1 /* 2 * Copyright © 2008-2015 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 */ 24 25 #include <linux/dma-fence-array.h> 26 #include <linux/dma-fence-chain.h> 27 #include <linux/irq_work.h> 28 #include <linux/prefetch.h> 29 #include <linux/sched.h> 30 #include <linux/sched/clock.h> 31 #include <linux/sched/signal.h> 32 33 #include "gem/i915_gem_context.h" 34 #include "gt/intel_breadcrumbs.h" 35 #include "gt/intel_context.h" 36 #include "gt/intel_ring.h" 37 #include "gt/intel_rps.h" 38 39 #include "i915_active.h" 40 #include "i915_drv.h" 41 #include "i915_globals.h" 42 #include "i915_trace.h" 43 #include "intel_pm.h" 44 45 struct execute_cb { 46 struct irq_work work; 47 struct i915_sw_fence *fence; 48 void (*hook)(struct i915_request *rq, struct dma_fence *signal); 49 struct i915_request *signal; 50 }; 51 52 static struct i915_global_request { 53 struct i915_global base; 54 #ifdef __linux__ 55 struct kmem_cache *slab_requests; 56 struct kmem_cache *slab_execute_cbs; 57 #else 58 struct pool slab_requests; 59 struct pool slab_execute_cbs; 60 #endif 61 } global; 62 63 static const char *i915_fence_get_driver_name(struct dma_fence *fence) 64 { 65 return dev_name(to_request(fence)->engine->i915->drm.dev); 66 } 67 68 static const char *i915_fence_get_timeline_name(struct dma_fence *fence) 69 { 70 const struct i915_gem_context *ctx; 71 72 /* 73 * The timeline struct (as part of the ppgtt underneath a context) 74 * may be freed when the request is no longer in use by the GPU. 75 * We could extend the life of a context to beyond that of all 76 * fences, possibly keeping the hw resource around indefinitely, 77 * or we just give them a false name. Since 78 * dma_fence_ops.get_timeline_name is a debug feature, the occasional 79 * lie seems justifiable. 80 */ 81 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) 82 return "signaled"; 83 84 ctx = i915_request_gem_context(to_request(fence)); 85 if (!ctx) 86 return "[" DRIVER_NAME "]"; 87 88 return ctx->name; 89 } 90 91 static bool i915_fence_signaled(struct dma_fence *fence) 92 { 93 return i915_request_completed(to_request(fence)); 94 } 95 96 static bool i915_fence_enable_signaling(struct dma_fence *fence) 97 { 98 return i915_request_enable_breadcrumb(to_request(fence)); 99 } 100 101 static signed long i915_fence_wait(struct dma_fence *fence, 102 bool interruptible, 103 signed long timeout) 104 { 105 return i915_request_wait(to_request(fence), 106 interruptible | I915_WAIT_PRIORITY, 107 timeout); 108 } 109 110 #ifdef __linux__ 111 struct kmem_cache *i915_request_slab_cache(void) 112 { 113 return global.slab_requests; 114 } 115 #else 116 struct pool *i915_request_slab_cache(void) 117 { 118 return &global.slab_requests; 119 } 120 #endif 121 122 static void i915_fence_release(struct dma_fence *fence) 123 { 124 struct i915_request *rq = to_request(fence); 125 126 /* 127 * The request is put onto a RCU freelist (i.e. the address 128 * is immediately reused), mark the fences as being freed now. 129 * Otherwise the debugobjects for the fences are only marked as 130 * freed when the slab cache itself is freed, and so we would get 131 * caught trying to reuse dead objects. 132 */ 133 i915_sw_fence_fini(&rq->submit); 134 i915_sw_fence_fini(&rq->semaphore); 135 136 /* 137 * Keep one request on each engine for reserved use under mempressure 138 * 139 * We do not hold a reference to the engine here and so have to be 140 * very careful in what rq->engine we poke. The virtual engine is 141 * referenced via the rq->context and we released that ref during 142 * i915_request_retire(), ergo we must not dereference a virtual 143 * engine here. Not that we would want to, as the only consumer of 144 * the reserved engine->request_pool is the power management parking, 145 * which must-not-fail, and that is only run on the physical engines. 146 * 147 * Since the request must have been executed to be have completed, 148 * we know that it will have been processed by the HW and will 149 * not be unsubmitted again, so rq->engine and rq->execution_mask 150 * at this point is stable. rq->execution_mask will be a single 151 * bit if the last and _only_ engine it could execution on was a 152 * physical engine, if it's multiple bits then it started on and 153 * could still be on a virtual engine. Thus if the mask is not a 154 * power-of-two we assume that rq->engine may still be a virtual 155 * engine and so a dangling invalid pointer that we cannot dereference 156 * 157 * For example, consider the flow of a bonded request through a virtual 158 * engine. The request is created with a wide engine mask (all engines 159 * that we might execute on). On processing the bond, the request mask 160 * is reduced to one or more engines. If the request is subsequently 161 * bound to a single engine, it will then be constrained to only 162 * execute on that engine and never returned to the virtual engine 163 * after timeslicing away, see __unwind_incomplete_requests(). Thus we 164 * know that if the rq->execution_mask is a single bit, rq->engine 165 * can be a physical engine with the exact corresponding mask. 166 */ 167 if (is_power_of_2(rq->execution_mask) && 168 !cmpxchg(&rq->engine->request_pool, NULL, rq)) 169 return; 170 171 #ifdef __linux__ 172 kmem_cache_free(global.slab_requests, rq); 173 #else 174 pool_put(&global.slab_requests, rq); 175 #endif 176 } 177 178 const struct dma_fence_ops i915_fence_ops = { 179 .get_driver_name = i915_fence_get_driver_name, 180 .get_timeline_name = i915_fence_get_timeline_name, 181 .enable_signaling = i915_fence_enable_signaling, 182 .signaled = i915_fence_signaled, 183 .wait = i915_fence_wait, 184 .release = i915_fence_release, 185 }; 186 187 static void irq_execute_cb(struct irq_work *wrk) 188 { 189 struct execute_cb *cb = container_of(wrk, typeof(*cb), work); 190 191 i915_sw_fence_complete(cb->fence); 192 #ifdef __linux__ 193 kmem_cache_free(global.slab_execute_cbs, cb); 194 #else 195 pool_put(&global.slab_execute_cbs, cb); 196 #endif 197 } 198 199 static void irq_execute_cb_hook(struct irq_work *wrk) 200 { 201 struct execute_cb *cb = container_of(wrk, typeof(*cb), work); 202 203 cb->hook(container_of(cb->fence, struct i915_request, submit), 204 &cb->signal->fence); 205 i915_request_put(cb->signal); 206 207 irq_execute_cb(wrk); 208 } 209 210 static __always_inline void 211 __notify_execute_cb(struct i915_request *rq, bool (*fn)(struct irq_work *wrk)) 212 { 213 struct execute_cb *cb, *cn; 214 215 if (llist_empty(&rq->execute_cb)) 216 return; 217 218 STUB(); 219 #ifdef notyet 220 llist_for_each_entry_safe(cb, cn, 221 llist_del_all(&rq->execute_cb), 222 work.llnode) 223 fn(&cb->work); 224 #endif 225 } 226 227 static void __notify_execute_cb_irq(struct i915_request *rq) 228 { 229 __notify_execute_cb(rq, irq_work_queue); 230 } 231 232 static bool irq_work_imm(struct irq_work *wrk) 233 { 234 #ifdef notyet 235 wrk->func(wrk); 236 #else 237 STUB(); 238 #endif 239 return false; 240 } 241 242 static void __notify_execute_cb_imm(struct i915_request *rq) 243 { 244 __notify_execute_cb(rq, irq_work_imm); 245 } 246 247 static void free_capture_list(struct i915_request *request) 248 { 249 struct i915_capture_list *capture; 250 251 capture = fetch_and_zero(&request->capture_list); 252 while (capture) { 253 struct i915_capture_list *next = capture->next; 254 255 kfree(capture); 256 capture = next; 257 } 258 } 259 260 static void __i915_request_fill(struct i915_request *rq, u8 val) 261 { 262 void *vaddr = rq->ring->vaddr; 263 u32 head; 264 265 head = rq->infix; 266 if (rq->postfix < head) { 267 memset(vaddr + head, val, rq->ring->size - head); 268 head = 0; 269 } 270 memset(vaddr + head, val, rq->postfix - head); 271 } 272 273 static void remove_from_engine(struct i915_request *rq) 274 { 275 struct intel_engine_cs *engine, *locked; 276 277 /* 278 * Virtual engines complicate acquiring the engine timeline lock, 279 * as their rq->engine pointer is not stable until under that 280 * engine lock. The simple ploy we use is to take the lock then 281 * check that the rq still belongs to the newly locked engine. 282 */ 283 locked = READ_ONCE(rq->engine); 284 spin_lock_irq(&locked->active.lock); 285 while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) { 286 spin_unlock(&locked->active.lock); 287 spin_lock(&engine->active.lock); 288 locked = engine; 289 } 290 list_del_init(&rq->sched.link); 291 292 clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags); 293 clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags); 294 295 /* Prevent further __await_execution() registering a cb, then flush */ 296 set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags); 297 298 spin_unlock_irq(&locked->active.lock); 299 300 __notify_execute_cb_imm(rq); 301 } 302 303 bool i915_request_retire(struct i915_request *rq) 304 { 305 if (!i915_request_completed(rq)) 306 return false; 307 308 RQ_TRACE(rq, "\n"); 309 310 GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit)); 311 trace_i915_request_retire(rq); 312 i915_request_mark_complete(rq); 313 314 /* 315 * We know the GPU must have read the request to have 316 * sent us the seqno + interrupt, so use the position 317 * of tail of the request to update the last known position 318 * of the GPU head. 319 * 320 * Note this requires that we are always called in request 321 * completion order. 322 */ 323 GEM_BUG_ON(!list_is_first(&rq->link, 324 &i915_request_timeline(rq)->requests)); 325 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) 326 /* Poison before we release our space in the ring */ 327 __i915_request_fill(rq, POISON_FREE); 328 rq->ring->head = rq->postfix; 329 330 if (!i915_request_signaled(rq)) { 331 spin_lock_irq(&rq->lock); 332 dma_fence_signal_locked(&rq->fence); 333 spin_unlock_irq(&rq->lock); 334 } 335 336 if (i915_request_has_waitboost(rq)) { 337 GEM_BUG_ON(!atomic_read(&rq->engine->gt->rps.num_waiters)); 338 atomic_dec(&rq->engine->gt->rps.num_waiters); 339 } 340 341 /* 342 * We only loosely track inflight requests across preemption, 343 * and so we may find ourselves attempting to retire a _completed_ 344 * request that we have removed from the HW and put back on a run 345 * queue. 346 * 347 * As we set I915_FENCE_FLAG_ACTIVE on the request, this should be 348 * after removing the breadcrumb and signaling it, so that we do not 349 * inadvertently attach the breadcrumb to a completed request. 350 */ 351 remove_from_engine(rq); 352 GEM_BUG_ON(!llist_empty(&rq->execute_cb)); 353 354 __list_del_entry(&rq->link); /* poison neither prev/next (RCU walks) */ 355 356 intel_context_exit(rq->context); 357 intel_context_unpin(rq->context); 358 359 free_capture_list(rq); 360 i915_sched_node_fini(&rq->sched); 361 i915_request_put(rq); 362 363 return true; 364 } 365 366 void i915_request_retire_upto(struct i915_request *rq) 367 { 368 struct intel_timeline * const tl = i915_request_timeline(rq); 369 struct i915_request *tmp; 370 371 RQ_TRACE(rq, "\n"); 372 373 GEM_BUG_ON(!i915_request_completed(rq)); 374 375 do { 376 tmp = list_first_entry(&tl->requests, typeof(*tmp), link); 377 } while (i915_request_retire(tmp) && tmp != rq); 378 } 379 380 static struct i915_request * const * 381 __engine_active(struct intel_engine_cs *engine) 382 { 383 return READ_ONCE(engine->execlists.active); 384 } 385 386 static bool __request_in_flight(const struct i915_request *signal) 387 { 388 struct i915_request * const *port, *rq; 389 bool inflight = false; 390 391 if (!i915_request_is_ready(signal)) 392 return false; 393 394 /* 395 * Even if we have unwound the request, it may still be on 396 * the GPU (preempt-to-busy). If that request is inside an 397 * unpreemptible critical section, it will not be removed. Some 398 * GPU functions may even be stuck waiting for the paired request 399 * (__await_execution) to be submitted and cannot be preempted 400 * until the bond is executing. 401 * 402 * As we know that there are always preemption points between 403 * requests, we know that only the currently executing request 404 * may be still active even though we have cleared the flag. 405 * However, we can't rely on our tracking of ELSP[0] to know 406 * which request is currently active and so maybe stuck, as 407 * the tracking maybe an event behind. Instead assume that 408 * if the context is still inflight, then it is still active 409 * even if the active flag has been cleared. 410 * 411 * To further complicate matters, if there a pending promotion, the HW 412 * may either perform a context switch to the second inflight execlists, 413 * or it may switch to the pending set of execlists. In the case of the 414 * latter, it may send the ACK and we process the event copying the 415 * pending[] over top of inflight[], _overwriting_ our *active. Since 416 * this implies the HW is arbitrating and not struck in *active, we do 417 * not worry about complete accuracy, but we do require no read/write 418 * tearing of the pointer [the read of the pointer must be valid, even 419 * as the array is being overwritten, for which we require the writes 420 * to avoid tearing.] 421 * 422 * Note that the read of *execlists->active may race with the promotion 423 * of execlists->pending[] to execlists->inflight[], overwritting 424 * the value at *execlists->active. This is fine. The promotion implies 425 * that we received an ACK from the HW, and so the context is not 426 * stuck -- if we do not see ourselves in *active, the inflight status 427 * is valid. If instead we see ourselves being copied into *active, 428 * we are inflight and may signal the callback. 429 */ 430 if (!intel_context_inflight(signal->context)) 431 return false; 432 433 rcu_read_lock(); 434 for (port = __engine_active(signal->engine); 435 (rq = READ_ONCE(*port)); /* may race with promotion of pending[] */ 436 port++) { 437 if (rq->context == signal->context) { 438 inflight = i915_seqno_passed(rq->fence.seqno, 439 signal->fence.seqno); 440 break; 441 } 442 } 443 rcu_read_unlock(); 444 445 return inflight; 446 } 447 448 static int 449 __await_execution(struct i915_request *rq, 450 struct i915_request *signal, 451 void (*hook)(struct i915_request *rq, 452 struct dma_fence *signal), 453 gfp_t gfp) 454 { 455 STUB(); 456 return -ENOSYS; 457 #ifdef notyet 458 struct execute_cb *cb; 459 460 if (i915_request_is_active(signal)) { 461 if (hook) 462 hook(rq, &signal->fence); 463 return 0; 464 } 465 466 #ifdef __linux__ 467 cb = kmem_cache_alloc(global.slab_execute_cbs, gfp); 468 #else 469 cb = pool_get(&global.slab_execute_cbs, 470 (gfp & GFP_NOWAIT) ? PR_NOWAIT : PR_WAITOK); 471 #endif 472 if (!cb) 473 return -ENOMEM; 474 475 cb->fence = &rq->submit; 476 i915_sw_fence_await(cb->fence); 477 init_irq_work(&cb->work, irq_execute_cb); 478 479 if (hook) { 480 cb->hook = hook; 481 cb->signal = i915_request_get(signal); 482 #ifdef __linux__ 483 cb->work.func = irq_execute_cb_hook; 484 #else 485 init_irq_work(&cb->work, irq_execute_cb_hook); 486 #endif 487 } 488 489 /* 490 * Register the callback first, then see if the signaler is already 491 * active. This ensures that if we race with the 492 * __notify_execute_cb from i915_request_submit() and we are not 493 * included in that list, we get a second bite of the cherry and 494 * execute it ourselves. After this point, a future 495 * i915_request_submit() will notify us. 496 * 497 * In i915_request_retire() we set the ACTIVE bit on a completed 498 * request (then flush the execute_cb). So by registering the 499 * callback first, then checking the ACTIVE bit, we serialise with 500 * the completed/retired request. 501 */ 502 if (llist_add(&cb->work.llnode, &signal->execute_cb)) { 503 if (i915_request_is_active(signal) || 504 __request_in_flight(signal)) 505 __notify_execute_cb_imm(signal); 506 } 507 508 return 0; 509 #endif 510 } 511 512 static bool fatal_error(int error) 513 { 514 switch (error) { 515 case 0: /* not an error! */ 516 case -EAGAIN: /* innocent victim of a GT reset (__i915_request_reset) */ 517 case -ETIMEDOUT: /* waiting for Godot (timer_i915_sw_fence_wake) */ 518 return false; 519 default: 520 return true; 521 } 522 } 523 524 void __i915_request_skip(struct i915_request *rq) 525 { 526 GEM_BUG_ON(!fatal_error(rq->fence.error)); 527 528 if (rq->infix == rq->postfix) 529 return; 530 531 /* 532 * As this request likely depends on state from the lost 533 * context, clear out all the user operations leaving the 534 * breadcrumb at the end (so we get the fence notifications). 535 */ 536 __i915_request_fill(rq, 0); 537 rq->infix = rq->postfix; 538 } 539 540 void i915_request_set_error_once(struct i915_request *rq, int error) 541 { 542 int old; 543 544 GEM_BUG_ON(!IS_ERR_VALUE((long)error)); 545 546 if (i915_request_signaled(rq)) 547 return; 548 549 old = READ_ONCE(rq->fence.error); 550 do { 551 if (fatal_error(old)) 552 return; 553 } while (!try_cmpxchg(&rq->fence.error, &old, error)); 554 } 555 556 bool __i915_request_submit(struct i915_request *request) 557 { 558 struct intel_engine_cs *engine = request->engine; 559 bool result = false; 560 561 RQ_TRACE(request, "\n"); 562 563 GEM_BUG_ON(!irqs_disabled()); 564 lockdep_assert_held(&engine->active.lock); 565 566 /* 567 * With the advent of preempt-to-busy, we frequently encounter 568 * requests that we have unsubmitted from HW, but left running 569 * until the next ack and so have completed in the meantime. On 570 * resubmission of that completed request, we can skip 571 * updating the payload, and execlists can even skip submitting 572 * the request. 573 * 574 * We must remove the request from the caller's priority queue, 575 * and the caller must only call us when the request is in their 576 * priority queue, under the active.lock. This ensures that the 577 * request has *not* yet been retired and we can safely move 578 * the request into the engine->active.list where it will be 579 * dropped upon retiring. (Otherwise if resubmit a *retired* 580 * request, this would be a horrible use-after-free.) 581 */ 582 if (i915_request_completed(request)) 583 goto xfer; 584 585 if (unlikely(intel_context_is_closed(request->context) && 586 !intel_engine_has_heartbeat(engine))) 587 intel_context_set_banned(request->context); 588 589 if (unlikely(intel_context_is_banned(request->context))) 590 i915_request_set_error_once(request, -EIO); 591 592 if (unlikely(fatal_error(request->fence.error))) 593 __i915_request_skip(request); 594 595 /* 596 * Are we using semaphores when the gpu is already saturated? 597 * 598 * Using semaphores incurs a cost in having the GPU poll a 599 * memory location, busywaiting for it to change. The continual 600 * memory reads can have a noticeable impact on the rest of the 601 * system with the extra bus traffic, stalling the cpu as it too 602 * tries to access memory across the bus (perf stat -e bus-cycles). 603 * 604 * If we installed a semaphore on this request and we only submit 605 * the request after the signaler completed, that indicates the 606 * system is overloaded and using semaphores at this time only 607 * increases the amount of work we are doing. If so, we disable 608 * further use of semaphores until we are idle again, whence we 609 * optimistically try again. 610 */ 611 if (request->sched.semaphores && 612 i915_sw_fence_signaled(&request->semaphore)) 613 engine->saturated |= request->sched.semaphores; 614 615 engine->emit_fini_breadcrumb(request, 616 request->ring->vaddr + request->postfix); 617 618 trace_i915_request_execute(request); 619 engine->serial++; 620 result = true; 621 622 xfer: 623 if (!test_and_set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)) { 624 list_move_tail(&request->sched.link, &engine->active.requests); 625 clear_bit(I915_FENCE_FLAG_PQUEUE, &request->fence.flags); 626 } 627 628 /* 629 * XXX Rollback bonded-execution on __i915_request_unsubmit()? 630 * 631 * In the future, perhaps when we have an active time-slicing scheduler, 632 * it will be interesting to unsubmit parallel execution and remove 633 * busywaits from the GPU until their master is restarted. This is 634 * quite hairy, we have to carefully rollback the fence and do a 635 * preempt-to-idle cycle on the target engine, all the while the 636 * master execute_cb may refire. 637 */ 638 __notify_execute_cb_irq(request); 639 640 /* We may be recursing from the signal callback of another i915 fence */ 641 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags)) 642 i915_request_enable_breadcrumb(request); 643 644 return result; 645 } 646 647 void i915_request_submit(struct i915_request *request) 648 { 649 struct intel_engine_cs *engine = request->engine; 650 unsigned long flags; 651 652 /* Will be called from irq-context when using foreign fences. */ 653 spin_lock_irqsave(&engine->active.lock, flags); 654 655 __i915_request_submit(request); 656 657 spin_unlock_irqrestore(&engine->active.lock, flags); 658 } 659 660 void __i915_request_unsubmit(struct i915_request *request) 661 { 662 struct intel_engine_cs *engine = request->engine; 663 664 /* 665 * Only unwind in reverse order, required so that the per-context list 666 * is kept in seqno/ring order. 667 */ 668 RQ_TRACE(request, "\n"); 669 670 GEM_BUG_ON(!irqs_disabled()); 671 lockdep_assert_held(&engine->active.lock); 672 673 /* 674 * Before we remove this breadcrumb from the signal list, we have 675 * to ensure that a concurrent dma_fence_enable_signaling() does not 676 * attach itself. We first mark the request as no longer active and 677 * make sure that is visible to other cores, and then remove the 678 * breadcrumb if attached. 679 */ 680 GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)); 681 clear_bit_unlock(I915_FENCE_FLAG_ACTIVE, &request->fence.flags); 682 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags)) 683 i915_request_cancel_breadcrumb(request); 684 685 /* We've already spun, don't charge on resubmitting. */ 686 if (request->sched.semaphores && i915_request_started(request)) 687 request->sched.semaphores = 0; 688 689 /* 690 * We don't need to wake_up any waiters on request->execute, they 691 * will get woken by any other event or us re-adding this request 692 * to the engine timeline (__i915_request_submit()). The waiters 693 * should be quite adapt at finding that the request now has a new 694 * global_seqno to the one they went to sleep on. 695 */ 696 } 697 698 void i915_request_unsubmit(struct i915_request *request) 699 { 700 struct intel_engine_cs *engine = request->engine; 701 unsigned long flags; 702 703 /* Will be called from irq-context when using foreign fences. */ 704 spin_lock_irqsave(&engine->active.lock, flags); 705 706 __i915_request_unsubmit(request); 707 708 spin_unlock_irqrestore(&engine->active.lock, flags); 709 } 710 711 static int __i915_sw_fence_call 712 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state) 713 { 714 struct i915_request *request = 715 container_of(fence, typeof(*request), submit); 716 717 switch (state) { 718 case FENCE_COMPLETE: 719 trace_i915_request_submit(request); 720 721 if (unlikely(fence->error)) 722 i915_request_set_error_once(request, fence->error); 723 724 /* 725 * We need to serialize use of the submit_request() callback 726 * with its hotplugging performed during an emergency 727 * i915_gem_set_wedged(). We use the RCU mechanism to mark the 728 * critical section in order to force i915_gem_set_wedged() to 729 * wait until the submit_request() is completed before 730 * proceeding. 731 */ 732 rcu_read_lock(); 733 request->engine->submit_request(request); 734 rcu_read_unlock(); 735 break; 736 737 case FENCE_FREE: 738 i915_request_put(request); 739 break; 740 } 741 742 return NOTIFY_DONE; 743 } 744 745 static int __i915_sw_fence_call 746 semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state) 747 { 748 struct i915_request *rq = container_of(fence, typeof(*rq), semaphore); 749 750 switch (state) { 751 case FENCE_COMPLETE: 752 break; 753 754 case FENCE_FREE: 755 i915_request_put(rq); 756 break; 757 } 758 759 return NOTIFY_DONE; 760 } 761 762 static void retire_requests(struct intel_timeline *tl) 763 { 764 struct i915_request *rq, *rn; 765 766 list_for_each_entry_safe(rq, rn, &tl->requests, link) 767 if (!i915_request_retire(rq)) 768 break; 769 } 770 771 static void __i915_request_ctor(void *); 772 773 static noinline struct i915_request * 774 request_alloc_slow(struct intel_timeline *tl, 775 struct i915_request **rsvd, 776 gfp_t gfp) 777 { 778 struct i915_request *rq; 779 780 /* If we cannot wait, dip into our reserves */ 781 if (!gfpflags_allow_blocking(gfp)) { 782 rq = xchg(rsvd, NULL); 783 if (!rq) /* Use the normal failure path for one final WARN */ 784 goto out; 785 786 return rq; 787 } 788 789 if (list_empty(&tl->requests)) 790 goto out; 791 792 /* Move our oldest request to the slab-cache (if not in use!) */ 793 rq = list_first_entry(&tl->requests, typeof(*rq), link); 794 i915_request_retire(rq); 795 796 #ifdef __linux__ 797 rq = kmem_cache_alloc(global.slab_requests, 798 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN); 799 #else 800 rq = pool_get(&global.slab_requests, 801 (gfp & GFP_NOWAIT) ? PR_NOWAIT : PR_WAITOK); 802 if (rq) 803 __i915_request_ctor(rq); 804 #endif 805 if (rq) 806 return rq; 807 808 /* Ratelimit ourselves to prevent oom from malicious clients */ 809 rq = list_last_entry(&tl->requests, typeof(*rq), link); 810 cond_synchronize_rcu(rq->rcustate); 811 812 /* Retire our old requests in the hope that we free some */ 813 retire_requests(tl); 814 815 out: 816 #ifdef __linux__ 817 return kmem_cache_alloc(global.slab_requests, gfp); 818 #else 819 rq = pool_get(&global.slab_requests, 820 (gfp & GFP_NOWAIT) ? PR_NOWAIT : PR_WAITOK); 821 if (rq) 822 __i915_request_ctor(rq); 823 return rq; 824 #endif 825 } 826 827 static void __i915_request_ctor(void *arg) 828 { 829 struct i915_request *rq = arg; 830 831 /* 832 * witness does not understand spin_lock_nested() 833 * order reversal in i915 with this lock 834 */ 835 mtx_init_flags(&rq->lock, IPL_TTY, NULL, MTX_NOWITNESS); 836 i915_sched_node_init(&rq->sched); 837 i915_sw_fence_init(&rq->submit, submit_notify); 838 i915_sw_fence_init(&rq->semaphore, semaphore_notify); 839 840 rq->capture_list = NULL; 841 842 init_llist_head(&rq->execute_cb); 843 } 844 845 struct i915_request * 846 __i915_request_create(struct intel_context *ce, gfp_t gfp) 847 { 848 struct intel_timeline *tl = ce->timeline; 849 struct i915_request *rq; 850 u32 seqno; 851 int ret; 852 853 might_sleep_if(gfpflags_allow_blocking(gfp)); 854 855 /* Check that the caller provided an already pinned context */ 856 __intel_context_pin(ce); 857 858 /* 859 * Beware: Dragons be flying overhead. 860 * 861 * We use RCU to look up requests in flight. The lookups may 862 * race with the request being allocated from the slab freelist. 863 * That is the request we are writing to here, may be in the process 864 * of being read by __i915_active_request_get_rcu(). As such, 865 * we have to be very careful when overwriting the contents. During 866 * the RCU lookup, we change chase the request->engine pointer, 867 * read the request->global_seqno and increment the reference count. 868 * 869 * The reference count is incremented atomically. If it is zero, 870 * the lookup knows the request is unallocated and complete. Otherwise, 871 * it is either still in use, or has been reallocated and reset 872 * with dma_fence_init(). This increment is safe for release as we 873 * check that the request we have a reference to and matches the active 874 * request. 875 * 876 * Before we increment the refcount, we chase the request->engine 877 * pointer. We must not call kmem_cache_zalloc() or else we set 878 * that pointer to NULL and cause a crash during the lookup. If 879 * we see the request is completed (based on the value of the 880 * old engine and seqno), the lookup is complete and reports NULL. 881 * If we decide the request is not completed (new engine or seqno), 882 * then we grab a reference and double check that it is still the 883 * active request - which it won't be and restart the lookup. 884 * 885 * Do not use kmem_cache_zalloc() here! 886 */ 887 #ifdef __linux__ 888 rq = kmem_cache_alloc(global.slab_requests, 889 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN); 890 #else 891 rq = pool_get(&global.slab_requests, 892 (gfp & GFP_NOWAIT) ? PR_NOWAIT : PR_WAITOK); 893 if (rq) 894 __i915_request_ctor(rq); 895 #endif 896 if (unlikely(!rq)) { 897 rq = request_alloc_slow(tl, &ce->engine->request_pool, gfp); 898 if (!rq) { 899 ret = -ENOMEM; 900 goto err_unreserve; 901 } 902 } 903 904 rq->context = ce; 905 rq->engine = ce->engine; 906 rq->ring = ce->ring; 907 rq->execution_mask = ce->engine->mask; 908 909 ret = intel_timeline_get_seqno(tl, rq, &seqno); 910 if (ret) 911 goto err_free; 912 913 dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock, 914 tl->fence_context, seqno); 915 916 RCU_INIT_POINTER(rq->timeline, tl); 917 RCU_INIT_POINTER(rq->hwsp_cacheline, tl->hwsp_cacheline); 918 rq->hwsp_seqno = tl->hwsp_seqno; 919 GEM_BUG_ON(i915_request_completed(rq)); 920 921 rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */ 922 923 /* We bump the ref for the fence chain */ 924 i915_sw_fence_reinit(&i915_request_get(rq)->submit); 925 i915_sw_fence_reinit(&i915_request_get(rq)->semaphore); 926 927 i915_sched_node_reinit(&rq->sched); 928 929 /* No zalloc, everything must be cleared after use */ 930 rq->batch = NULL; 931 GEM_BUG_ON(rq->capture_list); 932 GEM_BUG_ON(!llist_empty(&rq->execute_cb)); 933 934 /* 935 * Reserve space in the ring buffer for all the commands required to 936 * eventually emit this request. This is to guarantee that the 937 * i915_request_add() call can't fail. Note that the reserve may need 938 * to be redone if the request is not actually submitted straight 939 * away, e.g. because a GPU scheduler has deferred it. 940 * 941 * Note that due to how we add reserved_space to intel_ring_begin() 942 * we need to double our request to ensure that if we need to wrap 943 * around inside i915_request_add() there is sufficient space at 944 * the beginning of the ring as well. 945 */ 946 rq->reserved_space = 947 2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32); 948 949 /* 950 * Record the position of the start of the request so that 951 * should we detect the updated seqno part-way through the 952 * GPU processing the request, we never over-estimate the 953 * position of the head. 954 */ 955 rq->head = rq->ring->emit; 956 957 ret = rq->engine->request_alloc(rq); 958 if (ret) 959 goto err_unwind; 960 961 rq->infix = rq->ring->emit; /* end of header; start of user payload */ 962 963 intel_context_mark_active(ce); 964 list_add_tail_rcu(&rq->link, &tl->requests); 965 966 return rq; 967 968 err_unwind: 969 ce->ring->emit = rq->head; 970 971 /* Make sure we didn't add ourselves to external state before freeing */ 972 GEM_BUG_ON(!list_empty(&rq->sched.signalers_list)); 973 GEM_BUG_ON(!list_empty(&rq->sched.waiters_list)); 974 975 err_free: 976 #ifdef __linux__ 977 kmem_cache_free(global.slab_requests, rq); 978 #else 979 pool_put(&global.slab_requests, rq); 980 #endif 981 err_unreserve: 982 intel_context_unpin(ce); 983 return ERR_PTR(ret); 984 } 985 986 struct i915_request * 987 i915_request_create(struct intel_context *ce) 988 { 989 struct i915_request *rq; 990 struct intel_timeline *tl; 991 992 tl = intel_context_timeline_lock(ce); 993 if (IS_ERR(tl)) 994 return ERR_CAST(tl); 995 996 /* Move our oldest request to the slab-cache (if not in use!) */ 997 rq = list_first_entry(&tl->requests, typeof(*rq), link); 998 if (!list_is_last(&rq->link, &tl->requests)) 999 i915_request_retire(rq); 1000 1001 intel_context_enter(ce); 1002 rq = __i915_request_create(ce, GFP_KERNEL); 1003 intel_context_exit(ce); /* active reference transferred to request */ 1004 if (IS_ERR(rq)) 1005 goto err_unlock; 1006 1007 /* Check that we do not interrupt ourselves with a new request */ 1008 rq->cookie = lockdep_pin_lock(&tl->mutex); 1009 1010 return rq; 1011 1012 err_unlock: 1013 intel_context_timeline_unlock(tl); 1014 return rq; 1015 } 1016 1017 static int 1018 i915_request_await_start(struct i915_request *rq, struct i915_request *signal) 1019 { 1020 struct dma_fence *fence; 1021 int err; 1022 1023 if (i915_request_timeline(rq) == rcu_access_pointer(signal->timeline)) 1024 return 0; 1025 1026 if (i915_request_started(signal)) 1027 return 0; 1028 1029 fence = NULL; 1030 rcu_read_lock(); 1031 spin_lock_irq(&signal->lock); 1032 do { 1033 struct list_head *pos = READ_ONCE(signal->link.prev); 1034 struct i915_request *prev; 1035 1036 /* Confirm signal has not been retired, the link is valid */ 1037 if (unlikely(i915_request_started(signal))) 1038 break; 1039 1040 /* Is signal the earliest request on its timeline? */ 1041 if (pos == &rcu_dereference(signal->timeline)->requests) 1042 break; 1043 1044 /* 1045 * Peek at the request before us in the timeline. That 1046 * request will only be valid before it is retired, so 1047 * after acquiring a reference to it, confirm that it is 1048 * still part of the signaler's timeline. 1049 */ 1050 prev = list_entry(pos, typeof(*prev), link); 1051 if (!i915_request_get_rcu(prev)) 1052 break; 1053 1054 /* After the strong barrier, confirm prev is still attached */ 1055 if (unlikely(READ_ONCE(prev->link.next) != &signal->link)) { 1056 i915_request_put(prev); 1057 break; 1058 } 1059 1060 fence = &prev->fence; 1061 } while (0); 1062 spin_unlock_irq(&signal->lock); 1063 rcu_read_unlock(); 1064 if (!fence) 1065 return 0; 1066 1067 err = 0; 1068 if (!intel_timeline_sync_is_later(i915_request_timeline(rq), fence)) 1069 err = i915_sw_fence_await_dma_fence(&rq->submit, 1070 fence, 0, 1071 I915_FENCE_GFP); 1072 dma_fence_put(fence); 1073 1074 return err; 1075 } 1076 1077 static intel_engine_mask_t 1078 already_busywaiting(struct i915_request *rq) 1079 { 1080 /* 1081 * Polling a semaphore causes bus traffic, delaying other users of 1082 * both the GPU and CPU. We want to limit the impact on others, 1083 * while taking advantage of early submission to reduce GPU 1084 * latency. Therefore we restrict ourselves to not using more 1085 * than one semaphore from each source, and not using a semaphore 1086 * if we have detected the engine is saturated (i.e. would not be 1087 * submitted early and cause bus traffic reading an already passed 1088 * semaphore). 1089 * 1090 * See the are-we-too-late? check in __i915_request_submit(). 1091 */ 1092 return rq->sched.semaphores | READ_ONCE(rq->engine->saturated); 1093 } 1094 1095 static int 1096 __emit_semaphore_wait(struct i915_request *to, 1097 struct i915_request *from, 1098 u32 seqno) 1099 { 1100 const int has_token = INTEL_GEN(to->engine->i915) >= 12; 1101 u32 hwsp_offset; 1102 int len, err; 1103 u32 *cs; 1104 1105 GEM_BUG_ON(INTEL_GEN(to->engine->i915) < 8); 1106 GEM_BUG_ON(i915_request_has_initial_breadcrumb(to)); 1107 1108 /* We need to pin the signaler's HWSP until we are finished reading. */ 1109 err = intel_timeline_read_hwsp(from, to, &hwsp_offset); 1110 if (err) 1111 return err; 1112 1113 len = 4; 1114 if (has_token) 1115 len += 2; 1116 1117 cs = intel_ring_begin(to, len); 1118 if (IS_ERR(cs)) 1119 return PTR_ERR(cs); 1120 1121 /* 1122 * Using greater-than-or-equal here means we have to worry 1123 * about seqno wraparound. To side step that issue, we swap 1124 * the timeline HWSP upon wrapping, so that everyone listening 1125 * for the old (pre-wrap) values do not see the much smaller 1126 * (post-wrap) values than they were expecting (and so wait 1127 * forever). 1128 */ 1129 *cs++ = (MI_SEMAPHORE_WAIT | 1130 MI_SEMAPHORE_GLOBAL_GTT | 1131 MI_SEMAPHORE_POLL | 1132 MI_SEMAPHORE_SAD_GTE_SDD) + 1133 has_token; 1134 *cs++ = seqno; 1135 *cs++ = hwsp_offset; 1136 *cs++ = 0; 1137 if (has_token) { 1138 *cs++ = 0; 1139 *cs++ = MI_NOOP; 1140 } 1141 1142 intel_ring_advance(to, cs); 1143 return 0; 1144 } 1145 1146 static int 1147 emit_semaphore_wait(struct i915_request *to, 1148 struct i915_request *from, 1149 gfp_t gfp) 1150 { 1151 const intel_engine_mask_t mask = READ_ONCE(from->engine)->mask; 1152 struct i915_sw_fence *wait = &to->submit; 1153 1154 if (!intel_context_use_semaphores(to->context)) 1155 goto await_fence; 1156 1157 if (i915_request_has_initial_breadcrumb(to)) 1158 goto await_fence; 1159 1160 if (!rcu_access_pointer(from->hwsp_cacheline)) 1161 goto await_fence; 1162 1163 /* 1164 * If this or its dependents are waiting on an external fence 1165 * that may fail catastrophically, then we want to avoid using 1166 * sempahores as they bypass the fence signaling metadata, and we 1167 * lose the fence->error propagation. 1168 */ 1169 if (from->sched.flags & I915_SCHED_HAS_EXTERNAL_CHAIN) 1170 goto await_fence; 1171 1172 /* Just emit the first semaphore we see as request space is limited. */ 1173 if (already_busywaiting(to) & mask) 1174 goto await_fence; 1175 1176 if (i915_request_await_start(to, from) < 0) 1177 goto await_fence; 1178 1179 /* Only submit our spinner after the signaler is running! */ 1180 if (__await_execution(to, from, NULL, gfp)) 1181 goto await_fence; 1182 1183 if (__emit_semaphore_wait(to, from, from->fence.seqno)) 1184 goto await_fence; 1185 1186 to->sched.semaphores |= mask; 1187 wait = &to->semaphore; 1188 1189 await_fence: 1190 return i915_sw_fence_await_dma_fence(wait, 1191 &from->fence, 0, 1192 I915_FENCE_GFP); 1193 } 1194 1195 static bool intel_timeline_sync_has_start(struct intel_timeline *tl, 1196 struct dma_fence *fence) 1197 { 1198 return __intel_timeline_sync_is_later(tl, 1199 fence->context, 1200 fence->seqno - 1); 1201 } 1202 1203 static int intel_timeline_sync_set_start(struct intel_timeline *tl, 1204 const struct dma_fence *fence) 1205 { 1206 return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1); 1207 } 1208 1209 static int 1210 __i915_request_await_execution(struct i915_request *to, 1211 struct i915_request *from, 1212 void (*hook)(struct i915_request *rq, 1213 struct dma_fence *signal)) 1214 { 1215 int err; 1216 1217 GEM_BUG_ON(intel_context_is_barrier(from->context)); 1218 1219 /* Submit both requests at the same time */ 1220 err = __await_execution(to, from, hook, I915_FENCE_GFP); 1221 if (err) 1222 return err; 1223 1224 /* Squash repeated depenendices to the same timelines */ 1225 if (intel_timeline_sync_has_start(i915_request_timeline(to), 1226 &from->fence)) 1227 return 0; 1228 1229 /* 1230 * Wait until the start of this request. 1231 * 1232 * The execution cb fires when we submit the request to HW. But in 1233 * many cases this may be long before the request itself is ready to 1234 * run (consider that we submit 2 requests for the same context, where 1235 * the request of interest is behind an indefinite spinner). So we hook 1236 * up to both to reduce our queues and keep the execution lag minimised 1237 * in the worst case, though we hope that the await_start is elided. 1238 */ 1239 err = i915_request_await_start(to, from); 1240 if (err < 0) 1241 return err; 1242 1243 /* 1244 * Ensure both start together [after all semaphores in signal] 1245 * 1246 * Now that we are queued to the HW at roughly the same time (thanks 1247 * to the execute cb) and are ready to run at roughly the same time 1248 * (thanks to the await start), our signaler may still be indefinitely 1249 * delayed by waiting on a semaphore from a remote engine. If our 1250 * signaler depends on a semaphore, so indirectly do we, and we do not 1251 * want to start our payload until our signaler also starts theirs. 1252 * So we wait. 1253 * 1254 * However, there is also a second condition for which we need to wait 1255 * for the precise start of the signaler. Consider that the signaler 1256 * was submitted in a chain of requests following another context 1257 * (with just an ordinary intra-engine fence dependency between the 1258 * two). In this case the signaler is queued to HW, but not for 1259 * immediate execution, and so we must wait until it reaches the 1260 * active slot. 1261 */ 1262 if (intel_engine_has_semaphores(to->engine) && 1263 !i915_request_has_initial_breadcrumb(to)) { 1264 err = __emit_semaphore_wait(to, from, from->fence.seqno - 1); 1265 if (err < 0) 1266 return err; 1267 } 1268 1269 /* Couple the dependency tree for PI on this exposed to->fence */ 1270 if (to->engine->schedule) { 1271 err = i915_sched_node_add_dependency(&to->sched, 1272 &from->sched, 1273 I915_DEPENDENCY_WEAK); 1274 if (err < 0) 1275 return err; 1276 } 1277 1278 return intel_timeline_sync_set_start(i915_request_timeline(to), 1279 &from->fence); 1280 } 1281 1282 static void mark_external(struct i915_request *rq) 1283 { 1284 /* 1285 * The downside of using semaphores is that we lose metadata passing 1286 * along the signaling chain. This is particularly nasty when we 1287 * need to pass along a fatal error such as EFAULT or EDEADLK. For 1288 * fatal errors we want to scrub the request before it is executed, 1289 * which means that we cannot preload the request onto HW and have 1290 * it wait upon a semaphore. 1291 */ 1292 rq->sched.flags |= I915_SCHED_HAS_EXTERNAL_CHAIN; 1293 } 1294 1295 static int 1296 __i915_request_await_external(struct i915_request *rq, struct dma_fence *fence) 1297 { 1298 mark_external(rq); 1299 return i915_sw_fence_await_dma_fence(&rq->submit, fence, 1300 i915_fence_context_timeout(rq->engine->i915, 1301 fence->context), 1302 I915_FENCE_GFP); 1303 } 1304 1305 static int 1306 i915_request_await_external(struct i915_request *rq, struct dma_fence *fence) 1307 { 1308 struct dma_fence *iter; 1309 int err = 0; 1310 1311 if (!to_dma_fence_chain(fence)) 1312 return __i915_request_await_external(rq, fence); 1313 1314 dma_fence_chain_for_each(iter, fence) { 1315 struct dma_fence_chain *chain = to_dma_fence_chain(iter); 1316 1317 if (!dma_fence_is_i915(chain->fence)) { 1318 err = __i915_request_await_external(rq, iter); 1319 break; 1320 } 1321 1322 err = i915_request_await_dma_fence(rq, chain->fence); 1323 if (err < 0) 1324 break; 1325 } 1326 1327 dma_fence_put(iter); 1328 return err; 1329 } 1330 1331 int 1332 i915_request_await_execution(struct i915_request *rq, 1333 struct dma_fence *fence, 1334 void (*hook)(struct i915_request *rq, 1335 struct dma_fence *signal)) 1336 { 1337 struct dma_fence **child = &fence; 1338 unsigned int nchild = 1; 1339 int ret; 1340 1341 if (dma_fence_is_array(fence)) { 1342 struct dma_fence_array *array = to_dma_fence_array(fence); 1343 1344 /* XXX Error for signal-on-any fence arrays */ 1345 1346 child = array->fences; 1347 nchild = array->num_fences; 1348 GEM_BUG_ON(!nchild); 1349 } 1350 1351 do { 1352 fence = *child++; 1353 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) 1354 continue; 1355 1356 if (fence->context == rq->fence.context) 1357 continue; 1358 1359 /* 1360 * We don't squash repeated fence dependencies here as we 1361 * want to run our callback in all cases. 1362 */ 1363 1364 if (dma_fence_is_i915(fence)) 1365 ret = __i915_request_await_execution(rq, 1366 to_request(fence), 1367 hook); 1368 else 1369 ret = i915_request_await_external(rq, fence); 1370 if (ret < 0) 1371 return ret; 1372 } while (--nchild); 1373 1374 return 0; 1375 } 1376 1377 static int 1378 await_request_submit(struct i915_request *to, struct i915_request *from) 1379 { 1380 /* 1381 * If we are waiting on a virtual engine, then it may be 1382 * constrained to execute on a single engine *prior* to submission. 1383 * When it is submitted, it will be first submitted to the virtual 1384 * engine and then passed to the physical engine. We cannot allow 1385 * the waiter to be submitted immediately to the physical engine 1386 * as it may then bypass the virtual request. 1387 */ 1388 if (to->engine == READ_ONCE(from->engine)) 1389 return i915_sw_fence_await_sw_fence_gfp(&to->submit, 1390 &from->submit, 1391 I915_FENCE_GFP); 1392 else 1393 return __i915_request_await_execution(to, from, NULL); 1394 } 1395 1396 static int 1397 i915_request_await_request(struct i915_request *to, struct i915_request *from) 1398 { 1399 int ret; 1400 1401 GEM_BUG_ON(to == from); 1402 GEM_BUG_ON(to->timeline == from->timeline); 1403 1404 if (i915_request_completed(from)) { 1405 i915_sw_fence_set_error_once(&to->submit, from->fence.error); 1406 return 0; 1407 } 1408 1409 if (to->engine->schedule) { 1410 ret = i915_sched_node_add_dependency(&to->sched, 1411 &from->sched, 1412 I915_DEPENDENCY_EXTERNAL); 1413 if (ret < 0) 1414 return ret; 1415 } 1416 1417 if (is_power_of_2(to->execution_mask | READ_ONCE(from->execution_mask))) 1418 ret = await_request_submit(to, from); 1419 else 1420 ret = emit_semaphore_wait(to, from, I915_FENCE_GFP); 1421 if (ret < 0) 1422 return ret; 1423 1424 return 0; 1425 } 1426 1427 int 1428 i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence) 1429 { 1430 struct dma_fence **child = &fence; 1431 unsigned int nchild = 1; 1432 int ret; 1433 1434 /* 1435 * Note that if the fence-array was created in signal-on-any mode, 1436 * we should *not* decompose it into its individual fences. However, 1437 * we don't currently store which mode the fence-array is operating 1438 * in. Fortunately, the only user of signal-on-any is private to 1439 * amdgpu and we should not see any incoming fence-array from 1440 * sync-file being in signal-on-any mode. 1441 */ 1442 if (dma_fence_is_array(fence)) { 1443 struct dma_fence_array *array = to_dma_fence_array(fence); 1444 1445 child = array->fences; 1446 nchild = array->num_fences; 1447 GEM_BUG_ON(!nchild); 1448 } 1449 1450 do { 1451 fence = *child++; 1452 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) 1453 continue; 1454 1455 /* 1456 * Requests on the same timeline are explicitly ordered, along 1457 * with their dependencies, by i915_request_add() which ensures 1458 * that requests are submitted in-order through each ring. 1459 */ 1460 if (fence->context == rq->fence.context) 1461 continue; 1462 1463 /* Squash repeated waits to the same timelines */ 1464 if (fence->context && 1465 intel_timeline_sync_is_later(i915_request_timeline(rq), 1466 fence)) 1467 continue; 1468 1469 if (dma_fence_is_i915(fence)) 1470 ret = i915_request_await_request(rq, to_request(fence)); 1471 else 1472 ret = i915_request_await_external(rq, fence); 1473 if (ret < 0) 1474 return ret; 1475 1476 /* Record the latest fence used against each timeline */ 1477 if (fence->context) 1478 intel_timeline_sync_set(i915_request_timeline(rq), 1479 fence); 1480 } while (--nchild); 1481 1482 return 0; 1483 } 1484 1485 /** 1486 * i915_request_await_object - set this request to (async) wait upon a bo 1487 * @to: request we are wishing to use 1488 * @obj: object which may be in use on another ring. 1489 * @write: whether the wait is on behalf of a writer 1490 * 1491 * This code is meant to abstract object synchronization with the GPU. 1492 * Conceptually we serialise writes between engines inside the GPU. 1493 * We only allow one engine to write into a buffer at any time, but 1494 * multiple readers. To ensure each has a coherent view of memory, we must: 1495 * 1496 * - If there is an outstanding write request to the object, the new 1497 * request must wait for it to complete (either CPU or in hw, requests 1498 * on the same ring will be naturally ordered). 1499 * 1500 * - If we are a write request (pending_write_domain is set), the new 1501 * request must wait for outstanding read requests to complete. 1502 * 1503 * Returns 0 if successful, else propagates up the lower layer error. 1504 */ 1505 int 1506 i915_request_await_object(struct i915_request *to, 1507 struct drm_i915_gem_object *obj, 1508 bool write) 1509 { 1510 struct dma_fence *excl; 1511 int ret = 0; 1512 1513 if (write) { 1514 struct dma_fence **shared; 1515 unsigned int count, i; 1516 1517 ret = dma_resv_get_fences_rcu(obj->base.resv, 1518 &excl, &count, &shared); 1519 if (ret) 1520 return ret; 1521 1522 for (i = 0; i < count; i++) { 1523 ret = i915_request_await_dma_fence(to, shared[i]); 1524 if (ret) 1525 break; 1526 1527 dma_fence_put(shared[i]); 1528 } 1529 1530 for (; i < count; i++) 1531 dma_fence_put(shared[i]); 1532 kfree(shared); 1533 } else { 1534 excl = dma_resv_get_excl_rcu(obj->base.resv); 1535 } 1536 1537 if (excl) { 1538 if (ret == 0) 1539 ret = i915_request_await_dma_fence(to, excl); 1540 1541 dma_fence_put(excl); 1542 } 1543 1544 return ret; 1545 } 1546 1547 static struct i915_request * 1548 __i915_request_add_to_timeline(struct i915_request *rq) 1549 { 1550 struct intel_timeline *timeline = i915_request_timeline(rq); 1551 struct i915_request *prev; 1552 1553 /* 1554 * Dependency tracking and request ordering along the timeline 1555 * is special cased so that we can eliminate redundant ordering 1556 * operations while building the request (we know that the timeline 1557 * itself is ordered, and here we guarantee it). 1558 * 1559 * As we know we will need to emit tracking along the timeline, 1560 * we embed the hooks into our request struct -- at the cost of 1561 * having to have specialised no-allocation interfaces (which will 1562 * be beneficial elsewhere). 1563 * 1564 * A second benefit to open-coding i915_request_await_request is 1565 * that we can apply a slight variant of the rules specialised 1566 * for timelines that jump between engines (such as virtual engines). 1567 * If we consider the case of virtual engine, we must emit a dma-fence 1568 * to prevent scheduling of the second request until the first is 1569 * complete (to maximise our greedy late load balancing) and this 1570 * precludes optimising to use semaphores serialisation of a single 1571 * timeline across engines. 1572 */ 1573 prev = to_request(__i915_active_fence_set(&timeline->last_request, 1574 &rq->fence)); 1575 if (prev && !i915_request_completed(prev)) { 1576 /* 1577 * The requests are supposed to be kept in order. However, 1578 * we need to be wary in case the timeline->last_request 1579 * is used as a barrier for external modification to this 1580 * context. 1581 */ 1582 GEM_BUG_ON(prev->context == rq->context && 1583 i915_seqno_passed(prev->fence.seqno, 1584 rq->fence.seqno)); 1585 1586 if (is_power_of_2(READ_ONCE(prev->engine)->mask | rq->engine->mask)) 1587 i915_sw_fence_await_sw_fence(&rq->submit, 1588 &prev->submit, 1589 &rq->submitq); 1590 else 1591 __i915_sw_fence_await_dma_fence(&rq->submit, 1592 &prev->fence, 1593 &rq->dmaq); 1594 if (rq->engine->schedule) 1595 __i915_sched_node_add_dependency(&rq->sched, 1596 &prev->sched, 1597 &rq->dep, 1598 0); 1599 } 1600 1601 /* 1602 * Make sure that no request gazumped us - if it was allocated after 1603 * our i915_request_alloc() and called __i915_request_add() before 1604 * us, the timeline will hold its seqno which is later than ours. 1605 */ 1606 GEM_BUG_ON(timeline->seqno != rq->fence.seqno); 1607 1608 return prev; 1609 } 1610 1611 /* 1612 * NB: This function is not allowed to fail. Doing so would mean the the 1613 * request is not being tracked for completion but the work itself is 1614 * going to happen on the hardware. This would be a Bad Thing(tm). 1615 */ 1616 struct i915_request *__i915_request_commit(struct i915_request *rq) 1617 { 1618 struct intel_engine_cs *engine = rq->engine; 1619 struct intel_ring *ring = rq->ring; 1620 u32 *cs; 1621 1622 RQ_TRACE(rq, "\n"); 1623 1624 /* 1625 * To ensure that this call will not fail, space for its emissions 1626 * should already have been reserved in the ring buffer. Let the ring 1627 * know that it is time to use that space up. 1628 */ 1629 GEM_BUG_ON(rq->reserved_space > ring->space); 1630 rq->reserved_space = 0; 1631 rq->emitted_jiffies = jiffies; 1632 1633 /* 1634 * Record the position of the start of the breadcrumb so that 1635 * should we detect the updated seqno part-way through the 1636 * GPU processing the request, we never over-estimate the 1637 * position of the ring's HEAD. 1638 */ 1639 cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw); 1640 GEM_BUG_ON(IS_ERR(cs)); 1641 rq->postfix = intel_ring_offset(rq, cs); 1642 1643 return __i915_request_add_to_timeline(rq); 1644 } 1645 1646 void __i915_request_queue(struct i915_request *rq, 1647 const struct i915_sched_attr *attr) 1648 { 1649 /* 1650 * Let the backend know a new request has arrived that may need 1651 * to adjust the existing execution schedule due to a high priority 1652 * request - i.e. we may want to preempt the current request in order 1653 * to run a high priority dependency chain *before* we can execute this 1654 * request. 1655 * 1656 * This is called before the request is ready to run so that we can 1657 * decide whether to preempt the entire chain so that it is ready to 1658 * run at the earliest possible convenience. 1659 */ 1660 if (attr && rq->engine->schedule) 1661 rq->engine->schedule(rq, attr); 1662 i915_sw_fence_commit(&rq->semaphore); 1663 i915_sw_fence_commit(&rq->submit); 1664 } 1665 1666 void i915_request_add(struct i915_request *rq) 1667 { 1668 struct intel_timeline * const tl = i915_request_timeline(rq); 1669 struct i915_sched_attr attr = {}; 1670 struct i915_gem_context *ctx; 1671 1672 lockdep_assert_held(&tl->mutex); 1673 lockdep_unpin_lock(&tl->mutex, rq->cookie); 1674 1675 trace_i915_request_add(rq); 1676 __i915_request_commit(rq); 1677 1678 /* XXX placeholder for selftests */ 1679 rcu_read_lock(); 1680 ctx = rcu_dereference(rq->context->gem_context); 1681 if (ctx) 1682 attr = ctx->sched; 1683 rcu_read_unlock(); 1684 1685 __i915_request_queue(rq, &attr); 1686 1687 mutex_unlock(&tl->mutex); 1688 } 1689 1690 static unsigned long local_clock_ns(unsigned int *cpu) 1691 { 1692 unsigned long t; 1693 1694 /* 1695 * Cheaply and approximately convert from nanoseconds to microseconds. 1696 * The result and subsequent calculations are also defined in the same 1697 * approximate microseconds units. The principal source of timing 1698 * error here is from the simple truncation. 1699 * 1700 * Note that local_clock() is only defined wrt to the current CPU; 1701 * the comparisons are no longer valid if we switch CPUs. Instead of 1702 * blocking preemption for the entire busywait, we can detect the CPU 1703 * switch and use that as indicator of system load and a reason to 1704 * stop busywaiting, see busywait_stop(). 1705 */ 1706 *cpu = get_cpu(); 1707 t = local_clock(); 1708 put_cpu(); 1709 1710 return t; 1711 } 1712 1713 static bool busywait_stop(unsigned long timeout, unsigned int cpu) 1714 { 1715 unsigned int this_cpu; 1716 1717 if (time_after(local_clock_ns(&this_cpu), timeout)) 1718 return true; 1719 1720 return this_cpu != cpu; 1721 } 1722 1723 static bool __i915_spin_request(struct i915_request * const rq, int state) 1724 { 1725 unsigned long timeout_ns; 1726 unsigned int cpu; 1727 1728 /* 1729 * Only wait for the request if we know it is likely to complete. 1730 * 1731 * We don't track the timestamps around requests, nor the average 1732 * request length, so we do not have a good indicator that this 1733 * request will complete within the timeout. What we do know is the 1734 * order in which requests are executed by the context and so we can 1735 * tell if the request has been started. If the request is not even 1736 * running yet, it is a fair assumption that it will not complete 1737 * within our relatively short timeout. 1738 */ 1739 if (!i915_request_is_running(rq)) 1740 return false; 1741 1742 /* 1743 * When waiting for high frequency requests, e.g. during synchronous 1744 * rendering split between the CPU and GPU, the finite amount of time 1745 * required to set up the irq and wait upon it limits the response 1746 * rate. By busywaiting on the request completion for a short while we 1747 * can service the high frequency waits as quick as possible. However, 1748 * if it is a slow request, we want to sleep as quickly as possible. 1749 * The tradeoff between waiting and sleeping is roughly the time it 1750 * takes to sleep on a request, on the order of a microsecond. 1751 */ 1752 1753 timeout_ns = READ_ONCE(rq->engine->props.max_busywait_duration_ns); 1754 timeout_ns += local_clock_ns(&cpu); 1755 do { 1756 if (dma_fence_is_signaled(&rq->fence)) 1757 return true; 1758 1759 if (signal_pending_state(state, current)) 1760 break; 1761 1762 if (busywait_stop(timeout_ns, cpu)) 1763 break; 1764 1765 cpu_relax(); 1766 } while (!drm_need_resched()); 1767 1768 return false; 1769 } 1770 1771 struct request_wait { 1772 struct dma_fence_cb cb; 1773 #ifdef __linux__ 1774 struct task_struct *tsk; 1775 #else 1776 struct proc *tsk; 1777 #endif 1778 }; 1779 1780 static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb) 1781 { 1782 struct request_wait *wait = container_of(cb, typeof(*wait), cb); 1783 1784 wake_up_process(fetch_and_zero(&wait->tsk)); 1785 } 1786 1787 /** 1788 * i915_request_wait - wait until execution of request has finished 1789 * @rq: the request to wait upon 1790 * @flags: how to wait 1791 * @timeout: how long to wait in jiffies 1792 * 1793 * i915_request_wait() waits for the request to be completed, for a 1794 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an 1795 * unbounded wait). 1796 * 1797 * Returns the remaining time (in jiffies) if the request completed, which may 1798 * be zero or -ETIME if the request is unfinished after the timeout expires. 1799 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is 1800 * pending before the request completes. 1801 */ 1802 long i915_request_wait(struct i915_request *rq, 1803 unsigned int flags, 1804 long timeout) 1805 { 1806 const int state = flags & I915_WAIT_INTERRUPTIBLE ? 1807 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE; 1808 struct request_wait wait; 1809 1810 might_sleep(); 1811 GEM_BUG_ON(timeout < 0); 1812 1813 if (dma_fence_is_signaled(&rq->fence)) 1814 return timeout; 1815 1816 if (!timeout) 1817 return -ETIME; 1818 1819 trace_i915_request_wait_begin(rq, flags); 1820 1821 /* 1822 * We must never wait on the GPU while holding a lock as we 1823 * may need to perform a GPU reset. So while we don't need to 1824 * serialise wait/reset with an explicit lock, we do want 1825 * lockdep to detect potential dependency cycles. 1826 */ 1827 mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_); 1828 1829 /* 1830 * Optimistic spin before touching IRQs. 1831 * 1832 * We may use a rather large value here to offset the penalty of 1833 * switching away from the active task. Frequently, the client will 1834 * wait upon an old swapbuffer to throttle itself to remain within a 1835 * frame of the gpu. If the client is running in lockstep with the gpu, 1836 * then it should not be waiting long at all, and a sleep now will incur 1837 * extra scheduler latency in producing the next frame. To try to 1838 * avoid adding the cost of enabling/disabling the interrupt to the 1839 * short wait, we first spin to see if the request would have completed 1840 * in the time taken to setup the interrupt. 1841 * 1842 * We need upto 5us to enable the irq, and upto 20us to hide the 1843 * scheduler latency of a context switch, ignoring the secondary 1844 * impacts from a context switch such as cache eviction. 1845 * 1846 * The scheme used for low-latency IO is called "hybrid interrupt 1847 * polling". The suggestion there is to sleep until just before you 1848 * expect to be woken by the device interrupt and then poll for its 1849 * completion. That requires having a good predictor for the request 1850 * duration, which we currently lack. 1851 */ 1852 if (IS_ACTIVE(CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT) && 1853 __i915_spin_request(rq, state)) 1854 goto out; 1855 1856 /* 1857 * This client is about to stall waiting for the GPU. In many cases 1858 * this is undesirable and limits the throughput of the system, as 1859 * many clients cannot continue processing user input/output whilst 1860 * blocked. RPS autotuning may take tens of milliseconds to respond 1861 * to the GPU load and thus incurs additional latency for the client. 1862 * We can circumvent that by promoting the GPU frequency to maximum 1863 * before we sleep. This makes the GPU throttle up much more quickly 1864 * (good for benchmarks and user experience, e.g. window animations), 1865 * but at a cost of spending more power processing the workload 1866 * (bad for battery). 1867 */ 1868 if (flags & I915_WAIT_PRIORITY && !i915_request_started(rq)) 1869 intel_rps_boost(rq); 1870 1871 #ifdef __linux__ 1872 wait.tsk = current; 1873 #else 1874 wait.tsk = curproc; 1875 #endif 1876 if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake)) 1877 goto out; 1878 1879 /* 1880 * Flush the submission tasklet, but only if it may help this request. 1881 * 1882 * We sometimes experience some latency between the HW interrupts and 1883 * tasklet execution (mostly due to ksoftirqd latency, but it can also 1884 * be due to lazy CS events), so lets run the tasklet manually if there 1885 * is a chance it may submit this request. If the request is not ready 1886 * to run, as it is waiting for other fences to be signaled, flushing 1887 * the tasklet is busy work without any advantage for this client. 1888 * 1889 * If the HW is being lazy, this is the last chance before we go to 1890 * sleep to catch any pending events. We will check periodically in 1891 * the heartbeat to flush the submission tasklets as a last resort 1892 * for unhappy HW. 1893 */ 1894 if (i915_request_is_ready(rq)) 1895 intel_engine_flush_submission(rq->engine); 1896 1897 for (;;) { 1898 set_current_state(state); 1899 1900 if (dma_fence_is_signaled(&rq->fence)) 1901 break; 1902 1903 if (signal_pending_state(state, current)) { 1904 timeout = -ERESTARTSYS; 1905 break; 1906 } 1907 1908 if (!timeout) { 1909 timeout = -ETIME; 1910 break; 1911 } 1912 1913 timeout = io_schedule_timeout(timeout); 1914 } 1915 __set_current_state(TASK_RUNNING); 1916 1917 if (READ_ONCE(wait.tsk)) 1918 dma_fence_remove_callback(&rq->fence, &wait.cb); 1919 GEM_BUG_ON(!list_empty(&wait.cb.node)); 1920 1921 out: 1922 mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_); 1923 trace_i915_request_wait_end(rq); 1924 return timeout; 1925 } 1926 1927 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 1928 #include "selftests/mock_request.c" 1929 #include "selftests/i915_request.c" 1930 #endif 1931 1932 static void i915_global_request_shrink(void) 1933 { 1934 #ifdef notyet 1935 kmem_cache_shrink(global.slab_execute_cbs); 1936 kmem_cache_shrink(global.slab_requests); 1937 #endif 1938 } 1939 1940 static void i915_global_request_exit(void) 1941 { 1942 #ifdef __linux__ 1943 kmem_cache_destroy(global.slab_execute_cbs); 1944 kmem_cache_destroy(global.slab_requests); 1945 #else 1946 pool_destroy(&global.slab_execute_cbs); 1947 pool_destroy(&global.slab_requests); 1948 #endif 1949 } 1950 1951 static struct i915_global_request global = { { 1952 .shrink = i915_global_request_shrink, 1953 .exit = i915_global_request_exit, 1954 } }; 1955 1956 int __init i915_global_request_init(void) 1957 { 1958 #ifdef __linux__ 1959 global.slab_requests = 1960 kmem_cache_create("i915_request", 1961 sizeof(struct i915_request), 1962 __alignof__(struct i915_request), 1963 SLAB_HWCACHE_ALIGN | 1964 SLAB_RECLAIM_ACCOUNT | 1965 SLAB_TYPESAFE_BY_RCU, 1966 __i915_request_ctor); 1967 if (!global.slab_requests) 1968 return -ENOMEM; 1969 1970 global.slab_execute_cbs = KMEM_CACHE(execute_cb, 1971 SLAB_HWCACHE_ALIGN | 1972 SLAB_RECLAIM_ACCOUNT | 1973 SLAB_TYPESAFE_BY_RCU); 1974 if (!global.slab_execute_cbs) 1975 goto err_requests; 1976 #else 1977 pool_init(&global.slab_requests, sizeof(struct i915_request), 1978 CACHELINESIZE, IPL_TTY, 0, "i915_request", NULL); 1979 pool_init(&global.slab_execute_cbs, sizeof(struct execute_cb), 1980 CACHELINESIZE, IPL_TTY, 0, "i915_exec", NULL); 1981 #endif 1982 1983 i915_global_register(&global.base); 1984 return 0; 1985 1986 #ifdef __linux__ 1987 err_requests: 1988 kmem_cache_destroy(global.slab_requests); 1989 return -ENOMEM; 1990 #endif 1991 } 1992