(bo, &ghost_obj);
753 		if (ret)
754 			return ret;
755 
756 		dma_resv_add_excl_fence(&ghost_obj->base._resv, fence);
757 
758 		/**
759 		 * If we're not moving to fixed memory, the TTM object
760 		 * needs to stay alive. Otherwhise hang it on the ghost
761 		 * bo to be unbound and destroyed.
762 		 */
763 
764 		if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED))
765 			ghost_obj->ttm = NULL;
766 		else
767 			bo->ttm = NULL;
768 
769 		dma_resv_unlock(&ghost_obj->base._resv);
770 		ttm_bo_put(ghost_obj);
771 	}
772 
773 	*old_mem = *new_mem;
774 	new_mem->mm_node = NULL;
775 
776 	return 0;
777 }
778 EXPORT_SYMBOL(ttm_bo_move_accel_cleanup);
779 
780 int ttm_bo_pipeline_move(struct ttm_buffer_object *bo,
781 			 struct dma_fence *fence, bool evict,
782 			 struct ttm_mem_reg *new_mem)
783 {
784 	struct ttm_bo_device *bdev = bo->bdev;
785 	struct ttm_mem_reg *old_mem = &bo->mem;
786 
787 	struct ttm_mem_type_manager *from = &bdev->man[old_mem->mem_type];
788 	struct ttm_mem_type_manager *to = &bdev->man[new_mem->mem_type];
789 
790 	int ret;
791 
792 	dma_resv_add_excl_fence(bo->base.resv, fence);
793 
794 	if (!evict) {
795 		struct ttm_buffer_object *ghost_obj;
796 
797 		/**
798 		 * This should help pipeline ordinary buffer moves.
799 		 *
800 		 * Hang old buffer memory on a new buffer object,
801 		 * and leave it to be released when the GPU
802 		 * operation has completed.
803 		 */
804 
805 		dma_fence_put(bo->moving);
806 		bo->moving = dma_fence_get(fence);
807 
808 		ret = ttm_buffer_object_transfer(bo, &ghost_obj);
809 		if (ret)
810 			return ret;
811 
812 		dma_resv_add_excl_fence(&ghost_obj->base._resv, fence);
813 
814 		/**
815 		 * If we're not moving to fixed memory, the TTM object
816 		 * needs to stay alive. Otherwhise hang it on the ghost
817 		 * bo to be unbound and destroyed.
818 		 */
819 
820 		if (!(to->flags & TTM_MEMTYPE_FLAG_FIXED))
821 			ghost_obj->ttm = NULL;
822 		else
823 			bo->ttm = NULL;
824 
825 		dma_resv_unlock(&ghost_obj->base._resv);
826 		ttm_bo_put(ghost_obj);
827 
828 	} else if (from->flags & TTM_MEMTYPE_FLAG_FIXED) {
829 
830 		/**
831 		 * BO doesn't have a TTM we need to bind/unbind. Just remember
832 		 * this eviction and free up the allocation
833 		 */
834 
835 		spin_lock(&from->move_lock);
836 		if (!from->move || dma_fence_is_later(fence, from->move)) {
837 			dma_fence_put(from->move);
838 			from->move = dma_fence_get(fence);
839 		}
840 		spin_unlock(&from->move_lock);
841 
842 		ttm_bo_free_old_node(bo);
843 
844 		dma_fence_put(bo->moving);
845 		bo->moving = dma_fence_get(fence);
846 
847 	} else {
848 		/**
849 		 * Last resort, wait for the move to be completed.
850 		 *
851 		 * Should never happen in pratice.
852 		 */
853 
854 		ret = ttm_bo_wait(bo, false, false);
855 		if (ret)
856 			return ret;
857 
858 		if (to->flags & TTM_MEMTYPE_FLAG_FIXED) {
859 			ttm_tt_destroy(bo->ttm);
860 			bo->ttm = NULL;
861 		}
862 		ttm_bo_free_old_node(bo);
863 	}
864 
865 	*old_mem = *new_mem;
866 	new_mem->mm_node = NULL;
867 
868 	return 0;
869 }
870 EXPORT_SYMBOL(ttm_bo_pipeline_move);
871 
872 int ttm_bo_pipeline_gutting(struct ttm_buffer_object *bo)
873 {
874 	struct ttm_buffer_object *ghost;
875 	int ret;
876 
877 	ret = ttm_buffer_object_transfer(bo, &ghost);
878 	if (ret)
879 		return ret;
880 
881 	ret = dma_resv_copy_fences(&ghost->base._resv, bo->base.resv);
882 	/* Last resort, wait for the BO to be idle when we are OOM */
883 	if (ret)
884 		ttm_bo_wait(bo, false, false);
885 
886 	memset(&bo->mem, 0, sizeof(bo->mem));
887 	bo->mem.mem_type = TTM_PL_SYSTEM;
888 	bo->ttm = NULL;
889 
890 	dma_resv_unlock(&ghost->base._resv);
891 	ttm_bo_put(ghost);
892 
893 	return 0;
894 }
895