xref: /openbsd-src/sys/dev/pci/drm/ttm/ttm_bo.c (revision ffcef06798eb7b98532e76a80212f0772bebc4f6)
1 /* SPDX-License-Identifier: GPL-2.0 OR MIT */
2 /**************************************************************************
3  *
4  * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
22  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
23  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
24  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
25  * USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  **************************************************************************/
28 /*
29  * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
30  */
31 
32 #define pr_fmt(fmt) "[TTM] " fmt
33 
34 #include <drm/ttm/ttm_module.h>
35 #include <drm/ttm/ttm_bo_driver.h>
36 #include <drm/ttm/ttm_placement.h>
37 #include <linux/jiffies.h>
38 #include <linux/slab.h>
39 #include <linux/sched.h>
40 #include <linux/mm.h>
41 #include <linux/file.h>
42 #include <linux/module.h>
43 #include <linux/atomic.h>
44 #include <linux/dma-resv.h>
45 
46 static void ttm_bo_global_kobj_release(struct kobject *kobj);
47 
48 /**
49  * ttm_global_mutex - protecting the global BO state
50  */
51 DEFINE_MUTEX(ttm_global_mutex);
52 unsigned ttm_bo_glob_use_count;
53 struct ttm_bo_global ttm_bo_glob;
54 EXPORT_SYMBOL(ttm_bo_glob);
55 
56 #ifdef notyet
57 static struct attribute ttm_bo_count = {
58 	.name = "bo_count",
59 	.mode = S_IRUGO
60 };
61 #endif
62 
63 struct kobject *
64 ttm_get_kobj(void)
65 {
66 	return (NULL);
67 }
68 
69 /* default destructor */
70 static void ttm_bo_default_destroy(struct ttm_buffer_object *bo)
71 {
72 	kfree(bo);
73 }
74 
75 static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo,
76 					struct ttm_placement *placement)
77 {
78 	struct drm_printer p = drm_debug_printer(TTM_PFX);
79 	struct ttm_resource_manager *man;
80 	int i, mem_type;
81 
82 	drm_printf(&p, "No space for %p (%lu pages, %luK, %luM)\n",
83 		   bo, bo->mem.num_pages, bo->mem.size >> 10,
84 		   bo->mem.size >> 20);
85 	for (i = 0; i < placement->num_placement; i++) {
86 		mem_type = placement->placement[i].mem_type;
87 		drm_printf(&p, "  placement[%d]=0x%08X (%d)\n",
88 			   i, placement->placement[i].flags, mem_type);
89 		man = ttm_manager_type(bo->bdev, mem_type);
90 		ttm_resource_manager_debug(man, &p);
91 	}
92 }
93 
94 #ifdef notyet
95 static ssize_t ttm_bo_global_show(struct kobject *kobj,
96 				  struct attribute *attr,
97 				  char *buffer)
98 {
99 	struct ttm_bo_global *glob =
100 		container_of(kobj, struct ttm_bo_global, kobj);
101 
102 	return snprintf(buffer, PAGE_SIZE, "%d\n",
103 				atomic_read(&glob->bo_count));
104 }
105 
106 static struct attribute *ttm_bo_global_attrs[] = {
107 	&ttm_bo_count,
108 	NULL
109 };
110 
111 static const struct sysfs_ops ttm_bo_global_ops = {
112 	.show = &ttm_bo_global_show
113 };
114 #endif
115 
116 static struct kobj_type ttm_bo_glob_kobj_type  = {
117 	.release = &ttm_bo_global_kobj_release,
118 #ifdef __linux__
119 	.sysfs_ops = &ttm_bo_global_ops,
120 	.default_attrs = ttm_bo_global_attrs
121 #endif
122 };
123 
124 static void ttm_bo_add_mem_to_lru(struct ttm_buffer_object *bo,
125 				  struct ttm_resource *mem)
126 {
127 	struct ttm_bo_device *bdev = bo->bdev;
128 	struct ttm_resource_manager *man;
129 
130 	if (!list_empty(&bo->lru))
131 		return;
132 
133 	if (mem->placement & TTM_PL_FLAG_NO_EVICT)
134 		return;
135 
136 	man = ttm_manager_type(bdev, mem->mem_type);
137 	list_add_tail(&bo->lru, &man->lru[bo->priority]);
138 
139 	if (man->use_tt && bo->ttm &&
140 	    !(bo->ttm->page_flags & (TTM_PAGE_FLAG_SG |
141 				     TTM_PAGE_FLAG_SWAPPED))) {
142 		list_add_tail(&bo->swap, &ttm_bo_glob.swap_lru[bo->priority]);
143 	}
144 }
145 
146 static void ttm_bo_del_from_lru(struct ttm_buffer_object *bo)
147 {
148 	struct ttm_bo_device *bdev = bo->bdev;
149 	bool notify = false;
150 
151 	if (!list_empty(&bo->swap)) {
152 		list_del_init(&bo->swap);
153 		notify = true;
154 	}
155 	if (!list_empty(&bo->lru)) {
156 		list_del_init(&bo->lru);
157 		notify = true;
158 	}
159 
160 	if (notify && bdev->driver->del_from_lru_notify)
161 		bdev->driver->del_from_lru_notify(bo);
162 }
163 
164 static void ttm_bo_bulk_move_set_pos(struct ttm_lru_bulk_move_pos *pos,
165 				     struct ttm_buffer_object *bo)
166 {
167 	if (!pos->first)
168 		pos->first = bo;
169 	pos->last = bo;
170 }
171 
172 void ttm_bo_move_to_lru_tail(struct ttm_buffer_object *bo,
173 			     struct ttm_lru_bulk_move *bulk)
174 {
175 	dma_resv_assert_held(bo->base.resv);
176 
177 	ttm_bo_del_from_lru(bo);
178 	ttm_bo_add_mem_to_lru(bo, &bo->mem);
179 
180 	if (bulk && !(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) {
181 		switch (bo->mem.mem_type) {
182 		case TTM_PL_TT:
183 			ttm_bo_bulk_move_set_pos(&bulk->tt[bo->priority], bo);
184 			break;
185 
186 		case TTM_PL_VRAM:
187 			ttm_bo_bulk_move_set_pos(&bulk->vram[bo->priority], bo);
188 			break;
189 		}
190 		if (bo->ttm && !(bo->ttm->page_flags &
191 				 (TTM_PAGE_FLAG_SG | TTM_PAGE_FLAG_SWAPPED)))
192 			ttm_bo_bulk_move_set_pos(&bulk->swap[bo->priority], bo);
193 	}
194 }
195 EXPORT_SYMBOL(ttm_bo_move_to_lru_tail);
196 
197 void ttm_bo_bulk_move_lru_tail(struct ttm_lru_bulk_move *bulk)
198 {
199 	unsigned i;
200 
201 	for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) {
202 		struct ttm_lru_bulk_move_pos *pos = &bulk->tt[i];
203 		struct ttm_resource_manager *man;
204 
205 		if (!pos->first)
206 			continue;
207 
208 		dma_resv_assert_held(pos->first->base.resv);
209 		dma_resv_assert_held(pos->last->base.resv);
210 
211 		man = ttm_manager_type(pos->first->bdev, TTM_PL_TT);
212 		list_bulk_move_tail(&man->lru[i], &pos->first->lru,
213 				    &pos->last->lru);
214 	}
215 
216 	for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) {
217 		struct ttm_lru_bulk_move_pos *pos = &bulk->vram[i];
218 		struct ttm_resource_manager *man;
219 
220 		if (!pos->first)
221 			continue;
222 
223 		dma_resv_assert_held(pos->first->base.resv);
224 		dma_resv_assert_held(pos->last->base.resv);
225 
226 		man = ttm_manager_type(pos->first->bdev, TTM_PL_VRAM);
227 		list_bulk_move_tail(&man->lru[i], &pos->first->lru,
228 				    &pos->last->lru);
229 	}
230 
231 	for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) {
232 		struct ttm_lru_bulk_move_pos *pos = &bulk->swap[i];
233 		struct list_head *lru;
234 
235 		if (!pos->first)
236 			continue;
237 
238 		dma_resv_assert_held(pos->first->base.resv);
239 		dma_resv_assert_held(pos->last->base.resv);
240 
241 		lru = &ttm_bo_glob.swap_lru[i];
242 		list_bulk_move_tail(lru, &pos->first->swap, &pos->last->swap);
243 	}
244 }
245 EXPORT_SYMBOL(ttm_bo_bulk_move_lru_tail);
246 
247 static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo,
248 				  struct ttm_resource *mem, bool evict,
249 				  struct ttm_operation_ctx *ctx)
250 {
251 	struct ttm_bo_device *bdev = bo->bdev;
252 	struct ttm_resource_manager *old_man = ttm_manager_type(bdev, bo->mem.mem_type);
253 	struct ttm_resource_manager *new_man = ttm_manager_type(bdev, mem->mem_type);
254 	int ret;
255 
256 	ttm_bo_unmap_virtual(bo);
257 
258 	/*
259 	 * Create and bind a ttm if required.
260 	 */
261 
262 	if (new_man->use_tt) {
263 		/* Zero init the new TTM structure if the old location should
264 		 * have used one as well.
265 		 */
266 		ret = ttm_tt_create(bo, old_man->use_tt);
267 		if (ret)
268 			goto out_err;
269 
270 		ret = ttm_tt_set_placement_caching(bo->ttm, mem->placement);
271 		if (ret)
272 			goto out_err;
273 
274 		if (mem->mem_type != TTM_PL_SYSTEM) {
275 			ret = ttm_tt_populate(bdev, bo->ttm, ctx);
276 			if (ret)
277 				goto out_err;
278 
279 			ret = ttm_bo_tt_bind(bo, mem);
280 			if (ret)
281 				goto out_err;
282 		}
283 
284 		if (bo->mem.mem_type == TTM_PL_SYSTEM) {
285 			if (bdev->driver->move_notify)
286 				bdev->driver->move_notify(bo, evict, mem);
287 			bo->mem = *mem;
288 			goto moved;
289 		}
290 	}
291 
292 	if (bdev->driver->move_notify)
293 		bdev->driver->move_notify(bo, evict, mem);
294 
295 	if (old_man->use_tt && new_man->use_tt)
296 		ret = ttm_bo_move_ttm(bo, ctx, mem);
297 	else if (bdev->driver->move)
298 		ret = bdev->driver->move(bo, evict, ctx, mem);
299 	else
300 		ret = ttm_bo_move_memcpy(bo, ctx, mem);
301 
302 	if (ret) {
303 		if (bdev->driver->move_notify) {
304 			swap(*mem, bo->mem);
305 			bdev->driver->move_notify(bo, false, mem);
306 			swap(*mem, bo->mem);
307 		}
308 
309 		goto out_err;
310 	}
311 
312 moved:
313 	ctx->bytes_moved += bo->num_pages << PAGE_SHIFT;
314 	return 0;
315 
316 out_err:
317 	new_man = ttm_manager_type(bdev, bo->mem.mem_type);
318 	if (!new_man->use_tt)
319 		ttm_bo_tt_destroy(bo);
320 
321 	return ret;
322 }
323 
324 /**
325  * Call bo::reserved.
326  * Will release GPU memory type usage on destruction.
327  * This is the place to put in driver specific hooks to release
328  * driver private resources.
329  * Will release the bo::reserved lock.
330  */
331 
332 static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo)
333 {
334 	if (bo->bdev->driver->move_notify)
335 		bo->bdev->driver->move_notify(bo, false, NULL);
336 
337 	ttm_bo_tt_destroy(bo);
338 	ttm_resource_free(bo, &bo->mem);
339 }
340 
341 static int ttm_bo_individualize_resv(struct ttm_buffer_object *bo)
342 {
343 	int r;
344 
345 	if (bo->base.resv == &bo->base._resv)
346 		return 0;
347 
348 	BUG_ON(!dma_resv_trylock(&bo->base._resv));
349 
350 	r = dma_resv_copy_fences(&bo->base._resv, bo->base.resv);
351 	dma_resv_unlock(&bo->base._resv);
352 	if (r)
353 		return r;
354 
355 	if (bo->type != ttm_bo_type_sg) {
356 		/* This works because the BO is about to be destroyed and nobody
357 		 * reference it any more. The only tricky case is the trylock on
358 		 * the resv object while holding the lru_lock.
359 		 */
360 		spin_lock(&ttm_bo_glob.lru_lock);
361 		bo->base.resv = &bo->base._resv;
362 		spin_unlock(&ttm_bo_glob.lru_lock);
363 	}
364 
365 	return r;
366 }
367 
368 static void ttm_bo_flush_all_fences(struct ttm_buffer_object *bo)
369 {
370 	struct dma_resv *resv = &bo->base._resv;
371 	struct dma_resv_list *fobj;
372 	struct dma_fence *fence;
373 	int i;
374 
375 	rcu_read_lock();
376 	fobj = rcu_dereference(resv->fence);
377 	fence = rcu_dereference(resv->fence_excl);
378 	if (fence && !fence->ops->signaled)
379 		dma_fence_enable_sw_signaling(fence);
380 
381 	for (i = 0; fobj && i < fobj->shared_count; ++i) {
382 		fence = rcu_dereference(fobj->shared[i]);
383 
384 		if (!fence->ops->signaled)
385 			dma_fence_enable_sw_signaling(fence);
386 	}
387 	rcu_read_unlock();
388 }
389 
390 /**
391  * function ttm_bo_cleanup_refs
392  * If bo idle, remove from lru lists, and unref.
393  * If not idle, block if possible.
394  *
395  * Must be called with lru_lock and reservation held, this function
396  * will drop the lru lock and optionally the reservation lock before returning.
397  *
398  * @interruptible         Any sleeps should occur interruptibly.
399  * @no_wait_gpu           Never wait for gpu. Return -EBUSY instead.
400  * @unlock_resv           Unlock the reservation lock as well.
401  */
402 
403 static int ttm_bo_cleanup_refs(struct ttm_buffer_object *bo,
404 			       bool interruptible, bool no_wait_gpu,
405 			       bool unlock_resv)
406 {
407 	struct dma_resv *resv = &bo->base._resv;
408 	int ret;
409 
410 	if (dma_resv_test_signaled_rcu(resv, true))
411 		ret = 0;
412 	else
413 		ret = -EBUSY;
414 
415 	if (ret && !no_wait_gpu) {
416 		long lret;
417 
418 		if (unlock_resv)
419 			dma_resv_unlock(bo->base.resv);
420 		spin_unlock(&ttm_bo_glob.lru_lock);
421 
422 		lret = dma_resv_wait_timeout_rcu(resv, true, interruptible,
423 						 30 * HZ);
424 
425 		if (lret < 0)
426 			return lret;
427 		else if (lret == 0)
428 			return -EBUSY;
429 
430 		spin_lock(&ttm_bo_glob.lru_lock);
431 		if (unlock_resv && !dma_resv_trylock(bo->base.resv)) {
432 			/*
433 			 * We raced, and lost, someone else holds the reservation now,
434 			 * and is probably busy in ttm_bo_cleanup_memtype_use.
435 			 *
436 			 * Even if it's not the case, because we finished waiting any
437 			 * delayed destruction would succeed, so just return success
438 			 * here.
439 			 */
440 			spin_unlock(&ttm_bo_glob.lru_lock);
441 			return 0;
442 		}
443 		ret = 0;
444 	}
445 
446 	if (ret || unlikely(list_empty(&bo->ddestroy))) {
447 		if (unlock_resv)
448 			dma_resv_unlock(bo->base.resv);
449 		spin_unlock(&ttm_bo_glob.lru_lock);
450 		return ret;
451 	}
452 
453 	ttm_bo_del_from_lru(bo);
454 	list_del_init(&bo->ddestroy);
455 	spin_unlock(&ttm_bo_glob.lru_lock);
456 	ttm_bo_cleanup_memtype_use(bo);
457 
458 	if (unlock_resv)
459 		dma_resv_unlock(bo->base.resv);
460 
461 	ttm_bo_put(bo);
462 
463 	return 0;
464 }
465 
466 /**
467  * Traverse the delayed list, and call ttm_bo_cleanup_refs on all
468  * encountered buffers.
469  */
470 static bool ttm_bo_delayed_delete(struct ttm_bo_device *bdev, bool remove_all)
471 {
472 	struct ttm_bo_global *glob = &ttm_bo_glob;
473 	struct list_head removed;
474 	bool empty;
475 
476 	INIT_LIST_HEAD(&removed);
477 
478 	spin_lock(&glob->lru_lock);
479 	while (!list_empty(&bdev->ddestroy)) {
480 		struct ttm_buffer_object *bo;
481 
482 		bo = list_first_entry(&bdev->ddestroy, struct ttm_buffer_object,
483 				      ddestroy);
484 		list_move_tail(&bo->ddestroy, &removed);
485 		if (!ttm_bo_get_unless_zero(bo))
486 			continue;
487 
488 		if (remove_all || bo->base.resv != &bo->base._resv) {
489 			spin_unlock(&glob->lru_lock);
490 			dma_resv_lock(bo->base.resv, NULL);
491 
492 			spin_lock(&glob->lru_lock);
493 			ttm_bo_cleanup_refs(bo, false, !remove_all, true);
494 
495 		} else if (dma_resv_trylock(bo->base.resv)) {
496 			ttm_bo_cleanup_refs(bo, false, !remove_all, true);
497 		} else {
498 			spin_unlock(&glob->lru_lock);
499 		}
500 
501 		ttm_bo_put(bo);
502 		spin_lock(&glob->lru_lock);
503 	}
504 	list_splice_tail(&removed, &bdev->ddestroy);
505 	empty = list_empty(&bdev->ddestroy);
506 	spin_unlock(&glob->lru_lock);
507 
508 	return empty;
509 }
510 
511 static void ttm_bo_delayed_workqueue(struct work_struct *work)
512 {
513 	struct ttm_bo_device *bdev =
514 	    container_of(work, struct ttm_bo_device, wq.work);
515 
516 	if (!ttm_bo_delayed_delete(bdev, false))
517 		schedule_delayed_work(&bdev->wq,
518 				      ((HZ / 100) < 1) ? 1 : HZ / 100);
519 }
520 
521 static void ttm_bo_release(struct kref *kref)
522 {
523 	struct ttm_buffer_object *bo =
524 	    container_of(kref, struct ttm_buffer_object, kref);
525 	struct ttm_bo_device *bdev = bo->bdev;
526 	size_t acc_size = bo->acc_size;
527 	int ret;
528 
529 	if (!bo->deleted) {
530 		ret = ttm_bo_individualize_resv(bo);
531 		if (ret) {
532 			/* Last resort, if we fail to allocate memory for the
533 			 * fences block for the BO to become idle
534 			 */
535 			dma_resv_wait_timeout_rcu(bo->base.resv, true, false,
536 						  30 * HZ);
537 		}
538 
539 		if (bo->bdev->driver->release_notify)
540 			bo->bdev->driver->release_notify(bo);
541 
542 		drm_vma_offset_remove(bdev->vma_manager, &bo->base.vma_node);
543 		ttm_mem_io_free(bdev, &bo->mem);
544 	}
545 
546 	if (!dma_resv_test_signaled_rcu(bo->base.resv, true) ||
547 	    !dma_resv_trylock(bo->base.resv)) {
548 		/* The BO is not idle, resurrect it for delayed destroy */
549 		ttm_bo_flush_all_fences(bo);
550 		bo->deleted = true;
551 
552 		spin_lock(&ttm_bo_glob.lru_lock);
553 
554 		/*
555 		 * Make NO_EVICT bos immediately available to
556 		 * shrinkers, now that they are queued for
557 		 * destruction.
558 		 */
559 		if (bo->mem.placement & TTM_PL_FLAG_NO_EVICT) {
560 			bo->mem.placement &= ~TTM_PL_FLAG_NO_EVICT;
561 			ttm_bo_del_from_lru(bo);
562 			ttm_bo_add_mem_to_lru(bo, &bo->mem);
563 		}
564 
565 		kref_init(&bo->kref);
566 		list_add_tail(&bo->ddestroy, &bdev->ddestroy);
567 		spin_unlock(&ttm_bo_glob.lru_lock);
568 
569 		schedule_delayed_work(&bdev->wq,
570 				      ((HZ / 100) < 1) ? 1 : HZ / 100);
571 		return;
572 	}
573 
574 	spin_lock(&ttm_bo_glob.lru_lock);
575 	ttm_bo_del_from_lru(bo);
576 	list_del(&bo->ddestroy);
577 	spin_unlock(&ttm_bo_glob.lru_lock);
578 
579 	ttm_bo_cleanup_memtype_use(bo);
580 	dma_resv_unlock(bo->base.resv);
581 
582 	atomic_dec(&ttm_bo_glob.bo_count);
583 	dma_fence_put(bo->moving);
584 	if (!ttm_bo_uses_embedded_gem_object(bo))
585 		dma_resv_fini(&bo->base._resv);
586 	bo->destroy(bo);
587 	ttm_mem_global_free(&ttm_mem_glob, acc_size);
588 }
589 
590 void ttm_bo_put(struct ttm_buffer_object *bo)
591 {
592 	kref_put(&bo->kref, ttm_bo_release);
593 }
594 EXPORT_SYMBOL(ttm_bo_put);
595 
596 int ttm_bo_lock_delayed_workqueue(struct ttm_bo_device *bdev)
597 {
598 	return cancel_delayed_work_sync(&bdev->wq);
599 }
600 EXPORT_SYMBOL(ttm_bo_lock_delayed_workqueue);
601 
602 void ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device *bdev, int resched)
603 {
604 	if (resched)
605 		schedule_delayed_work(&bdev->wq,
606 				      ((HZ / 100) < 1) ? 1 : HZ / 100);
607 }
608 EXPORT_SYMBOL(ttm_bo_unlock_delayed_workqueue);
609 
610 static int ttm_bo_evict(struct ttm_buffer_object *bo,
611 			struct ttm_operation_ctx *ctx)
612 {
613 	struct ttm_bo_device *bdev = bo->bdev;
614 	struct ttm_resource evict_mem;
615 	struct ttm_placement placement;
616 	int ret = 0;
617 
618 	dma_resv_assert_held(bo->base.resv);
619 
620 	placement.num_placement = 0;
621 	placement.num_busy_placement = 0;
622 	bdev->driver->evict_flags(bo, &placement);
623 
624 	if (!placement.num_placement && !placement.num_busy_placement) {
625 		ttm_bo_wait(bo, false, false);
626 
627 		ttm_bo_cleanup_memtype_use(bo);
628 		return ttm_tt_create(bo, false);
629 	}
630 
631 	evict_mem = bo->mem;
632 	evict_mem.mm_node = NULL;
633 	evict_mem.bus.offset = 0;
634 	evict_mem.bus.addr = NULL;
635 
636 	ret = ttm_bo_mem_space(bo, &placement, &evict_mem, ctx);
637 	if (ret) {
638 		if (ret != -ERESTARTSYS) {
639 			pr_err("Failed to find memory space for buffer 0x%p eviction\n",
640 			       bo);
641 			ttm_bo_mem_space_debug(bo, &placement);
642 		}
643 		goto out;
644 	}
645 
646 	ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, ctx);
647 	if (unlikely(ret)) {
648 		if (ret != -ERESTARTSYS)
649 			pr_err("Buffer eviction failed\n");
650 		ttm_resource_free(bo, &evict_mem);
651 	}
652 out:
653 	return ret;
654 }
655 
656 bool ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
657 			      const struct ttm_place *place)
658 {
659 	/* Don't evict this BO if it's outside of the
660 	 * requested placement range
661 	 */
662 	if (place->fpfn >= (bo->mem.start + bo->mem.num_pages) ||
663 	    (place->lpfn && place->lpfn <= bo->mem.start))
664 		return false;
665 
666 	return true;
667 }
668 EXPORT_SYMBOL(ttm_bo_eviction_valuable);
669 
670 /**
671  * Check the target bo is allowable to be evicted or swapout, including cases:
672  *
673  * a. if share same reservation object with ctx->resv, have assumption
674  * reservation objects should already be locked, so not lock again and
675  * return true directly when either the opreation allow_reserved_eviction
676  * or the target bo already is in delayed free list;
677  *
678  * b. Otherwise, trylock it.
679  */
680 static bool ttm_bo_evict_swapout_allowable(struct ttm_buffer_object *bo,
681 			struct ttm_operation_ctx *ctx, bool *locked, bool *busy)
682 {
683 	bool ret = false;
684 
685 	if (bo->base.resv == ctx->resv) {
686 		dma_resv_assert_held(bo->base.resv);
687 		if (ctx->flags & TTM_OPT_FLAG_ALLOW_RES_EVICT)
688 			ret = true;
689 		*locked = false;
690 		if (busy)
691 			*busy = false;
692 	} else {
693 		ret = dma_resv_trylock(bo->base.resv);
694 		*locked = ret;
695 		if (busy)
696 			*busy = !ret;
697 	}
698 
699 	return ret;
700 }
701 
702 /**
703  * ttm_mem_evict_wait_busy - wait for a busy BO to become available
704  *
705  * @busy_bo: BO which couldn't be locked with trylock
706  * @ctx: operation context
707  * @ticket: acquire ticket
708  *
709  * Try to lock a busy buffer object to avoid failing eviction.
710  */
711 static int ttm_mem_evict_wait_busy(struct ttm_buffer_object *busy_bo,
712 				   struct ttm_operation_ctx *ctx,
713 				   struct ww_acquire_ctx *ticket)
714 {
715 	int r;
716 
717 	if (!busy_bo || !ticket)
718 		return -EBUSY;
719 
720 	if (ctx->interruptible)
721 		r = dma_resv_lock_interruptible(busy_bo->base.resv,
722 							  ticket);
723 	else
724 		r = dma_resv_lock(busy_bo->base.resv, ticket);
725 
726 	/*
727 	 * TODO: It would be better to keep the BO locked until allocation is at
728 	 * least tried one more time, but that would mean a much larger rework
729 	 * of TTM.
730 	 */
731 	if (!r)
732 		dma_resv_unlock(busy_bo->base.resv);
733 
734 	return r == -EDEADLK ? -EBUSY : r;
735 }
736 
737 int ttm_mem_evict_first(struct ttm_bo_device *bdev,
738 			struct ttm_resource_manager *man,
739 			const struct ttm_place *place,
740 			struct ttm_operation_ctx *ctx,
741 			struct ww_acquire_ctx *ticket)
742 {
743 	struct ttm_buffer_object *bo = NULL, *busy_bo = NULL;
744 	bool locked = false;
745 	unsigned i;
746 	int ret;
747 
748 	spin_lock(&ttm_bo_glob.lru_lock);
749 	for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) {
750 		list_for_each_entry(bo, &man->lru[i], lru) {
751 			bool busy;
752 
753 			if (!ttm_bo_evict_swapout_allowable(bo, ctx, &locked,
754 							    &busy)) {
755 				if (busy && !busy_bo && ticket !=
756 				    dma_resv_locking_ctx(bo->base.resv))
757 					busy_bo = bo;
758 				continue;
759 			}
760 
761 			if (place && !bdev->driver->eviction_valuable(bo,
762 								      place)) {
763 				if (locked)
764 					dma_resv_unlock(bo->base.resv);
765 				continue;
766 			}
767 			if (!ttm_bo_get_unless_zero(bo)) {
768 				if (locked)
769 					dma_resv_unlock(bo->base.resv);
770 				continue;
771 			}
772 			break;
773 		}
774 
775 		/* If the inner loop terminated early, we have our candidate */
776 		if (&bo->lru != &man->lru[i])
777 			break;
778 
779 		bo = NULL;
780 	}
781 
782 	if (!bo) {
783 		if (busy_bo && !ttm_bo_get_unless_zero(busy_bo))
784 			busy_bo = NULL;
785 		spin_unlock(&ttm_bo_glob.lru_lock);
786 		ret = ttm_mem_evict_wait_busy(busy_bo, ctx, ticket);
787 		if (busy_bo)
788 			ttm_bo_put(busy_bo);
789 		return ret;
790 	}
791 
792 	if (bo->deleted) {
793 		ret = ttm_bo_cleanup_refs(bo, ctx->interruptible,
794 					  ctx->no_wait_gpu, locked);
795 		ttm_bo_put(bo);
796 		return ret;
797 	}
798 
799 	spin_unlock(&ttm_bo_glob.lru_lock);
800 
801 	ret = ttm_bo_evict(bo, ctx);
802 	if (locked)
803 		ttm_bo_unreserve(bo);
804 
805 	ttm_bo_put(bo);
806 	return ret;
807 }
808 
809 /**
810  * Add the last move fence to the BO and reserve a new shared slot.
811  */
812 static int ttm_bo_add_move_fence(struct ttm_buffer_object *bo,
813 				 struct ttm_resource_manager *man,
814 				 struct ttm_resource *mem,
815 				 bool no_wait_gpu)
816 {
817 	struct dma_fence *fence;
818 	int ret;
819 
820 	spin_lock(&man->move_lock);
821 	fence = dma_fence_get(man->move);
822 	spin_unlock(&man->move_lock);
823 
824 	if (!fence)
825 		return 0;
826 
827 	if (no_wait_gpu) {
828 		dma_fence_put(fence);
829 		return -EBUSY;
830 	}
831 
832 	dma_resv_add_shared_fence(bo->base.resv, fence);
833 
834 	ret = dma_resv_reserve_shared(bo->base.resv, 1);
835 	if (unlikely(ret)) {
836 		dma_fence_put(fence);
837 		return ret;
838 	}
839 
840 	dma_fence_put(bo->moving);
841 	bo->moving = fence;
842 	return 0;
843 }
844 
845 /**
846  * Repeatedly evict memory from the LRU for @mem_type until we create enough
847  * space, or we've evicted everything and there isn't enough space.
848  */
849 static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo,
850 				  const struct ttm_place *place,
851 				  struct ttm_resource *mem,
852 				  struct ttm_operation_ctx *ctx)
853 {
854 	struct ttm_bo_device *bdev = bo->bdev;
855 	struct ttm_resource_manager *man = ttm_manager_type(bdev, mem->mem_type);
856 	struct ww_acquire_ctx *ticket;
857 	int ret;
858 
859 	ticket = dma_resv_locking_ctx(bo->base.resv);
860 	do {
861 		ret = ttm_resource_alloc(bo, place, mem);
862 		if (likely(!ret))
863 			break;
864 		if (unlikely(ret != -ENOSPC))
865 			return ret;
866 		ret = ttm_mem_evict_first(bdev, man, place, ctx,
867 					  ticket);
868 		if (unlikely(ret != 0))
869 			return ret;
870 	} while (1);
871 
872 	return ttm_bo_add_move_fence(bo, man, mem, ctx->no_wait_gpu);
873 }
874 
875 static uint32_t ttm_bo_select_caching(struct ttm_resource_manager *man,
876 				      uint32_t cur_placement,
877 				      uint32_t proposed_placement)
878 {
879 	uint32_t caching = proposed_placement & TTM_PL_MASK_CACHING;
880 	uint32_t result = proposed_placement & ~TTM_PL_MASK_CACHING;
881 
882 	/**
883 	 * Keep current caching if possible.
884 	 */
885 
886 	if ((cur_placement & caching) != 0)
887 		result |= (cur_placement & caching);
888 	else if ((TTM_PL_FLAG_CACHED & caching) != 0)
889 		result |= TTM_PL_FLAG_CACHED;
890 	else if ((TTM_PL_FLAG_WC & caching) != 0)
891 		result |= TTM_PL_FLAG_WC;
892 	else if ((TTM_PL_FLAG_UNCACHED & caching) != 0)
893 		result |= TTM_PL_FLAG_UNCACHED;
894 
895 	return result;
896 }
897 
898 /**
899  * ttm_bo_mem_placement - check if placement is compatible
900  * @bo: BO to find memory for
901  * @place: where to search
902  * @mem: the memory object to fill in
903  * @ctx: operation context
904  *
905  * Check if placement is compatible and fill in mem structure.
906  * Returns -EBUSY if placement won't work or negative error code.
907  * 0 when placement can be used.
908  */
909 static int ttm_bo_mem_placement(struct ttm_buffer_object *bo,
910 				const struct ttm_place *place,
911 				struct ttm_resource *mem,
912 				struct ttm_operation_ctx *ctx)
913 {
914 	struct ttm_bo_device *bdev = bo->bdev;
915 	struct ttm_resource_manager *man;
916 	uint32_t cur_flags = 0;
917 
918 	man = ttm_manager_type(bdev, place->mem_type);
919 	if (!man || !ttm_resource_manager_used(man))
920 		return -EBUSY;
921 
922 	cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
923 					  place->flags);
924 	cur_flags |= place->flags & ~TTM_PL_MASK_CACHING;
925 
926 	mem->mem_type = place->mem_type;
927 	mem->placement = cur_flags;
928 
929 	spin_lock(&ttm_bo_glob.lru_lock);
930 	ttm_bo_del_from_lru(bo);
931 	ttm_bo_add_mem_to_lru(bo, mem);
932 	spin_unlock(&ttm_bo_glob.lru_lock);
933 
934 	return 0;
935 }
936 
937 /**
938  * Creates space for memory region @mem according to its type.
939  *
940  * This function first searches for free space in compatible memory types in
941  * the priority order defined by the driver.  If free space isn't found, then
942  * ttm_bo_mem_force_space is attempted in priority order to evict and find
943  * space.
944  */
945 int ttm_bo_mem_space(struct ttm_buffer_object *bo,
946 			struct ttm_placement *placement,
947 			struct ttm_resource *mem,
948 			struct ttm_operation_ctx *ctx)
949 {
950 	struct ttm_bo_device *bdev = bo->bdev;
951 	bool type_found = false;
952 	int i, ret;
953 
954 	ret = dma_resv_reserve_shared(bo->base.resv, 1);
955 	if (unlikely(ret))
956 		return ret;
957 
958 	for (i = 0; i < placement->num_placement; ++i) {
959 		const struct ttm_place *place = &placement->placement[i];
960 		struct ttm_resource_manager *man;
961 
962 		ret = ttm_bo_mem_placement(bo, place, mem, ctx);
963 		if (ret)
964 			continue;
965 
966 		type_found = true;
967 		ret = ttm_resource_alloc(bo, place, mem);
968 		if (ret == -ENOSPC)
969 			continue;
970 		if (unlikely(ret))
971 			goto error;
972 
973 		man = ttm_manager_type(bdev, mem->mem_type);
974 		ret = ttm_bo_add_move_fence(bo, man, mem, ctx->no_wait_gpu);
975 		if (unlikely(ret)) {
976 			ttm_resource_free(bo, mem);
977 			if (ret == -EBUSY)
978 				continue;
979 
980 			goto error;
981 		}
982 		return 0;
983 	}
984 
985 	for (i = 0; i < placement->num_busy_placement; ++i) {
986 		const struct ttm_place *place = &placement->busy_placement[i];
987 
988 		ret = ttm_bo_mem_placement(bo, place, mem, ctx);
989 		if (ret)
990 			continue;
991 
992 		type_found = true;
993 		ret = ttm_bo_mem_force_space(bo, place, mem, ctx);
994 		if (likely(!ret))
995 			return 0;
996 
997 		if (ret && ret != -EBUSY)
998 			goto error;
999 	}
1000 
1001 	ret = -ENOMEM;
1002 	if (!type_found) {
1003 		pr_err(TTM_PFX "No compatible memory type found\n");
1004 		ret = -EINVAL;
1005 	}
1006 
1007 error:
1008 	if (bo->mem.mem_type == TTM_PL_SYSTEM && !list_empty(&bo->lru)) {
1009 		ttm_bo_move_to_lru_tail_unlocked(bo);
1010 	}
1011 
1012 	return ret;
1013 }
1014 EXPORT_SYMBOL(ttm_bo_mem_space);
1015 
1016 static int ttm_bo_move_buffer(struct ttm_buffer_object *bo,
1017 			      struct ttm_placement *placement,
1018 			      struct ttm_operation_ctx *ctx)
1019 {
1020 	int ret = 0;
1021 	struct ttm_resource mem;
1022 
1023 	dma_resv_assert_held(bo->base.resv);
1024 
1025 	mem.num_pages = bo->num_pages;
1026 	mem.size = mem.num_pages << PAGE_SHIFT;
1027 	mem.page_alignment = bo->mem.page_alignment;
1028 	mem.bus.offset = 0;
1029 	mem.bus.addr = NULL;
1030 	mem.mm_node = NULL;
1031 
1032 	/*
1033 	 * Determine where to move the buffer.
1034 	 */
1035 	ret = ttm_bo_mem_space(bo, placement, &mem, ctx);
1036 	if (ret)
1037 		goto out_unlock;
1038 	ret = ttm_bo_handle_move_mem(bo, &mem, false, ctx);
1039 out_unlock:
1040 	if (ret)
1041 		ttm_resource_free(bo, &mem);
1042 	return ret;
1043 }
1044 
1045 static bool ttm_bo_places_compat(const struct ttm_place *places,
1046 				 unsigned num_placement,
1047 				 struct ttm_resource *mem,
1048 				 uint32_t *new_flags)
1049 {
1050 	unsigned i;
1051 
1052 	for (i = 0; i < num_placement; i++) {
1053 		const struct ttm_place *heap = &places[i];
1054 
1055 		if ((mem->start < heap->fpfn ||
1056 		     (heap->lpfn != 0 && (mem->start + mem->num_pages) > heap->lpfn)))
1057 			continue;
1058 
1059 		*new_flags = heap->flags;
1060 		if ((*new_flags & mem->placement & TTM_PL_MASK_CACHING) &&
1061 		    (mem->mem_type == heap->mem_type) &&
1062 		    (!(*new_flags & TTM_PL_FLAG_CONTIGUOUS) ||
1063 		     (mem->placement & TTM_PL_FLAG_CONTIGUOUS)))
1064 			return true;
1065 	}
1066 	return false;
1067 }
1068 
1069 bool ttm_bo_mem_compat(struct ttm_placement *placement,
1070 		       struct ttm_resource *mem,
1071 		       uint32_t *new_flags)
1072 {
1073 	if (ttm_bo_places_compat(placement->placement, placement->num_placement,
1074 				 mem, new_flags))
1075 		return true;
1076 
1077 	if ((placement->busy_placement != placement->placement ||
1078 	     placement->num_busy_placement > placement->num_placement) &&
1079 	    ttm_bo_places_compat(placement->busy_placement,
1080 				 placement->num_busy_placement,
1081 				 mem, new_flags))
1082 		return true;
1083 
1084 	return false;
1085 }
1086 EXPORT_SYMBOL(ttm_bo_mem_compat);
1087 
1088 int ttm_bo_validate(struct ttm_buffer_object *bo,
1089 		    struct ttm_placement *placement,
1090 		    struct ttm_operation_ctx *ctx)
1091 {
1092 	int ret;
1093 	uint32_t new_flags;
1094 
1095 	dma_resv_assert_held(bo->base.resv);
1096 
1097 	/*
1098 	 * Remove the backing store if no placement is given.
1099 	 */
1100 	if (!placement->num_placement && !placement->num_busy_placement) {
1101 		ret = ttm_bo_pipeline_gutting(bo);
1102 		if (ret)
1103 			return ret;
1104 
1105 		return ttm_tt_create(bo, false);
1106 	}
1107 
1108 	/*
1109 	 * Check whether we need to move buffer.
1110 	 */
1111 	if (!ttm_bo_mem_compat(placement, &bo->mem, &new_flags)) {
1112 		ret = ttm_bo_move_buffer(bo, placement, ctx);
1113 		if (ret)
1114 			return ret;
1115 	} else {
1116 		bo->mem.placement &= TTM_PL_MASK_CACHING;
1117 		bo->mem.placement |= new_flags & ~TTM_PL_MASK_CACHING;
1118 	}
1119 	/*
1120 	 * We might need to add a TTM.
1121 	 */
1122 	if (bo->mem.mem_type == TTM_PL_SYSTEM) {
1123 		ret = ttm_tt_create(bo, true);
1124 		if (ret)
1125 			return ret;
1126 	}
1127 	return 0;
1128 }
1129 EXPORT_SYMBOL(ttm_bo_validate);
1130 
1131 int ttm_bo_init_reserved(struct ttm_bo_device *bdev,
1132 			 struct ttm_buffer_object *bo,
1133 			 unsigned long size,
1134 			 enum ttm_bo_type type,
1135 			 struct ttm_placement *placement,
1136 			 uint32_t page_alignment,
1137 			 struct ttm_operation_ctx *ctx,
1138 			 size_t acc_size,
1139 			 struct sg_table *sg,
1140 			 struct dma_resv *resv,
1141 			 void (*destroy) (struct ttm_buffer_object *))
1142 {
1143 	struct ttm_mem_global *mem_glob = &ttm_mem_glob;
1144 	int ret = 0;
1145 	unsigned long num_pages;
1146 	bool locked;
1147 
1148 	ret = ttm_mem_global_alloc(mem_glob, acc_size, ctx);
1149 	if (ret) {
1150 		pr_err("Out of kernel memory\n");
1151 		if (destroy)
1152 			(*destroy)(bo);
1153 		else
1154 			kfree(bo);
1155 		return -ENOMEM;
1156 	}
1157 
1158 	num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1159 	if (num_pages == 0) {
1160 		pr_err("Illegal buffer object size\n");
1161 		if (destroy)
1162 			(*destroy)(bo);
1163 		else
1164 			kfree(bo);
1165 		ttm_mem_global_free(mem_glob, acc_size);
1166 		return -EINVAL;
1167 	}
1168 	bo->destroy = destroy ? destroy : ttm_bo_default_destroy;
1169 
1170 	kref_init(&bo->kref);
1171 	INIT_LIST_HEAD(&bo->lru);
1172 	INIT_LIST_HEAD(&bo->ddestroy);
1173 	INIT_LIST_HEAD(&bo->swap);
1174 	bo->bdev = bdev;
1175 	bo->type = type;
1176 	bo->num_pages = num_pages;
1177 	bo->mem.size = num_pages << PAGE_SHIFT;
1178 	bo->mem.mem_type = TTM_PL_SYSTEM;
1179 	bo->mem.num_pages = bo->num_pages;
1180 	bo->mem.mm_node = NULL;
1181 	bo->mem.page_alignment = page_alignment;
1182 	bo->mem.bus.offset = 0;
1183 	bo->mem.bus.addr = NULL;
1184 	bo->moving = NULL;
1185 	bo->mem.placement = TTM_PL_FLAG_CACHED;
1186 	bo->acc_size = acc_size;
1187 	bo->sg = sg;
1188 	if (resv) {
1189 		bo->base.resv = resv;
1190 		dma_resv_assert_held(bo->base.resv);
1191 	} else {
1192 		bo->base.resv = &bo->base._resv;
1193 	}
1194 	if (!ttm_bo_uses_embedded_gem_object(bo)) {
1195 		/*
1196 		 * bo.gem is not initialized, so we have to setup the
1197 		 * struct elements we want use regardless.
1198 		 */
1199 		dma_resv_init(&bo->base._resv);
1200 		drm_vma_node_reset(&bo->base.vma_node);
1201 	}
1202 	atomic_inc(&ttm_bo_glob.bo_count);
1203 
1204 	/*
1205 	 * For ttm_bo_type_device buffers, allocate
1206 	 * address space from the device.
1207 	 */
1208 	if (bo->type == ttm_bo_type_device ||
1209 	    bo->type == ttm_bo_type_sg)
1210 		ret = drm_vma_offset_add(bdev->vma_manager, &bo->base.vma_node,
1211 					 bo->mem.num_pages);
1212 
1213 	/* passed reservation objects should already be locked,
1214 	 * since otherwise lockdep will be angered in radeon.
1215 	 */
1216 	if (!resv) {
1217 		locked = dma_resv_trylock(bo->base.resv);
1218 		WARN_ON(!locked);
1219 	}
1220 
1221 	if (likely(!ret))
1222 		ret = ttm_bo_validate(bo, placement, ctx);
1223 
1224 	if (unlikely(ret)) {
1225 		if (!resv)
1226 			ttm_bo_unreserve(bo);
1227 
1228 		ttm_bo_put(bo);
1229 		return ret;
1230 	}
1231 
1232 	ttm_bo_move_to_lru_tail_unlocked(bo);
1233 
1234 	return ret;
1235 }
1236 EXPORT_SYMBOL(ttm_bo_init_reserved);
1237 
1238 int ttm_bo_init(struct ttm_bo_device *bdev,
1239 		struct ttm_buffer_object *bo,
1240 		unsigned long size,
1241 		enum ttm_bo_type type,
1242 		struct ttm_placement *placement,
1243 		uint32_t page_alignment,
1244 		bool interruptible,
1245 		size_t acc_size,
1246 		struct sg_table *sg,
1247 		struct dma_resv *resv,
1248 		void (*destroy) (struct ttm_buffer_object *))
1249 {
1250 	struct ttm_operation_ctx ctx = { interruptible, false };
1251 	int ret;
1252 
1253 	ret = ttm_bo_init_reserved(bdev, bo, size, type, placement,
1254 				   page_alignment, &ctx, acc_size,
1255 				   sg, resv, destroy);
1256 	if (ret)
1257 		return ret;
1258 
1259 	if (!resv)
1260 		ttm_bo_unreserve(bo);
1261 
1262 	return 0;
1263 }
1264 EXPORT_SYMBOL(ttm_bo_init);
1265 
1266 static size_t ttm_bo_acc_size(struct ttm_bo_device *bdev,
1267 			      unsigned long bo_size,
1268 			      unsigned struct_size)
1269 {
1270 	unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1271 	size_t size = 0;
1272 
1273 	size += ttm_round_pot(struct_size);
1274 	size += ttm_round_pot(npages * sizeof(void *));
1275 	size += ttm_round_pot(sizeof(struct ttm_tt));
1276 	return size;
1277 }
1278 
1279 size_t ttm_bo_dma_acc_size(struct ttm_bo_device *bdev,
1280 			   unsigned long bo_size,
1281 			   unsigned struct_size)
1282 {
1283 	unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1284 	size_t size = 0;
1285 
1286 	size += ttm_round_pot(struct_size);
1287 	size += ttm_round_pot(npages * (2*sizeof(void *) + sizeof(dma_addr_t)));
1288 	size += ttm_round_pot(sizeof(struct ttm_dma_tt));
1289 	return size;
1290 }
1291 EXPORT_SYMBOL(ttm_bo_dma_acc_size);
1292 
1293 int ttm_bo_create(struct ttm_bo_device *bdev,
1294 			unsigned long size,
1295 			enum ttm_bo_type type,
1296 			struct ttm_placement *placement,
1297 			uint32_t page_alignment,
1298 			bool interruptible,
1299 			struct ttm_buffer_object **p_bo)
1300 {
1301 	struct ttm_buffer_object *bo;
1302 	size_t acc_size;
1303 	int ret;
1304 
1305 	bo = kzalloc(sizeof(*bo), GFP_KERNEL);
1306 	if (unlikely(bo == NULL))
1307 		return -ENOMEM;
1308 
1309 	acc_size = ttm_bo_acc_size(bdev, size, sizeof(struct ttm_buffer_object));
1310 	ret = ttm_bo_init(bdev, bo, size, type, placement, page_alignment,
1311 			  interruptible, acc_size,
1312 			  NULL, NULL, NULL);
1313 	if (likely(ret == 0))
1314 		*p_bo = bo;
1315 
1316 	return ret;
1317 }
1318 EXPORT_SYMBOL(ttm_bo_create);
1319 
1320 int ttm_bo_evict_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1321 {
1322 	struct ttm_resource_manager *man = ttm_manager_type(bdev, mem_type);
1323 
1324 	if (mem_type == 0 || mem_type >= TTM_NUM_MEM_TYPES) {
1325 		pr_err("Illegal memory manager memory type %u\n", mem_type);
1326 		return -EINVAL;
1327 	}
1328 
1329 	if (!man) {
1330 		pr_err("Memory type %u has not been initialized\n", mem_type);
1331 		return 0;
1332 	}
1333 
1334 	return ttm_resource_manager_force_list_clean(bdev, man);
1335 }
1336 EXPORT_SYMBOL(ttm_bo_evict_mm);
1337 
1338 static void ttm_bo_global_kobj_release(struct kobject *kobj)
1339 {
1340 	struct ttm_bo_global *glob =
1341 		container_of(kobj, struct ttm_bo_global, kobj);
1342 
1343 	__free_page(glob->dummy_read_page);
1344 }
1345 
1346 static void ttm_bo_global_release(void)
1347 {
1348 	struct ttm_bo_global *glob = &ttm_bo_glob;
1349 
1350 	mutex_lock(&ttm_global_mutex);
1351 	if (--ttm_bo_glob_use_count > 0)
1352 		goto out;
1353 
1354 	kobject_del(&glob->kobj);
1355 	kobject_put(&glob->kobj);
1356 	ttm_mem_global_release(&ttm_mem_glob);
1357 	memset(glob, 0, sizeof(*glob));
1358 out:
1359 	mutex_unlock(&ttm_global_mutex);
1360 }
1361 
1362 static int ttm_bo_global_init(void)
1363 {
1364 	struct ttm_bo_global *glob = &ttm_bo_glob;
1365 	int ret = 0;
1366 	unsigned i;
1367 
1368 	mutex_lock(&ttm_global_mutex);
1369 	if (++ttm_bo_glob_use_count > 1)
1370 		goto out;
1371 
1372 	ret = ttm_mem_global_init(&ttm_mem_glob);
1373 	if (ret)
1374 		goto out;
1375 
1376 	mtx_init(&glob->lru_lock, IPL_NONE);
1377 	glob->dummy_read_page = alloc_page(__GFP_ZERO | GFP_DMA32);
1378 
1379 	if (unlikely(glob->dummy_read_page == NULL)) {
1380 		ret = -ENOMEM;
1381 		goto out;
1382 	}
1383 
1384 	for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i)
1385 		INIT_LIST_HEAD(&glob->swap_lru[i]);
1386 	INIT_LIST_HEAD(&glob->device_list);
1387 	atomic_set(&glob->bo_count, 0);
1388 
1389 	ret = kobject_init_and_add(
1390 		&glob->kobj, &ttm_bo_glob_kobj_type, ttm_get_kobj(), "buffer_objects");
1391 	if (unlikely(ret != 0))
1392 		kobject_put(&glob->kobj);
1393 out:
1394 	mutex_unlock(&ttm_global_mutex);
1395 	return ret;
1396 }
1397 
1398 int ttm_bo_device_release(struct ttm_bo_device *bdev)
1399 {
1400 	struct ttm_bo_global *glob = &ttm_bo_glob;
1401 	int ret = 0;
1402 	unsigned i;
1403 	struct ttm_resource_manager *man;
1404 
1405 	man = ttm_manager_type(bdev, TTM_PL_SYSTEM);
1406 	ttm_resource_manager_set_used(man, false);
1407 	ttm_set_driver_manager(bdev, TTM_PL_SYSTEM, NULL);
1408 
1409 	mutex_lock(&ttm_global_mutex);
1410 	list_del(&bdev->device_list);
1411 	mutex_unlock(&ttm_global_mutex);
1412 
1413 	cancel_delayed_work_sync(&bdev->wq);
1414 
1415 	if (ttm_bo_delayed_delete(bdev, true))
1416 		pr_debug("Delayed destroy list was clean\n");
1417 
1418 	spin_lock(&glob->lru_lock);
1419 	for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i)
1420 		if (list_empty(&man->lru[0]))
1421 			pr_debug("Swap list %d was clean\n", i);
1422 	spin_unlock(&glob->lru_lock);
1423 
1424 	if (!ret)
1425 		ttm_bo_global_release();
1426 
1427 	return ret;
1428 }
1429 EXPORT_SYMBOL(ttm_bo_device_release);
1430 
1431 static void ttm_bo_init_sysman(struct ttm_bo_device *bdev)
1432 {
1433 	struct ttm_resource_manager *man = &bdev->sysman;
1434 
1435 	/*
1436 	 * Initialize the system memory buffer type.
1437 	 * Other types need to be driver / IOCTL initialized.
1438 	 */
1439 	man->use_tt = true;
1440 
1441 	ttm_resource_manager_init(man, 0);
1442 	ttm_set_driver_manager(bdev, TTM_PL_SYSTEM, man);
1443 	ttm_resource_manager_set_used(man, true);
1444 }
1445 
1446 int ttm_bo_device_init(struct ttm_bo_device *bdev,
1447 		       struct ttm_bo_driver *driver,
1448 		       struct address_space *mapping,
1449 		       struct drm_vma_offset_manager *vma_manager,
1450 		       bool need_dma32)
1451 {
1452 	struct ttm_bo_global *glob = &ttm_bo_glob;
1453 	int ret;
1454 
1455 	if (WARN_ON(vma_manager == NULL))
1456 		return -EINVAL;
1457 
1458 	ret = ttm_bo_global_init();
1459 	if (ret)
1460 		return ret;
1461 
1462 	bdev->driver = driver;
1463 
1464 	ttm_bo_init_sysman(bdev);
1465 
1466 	bdev->vma_manager = vma_manager;
1467 	INIT_DELAYED_WORK(&bdev->wq, ttm_bo_delayed_workqueue);
1468 	INIT_LIST_HEAD(&bdev->ddestroy);
1469 	bdev->dev_mapping = mapping;
1470 	bdev->need_dma32 = need_dma32;
1471 	mutex_lock(&ttm_global_mutex);
1472 	list_add_tail(&bdev->device_list, &glob->device_list);
1473 	mutex_unlock(&ttm_global_mutex);
1474 
1475 	return 0;
1476 }
1477 EXPORT_SYMBOL(ttm_bo_device_init);
1478 
1479 /*
1480  * buffer object vm functions.
1481  */
1482 
1483 void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo)
1484 {
1485 	struct ttm_bo_device *bdev = bo->bdev;
1486 
1487 #ifdef __linux__
1488 	drm_vma_node_unmap(&bo->base.vma_node, bdev->dev_mapping);
1489 #else
1490 	if (drm_mm_node_allocated(&bo->base.vma_node.vm_node)) {
1491 		struct vm_page *pg;
1492 		bus_addr_t addr;
1493 		paddr_t paddr;
1494 		unsigned i;
1495 
1496 		if (bo->mem.bus.is_iomem) {
1497 			addr = bo->mem.bus.offset;
1498 			paddr = bus_space_mmap(bdev->memt, addr, 0, 0, 0);
1499 			for (i = 0; i < bo->mem.num_pages; i++) {
1500 				pg = PHYS_TO_VM_PAGE(paddr);
1501 				if (pg)
1502 					pmap_page_protect(pg, PROT_NONE);
1503 				paddr += PAGE_SIZE;
1504 			}
1505 		} else if (bo->ttm) {
1506 			for (i = 0; i < bo->ttm->num_pages; i++) {
1507 				pg = bo->ttm->pages[i];
1508 				if (pg)
1509 					pmap_page_protect(pg, PROT_NONE);
1510 			}
1511 		}
1512 	}
1513 #endif
1514 	ttm_mem_io_free(bdev, &bo->mem);
1515 }
1516 EXPORT_SYMBOL(ttm_bo_unmap_virtual);
1517 
1518 int ttm_bo_wait(struct ttm_buffer_object *bo,
1519 		bool interruptible, bool no_wait)
1520 {
1521 	long timeout = 15 * HZ;
1522 
1523 	if (no_wait) {
1524 		if (dma_resv_test_signaled_rcu(bo->base.resv, true))
1525 			return 0;
1526 		else
1527 			return -EBUSY;
1528 	}
1529 
1530 	timeout = dma_resv_wait_timeout_rcu(bo->base.resv, true,
1531 						      interruptible, timeout);
1532 	if (timeout < 0)
1533 		return timeout;
1534 
1535 	if (timeout == 0)
1536 		return -EBUSY;
1537 
1538 	dma_resv_add_excl_fence(bo->base.resv, NULL);
1539 	return 0;
1540 }
1541 EXPORT_SYMBOL(ttm_bo_wait);
1542 
1543 /**
1544  * A buffer object shrink method that tries to swap out the first
1545  * buffer object on the bo_global::swap_lru list.
1546  */
1547 int ttm_bo_swapout(struct ttm_bo_global *glob, struct ttm_operation_ctx *ctx)
1548 {
1549 	struct ttm_buffer_object *bo;
1550 	int ret = -EBUSY;
1551 	bool locked;
1552 	unsigned i;
1553 
1554 	spin_lock(&glob->lru_lock);
1555 	for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) {
1556 		list_for_each_entry(bo, &glob->swap_lru[i], swap) {
1557 			if (!ttm_bo_evict_swapout_allowable(bo, ctx, &locked,
1558 							    NULL))
1559 				continue;
1560 
1561 			if (!ttm_bo_get_unless_zero(bo)) {
1562 				if (locked)
1563 					dma_resv_unlock(bo->base.resv);
1564 				continue;
1565 			}
1566 
1567 			ret = 0;
1568 			break;
1569 		}
1570 		if (!ret)
1571 			break;
1572 	}
1573 
1574 	if (ret) {
1575 		spin_unlock(&glob->lru_lock);
1576 		return ret;
1577 	}
1578 
1579 	if (bo->deleted) {
1580 		ret = ttm_bo_cleanup_refs(bo, false, false, locked);
1581 		ttm_bo_put(bo);
1582 		return ret;
1583 	}
1584 
1585 	ttm_bo_del_from_lru(bo);
1586 	spin_unlock(&glob->lru_lock);
1587 
1588 	/**
1589 	 * Move to system cached
1590 	 */
1591 
1592 	if (bo->mem.mem_type != TTM_PL_SYSTEM ||
1593 	    bo->ttm->caching_state != tt_cached) {
1594 		struct ttm_operation_ctx ctx = { false, false };
1595 		struct ttm_resource evict_mem;
1596 
1597 		evict_mem = bo->mem;
1598 		evict_mem.mm_node = NULL;
1599 		evict_mem.placement = TTM_PL_FLAG_CACHED;
1600 		evict_mem.mem_type = TTM_PL_SYSTEM;
1601 
1602 		ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, &ctx);
1603 		if (unlikely(ret != 0))
1604 			goto out;
1605 	}
1606 
1607 	/**
1608 	 * Make sure BO is idle.
1609 	 */
1610 
1611 	ret = ttm_bo_wait(bo, false, false);
1612 	if (unlikely(ret != 0))
1613 		goto out;
1614 
1615 	ttm_bo_unmap_virtual(bo);
1616 
1617 	/**
1618 	 * Swap out. Buffer will be swapped in again as soon as
1619 	 * anyone tries to access a ttm page.
1620 	 */
1621 
1622 	if (bo->bdev->driver->swap_notify)
1623 		bo->bdev->driver->swap_notify(bo);
1624 
1625 	ret = ttm_tt_swapout(bo->bdev, bo->ttm, bo->persistent_swap_storage);
1626 out:
1627 
1628 	/**
1629 	 *
1630 	 * Unreserve without putting on LRU to avoid swapping out an
1631 	 * already swapped buffer.
1632 	 */
1633 	if (locked)
1634 		dma_resv_unlock(bo->base.resv);
1635 	ttm_bo_put(bo);
1636 	return ret;
1637 }
1638 EXPORT_SYMBOL(ttm_bo_swapout);
1639 
1640 void ttm_bo_swapout_all(void)
1641 {
1642 	struct ttm_operation_ctx ctx = {
1643 		.interruptible = false,
1644 		.no_wait_gpu = false
1645 	};
1646 
1647 	while (ttm_bo_swapout(&ttm_bo_glob, &ctx) == 0);
1648 }
1649 EXPORT_SYMBOL(ttm_bo_swapout_all);
1650 
1651 void ttm_bo_tt_destroy(struct ttm_buffer_object *bo)
1652 {
1653 	if (bo->ttm == NULL)
1654 		return;
1655 
1656 	ttm_tt_destroy(bo->bdev, bo->ttm);
1657 	bo->ttm = NULL;
1658 }
1659 
1660 int ttm_bo_tt_bind(struct ttm_buffer_object *bo, struct ttm_resource *mem)
1661 {
1662 	return bo->bdev->driver->ttm_tt_bind(bo->bdev, bo->ttm, mem);
1663 }
1664 
1665 void ttm_bo_tt_unbind(struct ttm_buffer_object *bo)
1666 {
1667 	bo->bdev->driver->ttm_tt_unbind(bo->bdev, bo->ttm);
1668 }
1669