xref: /openbsd-src/sys/dev/pci/drm/i915/i915_request.h (revision 3374c67d44f9b75b98444cbf63020f777792342e)
1 /*
2  * Copyright © 2008-2018 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #ifndef I915_REQUEST_H
26 #define I915_REQUEST_H
27 
28 #include <linux/dma-fence.h>
29 #include <linux/hrtimer.h>
30 #include <linux/irq_work.h>
31 #include <linux/llist.h>
32 #include <linux/lockdep.h>
33 
34 #include "gem/i915_gem_context_types.h"
35 #include "gt/intel_context_types.h"
36 #include "gt/intel_engine_types.h"
37 #include "gt/intel_timeline_types.h"
38 
39 #include "i915_gem.h"
40 #include "i915_scheduler.h"
41 #include "i915_selftest.h"
42 #include "i915_sw_fence.h"
43 #include "i915_vma_resource.h"
44 
45 #include <uapi/drm/i915_drm.h>
46 
47 struct drm_file;
48 struct drm_i915_gem_object;
49 struct drm_printer;
50 struct i915_deps;
51 struct i915_request;
52 
53 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
54 struct i915_capture_list {
55 	struct i915_vma_resource *vma_res;
56 	struct i915_capture_list *next;
57 };
58 
59 void i915_request_free_capture_list(struct i915_capture_list *capture);
60 #else
61 #define i915_request_free_capture_list(_a) do {} while (0)
62 #endif
63 
64 #define RQ_TRACE(rq, fmt, ...) do {					\
65 	const struct i915_request *rq__ = (rq);				\
66 	ENGINE_TRACE(rq__->engine, "fence %llx:%lld, current %d " fmt,	\
67 		     rq__->fence.context, rq__->fence.seqno,		\
68 		     hwsp_seqno(rq__), ##__VA_ARGS__);			\
69 } while (0)
70 
71 enum {
72 	/*
73 	 * I915_FENCE_FLAG_ACTIVE - this request is currently submitted to HW.
74 	 *
75 	 * Set by __i915_request_submit() on handing over to HW, and cleared
76 	 * by __i915_request_unsubmit() if we preempt this request.
77 	 *
78 	 * Finally cleared for consistency on retiring the request, when
79 	 * we know the HW is no longer running this request.
80 	 *
81 	 * See i915_request_is_active()
82 	 */
83 	I915_FENCE_FLAG_ACTIVE = DMA_FENCE_FLAG_USER_BITS,
84 
85 	/*
86 	 * I915_FENCE_FLAG_PQUEUE - this request is ready for execution
87 	 *
88 	 * Using the scheduler, when a request is ready for execution it is put
89 	 * into the priority queue, and removed from that queue when transferred
90 	 * to the HW runlists. We want to track its membership within the
91 	 * priority queue so that we can easily check before rescheduling.
92 	 *
93 	 * See i915_request_in_priority_queue()
94 	 */
95 	I915_FENCE_FLAG_PQUEUE,
96 
97 	/*
98 	 * I915_FENCE_FLAG_HOLD - this request is currently on hold
99 	 *
100 	 * This request has been suspended, pending an ongoing investigation.
101 	 */
102 	I915_FENCE_FLAG_HOLD,
103 
104 	/*
105 	 * I915_FENCE_FLAG_INITIAL_BREADCRUMB - this request has the initial
106 	 * breadcrumb that marks the end of semaphore waits and start of the
107 	 * user payload.
108 	 */
109 	I915_FENCE_FLAG_INITIAL_BREADCRUMB,
110 
111 	/*
112 	 * I915_FENCE_FLAG_SIGNAL - this request is currently on signal_list
113 	 *
114 	 * Internal bookkeeping used by the breadcrumb code to track when
115 	 * a request is on the various signal_list.
116 	 */
117 	I915_FENCE_FLAG_SIGNAL,
118 
119 	/*
120 	 * I915_FENCE_FLAG_NOPREEMPT - this request should not be preempted
121 	 *
122 	 * The execution of some requests should not be interrupted. This is
123 	 * a sensitive operation as it makes the request super important,
124 	 * blocking other higher priority work. Abuse of this flag will
125 	 * lead to quality of service issues.
126 	 */
127 	I915_FENCE_FLAG_NOPREEMPT,
128 
129 	/*
130 	 * I915_FENCE_FLAG_SENTINEL - this request should be last in the queue
131 	 *
132 	 * A high priority sentinel request may be submitted to clear the
133 	 * submission queue. As it will be the only request in-flight, upon
134 	 * execution all other active requests will have been preempted and
135 	 * unsubmitted. This preemptive pulse is used to re-evaluate the
136 	 * in-flight requests, particularly in cases where an active context
137 	 * is banned and those active requests need to be cancelled.
138 	 */
139 	I915_FENCE_FLAG_SENTINEL,
140 
141 	/*
142 	 * I915_FENCE_FLAG_BOOST - upclock the gpu for this request
143 	 *
144 	 * Some requests are more important than others! In particular, a
145 	 * request that the user is waiting on is typically required for
146 	 * interactive latency, for which we want to minimise by upclocking
147 	 * the GPU. Here we track such boost requests on a per-request basis.
148 	 */
149 	I915_FENCE_FLAG_BOOST,
150 
151 	/*
152 	 * I915_FENCE_FLAG_SUBMIT_PARALLEL - request with a context in a
153 	 * parent-child relationship (parallel submission, multi-lrc) should
154 	 * trigger a submission to the GuC rather than just moving the context
155 	 * tail.
156 	 */
157 	I915_FENCE_FLAG_SUBMIT_PARALLEL,
158 
159 	/*
160 	 * I915_FENCE_FLAG_SKIP_PARALLEL - request with a context in a
161 	 * parent-child relationship (parallel submission, multi-lrc) that
162 	 * hit an error while generating requests in the execbuf IOCTL.
163 	 * Indicates this request should be skipped as another request in
164 	 * submission / relationship encoutered an error.
165 	 */
166 	I915_FENCE_FLAG_SKIP_PARALLEL,
167 
168 	/*
169 	 * I915_FENCE_FLAG_COMPOSITE - Indicates fence is part of a composite
170 	 * fence (dma_fence_array) and i915 generated for parallel submission.
171 	 */
172 	I915_FENCE_FLAG_COMPOSITE,
173 };
174 
175 /**
176  * Request queue structure.
177  *
178  * The request queue allows us to note sequence numbers that have been emitted
179  * and may be associated with active buffers to be retired.
180  *
181  * By keeping this list, we can avoid having to do questionable sequence
182  * number comparisons on buffer last_read|write_seqno. It also allows an
183  * emission time to be associated with the request for tracking how far ahead
184  * of the GPU the submission is.
185  *
186  * When modifying this structure be very aware that we perform a lockless
187  * RCU lookup of it that may race against reallocation of the struct
188  * from the slab freelist. We intentionally do not zero the structure on
189  * allocation so that the lookup can use the dangling pointers (and is
190  * cogniscent that those pointers may be wrong). Instead, everything that
191  * needs to be initialised must be done so explicitly.
192  *
193  * The requests are reference counted.
194  */
195 struct i915_request {
196 	struct dma_fence fence;
197 	spinlock_t lock;
198 
199 	struct drm_i915_private *i915;
200 
201 	/**
202 	 * Context and ring buffer related to this request
203 	 * Contexts are refcounted, so when this request is associated with a
204 	 * context, we must increment the context's refcount, to guarantee that
205 	 * it persists while any request is linked to it. Requests themselves
206 	 * are also refcounted, so the request will only be freed when the last
207 	 * reference to it is dismissed, and the code in
208 	 * i915_request_free() will then decrement the refcount on the
209 	 * context.
210 	 */
211 	struct intel_engine_cs *engine;
212 	struct intel_context *context;
213 	struct intel_ring *ring;
214 	struct intel_timeline __rcu *timeline;
215 
216 	struct list_head signal_link;
217 	struct llist_node signal_node;
218 
219 	/*
220 	 * The rcu epoch of when this request was allocated. Used to judiciously
221 	 * apply backpressure on future allocations to ensure that under
222 	 * mempressure there is sufficient RCU ticks for us to reclaim our
223 	 * RCU protected slabs.
224 	 */
225 	unsigned long rcustate;
226 
227 	/*
228 	 * We pin the timeline->mutex while constructing the request to
229 	 * ensure that no caller accidentally drops it during construction.
230 	 * The timeline->mutex must be held to ensure that only this caller
231 	 * can use the ring and manipulate the associated timeline during
232 	 * construction.
233 	 */
234 	struct pin_cookie cookie;
235 
236 	/*
237 	 * Fences for the various phases in the request's lifetime.
238 	 *
239 	 * The submit fence is used to await upon all of the request's
240 	 * dependencies. When it is signaled, the request is ready to run.
241 	 * It is used by the driver to then queue the request for execution.
242 	 */
243 	struct i915_sw_fence submit;
244 	union {
245 		wait_queue_entry_t submitq;
246 		struct i915_sw_dma_fence_cb dmaq;
247 		struct i915_request_duration_cb {
248 			struct dma_fence_cb cb;
249 			ktime_t emitted;
250 		} duration;
251 	};
252 	struct llist_head execute_cb;
253 	struct i915_sw_fence semaphore;
254 	/**
255 	 * @submit_work: complete submit fence from an IRQ if needed for
256 	 * locking hierarchy reasons.
257 	 */
258 	struct irq_work submit_work;
259 
260 	/*
261 	 * A list of everyone we wait upon, and everyone who waits upon us.
262 	 * Even though we will not be submitted to the hardware before the
263 	 * submit fence is signaled (it waits for all external events as well
264 	 * as our own requests), the scheduler still needs to know the
265 	 * dependency tree for the lifetime of the request (from execbuf
266 	 * to retirement), i.e. bidirectional dependency information for the
267 	 * request not tied to individual fences.
268 	 */
269 	struct i915_sched_node sched;
270 	struct i915_dependency dep;
271 	intel_engine_mask_t execution_mask;
272 
273 	/*
274 	 * A convenience pointer to the current breadcrumb value stored in
275 	 * the HW status page (or our timeline's local equivalent). The full
276 	 * path would be rq->hw_context->ring->timeline->hwsp_seqno.
277 	 */
278 	const u32 *hwsp_seqno;
279 
280 	/** Position in the ring of the start of the request */
281 	u32 head;
282 
283 	/** Position in the ring of the start of the user packets */
284 	u32 infix;
285 
286 	/**
287 	 * Position in the ring of the start of the postfix.
288 	 * This is required to calculate the maximum available ring space
289 	 * without overwriting the postfix.
290 	 */
291 	u32 postfix;
292 
293 	/** Position in the ring of the end of the whole request */
294 	u32 tail;
295 
296 	/** Position in the ring of the end of any workarounds after the tail */
297 	u32 wa_tail;
298 
299 	/** Preallocate space in the ring for the emitting the request */
300 	u32 reserved_space;
301 
302 	/** Batch buffer pointer for selftest internal use. */
303 	I915_SELFTEST_DECLARE(struct i915_vma *batch);
304 
305 	struct i915_vma_resource *batch_res;
306 
307 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
308 	/**
309 	 * Additional buffers requested by userspace to be captured upon
310 	 * a GPU hang. The vma/obj on this list are protected by their
311 	 * active reference - all objects on this list must also be
312 	 * on the active_list (of their final request).
313 	 */
314 	struct i915_capture_list *capture_list;
315 #endif
316 
317 	/** Time at which this request was emitted, in jiffies. */
318 	unsigned long emitted_jiffies;
319 
320 	/** timeline->request entry for this request */
321 	struct list_head link;
322 
323 	/** Watchdog support fields. */
324 	struct i915_request_watchdog {
325 		struct llist_node link;
326 		struct timeout timer;
327 	} watchdog;
328 
329 	/**
330 	 * @guc_fence_link: Requests may need to be stalled when using GuC
331 	 * submission waiting for certain GuC operations to complete. If that is
332 	 * the case, stalled requests are added to a per context list of stalled
333 	 * requests. The below list_head is the link in that list. Protected by
334 	 * ce->guc_state.lock.
335 	 */
336 	struct list_head guc_fence_link;
337 
338 	/**
339 	 * @guc_prio: Priority level while the request is in flight. Differs
340 	 * from i915 scheduler priority. See comment above
341 	 * I915_SCHEDULER_CAP_STATIC_PRIORITY_MAP for details. Protected by
342 	 * ce->guc_active.lock. Two special values (GUC_PRIO_INIT and
343 	 * GUC_PRIO_FINI) outside the GuC priority range are used to indicate
344 	 * if the priority has not been initialized yet or if no more updates
345 	 * are possible because the request has completed.
346 	 */
347 #define	GUC_PRIO_INIT	0xff
348 #define	GUC_PRIO_FINI	0xfe
349 	u8 guc_prio;
350 
351 	I915_SELFTEST_DECLARE(struct {
352 		struct list_head link;
353 		unsigned long delay;
354 	} mock;)
355 };
356 
357 #define I915_FENCE_GFP (GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN)
358 
359 extern const struct dma_fence_ops i915_fence_ops;
360 
361 static inline bool dma_fence_is_i915(const struct dma_fence *fence)
362 {
363 	return fence->ops == &i915_fence_ops;
364 }
365 
366 #ifdef __linux__
367 struct kmem_cache *i915_request_slab_cache(void);
368 #else
369 struct pool *i915_request_slab_cache(void);
370 #endif
371 
372 struct i915_request * __must_check
373 __i915_request_create(struct intel_context *ce, gfp_t gfp);
374 struct i915_request * __must_check
375 i915_request_create(struct intel_context *ce);
376 
377 void __i915_request_skip(struct i915_request *rq);
378 bool i915_request_set_error_once(struct i915_request *rq, int error);
379 struct i915_request *i915_request_mark_eio(struct i915_request *rq);
380 
381 struct i915_request *__i915_request_commit(struct i915_request *request);
382 void __i915_request_queue(struct i915_request *rq,
383 			  const struct i915_sched_attr *attr);
384 void __i915_request_queue_bh(struct i915_request *rq);
385 
386 bool i915_request_retire(struct i915_request *rq);
387 void i915_request_retire_upto(struct i915_request *rq);
388 
389 static inline struct i915_request *
390 to_request(struct dma_fence *fence)
391 {
392 	/* We assume that NULL fence/request are interoperable */
393 	BUILD_BUG_ON(offsetof(struct i915_request, fence) != 0);
394 	GEM_BUG_ON(fence && !dma_fence_is_i915(fence));
395 	return container_of(fence, struct i915_request, fence);
396 }
397 
398 static inline struct i915_request *
399 i915_request_get(struct i915_request *rq)
400 {
401 	return to_request(dma_fence_get(&rq->fence));
402 }
403 
404 static inline struct i915_request *
405 i915_request_get_rcu(struct i915_request *rq)
406 {
407 	return to_request(dma_fence_get_rcu(&rq->fence));
408 }
409 
410 static inline void
411 i915_request_put(struct i915_request *rq)
412 {
413 	dma_fence_put(&rq->fence);
414 }
415 
416 int i915_request_await_object(struct i915_request *to,
417 			      struct drm_i915_gem_object *obj,
418 			      bool write);
419 int i915_request_await_dma_fence(struct i915_request *rq,
420 				 struct dma_fence *fence);
421 int i915_request_await_deps(struct i915_request *rq, const struct i915_deps *deps);
422 int i915_request_await_execution(struct i915_request *rq,
423 				 struct dma_fence *fence);
424 
425 void i915_request_add(struct i915_request *rq);
426 
427 bool __i915_request_submit(struct i915_request *request);
428 void i915_request_submit(struct i915_request *request);
429 
430 void __i915_request_unsubmit(struct i915_request *request);
431 void i915_request_unsubmit(struct i915_request *request);
432 
433 void i915_request_cancel(struct i915_request *rq, int error);
434 
435 long i915_request_wait_timeout(struct i915_request *rq,
436 			       unsigned int flags,
437 			       long timeout)
438 	__attribute__((nonnull(1)));
439 
440 long i915_request_wait(struct i915_request *rq,
441 		       unsigned int flags,
442 		       long timeout)
443 	__attribute__((nonnull(1)));
444 #define I915_WAIT_INTERRUPTIBLE	BIT(0)
445 #define I915_WAIT_PRIORITY	BIT(1) /* small priority bump for the request */
446 #define I915_WAIT_ALL		BIT(2) /* used by i915_gem_object_wait() */
447 
448 void i915_request_show(struct drm_printer *m,
449 		       const struct i915_request *rq,
450 		       const char *prefix,
451 		       int indent);
452 
453 static inline bool i915_request_signaled(const struct i915_request *rq)
454 {
455 	/* The request may live longer than its HWSP, so check flags first! */
456 	return test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags);
457 }
458 
459 static inline bool i915_request_is_active(const struct i915_request *rq)
460 {
461 	return test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
462 }
463 
464 static inline bool i915_request_in_priority_queue(const struct i915_request *rq)
465 {
466 	return test_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
467 }
468 
469 static inline bool
470 i915_request_has_initial_breadcrumb(const struct i915_request *rq)
471 {
472 	return test_bit(I915_FENCE_FLAG_INITIAL_BREADCRUMB, &rq->fence.flags);
473 }
474 
475 /**
476  * Returns true if seq1 is later than seq2.
477  */
478 static inline bool i915_seqno_passed(u32 seq1, u32 seq2)
479 {
480 	return (s32)(seq1 - seq2) >= 0;
481 }
482 
483 static inline u32 __hwsp_seqno(const struct i915_request *rq)
484 {
485 	const u32 *hwsp = READ_ONCE(rq->hwsp_seqno);
486 
487 	return READ_ONCE(*hwsp);
488 }
489 
490 /**
491  * hwsp_seqno - the current breadcrumb value in the HW status page
492  * @rq: the request, to chase the relevant HW status page
493  *
494  * The emphasis in naming here is that hwsp_seqno() is not a property of the
495  * request, but an indication of the current HW state (associated with this
496  * request). Its value will change as the GPU executes more requests.
497  *
498  * Returns the current breadcrumb value in the associated HW status page (or
499  * the local timeline's equivalent) for this request. The request itself
500  * has the associated breadcrumb value of rq->fence.seqno, when the HW
501  * status page has that breadcrumb or later, this request is complete.
502  */
503 static inline u32 hwsp_seqno(const struct i915_request *rq)
504 {
505 	u32 seqno;
506 
507 	rcu_read_lock(); /* the HWSP may be freed at runtime */
508 	seqno = __hwsp_seqno(rq);
509 	rcu_read_unlock();
510 
511 	return seqno;
512 }
513 
514 static inline bool __i915_request_has_started(const struct i915_request *rq)
515 {
516 	return i915_seqno_passed(__hwsp_seqno(rq), rq->fence.seqno - 1);
517 }
518 
519 /**
520  * i915_request_started - check if the request has begun being executed
521  * @rq: the request
522  *
523  * If the timeline is not using initial breadcrumbs, a request is
524  * considered started if the previous request on its timeline (i.e.
525  * context) has been signaled.
526  *
527  * If the timeline is using semaphores, it will also be emitting an
528  * "initial breadcrumb" after the semaphores are complete and just before
529  * it began executing the user payload. A request can therefore be active
530  * on the HW and not yet started as it is still busywaiting on its
531  * dependencies (via HW semaphores).
532  *
533  * If the request has started, its dependencies will have been signaled
534  * (either by fences or by semaphores) and it will have begun processing
535  * the user payload.
536  *
537  * However, even if a request has started, it may have been preempted and
538  * so no longer active, or it may have already completed.
539  *
540  * See also i915_request_is_active().
541  *
542  * Returns true if the request has begun executing the user payload, or
543  * has completed:
544  */
545 static inline bool i915_request_started(const struct i915_request *rq)
546 {
547 	bool result;
548 
549 	if (i915_request_signaled(rq))
550 		return true;
551 
552 	result = true;
553 	rcu_read_lock(); /* the HWSP may be freed at runtime */
554 	if (likely(!i915_request_signaled(rq)))
555 		/* Remember: started but may have since been preempted! */
556 		result = __i915_request_has_started(rq);
557 	rcu_read_unlock();
558 
559 	return result;
560 }
561 
562 /**
563  * i915_request_is_running - check if the request may actually be executing
564  * @rq: the request
565  *
566  * Returns true if the request is currently submitted to hardware, has passed
567  * its start point (i.e. the context is setup and not busywaiting). Note that
568  * it may no longer be running by the time the function returns!
569  */
570 static inline bool i915_request_is_running(const struct i915_request *rq)
571 {
572 	bool result;
573 
574 	if (!i915_request_is_active(rq))
575 		return false;
576 
577 	rcu_read_lock();
578 	result = __i915_request_has_started(rq) && i915_request_is_active(rq);
579 	rcu_read_unlock();
580 
581 	return result;
582 }
583 
584 /**
585  * i915_request_is_ready - check if the request is ready for execution
586  * @rq: the request
587  *
588  * Upon construction, the request is instructed to wait upon various
589  * signals before it is ready to be executed by the HW. That is, we do
590  * not want to start execution and read data before it is written. In practice,
591  * this is controlled with a mixture of interrupts and semaphores. Once
592  * the submit fence is completed, the backend scheduler will place the
593  * request into its queue and from there submit it for execution. So we
594  * can detect when a request is eligible for execution (and is under control
595  * of the scheduler) by querying where it is in any of the scheduler's lists.
596  *
597  * Returns true if the request is ready for execution (it may be inflight),
598  * false otherwise.
599  */
600 static inline bool i915_request_is_ready(const struct i915_request *rq)
601 {
602 	return !list_empty(&rq->sched.link);
603 }
604 
605 static inline bool __i915_request_is_complete(const struct i915_request *rq)
606 {
607 	return i915_seqno_passed(__hwsp_seqno(rq), rq->fence.seqno);
608 }
609 
610 static inline bool i915_request_completed(const struct i915_request *rq)
611 {
612 	bool result;
613 
614 	if (i915_request_signaled(rq))
615 		return true;
616 
617 	result = true;
618 	rcu_read_lock(); /* the HWSP may be freed at runtime */
619 	if (likely(!i915_request_signaled(rq)))
620 		result = __i915_request_is_complete(rq);
621 	rcu_read_unlock();
622 
623 	return result;
624 }
625 
626 static inline void i915_request_mark_complete(struct i915_request *rq)
627 {
628 	WRITE_ONCE(rq->hwsp_seqno, /* decouple from HWSP */
629 		   (u32 *)&rq->fence.seqno);
630 }
631 
632 static inline bool i915_request_has_waitboost(const struct i915_request *rq)
633 {
634 	return test_bit(I915_FENCE_FLAG_BOOST, &rq->fence.flags);
635 }
636 
637 static inline bool i915_request_has_nopreempt(const struct i915_request *rq)
638 {
639 	/* Preemption should only be disabled very rarely */
640 	return unlikely(test_bit(I915_FENCE_FLAG_NOPREEMPT, &rq->fence.flags));
641 }
642 
643 static inline bool i915_request_has_sentinel(const struct i915_request *rq)
644 {
645 	return unlikely(test_bit(I915_FENCE_FLAG_SENTINEL, &rq->fence.flags));
646 }
647 
648 static inline bool i915_request_on_hold(const struct i915_request *rq)
649 {
650 	return unlikely(test_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags));
651 }
652 
653 static inline void i915_request_set_hold(struct i915_request *rq)
654 {
655 	set_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags);
656 }
657 
658 static inline void i915_request_clear_hold(struct i915_request *rq)
659 {
660 	clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags);
661 }
662 
663 static inline struct intel_timeline *
664 i915_request_timeline(const struct i915_request *rq)
665 {
666 	/* Valid only while the request is being constructed (or retired). */
667 	return rcu_dereference_protected(rq->timeline,
668 					 lockdep_is_held(&rcu_access_pointer(rq->timeline)->mutex) ||
669 					 test_bit(CONTEXT_IS_PARKING, &rq->context->flags));
670 }
671 
672 static inline struct i915_gem_context *
673 i915_request_gem_context(const struct i915_request *rq)
674 {
675 	/* Valid only while the request is being constructed (or retired). */
676 	return rcu_dereference_protected(rq->context->gem_context, true);
677 }
678 
679 static inline struct intel_timeline *
680 i915_request_active_timeline(const struct i915_request *rq)
681 {
682 	/*
683 	 * When in use during submission, we are protected by a guarantee that
684 	 * the context/timeline is pinned and must remain pinned until after
685 	 * this submission.
686 	 */
687 	return rcu_dereference_protected(rq->timeline,
688 					 lockdep_is_held(&rq->engine->sched_engine->lock));
689 }
690 
691 static inline u32
692 i915_request_active_seqno(const struct i915_request *rq)
693 {
694 	u32 hwsp_phys_base =
695 		page_mask_bits(i915_request_active_timeline(rq)->hwsp_offset);
696 	u32 hwsp_relative_offset = offset_in_page(rq->hwsp_seqno);
697 
698 	/*
699 	 * Because of wraparound, we cannot simply take tl->hwsp_offset,
700 	 * but instead use the fact that the relative for vaddr is the
701 	 * offset as for hwsp_offset. Take the top bits from tl->hwsp_offset
702 	 * and combine them with the relative offset in rq->hwsp_seqno.
703 	 *
704 	 * As rw->hwsp_seqno is rewritten when signaled, this only works
705 	 * when the request isn't signaled yet, but at that point you
706 	 * no longer need the offset.
707 	 */
708 
709 	return hwsp_phys_base + hwsp_relative_offset;
710 }
711 
712 bool
713 i915_request_active_engine(struct i915_request *rq,
714 			   struct intel_engine_cs **active);
715 
716 void i915_request_notify_execute_cb_imm(struct i915_request *rq);
717 
718 enum i915_request_state {
719 	I915_REQUEST_UNKNOWN = 0,
720 	I915_REQUEST_COMPLETE,
721 	I915_REQUEST_PENDING,
722 	I915_REQUEST_QUEUED,
723 	I915_REQUEST_ACTIVE,
724 };
725 
726 enum i915_request_state i915_test_request_state(struct i915_request *rq);
727 
728 void i915_request_module_exit(void);
729 int i915_request_module_init(void);
730 
731 #endif /* I915_REQUEST_H */
732