1 /* $OpenBSD: radeon_ring.c,v 1.8 2015/07/11 04:00:46 jsg Exp $ */ 2 /* 3 * Copyright 2008 Advanced Micro Devices, Inc. 4 * Copyright 2008 Red Hat Inc. 5 * Copyright 2009 Jerome Glisse. 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a 8 * copy of this software and associated documentation files (the "Software"), 9 * to deal in the Software without restriction, including without limitation 10 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 11 * and/or sell copies of the Software, and to permit persons to whom the 12 * Software is furnished to do so, subject to the following conditions: 13 * 14 * The above copyright notice and this permission notice shall be included in 15 * all copies or substantial portions of the Software. 16 * 17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 20 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 21 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 22 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 23 * OTHER DEALINGS IN THE SOFTWARE. 24 * 25 * Authors: Dave Airlie 26 * Alex Deucher 27 * Jerome Glisse 28 * Christian König 29 */ 30 #include <dev/pci/drm/drmP.h> 31 #include <dev/pci/drm/radeon_drm.h> 32 #include "radeon_reg.h" 33 #include "radeon.h" 34 #include "atom.h" 35 36 /* 37 * IB 38 * IBs (Indirect Buffers) and areas of GPU accessible memory where 39 * commands are stored. You can put a pointer to the IB in the 40 * command ring and the hw will fetch the commands from the IB 41 * and execute them. Generally userspace acceleration drivers 42 * produce command buffers which are send to the kernel and 43 * put in IBs for execution by the requested ring. 44 */ 45 static int radeon_debugfs_sa_init(struct radeon_device *rdev); 46 47 /** 48 * radeon_ib_get - request an IB (Indirect Buffer) 49 * 50 * @rdev: radeon_device pointer 51 * @ring: ring index the IB is associated with 52 * @ib: IB object returned 53 * @size: requested IB size 54 * 55 * Request an IB (all asics). IBs are allocated using the 56 * suballocator. 57 * Returns 0 on success, error on failure. 58 */ 59 int radeon_ib_get(struct radeon_device *rdev, int ring, 60 struct radeon_ib *ib, struct radeon_vm *vm, 61 unsigned size) 62 { 63 int i, r; 64 65 r = radeon_sa_bo_new(rdev, &rdev->ring_tmp_bo, &ib->sa_bo, size, 256, true); 66 if (r) { 67 dev_err(rdev->dev, "failed to get a new IB (%d)\n", r); 68 return r; 69 } 70 71 r = radeon_semaphore_create(rdev, &ib->semaphore); 72 if (r) { 73 return r; 74 } 75 76 ib->ring = ring; 77 ib->fence = NULL; 78 ib->ptr = radeon_sa_bo_cpu_addr(ib->sa_bo); 79 ib->vm = vm; 80 if (vm) { 81 /* ib pool is bound at RADEON_VA_IB_OFFSET in virtual address 82 * space and soffset is the offset inside the pool bo 83 */ 84 ib->gpu_addr = ib->sa_bo->soffset + RADEON_VA_IB_OFFSET; 85 } else { 86 ib->gpu_addr = radeon_sa_bo_gpu_addr(ib->sa_bo); 87 } 88 ib->is_const_ib = false; 89 for (i = 0; i < RADEON_NUM_RINGS; ++i) 90 ib->sync_to[i] = NULL; 91 92 return 0; 93 } 94 95 /** 96 * radeon_ib_free - free an IB (Indirect Buffer) 97 * 98 * @rdev: radeon_device pointer 99 * @ib: IB object to free 100 * 101 * Free an IB (all asics). 102 */ 103 void radeon_ib_free(struct radeon_device *rdev, struct radeon_ib *ib) 104 { 105 radeon_semaphore_free(rdev, &ib->semaphore, ib->fence); 106 radeon_sa_bo_free(rdev, &ib->sa_bo, ib->fence); 107 radeon_fence_unref(&ib->fence); 108 } 109 110 /** 111 * radeon_ib_schedule - schedule an IB (Indirect Buffer) on the ring 112 * 113 * @rdev: radeon_device pointer 114 * @ib: IB object to schedule 115 * @const_ib: Const IB to schedule (SI only) 116 * 117 * Schedule an IB on the associated ring (all asics). 118 * Returns 0 on success, error on failure. 119 * 120 * On SI, there are two parallel engines fed from the primary ring, 121 * the CE (Constant Engine) and the DE (Drawing Engine). Since 122 * resource descriptors have moved to memory, the CE allows you to 123 * prime the caches while the DE is updating register state so that 124 * the resource descriptors will be already in cache when the draw is 125 * processed. To accomplish this, the userspace driver submits two 126 * IBs, one for the CE and one for the DE. If there is a CE IB (called 127 * a CONST_IB), it will be put on the ring prior to the DE IB. Prior 128 * to SI there was just a DE IB. 129 */ 130 int radeon_ib_schedule(struct radeon_device *rdev, struct radeon_ib *ib, 131 struct radeon_ib *const_ib) 132 { 133 struct radeon_ring *ring = &rdev->ring[ib->ring]; 134 bool need_sync = false; 135 int i, r = 0; 136 137 if (!ib->length_dw || !ring->ready) { 138 /* TODO: Nothings in the ib we should report. */ 139 dev_err(rdev->dev, "couldn't schedule ib\n"); 140 return -EINVAL; 141 } 142 143 /* 64 dwords should be enough for fence too */ 144 r = radeon_ring_lock(rdev, ring, 64 + RADEON_NUM_RINGS * 8); 145 if (r) { 146 dev_err(rdev->dev, "scheduling IB failed (%d).\n", r); 147 return r; 148 } 149 for (i = 0; i < RADEON_NUM_RINGS; ++i) { 150 struct radeon_fence *fence = ib->sync_to[i]; 151 if (radeon_fence_need_sync(fence, ib->ring)) { 152 need_sync = true; 153 radeon_semaphore_sync_rings(rdev, ib->semaphore, 154 fence->ring, ib->ring); 155 radeon_fence_note_sync(fence, ib->ring); 156 } 157 } 158 /* immediately free semaphore when we don't need to sync */ 159 if (!need_sync) { 160 radeon_semaphore_free(rdev, &ib->semaphore, NULL); 161 } 162 /* if we can't remember our last VM flush then flush now! */ 163 /* XXX figure out why we have to flush for every IB */ 164 if (ib->vm /*&& !ib->vm->last_flush*/) { 165 radeon_ring_vm_flush(rdev, ib->ring, ib->vm); 166 } 167 if (const_ib) { 168 radeon_ring_ib_execute(rdev, const_ib->ring, const_ib); 169 radeon_semaphore_free(rdev, &const_ib->semaphore, NULL); 170 } 171 radeon_ring_ib_execute(rdev, ib->ring, ib); 172 r = radeon_fence_emit(rdev, &ib->fence, ib->ring); 173 if (r) { 174 dev_err(rdev->dev, "failed to emit fence for new IB (%d)\n", r); 175 radeon_ring_unlock_undo(rdev, ring); 176 return r; 177 } 178 if (const_ib) { 179 const_ib->fence = radeon_fence_ref(ib->fence); 180 } 181 /* we just flushed the VM, remember that */ 182 if (ib->vm && !ib->vm->last_flush) { 183 ib->vm->last_flush = radeon_fence_ref(ib->fence); 184 } 185 radeon_ring_unlock_commit(rdev, ring); 186 return 0; 187 } 188 189 /** 190 * radeon_ib_pool_init - Init the IB (Indirect Buffer) pool 191 * 192 * @rdev: radeon_device pointer 193 * 194 * Initialize the suballocator to manage a pool of memory 195 * for use as IBs (all asics). 196 * Returns 0 on success, error on failure. 197 */ 198 int radeon_ib_pool_init(struct radeon_device *rdev) 199 { 200 int r; 201 202 if (rdev->ib_pool_ready) { 203 return 0; 204 } 205 r = radeon_sa_bo_manager_init(rdev, &rdev->ring_tmp_bo, 206 RADEON_IB_POOL_SIZE*64*1024, 207 RADEON_GPU_PAGE_SIZE, 208 RADEON_GEM_DOMAIN_GTT); 209 if (r) { 210 return r; 211 } 212 213 r = radeon_sa_bo_manager_start(rdev, &rdev->ring_tmp_bo); 214 if (r) { 215 return r; 216 } 217 218 rdev->ib_pool_ready = true; 219 if (radeon_debugfs_sa_init(rdev)) { 220 dev_err(rdev->dev, "failed to register debugfs file for SA\n"); 221 } 222 return 0; 223 } 224 225 /** 226 * radeon_ib_pool_fini - Free the IB (Indirect Buffer) pool 227 * 228 * @rdev: radeon_device pointer 229 * 230 * Tear down the suballocator managing the pool of memory 231 * for use as IBs (all asics). 232 */ 233 void radeon_ib_pool_fini(struct radeon_device *rdev) 234 { 235 if (rdev->ib_pool_ready) { 236 radeon_sa_bo_manager_suspend(rdev, &rdev->ring_tmp_bo); 237 radeon_sa_bo_manager_fini(rdev, &rdev->ring_tmp_bo); 238 rdev->ib_pool_ready = false; 239 } 240 } 241 242 /** 243 * radeon_ib_ring_tests - test IBs on the rings 244 * 245 * @rdev: radeon_device pointer 246 * 247 * Test an IB (Indirect Buffer) on each ring. 248 * If the test fails, disable the ring. 249 * Returns 0 on success, error if the primary GFX ring 250 * IB test fails. 251 */ 252 int radeon_ib_ring_tests(struct radeon_device *rdev) 253 { 254 unsigned i; 255 int r; 256 257 for (i = 0; i < RADEON_NUM_RINGS; ++i) { 258 struct radeon_ring *ring = &rdev->ring[i]; 259 260 if (!ring->ready) 261 continue; 262 263 r = radeon_ib_test(rdev, i, ring); 264 if (r) { 265 ring->ready = false; 266 267 if (i == RADEON_RING_TYPE_GFX_INDEX) { 268 /* oh, oh, that's really bad */ 269 DRM_ERROR("radeon: failed testing IB on GFX ring (%d).\n", r); 270 rdev->accel_working = false; 271 return r; 272 273 } else { 274 /* still not good, but we can live with it */ 275 DRM_ERROR("radeon: failed testing IB on ring %d (%d).\n", i, r); 276 } 277 } 278 } 279 return 0; 280 } 281 282 /* 283 * Rings 284 * Most engines on the GPU are fed via ring buffers. Ring 285 * buffers are areas of GPU accessible memory that the host 286 * writes commands into and the GPU reads commands out of. 287 * There is a rptr (read pointer) that determines where the 288 * GPU is currently reading, and a wptr (write pointer) 289 * which determines where the host has written. When the 290 * pointers are equal, the ring is idle. When the host 291 * writes commands to the ring buffer, it increments the 292 * wptr. The GPU then starts fetching commands and executes 293 * them until the pointers are equal again. 294 */ 295 static int radeon_debugfs_ring_init(struct radeon_device *rdev, struct radeon_ring *ring); 296 297 #if defined(DRM_DEBUG_CODE) && DRM_DEBUG_CODE != 0 298 /** 299 * radeon_ring_write - write a value to the ring 300 * 301 * @ring: radeon_ring structure holding ring information 302 * @v: dword (dw) value to write 303 * 304 * Write a value to the requested ring buffer (all asics). 305 */ 306 void radeon_ring_write(struct radeon_ring *ring, uint32_t v) 307 { 308 #if DRM_DEBUG_CODE 309 if (ring->count_dw <= 0) { 310 DRM_ERROR("radeon: writing more dwords to the ring than expected!\n"); 311 } 312 #endif 313 ring->ring[ring->wptr++] = v; 314 ring->wptr &= ring->ptr_mask; 315 ring->count_dw--; 316 ring->ring_free_dw--; 317 } 318 #endif 319 320 /** 321 * radeon_ring_supports_scratch_reg - check if the ring supports 322 * writing to scratch registers 323 * 324 * @rdev: radeon_device pointer 325 * @ring: radeon_ring structure holding ring information 326 * 327 * Check if a specific ring supports writing to scratch registers (all asics). 328 * Returns true if the ring supports writing to scratch regs, false if not. 329 */ 330 bool radeon_ring_supports_scratch_reg(struct radeon_device *rdev, 331 struct radeon_ring *ring) 332 { 333 switch (ring->idx) { 334 case RADEON_RING_TYPE_GFX_INDEX: 335 case CAYMAN_RING_TYPE_CP1_INDEX: 336 case CAYMAN_RING_TYPE_CP2_INDEX: 337 return true; 338 default: 339 return false; 340 } 341 } 342 343 /** 344 * radeon_ring_free_size - update the free size 345 * 346 * @rdev: radeon_device pointer 347 * @ring: radeon_ring structure holding ring information 348 * 349 * Update the free dw slots in the ring buffer (all asics). 350 */ 351 void radeon_ring_free_size(struct radeon_device *rdev, struct radeon_ring *ring) 352 { 353 u32 rptr; 354 355 if (rdev->wb.enabled) 356 rptr = le32_to_cpu(rdev->wb.wb[ring->rptr_offs/4]); 357 else 358 rptr = RREG32(ring->rptr_reg); 359 ring->rptr = (rptr & ring->ptr_reg_mask) >> ring->ptr_reg_shift; 360 /* This works because ring_size is a power of 2 */ 361 ring->ring_free_dw = (ring->rptr + (ring->ring_size / 4)); 362 ring->ring_free_dw -= ring->wptr; 363 ring->ring_free_dw &= ring->ptr_mask; 364 if (!ring->ring_free_dw) { 365 ring->ring_free_dw = ring->ring_size / 4; 366 } 367 } 368 369 /** 370 * radeon_ring_alloc - allocate space on the ring buffer 371 * 372 * @rdev: radeon_device pointer 373 * @ring: radeon_ring structure holding ring information 374 * @ndw: number of dwords to allocate in the ring buffer 375 * 376 * Allocate @ndw dwords in the ring buffer (all asics). 377 * Returns 0 on success, error on failure. 378 */ 379 int radeon_ring_alloc(struct radeon_device *rdev, struct radeon_ring *ring, unsigned ndw) 380 { 381 int r; 382 383 /* make sure we aren't trying to allocate more space than there is on the ring */ 384 if (ndw > (ring->ring_size / 4)) 385 return -ENOMEM; 386 /* Align requested size with padding so unlock_commit can 387 * pad safely */ 388 radeon_ring_free_size(rdev, ring); 389 if (ring->ring_free_dw == (ring->ring_size / 4)) { 390 /* This is an empty ring update lockup info to avoid 391 * false positive. 392 */ 393 radeon_ring_lockup_update(ring); 394 } 395 ndw = (ndw + ring->align_mask) & ~ring->align_mask; 396 while (ndw > (ring->ring_free_dw - 1)) { 397 radeon_ring_free_size(rdev, ring); 398 if (ndw < ring->ring_free_dw) { 399 break; 400 } 401 r = radeon_fence_wait_next_locked(rdev, ring->idx); 402 if (r) 403 return r; 404 } 405 ring->count_dw = ndw; 406 ring->wptr_old = ring->wptr; 407 return 0; 408 } 409 410 /** 411 * radeon_ring_lock - lock the ring and allocate space on it 412 * 413 * @rdev: radeon_device pointer 414 * @ring: radeon_ring structure holding ring information 415 * @ndw: number of dwords to allocate in the ring buffer 416 * 417 * Lock the ring and allocate @ndw dwords in the ring buffer 418 * (all asics). 419 * Returns 0 on success, error on failure. 420 */ 421 int radeon_ring_lock(struct radeon_device *rdev, struct radeon_ring *ring, unsigned ndw) 422 { 423 int r; 424 425 mutex_lock(&rdev->ring_lock); 426 r = radeon_ring_alloc(rdev, ring, ndw); 427 if (r) { 428 mutex_unlock(&rdev->ring_lock); 429 return r; 430 } 431 return 0; 432 } 433 434 /** 435 * radeon_ring_commit - tell the GPU to execute the new 436 * commands on the ring buffer 437 * 438 * @rdev: radeon_device pointer 439 * @ring: radeon_ring structure holding ring information 440 * 441 * Update the wptr (write pointer) to tell the GPU to 442 * execute new commands on the ring buffer (all asics). 443 */ 444 void radeon_ring_commit(struct radeon_device *rdev, struct radeon_ring *ring) 445 { 446 /* We pad to match fetch size */ 447 while (ring->wptr & ring->align_mask) { 448 radeon_ring_write(ring, ring->nop); 449 } 450 DRM_MEMORYBARRIER(); 451 WREG32(ring->wptr_reg, (ring->wptr << ring->ptr_reg_shift) & ring->ptr_reg_mask); 452 (void)RREG32(ring->wptr_reg); 453 } 454 455 /** 456 * radeon_ring_unlock_commit - tell the GPU to execute the new 457 * commands on the ring buffer and unlock it 458 * 459 * @rdev: radeon_device pointer 460 * @ring: radeon_ring structure holding ring information 461 * 462 * Call radeon_ring_commit() then unlock the ring (all asics). 463 */ 464 void radeon_ring_unlock_commit(struct radeon_device *rdev, struct radeon_ring *ring) 465 { 466 radeon_ring_commit(rdev, ring); 467 mutex_unlock(&rdev->ring_lock); 468 } 469 470 /** 471 * radeon_ring_undo - reset the wptr 472 * 473 * @ring: radeon_ring structure holding ring information 474 * 475 * Reset the driver's copy of the wptr (all asics). 476 */ 477 void radeon_ring_undo(struct radeon_ring *ring) 478 { 479 ring->wptr = ring->wptr_old; 480 } 481 482 /** 483 * radeon_ring_unlock_undo - reset the wptr and unlock the ring 484 * 485 * @ring: radeon_ring structure holding ring information 486 * 487 * Call radeon_ring_undo() then unlock the ring (all asics). 488 */ 489 void radeon_ring_unlock_undo(struct radeon_device *rdev, struct radeon_ring *ring) 490 { 491 radeon_ring_undo(ring); 492 mutex_unlock(&rdev->ring_lock); 493 } 494 495 /** 496 * radeon_ring_force_activity - add some nop packets to the ring 497 * 498 * @rdev: radeon_device pointer 499 * @ring: radeon_ring structure holding ring information 500 * 501 * Add some nop packets to the ring to force activity (all asics). 502 * Used for lockup detection to see if the rptr is advancing. 503 */ 504 void radeon_ring_force_activity(struct radeon_device *rdev, struct radeon_ring *ring) 505 { 506 int r; 507 508 radeon_ring_free_size(rdev, ring); 509 if (ring->rptr == ring->wptr) { 510 r = radeon_ring_alloc(rdev, ring, 1); 511 if (!r) { 512 radeon_ring_write(ring, ring->nop); 513 radeon_ring_commit(rdev, ring); 514 } 515 } 516 } 517 518 /** 519 * radeon_ring_lockup_update - update lockup variables 520 * 521 * @ring: radeon_ring structure holding ring information 522 * 523 * Update the last rptr value and timestamp (all asics). 524 */ 525 void radeon_ring_lockup_update(struct radeon_ring *ring) 526 { 527 ring->last_rptr = ring->rptr; 528 ring->last_activity = jiffies; 529 } 530 531 /** 532 * radeon_ring_test_lockup() - check if ring is lockedup by recording information 533 * @rdev: radeon device structure 534 * @ring: radeon_ring structure holding ring information 535 * 536 * We don't need to initialize the lockup tracking information as we will either 537 * have CP rptr to a different value of jiffies wrap around which will force 538 * initialization of the lockup tracking informations. 539 * 540 * A possible false positivie is if we get call after while and last_cp_rptr == 541 * the current CP rptr, even if it's unlikely it might happen. To avoid this 542 * if the elapsed time since last call is bigger than 2 second than we return 543 * false and update the tracking information. Due to this the caller must call 544 * radeon_ring_test_lockup several time in less than 2sec for lockup to be reported 545 * the fencing code should be cautious about that. 546 * 547 * Caller should write to the ring to force CP to do something so we don't get 548 * false positive when CP is just gived nothing to do. 549 * 550 **/ 551 bool radeon_ring_test_lockup(struct radeon_device *rdev, struct radeon_ring *ring) 552 { 553 unsigned long cjiffies, elapsed; 554 uint32_t rptr; 555 556 cjiffies = jiffies; 557 if (!time_after(cjiffies, ring->last_activity)) { 558 /* likely a wrap around */ 559 radeon_ring_lockup_update(ring); 560 return false; 561 } 562 rptr = RREG32(ring->rptr_reg); 563 ring->rptr = (rptr & ring->ptr_reg_mask) >> ring->ptr_reg_shift; 564 if (ring->rptr != ring->last_rptr) { 565 /* CP is still working no lockup */ 566 radeon_ring_lockup_update(ring); 567 return false; 568 } 569 elapsed = jiffies_to_msecs(cjiffies - ring->last_activity); 570 if (radeon_lockup_timeout && elapsed >= radeon_lockup_timeout) { 571 dev_err(rdev->dev, "GPU lockup CP stall for more than %lumsec\n", elapsed); 572 return true; 573 } 574 /* give a chance to the GPU ... */ 575 return false; 576 } 577 578 /** 579 * radeon_ring_backup - Back up the content of a ring 580 * 581 * @rdev: radeon_device pointer 582 * @ring: the ring we want to back up 583 * 584 * Saves all unprocessed commits from a ring, returns the number of dwords saved. 585 */ 586 unsigned radeon_ring_backup(struct radeon_device *rdev, struct radeon_ring *ring, 587 uint32_t **data) 588 { 589 unsigned size, ptr, i; 590 591 /* just in case lock the ring */ 592 mutex_lock(&rdev->ring_lock); 593 *data = NULL; 594 595 if (ring->ring_obj == NULL) { 596 mutex_unlock(&rdev->ring_lock); 597 return 0; 598 } 599 600 /* it doesn't make sense to save anything if all fences are signaled */ 601 if (!radeon_fence_count_emitted(rdev, ring->idx)) { 602 mutex_unlock(&rdev->ring_lock); 603 return 0; 604 } 605 606 /* calculate the number of dw on the ring */ 607 if (ring->rptr_save_reg) 608 ptr = RREG32(ring->rptr_save_reg); 609 else if (rdev->wb.enabled) 610 ptr = le32_to_cpu(*ring->next_rptr_cpu_addr); 611 else { 612 /* no way to read back the next rptr */ 613 mutex_unlock(&rdev->ring_lock); 614 return 0; 615 } 616 617 size = ring->wptr + (ring->ring_size / 4); 618 size -= ptr; 619 size &= ring->ptr_mask; 620 if (size == 0) { 621 mutex_unlock(&rdev->ring_lock); 622 return 0; 623 } 624 625 /* and then save the content of the ring */ 626 *data = kmalloc_array(size, sizeof(uint32_t), GFP_KERNEL); 627 if (!*data) { 628 mutex_unlock(&rdev->ring_lock); 629 return 0; 630 } 631 for (i = 0; i < size; ++i) { 632 (*data)[i] = ring->ring[ptr++]; 633 ptr &= ring->ptr_mask; 634 } 635 636 mutex_unlock(&rdev->ring_lock); 637 return size; 638 } 639 640 /** 641 * radeon_ring_restore - append saved commands to the ring again 642 * 643 * @rdev: radeon_device pointer 644 * @ring: ring to append commands to 645 * @size: number of dwords we want to write 646 * @data: saved commands 647 * 648 * Allocates space on the ring and restore the previously saved commands. 649 */ 650 int radeon_ring_restore(struct radeon_device *rdev, struct radeon_ring *ring, 651 unsigned size, uint32_t *data) 652 { 653 int i, r; 654 655 if (!size || !data) 656 return 0; 657 658 /* restore the saved ring content */ 659 r = radeon_ring_lock(rdev, ring, size); 660 if (r) 661 return r; 662 663 for (i = 0; i < size; ++i) { 664 radeon_ring_write(ring, data[i]); 665 } 666 667 radeon_ring_unlock_commit(rdev, ring); 668 kfree(data); 669 return 0; 670 } 671 672 /** 673 * radeon_ring_init - init driver ring struct. 674 * 675 * @rdev: radeon_device pointer 676 * @ring: radeon_ring structure holding ring information 677 * @ring_size: size of the ring 678 * @rptr_offs: offset of the rptr writeback location in the WB buffer 679 * @rptr_reg: MMIO offset of the rptr register 680 * @wptr_reg: MMIO offset of the wptr register 681 * @ptr_reg_shift: bit offset of the rptr/wptr values 682 * @ptr_reg_mask: bit mask of the rptr/wptr values 683 * @nop: nop packet for this ring 684 * 685 * Initialize the driver information for the selected ring (all asics). 686 * Returns 0 on success, error on failure. 687 */ 688 int radeon_ring_init(struct radeon_device *rdev, struct radeon_ring *ring, unsigned ring_size, 689 unsigned rptr_offs, unsigned rptr_reg, unsigned wptr_reg, 690 u32 ptr_reg_shift, u32 ptr_reg_mask, u32 nop) 691 { 692 int r; 693 694 ring->ring_size = ring_size; 695 ring->rptr_offs = rptr_offs; 696 ring->rptr_reg = rptr_reg; 697 ring->wptr_reg = wptr_reg; 698 ring->ptr_reg_shift = ptr_reg_shift; 699 ring->ptr_reg_mask = ptr_reg_mask; 700 ring->nop = nop; 701 /* Allocate ring buffer */ 702 if (ring->ring_obj == NULL) { 703 r = radeon_bo_create(rdev, ring->ring_size, PAGE_SIZE, true, 704 RADEON_GEM_DOMAIN_GTT, 705 NULL, &ring->ring_obj); 706 if (r) { 707 dev_err(rdev->dev, "(%d) ring create failed\n", r); 708 return r; 709 } 710 r = radeon_bo_reserve(ring->ring_obj, false); 711 if (unlikely(r != 0)) 712 return r; 713 r = radeon_bo_pin(ring->ring_obj, RADEON_GEM_DOMAIN_GTT, 714 &ring->gpu_addr); 715 if (r) { 716 radeon_bo_unreserve(ring->ring_obj); 717 dev_err(rdev->dev, "(%d) ring pin failed\n", r); 718 return r; 719 } 720 r = radeon_bo_kmap(ring->ring_obj, 721 (void **)&ring->ring); 722 radeon_bo_unreserve(ring->ring_obj); 723 if (r) { 724 dev_err(rdev->dev, "(%d) ring map failed\n", r); 725 return r; 726 } 727 } 728 ring->ptr_mask = (ring->ring_size / 4) - 1; 729 ring->ring_free_dw = ring->ring_size / 4; 730 if (rdev->wb.enabled) { 731 u32 index = RADEON_WB_RING0_NEXT_RPTR + (ring->idx * 4); 732 ring->next_rptr_gpu_addr = rdev->wb.gpu_addr + index; 733 ring->next_rptr_cpu_addr = &rdev->wb.wb[index/4]; 734 } 735 if (radeon_debugfs_ring_init(rdev, ring)) { 736 DRM_ERROR("Failed to register debugfs file for rings !\n"); 737 } 738 radeon_ring_lockup_update(ring); 739 return 0; 740 } 741 742 /** 743 * radeon_ring_fini - tear down the driver ring struct. 744 * 745 * @rdev: radeon_device pointer 746 * @ring: radeon_ring structure holding ring information 747 * 748 * Tear down the driver information for the selected ring (all asics). 749 */ 750 void radeon_ring_fini(struct radeon_device *rdev, struct radeon_ring *ring) 751 { 752 int r; 753 struct radeon_bo *ring_obj; 754 755 mutex_lock(&rdev->ring_lock); 756 ring_obj = ring->ring_obj; 757 ring->ready = false; 758 ring->ring = NULL; 759 ring->ring_obj = NULL; 760 mutex_unlock(&rdev->ring_lock); 761 762 if (ring_obj) { 763 r = radeon_bo_reserve(ring_obj, false); 764 if (likely(r == 0)) { 765 radeon_bo_kunmap(ring_obj); 766 radeon_bo_unpin(ring_obj); 767 radeon_bo_unreserve(ring_obj); 768 } 769 radeon_bo_unref(&ring_obj); 770 } 771 } 772 773 /* 774 * Debugfs info 775 */ 776 #if defined(CONFIG_DEBUG_FS) 777 778 static int radeon_debugfs_ring_info(struct seq_file *m, void *data) 779 { 780 struct drm_info_node *node = (struct drm_info_node *) m->private; 781 struct drm_device *dev = node->minor->dev; 782 struct radeon_device *rdev = dev->dev_private; 783 int ridx = *(int*)node->info_ent->data; 784 struct radeon_ring *ring = &rdev->ring[ridx]; 785 unsigned count, i, j; 786 u32 tmp; 787 788 radeon_ring_free_size(rdev, ring); 789 count = (ring->ring_size / 4) - ring->ring_free_dw; 790 tmp = RREG32(ring->wptr_reg) >> ring->ptr_reg_shift; 791 seq_printf(m, "wptr(0x%04x): 0x%08x [%5d]\n", ring->wptr_reg, tmp, tmp); 792 tmp = RREG32(ring->rptr_reg) >> ring->ptr_reg_shift; 793 seq_printf(m, "rptr(0x%04x): 0x%08x [%5d]\n", ring->rptr_reg, tmp, tmp); 794 if (ring->rptr_save_reg) { 795 seq_printf(m, "rptr next(0x%04x): 0x%08x\n", ring->rptr_save_reg, 796 RREG32(ring->rptr_save_reg)); 797 } 798 seq_printf(m, "driver's copy of the wptr: 0x%08x [%5d]\n", ring->wptr, ring->wptr); 799 seq_printf(m, "driver's copy of the rptr: 0x%08x [%5d]\n", ring->rptr, ring->rptr); 800 seq_printf(m, "last semaphore signal addr : 0x%016llx\n", ring->last_semaphore_signal_addr); 801 seq_printf(m, "last semaphore wait addr : 0x%016llx\n", ring->last_semaphore_wait_addr); 802 seq_printf(m, "%u free dwords in ring\n", ring->ring_free_dw); 803 seq_printf(m, "%u dwords in ring\n", count); 804 /* print 8 dw before current rptr as often it's the last executed 805 * packet that is the root issue 806 */ 807 i = (ring->rptr + ring->ptr_mask + 1 - 32) & ring->ptr_mask; 808 if (ring->ready) { 809 for (j = 0; j <= (count + 32); j++) { 810 seq_printf(m, "r[%5d]=0x%08x\n", i, ring->ring[i]); 811 i = (i + 1) & ring->ptr_mask; 812 } 813 } 814 return 0; 815 } 816 817 static int radeon_ring_type_gfx_index = RADEON_RING_TYPE_GFX_INDEX; 818 static int cayman_ring_type_cp1_index = CAYMAN_RING_TYPE_CP1_INDEX; 819 static int cayman_ring_type_cp2_index = CAYMAN_RING_TYPE_CP2_INDEX; 820 static int radeon_ring_type_dma1_index = R600_RING_TYPE_DMA_INDEX; 821 static int radeon_ring_type_dma2_index = CAYMAN_RING_TYPE_DMA1_INDEX; 822 823 static struct drm_info_list radeon_debugfs_ring_info_list[] = { 824 {"radeon_ring_gfx", radeon_debugfs_ring_info, 0, &radeon_ring_type_gfx_index}, 825 {"radeon_ring_cp1", radeon_debugfs_ring_info, 0, &cayman_ring_type_cp1_index}, 826 {"radeon_ring_cp2", radeon_debugfs_ring_info, 0, &cayman_ring_type_cp2_index}, 827 {"radeon_ring_dma1", radeon_debugfs_ring_info, 0, &radeon_ring_type_dma1_index}, 828 {"radeon_ring_dma2", radeon_debugfs_ring_info, 0, &radeon_ring_type_dma2_index}, 829 }; 830 831 static int radeon_debugfs_sa_info(struct seq_file *m, void *data) 832 { 833 struct drm_info_node *node = (struct drm_info_node *) m->private; 834 struct drm_device *dev = node->minor->dev; 835 struct radeon_device *rdev = dev->dev_private; 836 837 radeon_sa_bo_dump_debug_info(&rdev->ring_tmp_bo, m); 838 839 return 0; 840 841 } 842 843 static struct drm_info_list radeon_debugfs_sa_list[] = { 844 {"radeon_sa_info", &radeon_debugfs_sa_info, 0, NULL}, 845 }; 846 847 #endif 848 849 static int radeon_debugfs_ring_init(struct radeon_device *rdev, struct radeon_ring *ring) 850 { 851 #if defined(CONFIG_DEBUG_FS) 852 unsigned i; 853 for (i = 0; i < ARRAY_SIZE(radeon_debugfs_ring_info_list); ++i) { 854 struct drm_info_list *info = &radeon_debugfs_ring_info_list[i]; 855 int ridx = *(int*)radeon_debugfs_ring_info_list[i].data; 856 unsigned r; 857 858 if (&rdev->ring[ridx] != ring) 859 continue; 860 861 r = radeon_debugfs_add_files(rdev, info, 1); 862 if (r) 863 return r; 864 } 865 #endif 866 return 0; 867 } 868 869 static int radeon_debugfs_sa_init(struct radeon_device *rdev) 870 { 871 #if defined(CONFIG_DEBUG_FS) 872 return radeon_debugfs_add_files(rdev, radeon_debugfs_sa_list, 1); 873 #else 874 return 0; 875 #endif 876 } 877