xref: /openbsd-src/sys/dev/pci/drm/i915/i915_vma.c (revision 1ad61ae0a79a724d2d3ec69e69c8e1d1ff6b53a0)
1 /*
2  * Copyright © 2016 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #include <linux/sched/mm.h>
26 #include <linux/dma-fence-array.h>
27 #include <drm/drm_gem.h>
28 
29 #include "display/intel_frontbuffer.h"
30 #include "gem/i915_gem_lmem.h"
31 #include "gem/i915_gem_tiling.h"
32 #include "gt/intel_engine.h"
33 #include "gt/intel_engine_heartbeat.h"
34 #include "gt/intel_gt.h"
35 #include "gt/intel_gt_requests.h"
36 
37 #include "i915_drv.h"
38 #include "i915_gem_evict.h"
39 #include "i915_sw_fence_work.h"
40 #include "i915_trace.h"
41 #include "i915_vma.h"
42 #include "i915_vma_resource.h"
43 
44 #include <dev/pci/agpvar.h>
45 
46 static inline void assert_vma_held_evict(const struct i915_vma *vma)
47 {
48 	/*
49 	 * We may be forced to unbind when the vm is dead, to clean it up.
50 	 * This is the only exception to the requirement of the object lock
51 	 * being held.
52 	 */
53 	if (kref_read(&vma->vm->ref))
54 		assert_object_held_shared(vma->obj);
55 }
56 
57 static struct pool slab_vmas;
58 
59 static struct i915_vma *i915_vma_alloc(void)
60 {
61 #ifdef __linux__
62 	return kmem_cache_zalloc(slab_vmas, GFP_KERNEL);
63 #else
64 	return pool_get(&slab_vmas, PR_WAITOK | PR_ZERO);
65 #endif
66 }
67 
68 static void i915_vma_free(struct i915_vma *vma)
69 {
70 #ifdef __linux__
71 	return kmem_cache_free(slab_vmas, vma);
72 #else
73 	pool_put(&slab_vmas, vma);
74 #endif
75 }
76 
77 #if IS_ENABLED(CONFIG_DRM_I915_ERRLOG_GEM) && IS_ENABLED(CONFIG_DRM_DEBUG_MM)
78 
79 #include <linux/stackdepot.h>
80 
81 static void vma_print_allocator(struct i915_vma *vma, const char *reason)
82 {
83 	char buf[512];
84 
85 	if (!vma->node.stack) {
86 		DRM_DEBUG_DRIVER("vma.node [%08llx + %08llx] %s: unknown owner\n",
87 				 vma->node.start, vma->node.size, reason);
88 		return;
89 	}
90 
91 	stack_depot_snprint(vma->node.stack, buf, sizeof(buf), 0);
92 	DRM_DEBUG_DRIVER("vma.node [%08llx + %08llx] %s: inserted at %s\n",
93 			 vma->node.start, vma->node.size, reason, buf);
94 }
95 
96 #else
97 
98 static void vma_print_allocator(struct i915_vma *vma, const char *reason)
99 {
100 }
101 
102 #endif
103 
104 static inline struct i915_vma *active_to_vma(struct i915_active *ref)
105 {
106 	return container_of(ref, typeof(struct i915_vma), active);
107 }
108 
109 static int __i915_vma_active(struct i915_active *ref)
110 {
111 	return i915_vma_tryget(active_to_vma(ref)) ? 0 : -ENOENT;
112 }
113 
114 static void __i915_vma_retire(struct i915_active *ref)
115 {
116 	i915_vma_put(active_to_vma(ref));
117 }
118 
119 static struct i915_vma *
120 vma_create(struct drm_i915_gem_object *obj,
121 	   struct i915_address_space *vm,
122 	   const struct i915_gtt_view *view)
123 {
124 	struct i915_vma *pos = ERR_PTR(-E2BIG);
125 	struct i915_vma *vma;
126 	struct rb_node *rb, **p;
127 	int err;
128 
129 	/* The aliasing_ppgtt should never be used directly! */
130 	GEM_BUG_ON(vm == &vm->gt->ggtt->alias->vm);
131 
132 	vma = i915_vma_alloc();
133 	if (vma == NULL)
134 		return ERR_PTR(-ENOMEM);
135 
136 	vma->ops = &vm->vma_ops;
137 	vma->obj = obj;
138 	vma->size = obj->base.size;
139 	vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
140 
141 	i915_active_init(&vma->active, __i915_vma_active, __i915_vma_retire, 0);
142 
143 #ifdef notyet
144 	/* Declare ourselves safe for use inside shrinkers */
145 	if (IS_ENABLED(CONFIG_LOCKDEP)) {
146 		fs_reclaim_acquire(GFP_KERNEL);
147 		might_lock(&vma->active.mutex);
148 		fs_reclaim_release(GFP_KERNEL);
149 	}
150 #endif
151 
152 	INIT_LIST_HEAD(&vma->closed_link);
153 	INIT_LIST_HEAD(&vma->obj_link);
154 	RB_CLEAR_NODE(&vma->obj_node);
155 
156 	if (view && view->type != I915_GTT_VIEW_NORMAL) {
157 		vma->gtt_view = *view;
158 		if (view->type == I915_GTT_VIEW_PARTIAL) {
159 			GEM_BUG_ON(range_overflows_t(u64,
160 						     view->partial.offset,
161 						     view->partial.size,
162 						     obj->base.size >> PAGE_SHIFT));
163 			vma->size = view->partial.size;
164 			vma->size <<= PAGE_SHIFT;
165 			GEM_BUG_ON(vma->size > obj->base.size);
166 		} else if (view->type == I915_GTT_VIEW_ROTATED) {
167 			vma->size = intel_rotation_info_size(&view->rotated);
168 			vma->size <<= PAGE_SHIFT;
169 		} else if (view->type == I915_GTT_VIEW_REMAPPED) {
170 			vma->size = intel_remapped_info_size(&view->remapped);
171 			vma->size <<= PAGE_SHIFT;
172 		}
173 	}
174 
175 	if (unlikely(vma->size > vm->total))
176 		goto err_vma;
177 
178 	GEM_BUG_ON(!IS_ALIGNED(vma->size, I915_GTT_PAGE_SIZE));
179 
180 	err = mutex_lock_interruptible(&vm->mutex);
181 	if (err) {
182 		pos = ERR_PTR(err);
183 		goto err_vma;
184 	}
185 
186 	vma->vm = vm;
187 	list_add_tail(&vma->vm_link, &vm->unbound_list);
188 
189 	spin_lock(&obj->vma.lock);
190 	if (i915_is_ggtt(vm)) {
191 		if (unlikely(overflows_type(vma->size, u32)))
192 			goto err_unlock;
193 
194 		vma->fence_size = i915_gem_fence_size(vm->i915, vma->size,
195 						      i915_gem_object_get_tiling(obj),
196 						      i915_gem_object_get_stride(obj));
197 		if (unlikely(vma->fence_size < vma->size || /* overflow */
198 			     vma->fence_size > vm->total))
199 			goto err_unlock;
200 
201 		GEM_BUG_ON(!IS_ALIGNED(vma->fence_size, I915_GTT_MIN_ALIGNMENT));
202 
203 		vma->fence_alignment = i915_gem_fence_alignment(vm->i915, vma->size,
204 								i915_gem_object_get_tiling(obj),
205 								i915_gem_object_get_stride(obj));
206 		GEM_BUG_ON(!is_power_of_2(vma->fence_alignment));
207 
208 		__set_bit(I915_VMA_GGTT_BIT, __i915_vma_flags(vma));
209 	}
210 
211 	rb = NULL;
212 	p = &obj->vma.tree.rb_node;
213 	while (*p) {
214 		long cmp;
215 
216 		rb = *p;
217 		pos = rb_entry(rb, struct i915_vma, obj_node);
218 
219 		/*
220 		 * If the view already exists in the tree, another thread
221 		 * already created a matching vma, so return the older instance
222 		 * and dispose of ours.
223 		 */
224 		cmp = i915_vma_compare(pos, vm, view);
225 		if (cmp < 0)
226 			p = &rb->rb_right;
227 		else if (cmp > 0)
228 			p = &rb->rb_left;
229 		else
230 			goto err_unlock;
231 	}
232 	rb_link_node(&vma->obj_node, rb, p);
233 	rb_insert_color(&vma->obj_node, &obj->vma.tree);
234 
235 	if (i915_vma_is_ggtt(vma))
236 		/*
237 		 * We put the GGTT vma at the start of the vma-list, followed
238 		 * by the ppGGTT vma. This allows us to break early when
239 		 * iterating over only the GGTT vma for an object, see
240 		 * for_each_ggtt_vma()
241 		 */
242 		list_add(&vma->obj_link, &obj->vma.list);
243 	else
244 		list_add_tail(&vma->obj_link, &obj->vma.list);
245 
246 	spin_unlock(&obj->vma.lock);
247 	mutex_unlock(&vm->mutex);
248 
249 	return vma;
250 
251 err_unlock:
252 	spin_unlock(&obj->vma.lock);
253 	list_del_init(&vma->vm_link);
254 	mutex_unlock(&vm->mutex);
255 err_vma:
256 	i915_vma_free(vma);
257 	return pos;
258 }
259 
260 static struct i915_vma *
261 i915_vma_lookup(struct drm_i915_gem_object *obj,
262 	   struct i915_address_space *vm,
263 	   const struct i915_gtt_view *view)
264 {
265 	struct rb_node *rb;
266 
267 	rb = obj->vma.tree.rb_node;
268 	while (rb) {
269 		struct i915_vma *vma = rb_entry(rb, struct i915_vma, obj_node);
270 		long cmp;
271 
272 		cmp = i915_vma_compare(vma, vm, view);
273 		if (cmp == 0)
274 			return vma;
275 
276 		if (cmp < 0)
277 			rb = rb->rb_right;
278 		else
279 			rb = rb->rb_left;
280 	}
281 
282 	return NULL;
283 }
284 
285 /**
286  * i915_vma_instance - return the singleton instance of the VMA
287  * @obj: parent &struct drm_i915_gem_object to be mapped
288  * @vm: address space in which the mapping is located
289  * @view: additional mapping requirements
290  *
291  * i915_vma_instance() looks up an existing VMA of the @obj in the @vm with
292  * the same @view characteristics. If a match is not found, one is created.
293  * Once created, the VMA is kept until either the object is freed, or the
294  * address space is closed.
295  *
296  * Returns the vma, or an error pointer.
297  */
298 struct i915_vma *
299 i915_vma_instance(struct drm_i915_gem_object *obj,
300 		  struct i915_address_space *vm,
301 		  const struct i915_gtt_view *view)
302 {
303 	struct i915_vma *vma;
304 
305 	GEM_BUG_ON(view && !i915_is_ggtt_or_dpt(vm));
306 	GEM_BUG_ON(!kref_read(&vm->ref));
307 
308 	spin_lock(&obj->vma.lock);
309 	vma = i915_vma_lookup(obj, vm, view);
310 	spin_unlock(&obj->vma.lock);
311 
312 	/* vma_create() will resolve the race if another creates the vma */
313 	if (unlikely(!vma))
314 		vma = vma_create(obj, vm, view);
315 
316 	GEM_BUG_ON(!IS_ERR(vma) && i915_vma_compare(vma, vm, view));
317 	return vma;
318 }
319 
320 struct i915_vma_work {
321 	struct dma_fence_work base;
322 	struct i915_address_space *vm;
323 	struct i915_vm_pt_stash stash;
324 	struct i915_vma_resource *vma_res;
325 	struct drm_i915_gem_object *obj;
326 	struct i915_sw_dma_fence_cb cb;
327 	enum i915_cache_level cache_level;
328 	unsigned int flags;
329 };
330 
331 static void __vma_bind(struct dma_fence_work *work)
332 {
333 	struct i915_vma_work *vw = container_of(work, typeof(*vw), base);
334 	struct i915_vma_resource *vma_res = vw->vma_res;
335 
336 	/*
337 	 * We are about the bind the object, which must mean we have already
338 	 * signaled the work to potentially clear/move the pages underneath. If
339 	 * something went wrong at that stage then the object should have
340 	 * unknown_state set, in which case we need to skip the bind.
341 	 */
342 	if (i915_gem_object_has_unknown_state(vw->obj))
343 		return;
344 
345 	vma_res->ops->bind_vma(vma_res->vm, &vw->stash,
346 			       vma_res, vw->cache_level, vw->flags);
347 }
348 
349 static void __vma_release(struct dma_fence_work *work)
350 {
351 	struct i915_vma_work *vw = container_of(work, typeof(*vw), base);
352 
353 	if (vw->obj)
354 		i915_gem_object_put(vw->obj);
355 
356 	i915_vm_free_pt_stash(vw->vm, &vw->stash);
357 	if (vw->vma_res)
358 		i915_vma_resource_put(vw->vma_res);
359 }
360 
361 static const struct dma_fence_work_ops bind_ops = {
362 	.name = "bind",
363 	.work = __vma_bind,
364 	.release = __vma_release,
365 };
366 
367 struct i915_vma_work *i915_vma_work(void)
368 {
369 	struct i915_vma_work *vw;
370 
371 	vw = kzalloc(sizeof(*vw), GFP_KERNEL);
372 	if (!vw)
373 		return NULL;
374 
375 	dma_fence_work_init(&vw->base, &bind_ops);
376 	vw->base.dma.error = -EAGAIN; /* disable the worker by default */
377 
378 	return vw;
379 }
380 
381 int i915_vma_wait_for_bind(struct i915_vma *vma)
382 {
383 	int err = 0;
384 
385 	if (rcu_access_pointer(vma->active.excl.fence)) {
386 		struct dma_fence *fence;
387 
388 		rcu_read_lock();
389 		fence = dma_fence_get_rcu_safe(&vma->active.excl.fence);
390 		rcu_read_unlock();
391 		if (fence) {
392 			err = dma_fence_wait(fence, true);
393 			dma_fence_put(fence);
394 		}
395 	}
396 
397 	return err;
398 }
399 
400 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
401 static int i915_vma_verify_bind_complete(struct i915_vma *vma)
402 {
403 	struct dma_fence *fence = i915_active_fence_get(&vma->active.excl);
404 	int err;
405 
406 	if (!fence)
407 		return 0;
408 
409 	if (dma_fence_is_signaled(fence))
410 		err = fence->error;
411 	else
412 		err = -EBUSY;
413 
414 	dma_fence_put(fence);
415 
416 	return err;
417 }
418 #else
419 #define i915_vma_verify_bind_complete(_vma) 0
420 #endif
421 
422 I915_SELFTEST_EXPORT void
423 i915_vma_resource_init_from_vma(struct i915_vma_resource *vma_res,
424 				struct i915_vma *vma)
425 {
426 	struct drm_i915_gem_object *obj = vma->obj;
427 
428 	i915_vma_resource_init(vma_res, vma->vm, vma->pages, &vma->page_sizes,
429 			       obj->mm.rsgt, i915_gem_object_is_readonly(obj),
430 			       i915_gem_object_is_lmem(obj), obj->mm.region,
431 			       vma->ops, vma->private, vma->node.start,
432 			       vma->node.size, vma->size);
433 }
434 
435 /**
436  * i915_vma_bind - Sets up PTEs for an VMA in it's corresponding address space.
437  * @vma: VMA to map
438  * @cache_level: mapping cache level
439  * @flags: flags like global or local mapping
440  * @work: preallocated worker for allocating and binding the PTE
441  * @vma_res: pointer to a preallocated vma resource. The resource is either
442  * consumed or freed.
443  *
444  * DMA addresses are taken from the scatter-gather table of this object (or of
445  * this VMA in case of non-default GGTT views) and PTE entries set up.
446  * Note that DMA addresses are also the only part of the SG table we care about.
447  */
448 int i915_vma_bind(struct i915_vma *vma,
449 		  enum i915_cache_level cache_level,
450 		  u32 flags,
451 		  struct i915_vma_work *work,
452 		  struct i915_vma_resource *vma_res)
453 {
454 	u32 bind_flags;
455 	u32 vma_flags;
456 	int ret;
457 
458 	lockdep_assert_held(&vma->vm->mutex);
459 	GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
460 	GEM_BUG_ON(vma->size > vma->node.size);
461 
462 	if (GEM_DEBUG_WARN_ON(range_overflows(vma->node.start,
463 					      vma->node.size,
464 					      vma->vm->total))) {
465 		i915_vma_resource_free(vma_res);
466 		return -ENODEV;
467 	}
468 
469 	if (GEM_DEBUG_WARN_ON(!flags)) {
470 		i915_vma_resource_free(vma_res);
471 		return -EINVAL;
472 	}
473 
474 	bind_flags = flags;
475 	bind_flags &= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
476 
477 	vma_flags = atomic_read(&vma->flags);
478 	vma_flags &= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
479 
480 	bind_flags &= ~vma_flags;
481 	if (bind_flags == 0) {
482 		i915_vma_resource_free(vma_res);
483 		return 0;
484 	}
485 
486 	GEM_BUG_ON(!atomic_read(&vma->pages_count));
487 
488 	/* Wait for or await async unbinds touching our range */
489 	if (work && bind_flags & vma->vm->bind_async_flags)
490 		ret = i915_vma_resource_bind_dep_await(vma->vm,
491 						       &work->base.chain,
492 						       vma->node.start,
493 						       vma->node.size,
494 						       true,
495 						       GFP_NOWAIT |
496 						       __GFP_RETRY_MAYFAIL |
497 						       __GFP_NOWARN);
498 	else
499 		ret = i915_vma_resource_bind_dep_sync(vma->vm, vma->node.start,
500 						      vma->node.size, true);
501 	if (ret) {
502 		i915_vma_resource_free(vma_res);
503 		return ret;
504 	}
505 
506 	if (vma->resource || !vma_res) {
507 		/* Rebinding with an additional I915_VMA_*_BIND */
508 		GEM_WARN_ON(!vma_flags);
509 		i915_vma_resource_free(vma_res);
510 	} else {
511 		i915_vma_resource_init_from_vma(vma_res, vma);
512 		vma->resource = vma_res;
513 	}
514 	trace_i915_vma_bind(vma, bind_flags);
515 	if (work && bind_flags & vma->vm->bind_async_flags) {
516 		struct dma_fence *prev;
517 
518 		work->vma_res = i915_vma_resource_get(vma->resource);
519 		work->cache_level = cache_level;
520 		work->flags = bind_flags;
521 
522 		/*
523 		 * Note we only want to chain up to the migration fence on
524 		 * the pages (not the object itself). As we don't track that,
525 		 * yet, we have to use the exclusive fence instead.
526 		 *
527 		 * Also note that we do not want to track the async vma as
528 		 * part of the obj->resv->excl_fence as it only affects
529 		 * execution and not content or object's backing store lifetime.
530 		 */
531 		prev = i915_active_set_exclusive(&vma->active, &work->base.dma);
532 		if (prev) {
533 			__i915_sw_fence_await_dma_fence(&work->base.chain,
534 							prev,
535 							&work->cb);
536 			dma_fence_put(prev);
537 		}
538 
539 		work->base.dma.error = 0; /* enable the queue_work() */
540 		work->obj = i915_gem_object_get(vma->obj);
541 	} else {
542 		ret = i915_gem_object_wait_moving_fence(vma->obj, true);
543 		if (ret) {
544 			i915_vma_resource_free(vma->resource);
545 			vma->resource = NULL;
546 
547 			return ret;
548 		}
549 		vma->ops->bind_vma(vma->vm, NULL, vma->resource, cache_level,
550 				   bind_flags);
551 	}
552 
553 	atomic_or(bind_flags, &vma->flags);
554 	return 0;
555 }
556 
557 void __iomem *i915_vma_pin_iomap(struct i915_vma *vma)
558 {
559 	void __iomem *ptr;
560 	int err;
561 
562 	if (WARN_ON_ONCE(vma->obj->flags & I915_BO_ALLOC_GPU_ONLY))
563 		return IOMEM_ERR_PTR(-EINVAL);
564 
565 	GEM_BUG_ON(!i915_vma_is_ggtt(vma));
566 	GEM_BUG_ON(!i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND));
567 	GEM_BUG_ON(i915_vma_verify_bind_complete(vma));
568 
569 	ptr = READ_ONCE(vma->iomap);
570 	if (ptr == NULL) {
571 		/*
572 		 * TODO: consider just using i915_gem_object_pin_map() for lmem
573 		 * instead, which already supports mapping non-contiguous chunks
574 		 * of pages, that way we can also drop the
575 		 * I915_BO_ALLOC_CONTIGUOUS when allocating the object.
576 		 */
577 		if (i915_gem_object_is_lmem(vma->obj)) {
578 			ptr = i915_gem_object_lmem_io_map(vma->obj, 0,
579 							  vma->obj->base.size);
580 		} else if (i915_vma_is_map_and_fenceable(vma)) {
581 #ifdef __linux__
582 			ptr = io_mapping_map_wc(&i915_vm_to_ggtt(vma->vm)->iomap,
583 						vma->node.start,
584 						vma->node.size);
585 #else
586 		{
587 			struct drm_i915_private *dev_priv = vma->vm->i915;
588 			err = agp_map_subregion(dev_priv->agph, vma->node.start,
589                                  vma->node.size, &vma->bsh);
590 			if (err) {
591 				err = -err;
592 				goto err;
593 			}
594 			ptr = bus_space_vaddr(dev_priv->bst, vma->bsh);
595 		}
596 #endif
597 		} else {
598 			ptr = (void __iomem *)
599 				i915_gem_object_pin_map(vma->obj, I915_MAP_WC);
600 			if (IS_ERR(ptr)) {
601 				err = PTR_ERR(ptr);
602 				goto err;
603 			}
604 			ptr = page_pack_bits(ptr, 1);
605 		}
606 
607 		if (ptr == NULL) {
608 			err = -ENOMEM;
609 			goto err;
610 		}
611 
612 		if (unlikely(cmpxchg(&vma->iomap, NULL, ptr))) {
613 			if (page_unmask_bits(ptr))
614 				__i915_gem_object_release_map(vma->obj);
615 #ifdef __linux__
616 			else
617 				io_mapping_unmap(ptr);
618 #endif
619 			ptr = vma->iomap;
620 		}
621 	}
622 
623 	__i915_vma_pin(vma);
624 
625 	err = i915_vma_pin_fence(vma);
626 	if (err)
627 		goto err_unpin;
628 
629 	i915_vma_set_ggtt_write(vma);
630 
631 	/* NB Access through the GTT requires the device to be awake. */
632 	return page_mask_bits(ptr);
633 
634 err_unpin:
635 	__i915_vma_unpin(vma);
636 err:
637 	return IOMEM_ERR_PTR(err);
638 }
639 
640 void i915_vma_flush_writes(struct i915_vma *vma)
641 {
642 	if (i915_vma_unset_ggtt_write(vma))
643 		intel_gt_flush_ggtt_writes(vma->vm->gt);
644 }
645 
646 void i915_vma_unpin_iomap(struct i915_vma *vma)
647 {
648 	GEM_BUG_ON(vma->iomap == NULL);
649 
650 	/* XXX We keep the mapping until __i915_vma_unbind()/evict() */
651 
652 	i915_vma_flush_writes(vma);
653 
654 	i915_vma_unpin_fence(vma);
655 	i915_vma_unpin(vma);
656 }
657 
658 void i915_vma_unpin_and_release(struct i915_vma **p_vma, unsigned int flags)
659 {
660 	struct i915_vma *vma;
661 	struct drm_i915_gem_object *obj;
662 
663 	vma = fetch_and_zero(p_vma);
664 	if (!vma)
665 		return;
666 
667 	obj = vma->obj;
668 	GEM_BUG_ON(!obj);
669 
670 	i915_vma_unpin(vma);
671 
672 	if (flags & I915_VMA_RELEASE_MAP)
673 		i915_gem_object_unpin_map(obj);
674 
675 	i915_gem_object_put(obj);
676 }
677 
678 bool i915_vma_misplaced(const struct i915_vma *vma,
679 			u64 size, u64 alignment, u64 flags)
680 {
681 	if (!drm_mm_node_allocated(&vma->node))
682 		return false;
683 
684 	if (test_bit(I915_VMA_ERROR_BIT, __i915_vma_flags(vma)))
685 		return true;
686 
687 	if (vma->node.size < size)
688 		return true;
689 
690 	GEM_BUG_ON(alignment && !is_power_of_2(alignment));
691 	if (alignment && !IS_ALIGNED(vma->node.start, alignment))
692 		return true;
693 
694 	if (flags & PIN_MAPPABLE && !i915_vma_is_map_and_fenceable(vma))
695 		return true;
696 
697 	if (flags & PIN_OFFSET_BIAS &&
698 	    vma->node.start < (flags & PIN_OFFSET_MASK))
699 		return true;
700 
701 	if (flags & PIN_OFFSET_FIXED &&
702 	    vma->node.start != (flags & PIN_OFFSET_MASK))
703 		return true;
704 
705 	return false;
706 }
707 
708 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
709 {
710 	bool mappable, fenceable;
711 
712 	GEM_BUG_ON(!i915_vma_is_ggtt(vma));
713 	GEM_BUG_ON(!vma->fence_size);
714 
715 	fenceable = (vma->node.size >= vma->fence_size &&
716 		     IS_ALIGNED(vma->node.start, vma->fence_alignment));
717 
718 	mappable = vma->node.start + vma->fence_size <= i915_vm_to_ggtt(vma->vm)->mappable_end;
719 
720 	if (mappable && fenceable)
721 		set_bit(I915_VMA_CAN_FENCE_BIT, __i915_vma_flags(vma));
722 	else
723 		clear_bit(I915_VMA_CAN_FENCE_BIT, __i915_vma_flags(vma));
724 }
725 
726 bool i915_gem_valid_gtt_space(struct i915_vma *vma, unsigned long color)
727 {
728 	struct drm_mm_node *node = &vma->node;
729 	struct drm_mm_node *other;
730 
731 	/*
732 	 * On some machines we have to be careful when putting differing types
733 	 * of snoopable memory together to avoid the prefetcher crossing memory
734 	 * domains and dying. During vm initialisation, we decide whether or not
735 	 * these constraints apply and set the drm_mm.color_adjust
736 	 * appropriately.
737 	 */
738 	if (!i915_vm_has_cache_coloring(vma->vm))
739 		return true;
740 
741 	/* Only valid to be called on an already inserted vma */
742 	GEM_BUG_ON(!drm_mm_node_allocated(node));
743 	GEM_BUG_ON(list_empty(&node->node_list));
744 
745 	other = list_prev_entry(node, node_list);
746 	if (i915_node_color_differs(other, color) &&
747 	    !drm_mm_hole_follows(other))
748 		return false;
749 
750 	other = list_next_entry(node, node_list);
751 	if (i915_node_color_differs(other, color) &&
752 	    !drm_mm_hole_follows(node))
753 		return false;
754 
755 	return true;
756 }
757 
758 /**
759  * i915_vma_insert - finds a slot for the vma in its address space
760  * @vma: the vma
761  * @size: requested size in bytes (can be larger than the VMA)
762  * @alignment: required alignment
763  * @flags: mask of PIN_* flags to use
764  *
765  * First we try to allocate some free space that meets the requirements for
766  * the VMA. Failiing that, if the flags permit, it will evict an old VMA,
767  * preferrably the oldest idle entry to make room for the new VMA.
768  *
769  * Returns:
770  * 0 on success, negative error code otherwise.
771  */
772 static int
773 i915_vma_insert(struct i915_vma *vma, struct i915_gem_ww_ctx *ww,
774 		u64 size, u64 alignment, u64 flags)
775 {
776 	unsigned long color;
777 	u64 start, end;
778 	int ret;
779 
780 	GEM_BUG_ON(i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND));
781 	GEM_BUG_ON(drm_mm_node_allocated(&vma->node));
782 
783 	size = max(size, vma->size);
784 	alignment = max(alignment, vma->display_alignment);
785 	if (flags & PIN_MAPPABLE) {
786 		size = max_t(typeof(size), size, vma->fence_size);
787 		alignment = max_t(typeof(alignment),
788 				  alignment, vma->fence_alignment);
789 	}
790 
791 	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
792 	GEM_BUG_ON(!IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT));
793 	GEM_BUG_ON(!is_power_of_2(alignment));
794 
795 	start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
796 	GEM_BUG_ON(!IS_ALIGNED(start, I915_GTT_PAGE_SIZE));
797 
798 	end = vma->vm->total;
799 	if (flags & PIN_MAPPABLE)
800 		end = min_t(u64, end, i915_vm_to_ggtt(vma->vm)->mappable_end);
801 	if (flags & PIN_ZONE_4G)
802 		end = min_t(u64, end, (1ULL << 32) - I915_GTT_PAGE_SIZE);
803 	GEM_BUG_ON(!IS_ALIGNED(end, I915_GTT_PAGE_SIZE));
804 
805 	alignment = max(alignment, i915_vm_obj_min_alignment(vma->vm, vma->obj));
806 	/*
807 	 * for compact-pt we round up the reservation to prevent
808 	 * any smaller pages being used within the same PDE
809 	 */
810 	if (NEEDS_COMPACT_PT(vma->vm->i915))
811 		size = round_up(size, alignment);
812 
813 	/* If binding the object/GGTT view requires more space than the entire
814 	 * aperture has, reject it early before evicting everything in a vain
815 	 * attempt to find space.
816 	 */
817 	if (size > end) {
818 		DRM_DEBUG("Attempting to bind an object larger than the aperture: request=%llu > %s aperture=%llu\n",
819 			  size, flags & PIN_MAPPABLE ? "mappable" : "total",
820 			  end);
821 		return -ENOSPC;
822 	}
823 
824 	color = 0;
825 
826 	if (i915_vm_has_cache_coloring(vma->vm))
827 		color = vma->obj->cache_level;
828 
829 	if (flags & PIN_OFFSET_FIXED) {
830 		u64 offset = flags & PIN_OFFSET_MASK;
831 		if (!IS_ALIGNED(offset, alignment) ||
832 		    range_overflows(offset, size, end))
833 			return -EINVAL;
834 
835 		ret = i915_gem_gtt_reserve(vma->vm, ww, &vma->node,
836 					   size, offset, color,
837 					   flags);
838 		if (ret)
839 			return ret;
840 	} else {
841 		/*
842 		 * We only support huge gtt pages through the 48b PPGTT,
843 		 * however we also don't want to force any alignment for
844 		 * objects which need to be tightly packed into the low 32bits.
845 		 *
846 		 * Note that we assume that GGTT are limited to 4GiB for the
847 		 * forseeable future. See also i915_ggtt_offset().
848 		 */
849 		if (upper_32_bits(end - 1) &&
850 		    vma->page_sizes.sg > I915_GTT_PAGE_SIZE) {
851 			/*
852 			 * We can't mix 64K and 4K PTEs in the same page-table
853 			 * (2M block), and so to avoid the ugliness and
854 			 * complexity of coloring we opt for just aligning 64K
855 			 * objects to 2M.
856 			 */
857 			u64 page_alignment =
858 				rounddown_pow_of_two(vma->page_sizes.sg |
859 						     I915_GTT_PAGE_SIZE_2M);
860 
861 			/*
862 			 * Check we don't expand for the limited Global GTT
863 			 * (mappable aperture is even more precious!). This
864 			 * also checks that we exclude the aliasing-ppgtt.
865 			 */
866 			GEM_BUG_ON(i915_vma_is_ggtt(vma));
867 
868 			alignment = max(alignment, page_alignment);
869 
870 			if (vma->page_sizes.sg & I915_GTT_PAGE_SIZE_64K)
871 				size = round_up(size, I915_GTT_PAGE_SIZE_2M);
872 		}
873 
874 		ret = i915_gem_gtt_insert(vma->vm, ww, &vma->node,
875 					  size, alignment, color,
876 					  start, end, flags);
877 		if (ret)
878 			return ret;
879 
880 		GEM_BUG_ON(vma->node.start < start);
881 		GEM_BUG_ON(vma->node.start + vma->node.size > end);
882 	}
883 	GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
884 	GEM_BUG_ON(!i915_gem_valid_gtt_space(vma, color));
885 
886 	list_move_tail(&vma->vm_link, &vma->vm->bound_list);
887 
888 	return 0;
889 }
890 
891 static void
892 i915_vma_detach(struct i915_vma *vma)
893 {
894 	GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
895 	GEM_BUG_ON(i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND));
896 
897 	/*
898 	 * And finally now the object is completely decoupled from this
899 	 * vma, we can drop its hold on the backing storage and allow
900 	 * it to be reaped by the shrinker.
901 	 */
902 	list_move_tail(&vma->vm_link, &vma->vm->unbound_list);
903 }
904 
905 static bool try_qad_pin(struct i915_vma *vma, unsigned int flags)
906 {
907 	unsigned int bound;
908 
909 	bound = atomic_read(&vma->flags);
910 
911 	if (flags & PIN_VALIDATE) {
912 		flags &= I915_VMA_BIND_MASK;
913 
914 		return (flags & bound) == flags;
915 	}
916 
917 	/* with the lock mandatory for unbind, we don't race here */
918 	flags &= I915_VMA_BIND_MASK;
919 	do {
920 		if (unlikely(flags & ~bound))
921 			return false;
922 
923 		if (unlikely(bound & (I915_VMA_OVERFLOW | I915_VMA_ERROR)))
924 			return false;
925 
926 		GEM_BUG_ON(((bound + 1) & I915_VMA_PIN_MASK) == 0);
927 	} while (!atomic_try_cmpxchg(&vma->flags, &bound, bound + 1));
928 
929 	return true;
930 }
931 
932 static struct scatterlist *
933 rotate_pages(struct drm_i915_gem_object *obj, unsigned int offset,
934 	     unsigned int width, unsigned int height,
935 	     unsigned int src_stride, unsigned int dst_stride,
936 	     struct sg_table *st, struct scatterlist *sg)
937 {
938 	unsigned int column, row;
939 	unsigned int src_idx;
940 
941 	for (column = 0; column < width; column++) {
942 		unsigned int left;
943 
944 		src_idx = src_stride * (height - 1) + column + offset;
945 		for (row = 0; row < height; row++) {
946 			st->nents++;
947 			/*
948 			 * We don't need the pages, but need to initialize
949 			 * the entries so the sg list can be happily traversed.
950 			 * The only thing we need are DMA addresses.
951 			 */
952 			sg_set_page(sg, NULL, I915_GTT_PAGE_SIZE, 0);
953 			sg_dma_address(sg) =
954 				i915_gem_object_get_dma_address(obj, src_idx);
955 			sg_dma_len(sg) = I915_GTT_PAGE_SIZE;
956 			sg = sg_next(sg);
957 			src_idx -= src_stride;
958 		}
959 
960 		left = (dst_stride - height) * I915_GTT_PAGE_SIZE;
961 
962 		if (!left)
963 			continue;
964 
965 		st->nents++;
966 
967 		/*
968 		 * The DE ignores the PTEs for the padding tiles, the sg entry
969 		 * here is just a conenience to indicate how many padding PTEs
970 		 * to insert at this spot.
971 		 */
972 		sg_set_page(sg, NULL, left, 0);
973 		sg_dma_address(sg) = 0;
974 		sg_dma_len(sg) = left;
975 		sg = sg_next(sg);
976 	}
977 
978 	return sg;
979 }
980 
981 static noinline struct sg_table *
982 intel_rotate_pages(struct intel_rotation_info *rot_info,
983 		   struct drm_i915_gem_object *obj)
984 {
985 	unsigned int size = intel_rotation_info_size(rot_info);
986 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
987 	struct sg_table *st;
988 	struct scatterlist *sg;
989 	int ret = -ENOMEM;
990 	int i;
991 
992 	/* Allocate target SG list. */
993 	st = kmalloc(sizeof(*st), GFP_KERNEL);
994 	if (!st)
995 		goto err_st_alloc;
996 
997 	ret = sg_alloc_table(st, size, GFP_KERNEL);
998 	if (ret)
999 		goto err_sg_alloc;
1000 
1001 	st->nents = 0;
1002 	sg = st->sgl;
1003 
1004 	for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++)
1005 		sg = rotate_pages(obj, rot_info->plane[i].offset,
1006 				  rot_info->plane[i].width, rot_info->plane[i].height,
1007 				  rot_info->plane[i].src_stride,
1008 				  rot_info->plane[i].dst_stride,
1009 				  st, sg);
1010 
1011 	return st;
1012 
1013 err_sg_alloc:
1014 	kfree(st);
1015 err_st_alloc:
1016 
1017 	drm_dbg(&i915->drm, "Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
1018 		obj->base.size, rot_info->plane[0].width,
1019 		rot_info->plane[0].height, size);
1020 
1021 	return ERR_PTR(ret);
1022 }
1023 
1024 static struct scatterlist *
1025 add_padding_pages(unsigned int count,
1026 		  struct sg_table *st, struct scatterlist *sg)
1027 {
1028 	st->nents++;
1029 
1030 	/*
1031 	 * The DE ignores the PTEs for the padding tiles, the sg entry
1032 	 * here is just a convenience to indicate how many padding PTEs
1033 	 * to insert at this spot.
1034 	 */
1035 	sg_set_page(sg, NULL, count * I915_GTT_PAGE_SIZE, 0);
1036 	sg_dma_address(sg) = 0;
1037 	sg_dma_len(sg) = count * I915_GTT_PAGE_SIZE;
1038 	sg = sg_next(sg);
1039 
1040 	return sg;
1041 }
1042 
1043 static struct scatterlist *
1044 remap_tiled_color_plane_pages(struct drm_i915_gem_object *obj,
1045 			      unsigned int offset, unsigned int alignment_pad,
1046 			      unsigned int width, unsigned int height,
1047 			      unsigned int src_stride, unsigned int dst_stride,
1048 			      struct sg_table *st, struct scatterlist *sg,
1049 			      unsigned int *gtt_offset)
1050 {
1051 	unsigned int row;
1052 
1053 	if (!width || !height)
1054 		return sg;
1055 
1056 	if (alignment_pad)
1057 		sg = add_padding_pages(alignment_pad, st, sg);
1058 
1059 	for (row = 0; row < height; row++) {
1060 		unsigned int left = width * I915_GTT_PAGE_SIZE;
1061 
1062 		while (left) {
1063 			dma_addr_t addr;
1064 			unsigned int length;
1065 
1066 			/*
1067 			 * We don't need the pages, but need to initialize
1068 			 * the entries so the sg list can be happily traversed.
1069 			 * The only thing we need are DMA addresses.
1070 			 */
1071 
1072 			addr = i915_gem_object_get_dma_address_len(obj, offset, &length);
1073 
1074 			length = min(left, length);
1075 
1076 			st->nents++;
1077 
1078 			sg_set_page(sg, NULL, length, 0);
1079 			sg_dma_address(sg) = addr;
1080 			sg_dma_len(sg) = length;
1081 			sg = sg_next(sg);
1082 
1083 			offset += length / I915_GTT_PAGE_SIZE;
1084 			left -= length;
1085 		}
1086 
1087 		offset += src_stride - width;
1088 
1089 		left = (dst_stride - width) * I915_GTT_PAGE_SIZE;
1090 
1091 		if (!left)
1092 			continue;
1093 
1094 		sg = add_padding_pages(left >> PAGE_SHIFT, st, sg);
1095 	}
1096 
1097 	*gtt_offset += alignment_pad + dst_stride * height;
1098 
1099 	return sg;
1100 }
1101 
1102 static struct scatterlist *
1103 remap_contiguous_pages(struct drm_i915_gem_object *obj,
1104 		       unsigned int obj_offset,
1105 		       unsigned int count,
1106 		       struct sg_table *st, struct scatterlist *sg)
1107 {
1108 	struct scatterlist *iter;
1109 	unsigned int offset;
1110 
1111 	iter = i915_gem_object_get_sg_dma(obj, obj_offset, &offset);
1112 	GEM_BUG_ON(!iter);
1113 
1114 	do {
1115 		unsigned int len;
1116 
1117 		len = min(sg_dma_len(iter) - (offset << PAGE_SHIFT),
1118 			  count << PAGE_SHIFT);
1119 		sg_set_page(sg, NULL, len, 0);
1120 		sg_dma_address(sg) =
1121 			sg_dma_address(iter) + (offset << PAGE_SHIFT);
1122 		sg_dma_len(sg) = len;
1123 
1124 		st->nents++;
1125 		count -= len >> PAGE_SHIFT;
1126 		if (count == 0)
1127 			return sg;
1128 
1129 		sg = __sg_next(sg);
1130 		iter = __sg_next(iter);
1131 		offset = 0;
1132 	} while (1);
1133 }
1134 
1135 static struct scatterlist *
1136 remap_linear_color_plane_pages(struct drm_i915_gem_object *obj,
1137 			       unsigned int obj_offset, unsigned int alignment_pad,
1138 			       unsigned int size,
1139 			       struct sg_table *st, struct scatterlist *sg,
1140 			       unsigned int *gtt_offset)
1141 {
1142 	if (!size)
1143 		return sg;
1144 
1145 	if (alignment_pad)
1146 		sg = add_padding_pages(alignment_pad, st, sg);
1147 
1148 	sg = remap_contiguous_pages(obj, obj_offset, size, st, sg);
1149 	sg = sg_next(sg);
1150 
1151 	*gtt_offset += alignment_pad + size;
1152 
1153 	return sg;
1154 }
1155 
1156 static struct scatterlist *
1157 remap_color_plane_pages(const struct intel_remapped_info *rem_info,
1158 			struct drm_i915_gem_object *obj,
1159 			int color_plane,
1160 			struct sg_table *st, struct scatterlist *sg,
1161 			unsigned int *gtt_offset)
1162 {
1163 	unsigned int alignment_pad = 0;
1164 
1165 	if (rem_info->plane_alignment)
1166 		alignment_pad = roundup2(*gtt_offset, rem_info->plane_alignment) - *gtt_offset;
1167 
1168 	if (rem_info->plane[color_plane].linear)
1169 		sg = remap_linear_color_plane_pages(obj,
1170 						    rem_info->plane[color_plane].offset,
1171 						    alignment_pad,
1172 						    rem_info->plane[color_plane].size,
1173 						    st, sg,
1174 						    gtt_offset);
1175 
1176 	else
1177 		sg = remap_tiled_color_plane_pages(obj,
1178 						   rem_info->plane[color_plane].offset,
1179 						   alignment_pad,
1180 						   rem_info->plane[color_plane].width,
1181 						   rem_info->plane[color_plane].height,
1182 						   rem_info->plane[color_plane].src_stride,
1183 						   rem_info->plane[color_plane].dst_stride,
1184 						   st, sg,
1185 						   gtt_offset);
1186 
1187 	return sg;
1188 }
1189 
1190 static noinline struct sg_table *
1191 intel_remap_pages(struct intel_remapped_info *rem_info,
1192 		  struct drm_i915_gem_object *obj)
1193 {
1194 	unsigned int size = intel_remapped_info_size(rem_info);
1195 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1196 	struct sg_table *st;
1197 	struct scatterlist *sg;
1198 	unsigned int gtt_offset = 0;
1199 	int ret = -ENOMEM;
1200 	int i;
1201 
1202 	/* Allocate target SG list. */
1203 	st = kmalloc(sizeof(*st), GFP_KERNEL);
1204 	if (!st)
1205 		goto err_st_alloc;
1206 
1207 	ret = sg_alloc_table(st, size, GFP_KERNEL);
1208 	if (ret)
1209 		goto err_sg_alloc;
1210 
1211 	st->nents = 0;
1212 	sg = st->sgl;
1213 
1214 	for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++)
1215 		sg = remap_color_plane_pages(rem_info, obj, i, st, sg, &gtt_offset);
1216 
1217 	i915_sg_trim(st);
1218 
1219 	return st;
1220 
1221 err_sg_alloc:
1222 	kfree(st);
1223 err_st_alloc:
1224 
1225 	drm_dbg(&i915->drm, "Failed to create remapped mapping for object size %zu! (%ux%u tiles, %u pages)\n",
1226 		obj->base.size, rem_info->plane[0].width,
1227 		rem_info->plane[0].height, size);
1228 
1229 	return ERR_PTR(ret);
1230 }
1231 
1232 static noinline struct sg_table *
1233 intel_partial_pages(const struct i915_gtt_view *view,
1234 		    struct drm_i915_gem_object *obj)
1235 {
1236 	struct sg_table *st;
1237 	struct scatterlist *sg;
1238 	unsigned int count = view->partial.size;
1239 	int ret = -ENOMEM;
1240 
1241 	st = kmalloc(sizeof(*st), GFP_KERNEL);
1242 	if (!st)
1243 		goto err_st_alloc;
1244 
1245 	ret = sg_alloc_table(st, count, GFP_KERNEL);
1246 	if (ret)
1247 		goto err_sg_alloc;
1248 
1249 	st->nents = 0;
1250 
1251 	sg = remap_contiguous_pages(obj, view->partial.offset, count, st, st->sgl);
1252 
1253 	sg_mark_end(sg);
1254 	i915_sg_trim(st); /* Drop any unused tail entries. */
1255 
1256 	return st;
1257 
1258 err_sg_alloc:
1259 	kfree(st);
1260 err_st_alloc:
1261 	return ERR_PTR(ret);
1262 }
1263 
1264 static int
1265 __i915_vma_get_pages(struct i915_vma *vma)
1266 {
1267 	struct sg_table *pages;
1268 
1269 	/*
1270 	 * The vma->pages are only valid within the lifespan of the borrowed
1271 	 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
1272 	 * must be the vma->pages. A simple rule is that vma->pages must only
1273 	 * be accessed when the obj->mm.pages are pinned.
1274 	 */
1275 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));
1276 
1277 	switch (vma->gtt_view.type) {
1278 	default:
1279 		GEM_BUG_ON(vma->gtt_view.type);
1280 		fallthrough;
1281 	case I915_GTT_VIEW_NORMAL:
1282 		pages = vma->obj->mm.pages;
1283 		break;
1284 
1285 	case I915_GTT_VIEW_ROTATED:
1286 		pages =
1287 			intel_rotate_pages(&vma->gtt_view.rotated, vma->obj);
1288 		break;
1289 
1290 	case I915_GTT_VIEW_REMAPPED:
1291 		pages =
1292 			intel_remap_pages(&vma->gtt_view.remapped, vma->obj);
1293 		break;
1294 
1295 	case I915_GTT_VIEW_PARTIAL:
1296 		pages = intel_partial_pages(&vma->gtt_view, vma->obj);
1297 		break;
1298 	}
1299 
1300 	if (IS_ERR(pages)) {
1301 		drm_err(&vma->vm->i915->drm,
1302 			"Failed to get pages for VMA view type %u (%ld)!\n",
1303 			vma->gtt_view.type, PTR_ERR(pages));
1304 		return PTR_ERR(pages);
1305 	}
1306 
1307 	vma->pages = pages;
1308 
1309 	return 0;
1310 }
1311 
1312 I915_SELFTEST_EXPORT int i915_vma_get_pages(struct i915_vma *vma)
1313 {
1314 	int err;
1315 
1316 	if (atomic_add_unless(&vma->pages_count, 1, 0))
1317 		return 0;
1318 
1319 	err = i915_gem_object_pin_pages(vma->obj);
1320 	if (err)
1321 		return err;
1322 
1323 	err = __i915_vma_get_pages(vma);
1324 	if (err)
1325 		goto err_unpin;
1326 
1327 	vma->page_sizes = vma->obj->mm.page_sizes;
1328 	atomic_inc(&vma->pages_count);
1329 
1330 	return 0;
1331 
1332 err_unpin:
1333 	__i915_gem_object_unpin_pages(vma->obj);
1334 
1335 	return err;
1336 }
1337 
1338 void vma_invalidate_tlb(struct i915_address_space *vm, u32 *tlb)
1339 {
1340 	/*
1341 	 * Before we release the pages that were bound by this vma, we
1342 	 * must invalidate all the TLBs that may still have a reference
1343 	 * back to our physical address. It only needs to be done once,
1344 	 * so after updating the PTE to point away from the pages, record
1345 	 * the most recent TLB invalidation seqno, and if we have not yet
1346 	 * flushed the TLBs upon release, perform a full invalidation.
1347 	 */
1348 	WRITE_ONCE(*tlb, intel_gt_next_invalidate_tlb_full(vm->gt));
1349 }
1350 
1351 static void __vma_put_pages(struct i915_vma *vma, unsigned int count)
1352 {
1353 	/* We allocate under vma_get_pages, so beware the shrinker */
1354 	GEM_BUG_ON(atomic_read(&vma->pages_count) < count);
1355 
1356 	if (atomic_sub_return(count, &vma->pages_count) == 0) {
1357 		if (vma->pages != vma->obj->mm.pages) {
1358 			sg_free_table(vma->pages);
1359 			kfree(vma->pages);
1360 		}
1361 		vma->pages = NULL;
1362 
1363 		i915_gem_object_unpin_pages(vma->obj);
1364 	}
1365 }
1366 
1367 I915_SELFTEST_EXPORT void i915_vma_put_pages(struct i915_vma *vma)
1368 {
1369 	if (atomic_add_unless(&vma->pages_count, -1, 1))
1370 		return;
1371 
1372 	__vma_put_pages(vma, 1);
1373 }
1374 
1375 static void vma_unbind_pages(struct i915_vma *vma)
1376 {
1377 	unsigned int count;
1378 
1379 	lockdep_assert_held(&vma->vm->mutex);
1380 
1381 	/* The upper portion of pages_count is the number of bindings */
1382 	count = atomic_read(&vma->pages_count);
1383 	count >>= I915_VMA_PAGES_BIAS;
1384 	GEM_BUG_ON(!count);
1385 
1386 	__vma_put_pages(vma, count | count << I915_VMA_PAGES_BIAS);
1387 }
1388 
1389 int i915_vma_pin_ww(struct i915_vma *vma, struct i915_gem_ww_ctx *ww,
1390 		    u64 size, u64 alignment, u64 flags)
1391 {
1392 	struct i915_vma_work *work = NULL;
1393 	struct dma_fence *moving = NULL;
1394 	struct i915_vma_resource *vma_res = NULL;
1395 	intel_wakeref_t wakeref = 0;
1396 	unsigned int bound;
1397 	int err;
1398 
1399 	assert_vma_held(vma);
1400 	GEM_BUG_ON(!ww);
1401 
1402 	BUILD_BUG_ON(PIN_GLOBAL != I915_VMA_GLOBAL_BIND);
1403 	BUILD_BUG_ON(PIN_USER != I915_VMA_LOCAL_BIND);
1404 
1405 	GEM_BUG_ON(!(flags & (PIN_USER | PIN_GLOBAL)));
1406 
1407 	/* First try and grab the pin without rebinding the vma */
1408 	if (try_qad_pin(vma, flags))
1409 		return 0;
1410 
1411 	err = i915_vma_get_pages(vma);
1412 	if (err)
1413 		return err;
1414 
1415 	if (flags & PIN_GLOBAL)
1416 		wakeref = intel_runtime_pm_get(&vma->vm->i915->runtime_pm);
1417 
1418 	if (flags & vma->vm->bind_async_flags) {
1419 		/* lock VM */
1420 		err = i915_vm_lock_objects(vma->vm, ww);
1421 		if (err)
1422 			goto err_rpm;
1423 
1424 		work = i915_vma_work();
1425 		if (!work) {
1426 			err = -ENOMEM;
1427 			goto err_rpm;
1428 		}
1429 
1430 		work->vm = vma->vm;
1431 
1432 		err = i915_gem_object_get_moving_fence(vma->obj, &moving);
1433 		if (err)
1434 			goto err_rpm;
1435 
1436 		dma_fence_work_chain(&work->base, moving);
1437 
1438 		/* Allocate enough page directories to used PTE */
1439 		if (vma->vm->allocate_va_range) {
1440 			err = i915_vm_alloc_pt_stash(vma->vm,
1441 						     &work->stash,
1442 						     vma->size);
1443 			if (err)
1444 				goto err_fence;
1445 
1446 			err = i915_vm_map_pt_stash(vma->vm, &work->stash);
1447 			if (err)
1448 				goto err_fence;
1449 		}
1450 	}
1451 
1452 	vma_res = i915_vma_resource_alloc();
1453 	if (IS_ERR(vma_res)) {
1454 		err = PTR_ERR(vma_res);
1455 		goto err_fence;
1456 	}
1457 
1458 	/*
1459 	 * Differentiate between user/kernel vma inside the aliasing-ppgtt.
1460 	 *
1461 	 * We conflate the Global GTT with the user's vma when using the
1462 	 * aliasing-ppgtt, but it is still vitally important to try and
1463 	 * keep the use cases distinct. For example, userptr objects are
1464 	 * not allowed inside the Global GTT as that will cause lock
1465 	 * inversions when we have to evict them the mmu_notifier callbacks -
1466 	 * but they are allowed to be part of the user ppGTT which can never
1467 	 * be mapped. As such we try to give the distinct users of the same
1468 	 * mutex, distinct lockclasses [equivalent to how we keep i915_ggtt
1469 	 * and i915_ppgtt separate].
1470 	 *
1471 	 * NB this may cause us to mask real lock inversions -- while the
1472 	 * code is safe today, lockdep may not be able to spot future
1473 	 * transgressions.
1474 	 */
1475 	err = mutex_lock_interruptible_nested(&vma->vm->mutex,
1476 					      !(flags & PIN_GLOBAL));
1477 	if (err)
1478 		goto err_vma_res;
1479 
1480 	/* No more allocations allowed now we hold vm->mutex */
1481 
1482 	if (unlikely(i915_vma_is_closed(vma))) {
1483 		err = -ENOENT;
1484 		goto err_unlock;
1485 	}
1486 
1487 	bound = atomic_read(&vma->flags);
1488 	if (unlikely(bound & I915_VMA_ERROR)) {
1489 		err = -ENOMEM;
1490 		goto err_unlock;
1491 	}
1492 
1493 	if (unlikely(!((bound + 1) & I915_VMA_PIN_MASK))) {
1494 		err = -EAGAIN; /* pins are meant to be fairly temporary */
1495 		goto err_unlock;
1496 	}
1497 
1498 	if (unlikely(!(flags & ~bound & I915_VMA_BIND_MASK))) {
1499 		if (!(flags & PIN_VALIDATE))
1500 			__i915_vma_pin(vma);
1501 		goto err_unlock;
1502 	}
1503 
1504 	err = i915_active_acquire(&vma->active);
1505 	if (err)
1506 		goto err_unlock;
1507 
1508 	if (!(bound & I915_VMA_BIND_MASK)) {
1509 		err = i915_vma_insert(vma, ww, size, alignment, flags);
1510 		if (err)
1511 			goto err_active;
1512 
1513 		if (i915_is_ggtt(vma->vm))
1514 			__i915_vma_set_map_and_fenceable(vma);
1515 	}
1516 
1517 	GEM_BUG_ON(!vma->pages);
1518 	err = i915_vma_bind(vma,
1519 			    vma->obj->cache_level,
1520 			    flags, work, vma_res);
1521 	vma_res = NULL;
1522 	if (err)
1523 		goto err_remove;
1524 
1525 	/* There should only be at most 2 active bindings (user, global) */
1526 	GEM_BUG_ON(bound + I915_VMA_PAGES_ACTIVE < bound);
1527 	atomic_add(I915_VMA_PAGES_ACTIVE, &vma->pages_count);
1528 	list_move_tail(&vma->vm_link, &vma->vm->bound_list);
1529 
1530 	if (!(flags & PIN_VALIDATE)) {
1531 		__i915_vma_pin(vma);
1532 		GEM_BUG_ON(!i915_vma_is_pinned(vma));
1533 	}
1534 	GEM_BUG_ON(!i915_vma_is_bound(vma, flags));
1535 	GEM_BUG_ON(i915_vma_misplaced(vma, size, alignment, flags));
1536 
1537 err_remove:
1538 	if (!i915_vma_is_bound(vma, I915_VMA_BIND_MASK)) {
1539 		i915_vma_detach(vma);
1540 		drm_mm_remove_node(&vma->node);
1541 	}
1542 err_active:
1543 	i915_active_release(&vma->active);
1544 err_unlock:
1545 	mutex_unlock(&vma->vm->mutex);
1546 err_vma_res:
1547 	i915_vma_resource_free(vma_res);
1548 err_fence:
1549 	if (work)
1550 		dma_fence_work_commit_imm(&work->base);
1551 err_rpm:
1552 	if (wakeref)
1553 		intel_runtime_pm_put(&vma->vm->i915->runtime_pm, wakeref);
1554 
1555 	if (moving)
1556 		dma_fence_put(moving);
1557 
1558 	i915_vma_put_pages(vma);
1559 	return err;
1560 }
1561 
1562 static void flush_idle_contexts(struct intel_gt *gt)
1563 {
1564 	struct intel_engine_cs *engine;
1565 	enum intel_engine_id id;
1566 
1567 	for_each_engine(engine, gt, id)
1568 		intel_engine_flush_barriers(engine);
1569 
1570 	intel_gt_wait_for_idle(gt, MAX_SCHEDULE_TIMEOUT);
1571 }
1572 
1573 static int __i915_ggtt_pin(struct i915_vma *vma, struct i915_gem_ww_ctx *ww,
1574 			   u32 align, unsigned int flags)
1575 {
1576 	struct i915_address_space *vm = vma->vm;
1577 	int err;
1578 
1579 	do {
1580 		err = i915_vma_pin_ww(vma, ww, 0, align, flags | PIN_GLOBAL);
1581 
1582 		if (err != -ENOSPC) {
1583 			if (!err) {
1584 				err = i915_vma_wait_for_bind(vma);
1585 				if (err)
1586 					i915_vma_unpin(vma);
1587 			}
1588 			return err;
1589 		}
1590 
1591 		/* Unlike i915_vma_pin, we don't take no for an answer! */
1592 		flush_idle_contexts(vm->gt);
1593 		if (mutex_lock_interruptible(&vm->mutex) == 0) {
1594 			/*
1595 			 * We pass NULL ww here, as we don't want to unbind
1596 			 * locked objects when called from execbuf when pinning
1597 			 * is removed. This would probably regress badly.
1598 			 */
1599 			i915_gem_evict_vm(vm, NULL, NULL);
1600 			mutex_unlock(&vm->mutex);
1601 		}
1602 	} while (1);
1603 }
1604 
1605 int i915_ggtt_pin(struct i915_vma *vma, struct i915_gem_ww_ctx *ww,
1606 		  u32 align, unsigned int flags)
1607 {
1608 	struct i915_gem_ww_ctx _ww;
1609 	int err;
1610 
1611 	GEM_BUG_ON(!i915_vma_is_ggtt(vma));
1612 
1613 	if (ww)
1614 		return __i915_ggtt_pin(vma, ww, align, flags);
1615 
1616 	lockdep_assert_not_held(&vma->obj->base.resv->lock.base);
1617 
1618 	for_i915_gem_ww(&_ww, err, true) {
1619 		err = i915_gem_object_lock(vma->obj, &_ww);
1620 		if (!err)
1621 			err = __i915_ggtt_pin(vma, &_ww, align, flags);
1622 	}
1623 
1624 	return err;
1625 }
1626 
1627 static void __vma_close(struct i915_vma *vma, struct intel_gt *gt)
1628 {
1629 	/*
1630 	 * We defer actually closing, unbinding and destroying the VMA until
1631 	 * the next idle point, or if the object is freed in the meantime. By
1632 	 * postponing the unbind, we allow for it to be resurrected by the
1633 	 * client, avoiding the work required to rebind the VMA. This is
1634 	 * advantageous for DRI, where the client/server pass objects
1635 	 * between themselves, temporarily opening a local VMA to the
1636 	 * object, and then closing it again. The same object is then reused
1637 	 * on the next frame (or two, depending on the depth of the swap queue)
1638 	 * causing us to rebind the VMA once more. This ends up being a lot
1639 	 * of wasted work for the steady state.
1640 	 */
1641 	GEM_BUG_ON(i915_vma_is_closed(vma));
1642 	list_add(&vma->closed_link, &gt->closed_vma);
1643 }
1644 
1645 void i915_vma_close(struct i915_vma *vma)
1646 {
1647 	struct intel_gt *gt = vma->vm->gt;
1648 	unsigned long flags;
1649 
1650 	if (i915_vma_is_ggtt(vma))
1651 		return;
1652 
1653 	GEM_BUG_ON(!atomic_read(&vma->open_count));
1654 	if (atomic_dec_and_lock_irqsave(&vma->open_count,
1655 					&gt->closed_lock,
1656 					flags)) {
1657 		__vma_close(vma, gt);
1658 		spin_unlock_irqrestore(&gt->closed_lock, flags);
1659 	}
1660 }
1661 
1662 static void __i915_vma_remove_closed(struct i915_vma *vma)
1663 {
1664 	list_del_init(&vma->closed_link);
1665 }
1666 
1667 void i915_vma_reopen(struct i915_vma *vma)
1668 {
1669 	struct intel_gt *gt = vma->vm->gt;
1670 
1671 	spin_lock_irq(&gt->closed_lock);
1672 	if (i915_vma_is_closed(vma))
1673 		__i915_vma_remove_closed(vma);
1674 	spin_unlock_irq(&gt->closed_lock);
1675 }
1676 
1677 static void force_unbind(struct i915_vma *vma)
1678 {
1679 	if (!drm_mm_node_allocated(&vma->node))
1680 		return;
1681 
1682 	atomic_and(~I915_VMA_PIN_MASK, &vma->flags);
1683 	WARN_ON(__i915_vma_unbind(vma));
1684 	GEM_BUG_ON(drm_mm_node_allocated(&vma->node));
1685 }
1686 
1687 static void release_references(struct i915_vma *vma, struct intel_gt *gt,
1688 			       bool vm_ddestroy)
1689 {
1690 	struct drm_i915_gem_object *obj = vma->obj;
1691 
1692 	GEM_BUG_ON(i915_vma_is_active(vma));
1693 
1694 	spin_lock(&obj->vma.lock);
1695 	list_del(&vma->obj_link);
1696 	if (!RB_EMPTY_NODE(&vma->obj_node))
1697 		rb_erase(&vma->obj_node, &obj->vma.tree);
1698 
1699 	spin_unlock(&obj->vma.lock);
1700 
1701 	spin_lock_irq(&gt->closed_lock);
1702 	__i915_vma_remove_closed(vma);
1703 	spin_unlock_irq(&gt->closed_lock);
1704 
1705 	if (vm_ddestroy)
1706 		i915_vm_resv_put(vma->vm);
1707 
1708 	i915_active_fini(&vma->active);
1709 	GEM_WARN_ON(vma->resource);
1710 	i915_vma_free(vma);
1711 }
1712 
1713 /**
1714  * i915_vma_destroy_locked - Remove all weak reference to the vma and put
1715  * the initial reference.
1716  *
1717  * This function should be called when it's decided the vma isn't needed
1718  * anymore. The caller must assure that it doesn't race with another lookup
1719  * plus destroy, typically by taking an appropriate reference.
1720  *
1721  * Current callsites are
1722  * - __i915_gem_object_pages_fini()
1723  * - __i915_vm_close() - Blocks the above function by taking a reference on
1724  * the object.
1725  * - __i915_vma_parked() - Blocks the above functions by taking a reference
1726  * on the vm and a reference on the object. Also takes the object lock so
1727  * destruction from __i915_vma_parked() can be blocked by holding the
1728  * object lock. Since the object lock is only allowed from within i915 with
1729  * an object refcount, holding the object lock also implicitly blocks the
1730  * vma freeing from __i915_gem_object_pages_fini().
1731  *
1732  * Because of locks taken during destruction, a vma is also guaranteed to
1733  * stay alive while the following locks are held if it was looked up while
1734  * holding one of the locks:
1735  * - vm->mutex
1736  * - obj->vma.lock
1737  * - gt->closed_lock
1738  */
1739 void i915_vma_destroy_locked(struct i915_vma *vma)
1740 {
1741 	lockdep_assert_held(&vma->vm->mutex);
1742 
1743 	force_unbind(vma);
1744 	list_del_init(&vma->vm_link);
1745 	release_references(vma, vma->vm->gt, false);
1746 }
1747 
1748 void i915_vma_destroy(struct i915_vma *vma)
1749 {
1750 	struct intel_gt *gt;
1751 	bool vm_ddestroy;
1752 
1753 	mutex_lock(&vma->vm->mutex);
1754 	force_unbind(vma);
1755 	list_del_init(&vma->vm_link);
1756 	vm_ddestroy = vma->vm_ddestroy;
1757 	vma->vm_ddestroy = false;
1758 
1759 	/* vma->vm may be freed when releasing vma->vm->mutex. */
1760 	gt = vma->vm->gt;
1761 	mutex_unlock(&vma->vm->mutex);
1762 	release_references(vma, gt, vm_ddestroy);
1763 }
1764 
1765 void i915_vma_parked(struct intel_gt *gt)
1766 {
1767 	struct i915_vma *vma, *next;
1768 	DRM_LIST_HEAD(closed);
1769 
1770 	spin_lock_irq(&gt->closed_lock);
1771 	list_for_each_entry_safe(vma, next, &gt->closed_vma, closed_link) {
1772 		struct drm_i915_gem_object *obj = vma->obj;
1773 		struct i915_address_space *vm = vma->vm;
1774 
1775 		/* XXX All to avoid keeping a reference on i915_vma itself */
1776 
1777 		if (!kref_get_unless_zero(&obj->base.refcount))
1778 			continue;
1779 
1780 		if (!i915_vm_tryget(vm)) {
1781 			i915_gem_object_put(obj);
1782 			continue;
1783 		}
1784 
1785 		list_move(&vma->closed_link, &closed);
1786 	}
1787 	spin_unlock_irq(&gt->closed_lock);
1788 
1789 	/* As the GT is held idle, no vma can be reopened as we destroy them */
1790 	list_for_each_entry_safe(vma, next, &closed, closed_link) {
1791 		struct drm_i915_gem_object *obj = vma->obj;
1792 		struct i915_address_space *vm = vma->vm;
1793 
1794 		if (i915_gem_object_trylock(obj, NULL)) {
1795 			INIT_LIST_HEAD(&vma->closed_link);
1796 			i915_vma_destroy(vma);
1797 			i915_gem_object_unlock(obj);
1798 		} else {
1799 			/* back you go.. */
1800 			spin_lock_irq(&gt->closed_lock);
1801 			list_add(&vma->closed_link, &gt->closed_vma);
1802 			spin_unlock_irq(&gt->closed_lock);
1803 		}
1804 
1805 		i915_gem_object_put(obj);
1806 		i915_vm_put(vm);
1807 	}
1808 }
1809 
1810 static void __i915_vma_iounmap(struct i915_vma *vma)
1811 {
1812 	GEM_BUG_ON(i915_vma_is_pinned(vma));
1813 
1814 	if (vma->iomap == NULL)
1815 		return;
1816 
1817 	if (page_unmask_bits(vma->iomap))
1818 		__i915_gem_object_release_map(vma->obj);
1819 	else {
1820 #ifdef __linux__
1821 		io_mapping_unmap(vma->iomap);
1822 #else
1823 		struct drm_i915_private *dev_priv = vma->vm->i915;
1824 		agp_unmap_subregion(dev_priv->agph, vma->bsh, vma->node.size);
1825 #endif
1826 	}
1827 	vma->iomap = NULL;
1828 }
1829 
1830 void i915_vma_revoke_mmap(struct i915_vma *vma)
1831 {
1832 	struct drm_vma_offset_node *node;
1833 	u64 vma_offset;
1834 
1835 	if (!i915_vma_has_userfault(vma))
1836 		return;
1837 
1838 	GEM_BUG_ON(!i915_vma_is_map_and_fenceable(vma));
1839 	GEM_BUG_ON(!vma->obj->userfault_count);
1840 
1841 	node = &vma->mmo->vma_node;
1842 	vma_offset = vma->gtt_view.partial.offset << PAGE_SHIFT;
1843 #ifdef __linux__
1844 	unmap_mapping_range(vma->vm->i915->drm.anon_inode->i_mapping,
1845 			    drm_vma_node_offset_addr(node) + vma_offset,
1846 			    vma->size,
1847 			    1);
1848 #else
1849 	struct drm_i915_private *dev_priv = vma->obj->base.dev->dev_private;
1850 	struct vm_page *pg;
1851 
1852 	for (pg = &dev_priv->pgs[atop(vma->node.start)];
1853 	    pg != &dev_priv->pgs[atop(vma->node.start + vma->size)];
1854 	    pg++)
1855 		pmap_page_protect(pg, PROT_NONE);
1856 #endif
1857 
1858 	i915_vma_unset_userfault(vma);
1859 	if (!--vma->obj->userfault_count)
1860 		list_del(&vma->obj->userfault_link);
1861 }
1862 
1863 static int
1864 __i915_request_await_bind(struct i915_request *rq, struct i915_vma *vma)
1865 {
1866 	return __i915_request_await_exclusive(rq, &vma->active);
1867 }
1868 
1869 static int __i915_vma_move_to_active(struct i915_vma *vma, struct i915_request *rq)
1870 {
1871 	int err;
1872 
1873 	/* Wait for the vma to be bound before we start! */
1874 	err = __i915_request_await_bind(rq, vma);
1875 	if (err)
1876 		return err;
1877 
1878 	return i915_active_add_request(&vma->active, rq);
1879 }
1880 
1881 int _i915_vma_move_to_active(struct i915_vma *vma,
1882 			     struct i915_request *rq,
1883 			     struct dma_fence *fence,
1884 			     unsigned int flags)
1885 {
1886 	struct drm_i915_gem_object *obj = vma->obj;
1887 	int err;
1888 
1889 	assert_object_held(obj);
1890 
1891 	GEM_BUG_ON(!vma->pages);
1892 
1893 	err = __i915_vma_move_to_active(vma, rq);
1894 	if (unlikely(err))
1895 		return err;
1896 
1897 	/*
1898 	 * Reserve fences slot early to prevent an allocation after preparing
1899 	 * the workload and associating fences with dma_resv.
1900 	 */
1901 	if (fence && !(flags & __EXEC_OBJECT_NO_RESERVE)) {
1902 		struct dma_fence *curr;
1903 		int idx;
1904 
1905 		dma_fence_array_for_each(curr, idx, fence)
1906 			;
1907 		err = dma_resv_reserve_fences(vma->obj->base.resv, idx);
1908 		if (unlikely(err))
1909 			return err;
1910 	}
1911 
1912 	if (flags & EXEC_OBJECT_WRITE) {
1913 		struct intel_frontbuffer *front;
1914 
1915 		front = __intel_frontbuffer_get(obj);
1916 		if (unlikely(front)) {
1917 			if (intel_frontbuffer_invalidate(front, ORIGIN_CS))
1918 				i915_active_add_request(&front->write, rq);
1919 			intel_frontbuffer_put(front);
1920 		}
1921 	}
1922 
1923 	if (fence) {
1924 		struct dma_fence *curr;
1925 		enum dma_resv_usage usage;
1926 		int idx;
1927 
1928 		if (flags & EXEC_OBJECT_WRITE) {
1929 			usage = DMA_RESV_USAGE_WRITE;
1930 			obj->write_domain = I915_GEM_DOMAIN_RENDER;
1931 			obj->read_domains = 0;
1932 		} else {
1933 			usage = DMA_RESV_USAGE_READ;
1934 			obj->write_domain = 0;
1935 		}
1936 
1937 		dma_fence_array_for_each(curr, idx, fence)
1938 			dma_resv_add_fence(vma->obj->base.resv, curr, usage);
1939 	}
1940 
1941 	if (flags & EXEC_OBJECT_NEEDS_FENCE && vma->fence)
1942 		i915_active_add_request(&vma->fence->active, rq);
1943 
1944 	obj->read_domains |= I915_GEM_GPU_DOMAINS;
1945 	obj->mm.dirty = true;
1946 
1947 	GEM_BUG_ON(!i915_vma_is_active(vma));
1948 	return 0;
1949 }
1950 
1951 struct dma_fence *__i915_vma_evict(struct i915_vma *vma, bool async)
1952 {
1953 	struct i915_vma_resource *vma_res = vma->resource;
1954 	struct dma_fence *unbind_fence;
1955 
1956 	GEM_BUG_ON(i915_vma_is_pinned(vma));
1957 	assert_vma_held_evict(vma);
1958 
1959 	if (i915_vma_is_map_and_fenceable(vma)) {
1960 		/* Force a pagefault for domain tracking on next user access */
1961 		i915_vma_revoke_mmap(vma);
1962 
1963 		/*
1964 		 * Check that we have flushed all writes through the GGTT
1965 		 * before the unbind, other due to non-strict nature of those
1966 		 * indirect writes they may end up referencing the GGTT PTE
1967 		 * after the unbind.
1968 		 *
1969 		 * Note that we may be concurrently poking at the GGTT_WRITE
1970 		 * bit from set-domain, as we mark all GGTT vma associated
1971 		 * with an object. We know this is for another vma, as we
1972 		 * are currently unbinding this one -- so if this vma will be
1973 		 * reused, it will be refaulted and have its dirty bit set
1974 		 * before the next write.
1975 		 */
1976 		i915_vma_flush_writes(vma);
1977 
1978 		/* release the fence reg _after_ flushing */
1979 		i915_vma_revoke_fence(vma);
1980 
1981 		clear_bit(I915_VMA_CAN_FENCE_BIT, __i915_vma_flags(vma));
1982 	}
1983 
1984 	__i915_vma_iounmap(vma);
1985 
1986 	GEM_BUG_ON(vma->fence);
1987 	GEM_BUG_ON(i915_vma_has_userfault(vma));
1988 
1989 	/* Object backend must be async capable. */
1990 	GEM_WARN_ON(async && !vma->resource->bi.pages_rsgt);
1991 
1992 	/* If vm is not open, unbind is a nop. */
1993 	vma_res->needs_wakeref = i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND) &&
1994 		kref_read(&vma->vm->ref);
1995 	vma_res->skip_pte_rewrite = !kref_read(&vma->vm->ref) ||
1996 		vma->vm->skip_pte_rewrite;
1997 	trace_i915_vma_unbind(vma);
1998 
1999 	if (async)
2000 		unbind_fence = i915_vma_resource_unbind(vma_res,
2001 							&vma->obj->mm.tlb);
2002 	else
2003 		unbind_fence = i915_vma_resource_unbind(vma_res, NULL);
2004 
2005 	vma->resource = NULL;
2006 
2007 	atomic_and(~(I915_VMA_BIND_MASK | I915_VMA_ERROR | I915_VMA_GGTT_WRITE),
2008 		   &vma->flags);
2009 
2010 	i915_vma_detach(vma);
2011 
2012 	if (!async) {
2013 		if (unbind_fence) {
2014 			dma_fence_wait(unbind_fence, false);
2015 			dma_fence_put(unbind_fence);
2016 			unbind_fence = NULL;
2017 		}
2018 		vma_invalidate_tlb(vma->vm, &vma->obj->mm.tlb);
2019 	}
2020 
2021 	/*
2022 	 * Binding itself may not have completed until the unbind fence signals,
2023 	 * so don't drop the pages until that happens, unless the resource is
2024 	 * async_capable.
2025 	 */
2026 
2027 	vma_unbind_pages(vma);
2028 	return unbind_fence;
2029 }
2030 
2031 int __i915_vma_unbind(struct i915_vma *vma)
2032 {
2033 	int ret;
2034 
2035 	lockdep_assert_held(&vma->vm->mutex);
2036 	assert_vma_held_evict(vma);
2037 
2038 	if (!drm_mm_node_allocated(&vma->node))
2039 		return 0;
2040 
2041 	if (i915_vma_is_pinned(vma)) {
2042 		vma_print_allocator(vma, "is pinned");
2043 		return -EAGAIN;
2044 	}
2045 
2046 	/*
2047 	 * After confirming that no one else is pinning this vma, wait for
2048 	 * any laggards who may have crept in during the wait (through
2049 	 * a residual pin skipping the vm->mutex) to complete.
2050 	 */
2051 	ret = i915_vma_sync(vma);
2052 	if (ret)
2053 		return ret;
2054 
2055 	GEM_BUG_ON(i915_vma_is_active(vma));
2056 	__i915_vma_evict(vma, false);
2057 
2058 	drm_mm_remove_node(&vma->node); /* pairs with i915_vma_release() */
2059 	return 0;
2060 }
2061 
2062 static struct dma_fence *__i915_vma_unbind_async(struct i915_vma *vma)
2063 {
2064 	struct dma_fence *fence;
2065 
2066 	lockdep_assert_held(&vma->vm->mutex);
2067 
2068 	if (!drm_mm_node_allocated(&vma->node))
2069 		return NULL;
2070 
2071 	if (i915_vma_is_pinned(vma) ||
2072 	    &vma->obj->mm.rsgt->table != vma->resource->bi.pages)
2073 		return ERR_PTR(-EAGAIN);
2074 
2075 	/*
2076 	 * We probably need to replace this with awaiting the fences of the
2077 	 * object's dma_resv when the vma active goes away. When doing that
2078 	 * we need to be careful to not add the vma_resource unbind fence
2079 	 * immediately to the object's dma_resv, because then unbinding
2080 	 * the next vma from the object, in case there are many, will
2081 	 * actually await the unbinding of the previous vmas, which is
2082 	 * undesirable.
2083 	 */
2084 	if (i915_sw_fence_await_active(&vma->resource->chain, &vma->active,
2085 				       I915_ACTIVE_AWAIT_EXCL |
2086 				       I915_ACTIVE_AWAIT_ACTIVE) < 0) {
2087 		return ERR_PTR(-EBUSY);
2088 	}
2089 
2090 	fence = __i915_vma_evict(vma, true);
2091 
2092 	drm_mm_remove_node(&vma->node); /* pairs with i915_vma_release() */
2093 
2094 	return fence;
2095 }
2096 
2097 int i915_vma_unbind(struct i915_vma *vma)
2098 {
2099 	struct i915_address_space *vm = vma->vm;
2100 	intel_wakeref_t wakeref = 0;
2101 	int err;
2102 
2103 	assert_object_held_shared(vma->obj);
2104 
2105 	/* Optimistic wait before taking the mutex */
2106 	err = i915_vma_sync(vma);
2107 	if (err)
2108 		return err;
2109 
2110 	if (!drm_mm_node_allocated(&vma->node))
2111 		return 0;
2112 
2113 	if (i915_vma_is_pinned(vma)) {
2114 		vma_print_allocator(vma, "is pinned");
2115 		return -EAGAIN;
2116 	}
2117 
2118 	if (i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND))
2119 		/* XXX not always required: nop_clear_range */
2120 		wakeref = intel_runtime_pm_get(&vm->i915->runtime_pm);
2121 
2122 	err = mutex_lock_interruptible_nested(&vma->vm->mutex, !wakeref);
2123 	if (err)
2124 		goto out_rpm;
2125 
2126 	err = __i915_vma_unbind(vma);
2127 	mutex_unlock(&vm->mutex);
2128 
2129 out_rpm:
2130 	if (wakeref)
2131 		intel_runtime_pm_put(&vm->i915->runtime_pm, wakeref);
2132 	return err;
2133 }
2134 
2135 int i915_vma_unbind_async(struct i915_vma *vma, bool trylock_vm)
2136 {
2137 	struct drm_i915_gem_object *obj = vma->obj;
2138 	struct i915_address_space *vm = vma->vm;
2139 	intel_wakeref_t wakeref = 0;
2140 	struct dma_fence *fence;
2141 	int err;
2142 
2143 	/*
2144 	 * We need the dma-resv lock since we add the
2145 	 * unbind fence to the dma-resv object.
2146 	 */
2147 	assert_object_held(obj);
2148 
2149 	if (!drm_mm_node_allocated(&vma->node))
2150 		return 0;
2151 
2152 	if (i915_vma_is_pinned(vma)) {
2153 		vma_print_allocator(vma, "is pinned");
2154 		return -EAGAIN;
2155 	}
2156 
2157 	if (!obj->mm.rsgt)
2158 		return -EBUSY;
2159 
2160 	err = dma_resv_reserve_fences(obj->base.resv, 2);
2161 	if (err)
2162 		return -EBUSY;
2163 
2164 	/*
2165 	 * It would be great if we could grab this wakeref from the
2166 	 * async unbind work if needed, but we can't because it uses
2167 	 * kmalloc and it's in the dma-fence signalling critical path.
2168 	 */
2169 	if (i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND))
2170 		wakeref = intel_runtime_pm_get(&vm->i915->runtime_pm);
2171 
2172 	if (trylock_vm && !mutex_trylock(&vm->mutex)) {
2173 		err = -EBUSY;
2174 		goto out_rpm;
2175 	} else if (!trylock_vm) {
2176 		err = mutex_lock_interruptible_nested(&vm->mutex, !wakeref);
2177 		if (err)
2178 			goto out_rpm;
2179 	}
2180 
2181 	fence = __i915_vma_unbind_async(vma);
2182 	mutex_unlock(&vm->mutex);
2183 	if (IS_ERR_OR_NULL(fence)) {
2184 		err = PTR_ERR_OR_ZERO(fence);
2185 		goto out_rpm;
2186 	}
2187 
2188 	dma_resv_add_fence(obj->base.resv, fence, DMA_RESV_USAGE_READ);
2189 	dma_fence_put(fence);
2190 
2191 out_rpm:
2192 	if (wakeref)
2193 		intel_runtime_pm_put(&vm->i915->runtime_pm, wakeref);
2194 	return err;
2195 }
2196 
2197 int i915_vma_unbind_unlocked(struct i915_vma *vma)
2198 {
2199 	int err;
2200 
2201 	i915_gem_object_lock(vma->obj, NULL);
2202 	err = i915_vma_unbind(vma);
2203 	i915_gem_object_unlock(vma->obj);
2204 
2205 	return err;
2206 }
2207 
2208 struct i915_vma *i915_vma_make_unshrinkable(struct i915_vma *vma)
2209 {
2210 	i915_gem_object_make_unshrinkable(vma->obj);
2211 	return vma;
2212 }
2213 
2214 void i915_vma_make_shrinkable(struct i915_vma *vma)
2215 {
2216 	i915_gem_object_make_shrinkable(vma->obj);
2217 }
2218 
2219 void i915_vma_make_purgeable(struct i915_vma *vma)
2220 {
2221 	i915_gem_object_make_purgeable(vma->obj);
2222 }
2223 
2224 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2225 #include "selftests/i915_vma.c"
2226 #endif
2227 
2228 void i915_vma_module_exit(void)
2229 {
2230 #ifdef __linux__
2231 	kmem_cache_destroy(slab_vmas);
2232 #else
2233 	pool_destroy(&slab_vmas);
2234 #endif
2235 }
2236 
2237 int __init i915_vma_module_init(void)
2238 {
2239 #ifdef __linux__
2240 	slab_vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
2241 	if (!slab_vmas)
2242 		return -ENOMEM;
2243 #else
2244 	pool_init(&slab_vmas, sizeof(struct i915_vma),
2245 	    CACHELINESIZE, IPL_NONE, 0, "drmvma", NULL);
2246 #endif
2247 
2248 	return 0;
2249 }
2250