1 /* SPDX-License-Identifier: GPL-2.0 OR MIT */ 2 /************************************************************************** 3 * 4 * Copyright (c) 2007-2009 VMware, Inc., Palo Alto, CA., USA 5 * All Rights Reserved. 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a 8 * copy of this software and associated documentation files (the 9 * "Software"), to deal in the Software without restriction, including 10 * without limitation the rights to use, copy, modify, merge, publish, 11 * distribute, sub license, and/or sell copies of the Software, and to 12 * permit persons to whom the Software is furnished to do so, subject to 13 * the following conditions: 14 * 15 * The above copyright notice and this permission notice (including the 16 * next paragraph) shall be included in all copies or substantial portions 17 * of the Software. 18 * 19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 21 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 22 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 23 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 24 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 25 * USE OR OTHER DEALINGS IN THE SOFTWARE. 26 * 27 **************************************************************************/ 28 /* 29 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com> 30 */ 31 32 #include <drm/ttm/ttm_bo_driver.h> 33 #include <drm/ttm/ttm_placement.h> 34 #include <drm/drm_cache.h> 35 #include <drm/drm_vma_manager.h> 36 #include <linux/dma-buf-map.h> 37 #include <linux/io.h> 38 #include <linux/highmem.h> 39 #include <linux/wait.h> 40 #include <linux/slab.h> 41 #include <linux/vmalloc.h> 42 #include <linux/module.h> 43 #include <linux/dma-resv.h> 44 45 struct ttm_transfer_obj { 46 struct ttm_buffer_object base; 47 struct ttm_buffer_object *bo; 48 }; 49 50 int ttm_mem_io_reserve(struct ttm_device *bdev, 51 struct ttm_resource *mem) 52 { 53 if (mem->bus.offset || mem->bus.addr) 54 return 0; 55 56 mem->bus.is_iomem = false; 57 if (!bdev->funcs->io_mem_reserve) 58 return 0; 59 60 return bdev->funcs->io_mem_reserve(bdev, mem); 61 } 62 63 void ttm_mem_io_free(struct ttm_device *bdev, 64 struct ttm_resource *mem) 65 { 66 if (!mem) 67 return; 68 69 if (!mem->bus.offset && !mem->bus.addr) 70 return; 71 72 if (bdev->funcs->io_mem_free) 73 bdev->funcs->io_mem_free(bdev, mem); 74 75 mem->bus.offset = 0; 76 mem->bus.addr = NULL; 77 } 78 79 /** 80 * ttm_move_memcpy - Helper to perform a memcpy ttm move operation. 81 * @bo: The struct ttm_buffer_object. 82 * @new_mem: The struct ttm_resource we're moving to (copy destination). 83 * @new_iter: A struct ttm_kmap_iter representing the destination resource. 84 * @src_iter: A struct ttm_kmap_iter representing the source resource. 85 * 86 * This function is intended to be able to move out async under a 87 * dma-fence if desired. 88 */ 89 void ttm_move_memcpy(struct ttm_buffer_object *bo, 90 u32 num_pages, 91 struct ttm_kmap_iter *dst_iter, 92 struct ttm_kmap_iter *src_iter) 93 { 94 const struct ttm_kmap_iter_ops *dst_ops = dst_iter->ops; 95 const struct ttm_kmap_iter_ops *src_ops = src_iter->ops; 96 struct ttm_tt *ttm = bo->ttm; 97 struct dma_buf_map src_map, dst_map; 98 pgoff_t i; 99 100 /* Single TTM move. NOP */ 101 if (dst_ops->maps_tt && src_ops->maps_tt) 102 return; 103 104 /* Don't move nonexistent data. Clear destination instead. */ 105 if (src_ops->maps_tt && (!ttm || !ttm_tt_is_populated(ttm))) { 106 if (ttm && !(ttm->page_flags & TTM_PAGE_FLAG_ZERO_ALLOC)) 107 return; 108 109 for (i = 0; i < num_pages; ++i) { 110 dst_ops->map_local(dst_iter, &dst_map, i, bo->bdev->memt); 111 if (dst_map.is_iomem) 112 memset_io(dst_map.vaddr_iomem, 0, PAGE_SIZE); 113 else 114 memset(dst_map.vaddr, 0, PAGE_SIZE); 115 if (dst_ops->unmap_local) 116 dst_ops->unmap_local(dst_iter, &dst_map, bo->bdev->memt); 117 } 118 return; 119 } 120 121 for (i = 0; i < num_pages; ++i) { 122 dst_ops->map_local(dst_iter, &dst_map, i, bo->bdev->memt); 123 src_ops->map_local(src_iter, &src_map, i, bo->bdev->memt); 124 125 drm_memcpy_from_wc(&dst_map, &src_map, PAGE_SIZE); 126 127 if (src_ops->unmap_local) 128 src_ops->unmap_local(src_iter, &src_map, bo->bdev->memt); 129 if (dst_ops->unmap_local) 130 dst_ops->unmap_local(dst_iter, &dst_map, bo->bdev->memt); 131 } 132 } 133 EXPORT_SYMBOL(ttm_move_memcpy); 134 135 int ttm_bo_move_memcpy(struct ttm_buffer_object *bo, 136 struct ttm_operation_ctx *ctx, 137 struct ttm_resource *dst_mem) 138 { 139 struct ttm_device *bdev = bo->bdev; 140 struct ttm_resource_manager *dst_man = 141 ttm_manager_type(bo->bdev, dst_mem->mem_type); 142 struct ttm_tt *ttm = bo->ttm; 143 struct ttm_resource *src_mem = bo->resource; 144 struct ttm_resource_manager *src_man = 145 ttm_manager_type(bdev, src_mem->mem_type); 146 union { 147 struct ttm_kmap_iter_tt tt; 148 struct ttm_kmap_iter_linear_io io; 149 } _dst_iter, _src_iter; 150 struct ttm_kmap_iter *dst_iter, *src_iter; 151 int ret = 0; 152 153 if (ttm && ((ttm->page_flags & TTM_PAGE_FLAG_SWAPPED) || 154 dst_man->use_tt)) { 155 ret = ttm_tt_populate(bdev, ttm, ctx); 156 if (ret) 157 return ret; 158 } 159 160 dst_iter = ttm_kmap_iter_linear_io_init(&_dst_iter.io, bdev, dst_mem); 161 if (PTR_ERR(dst_iter) == -EINVAL && dst_man->use_tt) 162 dst_iter = ttm_kmap_iter_tt_init(&_dst_iter.tt, bo->ttm); 163 if (IS_ERR(dst_iter)) 164 return PTR_ERR(dst_iter); 165 166 src_iter = ttm_kmap_iter_linear_io_init(&_src_iter.io, bdev, src_mem); 167 if (PTR_ERR(src_iter) == -EINVAL && src_man->use_tt) 168 src_iter = ttm_kmap_iter_tt_init(&_src_iter.tt, bo->ttm); 169 if (IS_ERR(src_iter)) { 170 ret = PTR_ERR(src_iter); 171 goto out_src_iter; 172 } 173 174 ttm_move_memcpy(bo, dst_mem->num_pages, dst_iter, src_iter); 175 176 if (!src_iter->ops->maps_tt) 177 ttm_kmap_iter_linear_io_fini(&_src_iter.io, bdev, src_mem); 178 ttm_bo_move_sync_cleanup(bo, dst_mem); 179 180 out_src_iter: 181 if (!dst_iter->ops->maps_tt) 182 ttm_kmap_iter_linear_io_fini(&_dst_iter.io, bdev, dst_mem); 183 184 return ret; 185 } 186 EXPORT_SYMBOL(ttm_bo_move_memcpy); 187 188 static void ttm_transfered_destroy(struct ttm_buffer_object *bo) 189 { 190 struct ttm_transfer_obj *fbo; 191 192 fbo = container_of(bo, struct ttm_transfer_obj, base); 193 dma_resv_fini(&fbo->base.base._resv); 194 ttm_bo_put(fbo->bo); 195 kfree(fbo); 196 } 197 198 /** 199 * ttm_buffer_object_transfer 200 * 201 * @bo: A pointer to a struct ttm_buffer_object. 202 * @new_obj: A pointer to a pointer to a newly created ttm_buffer_object, 203 * holding the data of @bo with the old placement. 204 * 205 * This is a utility function that may be called after an accelerated move 206 * has been scheduled. A new buffer object is created as a placeholder for 207 * the old data while it's being copied. When that buffer object is idle, 208 * it can be destroyed, releasing the space of the old placement. 209 * Returns: 210 * !0: Failure. 211 */ 212 213 static int ttm_buffer_object_transfer(struct ttm_buffer_object *bo, 214 struct ttm_buffer_object **new_obj) 215 { 216 struct ttm_transfer_obj *fbo; 217 int ret; 218 219 fbo = kmalloc(sizeof(*fbo), GFP_KERNEL); 220 if (!fbo) 221 return -ENOMEM; 222 223 fbo->base = *bo; 224 225 ttm_bo_get(bo); 226 fbo->bo = bo; 227 228 /** 229 * Fix up members that we shouldn't copy directly: 230 * TODO: Explicit member copy would probably be better here. 231 */ 232 233 atomic_inc(&ttm_glob.bo_count); 234 INIT_LIST_HEAD(&fbo->base.ddestroy); 235 INIT_LIST_HEAD(&fbo->base.lru); 236 fbo->base.moving = NULL; 237 drm_vma_node_reset(&fbo->base.base.vma_node); 238 239 kref_init(&fbo->base.kref); 240 fbo->base.destroy = &ttm_transfered_destroy; 241 fbo->base.pin_count = 0; 242 if (bo->type != ttm_bo_type_sg) 243 fbo->base.base.resv = &fbo->base.base._resv; 244 245 dma_resv_init(&fbo->base.base._resv); 246 fbo->base.base.dev = NULL; 247 ret = dma_resv_trylock(&fbo->base.base._resv); 248 WARN_ON(!ret); 249 250 ttm_bo_move_to_lru_tail_unlocked(&fbo->base); 251 252 *new_obj = &fbo->base; 253 return 0; 254 } 255 256 pgprot_t ttm_io_prot(struct ttm_buffer_object *bo, struct ttm_resource *res, 257 pgprot_t tmp) 258 { 259 struct ttm_resource_manager *man; 260 enum ttm_caching caching; 261 262 man = ttm_manager_type(bo->bdev, res->mem_type); 263 caching = man->use_tt ? bo->ttm->caching : res->bus.caching; 264 265 return ttm_prot_from_caching(caching, tmp); 266 } 267 EXPORT_SYMBOL(ttm_io_prot); 268 269 static int ttm_bo_ioremap(struct ttm_buffer_object *bo, 270 unsigned long offset, 271 unsigned long size, 272 struct ttm_bo_kmap_obj *map) 273 { 274 int flags; 275 struct ttm_resource *mem = bo->resource; 276 277 if (bo->resource->bus.addr) { 278 map->bo_kmap_type = ttm_bo_map_premapped; 279 map->virtual = ((u8 *)bo->resource->bus.addr) + offset; 280 } else { 281 map->bo_kmap_type = ttm_bo_map_iomap; 282 if (mem->bus.caching == ttm_write_combined) 283 flags = BUS_SPACE_MAP_PREFETCHABLE; 284 #ifdef CONFIG_X86 285 else if (mem->bus.caching == ttm_cached) 286 flags = BUS_SPACE_MAP_CACHEABLE; 287 #endif 288 else 289 flags = 0; 290 if (bus_space_map(bo->bdev->memt, 291 bo->resource->bus.offset + offset, 292 size, BUS_SPACE_MAP_LINEAR | flags, 293 &bo->resource->bus.bsh)) { 294 printf("%s bus_space_map failed\n", __func__); 295 map->virtual = 0; 296 } else { 297 map->virtual = bus_space_vaddr(bo->bdev->memt, 298 bo->resource->bus.bsh); 299 } 300 } 301 return (!map->virtual) ? -ENOMEM : 0; 302 } 303 304 static int ttm_bo_kmap_ttm(struct ttm_buffer_object *bo, 305 unsigned long start_page, 306 unsigned long num_pages, 307 struct ttm_bo_kmap_obj *map) 308 { 309 struct ttm_resource *mem = bo->resource; 310 struct ttm_operation_ctx ctx = { 311 .interruptible = false, 312 .no_wait_gpu = false 313 }; 314 struct ttm_tt *ttm = bo->ttm; 315 pgprot_t prot; 316 int ret; 317 318 BUG_ON(!ttm); 319 320 ret = ttm_tt_populate(bo->bdev, ttm, &ctx); 321 if (ret) 322 return ret; 323 324 if (num_pages == 1 && ttm->caching == ttm_cached) { 325 /* 326 * We're mapping a single page, and the desired 327 * page protection is consistent with the bo. 328 */ 329 330 map->bo_kmap_type = ttm_bo_map_kmap; 331 map->page = ttm->pages[start_page]; 332 map->virtual = kmap(map->page); 333 } else { 334 /* 335 * We need to use vmap to get the desired page protection 336 * or to make the buffer object look contiguous. 337 */ 338 prot = ttm_io_prot(bo, mem, PAGE_KERNEL); 339 map->bo_kmap_type = ttm_bo_map_vmap; 340 map->virtual = vmap(ttm->pages + start_page, num_pages, 341 0, prot); 342 } 343 return (!map->virtual) ? -ENOMEM : 0; 344 } 345 346 int ttm_bo_kmap(struct ttm_buffer_object *bo, 347 unsigned long start_page, unsigned long num_pages, 348 struct ttm_bo_kmap_obj *map) 349 { 350 unsigned long offset, size; 351 int ret; 352 353 map->virtual = NULL; 354 map->bo = bo; 355 if (num_pages > bo->resource->num_pages) 356 return -EINVAL; 357 if ((start_page + num_pages) > bo->resource->num_pages) 358 return -EINVAL; 359 360 ret = ttm_mem_io_reserve(bo->bdev, bo->resource); 361 if (ret) 362 return ret; 363 if (!bo->resource->bus.is_iomem) { 364 return ttm_bo_kmap_ttm(bo, start_page, num_pages, map); 365 } else { 366 offset = start_page << PAGE_SHIFT; 367 size = num_pages << PAGE_SHIFT; 368 return ttm_bo_ioremap(bo, offset, size, map); 369 } 370 } 371 EXPORT_SYMBOL(ttm_bo_kmap); 372 373 void ttm_bo_kunmap(struct ttm_bo_kmap_obj *map) 374 { 375 if (!map->virtual) 376 return; 377 switch (map->bo_kmap_type) { 378 case ttm_bo_map_iomap: 379 bus_space_unmap(map->bo->bdev->memt, map->bo->resource->bus.bsh, 380 (size_t)map->bo->resource->num_pages << PAGE_SHIFT); 381 break; 382 case ttm_bo_map_vmap: 383 vunmap(map->virtual, 384 (size_t)map->bo->resource->num_pages << PAGE_SHIFT); 385 break; 386 case ttm_bo_map_kmap: 387 kunmap_va(map->virtual); 388 break; 389 case ttm_bo_map_premapped: 390 break; 391 default: 392 BUG(); 393 } 394 ttm_mem_io_free(map->bo->bdev, map->bo->resource); 395 map->virtual = NULL; 396 map->page = NULL; 397 } 398 EXPORT_SYMBOL(ttm_bo_kunmap); 399 400 int ttm_bo_vmap(struct ttm_buffer_object *bo, struct dma_buf_map *map) 401 { 402 int flags; 403 struct ttm_resource *mem = bo->resource; 404 int ret; 405 406 ret = ttm_mem_io_reserve(bo->bdev, mem); 407 if (ret) 408 return ret; 409 410 if (mem->bus.is_iomem) { 411 void __iomem *vaddr_iomem; 412 413 if (mem->bus.addr) 414 vaddr_iomem = (void __iomem *)mem->bus.addr; 415 else { 416 if (mem->bus.caching == ttm_write_combined) 417 flags = BUS_SPACE_MAP_PREFETCHABLE; 418 #ifdef CONFIG_X86 419 else if (mem->bus.caching == ttm_cached) 420 flags = BUS_SPACE_MAP_CACHEABLE; 421 #endif 422 else 423 flags = 0; 424 if (bus_space_map(bo->bdev->memt, mem->bus.offset, 425 bo->base.size, BUS_SPACE_MAP_LINEAR | flags, 426 &mem->bus.bsh)) { 427 printf("%s bus_space_map failed\n", __func__); 428 return -ENOMEM; 429 } 430 vaddr_iomem = bus_space_vaddr(bo->bdev->memt, 431 mem->bus.bsh); 432 } 433 434 if (!vaddr_iomem) 435 return -ENOMEM; 436 437 dma_buf_map_set_vaddr_iomem(map, vaddr_iomem); 438 439 } else { 440 struct ttm_operation_ctx ctx = { 441 .interruptible = false, 442 .no_wait_gpu = false 443 }; 444 struct ttm_tt *ttm = bo->ttm; 445 pgprot_t prot; 446 void *vaddr; 447 448 ret = ttm_tt_populate(bo->bdev, ttm, &ctx); 449 if (ret) 450 return ret; 451 452 /* 453 * We need to use vmap to get the desired page protection 454 * or to make the buffer object look contiguous. 455 */ 456 prot = ttm_io_prot(bo, mem, PAGE_KERNEL); 457 vaddr = vmap(ttm->pages, ttm->num_pages, 0, prot); 458 if (!vaddr) 459 return -ENOMEM; 460 461 dma_buf_map_set_vaddr(map, vaddr); 462 } 463 464 return 0; 465 } 466 EXPORT_SYMBOL(ttm_bo_vmap); 467 468 void ttm_bo_vunmap(struct ttm_buffer_object *bo, struct dma_buf_map *map) 469 { 470 struct ttm_resource *mem = bo->resource; 471 472 if (dma_buf_map_is_null(map)) 473 return; 474 475 if (!map->is_iomem) 476 vunmap(map->vaddr, 477 (size_t)mem->num_pages << PAGE_SHIFT); 478 else if (!mem->bus.addr) 479 bus_space_unmap(bo->bdev->memt, mem->bus.bsh, 480 (size_t)mem->num_pages << PAGE_SHIFT); 481 dma_buf_map_clear(map); 482 483 ttm_mem_io_free(bo->bdev, bo->resource); 484 } 485 EXPORT_SYMBOL(ttm_bo_vunmap); 486 487 static int ttm_bo_wait_free_node(struct ttm_buffer_object *bo, 488 bool dst_use_tt) 489 { 490 int ret; 491 ret = ttm_bo_wait(bo, false, false); 492 if (ret) 493 return ret; 494 495 if (!dst_use_tt) 496 ttm_bo_tt_destroy(bo); 497 ttm_resource_free(bo, &bo->resource); 498 return 0; 499 } 500 501 static int ttm_bo_move_to_ghost(struct ttm_buffer_object *bo, 502 struct dma_fence *fence, 503 bool dst_use_tt) 504 { 505 struct ttm_buffer_object *ghost_obj; 506 int ret; 507 508 /** 509 * This should help pipeline ordinary buffer moves. 510 * 511 * Hang old buffer memory on a new buffer object, 512 * and leave it to be released when the GPU 513 * operation has completed. 514 */ 515 516 dma_fence_put(bo->moving); 517 bo->moving = dma_fence_get(fence); 518 519 ret = ttm_buffer_object_transfer(bo, &ghost_obj); 520 if (ret) 521 return ret; 522 523 dma_resv_add_excl_fence(&ghost_obj->base._resv, fence); 524 525 /** 526 * If we're not moving to fixed memory, the TTM object 527 * needs to stay alive. Otherwhise hang it on the ghost 528 * bo to be unbound and destroyed. 529 */ 530 531 if (dst_use_tt) 532 ghost_obj->ttm = NULL; 533 else 534 bo->ttm = NULL; 535 bo->resource = NULL; 536 537 dma_resv_unlock(&ghost_obj->base._resv); 538 ttm_bo_put(ghost_obj); 539 return 0; 540 } 541 542 static void ttm_bo_move_pipeline_evict(struct ttm_buffer_object *bo, 543 struct dma_fence *fence) 544 { 545 struct ttm_device *bdev = bo->bdev; 546 struct ttm_resource_manager *from; 547 548 from = ttm_manager_type(bdev, bo->resource->mem_type); 549 550 /** 551 * BO doesn't have a TTM we need to bind/unbind. Just remember 552 * this eviction and free up the allocation 553 */ 554 spin_lock(&from->move_lock); 555 if (!from->move || dma_fence_is_later(fence, from->move)) { 556 dma_fence_put(from->move); 557 from->move = dma_fence_get(fence); 558 } 559 spin_unlock(&from->move_lock); 560 561 ttm_resource_free(bo, &bo->resource); 562 563 dma_fence_put(bo->moving); 564 bo->moving = dma_fence_get(fence); 565 } 566 567 int ttm_bo_move_accel_cleanup(struct ttm_buffer_object *bo, 568 struct dma_fence *fence, 569 bool evict, 570 bool pipeline, 571 struct ttm_resource *new_mem) 572 { 573 struct ttm_device *bdev = bo->bdev; 574 struct ttm_resource_manager *from = ttm_manager_type(bdev, bo->resource->mem_type); 575 struct ttm_resource_manager *man = ttm_manager_type(bdev, new_mem->mem_type); 576 int ret = 0; 577 578 dma_resv_add_excl_fence(bo->base.resv, fence); 579 if (!evict) 580 ret = ttm_bo_move_to_ghost(bo, fence, man->use_tt); 581 else if (!from->use_tt && pipeline) 582 ttm_bo_move_pipeline_evict(bo, fence); 583 else 584 ret = ttm_bo_wait_free_node(bo, man->use_tt); 585 586 if (ret) 587 return ret; 588 589 ttm_bo_assign_mem(bo, new_mem); 590 591 return 0; 592 } 593 EXPORT_SYMBOL(ttm_bo_move_accel_cleanup); 594 595 /** 596 * ttm_bo_pipeline_gutting - purge the contents of a bo 597 * @bo: The buffer object 598 * 599 * Purge the contents of a bo, async if the bo is not idle. 600 * After a successful call, the bo is left unpopulated in 601 * system placement. The function may wait uninterruptible 602 * for idle on OOM. 603 * 604 * Return: 0 if successful, negative error code on failure. 605 */ 606 int ttm_bo_pipeline_gutting(struct ttm_buffer_object *bo) 607 { 608 static const struct ttm_place sys_mem = { .mem_type = TTM_PL_SYSTEM }; 609 struct ttm_buffer_object *ghost; 610 struct ttm_resource *sys_res; 611 struct ttm_tt *ttm; 612 int ret; 613 614 ret = ttm_resource_alloc(bo, &sys_mem, &sys_res); 615 if (ret) 616 return ret; 617 618 /* If already idle, no need for ghost object dance. */ 619 ret = ttm_bo_wait(bo, false, true); 620 if (ret != -EBUSY) { 621 if (!bo->ttm) { 622 /* See comment below about clearing. */ 623 ret = ttm_tt_create(bo, true); 624 if (ret) 625 goto error_free_sys_mem; 626 } else { 627 ttm_tt_unpopulate(bo->bdev, bo->ttm); 628 if (bo->type == ttm_bo_type_device) 629 ttm_tt_mark_for_clear(bo->ttm); 630 } 631 ttm_resource_free(bo, &bo->resource); 632 ttm_bo_assign_mem(bo, sys_res); 633 return 0; 634 } 635 636 /* 637 * We need an unpopulated ttm_tt after giving our current one, 638 * if any, to the ghost object. And we can't afford to fail 639 * creating one *after* the operation. If the bo subsequently gets 640 * resurrected, make sure it's cleared (if ttm_bo_type_device) 641 * to avoid leaking sensitive information to user-space. 642 */ 643 644 ttm = bo->ttm; 645 bo->ttm = NULL; 646 ret = ttm_tt_create(bo, true); 647 swap(bo->ttm, ttm); 648 if (ret) 649 goto error_free_sys_mem; 650 651 ret = ttm_buffer_object_transfer(bo, &ghost); 652 if (ret) 653 goto error_destroy_tt; 654 655 ret = dma_resv_copy_fences(&ghost->base._resv, bo->base.resv); 656 /* Last resort, wait for the BO to be idle when we are OOM */ 657 if (ret) 658 ttm_bo_wait(bo, false, false); 659 660 dma_resv_unlock(&ghost->base._resv); 661 ttm_bo_put(ghost); 662 bo->ttm = ttm; 663 bo->resource = NULL; 664 ttm_bo_assign_mem(bo, sys_res); 665 return 0; 666 667 error_destroy_tt: 668 ttm_tt_destroy(bo->bdev, ttm); 669 670 error_free_sys_mem: 671 ttm_resource_free(bo, &sys_res); 672 return ret; 673 } 674