xref: /openbsd-src/sys/dev/pci/drm/i915/i915_request.c (revision 5a38ef86d0b61900239c7913d24a05e7b88a58f0)
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #include <linux/dma-fence-array.h>
26 #include <linux/dma-fence-chain.h>
27 #include <linux/irq_work.h>
28 #include <linux/prefetch.h>
29 #include <linux/sched.h>
30 #include <linux/sched/clock.h>
31 #include <linux/sched/signal.h>
32 
33 #include "gem/i915_gem_context.h"
34 #include "gt/intel_breadcrumbs.h"
35 #include "gt/intel_context.h"
36 #include "gt/intel_ring.h"
37 #include "gt/intel_rps.h"
38 
39 #include "i915_active.h"
40 #include "i915_drv.h"
41 #include "i915_globals.h"
42 #include "i915_trace.h"
43 #include "intel_pm.h"
44 
45 struct execute_cb {
46 	struct irq_work work;
47 	struct i915_sw_fence *fence;
48 	void (*hook)(struct i915_request *rq, struct dma_fence *signal);
49 	struct i915_request *signal;
50 };
51 
52 static struct i915_global_request {
53 	struct i915_global base;
54 #ifdef __linux__
55 	struct kmem_cache *slab_requests;
56 	struct kmem_cache *slab_execute_cbs;
57 #else
58 	struct pool slab_requests;
59 	struct pool slab_execute_cbs;
60 #endif
61 } global;
62 
63 static const char *i915_fence_get_driver_name(struct dma_fence *fence)
64 {
65 	return dev_name(to_request(fence)->engine->i915->drm.dev);
66 }
67 
68 static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
69 {
70 	const struct i915_gem_context *ctx;
71 
72 	/*
73 	 * The timeline struct (as part of the ppgtt underneath a context)
74 	 * may be freed when the request is no longer in use by the GPU.
75 	 * We could extend the life of a context to beyond that of all
76 	 * fences, possibly keeping the hw resource around indefinitely,
77 	 * or we just give them a false name. Since
78 	 * dma_fence_ops.get_timeline_name is a debug feature, the occasional
79 	 * lie seems justifiable.
80 	 */
81 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
82 		return "signaled";
83 
84 	ctx = i915_request_gem_context(to_request(fence));
85 	if (!ctx)
86 		return "[" DRIVER_NAME "]";
87 
88 	return ctx->name;
89 }
90 
91 static bool i915_fence_signaled(struct dma_fence *fence)
92 {
93 	return i915_request_completed(to_request(fence));
94 }
95 
96 static bool i915_fence_enable_signaling(struct dma_fence *fence)
97 {
98 	return i915_request_enable_breadcrumb(to_request(fence));
99 }
100 
101 static signed long i915_fence_wait(struct dma_fence *fence,
102 				   bool interruptible,
103 				   signed long timeout)
104 {
105 	return i915_request_wait(to_request(fence),
106 				 interruptible | I915_WAIT_PRIORITY,
107 				 timeout);
108 }
109 
110 #ifdef __linux__
111 struct kmem_cache *i915_request_slab_cache(void)
112 {
113 	return global.slab_requests;
114 }
115 #else
116 struct pool *i915_request_slab_cache(void)
117 {
118 	return &global.slab_requests;
119 }
120 #endif
121 
122 static void i915_fence_release(struct dma_fence *fence)
123 {
124 	struct i915_request *rq = to_request(fence);
125 
126 	/*
127 	 * The request is put onto a RCU freelist (i.e. the address
128 	 * is immediately reused), mark the fences as being freed now.
129 	 * Otherwise the debugobjects for the fences are only marked as
130 	 * freed when the slab cache itself is freed, and so we would get
131 	 * caught trying to reuse dead objects.
132 	 */
133 	i915_sw_fence_fini(&rq->submit);
134 	i915_sw_fence_fini(&rq->semaphore);
135 
136 	/*
137 	 * Keep one request on each engine for reserved use under mempressure
138 	 *
139 	 * We do not hold a reference to the engine here and so have to be
140 	 * very careful in what rq->engine we poke. The virtual engine is
141 	 * referenced via the rq->context and we released that ref during
142 	 * i915_request_retire(), ergo we must not dereference a virtual
143 	 * engine here. Not that we would want to, as the only consumer of
144 	 * the reserved engine->request_pool is the power management parking,
145 	 * which must-not-fail, and that is only run on the physical engines.
146 	 *
147 	 * Since the request must have been executed to be have completed,
148 	 * we know that it will have been processed by the HW and will
149 	 * not be unsubmitted again, so rq->engine and rq->execution_mask
150 	 * at this point is stable. rq->execution_mask will be a single
151 	 * bit if the last and _only_ engine it could execution on was a
152 	 * physical engine, if it's multiple bits then it started on and
153 	 * could still be on a virtual engine. Thus if the mask is not a
154 	 * power-of-two we assume that rq->engine may still be a virtual
155 	 * engine and so a dangling invalid pointer that we cannot dereference
156 	 *
157 	 * For example, consider the flow of a bonded request through a virtual
158 	 * engine. The request is created with a wide engine mask (all engines
159 	 * that we might execute on). On processing the bond, the request mask
160 	 * is reduced to one or more engines. If the request is subsequently
161 	 * bound to a single engine, it will then be constrained to only
162 	 * execute on that engine and never returned to the virtual engine
163 	 * after timeslicing away, see __unwind_incomplete_requests(). Thus we
164 	 * know that if the rq->execution_mask is a single bit, rq->engine
165 	 * can be a physical engine with the exact corresponding mask.
166 	 */
167 	if (is_power_of_2(rq->execution_mask) &&
168 	    !cmpxchg(&rq->engine->request_pool, NULL, rq))
169 		return;
170 
171 #ifdef __linux__
172 	kmem_cache_free(global.slab_requests, rq);
173 #else
174 	pool_put(&global.slab_requests, rq);
175 #endif
176 }
177 
178 const struct dma_fence_ops i915_fence_ops = {
179 	.get_driver_name = i915_fence_get_driver_name,
180 	.get_timeline_name = i915_fence_get_timeline_name,
181 	.enable_signaling = i915_fence_enable_signaling,
182 	.signaled = i915_fence_signaled,
183 	.wait = i915_fence_wait,
184 	.release = i915_fence_release,
185 };
186 
187 static void irq_execute_cb(struct irq_work *wrk)
188 {
189 	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
190 
191 	i915_sw_fence_complete(cb->fence);
192 #ifdef __linux__
193 	kmem_cache_free(global.slab_execute_cbs, cb);
194 #else
195 	pool_put(&global.slab_execute_cbs, cb);
196 #endif
197 }
198 
199 static void irq_execute_cb_hook(struct irq_work *wrk)
200 {
201 	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
202 
203 	cb->hook(container_of(cb->fence, struct i915_request, submit),
204 		 &cb->signal->fence);
205 	i915_request_put(cb->signal);
206 
207 	irq_execute_cb(wrk);
208 }
209 
210 static __always_inline void
211 __notify_execute_cb(struct i915_request *rq, bool (*fn)(struct irq_work *wrk))
212 {
213 	struct execute_cb *cb, *cn;
214 
215 	if (llist_empty(&rq->execute_cb))
216 		return;
217 
218 	STUB();
219 #ifdef notyet
220 	llist_for_each_entry_safe(cb, cn,
221 				  llist_del_all(&rq->execute_cb),
222 				  work.llnode)
223 		fn(&cb->work);
224 #endif
225 }
226 
227 static void __notify_execute_cb_irq(struct i915_request *rq)
228 {
229 	__notify_execute_cb(rq, irq_work_queue);
230 }
231 
232 static bool irq_work_imm(struct irq_work *wrk)
233 {
234 #ifdef notyet
235 	wrk->func(wrk);
236 #else
237 	STUB();
238 #endif
239 	return false;
240 }
241 
242 static void __notify_execute_cb_imm(struct i915_request *rq)
243 {
244 	__notify_execute_cb(rq, irq_work_imm);
245 }
246 
247 static void free_capture_list(struct i915_request *request)
248 {
249 	struct i915_capture_list *capture;
250 
251 	capture = fetch_and_zero(&request->capture_list);
252 	while (capture) {
253 		struct i915_capture_list *next = capture->next;
254 
255 		kfree(capture);
256 		capture = next;
257 	}
258 }
259 
260 static void __i915_request_fill(struct i915_request *rq, u8 val)
261 {
262 	void *vaddr = rq->ring->vaddr;
263 	u32 head;
264 
265 	head = rq->infix;
266 	if (rq->postfix < head) {
267 		memset(vaddr + head, val, rq->ring->size - head);
268 		head = 0;
269 	}
270 	memset(vaddr + head, val, rq->postfix - head);
271 }
272 
273 static void remove_from_engine(struct i915_request *rq)
274 {
275 	struct intel_engine_cs *engine, *locked;
276 
277 	/*
278 	 * Virtual engines complicate acquiring the engine timeline lock,
279 	 * as their rq->engine pointer is not stable until under that
280 	 * engine lock. The simple ploy we use is to take the lock then
281 	 * check that the rq still belongs to the newly locked engine.
282 	 */
283 	locked = READ_ONCE(rq->engine);
284 	spin_lock_irq(&locked->active.lock);
285 	while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
286 		spin_unlock(&locked->active.lock);
287 		spin_lock(&engine->active.lock);
288 		locked = engine;
289 	}
290 	list_del_init(&rq->sched.link);
291 
292 	clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
293 	clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags);
294 
295 	/* Prevent further __await_execution() registering a cb, then flush */
296 	set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
297 
298 	spin_unlock_irq(&locked->active.lock);
299 
300 	__notify_execute_cb_imm(rq);
301 }
302 
303 bool i915_request_retire(struct i915_request *rq)
304 {
305 	if (!i915_request_completed(rq))
306 		return false;
307 
308 	RQ_TRACE(rq, "\n");
309 
310 	GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
311 	trace_i915_request_retire(rq);
312 	i915_request_mark_complete(rq);
313 
314 	/*
315 	 * We know the GPU must have read the request to have
316 	 * sent us the seqno + interrupt, so use the position
317 	 * of tail of the request to update the last known position
318 	 * of the GPU head.
319 	 *
320 	 * Note this requires that we are always called in request
321 	 * completion order.
322 	 */
323 	GEM_BUG_ON(!list_is_first(&rq->link,
324 				  &i915_request_timeline(rq)->requests));
325 	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
326 		/* Poison before we release our space in the ring */
327 		__i915_request_fill(rq, POISON_FREE);
328 	rq->ring->head = rq->postfix;
329 
330 	if (!i915_request_signaled(rq)) {
331 		spin_lock_irq(&rq->lock);
332 		dma_fence_signal_locked(&rq->fence);
333 		spin_unlock_irq(&rq->lock);
334 	}
335 
336 	if (i915_request_has_waitboost(rq)) {
337 		GEM_BUG_ON(!atomic_read(&rq->engine->gt->rps.num_waiters));
338 		atomic_dec(&rq->engine->gt->rps.num_waiters);
339 	}
340 
341 	/*
342 	 * We only loosely track inflight requests across preemption,
343 	 * and so we may find ourselves attempting to retire a _completed_
344 	 * request that we have removed from the HW and put back on a run
345 	 * queue.
346 	 *
347 	 * As we set I915_FENCE_FLAG_ACTIVE on the request, this should be
348 	 * after removing the breadcrumb and signaling it, so that we do not
349 	 * inadvertently attach the breadcrumb to a completed request.
350 	 */
351 	remove_from_engine(rq);
352 	GEM_BUG_ON(!llist_empty(&rq->execute_cb));
353 
354 	__list_del_entry(&rq->link); /* poison neither prev/next (RCU walks) */
355 
356 	intel_context_exit(rq->context);
357 	intel_context_unpin(rq->context);
358 
359 	free_capture_list(rq);
360 	i915_sched_node_fini(&rq->sched);
361 	i915_request_put(rq);
362 
363 	return true;
364 }
365 
366 void i915_request_retire_upto(struct i915_request *rq)
367 {
368 	struct intel_timeline * const tl = i915_request_timeline(rq);
369 	struct i915_request *tmp;
370 
371 	RQ_TRACE(rq, "\n");
372 
373 	GEM_BUG_ON(!i915_request_completed(rq));
374 
375 	do {
376 		tmp = list_first_entry(&tl->requests, typeof(*tmp), link);
377 	} while (i915_request_retire(tmp) && tmp != rq);
378 }
379 
380 static struct i915_request * const *
381 __engine_active(struct intel_engine_cs *engine)
382 {
383 	return READ_ONCE(engine->execlists.active);
384 }
385 
386 static bool __request_in_flight(const struct i915_request *signal)
387 {
388 	struct i915_request * const *port, *rq;
389 	bool inflight = false;
390 
391 	if (!i915_request_is_ready(signal))
392 		return false;
393 
394 	/*
395 	 * Even if we have unwound the request, it may still be on
396 	 * the GPU (preempt-to-busy). If that request is inside an
397 	 * unpreemptible critical section, it will not be removed. Some
398 	 * GPU functions may even be stuck waiting for the paired request
399 	 * (__await_execution) to be submitted and cannot be preempted
400 	 * until the bond is executing.
401 	 *
402 	 * As we know that there are always preemption points between
403 	 * requests, we know that only the currently executing request
404 	 * may be still active even though we have cleared the flag.
405 	 * However, we can't rely on our tracking of ELSP[0] to know
406 	 * which request is currently active and so maybe stuck, as
407 	 * the tracking maybe an event behind. Instead assume that
408 	 * if the context is still inflight, then it is still active
409 	 * even if the active flag has been cleared.
410 	 *
411 	 * To further complicate matters, if there a pending promotion, the HW
412 	 * may either perform a context switch to the second inflight execlists,
413 	 * or it may switch to the pending set of execlists. In the case of the
414 	 * latter, it may send the ACK and we process the event copying the
415 	 * pending[] over top of inflight[], _overwriting_ our *active. Since
416 	 * this implies the HW is arbitrating and not struck in *active, we do
417 	 * not worry about complete accuracy, but we do require no read/write
418 	 * tearing of the pointer [the read of the pointer must be valid, even
419 	 * as the array is being overwritten, for which we require the writes
420 	 * to avoid tearing.]
421 	 *
422 	 * Note that the read of *execlists->active may race with the promotion
423 	 * of execlists->pending[] to execlists->inflight[], overwritting
424 	 * the value at *execlists->active. This is fine. The promotion implies
425 	 * that we received an ACK from the HW, and so the context is not
426 	 * stuck -- if we do not see ourselves in *active, the inflight status
427 	 * is valid. If instead we see ourselves being copied into *active,
428 	 * we are inflight and may signal the callback.
429 	 */
430 	if (!intel_context_inflight(signal->context))
431 		return false;
432 
433 	rcu_read_lock();
434 	for (port = __engine_active(signal->engine);
435 	     (rq = READ_ONCE(*port)); /* may race with promotion of pending[] */
436 	     port++) {
437 		if (rq->context == signal->context) {
438 			inflight = i915_seqno_passed(rq->fence.seqno,
439 						     signal->fence.seqno);
440 			break;
441 		}
442 	}
443 	rcu_read_unlock();
444 
445 	return inflight;
446 }
447 
448 static int
449 __await_execution(struct i915_request *rq,
450 		  struct i915_request *signal,
451 		  void (*hook)(struct i915_request *rq,
452 			       struct dma_fence *signal),
453 		  gfp_t gfp)
454 {
455 	STUB();
456 	return -ENOSYS;
457 #ifdef notyet
458 	struct execute_cb *cb;
459 
460 	if (i915_request_is_active(signal)) {
461 		if (hook)
462 			hook(rq, &signal->fence);
463 		return 0;
464 	}
465 
466 #ifdef __linux__
467 	cb = kmem_cache_alloc(global.slab_execute_cbs, gfp);
468 #else
469 	cb = pool_get(&global.slab_execute_cbs,
470 	    (gfp & GFP_NOWAIT) ? PR_NOWAIT : PR_WAITOK);
471 #endif
472 	if (!cb)
473 		return -ENOMEM;
474 
475 	cb->fence = &rq->submit;
476 	i915_sw_fence_await(cb->fence);
477 	init_irq_work(&cb->work, irq_execute_cb);
478 
479 	if (hook) {
480 		cb->hook = hook;
481 		cb->signal = i915_request_get(signal);
482 #ifdef __linux__
483 		cb->work.func = irq_execute_cb_hook;
484 #else
485 		init_irq_work(&cb->work, irq_execute_cb_hook);
486 #endif
487 	}
488 
489 	/*
490 	 * Register the callback first, then see if the signaler is already
491 	 * active. This ensures that if we race with the
492 	 * __notify_execute_cb from i915_request_submit() and we are not
493 	 * included in that list, we get a second bite of the cherry and
494 	 * execute it ourselves. After this point, a future
495 	 * i915_request_submit() will notify us.
496 	 *
497 	 * In i915_request_retire() we set the ACTIVE bit on a completed
498 	 * request (then flush the execute_cb). So by registering the
499 	 * callback first, then checking the ACTIVE bit, we serialise with
500 	 * the completed/retired request.
501 	 */
502 	if (llist_add(&cb->work.llnode, &signal->execute_cb)) {
503 		if (i915_request_is_active(signal) ||
504 		    __request_in_flight(signal))
505 			__notify_execute_cb_imm(signal);
506 	}
507 
508 	return 0;
509 #endif
510 }
511 
512 static bool fatal_error(int error)
513 {
514 	switch (error) {
515 	case 0: /* not an error! */
516 	case -EAGAIN: /* innocent victim of a GT reset (__i915_request_reset) */
517 	case -ETIMEDOUT: /* waiting for Godot (timer_i915_sw_fence_wake) */
518 		return false;
519 	default:
520 		return true;
521 	}
522 }
523 
524 void __i915_request_skip(struct i915_request *rq)
525 {
526 	GEM_BUG_ON(!fatal_error(rq->fence.error));
527 
528 	if (rq->infix == rq->postfix)
529 		return;
530 
531 	/*
532 	 * As this request likely depends on state from the lost
533 	 * context, clear out all the user operations leaving the
534 	 * breadcrumb at the end (so we get the fence notifications).
535 	 */
536 	__i915_request_fill(rq, 0);
537 	rq->infix = rq->postfix;
538 }
539 
540 void i915_request_set_error_once(struct i915_request *rq, int error)
541 {
542 	int old;
543 
544 	GEM_BUG_ON(!IS_ERR_VALUE((long)error));
545 
546 	if (i915_request_signaled(rq))
547 		return;
548 
549 	old = READ_ONCE(rq->fence.error);
550 	do {
551 		if (fatal_error(old))
552 			return;
553 	} while (!try_cmpxchg(&rq->fence.error, &old, error));
554 }
555 
556 bool __i915_request_submit(struct i915_request *request)
557 {
558 	struct intel_engine_cs *engine = request->engine;
559 	bool result = false;
560 
561 	RQ_TRACE(request, "\n");
562 
563 	GEM_BUG_ON(!irqs_disabled());
564 	lockdep_assert_held(&engine->active.lock);
565 
566 	/*
567 	 * With the advent of preempt-to-busy, we frequently encounter
568 	 * requests that we have unsubmitted from HW, but left running
569 	 * until the next ack and so have completed in the meantime. On
570 	 * resubmission of that completed request, we can skip
571 	 * updating the payload, and execlists can even skip submitting
572 	 * the request.
573 	 *
574 	 * We must remove the request from the caller's priority queue,
575 	 * and the caller must only call us when the request is in their
576 	 * priority queue, under the active.lock. This ensures that the
577 	 * request has *not* yet been retired and we can safely move
578 	 * the request into the engine->active.list where it will be
579 	 * dropped upon retiring. (Otherwise if resubmit a *retired*
580 	 * request, this would be a horrible use-after-free.)
581 	 */
582 	if (i915_request_completed(request))
583 		goto xfer;
584 
585 	if (unlikely(intel_context_is_closed(request->context) &&
586 		     !intel_engine_has_heartbeat(engine)))
587 		intel_context_set_banned(request->context);
588 
589 	if (unlikely(intel_context_is_banned(request->context)))
590 		i915_request_set_error_once(request, -EIO);
591 
592 	if (unlikely(fatal_error(request->fence.error)))
593 		__i915_request_skip(request);
594 
595 	/*
596 	 * Are we using semaphores when the gpu is already saturated?
597 	 *
598 	 * Using semaphores incurs a cost in having the GPU poll a
599 	 * memory location, busywaiting for it to change. The continual
600 	 * memory reads can have a noticeable impact on the rest of the
601 	 * system with the extra bus traffic, stalling the cpu as it too
602 	 * tries to access memory across the bus (perf stat -e bus-cycles).
603 	 *
604 	 * If we installed a semaphore on this request and we only submit
605 	 * the request after the signaler completed, that indicates the
606 	 * system is overloaded and using semaphores at this time only
607 	 * increases the amount of work we are doing. If so, we disable
608 	 * further use of semaphores until we are idle again, whence we
609 	 * optimistically try again.
610 	 */
611 	if (request->sched.semaphores &&
612 	    i915_sw_fence_signaled(&request->semaphore))
613 		engine->saturated |= request->sched.semaphores;
614 
615 	engine->emit_fini_breadcrumb(request,
616 				     request->ring->vaddr + request->postfix);
617 
618 	trace_i915_request_execute(request);
619 	engine->serial++;
620 	result = true;
621 
622 xfer:
623 	if (!test_and_set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)) {
624 		list_move_tail(&request->sched.link, &engine->active.requests);
625 		clear_bit(I915_FENCE_FLAG_PQUEUE, &request->fence.flags);
626 	}
627 
628 	/*
629 	 * XXX Rollback bonded-execution on __i915_request_unsubmit()?
630 	 *
631 	 * In the future, perhaps when we have an active time-slicing scheduler,
632 	 * it will be interesting to unsubmit parallel execution and remove
633 	 * busywaits from the GPU until their master is restarted. This is
634 	 * quite hairy, we have to carefully rollback the fence and do a
635 	 * preempt-to-idle cycle on the target engine, all the while the
636 	 * master execute_cb may refire.
637 	 */
638 	__notify_execute_cb_irq(request);
639 
640 	/* We may be recursing from the signal callback of another i915 fence */
641 	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
642 		i915_request_enable_breadcrumb(request);
643 
644 	return result;
645 }
646 
647 void i915_request_submit(struct i915_request *request)
648 {
649 	struct intel_engine_cs *engine = request->engine;
650 	unsigned long flags;
651 
652 	/* Will be called from irq-context when using foreign fences. */
653 	spin_lock_irqsave(&engine->active.lock, flags);
654 
655 	__i915_request_submit(request);
656 
657 	spin_unlock_irqrestore(&engine->active.lock, flags);
658 }
659 
660 void __i915_request_unsubmit(struct i915_request *request)
661 {
662 	struct intel_engine_cs *engine = request->engine;
663 
664 	/*
665 	 * Only unwind in reverse order, required so that the per-context list
666 	 * is kept in seqno/ring order.
667 	 */
668 	RQ_TRACE(request, "\n");
669 
670 	GEM_BUG_ON(!irqs_disabled());
671 	lockdep_assert_held(&engine->active.lock);
672 
673 	/*
674 	 * Before we remove this breadcrumb from the signal list, we have
675 	 * to ensure that a concurrent dma_fence_enable_signaling() does not
676 	 * attach itself. We first mark the request as no longer active and
677 	 * make sure that is visible to other cores, and then remove the
678 	 * breadcrumb if attached.
679 	 */
680 	GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
681 	clear_bit_unlock(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
682 	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
683 		i915_request_cancel_breadcrumb(request);
684 
685 	/* We've already spun, don't charge on resubmitting. */
686 	if (request->sched.semaphores && i915_request_started(request))
687 		request->sched.semaphores = 0;
688 
689 	/*
690 	 * We don't need to wake_up any waiters on request->execute, they
691 	 * will get woken by any other event or us re-adding this request
692 	 * to the engine timeline (__i915_request_submit()). The waiters
693 	 * should be quite adapt at finding that the request now has a new
694 	 * global_seqno to the one they went to sleep on.
695 	 */
696 }
697 
698 void i915_request_unsubmit(struct i915_request *request)
699 {
700 	struct intel_engine_cs *engine = request->engine;
701 	unsigned long flags;
702 
703 	/* Will be called from irq-context when using foreign fences. */
704 	spin_lock_irqsave(&engine->active.lock, flags);
705 
706 	__i915_request_unsubmit(request);
707 
708 	spin_unlock_irqrestore(&engine->active.lock, flags);
709 }
710 
711 static int __i915_sw_fence_call
712 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
713 {
714 	struct i915_request *request =
715 		container_of(fence, typeof(*request), submit);
716 
717 	switch (state) {
718 	case FENCE_COMPLETE:
719 		trace_i915_request_submit(request);
720 
721 		if (unlikely(fence->error))
722 			i915_request_set_error_once(request, fence->error);
723 
724 		/*
725 		 * We need to serialize use of the submit_request() callback
726 		 * with its hotplugging performed during an emergency
727 		 * i915_gem_set_wedged().  We use the RCU mechanism to mark the
728 		 * critical section in order to force i915_gem_set_wedged() to
729 		 * wait until the submit_request() is completed before
730 		 * proceeding.
731 		 */
732 		rcu_read_lock();
733 		request->engine->submit_request(request);
734 		rcu_read_unlock();
735 		break;
736 
737 	case FENCE_FREE:
738 		i915_request_put(request);
739 		break;
740 	}
741 
742 	return NOTIFY_DONE;
743 }
744 
745 static int __i915_sw_fence_call
746 semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
747 {
748 	struct i915_request *rq = container_of(fence, typeof(*rq), semaphore);
749 
750 	switch (state) {
751 	case FENCE_COMPLETE:
752 		break;
753 
754 	case FENCE_FREE:
755 		i915_request_put(rq);
756 		break;
757 	}
758 
759 	return NOTIFY_DONE;
760 }
761 
762 static void retire_requests(struct intel_timeline *tl)
763 {
764 	struct i915_request *rq, *rn;
765 
766 	list_for_each_entry_safe(rq, rn, &tl->requests, link)
767 		if (!i915_request_retire(rq))
768 			break;
769 }
770 
771 static void __i915_request_ctor(void *);
772 
773 static noinline struct i915_request *
774 request_alloc_slow(struct intel_timeline *tl,
775 		   struct i915_request **rsvd,
776 		   gfp_t gfp)
777 {
778 	struct i915_request *rq;
779 
780 	/* If we cannot wait, dip into our reserves */
781 	if (!gfpflags_allow_blocking(gfp)) {
782 		rq = xchg(rsvd, NULL);
783 		if (!rq) /* Use the normal failure path for one final WARN */
784 			goto out;
785 
786 		return rq;
787 	}
788 
789 	if (list_empty(&tl->requests))
790 		goto out;
791 
792 	/* Move our oldest request to the slab-cache (if not in use!) */
793 	rq = list_first_entry(&tl->requests, typeof(*rq), link);
794 	i915_request_retire(rq);
795 
796 #ifdef __linux__
797 	rq = kmem_cache_alloc(global.slab_requests,
798 			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
799 #else
800 	rq = pool_get(&global.slab_requests,
801 	    (gfp & GFP_NOWAIT) ? PR_NOWAIT : PR_WAITOK);
802 	if (rq)
803 		__i915_request_ctor(rq);
804 #endif
805 	if (rq)
806 		return rq;
807 
808 	/* Ratelimit ourselves to prevent oom from malicious clients */
809 	rq = list_last_entry(&tl->requests, typeof(*rq), link);
810 	cond_synchronize_rcu(rq->rcustate);
811 
812 	/* Retire our old requests in the hope that we free some */
813 	retire_requests(tl);
814 
815 out:
816 #ifdef __linux__
817 	return kmem_cache_alloc(global.slab_requests, gfp);
818 #else
819 	rq = pool_get(&global.slab_requests,
820 	    (gfp & GFP_NOWAIT) ? PR_NOWAIT : PR_WAITOK);
821 	if (rq)
822 		__i915_request_ctor(rq);
823 	return rq;
824 #endif
825 }
826 
827 static void __i915_request_ctor(void *arg)
828 {
829 	struct i915_request *rq = arg;
830 
831 	/*
832 	 * witness does not understand spin_lock_nested()
833 	 * order reversal in i915 with this lock
834 	 */
835 	mtx_init_flags(&rq->lock, IPL_TTY, NULL, MTX_NOWITNESS);
836 	i915_sched_node_init(&rq->sched);
837 	i915_sw_fence_init(&rq->submit, submit_notify);
838 	i915_sw_fence_init(&rq->semaphore, semaphore_notify);
839 
840 	rq->capture_list = NULL;
841 
842 	init_llist_head(&rq->execute_cb);
843 }
844 
845 struct i915_request *
846 __i915_request_create(struct intel_context *ce, gfp_t gfp)
847 {
848 	struct intel_timeline *tl = ce->timeline;
849 	struct i915_request *rq;
850 	u32 seqno;
851 	int ret;
852 
853 	might_sleep_if(gfpflags_allow_blocking(gfp));
854 
855 	/* Check that the caller provided an already pinned context */
856 	__intel_context_pin(ce);
857 
858 	/*
859 	 * Beware: Dragons be flying overhead.
860 	 *
861 	 * We use RCU to look up requests in flight. The lookups may
862 	 * race with the request being allocated from the slab freelist.
863 	 * That is the request we are writing to here, may be in the process
864 	 * of being read by __i915_active_request_get_rcu(). As such,
865 	 * we have to be very careful when overwriting the contents. During
866 	 * the RCU lookup, we change chase the request->engine pointer,
867 	 * read the request->global_seqno and increment the reference count.
868 	 *
869 	 * The reference count is incremented atomically. If it is zero,
870 	 * the lookup knows the request is unallocated and complete. Otherwise,
871 	 * it is either still in use, or has been reallocated and reset
872 	 * with dma_fence_init(). This increment is safe for release as we
873 	 * check that the request we have a reference to and matches the active
874 	 * request.
875 	 *
876 	 * Before we increment the refcount, we chase the request->engine
877 	 * pointer. We must not call kmem_cache_zalloc() or else we set
878 	 * that pointer to NULL and cause a crash during the lookup. If
879 	 * we see the request is completed (based on the value of the
880 	 * old engine and seqno), the lookup is complete and reports NULL.
881 	 * If we decide the request is not completed (new engine or seqno),
882 	 * then we grab a reference and double check that it is still the
883 	 * active request - which it won't be and restart the lookup.
884 	 *
885 	 * Do not use kmem_cache_zalloc() here!
886 	 */
887 #ifdef __linux__
888 	rq = kmem_cache_alloc(global.slab_requests,
889 			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
890 #else
891 	rq = pool_get(&global.slab_requests,
892 	    (gfp & GFP_NOWAIT) ? PR_NOWAIT : PR_WAITOK);
893 	if (rq)
894 		__i915_request_ctor(rq);
895 #endif
896 	if (unlikely(!rq)) {
897 		rq = request_alloc_slow(tl, &ce->engine->request_pool, gfp);
898 		if (!rq) {
899 			ret = -ENOMEM;
900 			goto err_unreserve;
901 		}
902 	}
903 
904 	rq->context = ce;
905 	rq->engine = ce->engine;
906 	rq->ring = ce->ring;
907 	rq->execution_mask = ce->engine->mask;
908 
909 	ret = intel_timeline_get_seqno(tl, rq, &seqno);
910 	if (ret)
911 		goto err_free;
912 
913 	dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock,
914 		       tl->fence_context, seqno);
915 
916 	RCU_INIT_POINTER(rq->timeline, tl);
917 	RCU_INIT_POINTER(rq->hwsp_cacheline, tl->hwsp_cacheline);
918 	rq->hwsp_seqno = tl->hwsp_seqno;
919 	GEM_BUG_ON(i915_request_completed(rq));
920 
921 	rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
922 
923 	/* We bump the ref for the fence chain */
924 	i915_sw_fence_reinit(&i915_request_get(rq)->submit);
925 	i915_sw_fence_reinit(&i915_request_get(rq)->semaphore);
926 
927 	i915_sched_node_reinit(&rq->sched);
928 
929 	/* No zalloc, everything must be cleared after use */
930 	rq->batch = NULL;
931 	GEM_BUG_ON(rq->capture_list);
932 	GEM_BUG_ON(!llist_empty(&rq->execute_cb));
933 
934 	/*
935 	 * Reserve space in the ring buffer for all the commands required to
936 	 * eventually emit this request. This is to guarantee that the
937 	 * i915_request_add() call can't fail. Note that the reserve may need
938 	 * to be redone if the request is not actually submitted straight
939 	 * away, e.g. because a GPU scheduler has deferred it.
940 	 *
941 	 * Note that due to how we add reserved_space to intel_ring_begin()
942 	 * we need to double our request to ensure that if we need to wrap
943 	 * around inside i915_request_add() there is sufficient space at
944 	 * the beginning of the ring as well.
945 	 */
946 	rq->reserved_space =
947 		2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
948 
949 	/*
950 	 * Record the position of the start of the request so that
951 	 * should we detect the updated seqno part-way through the
952 	 * GPU processing the request, we never over-estimate the
953 	 * position of the head.
954 	 */
955 	rq->head = rq->ring->emit;
956 
957 	ret = rq->engine->request_alloc(rq);
958 	if (ret)
959 		goto err_unwind;
960 
961 	rq->infix = rq->ring->emit; /* end of header; start of user payload */
962 
963 	intel_context_mark_active(ce);
964 	list_add_tail_rcu(&rq->link, &tl->requests);
965 
966 	return rq;
967 
968 err_unwind:
969 	ce->ring->emit = rq->head;
970 
971 	/* Make sure we didn't add ourselves to external state before freeing */
972 	GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
973 	GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
974 
975 err_free:
976 #ifdef __linux__
977 	kmem_cache_free(global.slab_requests, rq);
978 #else
979 	pool_put(&global.slab_requests, rq);
980 #endif
981 err_unreserve:
982 	intel_context_unpin(ce);
983 	return ERR_PTR(ret);
984 }
985 
986 struct i915_request *
987 i915_request_create(struct intel_context *ce)
988 {
989 	struct i915_request *rq;
990 	struct intel_timeline *tl;
991 
992 	tl = intel_context_timeline_lock(ce);
993 	if (IS_ERR(tl))
994 		return ERR_CAST(tl);
995 
996 	/* Move our oldest request to the slab-cache (if not in use!) */
997 	rq = list_first_entry(&tl->requests, typeof(*rq), link);
998 	if (!list_is_last(&rq->link, &tl->requests))
999 		i915_request_retire(rq);
1000 
1001 	intel_context_enter(ce);
1002 	rq = __i915_request_create(ce, GFP_KERNEL);
1003 	intel_context_exit(ce); /* active reference transferred to request */
1004 	if (IS_ERR(rq))
1005 		goto err_unlock;
1006 
1007 	/* Check that we do not interrupt ourselves with a new request */
1008 	rq->cookie = lockdep_pin_lock(&tl->mutex);
1009 
1010 	return rq;
1011 
1012 err_unlock:
1013 	intel_context_timeline_unlock(tl);
1014 	return rq;
1015 }
1016 
1017 static int
1018 i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
1019 {
1020 	struct dma_fence *fence;
1021 	int err;
1022 
1023 	if (i915_request_timeline(rq) == rcu_access_pointer(signal->timeline))
1024 		return 0;
1025 
1026 	if (i915_request_started(signal))
1027 		return 0;
1028 
1029 	fence = NULL;
1030 	rcu_read_lock();
1031 	spin_lock_irq(&signal->lock);
1032 	do {
1033 		struct list_head *pos = READ_ONCE(signal->link.prev);
1034 		struct i915_request *prev;
1035 
1036 		/* Confirm signal has not been retired, the link is valid */
1037 		if (unlikely(i915_request_started(signal)))
1038 			break;
1039 
1040 		/* Is signal the earliest request on its timeline? */
1041 		if (pos == &rcu_dereference(signal->timeline)->requests)
1042 			break;
1043 
1044 		/*
1045 		 * Peek at the request before us in the timeline. That
1046 		 * request will only be valid before it is retired, so
1047 		 * after acquiring a reference to it, confirm that it is
1048 		 * still part of the signaler's timeline.
1049 		 */
1050 		prev = list_entry(pos, typeof(*prev), link);
1051 		if (!i915_request_get_rcu(prev))
1052 			break;
1053 
1054 		/* After the strong barrier, confirm prev is still attached */
1055 		if (unlikely(READ_ONCE(prev->link.next) != &signal->link)) {
1056 			i915_request_put(prev);
1057 			break;
1058 		}
1059 
1060 		fence = &prev->fence;
1061 	} while (0);
1062 	spin_unlock_irq(&signal->lock);
1063 	rcu_read_unlock();
1064 	if (!fence)
1065 		return 0;
1066 
1067 	err = 0;
1068 	if (!intel_timeline_sync_is_later(i915_request_timeline(rq), fence))
1069 		err = i915_sw_fence_await_dma_fence(&rq->submit,
1070 						    fence, 0,
1071 						    I915_FENCE_GFP);
1072 	dma_fence_put(fence);
1073 
1074 	return err;
1075 }
1076 
1077 static intel_engine_mask_t
1078 already_busywaiting(struct i915_request *rq)
1079 {
1080 	/*
1081 	 * Polling a semaphore causes bus traffic, delaying other users of
1082 	 * both the GPU and CPU. We want to limit the impact on others,
1083 	 * while taking advantage of early submission to reduce GPU
1084 	 * latency. Therefore we restrict ourselves to not using more
1085 	 * than one semaphore from each source, and not using a semaphore
1086 	 * if we have detected the engine is saturated (i.e. would not be
1087 	 * submitted early and cause bus traffic reading an already passed
1088 	 * semaphore).
1089 	 *
1090 	 * See the are-we-too-late? check in __i915_request_submit().
1091 	 */
1092 	return rq->sched.semaphores | READ_ONCE(rq->engine->saturated);
1093 }
1094 
1095 static int
1096 __emit_semaphore_wait(struct i915_request *to,
1097 		      struct i915_request *from,
1098 		      u32 seqno)
1099 {
1100 	const int has_token = INTEL_GEN(to->engine->i915) >= 12;
1101 	u32 hwsp_offset;
1102 	int len, err;
1103 	u32 *cs;
1104 
1105 	GEM_BUG_ON(INTEL_GEN(to->engine->i915) < 8);
1106 	GEM_BUG_ON(i915_request_has_initial_breadcrumb(to));
1107 
1108 	/* We need to pin the signaler's HWSP until we are finished reading. */
1109 	err = intel_timeline_read_hwsp(from, to, &hwsp_offset);
1110 	if (err)
1111 		return err;
1112 
1113 	len = 4;
1114 	if (has_token)
1115 		len += 2;
1116 
1117 	cs = intel_ring_begin(to, len);
1118 	if (IS_ERR(cs))
1119 		return PTR_ERR(cs);
1120 
1121 	/*
1122 	 * Using greater-than-or-equal here means we have to worry
1123 	 * about seqno wraparound. To side step that issue, we swap
1124 	 * the timeline HWSP upon wrapping, so that everyone listening
1125 	 * for the old (pre-wrap) values do not see the much smaller
1126 	 * (post-wrap) values than they were expecting (and so wait
1127 	 * forever).
1128 	 */
1129 	*cs++ = (MI_SEMAPHORE_WAIT |
1130 		 MI_SEMAPHORE_GLOBAL_GTT |
1131 		 MI_SEMAPHORE_POLL |
1132 		 MI_SEMAPHORE_SAD_GTE_SDD) +
1133 		has_token;
1134 	*cs++ = seqno;
1135 	*cs++ = hwsp_offset;
1136 	*cs++ = 0;
1137 	if (has_token) {
1138 		*cs++ = 0;
1139 		*cs++ = MI_NOOP;
1140 	}
1141 
1142 	intel_ring_advance(to, cs);
1143 	return 0;
1144 }
1145 
1146 static int
1147 emit_semaphore_wait(struct i915_request *to,
1148 		    struct i915_request *from,
1149 		    gfp_t gfp)
1150 {
1151 	const intel_engine_mask_t mask = READ_ONCE(from->engine)->mask;
1152 	struct i915_sw_fence *wait = &to->submit;
1153 
1154 	if (!intel_context_use_semaphores(to->context))
1155 		goto await_fence;
1156 
1157 	if (i915_request_has_initial_breadcrumb(to))
1158 		goto await_fence;
1159 
1160 	if (!rcu_access_pointer(from->hwsp_cacheline))
1161 		goto await_fence;
1162 
1163 	/*
1164 	 * If this or its dependents are waiting on an external fence
1165 	 * that may fail catastrophically, then we want to avoid using
1166 	 * sempahores as they bypass the fence signaling metadata, and we
1167 	 * lose the fence->error propagation.
1168 	 */
1169 	if (from->sched.flags & I915_SCHED_HAS_EXTERNAL_CHAIN)
1170 		goto await_fence;
1171 
1172 	/* Just emit the first semaphore we see as request space is limited. */
1173 	if (already_busywaiting(to) & mask)
1174 		goto await_fence;
1175 
1176 	if (i915_request_await_start(to, from) < 0)
1177 		goto await_fence;
1178 
1179 	/* Only submit our spinner after the signaler is running! */
1180 	if (__await_execution(to, from, NULL, gfp))
1181 		goto await_fence;
1182 
1183 	if (__emit_semaphore_wait(to, from, from->fence.seqno))
1184 		goto await_fence;
1185 
1186 	to->sched.semaphores |= mask;
1187 	wait = &to->semaphore;
1188 
1189 await_fence:
1190 	return i915_sw_fence_await_dma_fence(wait,
1191 					     &from->fence, 0,
1192 					     I915_FENCE_GFP);
1193 }
1194 
1195 static bool intel_timeline_sync_has_start(struct intel_timeline *tl,
1196 					  struct dma_fence *fence)
1197 {
1198 	return __intel_timeline_sync_is_later(tl,
1199 					      fence->context,
1200 					      fence->seqno - 1);
1201 }
1202 
1203 static int intel_timeline_sync_set_start(struct intel_timeline *tl,
1204 					 const struct dma_fence *fence)
1205 {
1206 	return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1);
1207 }
1208 
1209 static int
1210 __i915_request_await_execution(struct i915_request *to,
1211 			       struct i915_request *from,
1212 			       void (*hook)(struct i915_request *rq,
1213 					    struct dma_fence *signal))
1214 {
1215 	int err;
1216 
1217 	GEM_BUG_ON(intel_context_is_barrier(from->context));
1218 
1219 	/* Submit both requests at the same time */
1220 	err = __await_execution(to, from, hook, I915_FENCE_GFP);
1221 	if (err)
1222 		return err;
1223 
1224 	/* Squash repeated depenendices to the same timelines */
1225 	if (intel_timeline_sync_has_start(i915_request_timeline(to),
1226 					  &from->fence))
1227 		return 0;
1228 
1229 	/*
1230 	 * Wait until the start of this request.
1231 	 *
1232 	 * The execution cb fires when we submit the request to HW. But in
1233 	 * many cases this may be long before the request itself is ready to
1234 	 * run (consider that we submit 2 requests for the same context, where
1235 	 * the request of interest is behind an indefinite spinner). So we hook
1236 	 * up to both to reduce our queues and keep the execution lag minimised
1237 	 * in the worst case, though we hope that the await_start is elided.
1238 	 */
1239 	err = i915_request_await_start(to, from);
1240 	if (err < 0)
1241 		return err;
1242 
1243 	/*
1244 	 * Ensure both start together [after all semaphores in signal]
1245 	 *
1246 	 * Now that we are queued to the HW at roughly the same time (thanks
1247 	 * to the execute cb) and are ready to run at roughly the same time
1248 	 * (thanks to the await start), our signaler may still be indefinitely
1249 	 * delayed by waiting on a semaphore from a remote engine. If our
1250 	 * signaler depends on a semaphore, so indirectly do we, and we do not
1251 	 * want to start our payload until our signaler also starts theirs.
1252 	 * So we wait.
1253 	 *
1254 	 * However, there is also a second condition for which we need to wait
1255 	 * for the precise start of the signaler. Consider that the signaler
1256 	 * was submitted in a chain of requests following another context
1257 	 * (with just an ordinary intra-engine fence dependency between the
1258 	 * two). In this case the signaler is queued to HW, but not for
1259 	 * immediate execution, and so we must wait until it reaches the
1260 	 * active slot.
1261 	 */
1262 	if (intel_engine_has_semaphores(to->engine) &&
1263 	    !i915_request_has_initial_breadcrumb(to)) {
1264 		err = __emit_semaphore_wait(to, from, from->fence.seqno - 1);
1265 		if (err < 0)
1266 			return err;
1267 	}
1268 
1269 	/* Couple the dependency tree for PI on this exposed to->fence */
1270 	if (to->engine->schedule) {
1271 		err = i915_sched_node_add_dependency(&to->sched,
1272 						     &from->sched,
1273 						     I915_DEPENDENCY_WEAK);
1274 		if (err < 0)
1275 			return err;
1276 	}
1277 
1278 	return intel_timeline_sync_set_start(i915_request_timeline(to),
1279 					     &from->fence);
1280 }
1281 
1282 static void mark_external(struct i915_request *rq)
1283 {
1284 	/*
1285 	 * The downside of using semaphores is that we lose metadata passing
1286 	 * along the signaling chain. This is particularly nasty when we
1287 	 * need to pass along a fatal error such as EFAULT or EDEADLK. For
1288 	 * fatal errors we want to scrub the request before it is executed,
1289 	 * which means that we cannot preload the request onto HW and have
1290 	 * it wait upon a semaphore.
1291 	 */
1292 	rq->sched.flags |= I915_SCHED_HAS_EXTERNAL_CHAIN;
1293 }
1294 
1295 static int
1296 __i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
1297 {
1298 	mark_external(rq);
1299 	return i915_sw_fence_await_dma_fence(&rq->submit, fence,
1300 					     i915_fence_context_timeout(rq->engine->i915,
1301 									fence->context),
1302 					     I915_FENCE_GFP);
1303 }
1304 
1305 static int
1306 i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
1307 {
1308 	struct dma_fence *iter;
1309 	int err = 0;
1310 
1311 	if (!to_dma_fence_chain(fence))
1312 		return __i915_request_await_external(rq, fence);
1313 
1314 	dma_fence_chain_for_each(iter, fence) {
1315 		struct dma_fence_chain *chain = to_dma_fence_chain(iter);
1316 
1317 		if (!dma_fence_is_i915(chain->fence)) {
1318 			err = __i915_request_await_external(rq, iter);
1319 			break;
1320 		}
1321 
1322 		err = i915_request_await_dma_fence(rq, chain->fence);
1323 		if (err < 0)
1324 			break;
1325 	}
1326 
1327 	dma_fence_put(iter);
1328 	return err;
1329 }
1330 
1331 int
1332 i915_request_await_execution(struct i915_request *rq,
1333 			     struct dma_fence *fence,
1334 			     void (*hook)(struct i915_request *rq,
1335 					  struct dma_fence *signal))
1336 {
1337 	struct dma_fence **child = &fence;
1338 	unsigned int nchild = 1;
1339 	int ret;
1340 
1341 	if (dma_fence_is_array(fence)) {
1342 		struct dma_fence_array *array = to_dma_fence_array(fence);
1343 
1344 		/* XXX Error for signal-on-any fence arrays */
1345 
1346 		child = array->fences;
1347 		nchild = array->num_fences;
1348 		GEM_BUG_ON(!nchild);
1349 	}
1350 
1351 	do {
1352 		fence = *child++;
1353 		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
1354 			continue;
1355 
1356 		if (fence->context == rq->fence.context)
1357 			continue;
1358 
1359 		/*
1360 		 * We don't squash repeated fence dependencies here as we
1361 		 * want to run our callback in all cases.
1362 		 */
1363 
1364 		if (dma_fence_is_i915(fence))
1365 			ret = __i915_request_await_execution(rq,
1366 							     to_request(fence),
1367 							     hook);
1368 		else
1369 			ret = i915_request_await_external(rq, fence);
1370 		if (ret < 0)
1371 			return ret;
1372 	} while (--nchild);
1373 
1374 	return 0;
1375 }
1376 
1377 static int
1378 await_request_submit(struct i915_request *to, struct i915_request *from)
1379 {
1380 	/*
1381 	 * If we are waiting on a virtual engine, then it may be
1382 	 * constrained to execute on a single engine *prior* to submission.
1383 	 * When it is submitted, it will be first submitted to the virtual
1384 	 * engine and then passed to the physical engine. We cannot allow
1385 	 * the waiter to be submitted immediately to the physical engine
1386 	 * as it may then bypass the virtual request.
1387 	 */
1388 	if (to->engine == READ_ONCE(from->engine))
1389 		return i915_sw_fence_await_sw_fence_gfp(&to->submit,
1390 							&from->submit,
1391 							I915_FENCE_GFP);
1392 	else
1393 		return __i915_request_await_execution(to, from, NULL);
1394 }
1395 
1396 static int
1397 i915_request_await_request(struct i915_request *to, struct i915_request *from)
1398 {
1399 	int ret;
1400 
1401 	GEM_BUG_ON(to == from);
1402 	GEM_BUG_ON(to->timeline == from->timeline);
1403 
1404 	if (i915_request_completed(from)) {
1405 		i915_sw_fence_set_error_once(&to->submit, from->fence.error);
1406 		return 0;
1407 	}
1408 
1409 	if (to->engine->schedule) {
1410 		ret = i915_sched_node_add_dependency(&to->sched,
1411 						     &from->sched,
1412 						     I915_DEPENDENCY_EXTERNAL);
1413 		if (ret < 0)
1414 			return ret;
1415 	}
1416 
1417 	if (is_power_of_2(to->execution_mask | READ_ONCE(from->execution_mask)))
1418 		ret = await_request_submit(to, from);
1419 	else
1420 		ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
1421 	if (ret < 0)
1422 		return ret;
1423 
1424 	return 0;
1425 }
1426 
1427 int
1428 i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
1429 {
1430 	struct dma_fence **child = &fence;
1431 	unsigned int nchild = 1;
1432 	int ret;
1433 
1434 	/*
1435 	 * Note that if the fence-array was created in signal-on-any mode,
1436 	 * we should *not* decompose it into its individual fences. However,
1437 	 * we don't currently store which mode the fence-array is operating
1438 	 * in. Fortunately, the only user of signal-on-any is private to
1439 	 * amdgpu and we should not see any incoming fence-array from
1440 	 * sync-file being in signal-on-any mode.
1441 	 */
1442 	if (dma_fence_is_array(fence)) {
1443 		struct dma_fence_array *array = to_dma_fence_array(fence);
1444 
1445 		child = array->fences;
1446 		nchild = array->num_fences;
1447 		GEM_BUG_ON(!nchild);
1448 	}
1449 
1450 	do {
1451 		fence = *child++;
1452 		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
1453 			continue;
1454 
1455 		/*
1456 		 * Requests on the same timeline are explicitly ordered, along
1457 		 * with their dependencies, by i915_request_add() which ensures
1458 		 * that requests are submitted in-order through each ring.
1459 		 */
1460 		if (fence->context == rq->fence.context)
1461 			continue;
1462 
1463 		/* Squash repeated waits to the same timelines */
1464 		if (fence->context &&
1465 		    intel_timeline_sync_is_later(i915_request_timeline(rq),
1466 						 fence))
1467 			continue;
1468 
1469 		if (dma_fence_is_i915(fence))
1470 			ret = i915_request_await_request(rq, to_request(fence));
1471 		else
1472 			ret = i915_request_await_external(rq, fence);
1473 		if (ret < 0)
1474 			return ret;
1475 
1476 		/* Record the latest fence used against each timeline */
1477 		if (fence->context)
1478 			intel_timeline_sync_set(i915_request_timeline(rq),
1479 						fence);
1480 	} while (--nchild);
1481 
1482 	return 0;
1483 }
1484 
1485 /**
1486  * i915_request_await_object - set this request to (async) wait upon a bo
1487  * @to: request we are wishing to use
1488  * @obj: object which may be in use on another ring.
1489  * @write: whether the wait is on behalf of a writer
1490  *
1491  * This code is meant to abstract object synchronization with the GPU.
1492  * Conceptually we serialise writes between engines inside the GPU.
1493  * We only allow one engine to write into a buffer at any time, but
1494  * multiple readers. To ensure each has a coherent view of memory, we must:
1495  *
1496  * - If there is an outstanding write request to the object, the new
1497  *   request must wait for it to complete (either CPU or in hw, requests
1498  *   on the same ring will be naturally ordered).
1499  *
1500  * - If we are a write request (pending_write_domain is set), the new
1501  *   request must wait for outstanding read requests to complete.
1502  *
1503  * Returns 0 if successful, else propagates up the lower layer error.
1504  */
1505 int
1506 i915_request_await_object(struct i915_request *to,
1507 			  struct drm_i915_gem_object *obj,
1508 			  bool write)
1509 {
1510 	struct dma_fence *excl;
1511 	int ret = 0;
1512 
1513 	if (write) {
1514 		struct dma_fence **shared;
1515 		unsigned int count, i;
1516 
1517 		ret = dma_resv_get_fences_rcu(obj->base.resv,
1518 							&excl, &count, &shared);
1519 		if (ret)
1520 			return ret;
1521 
1522 		for (i = 0; i < count; i++) {
1523 			ret = i915_request_await_dma_fence(to, shared[i]);
1524 			if (ret)
1525 				break;
1526 
1527 			dma_fence_put(shared[i]);
1528 		}
1529 
1530 		for (; i < count; i++)
1531 			dma_fence_put(shared[i]);
1532 		kfree(shared);
1533 	} else {
1534 		excl = dma_resv_get_excl_rcu(obj->base.resv);
1535 	}
1536 
1537 	if (excl) {
1538 		if (ret == 0)
1539 			ret = i915_request_await_dma_fence(to, excl);
1540 
1541 		dma_fence_put(excl);
1542 	}
1543 
1544 	return ret;
1545 }
1546 
1547 static struct i915_request *
1548 __i915_request_add_to_timeline(struct i915_request *rq)
1549 {
1550 	struct intel_timeline *timeline = i915_request_timeline(rq);
1551 	struct i915_request *prev;
1552 
1553 	/*
1554 	 * Dependency tracking and request ordering along the timeline
1555 	 * is special cased so that we can eliminate redundant ordering
1556 	 * operations while building the request (we know that the timeline
1557 	 * itself is ordered, and here we guarantee it).
1558 	 *
1559 	 * As we know we will need to emit tracking along the timeline,
1560 	 * we embed the hooks into our request struct -- at the cost of
1561 	 * having to have specialised no-allocation interfaces (which will
1562 	 * be beneficial elsewhere).
1563 	 *
1564 	 * A second benefit to open-coding i915_request_await_request is
1565 	 * that we can apply a slight variant of the rules specialised
1566 	 * for timelines that jump between engines (such as virtual engines).
1567 	 * If we consider the case of virtual engine, we must emit a dma-fence
1568 	 * to prevent scheduling of the second request until the first is
1569 	 * complete (to maximise our greedy late load balancing) and this
1570 	 * precludes optimising to use semaphores serialisation of a single
1571 	 * timeline across engines.
1572 	 */
1573 	prev = to_request(__i915_active_fence_set(&timeline->last_request,
1574 						  &rq->fence));
1575 	if (prev && !i915_request_completed(prev)) {
1576 		/*
1577 		 * The requests are supposed to be kept in order. However,
1578 		 * we need to be wary in case the timeline->last_request
1579 		 * is used as a barrier for external modification to this
1580 		 * context.
1581 		 */
1582 		GEM_BUG_ON(prev->context == rq->context &&
1583 			   i915_seqno_passed(prev->fence.seqno,
1584 					     rq->fence.seqno));
1585 
1586 		if (is_power_of_2(READ_ONCE(prev->engine)->mask | rq->engine->mask))
1587 			i915_sw_fence_await_sw_fence(&rq->submit,
1588 						     &prev->submit,
1589 						     &rq->submitq);
1590 		else
1591 			__i915_sw_fence_await_dma_fence(&rq->submit,
1592 							&prev->fence,
1593 							&rq->dmaq);
1594 		if (rq->engine->schedule)
1595 			__i915_sched_node_add_dependency(&rq->sched,
1596 							 &prev->sched,
1597 							 &rq->dep,
1598 							 0);
1599 	}
1600 
1601 	/*
1602 	 * Make sure that no request gazumped us - if it was allocated after
1603 	 * our i915_request_alloc() and called __i915_request_add() before
1604 	 * us, the timeline will hold its seqno which is later than ours.
1605 	 */
1606 	GEM_BUG_ON(timeline->seqno != rq->fence.seqno);
1607 
1608 	return prev;
1609 }
1610 
1611 /*
1612  * NB: This function is not allowed to fail. Doing so would mean the the
1613  * request is not being tracked for completion but the work itself is
1614  * going to happen on the hardware. This would be a Bad Thing(tm).
1615  */
1616 struct i915_request *__i915_request_commit(struct i915_request *rq)
1617 {
1618 	struct intel_engine_cs *engine = rq->engine;
1619 	struct intel_ring *ring = rq->ring;
1620 	u32 *cs;
1621 
1622 	RQ_TRACE(rq, "\n");
1623 
1624 	/*
1625 	 * To ensure that this call will not fail, space for its emissions
1626 	 * should already have been reserved in the ring buffer. Let the ring
1627 	 * know that it is time to use that space up.
1628 	 */
1629 	GEM_BUG_ON(rq->reserved_space > ring->space);
1630 	rq->reserved_space = 0;
1631 	rq->emitted_jiffies = jiffies;
1632 
1633 	/*
1634 	 * Record the position of the start of the breadcrumb so that
1635 	 * should we detect the updated seqno part-way through the
1636 	 * GPU processing the request, we never over-estimate the
1637 	 * position of the ring's HEAD.
1638 	 */
1639 	cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw);
1640 	GEM_BUG_ON(IS_ERR(cs));
1641 	rq->postfix = intel_ring_offset(rq, cs);
1642 
1643 	return __i915_request_add_to_timeline(rq);
1644 }
1645 
1646 void __i915_request_queue(struct i915_request *rq,
1647 			  const struct i915_sched_attr *attr)
1648 {
1649 	/*
1650 	 * Let the backend know a new request has arrived that may need
1651 	 * to adjust the existing execution schedule due to a high priority
1652 	 * request - i.e. we may want to preempt the current request in order
1653 	 * to run a high priority dependency chain *before* we can execute this
1654 	 * request.
1655 	 *
1656 	 * This is called before the request is ready to run so that we can
1657 	 * decide whether to preempt the entire chain so that it is ready to
1658 	 * run at the earliest possible convenience.
1659 	 */
1660 	if (attr && rq->engine->schedule)
1661 		rq->engine->schedule(rq, attr);
1662 	i915_sw_fence_commit(&rq->semaphore);
1663 	i915_sw_fence_commit(&rq->submit);
1664 }
1665 
1666 void i915_request_add(struct i915_request *rq)
1667 {
1668 	struct intel_timeline * const tl = i915_request_timeline(rq);
1669 	struct i915_sched_attr attr = {};
1670 	struct i915_gem_context *ctx;
1671 
1672 	lockdep_assert_held(&tl->mutex);
1673 	lockdep_unpin_lock(&tl->mutex, rq->cookie);
1674 
1675 	trace_i915_request_add(rq);
1676 	__i915_request_commit(rq);
1677 
1678 	/* XXX placeholder for selftests */
1679 	rcu_read_lock();
1680 	ctx = rcu_dereference(rq->context->gem_context);
1681 	if (ctx)
1682 		attr = ctx->sched;
1683 	rcu_read_unlock();
1684 
1685 	__i915_request_queue(rq, &attr);
1686 
1687 	mutex_unlock(&tl->mutex);
1688 }
1689 
1690 static unsigned long local_clock_ns(unsigned int *cpu)
1691 {
1692 	unsigned long t;
1693 
1694 	/*
1695 	 * Cheaply and approximately convert from nanoseconds to microseconds.
1696 	 * The result and subsequent calculations are also defined in the same
1697 	 * approximate microseconds units. The principal source of timing
1698 	 * error here is from the simple truncation.
1699 	 *
1700 	 * Note that local_clock() is only defined wrt to the current CPU;
1701 	 * the comparisons are no longer valid if we switch CPUs. Instead of
1702 	 * blocking preemption for the entire busywait, we can detect the CPU
1703 	 * switch and use that as indicator of system load and a reason to
1704 	 * stop busywaiting, see busywait_stop().
1705 	 */
1706 	*cpu = get_cpu();
1707 	t = local_clock();
1708 	put_cpu();
1709 
1710 	return t;
1711 }
1712 
1713 static bool busywait_stop(unsigned long timeout, unsigned int cpu)
1714 {
1715 	unsigned int this_cpu;
1716 
1717 	if (time_after(local_clock_ns(&this_cpu), timeout))
1718 		return true;
1719 
1720 	return this_cpu != cpu;
1721 }
1722 
1723 static bool __i915_spin_request(struct i915_request * const rq, int state)
1724 {
1725 	unsigned long timeout_ns;
1726 	unsigned int cpu;
1727 
1728 	/*
1729 	 * Only wait for the request if we know it is likely to complete.
1730 	 *
1731 	 * We don't track the timestamps around requests, nor the average
1732 	 * request length, so we do not have a good indicator that this
1733 	 * request will complete within the timeout. What we do know is the
1734 	 * order in which requests are executed by the context and so we can
1735 	 * tell if the request has been started. If the request is not even
1736 	 * running yet, it is a fair assumption that it will not complete
1737 	 * within our relatively short timeout.
1738 	 */
1739 	if (!i915_request_is_running(rq))
1740 		return false;
1741 
1742 	/*
1743 	 * When waiting for high frequency requests, e.g. during synchronous
1744 	 * rendering split between the CPU and GPU, the finite amount of time
1745 	 * required to set up the irq and wait upon it limits the response
1746 	 * rate. By busywaiting on the request completion for a short while we
1747 	 * can service the high frequency waits as quick as possible. However,
1748 	 * if it is a slow request, we want to sleep as quickly as possible.
1749 	 * The tradeoff between waiting and sleeping is roughly the time it
1750 	 * takes to sleep on a request, on the order of a microsecond.
1751 	 */
1752 
1753 	timeout_ns = READ_ONCE(rq->engine->props.max_busywait_duration_ns);
1754 	timeout_ns += local_clock_ns(&cpu);
1755 	do {
1756 		if (dma_fence_is_signaled(&rq->fence))
1757 			return true;
1758 
1759 		if (signal_pending_state(state, current))
1760 			break;
1761 
1762 		if (busywait_stop(timeout_ns, cpu))
1763 			break;
1764 
1765 		cpu_relax();
1766 	} while (!drm_need_resched());
1767 
1768 	return false;
1769 }
1770 
1771 struct request_wait {
1772 	struct dma_fence_cb cb;
1773 #ifdef __linux__
1774 	struct task_struct *tsk;
1775 #else
1776 	struct proc *tsk;
1777 #endif
1778 };
1779 
1780 static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
1781 {
1782 	struct request_wait *wait = container_of(cb, typeof(*wait), cb);
1783 
1784 	wake_up_process(fetch_and_zero(&wait->tsk));
1785 }
1786 
1787 /**
1788  * i915_request_wait - wait until execution of request has finished
1789  * @rq: the request to wait upon
1790  * @flags: how to wait
1791  * @timeout: how long to wait in jiffies
1792  *
1793  * i915_request_wait() waits for the request to be completed, for a
1794  * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1795  * unbounded wait).
1796  *
1797  * Returns the remaining time (in jiffies) if the request completed, which may
1798  * be zero or -ETIME if the request is unfinished after the timeout expires.
1799  * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1800  * pending before the request completes.
1801  */
1802 long i915_request_wait(struct i915_request *rq,
1803 		       unsigned int flags,
1804 		       long timeout)
1805 {
1806 	const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1807 		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1808 	struct request_wait wait;
1809 
1810 	might_sleep();
1811 	GEM_BUG_ON(timeout < 0);
1812 
1813 	if (dma_fence_is_signaled(&rq->fence))
1814 		return timeout;
1815 
1816 	if (!timeout)
1817 		return -ETIME;
1818 
1819 	trace_i915_request_wait_begin(rq, flags);
1820 
1821 	/*
1822 	 * We must never wait on the GPU while holding a lock as we
1823 	 * may need to perform a GPU reset. So while we don't need to
1824 	 * serialise wait/reset with an explicit lock, we do want
1825 	 * lockdep to detect potential dependency cycles.
1826 	 */
1827 	mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_);
1828 
1829 	/*
1830 	 * Optimistic spin before touching IRQs.
1831 	 *
1832 	 * We may use a rather large value here to offset the penalty of
1833 	 * switching away from the active task. Frequently, the client will
1834 	 * wait upon an old swapbuffer to throttle itself to remain within a
1835 	 * frame of the gpu. If the client is running in lockstep with the gpu,
1836 	 * then it should not be waiting long at all, and a sleep now will incur
1837 	 * extra scheduler latency in producing the next frame. To try to
1838 	 * avoid adding the cost of enabling/disabling the interrupt to the
1839 	 * short wait, we first spin to see if the request would have completed
1840 	 * in the time taken to setup the interrupt.
1841 	 *
1842 	 * We need upto 5us to enable the irq, and upto 20us to hide the
1843 	 * scheduler latency of a context switch, ignoring the secondary
1844 	 * impacts from a context switch such as cache eviction.
1845 	 *
1846 	 * The scheme used for low-latency IO is called "hybrid interrupt
1847 	 * polling". The suggestion there is to sleep until just before you
1848 	 * expect to be woken by the device interrupt and then poll for its
1849 	 * completion. That requires having a good predictor for the request
1850 	 * duration, which we currently lack.
1851 	 */
1852 	if (IS_ACTIVE(CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT) &&
1853 	    __i915_spin_request(rq, state))
1854 		goto out;
1855 
1856 	/*
1857 	 * This client is about to stall waiting for the GPU. In many cases
1858 	 * this is undesirable and limits the throughput of the system, as
1859 	 * many clients cannot continue processing user input/output whilst
1860 	 * blocked. RPS autotuning may take tens of milliseconds to respond
1861 	 * to the GPU load and thus incurs additional latency for the client.
1862 	 * We can circumvent that by promoting the GPU frequency to maximum
1863 	 * before we sleep. This makes the GPU throttle up much more quickly
1864 	 * (good for benchmarks and user experience, e.g. window animations),
1865 	 * but at a cost of spending more power processing the workload
1866 	 * (bad for battery).
1867 	 */
1868 	if (flags & I915_WAIT_PRIORITY && !i915_request_started(rq))
1869 		intel_rps_boost(rq);
1870 
1871 #ifdef __linux__
1872 	wait.tsk = current;
1873 #else
1874 	wait.tsk = curproc;
1875 #endif
1876 	if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
1877 		goto out;
1878 
1879 	/*
1880 	 * Flush the submission tasklet, but only if it may help this request.
1881 	 *
1882 	 * We sometimes experience some latency between the HW interrupts and
1883 	 * tasklet execution (mostly due to ksoftirqd latency, but it can also
1884 	 * be due to lazy CS events), so lets run the tasklet manually if there
1885 	 * is a chance it may submit this request. If the request is not ready
1886 	 * to run, as it is waiting for other fences to be signaled, flushing
1887 	 * the tasklet is busy work without any advantage for this client.
1888 	 *
1889 	 * If the HW is being lazy, this is the last chance before we go to
1890 	 * sleep to catch any pending events. We will check periodically in
1891 	 * the heartbeat to flush the submission tasklets as a last resort
1892 	 * for unhappy HW.
1893 	 */
1894 	if (i915_request_is_ready(rq))
1895 		intel_engine_flush_submission(rq->engine);
1896 
1897 	for (;;) {
1898 		set_current_state(state);
1899 
1900 		if (dma_fence_is_signaled(&rq->fence))
1901 			break;
1902 
1903 		if (signal_pending_state(state, current)) {
1904 			timeout = -ERESTARTSYS;
1905 			break;
1906 		}
1907 
1908 		if (!timeout) {
1909 			timeout = -ETIME;
1910 			break;
1911 		}
1912 
1913 		timeout = io_schedule_timeout(timeout);
1914 	}
1915 	__set_current_state(TASK_RUNNING);
1916 
1917 	if (READ_ONCE(wait.tsk))
1918 		dma_fence_remove_callback(&rq->fence, &wait.cb);
1919 	GEM_BUG_ON(!list_empty(&wait.cb.node));
1920 
1921 out:
1922 	mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_);
1923 	trace_i915_request_wait_end(rq);
1924 	return timeout;
1925 }
1926 
1927 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1928 #include "selftests/mock_request.c"
1929 #include "selftests/i915_request.c"
1930 #endif
1931 
1932 static void i915_global_request_shrink(void)
1933 {
1934 #ifdef notyet
1935 	kmem_cache_shrink(global.slab_execute_cbs);
1936 	kmem_cache_shrink(global.slab_requests);
1937 #endif
1938 }
1939 
1940 static void i915_global_request_exit(void)
1941 {
1942 #ifdef __linux__
1943 	kmem_cache_destroy(global.slab_execute_cbs);
1944 	kmem_cache_destroy(global.slab_requests);
1945 #else
1946 	pool_destroy(&global.slab_execute_cbs);
1947 	pool_destroy(&global.slab_requests);
1948 #endif
1949 }
1950 
1951 static struct i915_global_request global = { {
1952 	.shrink = i915_global_request_shrink,
1953 	.exit = i915_global_request_exit,
1954 } };
1955 
1956 int __init i915_global_request_init(void)
1957 {
1958 #ifdef __linux__
1959 	global.slab_requests =
1960 		kmem_cache_create("i915_request",
1961 				  sizeof(struct i915_request),
1962 				  __alignof__(struct i915_request),
1963 				  SLAB_HWCACHE_ALIGN |
1964 				  SLAB_RECLAIM_ACCOUNT |
1965 				  SLAB_TYPESAFE_BY_RCU,
1966 				  __i915_request_ctor);
1967 	if (!global.slab_requests)
1968 		return -ENOMEM;
1969 
1970 	global.slab_execute_cbs = KMEM_CACHE(execute_cb,
1971 					     SLAB_HWCACHE_ALIGN |
1972 					     SLAB_RECLAIM_ACCOUNT |
1973 					     SLAB_TYPESAFE_BY_RCU);
1974 	if (!global.slab_execute_cbs)
1975 		goto err_requests;
1976 #else
1977 	pool_init(&global.slab_requests, sizeof(struct i915_request),
1978 	    CACHELINESIZE, IPL_TTY, 0, "i915_request", NULL);
1979 	pool_init(&global.slab_execute_cbs, sizeof(struct execute_cb),
1980 	    CACHELINESIZE, IPL_TTY, 0, "i915_exec", NULL);
1981 #endif
1982 
1983 	i915_global_register(&global.base);
1984 	return 0;
1985 
1986 #ifdef __linux__
1987 err_requests:
1988 	kmem_cache_destroy(global.slab_requests);
1989 	return -ENOMEM;
1990 #endif
1991 }
1992