1 /* 2 * Copyright © 2008-2015 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 */ 24 25 #include <linux/dma-fence-array.h> 26 #include <linux/dma-fence-chain.h> 27 #include <linux/irq_work.h> 28 #include <linux/prefetch.h> 29 #include <linux/sched.h> 30 #include <linux/sched/clock.h> 31 #include <linux/sched/signal.h> 32 #include <linux/sched/mm.h> 33 34 #include "gem/i915_gem_context.h" 35 #include "gt/intel_breadcrumbs.h" 36 #include "gt/intel_context.h" 37 #include "gt/intel_engine.h" 38 #include "gt/intel_engine_heartbeat.h" 39 #include "gt/intel_engine_regs.h" 40 #include "gt/intel_gpu_commands.h" 41 #include "gt/intel_reset.h" 42 #include "gt/intel_ring.h" 43 #include "gt/intel_rps.h" 44 45 #include "i915_active.h" 46 #include "i915_config.h" 47 #include "i915_deps.h" 48 #include "i915_driver.h" 49 #include "i915_drv.h" 50 #include "i915_trace.h" 51 52 struct execute_cb { 53 struct irq_work work; 54 struct i915_sw_fence *fence; 55 struct i915_request *signal; 56 }; 57 58 static struct pool slab_requests; 59 static struct pool slab_execute_cbs; 60 61 static const char *i915_fence_get_driver_name(struct dma_fence *fence) 62 { 63 return dev_name(to_request(fence)->i915->drm.dev); 64 } 65 66 static const char *i915_fence_get_timeline_name(struct dma_fence *fence) 67 { 68 const struct i915_gem_context *ctx; 69 70 /* 71 * The timeline struct (as part of the ppgtt underneath a context) 72 * may be freed when the request is no longer in use by the GPU. 73 * We could extend the life of a context to beyond that of all 74 * fences, possibly keeping the hw resource around indefinitely, 75 * or we just give them a false name. Since 76 * dma_fence_ops.get_timeline_name is a debug feature, the occasional 77 * lie seems justifiable. 78 */ 79 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) 80 return "signaled"; 81 82 ctx = i915_request_gem_context(to_request(fence)); 83 if (!ctx) 84 return "[" DRIVER_NAME "]"; 85 86 return ctx->name; 87 } 88 89 static bool i915_fence_signaled(struct dma_fence *fence) 90 { 91 return i915_request_completed(to_request(fence)); 92 } 93 94 static bool i915_fence_enable_signaling(struct dma_fence *fence) 95 { 96 return i915_request_enable_breadcrumb(to_request(fence)); 97 } 98 99 static signed long i915_fence_wait(struct dma_fence *fence, 100 bool interruptible, 101 signed long timeout) 102 { 103 return i915_request_wait_timeout(to_request(fence), 104 interruptible | I915_WAIT_PRIORITY, 105 timeout); 106 } 107 108 #ifdef __linux__ 109 struct kmem_cache *i915_request_slab_cache(void) 110 { 111 return slab_requests; 112 } 113 #else 114 struct pool *i915_request_slab_cache(void) 115 { 116 return &slab_requests; 117 } 118 #endif 119 120 static void i915_fence_release(struct dma_fence *fence) 121 { 122 struct i915_request *rq = to_request(fence); 123 124 GEM_BUG_ON(rq->guc_prio != GUC_PRIO_INIT && 125 rq->guc_prio != GUC_PRIO_FINI); 126 127 i915_request_free_capture_list(fetch_and_zero(&rq->capture_list)); 128 if (rq->batch_res) { 129 i915_vma_resource_put(rq->batch_res); 130 rq->batch_res = NULL; 131 } 132 133 /* 134 * The request is put onto a RCU freelist (i.e. the address 135 * is immediately reused), mark the fences as being freed now. 136 * Otherwise the debugobjects for the fences are only marked as 137 * freed when the slab cache itself is freed, and so we would get 138 * caught trying to reuse dead objects. 139 */ 140 i915_sw_fence_fini(&rq->submit); 141 i915_sw_fence_fini(&rq->semaphore); 142 143 /* 144 * Keep one request on each engine for reserved use under mempressure. 145 * 146 * We do not hold a reference to the engine here and so have to be 147 * very careful in what rq->engine we poke. The virtual engine is 148 * referenced via the rq->context and we released that ref during 149 * i915_request_retire(), ergo we must not dereference a virtual 150 * engine here. Not that we would want to, as the only consumer of 151 * the reserved engine->request_pool is the power management parking, 152 * which must-not-fail, and that is only run on the physical engines. 153 * 154 * Since the request must have been executed to be have completed, 155 * we know that it will have been processed by the HW and will 156 * not be unsubmitted again, so rq->engine and rq->execution_mask 157 * at this point is stable. rq->execution_mask will be a single 158 * bit if the last and _only_ engine it could execution on was a 159 * physical engine, if it's multiple bits then it started on and 160 * could still be on a virtual engine. Thus if the mask is not a 161 * power-of-two we assume that rq->engine may still be a virtual 162 * engine and so a dangling invalid pointer that we cannot dereference 163 * 164 * For example, consider the flow of a bonded request through a virtual 165 * engine. The request is created with a wide engine mask (all engines 166 * that we might execute on). On processing the bond, the request mask 167 * is reduced to one or more engines. If the request is subsequently 168 * bound to a single engine, it will then be constrained to only 169 * execute on that engine and never returned to the virtual engine 170 * after timeslicing away, see __unwind_incomplete_requests(). Thus we 171 * know that if the rq->execution_mask is a single bit, rq->engine 172 * can be a physical engine with the exact corresponding mask. 173 */ 174 if (is_power_of_2(rq->execution_mask) && 175 !cmpxchg(&rq->engine->request_pool, NULL, rq)) 176 return; 177 178 #ifdef __linux__ 179 kmem_cache_free(slab_requests, rq); 180 #else 181 pool_put(&slab_requests, rq); 182 #endif 183 } 184 185 const struct dma_fence_ops i915_fence_ops = { 186 .get_driver_name = i915_fence_get_driver_name, 187 .get_timeline_name = i915_fence_get_timeline_name, 188 .enable_signaling = i915_fence_enable_signaling, 189 .signaled = i915_fence_signaled, 190 .wait = i915_fence_wait, 191 .release = i915_fence_release, 192 }; 193 194 static void irq_execute_cb(struct irq_work *wrk) 195 { 196 struct execute_cb *cb = container_of(wrk, typeof(*cb), work); 197 198 i915_sw_fence_complete(cb->fence); 199 #ifdef __linux__ 200 kmem_cache_free(slab_execute_cbs, cb); 201 #else 202 pool_put(&slab_execute_cbs, cb); 203 #endif 204 } 205 206 static __always_inline void 207 __notify_execute_cb(struct i915_request *rq, bool (*fn)(struct irq_work *wrk)) 208 { 209 struct execute_cb *cb, *cn; 210 211 if (llist_empty(&rq->execute_cb)) 212 return; 213 214 llist_for_each_entry_safe(cb, cn, 215 llist_del_all(&rq->execute_cb), 216 work.node.llist) 217 fn(&cb->work); 218 } 219 220 static void __notify_execute_cb_irq(struct i915_request *rq) 221 { 222 __notify_execute_cb(rq, irq_work_queue); 223 } 224 225 static bool irq_work_imm(struct irq_work *wrk) 226 { 227 #ifdef __linux__ 228 wrk->func(wrk); 229 #else 230 wrk->task.t_func(wrk); 231 #endif 232 return false; 233 } 234 235 void i915_request_notify_execute_cb_imm(struct i915_request *rq) 236 { 237 __notify_execute_cb(rq, irq_work_imm); 238 } 239 240 static void __i915_request_fill(struct i915_request *rq, u8 val) 241 { 242 void *vaddr = rq->ring->vaddr; 243 u32 head; 244 245 head = rq->infix; 246 if (rq->postfix < head) { 247 memset(vaddr + head, val, rq->ring->size - head); 248 head = 0; 249 } 250 memset(vaddr + head, val, rq->postfix - head); 251 } 252 253 /** 254 * i915_request_active_engine 255 * @rq: request to inspect 256 * @active: pointer in which to return the active engine 257 * 258 * Fills the currently active engine to the @active pointer if the request 259 * is active and still not completed. 260 * 261 * Returns true if request was active or false otherwise. 262 */ 263 bool 264 i915_request_active_engine(struct i915_request *rq, 265 struct intel_engine_cs **active) 266 { 267 struct intel_engine_cs *engine, *locked; 268 bool ret = false; 269 270 /* 271 * Serialise with __i915_request_submit() so that it sees 272 * is-banned?, or we know the request is already inflight. 273 * 274 * Note that rq->engine is unstable, and so we double 275 * check that we have acquired the lock on the final engine. 276 */ 277 locked = READ_ONCE(rq->engine); 278 spin_lock_irq(&locked->sched_engine->lock); 279 while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) { 280 spin_unlock(&locked->sched_engine->lock); 281 locked = engine; 282 spin_lock(&locked->sched_engine->lock); 283 } 284 285 if (i915_request_is_active(rq)) { 286 if (!__i915_request_is_complete(rq)) 287 *active = locked; 288 ret = true; 289 } 290 291 spin_unlock_irq(&locked->sched_engine->lock); 292 293 return ret; 294 } 295 296 static void __rq_init_watchdog(struct i915_request *rq) 297 { 298 rq->watchdog.timer.to_func = NULL; 299 } 300 301 #ifdef __linux__ 302 303 static enum hrtimer_restart __rq_watchdog_expired(struct hrtimer *hrtimer) 304 { 305 struct i915_request *rq = 306 container_of(hrtimer, struct i915_request, watchdog.timer); 307 struct intel_gt *gt = rq->engine->gt; 308 309 if (!i915_request_completed(rq)) { 310 if (llist_add(&rq->watchdog.link, >->watchdog.list)) 311 queue_work(gt->i915->unordered_wq, >->watchdog.work); 312 } else { 313 i915_request_put(rq); 314 } 315 316 return HRTIMER_NORESTART; 317 } 318 319 #else 320 321 static void 322 __rq_watchdog_expired(void *arg) 323 { 324 struct i915_request *rq = (struct i915_request *)arg; 325 struct intel_gt *gt = rq->engine->gt; 326 327 if (!i915_request_completed(rq)) { 328 if (llist_add(&rq->watchdog.link, >->watchdog.list)) 329 schedule_work(>->watchdog.work); 330 } else { 331 i915_request_put(rq); 332 } 333 } 334 335 #endif 336 337 static void __rq_arm_watchdog(struct i915_request *rq) 338 { 339 struct i915_request_watchdog *wdg = &rq->watchdog; 340 struct intel_context *ce = rq->context; 341 342 if (!ce->watchdog.timeout_us) 343 return; 344 345 i915_request_get(rq); 346 347 #ifdef __linux__ 348 hrtimer_init(&wdg->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 349 wdg->timer.function = __rq_watchdog_expired; 350 hrtimer_start_range_ns(&wdg->timer, 351 ns_to_ktime(ce->watchdog.timeout_us * 352 NSEC_PER_USEC), 353 NSEC_PER_MSEC, 354 HRTIMER_MODE_REL); 355 #else 356 timeout_set(&wdg->timer, __rq_watchdog_expired, rq); 357 timeout_add_msec(&wdg->timer, 1); 358 #endif 359 } 360 361 static void __rq_cancel_watchdog(struct i915_request *rq) 362 { 363 struct i915_request_watchdog *wdg = &rq->watchdog; 364 365 if (wdg->timer.to_func && hrtimer_try_to_cancel(&wdg->timer) > 0) 366 i915_request_put(rq); 367 } 368 369 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR) 370 371 /** 372 * i915_request_free_capture_list - Free a capture list 373 * @capture: Pointer to the first list item or NULL 374 * 375 */ 376 void i915_request_free_capture_list(struct i915_capture_list *capture) 377 { 378 while (capture) { 379 struct i915_capture_list *next = capture->next; 380 381 i915_vma_resource_put(capture->vma_res); 382 kfree(capture); 383 capture = next; 384 } 385 } 386 387 #define assert_capture_list_is_null(_rq) GEM_BUG_ON((_rq)->capture_list) 388 389 #define clear_capture_list(_rq) ((_rq)->capture_list = NULL) 390 391 #else 392 393 #define i915_request_free_capture_list(_a) do {} while (0) 394 395 #define assert_capture_list_is_null(_a) do {} while (0) 396 397 #define clear_capture_list(_rq) do {} while (0) 398 399 #endif 400 401 bool i915_request_retire(struct i915_request *rq) 402 { 403 if (!__i915_request_is_complete(rq)) 404 return false; 405 406 RQ_TRACE(rq, "\n"); 407 408 GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit)); 409 trace_i915_request_retire(rq); 410 i915_request_mark_complete(rq); 411 412 __rq_cancel_watchdog(rq); 413 414 /* 415 * We know the GPU must have read the request to have 416 * sent us the seqno + interrupt, so use the position 417 * of tail of the request to update the last known position 418 * of the GPU head. 419 * 420 * Note this requires that we are always called in request 421 * completion order. 422 */ 423 GEM_BUG_ON(!list_is_first(&rq->link, 424 &i915_request_timeline(rq)->requests)); 425 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) 426 /* Poison before we release our space in the ring */ 427 __i915_request_fill(rq, POISON_FREE); 428 rq->ring->head = rq->postfix; 429 430 if (!i915_request_signaled(rq)) { 431 spin_lock_irq(&rq->lock); 432 dma_fence_signal_locked(&rq->fence); 433 spin_unlock_irq(&rq->lock); 434 } 435 436 if (test_and_set_bit(I915_FENCE_FLAG_BOOST, &rq->fence.flags)) 437 intel_rps_dec_waiters(&rq->engine->gt->rps); 438 439 /* 440 * We only loosely track inflight requests across preemption, 441 * and so we may find ourselves attempting to retire a _completed_ 442 * request that we have removed from the HW and put back on a run 443 * queue. 444 * 445 * As we set I915_FENCE_FLAG_ACTIVE on the request, this should be 446 * after removing the breadcrumb and signaling it, so that we do not 447 * inadvertently attach the breadcrumb to a completed request. 448 */ 449 rq->engine->remove_active_request(rq); 450 GEM_BUG_ON(!llist_empty(&rq->execute_cb)); 451 452 __list_del_entry(&rq->link); /* poison neither prev/next (RCU walks) */ 453 454 intel_context_exit(rq->context); 455 intel_context_unpin(rq->context); 456 457 i915_sched_node_fini(&rq->sched); 458 i915_request_put(rq); 459 460 return true; 461 } 462 463 void i915_request_retire_upto(struct i915_request *rq) 464 { 465 struct intel_timeline * const tl = i915_request_timeline(rq); 466 struct i915_request *tmp; 467 468 RQ_TRACE(rq, "\n"); 469 GEM_BUG_ON(!__i915_request_is_complete(rq)); 470 471 do { 472 tmp = list_first_entry(&tl->requests, typeof(*tmp), link); 473 GEM_BUG_ON(!i915_request_completed(tmp)); 474 } while (i915_request_retire(tmp) && tmp != rq); 475 } 476 477 static struct i915_request * const * 478 __engine_active(struct intel_engine_cs *engine) 479 { 480 return READ_ONCE(engine->execlists.active); 481 } 482 483 static bool __request_in_flight(const struct i915_request *signal) 484 { 485 struct i915_request * const *port, *rq; 486 bool inflight = false; 487 488 if (!i915_request_is_ready(signal)) 489 return false; 490 491 /* 492 * Even if we have unwound the request, it may still be on 493 * the GPU (preempt-to-busy). If that request is inside an 494 * unpreemptible critical section, it will not be removed. Some 495 * GPU functions may even be stuck waiting for the paired request 496 * (__await_execution) to be submitted and cannot be preempted 497 * until the bond is executing. 498 * 499 * As we know that there are always preemption points between 500 * requests, we know that only the currently executing request 501 * may be still active even though we have cleared the flag. 502 * However, we can't rely on our tracking of ELSP[0] to know 503 * which request is currently active and so maybe stuck, as 504 * the tracking maybe an event behind. Instead assume that 505 * if the context is still inflight, then it is still active 506 * even if the active flag has been cleared. 507 * 508 * To further complicate matters, if there a pending promotion, the HW 509 * may either perform a context switch to the second inflight execlists, 510 * or it may switch to the pending set of execlists. In the case of the 511 * latter, it may send the ACK and we process the event copying the 512 * pending[] over top of inflight[], _overwriting_ our *active. Since 513 * this implies the HW is arbitrating and not struck in *active, we do 514 * not worry about complete accuracy, but we do require no read/write 515 * tearing of the pointer [the read of the pointer must be valid, even 516 * as the array is being overwritten, for which we require the writes 517 * to avoid tearing.] 518 * 519 * Note that the read of *execlists->active may race with the promotion 520 * of execlists->pending[] to execlists->inflight[], overwritting 521 * the value at *execlists->active. This is fine. The promotion implies 522 * that we received an ACK from the HW, and so the context is not 523 * stuck -- if we do not see ourselves in *active, the inflight status 524 * is valid. If instead we see ourselves being copied into *active, 525 * we are inflight and may signal the callback. 526 */ 527 if (!intel_context_inflight(signal->context)) 528 return false; 529 530 rcu_read_lock(); 531 for (port = __engine_active(signal->engine); 532 (rq = READ_ONCE(*port)); /* may race with promotion of pending[] */ 533 port++) { 534 if (rq->context == signal->context) { 535 inflight = i915_seqno_passed(rq->fence.seqno, 536 signal->fence.seqno); 537 break; 538 } 539 } 540 rcu_read_unlock(); 541 542 return inflight; 543 } 544 545 static int 546 __await_execution(struct i915_request *rq, 547 struct i915_request *signal, 548 gfp_t gfp) 549 { 550 struct execute_cb *cb; 551 552 if (i915_request_is_active(signal)) 553 return 0; 554 555 #ifdef __linux__ 556 cb = kmem_cache_alloc(slab_execute_cbs, gfp); 557 #else 558 cb = pool_get(&slab_execute_cbs, 559 (gfp & GFP_NOWAIT) ? PR_NOWAIT : PR_WAITOK); 560 #endif 561 if (!cb) 562 return -ENOMEM; 563 564 cb->fence = &rq->submit; 565 i915_sw_fence_await(cb->fence); 566 init_irq_work(&cb->work, irq_execute_cb); 567 568 /* 569 * Register the callback first, then see if the signaler is already 570 * active. This ensures that if we race with the 571 * __notify_execute_cb from i915_request_submit() and we are not 572 * included in that list, we get a second bite of the cherry and 573 * execute it ourselves. After this point, a future 574 * i915_request_submit() will notify us. 575 * 576 * In i915_request_retire() we set the ACTIVE bit on a completed 577 * request (then flush the execute_cb). So by registering the 578 * callback first, then checking the ACTIVE bit, we serialise with 579 * the completed/retired request. 580 */ 581 if (llist_add(&cb->work.node.llist, &signal->execute_cb)) { 582 if (i915_request_is_active(signal) || 583 __request_in_flight(signal)) 584 i915_request_notify_execute_cb_imm(signal); 585 } 586 587 return 0; 588 } 589 590 static bool fatal_error(int error) 591 { 592 switch (error) { 593 case 0: /* not an error! */ 594 case -EAGAIN: /* innocent victim of a GT reset (__i915_request_reset) */ 595 case -ETIMEDOUT: /* waiting for Godot (timer_i915_sw_fence_wake) */ 596 return false; 597 default: 598 return true; 599 } 600 } 601 602 void __i915_request_skip(struct i915_request *rq) 603 { 604 GEM_BUG_ON(!fatal_error(rq->fence.error)); 605 606 if (rq->infix == rq->postfix) 607 return; 608 609 RQ_TRACE(rq, "error: %d\n", rq->fence.error); 610 611 /* 612 * As this request likely depends on state from the lost 613 * context, clear out all the user operations leaving the 614 * breadcrumb at the end (so we get the fence notifications). 615 */ 616 __i915_request_fill(rq, 0); 617 rq->infix = rq->postfix; 618 } 619 620 bool i915_request_set_error_once(struct i915_request *rq, int error) 621 { 622 int old; 623 624 GEM_BUG_ON(!IS_ERR_VALUE((long)error)); 625 626 if (i915_request_signaled(rq)) 627 return false; 628 629 old = READ_ONCE(rq->fence.error); 630 do { 631 if (fatal_error(old)) 632 return false; 633 } while (!try_cmpxchg(&rq->fence.error, &old, error)); 634 635 return true; 636 } 637 638 struct i915_request *i915_request_mark_eio(struct i915_request *rq) 639 { 640 if (__i915_request_is_complete(rq)) 641 return NULL; 642 643 GEM_BUG_ON(i915_request_signaled(rq)); 644 645 /* As soon as the request is completed, it may be retired */ 646 rq = i915_request_get(rq); 647 648 i915_request_set_error_once(rq, -EIO); 649 i915_request_mark_complete(rq); 650 651 return rq; 652 } 653 654 bool __i915_request_submit(struct i915_request *request) 655 { 656 struct intel_engine_cs *engine = request->engine; 657 bool result = false; 658 659 RQ_TRACE(request, "\n"); 660 661 GEM_BUG_ON(!irqs_disabled()); 662 lockdep_assert_held(&engine->sched_engine->lock); 663 664 /* 665 * With the advent of preempt-to-busy, we frequently encounter 666 * requests that we have unsubmitted from HW, but left running 667 * until the next ack and so have completed in the meantime. On 668 * resubmission of that completed request, we can skip 669 * updating the payload, and execlists can even skip submitting 670 * the request. 671 * 672 * We must remove the request from the caller's priority queue, 673 * and the caller must only call us when the request is in their 674 * priority queue, under the sched_engine->lock. This ensures that the 675 * request has *not* yet been retired and we can safely move 676 * the request into the engine->active.list where it will be 677 * dropped upon retiring. (Otherwise if resubmit a *retired* 678 * request, this would be a horrible use-after-free.) 679 */ 680 if (__i915_request_is_complete(request)) { 681 list_del_init(&request->sched.link); 682 goto active; 683 } 684 685 if (unlikely(!intel_context_is_schedulable(request->context))) 686 i915_request_set_error_once(request, -EIO); 687 688 if (unlikely(fatal_error(request->fence.error))) 689 __i915_request_skip(request); 690 691 /* 692 * Are we using semaphores when the gpu is already saturated? 693 * 694 * Using semaphores incurs a cost in having the GPU poll a 695 * memory location, busywaiting for it to change. The continual 696 * memory reads can have a noticeable impact on the rest of the 697 * system with the extra bus traffic, stalling the cpu as it too 698 * tries to access memory across the bus (perf stat -e bus-cycles). 699 * 700 * If we installed a semaphore on this request and we only submit 701 * the request after the signaler completed, that indicates the 702 * system is overloaded and using semaphores at this time only 703 * increases the amount of work we are doing. If so, we disable 704 * further use of semaphores until we are idle again, whence we 705 * optimistically try again. 706 */ 707 if (request->sched.semaphores && 708 i915_sw_fence_signaled(&request->semaphore)) 709 engine->saturated |= request->sched.semaphores; 710 711 engine->emit_fini_breadcrumb(request, 712 request->ring->vaddr + request->postfix); 713 714 trace_i915_request_execute(request); 715 if (engine->bump_serial) 716 engine->bump_serial(engine); 717 else 718 engine->serial++; 719 720 result = true; 721 722 GEM_BUG_ON(test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)); 723 engine->add_active_request(request); 724 active: 725 clear_bit(I915_FENCE_FLAG_PQUEUE, &request->fence.flags); 726 set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags); 727 728 /* 729 * XXX Rollback bonded-execution on __i915_request_unsubmit()? 730 * 731 * In the future, perhaps when we have an active time-slicing scheduler, 732 * it will be interesting to unsubmit parallel execution and remove 733 * busywaits from the GPU until their master is restarted. This is 734 * quite hairy, we have to carefully rollback the fence and do a 735 * preempt-to-idle cycle on the target engine, all the while the 736 * master execute_cb may refire. 737 */ 738 __notify_execute_cb_irq(request); 739 740 /* We may be recursing from the signal callback of another i915 fence */ 741 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags)) 742 i915_request_enable_breadcrumb(request); 743 744 return result; 745 } 746 747 void i915_request_submit(struct i915_request *request) 748 { 749 struct intel_engine_cs *engine = request->engine; 750 unsigned long flags; 751 752 /* Will be called from irq-context when using foreign fences. */ 753 spin_lock_irqsave(&engine->sched_engine->lock, flags); 754 755 __i915_request_submit(request); 756 757 spin_unlock_irqrestore(&engine->sched_engine->lock, flags); 758 } 759 760 void __i915_request_unsubmit(struct i915_request *request) 761 { 762 struct intel_engine_cs *engine = request->engine; 763 764 /* 765 * Only unwind in reverse order, required so that the per-context list 766 * is kept in seqno/ring order. 767 */ 768 RQ_TRACE(request, "\n"); 769 770 GEM_BUG_ON(!irqs_disabled()); 771 lockdep_assert_held(&engine->sched_engine->lock); 772 773 /* 774 * Before we remove this breadcrumb from the signal list, we have 775 * to ensure that a concurrent dma_fence_enable_signaling() does not 776 * attach itself. We first mark the request as no longer active and 777 * make sure that is visible to other cores, and then remove the 778 * breadcrumb if attached. 779 */ 780 GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)); 781 clear_bit_unlock(I915_FENCE_FLAG_ACTIVE, &request->fence.flags); 782 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags)) 783 i915_request_cancel_breadcrumb(request); 784 785 /* We've already spun, don't charge on resubmitting. */ 786 if (request->sched.semaphores && __i915_request_has_started(request)) 787 request->sched.semaphores = 0; 788 789 /* 790 * We don't need to wake_up any waiters on request->execute, they 791 * will get woken by any other event or us re-adding this request 792 * to the engine timeline (__i915_request_submit()). The waiters 793 * should be quite adapt at finding that the request now has a new 794 * global_seqno to the one they went to sleep on. 795 */ 796 } 797 798 void i915_request_unsubmit(struct i915_request *request) 799 { 800 struct intel_engine_cs *engine = request->engine; 801 unsigned long flags; 802 803 /* Will be called from irq-context when using foreign fences. */ 804 spin_lock_irqsave(&engine->sched_engine->lock, flags); 805 806 __i915_request_unsubmit(request); 807 808 spin_unlock_irqrestore(&engine->sched_engine->lock, flags); 809 } 810 811 void i915_request_cancel(struct i915_request *rq, int error) 812 { 813 if (!i915_request_set_error_once(rq, error)) 814 return; 815 816 set_bit(I915_FENCE_FLAG_SENTINEL, &rq->fence.flags); 817 818 intel_context_cancel_request(rq->context, rq); 819 } 820 821 static int 822 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state) 823 { 824 struct i915_request *request = 825 container_of(fence, typeof(*request), submit); 826 827 switch (state) { 828 case FENCE_COMPLETE: 829 trace_i915_request_submit(request); 830 831 if (unlikely(fence->error)) 832 i915_request_set_error_once(request, fence->error); 833 else 834 __rq_arm_watchdog(request); 835 836 /* 837 * We need to serialize use of the submit_request() callback 838 * with its hotplugging performed during an emergency 839 * i915_gem_set_wedged(). We use the RCU mechanism to mark the 840 * critical section in order to force i915_gem_set_wedged() to 841 * wait until the submit_request() is completed before 842 * proceeding. 843 */ 844 rcu_read_lock(); 845 request->engine->submit_request(request); 846 rcu_read_unlock(); 847 break; 848 849 case FENCE_FREE: 850 i915_request_put(request); 851 break; 852 } 853 854 return NOTIFY_DONE; 855 } 856 857 static int 858 semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state) 859 { 860 struct i915_request *rq = container_of(fence, typeof(*rq), semaphore); 861 862 switch (state) { 863 case FENCE_COMPLETE: 864 break; 865 866 case FENCE_FREE: 867 i915_request_put(rq); 868 break; 869 } 870 871 return NOTIFY_DONE; 872 } 873 874 static void retire_requests(struct intel_timeline *tl) 875 { 876 struct i915_request *rq, *rn; 877 878 list_for_each_entry_safe(rq, rn, &tl->requests, link) 879 if (!i915_request_retire(rq)) 880 break; 881 } 882 883 static void __i915_request_ctor(void *); 884 885 static noinline struct i915_request * 886 request_alloc_slow(struct intel_timeline *tl, 887 struct i915_request **rsvd, 888 gfp_t gfp) 889 { 890 struct i915_request *rq; 891 892 /* If we cannot wait, dip into our reserves */ 893 if (!gfpflags_allow_blocking(gfp)) { 894 rq = xchg(rsvd, NULL); 895 if (!rq) /* Use the normal failure path for one final WARN */ 896 goto out; 897 898 return rq; 899 } 900 901 if (list_empty(&tl->requests)) 902 goto out; 903 904 /* Move our oldest request to the slab-cache (if not in use!) */ 905 rq = list_first_entry(&tl->requests, typeof(*rq), link); 906 i915_request_retire(rq); 907 908 #ifdef __linux__ 909 rq = kmem_cache_alloc(slab_requests, 910 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN); 911 #else 912 rq = pool_get(&slab_requests, 913 (gfp & GFP_NOWAIT) ? PR_NOWAIT : PR_WAITOK); 914 if (rq) 915 __i915_request_ctor(rq); 916 #endif 917 if (rq) 918 return rq; 919 920 /* Ratelimit ourselves to prevent oom from malicious clients */ 921 rq = list_last_entry(&tl->requests, typeof(*rq), link); 922 cond_synchronize_rcu(rq->rcustate); 923 924 /* Retire our old requests in the hope that we free some */ 925 retire_requests(tl); 926 927 out: 928 #ifdef __linux__ 929 return kmem_cache_alloc(slab_requests, gfp); 930 #else 931 rq = pool_get(&slab_requests, 932 (gfp & GFP_NOWAIT) ? PR_NOWAIT : PR_WAITOK); 933 if (rq) 934 __i915_request_ctor(rq); 935 return rq; 936 #endif 937 } 938 939 static void __i915_request_ctor(void *arg) 940 { 941 struct i915_request *rq = arg; 942 943 /* 944 * witness does not understand spin_lock_nested() 945 * order reversal in i915 with this lock 946 */ 947 mtx_init_flags(&rq->lock, IPL_TTY, NULL, MTX_NOWITNESS); 948 i915_sched_node_init(&rq->sched); 949 i915_sw_fence_init(&rq->submit, submit_notify); 950 i915_sw_fence_init(&rq->semaphore, semaphore_notify); 951 952 clear_capture_list(rq); 953 rq->batch_res = NULL; 954 955 init_llist_head(&rq->execute_cb); 956 } 957 958 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 959 #define clear_batch_ptr(_rq) ((_rq)->batch = NULL) 960 #else 961 #define clear_batch_ptr(_a) do {} while (0) 962 #endif 963 964 struct i915_request * 965 __i915_request_create(struct intel_context *ce, gfp_t gfp) 966 { 967 struct intel_timeline *tl = ce->timeline; 968 struct i915_request *rq; 969 u32 seqno; 970 int ret; 971 972 might_alloc(gfp); 973 974 /* Check that the caller provided an already pinned context */ 975 __intel_context_pin(ce); 976 977 /* 978 * Beware: Dragons be flying overhead. 979 * 980 * We use RCU to look up requests in flight. The lookups may 981 * race with the request being allocated from the slab freelist. 982 * That is the request we are writing to here, may be in the process 983 * of being read by __i915_active_request_get_rcu(). As such, 984 * we have to be very careful when overwriting the contents. During 985 * the RCU lookup, we change chase the request->engine pointer, 986 * read the request->global_seqno and increment the reference count. 987 * 988 * The reference count is incremented atomically. If it is zero, 989 * the lookup knows the request is unallocated and complete. Otherwise, 990 * it is either still in use, or has been reallocated and reset 991 * with dma_fence_init(). This increment is safe for release as we 992 * check that the request we have a reference to and matches the active 993 * request. 994 * 995 * Before we increment the refcount, we chase the request->engine 996 * pointer. We must not call kmem_cache_zalloc() or else we set 997 * that pointer to NULL and cause a crash during the lookup. If 998 * we see the request is completed (based on the value of the 999 * old engine and seqno), the lookup is complete and reports NULL. 1000 * If we decide the request is not completed (new engine or seqno), 1001 * then we grab a reference and double check that it is still the 1002 * active request - which it won't be and restart the lookup. 1003 * 1004 * Do not use kmem_cache_zalloc() here! 1005 */ 1006 #ifdef __linux__ 1007 rq = kmem_cache_alloc(slab_requests, 1008 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN); 1009 #else 1010 rq = pool_get(&slab_requests, 1011 (gfp & GFP_NOWAIT) ? PR_NOWAIT : PR_WAITOK); 1012 if (rq) 1013 __i915_request_ctor(rq); 1014 #endif 1015 if (unlikely(!rq)) { 1016 rq = request_alloc_slow(tl, &ce->engine->request_pool, gfp); 1017 if (!rq) { 1018 ret = -ENOMEM; 1019 goto err_unreserve; 1020 } 1021 } 1022 1023 rq->context = ce; 1024 rq->engine = ce->engine; 1025 rq->ring = ce->ring; 1026 rq->execution_mask = ce->engine->mask; 1027 rq->i915 = ce->engine->i915; 1028 1029 ret = intel_timeline_get_seqno(tl, rq, &seqno); 1030 if (ret) 1031 goto err_free; 1032 1033 dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock, 1034 tl->fence_context, seqno); 1035 1036 RCU_INIT_POINTER(rq->timeline, tl); 1037 rq->hwsp_seqno = tl->hwsp_seqno; 1038 GEM_BUG_ON(__i915_request_is_complete(rq)); 1039 1040 rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */ 1041 1042 rq->guc_prio = GUC_PRIO_INIT; 1043 1044 /* We bump the ref for the fence chain */ 1045 i915_sw_fence_reinit(&i915_request_get(rq)->submit); 1046 i915_sw_fence_reinit(&i915_request_get(rq)->semaphore); 1047 1048 i915_sched_node_reinit(&rq->sched); 1049 1050 /* No zalloc, everything must be cleared after use */ 1051 clear_batch_ptr(rq); 1052 __rq_init_watchdog(rq); 1053 assert_capture_list_is_null(rq); 1054 GEM_BUG_ON(!llist_empty(&rq->execute_cb)); 1055 GEM_BUG_ON(rq->batch_res); 1056 1057 /* 1058 * Reserve space in the ring buffer for all the commands required to 1059 * eventually emit this request. This is to guarantee that the 1060 * i915_request_add() call can't fail. Note that the reserve may need 1061 * to be redone if the request is not actually submitted straight 1062 * away, e.g. because a GPU scheduler has deferred it. 1063 * 1064 * Note that due to how we add reserved_space to intel_ring_begin() 1065 * we need to double our request to ensure that if we need to wrap 1066 * around inside i915_request_add() there is sufficient space at 1067 * the beginning of the ring as well. 1068 */ 1069 rq->reserved_space = 1070 2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32); 1071 1072 /* 1073 * Record the position of the start of the request so that 1074 * should we detect the updated seqno part-way through the 1075 * GPU processing the request, we never over-estimate the 1076 * position of the head. 1077 */ 1078 rq->head = rq->ring->emit; 1079 1080 ret = rq->engine->request_alloc(rq); 1081 if (ret) 1082 goto err_unwind; 1083 1084 rq->infix = rq->ring->emit; /* end of header; start of user payload */ 1085 1086 intel_context_mark_active(ce); 1087 list_add_tail_rcu(&rq->link, &tl->requests); 1088 1089 return rq; 1090 1091 err_unwind: 1092 ce->ring->emit = rq->head; 1093 1094 /* Make sure we didn't add ourselves to external state before freeing */ 1095 GEM_BUG_ON(!list_empty(&rq->sched.signalers_list)); 1096 GEM_BUG_ON(!list_empty(&rq->sched.waiters_list)); 1097 1098 err_free: 1099 #ifdef __linux__ 1100 kmem_cache_free(slab_requests, rq); 1101 #else 1102 pool_put(&slab_requests, rq); 1103 #endif 1104 err_unreserve: 1105 intel_context_unpin(ce); 1106 return ERR_PTR(ret); 1107 } 1108 1109 struct i915_request * 1110 i915_request_create(struct intel_context *ce) 1111 { 1112 struct i915_request *rq; 1113 struct intel_timeline *tl; 1114 1115 tl = intel_context_timeline_lock(ce); 1116 if (IS_ERR(tl)) 1117 return ERR_CAST(tl); 1118 1119 /* Move our oldest request to the slab-cache (if not in use!) */ 1120 rq = list_first_entry(&tl->requests, typeof(*rq), link); 1121 if (!list_is_last(&rq->link, &tl->requests)) 1122 i915_request_retire(rq); 1123 1124 intel_context_enter(ce); 1125 rq = __i915_request_create(ce, GFP_KERNEL); 1126 intel_context_exit(ce); /* active reference transferred to request */ 1127 if (IS_ERR(rq)) 1128 goto err_unlock; 1129 1130 /* Check that we do not interrupt ourselves with a new request */ 1131 rq->cookie = lockdep_pin_lock(&tl->mutex); 1132 1133 return rq; 1134 1135 err_unlock: 1136 intel_context_timeline_unlock(tl); 1137 return rq; 1138 } 1139 1140 static int 1141 i915_request_await_start(struct i915_request *rq, struct i915_request *signal) 1142 { 1143 struct dma_fence *fence; 1144 int err; 1145 1146 if (i915_request_timeline(rq) == rcu_access_pointer(signal->timeline)) 1147 return 0; 1148 1149 if (i915_request_started(signal)) 1150 return 0; 1151 1152 /* 1153 * The caller holds a reference on @signal, but we do not serialise 1154 * against it being retired and removed from the lists. 1155 * 1156 * We do not hold a reference to the request before @signal, and 1157 * so must be very careful to ensure that it is not _recycled_ as 1158 * we follow the link backwards. 1159 */ 1160 fence = NULL; 1161 rcu_read_lock(); 1162 do { 1163 struct list_head *pos = READ_ONCE(signal->link.prev); 1164 struct i915_request *prev; 1165 1166 /* Confirm signal has not been retired, the link is valid */ 1167 if (unlikely(__i915_request_has_started(signal))) 1168 break; 1169 1170 /* Is signal the earliest request on its timeline? */ 1171 if (pos == &rcu_dereference(signal->timeline)->requests) 1172 break; 1173 1174 /* 1175 * Peek at the request before us in the timeline. That 1176 * request will only be valid before it is retired, so 1177 * after acquiring a reference to it, confirm that it is 1178 * still part of the signaler's timeline. 1179 */ 1180 prev = list_entry(pos, typeof(*prev), link); 1181 if (!i915_request_get_rcu(prev)) 1182 break; 1183 1184 /* After the strong barrier, confirm prev is still attached */ 1185 if (unlikely(READ_ONCE(prev->link.next) != &signal->link)) { 1186 i915_request_put(prev); 1187 break; 1188 } 1189 1190 fence = &prev->fence; 1191 } while (0); 1192 rcu_read_unlock(); 1193 if (!fence) 1194 return 0; 1195 1196 err = 0; 1197 if (!intel_timeline_sync_is_later(i915_request_timeline(rq), fence)) 1198 err = i915_sw_fence_await_dma_fence(&rq->submit, 1199 fence, 0, 1200 I915_FENCE_GFP); 1201 dma_fence_put(fence); 1202 1203 return err; 1204 } 1205 1206 static intel_engine_mask_t 1207 already_busywaiting(struct i915_request *rq) 1208 { 1209 /* 1210 * Polling a semaphore causes bus traffic, delaying other users of 1211 * both the GPU and CPU. We want to limit the impact on others, 1212 * while taking advantage of early submission to reduce GPU 1213 * latency. Therefore we restrict ourselves to not using more 1214 * than one semaphore from each source, and not using a semaphore 1215 * if we have detected the engine is saturated (i.e. would not be 1216 * submitted early and cause bus traffic reading an already passed 1217 * semaphore). 1218 * 1219 * See the are-we-too-late? check in __i915_request_submit(). 1220 */ 1221 return rq->sched.semaphores | READ_ONCE(rq->engine->saturated); 1222 } 1223 1224 static int 1225 __emit_semaphore_wait(struct i915_request *to, 1226 struct i915_request *from, 1227 u32 seqno) 1228 { 1229 const int has_token = GRAPHICS_VER(to->engine->i915) >= 12; 1230 u32 hwsp_offset; 1231 int len, err; 1232 u32 *cs; 1233 1234 GEM_BUG_ON(GRAPHICS_VER(to->engine->i915) < 8); 1235 GEM_BUG_ON(i915_request_has_initial_breadcrumb(to)); 1236 1237 /* We need to pin the signaler's HWSP until we are finished reading. */ 1238 err = intel_timeline_read_hwsp(from, to, &hwsp_offset); 1239 if (err) 1240 return err; 1241 1242 len = 4; 1243 if (has_token) 1244 len += 2; 1245 1246 cs = intel_ring_begin(to, len); 1247 if (IS_ERR(cs)) 1248 return PTR_ERR(cs); 1249 1250 /* 1251 * Using greater-than-or-equal here means we have to worry 1252 * about seqno wraparound. To side step that issue, we swap 1253 * the timeline HWSP upon wrapping, so that everyone listening 1254 * for the old (pre-wrap) values do not see the much smaller 1255 * (post-wrap) values than they were expecting (and so wait 1256 * forever). 1257 */ 1258 *cs++ = (MI_SEMAPHORE_WAIT | 1259 MI_SEMAPHORE_GLOBAL_GTT | 1260 MI_SEMAPHORE_POLL | 1261 MI_SEMAPHORE_SAD_GTE_SDD) + 1262 has_token; 1263 *cs++ = seqno; 1264 *cs++ = hwsp_offset; 1265 *cs++ = 0; 1266 if (has_token) { 1267 *cs++ = 0; 1268 *cs++ = MI_NOOP; 1269 } 1270 1271 intel_ring_advance(to, cs); 1272 return 0; 1273 } 1274 1275 static bool 1276 can_use_semaphore_wait(struct i915_request *to, struct i915_request *from) 1277 { 1278 return to->engine->gt->ggtt == from->engine->gt->ggtt; 1279 } 1280 1281 static int 1282 emit_semaphore_wait(struct i915_request *to, 1283 struct i915_request *from, 1284 gfp_t gfp) 1285 { 1286 const intel_engine_mask_t mask = READ_ONCE(from->engine)->mask; 1287 struct i915_sw_fence *wait = &to->submit; 1288 1289 if (!can_use_semaphore_wait(to, from)) 1290 goto await_fence; 1291 1292 if (!intel_context_use_semaphores(to->context)) 1293 goto await_fence; 1294 1295 if (i915_request_has_initial_breadcrumb(to)) 1296 goto await_fence; 1297 1298 /* 1299 * If this or its dependents are waiting on an external fence 1300 * that may fail catastrophically, then we want to avoid using 1301 * semaphores as they bypass the fence signaling metadata, and we 1302 * lose the fence->error propagation. 1303 */ 1304 if (from->sched.flags & I915_SCHED_HAS_EXTERNAL_CHAIN) 1305 goto await_fence; 1306 1307 /* Just emit the first semaphore we see as request space is limited. */ 1308 if (already_busywaiting(to) & mask) 1309 goto await_fence; 1310 1311 if (i915_request_await_start(to, from) < 0) 1312 goto await_fence; 1313 1314 /* Only submit our spinner after the signaler is running! */ 1315 if (__await_execution(to, from, gfp)) 1316 goto await_fence; 1317 1318 if (__emit_semaphore_wait(to, from, from->fence.seqno)) 1319 goto await_fence; 1320 1321 to->sched.semaphores |= mask; 1322 wait = &to->semaphore; 1323 1324 await_fence: 1325 return i915_sw_fence_await_dma_fence(wait, 1326 &from->fence, 0, 1327 I915_FENCE_GFP); 1328 } 1329 1330 static bool intel_timeline_sync_has_start(struct intel_timeline *tl, 1331 struct dma_fence *fence) 1332 { 1333 return __intel_timeline_sync_is_later(tl, 1334 fence->context, 1335 fence->seqno - 1); 1336 } 1337 1338 static int intel_timeline_sync_set_start(struct intel_timeline *tl, 1339 const struct dma_fence *fence) 1340 { 1341 return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1); 1342 } 1343 1344 static int 1345 __i915_request_await_execution(struct i915_request *to, 1346 struct i915_request *from) 1347 { 1348 int err; 1349 1350 GEM_BUG_ON(intel_context_is_barrier(from->context)); 1351 1352 /* Submit both requests at the same time */ 1353 err = __await_execution(to, from, I915_FENCE_GFP); 1354 if (err) 1355 return err; 1356 1357 /* Squash repeated depenendices to the same timelines */ 1358 if (intel_timeline_sync_has_start(i915_request_timeline(to), 1359 &from->fence)) 1360 return 0; 1361 1362 /* 1363 * Wait until the start of this request. 1364 * 1365 * The execution cb fires when we submit the request to HW. But in 1366 * many cases this may be long before the request itself is ready to 1367 * run (consider that we submit 2 requests for the same context, where 1368 * the request of interest is behind an indefinite spinner). So we hook 1369 * up to both to reduce our queues and keep the execution lag minimised 1370 * in the worst case, though we hope that the await_start is elided. 1371 */ 1372 err = i915_request_await_start(to, from); 1373 if (err < 0) 1374 return err; 1375 1376 /* 1377 * Ensure both start together [after all semaphores in signal] 1378 * 1379 * Now that we are queued to the HW at roughly the same time (thanks 1380 * to the execute cb) and are ready to run at roughly the same time 1381 * (thanks to the await start), our signaler may still be indefinitely 1382 * delayed by waiting on a semaphore from a remote engine. If our 1383 * signaler depends on a semaphore, so indirectly do we, and we do not 1384 * want to start our payload until our signaler also starts theirs. 1385 * So we wait. 1386 * 1387 * However, there is also a second condition for which we need to wait 1388 * for the precise start of the signaler. Consider that the signaler 1389 * was submitted in a chain of requests following another context 1390 * (with just an ordinary intra-engine fence dependency between the 1391 * two). In this case the signaler is queued to HW, but not for 1392 * immediate execution, and so we must wait until it reaches the 1393 * active slot. 1394 */ 1395 if (can_use_semaphore_wait(to, from) && 1396 intel_engine_has_semaphores(to->engine) && 1397 !i915_request_has_initial_breadcrumb(to)) { 1398 err = __emit_semaphore_wait(to, from, from->fence.seqno - 1); 1399 if (err < 0) 1400 return err; 1401 } 1402 1403 /* Couple the dependency tree for PI on this exposed to->fence */ 1404 if (to->engine->sched_engine->schedule) { 1405 err = i915_sched_node_add_dependency(&to->sched, 1406 &from->sched, 1407 I915_DEPENDENCY_WEAK); 1408 if (err < 0) 1409 return err; 1410 } 1411 1412 return intel_timeline_sync_set_start(i915_request_timeline(to), 1413 &from->fence); 1414 } 1415 1416 static void mark_external(struct i915_request *rq) 1417 { 1418 /* 1419 * The downside of using semaphores is that we lose metadata passing 1420 * along the signaling chain. This is particularly nasty when we 1421 * need to pass along a fatal error such as EFAULT or EDEADLK. For 1422 * fatal errors we want to scrub the request before it is executed, 1423 * which means that we cannot preload the request onto HW and have 1424 * it wait upon a semaphore. 1425 */ 1426 rq->sched.flags |= I915_SCHED_HAS_EXTERNAL_CHAIN; 1427 } 1428 1429 static int 1430 __i915_request_await_external(struct i915_request *rq, struct dma_fence *fence) 1431 { 1432 mark_external(rq); 1433 return i915_sw_fence_await_dma_fence(&rq->submit, fence, 1434 i915_fence_context_timeout(rq->i915, 1435 fence->context), 1436 I915_FENCE_GFP); 1437 } 1438 1439 static int 1440 i915_request_await_external(struct i915_request *rq, struct dma_fence *fence) 1441 { 1442 struct dma_fence *iter; 1443 int err = 0; 1444 1445 if (!to_dma_fence_chain(fence)) 1446 return __i915_request_await_external(rq, fence); 1447 1448 dma_fence_chain_for_each(iter, fence) { 1449 struct dma_fence_chain *chain = to_dma_fence_chain(iter); 1450 1451 if (!dma_fence_is_i915(chain->fence)) { 1452 err = __i915_request_await_external(rq, iter); 1453 break; 1454 } 1455 1456 err = i915_request_await_dma_fence(rq, chain->fence); 1457 if (err < 0) 1458 break; 1459 } 1460 1461 dma_fence_put(iter); 1462 return err; 1463 } 1464 1465 static inline bool is_parallel_rq(struct i915_request *rq) 1466 { 1467 return intel_context_is_parallel(rq->context); 1468 } 1469 1470 static inline struct intel_context *request_to_parent(struct i915_request *rq) 1471 { 1472 return intel_context_to_parent(rq->context); 1473 } 1474 1475 static bool is_same_parallel_context(struct i915_request *to, 1476 struct i915_request *from) 1477 { 1478 if (is_parallel_rq(to)) 1479 return request_to_parent(to) == request_to_parent(from); 1480 1481 return false; 1482 } 1483 1484 int 1485 i915_request_await_execution(struct i915_request *rq, 1486 struct dma_fence *fence) 1487 { 1488 struct dma_fence **child = &fence; 1489 unsigned int nchild = 1; 1490 int ret; 1491 1492 if (dma_fence_is_array(fence)) { 1493 struct dma_fence_array *array = to_dma_fence_array(fence); 1494 1495 /* XXX Error for signal-on-any fence arrays */ 1496 1497 child = array->fences; 1498 nchild = array->num_fences; 1499 GEM_BUG_ON(!nchild); 1500 } 1501 1502 do { 1503 fence = *child++; 1504 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) 1505 continue; 1506 1507 if (fence->context == rq->fence.context) 1508 continue; 1509 1510 /* 1511 * We don't squash repeated fence dependencies here as we 1512 * want to run our callback in all cases. 1513 */ 1514 1515 if (dma_fence_is_i915(fence)) { 1516 if (is_same_parallel_context(rq, to_request(fence))) 1517 continue; 1518 ret = __i915_request_await_execution(rq, 1519 to_request(fence)); 1520 } else { 1521 ret = i915_request_await_external(rq, fence); 1522 } 1523 if (ret < 0) 1524 return ret; 1525 } while (--nchild); 1526 1527 return 0; 1528 } 1529 1530 static int 1531 await_request_submit(struct i915_request *to, struct i915_request *from) 1532 { 1533 /* 1534 * If we are waiting on a virtual engine, then it may be 1535 * constrained to execute on a single engine *prior* to submission. 1536 * When it is submitted, it will be first submitted to the virtual 1537 * engine and then passed to the physical engine. We cannot allow 1538 * the waiter to be submitted immediately to the physical engine 1539 * as it may then bypass the virtual request. 1540 */ 1541 if (to->engine == READ_ONCE(from->engine)) 1542 return i915_sw_fence_await_sw_fence_gfp(&to->submit, 1543 &from->submit, 1544 I915_FENCE_GFP); 1545 else 1546 return __i915_request_await_execution(to, from); 1547 } 1548 1549 static int 1550 i915_request_await_request(struct i915_request *to, struct i915_request *from) 1551 { 1552 int ret; 1553 1554 GEM_BUG_ON(to == from); 1555 GEM_BUG_ON(to->timeline == from->timeline); 1556 1557 if (i915_request_completed(from)) { 1558 i915_sw_fence_set_error_once(&to->submit, from->fence.error); 1559 return 0; 1560 } 1561 1562 if (to->engine->sched_engine->schedule) { 1563 ret = i915_sched_node_add_dependency(&to->sched, 1564 &from->sched, 1565 I915_DEPENDENCY_EXTERNAL); 1566 if (ret < 0) 1567 return ret; 1568 } 1569 1570 if (!intel_engine_uses_guc(to->engine) && 1571 is_power_of_2(to->execution_mask | READ_ONCE(from->execution_mask))) 1572 ret = await_request_submit(to, from); 1573 else 1574 ret = emit_semaphore_wait(to, from, I915_FENCE_GFP); 1575 if (ret < 0) 1576 return ret; 1577 1578 return 0; 1579 } 1580 1581 int 1582 i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence) 1583 { 1584 struct dma_fence **child = &fence; 1585 unsigned int nchild = 1; 1586 int ret; 1587 1588 /* 1589 * Note that if the fence-array was created in signal-on-any mode, 1590 * we should *not* decompose it into its individual fences. However, 1591 * we don't currently store which mode the fence-array is operating 1592 * in. Fortunately, the only user of signal-on-any is private to 1593 * amdgpu and we should not see any incoming fence-array from 1594 * sync-file being in signal-on-any mode. 1595 */ 1596 if (dma_fence_is_array(fence)) { 1597 struct dma_fence_array *array = to_dma_fence_array(fence); 1598 1599 child = array->fences; 1600 nchild = array->num_fences; 1601 GEM_BUG_ON(!nchild); 1602 } 1603 1604 do { 1605 fence = *child++; 1606 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) 1607 continue; 1608 1609 /* 1610 * Requests on the same timeline are explicitly ordered, along 1611 * with their dependencies, by i915_request_add() which ensures 1612 * that requests are submitted in-order through each ring. 1613 */ 1614 if (fence->context == rq->fence.context) 1615 continue; 1616 1617 /* Squash repeated waits to the same timelines */ 1618 if (fence->context && 1619 intel_timeline_sync_is_later(i915_request_timeline(rq), 1620 fence)) 1621 continue; 1622 1623 if (dma_fence_is_i915(fence)) { 1624 if (is_same_parallel_context(rq, to_request(fence))) 1625 continue; 1626 ret = i915_request_await_request(rq, to_request(fence)); 1627 } else { 1628 ret = i915_request_await_external(rq, fence); 1629 } 1630 if (ret < 0) 1631 return ret; 1632 1633 /* Record the latest fence used against each timeline */ 1634 if (fence->context) 1635 intel_timeline_sync_set(i915_request_timeline(rq), 1636 fence); 1637 } while (--nchild); 1638 1639 return 0; 1640 } 1641 1642 /** 1643 * i915_request_await_deps - set this request to (async) wait upon a struct 1644 * i915_deps dma_fence collection 1645 * @rq: request we are wishing to use 1646 * @deps: The struct i915_deps containing the dependencies. 1647 * 1648 * Returns 0 if successful, negative error code on error. 1649 */ 1650 int i915_request_await_deps(struct i915_request *rq, const struct i915_deps *deps) 1651 { 1652 int i, err; 1653 1654 for (i = 0; i < deps->num_deps; ++i) { 1655 err = i915_request_await_dma_fence(rq, deps->fences[i]); 1656 if (err) 1657 return err; 1658 } 1659 1660 return 0; 1661 } 1662 1663 /** 1664 * i915_request_await_object - set this request to (async) wait upon a bo 1665 * @to: request we are wishing to use 1666 * @obj: object which may be in use on another ring. 1667 * @write: whether the wait is on behalf of a writer 1668 * 1669 * This code is meant to abstract object synchronization with the GPU. 1670 * Conceptually we serialise writes between engines inside the GPU. 1671 * We only allow one engine to write into a buffer at any time, but 1672 * multiple readers. To ensure each has a coherent view of memory, we must: 1673 * 1674 * - If there is an outstanding write request to the object, the new 1675 * request must wait for it to complete (either CPU or in hw, requests 1676 * on the same ring will be naturally ordered). 1677 * 1678 * - If we are a write request (pending_write_domain is set), the new 1679 * request must wait for outstanding read requests to complete. 1680 * 1681 * Returns 0 if successful, else propagates up the lower layer error. 1682 */ 1683 int 1684 i915_request_await_object(struct i915_request *to, 1685 struct drm_i915_gem_object *obj, 1686 bool write) 1687 { 1688 struct dma_resv_iter cursor; 1689 struct dma_fence *fence; 1690 int ret = 0; 1691 1692 dma_resv_for_each_fence(&cursor, obj->base.resv, 1693 dma_resv_usage_rw(write), fence) { 1694 ret = i915_request_await_dma_fence(to, fence); 1695 if (ret) 1696 break; 1697 } 1698 1699 return ret; 1700 } 1701 1702 static void i915_request_await_huc(struct i915_request *rq) 1703 { 1704 struct intel_huc *huc = &rq->context->engine->gt->uc.huc; 1705 1706 /* don't stall kernel submissions! */ 1707 if (!rcu_access_pointer(rq->context->gem_context)) 1708 return; 1709 1710 if (intel_huc_wait_required(huc)) 1711 i915_sw_fence_await_sw_fence(&rq->submit, 1712 &huc->delayed_load.fence, 1713 &rq->hucq); 1714 } 1715 1716 static struct i915_request * 1717 __i915_request_ensure_parallel_ordering(struct i915_request *rq, 1718 struct intel_timeline *timeline) 1719 { 1720 struct i915_request *prev; 1721 1722 GEM_BUG_ON(!is_parallel_rq(rq)); 1723 1724 prev = request_to_parent(rq)->parallel.last_rq; 1725 if (prev) { 1726 if (!__i915_request_is_complete(prev)) { 1727 i915_sw_fence_await_sw_fence(&rq->submit, 1728 &prev->submit, 1729 &rq->submitq); 1730 1731 if (rq->engine->sched_engine->schedule) 1732 __i915_sched_node_add_dependency(&rq->sched, 1733 &prev->sched, 1734 &rq->dep, 1735 0); 1736 } 1737 i915_request_put(prev); 1738 } 1739 1740 request_to_parent(rq)->parallel.last_rq = i915_request_get(rq); 1741 1742 /* 1743 * Users have to put a reference potentially got by 1744 * __i915_active_fence_set() to the returned request 1745 * when no longer needed 1746 */ 1747 return to_request(__i915_active_fence_set(&timeline->last_request, 1748 &rq->fence)); 1749 } 1750 1751 static struct i915_request * 1752 __i915_request_ensure_ordering(struct i915_request *rq, 1753 struct intel_timeline *timeline) 1754 { 1755 struct i915_request *prev; 1756 1757 GEM_BUG_ON(is_parallel_rq(rq)); 1758 1759 prev = to_request(__i915_active_fence_set(&timeline->last_request, 1760 &rq->fence)); 1761 1762 if (prev && !__i915_request_is_complete(prev)) { 1763 bool uses_guc = intel_engine_uses_guc(rq->engine); 1764 bool pow2 = is_power_of_2(READ_ONCE(prev->engine)->mask | 1765 rq->engine->mask); 1766 bool same_context = prev->context == rq->context; 1767 1768 /* 1769 * The requests are supposed to be kept in order. However, 1770 * we need to be wary in case the timeline->last_request 1771 * is used as a barrier for external modification to this 1772 * context. 1773 */ 1774 GEM_BUG_ON(same_context && 1775 i915_seqno_passed(prev->fence.seqno, 1776 rq->fence.seqno)); 1777 1778 if ((same_context && uses_guc) || (!uses_guc && pow2)) 1779 i915_sw_fence_await_sw_fence(&rq->submit, 1780 &prev->submit, 1781 &rq->submitq); 1782 else 1783 __i915_sw_fence_await_dma_fence(&rq->submit, 1784 &prev->fence, 1785 &rq->dmaq); 1786 if (rq->engine->sched_engine->schedule) 1787 __i915_sched_node_add_dependency(&rq->sched, 1788 &prev->sched, 1789 &rq->dep, 1790 0); 1791 } 1792 1793 /* 1794 * Users have to put the reference to prev potentially got 1795 * by __i915_active_fence_set() when no longer needed 1796 */ 1797 return prev; 1798 } 1799 1800 static struct i915_request * 1801 __i915_request_add_to_timeline(struct i915_request *rq) 1802 { 1803 struct intel_timeline *timeline = i915_request_timeline(rq); 1804 struct i915_request *prev; 1805 1806 /* 1807 * Media workloads may require HuC, so stall them until HuC loading is 1808 * complete. Note that HuC not being loaded when a user submission 1809 * arrives can only happen when HuC is loaded via GSC and in that case 1810 * we still expect the window between us starting to accept submissions 1811 * and HuC loading completion to be small (a few hundred ms). 1812 */ 1813 if (rq->engine->class == VIDEO_DECODE_CLASS) 1814 i915_request_await_huc(rq); 1815 1816 /* 1817 * Dependency tracking and request ordering along the timeline 1818 * is special cased so that we can eliminate redundant ordering 1819 * operations while building the request (we know that the timeline 1820 * itself is ordered, and here we guarantee it). 1821 * 1822 * As we know we will need to emit tracking along the timeline, 1823 * we embed the hooks into our request struct -- at the cost of 1824 * having to have specialised no-allocation interfaces (which will 1825 * be beneficial elsewhere). 1826 * 1827 * A second benefit to open-coding i915_request_await_request is 1828 * that we can apply a slight variant of the rules specialised 1829 * for timelines that jump between engines (such as virtual engines). 1830 * If we consider the case of virtual engine, we must emit a dma-fence 1831 * to prevent scheduling of the second request until the first is 1832 * complete (to maximise our greedy late load balancing) and this 1833 * precludes optimising to use semaphores serialisation of a single 1834 * timeline across engines. 1835 * 1836 * We do not order parallel submission requests on the timeline as each 1837 * parallel submission context has its own timeline and the ordering 1838 * rules for parallel requests are that they must be submitted in the 1839 * order received from the execbuf IOCTL. So rather than using the 1840 * timeline we store a pointer to last request submitted in the 1841 * relationship in the gem context and insert a submission fence 1842 * between that request and request passed into this function or 1843 * alternatively we use completion fence if gem context has a single 1844 * timeline and this is the first submission of an execbuf IOCTL. 1845 */ 1846 if (likely(!is_parallel_rq(rq))) 1847 prev = __i915_request_ensure_ordering(rq, timeline); 1848 else 1849 prev = __i915_request_ensure_parallel_ordering(rq, timeline); 1850 if (prev) 1851 i915_request_put(prev); 1852 1853 /* 1854 * Make sure that no request gazumped us - if it was allocated after 1855 * our i915_request_alloc() and called __i915_request_add() before 1856 * us, the timeline will hold its seqno which is later than ours. 1857 */ 1858 GEM_BUG_ON(timeline->seqno != rq->fence.seqno); 1859 1860 return prev; 1861 } 1862 1863 /* 1864 * NB: This function is not allowed to fail. Doing so would mean the the 1865 * request is not being tracked for completion but the work itself is 1866 * going to happen on the hardware. This would be a Bad Thing(tm). 1867 */ 1868 struct i915_request *__i915_request_commit(struct i915_request *rq) 1869 { 1870 struct intel_engine_cs *engine = rq->engine; 1871 struct intel_ring *ring = rq->ring; 1872 u32 *cs; 1873 1874 RQ_TRACE(rq, "\n"); 1875 1876 /* 1877 * To ensure that this call will not fail, space for its emissions 1878 * should already have been reserved in the ring buffer. Let the ring 1879 * know that it is time to use that space up. 1880 */ 1881 GEM_BUG_ON(rq->reserved_space > ring->space); 1882 rq->reserved_space = 0; 1883 rq->emitted_jiffies = jiffies; 1884 1885 /* 1886 * Record the position of the start of the breadcrumb so that 1887 * should we detect the updated seqno part-way through the 1888 * GPU processing the request, we never over-estimate the 1889 * position of the ring's HEAD. 1890 */ 1891 cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw); 1892 GEM_BUG_ON(IS_ERR(cs)); 1893 rq->postfix = intel_ring_offset(rq, cs); 1894 1895 return __i915_request_add_to_timeline(rq); 1896 } 1897 1898 void __i915_request_queue_bh(struct i915_request *rq) 1899 { 1900 i915_sw_fence_commit(&rq->semaphore); 1901 i915_sw_fence_commit(&rq->submit); 1902 } 1903 1904 void __i915_request_queue(struct i915_request *rq, 1905 const struct i915_sched_attr *attr) 1906 { 1907 /* 1908 * Let the backend know a new request has arrived that may need 1909 * to adjust the existing execution schedule due to a high priority 1910 * request - i.e. we may want to preempt the current request in order 1911 * to run a high priority dependency chain *before* we can execute this 1912 * request. 1913 * 1914 * This is called before the request is ready to run so that we can 1915 * decide whether to preempt the entire chain so that it is ready to 1916 * run at the earliest possible convenience. 1917 */ 1918 if (attr && rq->engine->sched_engine->schedule) 1919 rq->engine->sched_engine->schedule(rq, attr); 1920 1921 local_bh_disable(); 1922 __i915_request_queue_bh(rq); 1923 local_bh_enable(); /* kick tasklets */ 1924 } 1925 1926 void i915_request_add(struct i915_request *rq) 1927 { 1928 struct intel_timeline * const tl = i915_request_timeline(rq); 1929 struct i915_sched_attr attr = {}; 1930 struct i915_gem_context *ctx; 1931 1932 lockdep_assert_held(&tl->mutex); 1933 lockdep_unpin_lock(&tl->mutex, rq->cookie); 1934 1935 trace_i915_request_add(rq); 1936 __i915_request_commit(rq); 1937 1938 /* XXX placeholder for selftests */ 1939 rcu_read_lock(); 1940 ctx = rcu_dereference(rq->context->gem_context); 1941 if (ctx) 1942 attr = ctx->sched; 1943 rcu_read_unlock(); 1944 1945 __i915_request_queue(rq, &attr); 1946 1947 mutex_unlock(&tl->mutex); 1948 } 1949 1950 static unsigned long local_clock_ns(unsigned int *cpu) 1951 { 1952 unsigned long t; 1953 1954 /* 1955 * Cheaply and approximately convert from nanoseconds to microseconds. 1956 * The result and subsequent calculations are also defined in the same 1957 * approximate microseconds units. The principal source of timing 1958 * error here is from the simple truncation. 1959 * 1960 * Note that local_clock() is only defined wrt to the current CPU; 1961 * the comparisons are no longer valid if we switch CPUs. Instead of 1962 * blocking preemption for the entire busywait, we can detect the CPU 1963 * switch and use that as indicator of system load and a reason to 1964 * stop busywaiting, see busywait_stop(). 1965 */ 1966 *cpu = get_cpu(); 1967 t = local_clock(); 1968 put_cpu(); 1969 1970 return t; 1971 } 1972 1973 static bool busywait_stop(unsigned long timeout, unsigned int cpu) 1974 { 1975 unsigned int this_cpu; 1976 1977 if (time_after(local_clock_ns(&this_cpu), timeout)) 1978 return true; 1979 1980 return this_cpu != cpu; 1981 } 1982 1983 static bool __i915_spin_request(struct i915_request * const rq, int state) 1984 { 1985 unsigned long timeout_ns; 1986 unsigned int cpu; 1987 1988 /* 1989 * Only wait for the request if we know it is likely to complete. 1990 * 1991 * We don't track the timestamps around requests, nor the average 1992 * request length, so we do not have a good indicator that this 1993 * request will complete within the timeout. What we do know is the 1994 * order in which requests are executed by the context and so we can 1995 * tell if the request has been started. If the request is not even 1996 * running yet, it is a fair assumption that it will not complete 1997 * within our relatively short timeout. 1998 */ 1999 if (!i915_request_is_running(rq)) 2000 return false; 2001 2002 /* 2003 * When waiting for high frequency requests, e.g. during synchronous 2004 * rendering split between the CPU and GPU, the finite amount of time 2005 * required to set up the irq and wait upon it limits the response 2006 * rate. By busywaiting on the request completion for a short while we 2007 * can service the high frequency waits as quick as possible. However, 2008 * if it is a slow request, we want to sleep as quickly as possible. 2009 * The tradeoff between waiting and sleeping is roughly the time it 2010 * takes to sleep on a request, on the order of a microsecond. 2011 */ 2012 2013 timeout_ns = READ_ONCE(rq->engine->props.max_busywait_duration_ns); 2014 timeout_ns += local_clock_ns(&cpu); 2015 do { 2016 if (dma_fence_is_signaled(&rq->fence)) 2017 return true; 2018 2019 if (signal_pending_state(state, current)) 2020 break; 2021 2022 if (busywait_stop(timeout_ns, cpu)) 2023 break; 2024 2025 cpu_relax(); 2026 } while (!drm_need_resched()); 2027 2028 return false; 2029 } 2030 2031 struct request_wait { 2032 struct dma_fence_cb cb; 2033 #ifdef __linux__ 2034 struct task_struct *tsk; 2035 #else 2036 struct proc *tsk; 2037 #endif 2038 }; 2039 2040 static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb) 2041 { 2042 struct request_wait *wait = container_of(cb, typeof(*wait), cb); 2043 2044 wake_up_process(fetch_and_zero(&wait->tsk)); 2045 } 2046 2047 /** 2048 * i915_request_wait_timeout - wait until execution of request has finished 2049 * @rq: the request to wait upon 2050 * @flags: how to wait 2051 * @timeout: how long to wait in jiffies 2052 * 2053 * i915_request_wait_timeout() waits for the request to be completed, for a 2054 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an 2055 * unbounded wait). 2056 * 2057 * Returns the remaining time (in jiffies) if the request completed, which may 2058 * be zero if the request is unfinished after the timeout expires. 2059 * If the timeout is 0, it will return 1 if the fence is signaled. 2060 * 2061 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is 2062 * pending before the request completes. 2063 * 2064 * NOTE: This function has the same wait semantics as dma-fence. 2065 */ 2066 long i915_request_wait_timeout(struct i915_request *rq, 2067 unsigned int flags, 2068 long timeout) 2069 { 2070 const int state = flags & I915_WAIT_INTERRUPTIBLE ? 2071 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE; 2072 struct request_wait wait; 2073 2074 might_sleep(); 2075 GEM_BUG_ON(timeout < 0); 2076 2077 if (dma_fence_is_signaled(&rq->fence)) 2078 return timeout ?: 1; 2079 2080 if (!timeout) 2081 return -ETIME; 2082 2083 trace_i915_request_wait_begin(rq, flags); 2084 2085 /* 2086 * We must never wait on the GPU while holding a lock as we 2087 * may need to perform a GPU reset. So while we don't need to 2088 * serialise wait/reset with an explicit lock, we do want 2089 * lockdep to detect potential dependency cycles. 2090 */ 2091 mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_); 2092 2093 /* 2094 * Optimistic spin before touching IRQs. 2095 * 2096 * We may use a rather large value here to offset the penalty of 2097 * switching away from the active task. Frequently, the client will 2098 * wait upon an old swapbuffer to throttle itself to remain within a 2099 * frame of the gpu. If the client is running in lockstep with the gpu, 2100 * then it should not be waiting long at all, and a sleep now will incur 2101 * extra scheduler latency in producing the next frame. To try to 2102 * avoid adding the cost of enabling/disabling the interrupt to the 2103 * short wait, we first spin to see if the request would have completed 2104 * in the time taken to setup the interrupt. 2105 * 2106 * We need upto 5us to enable the irq, and upto 20us to hide the 2107 * scheduler latency of a context switch, ignoring the secondary 2108 * impacts from a context switch such as cache eviction. 2109 * 2110 * The scheme used for low-latency IO is called "hybrid interrupt 2111 * polling". The suggestion there is to sleep until just before you 2112 * expect to be woken by the device interrupt and then poll for its 2113 * completion. That requires having a good predictor for the request 2114 * duration, which we currently lack. 2115 */ 2116 if (CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT && 2117 __i915_spin_request(rq, state)) 2118 goto out; 2119 2120 /* 2121 * This client is about to stall waiting for the GPU. In many cases 2122 * this is undesirable and limits the throughput of the system, as 2123 * many clients cannot continue processing user input/output whilst 2124 * blocked. RPS autotuning may take tens of milliseconds to respond 2125 * to the GPU load and thus incurs additional latency for the client. 2126 * We can circumvent that by promoting the GPU frequency to maximum 2127 * before we sleep. This makes the GPU throttle up much more quickly 2128 * (good for benchmarks and user experience, e.g. window animations), 2129 * but at a cost of spending more power processing the workload 2130 * (bad for battery). 2131 */ 2132 if (flags & I915_WAIT_PRIORITY && !i915_request_started(rq)) 2133 intel_rps_boost(rq); 2134 2135 #ifdef __linux__ 2136 wait.tsk = current; 2137 #else 2138 wait.tsk = curproc; 2139 #endif 2140 if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake)) 2141 goto out; 2142 2143 /* 2144 * Flush the submission tasklet, but only if it may help this request. 2145 * 2146 * We sometimes experience some latency between the HW interrupts and 2147 * tasklet execution (mostly due to ksoftirqd latency, but it can also 2148 * be due to lazy CS events), so lets run the tasklet manually if there 2149 * is a chance it may submit this request. If the request is not ready 2150 * to run, as it is waiting for other fences to be signaled, flushing 2151 * the tasklet is busy work without any advantage for this client. 2152 * 2153 * If the HW is being lazy, this is the last chance before we go to 2154 * sleep to catch any pending events. We will check periodically in 2155 * the heartbeat to flush the submission tasklets as a last resort 2156 * for unhappy HW. 2157 */ 2158 if (i915_request_is_ready(rq)) 2159 __intel_engine_flush_submission(rq->engine, false); 2160 2161 for (;;) { 2162 set_current_state(state); 2163 2164 if (dma_fence_is_signaled(&rq->fence)) 2165 break; 2166 2167 if (signal_pending_state(state, current)) { 2168 timeout = -ERESTARTSYS; 2169 break; 2170 } 2171 2172 if (!timeout) { 2173 timeout = -ETIME; 2174 break; 2175 } 2176 2177 timeout = io_schedule_timeout(timeout); 2178 } 2179 __set_current_state(TASK_RUNNING); 2180 2181 if (READ_ONCE(wait.tsk)) 2182 dma_fence_remove_callback(&rq->fence, &wait.cb); 2183 GEM_BUG_ON(!list_empty(&wait.cb.node)); 2184 2185 out: 2186 mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_); 2187 trace_i915_request_wait_end(rq); 2188 return timeout; 2189 } 2190 2191 /** 2192 * i915_request_wait - wait until execution of request has finished 2193 * @rq: the request to wait upon 2194 * @flags: how to wait 2195 * @timeout: how long to wait in jiffies 2196 * 2197 * i915_request_wait() waits for the request to be completed, for a 2198 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an 2199 * unbounded wait). 2200 * 2201 * Returns the remaining time (in jiffies) if the request completed, which may 2202 * be zero or -ETIME if the request is unfinished after the timeout expires. 2203 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is 2204 * pending before the request completes. 2205 * 2206 * NOTE: This function behaves differently from dma-fence wait semantics for 2207 * timeout = 0. It returns 0 on success, and -ETIME if not signaled. 2208 */ 2209 long i915_request_wait(struct i915_request *rq, 2210 unsigned int flags, 2211 long timeout) 2212 { 2213 long ret = i915_request_wait_timeout(rq, flags, timeout); 2214 2215 if (!ret) 2216 return -ETIME; 2217 2218 if (ret > 0 && !timeout) 2219 return 0; 2220 2221 return ret; 2222 } 2223 2224 static int print_sched_attr(const struct i915_sched_attr *attr, 2225 char *buf, int x, int len) 2226 { 2227 if (attr->priority == I915_PRIORITY_INVALID) 2228 return x; 2229 2230 x += snprintf(buf + x, len - x, 2231 " prio=%d", attr->priority); 2232 2233 return x; 2234 } 2235 2236 static char queue_status(const struct i915_request *rq) 2237 { 2238 if (i915_request_is_active(rq)) 2239 return 'E'; 2240 2241 if (i915_request_is_ready(rq)) 2242 return intel_engine_is_virtual(rq->engine) ? 'V' : 'R'; 2243 2244 return 'U'; 2245 } 2246 2247 static const char *run_status(const struct i915_request *rq) 2248 { 2249 if (__i915_request_is_complete(rq)) 2250 return "!"; 2251 2252 if (__i915_request_has_started(rq)) 2253 return "*"; 2254 2255 if (!i915_sw_fence_signaled(&rq->semaphore)) 2256 return "&"; 2257 2258 return ""; 2259 } 2260 2261 static const char *fence_status(const struct i915_request *rq) 2262 { 2263 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags)) 2264 return "+"; 2265 2266 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags)) 2267 return "-"; 2268 2269 return ""; 2270 } 2271 2272 void i915_request_show(struct drm_printer *m, 2273 const struct i915_request *rq, 2274 const char *prefix, 2275 int indent) 2276 { 2277 const char *name = rq->fence.ops->get_timeline_name((struct dma_fence *)&rq->fence); 2278 char buf[80] = ""; 2279 int x = 0; 2280 2281 /* 2282 * The prefix is used to show the queue status, for which we use 2283 * the following flags: 2284 * 2285 * U [Unready] 2286 * - initial status upon being submitted by the user 2287 * 2288 * - the request is not ready for execution as it is waiting 2289 * for external fences 2290 * 2291 * R [Ready] 2292 * - all fences the request was waiting on have been signaled, 2293 * and the request is now ready for execution and will be 2294 * in a backend queue 2295 * 2296 * - a ready request may still need to wait on semaphores 2297 * [internal fences] 2298 * 2299 * V [Ready/virtual] 2300 * - same as ready, but queued over multiple backends 2301 * 2302 * E [Executing] 2303 * - the request has been transferred from the backend queue and 2304 * submitted for execution on HW 2305 * 2306 * - a completed request may still be regarded as executing, its 2307 * status may not be updated until it is retired and removed 2308 * from the lists 2309 */ 2310 2311 x = print_sched_attr(&rq->sched.attr, buf, x, sizeof(buf)); 2312 2313 drm_printf(m, "%s%.*s%c %llx:%lld%s%s %s @ %dms: %s\n", 2314 prefix, indent, " ", 2315 queue_status(rq), 2316 rq->fence.context, rq->fence.seqno, 2317 run_status(rq), 2318 fence_status(rq), 2319 buf, 2320 jiffies_to_msecs(jiffies - rq->emitted_jiffies), 2321 name); 2322 } 2323 2324 static bool engine_match_ring(struct intel_engine_cs *engine, struct i915_request *rq) 2325 { 2326 u32 ring = ENGINE_READ(engine, RING_START); 2327 2328 return ring == i915_ggtt_offset(rq->ring->vma); 2329 } 2330 2331 static bool match_ring(struct i915_request *rq) 2332 { 2333 struct intel_engine_cs *engine; 2334 bool found; 2335 int i; 2336 2337 if (!intel_engine_is_virtual(rq->engine)) 2338 return engine_match_ring(rq->engine, rq); 2339 2340 found = false; 2341 i = 0; 2342 while ((engine = intel_engine_get_sibling(rq->engine, i++))) { 2343 found = engine_match_ring(engine, rq); 2344 if (found) 2345 break; 2346 } 2347 2348 return found; 2349 } 2350 2351 enum i915_request_state i915_test_request_state(struct i915_request *rq) 2352 { 2353 if (i915_request_completed(rq)) 2354 return I915_REQUEST_COMPLETE; 2355 2356 if (!i915_request_started(rq)) 2357 return I915_REQUEST_PENDING; 2358 2359 if (match_ring(rq)) 2360 return I915_REQUEST_ACTIVE; 2361 2362 return I915_REQUEST_QUEUED; 2363 } 2364 2365 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 2366 #include "selftests/mock_request.c" 2367 #include "selftests/i915_request.c" 2368 #endif 2369 2370 void i915_request_module_exit(void) 2371 { 2372 #ifdef __linux__ 2373 kmem_cache_destroy(slab_execute_cbs); 2374 kmem_cache_destroy(slab_requests); 2375 #else 2376 pool_destroy(&slab_execute_cbs); 2377 pool_destroy(&slab_requests); 2378 #endif 2379 } 2380 2381 int __init i915_request_module_init(void) 2382 { 2383 #ifdef __linux__ 2384 slab_requests = 2385 kmem_cache_create("i915_request", 2386 sizeof(struct i915_request), 2387 __alignof__(struct i915_request), 2388 SLAB_HWCACHE_ALIGN | 2389 SLAB_RECLAIM_ACCOUNT | 2390 SLAB_TYPESAFE_BY_RCU, 2391 __i915_request_ctor); 2392 if (!slab_requests) 2393 return -ENOMEM; 2394 2395 slab_execute_cbs = KMEM_CACHE(execute_cb, 2396 SLAB_HWCACHE_ALIGN | 2397 SLAB_RECLAIM_ACCOUNT | 2398 SLAB_TYPESAFE_BY_RCU); 2399 if (!slab_execute_cbs) 2400 goto err_requests; 2401 #else 2402 pool_init(&slab_requests, sizeof(struct i915_request), 2403 CACHELINESIZE, IPL_TTY, 0, "i915_request", NULL); 2404 pool_init(&slab_execute_cbs, sizeof(struct execute_cb), 2405 CACHELINESIZE, IPL_TTY, 0, "i915_exec", NULL); 2406 #endif 2407 2408 return 0; 2409 2410 #ifdef __linux__ 2411 err_requests: 2412 kmem_cache_destroy(slab_requests); 2413 return -ENOMEM; 2414 #endif 2415 } 2416