1 /* 2 * Copyright © 2008-2015 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 */ 24 25 #include <linux/prefetch.h> 26 #include <linux/dma-fence-array.h> 27 #include <linux/sched.h> 28 #include <linux/sched/clock.h> 29 #include <linux/sched/signal.h> 30 31 #include "i915_drv.h" 32 33 static const char *i915_fence_get_driver_name(struct dma_fence *fence) 34 { 35 return "i915"; 36 } 37 38 static const char *i915_fence_get_timeline_name(struct dma_fence *fence) 39 { 40 /* 41 * The timeline struct (as part of the ppgtt underneath a context) 42 * may be freed when the request is no longer in use by the GPU. 43 * We could extend the life of a context to beyond that of all 44 * fences, possibly keeping the hw resource around indefinitely, 45 * or we just give them a false name. Since 46 * dma_fence_ops.get_timeline_name is a debug feature, the occasional 47 * lie seems justifiable. 48 */ 49 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) 50 return "signaled"; 51 52 return to_request(fence)->timeline->name; 53 } 54 55 static bool i915_fence_signaled(struct dma_fence *fence) 56 { 57 return i915_request_completed(to_request(fence)); 58 } 59 60 static bool i915_fence_enable_signaling(struct dma_fence *fence) 61 { 62 return intel_engine_enable_signaling(to_request(fence), true); 63 } 64 65 static signed long i915_fence_wait(struct dma_fence *fence, 66 bool interruptible, 67 signed long timeout) 68 { 69 return i915_request_wait(to_request(fence), interruptible, timeout); 70 } 71 72 static void i915_fence_release(struct dma_fence *fence) 73 { 74 struct i915_request *rq = to_request(fence); 75 76 /* 77 * The request is put onto a RCU freelist (i.e. the address 78 * is immediately reused), mark the fences as being freed now. 79 * Otherwise the debugobjects for the fences are only marked as 80 * freed when the slab cache itself is freed, and so we would get 81 * caught trying to reuse dead objects. 82 */ 83 i915_sw_fence_fini(&rq->submit); 84 85 #ifdef __linux__ 86 kmem_cache_free(rq->i915->requests, rq); 87 #else 88 pool_put(&rq->i915->requests, rq); 89 #endif 90 } 91 92 const struct dma_fence_ops i915_fence_ops = { 93 .get_driver_name = i915_fence_get_driver_name, 94 .get_timeline_name = i915_fence_get_timeline_name, 95 .enable_signaling = i915_fence_enable_signaling, 96 .signaled = i915_fence_signaled, 97 .wait = i915_fence_wait, 98 .release = i915_fence_release, 99 }; 100 101 static inline void 102 i915_request_remove_from_client(struct i915_request *request) 103 { 104 struct drm_i915_file_private *file_priv; 105 106 file_priv = request->file_priv; 107 if (!file_priv) 108 return; 109 110 spin_lock(&file_priv->mm.lock); 111 if (request->file_priv) { 112 list_del(&request->client_link); 113 request->file_priv = NULL; 114 } 115 spin_unlock(&file_priv->mm.lock); 116 } 117 118 static struct i915_dependency * 119 i915_dependency_alloc(struct drm_i915_private *i915) 120 { 121 #ifdef __linux__ 122 return kmem_cache_alloc(i915->dependencies, GFP_KERNEL); 123 #else 124 return pool_get(&i915->dependencies, PR_WAITOK); 125 #endif 126 } 127 128 static void 129 i915_dependency_free(struct drm_i915_private *i915, 130 struct i915_dependency *dep) 131 { 132 #ifdef __linux__ 133 kmem_cache_free(i915->dependencies, dep); 134 #else 135 pool_put(&i915->dependencies, dep); 136 #endif 137 } 138 139 static void 140 __i915_sched_node_add_dependency(struct i915_sched_node *node, 141 struct i915_sched_node *signal, 142 struct i915_dependency *dep, 143 unsigned long flags) 144 { 145 INIT_LIST_HEAD(&dep->dfs_link); 146 list_add(&dep->wait_link, &signal->waiters_list); 147 list_add(&dep->signal_link, &node->signalers_list); 148 dep->signaler = signal; 149 dep->flags = flags; 150 } 151 152 static int 153 i915_sched_node_add_dependency(struct drm_i915_private *i915, 154 struct i915_sched_node *node, 155 struct i915_sched_node *signal) 156 { 157 struct i915_dependency *dep; 158 159 dep = i915_dependency_alloc(i915); 160 if (!dep) 161 return -ENOMEM; 162 163 __i915_sched_node_add_dependency(node, signal, dep, 164 I915_DEPENDENCY_ALLOC); 165 return 0; 166 } 167 168 static void 169 i915_sched_node_fini(struct drm_i915_private *i915, 170 struct i915_sched_node *node) 171 { 172 struct i915_dependency *dep, *tmp; 173 174 GEM_BUG_ON(!list_empty(&node->link)); 175 176 /* 177 * Everyone we depended upon (the fences we wait to be signaled) 178 * should retire before us and remove themselves from our list. 179 * However, retirement is run independently on each timeline and 180 * so we may be called out-of-order. 181 */ 182 list_for_each_entry_safe(dep, tmp, &node->signalers_list, signal_link) { 183 GEM_BUG_ON(!i915_sched_node_signaled(dep->signaler)); 184 GEM_BUG_ON(!list_empty(&dep->dfs_link)); 185 186 list_del(&dep->wait_link); 187 if (dep->flags & I915_DEPENDENCY_ALLOC) 188 i915_dependency_free(i915, dep); 189 } 190 191 /* Remove ourselves from everyone who depends upon us */ 192 list_for_each_entry_safe(dep, tmp, &node->waiters_list, wait_link) { 193 GEM_BUG_ON(dep->signaler != node); 194 GEM_BUG_ON(!list_empty(&dep->dfs_link)); 195 196 list_del(&dep->signal_link); 197 if (dep->flags & I915_DEPENDENCY_ALLOC) 198 i915_dependency_free(i915, dep); 199 } 200 } 201 202 static void 203 i915_sched_node_init(struct i915_sched_node *node) 204 { 205 INIT_LIST_HEAD(&node->signalers_list); 206 INIT_LIST_HEAD(&node->waiters_list); 207 INIT_LIST_HEAD(&node->link); 208 node->attr.priority = I915_PRIORITY_INVALID; 209 } 210 211 static int reset_all_global_seqno(struct drm_i915_private *i915, u32 seqno) 212 { 213 struct intel_engine_cs *engine; 214 struct i915_timeline *timeline; 215 enum intel_engine_id id; 216 int ret; 217 218 /* Carefully retire all requests without writing to the rings */ 219 ret = i915_gem_wait_for_idle(i915, 220 I915_WAIT_INTERRUPTIBLE | 221 I915_WAIT_LOCKED, 222 MAX_SCHEDULE_TIMEOUT); 223 if (ret) 224 return ret; 225 226 GEM_BUG_ON(i915->gt.active_requests); 227 228 /* If the seqno wraps around, we need to clear the breadcrumb rbtree */ 229 for_each_engine(engine, i915, id) { 230 GEM_TRACE("%s seqno %d (current %d) -> %d\n", 231 engine->name, 232 engine->timeline.seqno, 233 intel_engine_get_seqno(engine), 234 seqno); 235 236 if (!i915_seqno_passed(seqno, engine->timeline.seqno)) { 237 /* Flush any waiters before we reuse the seqno */ 238 intel_engine_disarm_breadcrumbs(engine); 239 intel_engine_init_hangcheck(engine); 240 GEM_BUG_ON(!list_empty(&engine->breadcrumbs.signals)); 241 } 242 243 /* Check we are idle before we fiddle with hw state! */ 244 GEM_BUG_ON(!intel_engine_is_idle(engine)); 245 GEM_BUG_ON(i915_gem_active_isset(&engine->timeline.last_request)); 246 247 /* Finally reset hw state */ 248 intel_engine_init_global_seqno(engine, seqno); 249 engine->timeline.seqno = seqno; 250 } 251 252 list_for_each_entry(timeline, &i915->gt.timelines, link) 253 memset(timeline->global_sync, 0, sizeof(timeline->global_sync)); 254 255 i915->gt.request_serial = seqno; 256 257 return 0; 258 } 259 260 int i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno) 261 { 262 struct drm_i915_private *i915 = to_i915(dev); 263 264 lockdep_assert_held(&i915->drm.struct_mutex); 265 266 if (seqno == 0) 267 return -EINVAL; 268 269 /* HWS page needs to be set less than what we will inject to ring */ 270 return reset_all_global_seqno(i915, seqno - 1); 271 } 272 273 static int reserve_gt(struct drm_i915_private *i915) 274 { 275 int ret; 276 277 /* 278 * Reservation is fine until we may need to wrap around 279 * 280 * By incrementing the serial for every request, we know that no 281 * individual engine may exceed that serial (as each is reset to 0 282 * on any wrap). This protects even the most pessimistic of migrations 283 * of every request from all engines onto just one. 284 */ 285 while (unlikely(++i915->gt.request_serial == 0)) { 286 ret = reset_all_global_seqno(i915, 0); 287 if (ret) { 288 i915->gt.request_serial--; 289 return ret; 290 } 291 } 292 293 if (!i915->gt.active_requests++) 294 i915_gem_unpark(i915); 295 296 return 0; 297 } 298 299 static void unreserve_gt(struct drm_i915_private *i915) 300 { 301 GEM_BUG_ON(!i915->gt.active_requests); 302 if (!--i915->gt.active_requests) 303 i915_gem_park(i915); 304 } 305 306 void i915_gem_retire_noop(struct i915_gem_active *active, 307 struct i915_request *request) 308 { 309 /* Space left intentionally blank */ 310 } 311 312 static void advance_ring(struct i915_request *request) 313 { 314 struct intel_ring *ring = request->ring; 315 unsigned int tail; 316 317 /* 318 * We know the GPU must have read the request to have 319 * sent us the seqno + interrupt, so use the position 320 * of tail of the request to update the last known position 321 * of the GPU head. 322 * 323 * Note this requires that we are always called in request 324 * completion order. 325 */ 326 GEM_BUG_ON(!list_is_first(&request->ring_link, &ring->request_list)); 327 if (list_is_last(&request->ring_link, &ring->request_list)) { 328 /* 329 * We may race here with execlists resubmitting this request 330 * as we retire it. The resubmission will move the ring->tail 331 * forwards (to request->wa_tail). We either read the 332 * current value that was written to hw, or the value that 333 * is just about to be. Either works, if we miss the last two 334 * noops - they are safe to be replayed on a reset. 335 */ 336 GEM_TRACE("marking %s as inactive\n", ring->timeline->name); 337 tail = READ_ONCE(request->tail); 338 list_del(&ring->active_link); 339 } else { 340 tail = request->postfix; 341 } 342 list_del_init(&request->ring_link); 343 344 ring->head = tail; 345 } 346 347 static void free_capture_list(struct i915_request *request) 348 { 349 struct i915_capture_list *capture; 350 351 capture = request->capture_list; 352 while (capture) { 353 struct i915_capture_list *next = capture->next; 354 355 kfree(capture); 356 capture = next; 357 } 358 } 359 360 static void __retire_engine_request(struct intel_engine_cs *engine, 361 struct i915_request *rq) 362 { 363 GEM_TRACE("%s(%s) fence %llx:%d, global=%d, current %d\n", 364 __func__, engine->name, 365 rq->fence.context, rq->fence.seqno, 366 rq->global_seqno, 367 intel_engine_get_seqno(engine)); 368 369 GEM_BUG_ON(!i915_request_completed(rq)); 370 371 local_irq_disable(); 372 373 spin_lock(&engine->timeline.lock); 374 GEM_BUG_ON(!list_is_first(&rq->link, &engine->timeline.requests)); 375 list_del_init(&rq->link); 376 spin_unlock(&engine->timeline.lock); 377 378 spin_lock(&rq->lock); 379 if (!test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags)) 380 dma_fence_signal_locked(&rq->fence); 381 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags)) 382 intel_engine_cancel_signaling(rq); 383 if (rq->waitboost) { 384 GEM_BUG_ON(!atomic_read(&rq->i915->gt_pm.rps.num_waiters)); 385 atomic_dec(&rq->i915->gt_pm.rps.num_waiters); 386 } 387 spin_unlock(&rq->lock); 388 389 local_irq_enable(); 390 391 /* 392 * The backing object for the context is done after switching to the 393 * *next* context. Therefore we cannot retire the previous context until 394 * the next context has already started running. However, since we 395 * cannot take the required locks at i915_request_submit() we 396 * defer the unpinning of the active context to now, retirement of 397 * the subsequent request. 398 */ 399 if (engine->last_retired_context) 400 intel_context_unpin(engine->last_retired_context); 401 engine->last_retired_context = rq->hw_context; 402 } 403 404 static void __retire_engine_upto(struct intel_engine_cs *engine, 405 struct i915_request *rq) 406 { 407 struct i915_request *tmp; 408 409 if (list_empty(&rq->link)) 410 return; 411 412 do { 413 tmp = list_first_entry(&engine->timeline.requests, 414 typeof(*tmp), link); 415 416 GEM_BUG_ON(tmp->engine != engine); 417 __retire_engine_request(engine, tmp); 418 } while (tmp != rq); 419 } 420 421 static void i915_request_retire(struct i915_request *request) 422 { 423 struct i915_gem_active *active, *next; 424 425 GEM_TRACE("%s fence %llx:%d, global=%d, current %d\n", 426 request->engine->name, 427 request->fence.context, request->fence.seqno, 428 request->global_seqno, 429 intel_engine_get_seqno(request->engine)); 430 431 lockdep_assert_held(&request->i915->drm.struct_mutex); 432 GEM_BUG_ON(!i915_sw_fence_signaled(&request->submit)); 433 GEM_BUG_ON(!i915_request_completed(request)); 434 435 trace_i915_request_retire(request); 436 437 advance_ring(request); 438 free_capture_list(request); 439 440 /* 441 * Walk through the active list, calling retire on each. This allows 442 * objects to track their GPU activity and mark themselves as idle 443 * when their *last* active request is completed (updating state 444 * tracking lists for eviction, active references for GEM, etc). 445 * 446 * As the ->retire() may free the node, we decouple it first and 447 * pass along the auxiliary information (to avoid dereferencing 448 * the node after the callback). 449 */ 450 list_for_each_entry_safe(active, next, &request->active_list, link) { 451 /* 452 * In microbenchmarks or focusing upon time inside the kernel, 453 * we may spend an inordinate amount of time simply handling 454 * the retirement of requests and processing their callbacks. 455 * Of which, this loop itself is particularly hot due to the 456 * cache misses when jumping around the list of i915_gem_active. 457 * So we try to keep this loop as streamlined as possible and 458 * also prefetch the next i915_gem_active to try and hide 459 * the likely cache miss. 460 */ 461 prefetchw(next); 462 463 INIT_LIST_HEAD(&active->link); 464 RCU_INIT_POINTER(active->request, NULL); 465 466 active->retire(active, request); 467 } 468 469 i915_request_remove_from_client(request); 470 471 /* Retirement decays the ban score as it is a sign of ctx progress */ 472 atomic_dec_if_positive(&request->gem_context->ban_score); 473 intel_context_unpin(request->hw_context); 474 475 __retire_engine_upto(request->engine, request); 476 477 unreserve_gt(request->i915); 478 479 i915_sched_node_fini(request->i915, &request->sched); 480 i915_request_put(request); 481 } 482 483 void i915_request_retire_upto(struct i915_request *rq) 484 { 485 struct intel_ring *ring = rq->ring; 486 struct i915_request *tmp; 487 488 GEM_TRACE("%s fence %llx:%d, global=%d, current %d\n", 489 rq->engine->name, 490 rq->fence.context, rq->fence.seqno, 491 rq->global_seqno, 492 intel_engine_get_seqno(rq->engine)); 493 494 lockdep_assert_held(&rq->i915->drm.struct_mutex); 495 GEM_BUG_ON(!i915_request_completed(rq)); 496 497 if (list_empty(&rq->ring_link)) 498 return; 499 500 do { 501 tmp = list_first_entry(&ring->request_list, 502 typeof(*tmp), ring_link); 503 504 i915_request_retire(tmp); 505 } while (tmp != rq); 506 } 507 508 static u32 timeline_get_seqno(struct i915_timeline *tl) 509 { 510 return ++tl->seqno; 511 } 512 513 static void move_to_timeline(struct i915_request *request, 514 struct i915_timeline *timeline) 515 { 516 GEM_BUG_ON(request->timeline == &request->engine->timeline); 517 lockdep_assert_held(&request->engine->timeline.lock); 518 519 spin_lock(&request->timeline->lock); 520 list_move_tail(&request->link, &timeline->requests); 521 spin_unlock(&request->timeline->lock); 522 } 523 524 void __i915_request_submit(struct i915_request *request) 525 { 526 struct intel_engine_cs *engine = request->engine; 527 u32 seqno; 528 529 GEM_TRACE("%s fence %llx:%d -> global=%d, current %d\n", 530 engine->name, 531 request->fence.context, request->fence.seqno, 532 engine->timeline.seqno + 1, 533 intel_engine_get_seqno(engine)); 534 535 GEM_BUG_ON(!irqs_disabled()); 536 lockdep_assert_held(&engine->timeline.lock); 537 538 GEM_BUG_ON(request->global_seqno); 539 540 seqno = timeline_get_seqno(&engine->timeline); 541 GEM_BUG_ON(!seqno); 542 GEM_BUG_ON(i915_seqno_passed(intel_engine_get_seqno(engine), seqno)); 543 544 /* We may be recursing from the signal callback of another i915 fence */ 545 spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING); 546 request->global_seqno = seqno; 547 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags)) 548 intel_engine_enable_signaling(request, false); 549 spin_unlock(&request->lock); 550 551 engine->emit_breadcrumb(request, 552 request->ring->vaddr + request->postfix); 553 554 /* Transfer from per-context onto the global per-engine timeline */ 555 move_to_timeline(request, &engine->timeline); 556 557 trace_i915_request_execute(request); 558 559 wake_up_all(&request->execute); 560 } 561 562 void i915_request_submit(struct i915_request *request) 563 { 564 struct intel_engine_cs *engine = request->engine; 565 unsigned long flags; 566 567 /* Will be called from irq-context when using foreign fences. */ 568 spin_lock_irqsave(&engine->timeline.lock, flags); 569 570 __i915_request_submit(request); 571 572 spin_unlock_irqrestore(&engine->timeline.lock, flags); 573 } 574 575 void __i915_request_unsubmit(struct i915_request *request) 576 { 577 struct intel_engine_cs *engine = request->engine; 578 579 GEM_TRACE("%s fence %llx:%d <- global=%d, current %d\n", 580 engine->name, 581 request->fence.context, request->fence.seqno, 582 request->global_seqno, 583 intel_engine_get_seqno(engine)); 584 585 GEM_BUG_ON(!irqs_disabled()); 586 lockdep_assert_held(&engine->timeline.lock); 587 588 /* 589 * Only unwind in reverse order, required so that the per-context list 590 * is kept in seqno/ring order. 591 */ 592 GEM_BUG_ON(!request->global_seqno); 593 GEM_BUG_ON(request->global_seqno != engine->timeline.seqno); 594 GEM_BUG_ON(i915_seqno_passed(intel_engine_get_seqno(engine), 595 request->global_seqno)); 596 engine->timeline.seqno--; 597 598 /* We may be recursing from the signal callback of another i915 fence */ 599 spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING); 600 request->global_seqno = 0; 601 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags)) 602 intel_engine_cancel_signaling(request); 603 spin_unlock(&request->lock); 604 605 /* Transfer back from the global per-engine timeline to per-context */ 606 move_to_timeline(request, request->timeline); 607 608 /* 609 * We don't need to wake_up any waiters on request->execute, they 610 * will get woken by any other event or us re-adding this request 611 * to the engine timeline (__i915_request_submit()). The waiters 612 * should be quite adapt at finding that the request now has a new 613 * global_seqno to the one they went to sleep on. 614 */ 615 } 616 617 void i915_request_unsubmit(struct i915_request *request) 618 { 619 struct intel_engine_cs *engine = request->engine; 620 unsigned long flags; 621 622 /* Will be called from irq-context when using foreign fences. */ 623 spin_lock_irqsave(&engine->timeline.lock, flags); 624 625 __i915_request_unsubmit(request); 626 627 spin_unlock_irqrestore(&engine->timeline.lock, flags); 628 } 629 630 static int __i915_sw_fence_call 631 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state) 632 { 633 struct i915_request *request = 634 container_of(fence, typeof(*request), submit); 635 636 switch (state) { 637 case FENCE_COMPLETE: 638 trace_i915_request_submit(request); 639 /* 640 * We need to serialize use of the submit_request() callback 641 * with its hotplugging performed during an emergency 642 * i915_gem_set_wedged(). We use the RCU mechanism to mark the 643 * critical section in order to force i915_gem_set_wedged() to 644 * wait until the submit_request() is completed before 645 * proceeding. 646 */ 647 rcu_read_lock(); 648 request->engine->submit_request(request); 649 rcu_read_unlock(); 650 break; 651 652 case FENCE_FREE: 653 i915_request_put(request); 654 break; 655 } 656 657 return NOTIFY_DONE; 658 } 659 660 /** 661 * i915_request_alloc - allocate a request structure 662 * 663 * @engine: engine that we wish to issue the request on. 664 * @ctx: context that the request will be associated with. 665 * 666 * Returns a pointer to the allocated request if successful, 667 * or an error code if not. 668 */ 669 struct i915_request * 670 i915_request_alloc(struct intel_engine_cs *engine, struct i915_gem_context *ctx) 671 { 672 struct drm_i915_private *i915 = engine->i915; 673 struct i915_request *rq; 674 struct intel_context *ce; 675 int ret; 676 677 lockdep_assert_held(&i915->drm.struct_mutex); 678 679 /* 680 * Preempt contexts are reserved for exclusive use to inject a 681 * preemption context switch. They are never to be used for any trivial 682 * request! 683 */ 684 GEM_BUG_ON(ctx == i915->preempt_context); 685 686 /* 687 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report 688 * EIO if the GPU is already wedged. 689 */ 690 if (i915_terminally_wedged(&i915->gpu_error)) 691 return ERR_PTR(-EIO); 692 693 /* 694 * Pinning the contexts may generate requests in order to acquire 695 * GGTT space, so do this first before we reserve a seqno for 696 * ourselves. 697 */ 698 ce = intel_context_pin(ctx, engine); 699 if (IS_ERR(ce)) 700 return ERR_CAST(ce); 701 702 ret = reserve_gt(i915); 703 if (ret) 704 goto err_unpin; 705 706 ret = intel_ring_wait_for_space(ce->ring, MIN_SPACE_FOR_ADD_REQUEST); 707 if (ret) 708 goto err_unreserve; 709 710 /* Move our oldest request to the slab-cache (if not in use!) */ 711 rq = list_first_entry(&ce->ring->request_list, typeof(*rq), ring_link); 712 if (!list_is_last(&rq->ring_link, &ce->ring->request_list) && 713 i915_request_completed(rq)) 714 i915_request_retire(rq); 715 716 /* 717 * Beware: Dragons be flying overhead. 718 * 719 * We use RCU to look up requests in flight. The lookups may 720 * race with the request being allocated from the slab freelist. 721 * That is the request we are writing to here, may be in the process 722 * of being read by __i915_gem_active_get_rcu(). As such, 723 * we have to be very careful when overwriting the contents. During 724 * the RCU lookup, we change chase the request->engine pointer, 725 * read the request->global_seqno and increment the reference count. 726 * 727 * The reference count is incremented atomically. If it is zero, 728 * the lookup knows the request is unallocated and complete. Otherwise, 729 * it is either still in use, or has been reallocated and reset 730 * with dma_fence_init(). This increment is safe for release as we 731 * check that the request we have a reference to and matches the active 732 * request. 733 * 734 * Before we increment the refcount, we chase the request->engine 735 * pointer. We must not call kmem_cache_zalloc() or else we set 736 * that pointer to NULL and cause a crash during the lookup. If 737 * we see the request is completed (based on the value of the 738 * old engine and seqno), the lookup is complete and reports NULL. 739 * If we decide the request is not completed (new engine or seqno), 740 * then we grab a reference and double check that it is still the 741 * active request - which it won't be and restart the lookup. 742 * 743 * Do not use kmem_cache_zalloc() here! 744 */ 745 #ifdef __linux__ 746 rq = kmem_cache_alloc(i915->requests, 747 GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN); 748 #else 749 rq = pool_get(&i915->requests, PR_WAITOK); 750 #endif 751 if (unlikely(!rq)) { 752 /* Ratelimit ourselves to prevent oom from malicious clients */ 753 ret = i915_gem_wait_for_idle(i915, 754 I915_WAIT_LOCKED | 755 I915_WAIT_INTERRUPTIBLE, 756 MAX_SCHEDULE_TIMEOUT); 757 if (ret) 758 goto err_unreserve; 759 760 /* 761 * We've forced the client to stall and catch up with whatever 762 * backlog there might have been. As we are assuming that we 763 * caused the mempressure, now is an opportune time to 764 * recover as much memory from the request pool as is possible. 765 * Having already penalized the client to stall, we spend 766 * a little extra time to re-optimise page allocation. 767 */ 768 #ifdef notyet 769 kmem_cache_shrink(i915->requests); 770 #endif 771 rcu_barrier(); /* Recover the TYPESAFE_BY_RCU pages */ 772 773 #ifdef __linux__ 774 rq = kmem_cache_alloc(i915->requests, GFP_KERNEL); 775 #else 776 rq = pool_get(&i915->requests, PR_WAITOK); 777 #endif 778 if (!rq) { 779 ret = -ENOMEM; 780 goto err_unreserve; 781 } 782 } 783 784 INIT_LIST_HEAD(&rq->active_list); 785 rq->i915 = i915; 786 rq->engine = engine; 787 rq->gem_context = ctx; 788 rq->hw_context = ce; 789 rq->ring = ce->ring; 790 rq->timeline = ce->ring->timeline; 791 GEM_BUG_ON(rq->timeline == &engine->timeline); 792 793 mtx_init(&rq->lock, IPL_TTY); 794 dma_fence_init(&rq->fence, 795 &i915_fence_ops, 796 &rq->lock, 797 rq->timeline->fence_context, 798 timeline_get_seqno(rq->timeline)); 799 800 /* We bump the ref for the fence chain */ 801 i915_sw_fence_init(&i915_request_get(rq)->submit, submit_notify); 802 init_waitqueue_head(&rq->execute); 803 804 i915_sched_node_init(&rq->sched); 805 806 /* No zalloc, must clear what we need by hand */ 807 rq->global_seqno = 0; 808 rq->signaling.wait.seqno = 0; 809 rq->file_priv = NULL; 810 rq->batch = NULL; 811 rq->capture_list = NULL; 812 rq->waitboost = false; 813 814 /* 815 * Reserve space in the ring buffer for all the commands required to 816 * eventually emit this request. This is to guarantee that the 817 * i915_request_add() call can't fail. Note that the reserve may need 818 * to be redone if the request is not actually submitted straight 819 * away, e.g. because a GPU scheduler has deferred it. 820 */ 821 rq->reserved_space = MIN_SPACE_FOR_ADD_REQUEST; 822 GEM_BUG_ON(rq->reserved_space < engine->emit_breadcrumb_sz); 823 824 /* 825 * Record the position of the start of the request so that 826 * should we detect the updated seqno part-way through the 827 * GPU processing the request, we never over-estimate the 828 * position of the head. 829 */ 830 rq->head = rq->ring->emit; 831 832 /* Unconditionally invalidate GPU caches and TLBs. */ 833 ret = engine->emit_flush(rq, EMIT_INVALIDATE); 834 if (ret) 835 goto err_unwind; 836 837 ret = engine->request_alloc(rq); 838 if (ret) 839 goto err_unwind; 840 841 /* Keep a second pin for the dual retirement along engine and ring */ 842 __intel_context_pin(ce); 843 844 rq->infix = rq->ring->emit; /* end of header; start of user payload */ 845 846 /* Check that we didn't interrupt ourselves with a new request */ 847 GEM_BUG_ON(rq->timeline->seqno != rq->fence.seqno); 848 return rq; 849 850 err_unwind: 851 ce->ring->emit = rq->head; 852 853 /* Make sure we didn't add ourselves to external state before freeing */ 854 GEM_BUG_ON(!list_empty(&rq->active_list)); 855 GEM_BUG_ON(!list_empty(&rq->sched.signalers_list)); 856 GEM_BUG_ON(!list_empty(&rq->sched.waiters_list)); 857 858 #ifdef __linux__ 859 kmem_cache_free(i915->requests, rq); 860 #else 861 pool_put(&i915->requests, rq); 862 #endif 863 err_unreserve: 864 unreserve_gt(i915); 865 err_unpin: 866 intel_context_unpin(ce); 867 return ERR_PTR(ret); 868 } 869 870 static int 871 i915_request_await_request(struct i915_request *to, struct i915_request *from) 872 { 873 int ret; 874 875 GEM_BUG_ON(to == from); 876 GEM_BUG_ON(to->timeline == from->timeline); 877 878 if (i915_request_completed(from)) 879 return 0; 880 881 if (to->engine->schedule) { 882 ret = i915_sched_node_add_dependency(to->i915, 883 &to->sched, 884 &from->sched); 885 if (ret < 0) 886 return ret; 887 } 888 889 if (to->engine == from->engine) { 890 ret = i915_sw_fence_await_sw_fence_gfp(&to->submit, 891 &from->submit, 892 I915_FENCE_GFP); 893 return ret < 0 ? ret : 0; 894 } 895 896 if (to->engine->semaphore.sync_to) { 897 u32 seqno; 898 899 GEM_BUG_ON(!from->engine->semaphore.signal); 900 901 seqno = i915_request_global_seqno(from); 902 if (!seqno) 903 goto await_dma_fence; 904 905 if (seqno <= to->timeline->global_sync[from->engine->id]) 906 return 0; 907 908 trace_i915_gem_ring_sync_to(to, from); 909 ret = to->engine->semaphore.sync_to(to, from); 910 if (ret) 911 return ret; 912 913 to->timeline->global_sync[from->engine->id] = seqno; 914 return 0; 915 } 916 917 await_dma_fence: 918 ret = i915_sw_fence_await_dma_fence(&to->submit, 919 &from->fence, 0, 920 I915_FENCE_GFP); 921 return ret < 0 ? ret : 0; 922 } 923 924 int 925 i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence) 926 { 927 struct dma_fence **child = &fence; 928 unsigned int nchild = 1; 929 int ret; 930 931 /* 932 * Note that if the fence-array was created in signal-on-any mode, 933 * we should *not* decompose it into its individual fences. However, 934 * we don't currently store which mode the fence-array is operating 935 * in. Fortunately, the only user of signal-on-any is private to 936 * amdgpu and we should not see any incoming fence-array from 937 * sync-file being in signal-on-any mode. 938 */ 939 if (dma_fence_is_array(fence)) { 940 struct dma_fence_array *array = to_dma_fence_array(fence); 941 942 child = array->fences; 943 nchild = array->num_fences; 944 GEM_BUG_ON(!nchild); 945 } 946 947 do { 948 fence = *child++; 949 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) 950 continue; 951 952 /* 953 * Requests on the same timeline are explicitly ordered, along 954 * with their dependencies, by i915_request_add() which ensures 955 * that requests are submitted in-order through each ring. 956 */ 957 if (fence->context == rq->fence.context) 958 continue; 959 960 /* Squash repeated waits to the same timelines */ 961 if (fence->context != rq->i915->mm.unordered_timeline && 962 i915_timeline_sync_is_later(rq->timeline, fence)) 963 continue; 964 965 if (dma_fence_is_i915(fence)) 966 ret = i915_request_await_request(rq, to_request(fence)); 967 else 968 ret = i915_sw_fence_await_dma_fence(&rq->submit, fence, 969 I915_FENCE_TIMEOUT, 970 I915_FENCE_GFP); 971 if (ret < 0) 972 return ret; 973 974 /* Record the latest fence used against each timeline */ 975 if (fence->context != rq->i915->mm.unordered_timeline) 976 i915_timeline_sync_set(rq->timeline, fence); 977 } while (--nchild); 978 979 return 0; 980 } 981 982 /** 983 * i915_request_await_object - set this request to (async) wait upon a bo 984 * @to: request we are wishing to use 985 * @obj: object which may be in use on another ring. 986 * @write: whether the wait is on behalf of a writer 987 * 988 * This code is meant to abstract object synchronization with the GPU. 989 * Conceptually we serialise writes between engines inside the GPU. 990 * We only allow one engine to write into a buffer at any time, but 991 * multiple readers. To ensure each has a coherent view of memory, we must: 992 * 993 * - If there is an outstanding write request to the object, the new 994 * request must wait for it to complete (either CPU or in hw, requests 995 * on the same ring will be naturally ordered). 996 * 997 * - If we are a write request (pending_write_domain is set), the new 998 * request must wait for outstanding read requests to complete. 999 * 1000 * Returns 0 if successful, else propagates up the lower layer error. 1001 */ 1002 int 1003 i915_request_await_object(struct i915_request *to, 1004 struct drm_i915_gem_object *obj, 1005 bool write) 1006 { 1007 struct dma_fence *excl; 1008 int ret = 0; 1009 1010 if (write) { 1011 struct dma_fence **shared; 1012 unsigned int count, i; 1013 1014 ret = reservation_object_get_fences_rcu(obj->resv, 1015 &excl, &count, &shared); 1016 if (ret) 1017 return ret; 1018 1019 for (i = 0; i < count; i++) { 1020 ret = i915_request_await_dma_fence(to, shared[i]); 1021 if (ret) 1022 break; 1023 1024 dma_fence_put(shared[i]); 1025 } 1026 1027 for (; i < count; i++) 1028 dma_fence_put(shared[i]); 1029 kfree(shared); 1030 } else { 1031 excl = reservation_object_get_excl_rcu(obj->resv); 1032 } 1033 1034 if (excl) { 1035 if (ret == 0) 1036 ret = i915_request_await_dma_fence(to, excl); 1037 1038 dma_fence_put(excl); 1039 } 1040 1041 return ret; 1042 } 1043 1044 void i915_request_skip(struct i915_request *rq, int error) 1045 { 1046 void *vaddr = rq->ring->vaddr; 1047 u32 head; 1048 1049 GEM_BUG_ON(!IS_ERR_VALUE((long)error)); 1050 dma_fence_set_error(&rq->fence, error); 1051 1052 /* 1053 * As this request likely depends on state from the lost 1054 * context, clear out all the user operations leaving the 1055 * breadcrumb at the end (so we get the fence notifications). 1056 */ 1057 head = rq->infix; 1058 if (rq->postfix < head) { 1059 memset(vaddr + head, 0, rq->ring->size - head); 1060 head = 0; 1061 } 1062 memset(vaddr + head, 0, rq->postfix - head); 1063 } 1064 1065 /* 1066 * NB: This function is not allowed to fail. Doing so would mean the the 1067 * request is not being tracked for completion but the work itself is 1068 * going to happen on the hardware. This would be a Bad Thing(tm). 1069 */ 1070 void i915_request_add(struct i915_request *request) 1071 { 1072 struct intel_engine_cs *engine = request->engine; 1073 struct i915_timeline *timeline = request->timeline; 1074 struct intel_ring *ring = request->ring; 1075 struct i915_request *prev; 1076 u32 *cs; 1077 1078 GEM_TRACE("%s fence %llx:%d\n", 1079 engine->name, request->fence.context, request->fence.seqno); 1080 1081 lockdep_assert_held(&request->i915->drm.struct_mutex); 1082 trace_i915_request_add(request); 1083 1084 /* 1085 * Make sure that no request gazumped us - if it was allocated after 1086 * our i915_request_alloc() and called __i915_request_add() before 1087 * us, the timeline will hold its seqno which is later than ours. 1088 */ 1089 GEM_BUG_ON(timeline->seqno != request->fence.seqno); 1090 1091 /* 1092 * To ensure that this call will not fail, space for its emissions 1093 * should already have been reserved in the ring buffer. Let the ring 1094 * know that it is time to use that space up. 1095 */ 1096 request->reserved_space = 0; 1097 engine->emit_flush(request, EMIT_FLUSH); 1098 1099 /* 1100 * Record the position of the start of the breadcrumb so that 1101 * should we detect the updated seqno part-way through the 1102 * GPU processing the request, we never over-estimate the 1103 * position of the ring's HEAD. 1104 */ 1105 cs = intel_ring_begin(request, engine->emit_breadcrumb_sz); 1106 GEM_BUG_ON(IS_ERR(cs)); 1107 request->postfix = intel_ring_offset(request, cs); 1108 1109 /* 1110 * Seal the request and mark it as pending execution. Note that 1111 * we may inspect this state, without holding any locks, during 1112 * hangcheck. Hence we apply the barrier to ensure that we do not 1113 * see a more recent value in the hws than we are tracking. 1114 */ 1115 1116 prev = i915_gem_active_raw(&timeline->last_request, 1117 &request->i915->drm.struct_mutex); 1118 if (prev && !i915_request_completed(prev)) { 1119 i915_sw_fence_await_sw_fence(&request->submit, &prev->submit, 1120 &request->submitq); 1121 if (engine->schedule) 1122 __i915_sched_node_add_dependency(&request->sched, 1123 &prev->sched, 1124 &request->dep, 1125 0); 1126 } 1127 1128 spin_lock_irq(&timeline->lock); 1129 list_add_tail(&request->link, &timeline->requests); 1130 spin_unlock_irq(&timeline->lock); 1131 1132 GEM_BUG_ON(timeline->seqno != request->fence.seqno); 1133 i915_gem_active_set(&timeline->last_request, request); 1134 1135 list_add_tail(&request->ring_link, &ring->request_list); 1136 if (list_is_first(&request->ring_link, &ring->request_list)) { 1137 GEM_TRACE("marking %s as active\n", ring->timeline->name); 1138 list_add(&ring->active_link, &request->i915->gt.active_rings); 1139 } 1140 request->emitted_jiffies = jiffies; 1141 1142 /* 1143 * Let the backend know a new request has arrived that may need 1144 * to adjust the existing execution schedule due to a high priority 1145 * request - i.e. we may want to preempt the current request in order 1146 * to run a high priority dependency chain *before* we can execute this 1147 * request. 1148 * 1149 * This is called before the request is ready to run so that we can 1150 * decide whether to preempt the entire chain so that it is ready to 1151 * run at the earliest possible convenience. 1152 */ 1153 local_bh_disable(); 1154 rcu_read_lock(); /* RCU serialisation for set-wedged protection */ 1155 if (engine->schedule) 1156 engine->schedule(request, &request->gem_context->sched); 1157 rcu_read_unlock(); 1158 i915_sw_fence_commit(&request->submit); 1159 local_bh_enable(); /* Kick the execlists tasklet if just scheduled */ 1160 1161 /* 1162 * In typical scenarios, we do not expect the previous request on 1163 * the timeline to be still tracked by timeline->last_request if it 1164 * has been completed. If the completed request is still here, that 1165 * implies that request retirement is a long way behind submission, 1166 * suggesting that we haven't been retiring frequently enough from 1167 * the combination of retire-before-alloc, waiters and the background 1168 * retirement worker. So if the last request on this timeline was 1169 * already completed, do a catch up pass, flushing the retirement queue 1170 * up to this client. Since we have now moved the heaviest operations 1171 * during retirement onto secondary workers, such as freeing objects 1172 * or contexts, retiring a bunch of requests is mostly list management 1173 * (and cache misses), and so we should not be overly penalizing this 1174 * client by performing excess work, though we may still performing 1175 * work on behalf of others -- but instead we should benefit from 1176 * improved resource management. (Well, that's the theory at least.) 1177 */ 1178 if (prev && i915_request_completed(prev)) 1179 i915_request_retire_upto(prev); 1180 } 1181 1182 #ifdef __linux__ 1183 static unsigned long local_clock_us(unsigned int *cpu) 1184 { 1185 unsigned long t; 1186 1187 /* 1188 * Cheaply and approximately convert from nanoseconds to microseconds. 1189 * The result and subsequent calculations are also defined in the same 1190 * approximate microseconds units. The principal source of timing 1191 * error here is from the simple truncation. 1192 * 1193 * Note that local_clock() is only defined wrt to the current CPU; 1194 * the comparisons are no longer valid if we switch CPUs. Instead of 1195 * blocking preemption for the entire busywait, we can detect the CPU 1196 * switch and use that as indicator of system load and a reason to 1197 * stop busywaiting, see busywait_stop(). 1198 */ 1199 *cpu = get_cpu(); 1200 t = local_clock() >> 10; 1201 put_cpu(); 1202 1203 return t; 1204 } 1205 #else 1206 static unsigned long local_clock_us(unsigned *cpu) 1207 { 1208 *cpu = cpu_number(); 1209 return ticks * tick; 1210 } 1211 #endif 1212 1213 static bool busywait_stop(unsigned long timeout, unsigned int cpu) 1214 { 1215 unsigned int this_cpu; 1216 1217 if (time_after(local_clock_us(&this_cpu), timeout)) 1218 return true; 1219 1220 return this_cpu != cpu; 1221 } 1222 1223 static bool __i915_spin_request(const struct i915_request *rq, 1224 u32 seqno, int state, unsigned long timeout_us) 1225 { 1226 struct intel_engine_cs *engine = rq->engine; 1227 unsigned int irq, cpu; 1228 1229 GEM_BUG_ON(!seqno); 1230 1231 /* 1232 * Only wait for the request if we know it is likely to complete. 1233 * 1234 * We don't track the timestamps around requests, nor the average 1235 * request length, so we do not have a good indicator that this 1236 * request will complete within the timeout. What we do know is the 1237 * order in which requests are executed by the engine and so we can 1238 * tell if the request has started. If the request hasn't started yet, 1239 * it is a fair assumption that it will not complete within our 1240 * relatively short timeout. 1241 */ 1242 if (!i915_seqno_passed(intel_engine_get_seqno(engine), seqno - 1)) 1243 return false; 1244 1245 /* 1246 * When waiting for high frequency requests, e.g. during synchronous 1247 * rendering split between the CPU and GPU, the finite amount of time 1248 * required to set up the irq and wait upon it limits the response 1249 * rate. By busywaiting on the request completion for a short while we 1250 * can service the high frequency waits as quick as possible. However, 1251 * if it is a slow request, we want to sleep as quickly as possible. 1252 * The tradeoff between waiting and sleeping is roughly the time it 1253 * takes to sleep on a request, on the order of a microsecond. 1254 */ 1255 1256 irq = READ_ONCE(engine->breadcrumbs.irq_count); 1257 timeout_us += local_clock_us(&cpu); 1258 do { 1259 if (i915_seqno_passed(intel_engine_get_seqno(engine), seqno)) 1260 return seqno == i915_request_global_seqno(rq); 1261 1262 /* 1263 * Seqno are meant to be ordered *before* the interrupt. If 1264 * we see an interrupt without a corresponding seqno advance, 1265 * assume we won't see one in the near future but require 1266 * the engine->seqno_barrier() to fixup coherency. 1267 */ 1268 if (READ_ONCE(engine->breadcrumbs.irq_count) != irq) 1269 break; 1270 1271 if (signal_pending_state(state, current)) 1272 break; 1273 1274 if (busywait_stop(timeout_us, cpu)) 1275 break; 1276 1277 cpu_relax(); 1278 } while (!drm_need_resched()); 1279 1280 return false; 1281 } 1282 1283 static bool __i915_wait_request_check_and_reset(struct i915_request *request) 1284 { 1285 struct i915_gpu_error *error = &request->i915->gpu_error; 1286 1287 if (likely(!i915_reset_handoff(error))) 1288 return false; 1289 1290 __set_current_state(TASK_RUNNING); 1291 i915_reset(request->i915, error->stalled_mask, error->reason); 1292 return true; 1293 } 1294 1295 /** 1296 * i915_request_wait - wait until execution of request has finished 1297 * @rq: the request to wait upon 1298 * @flags: how to wait 1299 * @timeout: how long to wait in jiffies 1300 * 1301 * i915_request_wait() waits for the request to be completed, for a 1302 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an 1303 * unbounded wait). 1304 * 1305 * If the caller holds the struct_mutex, the caller must pass I915_WAIT_LOCKED 1306 * in via the flags, and vice versa if the struct_mutex is not held, the caller 1307 * must not specify that the wait is locked. 1308 * 1309 * Returns the remaining time (in jiffies) if the request completed, which may 1310 * be zero or -ETIME if the request is unfinished after the timeout expires. 1311 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is 1312 * pending before the request completes. 1313 */ 1314 long i915_request_wait(struct i915_request *rq, 1315 unsigned int flags, 1316 long timeout) 1317 { 1318 const int state = flags & I915_WAIT_INTERRUPTIBLE ? 1319 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE; 1320 wait_queue_head_t *errq = &rq->i915->gpu_error.wait_queue; 1321 DEFINE_WAIT_FUNC(reset, default_wake_function); 1322 DEFINE_WAIT_FUNC(exec, default_wake_function); 1323 struct intel_wait wait; 1324 1325 might_sleep(); 1326 #if IS_ENABLED(CONFIG_LOCKDEP) 1327 GEM_BUG_ON(debug_locks && 1328 !!lockdep_is_held(&rq->i915->drm.struct_mutex) != 1329 !!(flags & I915_WAIT_LOCKED)); 1330 #endif 1331 GEM_BUG_ON(timeout < 0); 1332 1333 if (i915_request_completed(rq)) 1334 return timeout; 1335 1336 if (!timeout) 1337 return -ETIME; 1338 1339 trace_i915_request_wait_begin(rq, flags); 1340 1341 add_wait_queue(&rq->execute, &exec); 1342 if (flags & I915_WAIT_LOCKED) 1343 add_wait_queue(errq, &reset); 1344 1345 intel_wait_init(&wait); 1346 1347 restart: 1348 do { 1349 set_current_state(state); 1350 if (intel_wait_update_request(&wait, rq)) 1351 break; 1352 1353 if (flags & I915_WAIT_LOCKED && 1354 __i915_wait_request_check_and_reset(rq)) 1355 continue; 1356 1357 if (signal_pending_state(state, current)) { 1358 timeout = -ERESTARTSYS; 1359 goto complete; 1360 } 1361 1362 if (!timeout) { 1363 timeout = -ETIME; 1364 goto complete; 1365 } 1366 1367 timeout = io_schedule_timeout(timeout); 1368 } while (1); 1369 1370 GEM_BUG_ON(!intel_wait_has_seqno(&wait)); 1371 GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit)); 1372 1373 /* Optimistic short spin before touching IRQs */ 1374 if (__i915_spin_request(rq, wait.seqno, state, 5)) 1375 goto complete; 1376 1377 set_current_state(state); 1378 if (intel_engine_add_wait(rq->engine, &wait)) 1379 /* 1380 * In order to check that we haven't missed the interrupt 1381 * as we enabled it, we need to kick ourselves to do a 1382 * coherent check on the seqno before we sleep. 1383 */ 1384 goto wakeup; 1385 1386 if (flags & I915_WAIT_LOCKED) 1387 __i915_wait_request_check_and_reset(rq); 1388 1389 for (;;) { 1390 if (signal_pending_state(state, current)) { 1391 timeout = -ERESTARTSYS; 1392 break; 1393 } 1394 1395 if (!timeout) { 1396 timeout = -ETIME; 1397 break; 1398 } 1399 1400 timeout = io_schedule_timeout(timeout); 1401 1402 if (intel_wait_complete(&wait) && 1403 intel_wait_check_request(&wait, rq)) 1404 break; 1405 1406 set_current_state(state); 1407 1408 wakeup: 1409 /* 1410 * Carefully check if the request is complete, giving time 1411 * for the seqno to be visible following the interrupt. 1412 * We also have to check in case we are kicked by the GPU 1413 * reset in order to drop the struct_mutex. 1414 */ 1415 if (__i915_request_irq_complete(rq)) 1416 break; 1417 1418 /* 1419 * If the GPU is hung, and we hold the lock, reset the GPU 1420 * and then check for completion. On a full reset, the engine's 1421 * HW seqno will be advanced passed us and we are complete. 1422 * If we do a partial reset, we have to wait for the GPU to 1423 * resume and update the breadcrumb. 1424 * 1425 * If we don't hold the mutex, we can just wait for the worker 1426 * to come along and update the breadcrumb (either directly 1427 * itself, or indirectly by recovering the GPU). 1428 */ 1429 if (flags & I915_WAIT_LOCKED && 1430 __i915_wait_request_check_and_reset(rq)) 1431 continue; 1432 1433 /* Only spin if we know the GPU is processing this request */ 1434 if (__i915_spin_request(rq, wait.seqno, state, 2)) 1435 break; 1436 1437 if (!intel_wait_check_request(&wait, rq)) { 1438 intel_engine_remove_wait(rq->engine, &wait); 1439 goto restart; 1440 } 1441 } 1442 1443 intel_engine_remove_wait(rq->engine, &wait); 1444 complete: 1445 __set_current_state(TASK_RUNNING); 1446 if (flags & I915_WAIT_LOCKED) 1447 remove_wait_queue(errq, &reset); 1448 remove_wait_queue(&rq->execute, &exec); 1449 trace_i915_request_wait_end(rq); 1450 1451 return timeout; 1452 } 1453 1454 static void ring_retire_requests(struct intel_ring *ring) 1455 { 1456 struct i915_request *request, *next; 1457 1458 list_for_each_entry_safe(request, next, 1459 &ring->request_list, ring_link) { 1460 if (!i915_request_completed(request)) 1461 break; 1462 1463 i915_request_retire(request); 1464 } 1465 } 1466 1467 void i915_retire_requests(struct drm_i915_private *i915) 1468 { 1469 struct intel_ring *ring, *tmp; 1470 1471 lockdep_assert_held(&i915->drm.struct_mutex); 1472 1473 if (!i915->gt.active_requests) 1474 return; 1475 1476 list_for_each_entry_safe(ring, tmp, &i915->gt.active_rings, active_link) 1477 ring_retire_requests(ring); 1478 } 1479 1480 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 1481 #include "selftests/mock_request.c" 1482 #include "selftests/i915_request.c" 1483 #endif 1484