xref: /openbsd-src/sys/dev/pci/drm/i915/i915_request.c (revision 1ad61ae0a79a724d2d3ec69e69c8e1d1ff6b53a0)
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #include <linux/dma-fence-array.h>
26 #include <linux/dma-fence-chain.h>
27 #include <linux/irq_work.h>
28 #include <linux/prefetch.h>
29 #include <linux/sched.h>
30 #include <linux/sched/clock.h>
31 #include <linux/sched/signal.h>
32 #include <linux/sched/mm.h>
33 
34 #include "gem/i915_gem_context.h"
35 #include "gt/intel_breadcrumbs.h"
36 #include "gt/intel_context.h"
37 #include "gt/intel_engine.h"
38 #include "gt/intel_engine_heartbeat.h"
39 #include "gt/intel_engine_regs.h"
40 #include "gt/intel_gpu_commands.h"
41 #include "gt/intel_reset.h"
42 #include "gt/intel_ring.h"
43 #include "gt/intel_rps.h"
44 
45 #include "i915_active.h"
46 #include "i915_deps.h"
47 #include "i915_driver.h"
48 #include "i915_drv.h"
49 #include "i915_trace.h"
50 #include "intel_pm.h"
51 
52 struct execute_cb {
53 	struct irq_work work;
54 	struct i915_sw_fence *fence;
55 	struct i915_request *signal;
56 };
57 
58 static struct pool slab_requests;
59 static struct pool slab_execute_cbs;
60 
61 static const char *i915_fence_get_driver_name(struct dma_fence *fence)
62 {
63 	return dev_name(to_request(fence)->i915->drm.dev);
64 }
65 
66 static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
67 {
68 	const struct i915_gem_context *ctx;
69 
70 	/*
71 	 * The timeline struct (as part of the ppgtt underneath a context)
72 	 * may be freed when the request is no longer in use by the GPU.
73 	 * We could extend the life of a context to beyond that of all
74 	 * fences, possibly keeping the hw resource around indefinitely,
75 	 * or we just give them a false name. Since
76 	 * dma_fence_ops.get_timeline_name is a debug feature, the occasional
77 	 * lie seems justifiable.
78 	 */
79 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
80 		return "signaled";
81 
82 	ctx = i915_request_gem_context(to_request(fence));
83 	if (!ctx)
84 		return "[" DRIVER_NAME "]";
85 
86 	return ctx->name;
87 }
88 
89 static bool i915_fence_signaled(struct dma_fence *fence)
90 {
91 	return i915_request_completed(to_request(fence));
92 }
93 
94 static bool i915_fence_enable_signaling(struct dma_fence *fence)
95 {
96 	return i915_request_enable_breadcrumb(to_request(fence));
97 }
98 
99 static signed long i915_fence_wait(struct dma_fence *fence,
100 				   bool interruptible,
101 				   signed long timeout)
102 {
103 	return i915_request_wait_timeout(to_request(fence),
104 					 interruptible | I915_WAIT_PRIORITY,
105 					 timeout);
106 }
107 
108 #ifdef __linux__
109 struct kmem_cache *i915_request_slab_cache(void)
110 {
111 	return slab_requests;
112 }
113 #else
114 struct pool *i915_request_slab_cache(void)
115 {
116 	return &slab_requests;
117 }
118 #endif
119 
120 static void i915_fence_release(struct dma_fence *fence)
121 {
122 	struct i915_request *rq = to_request(fence);
123 
124 	GEM_BUG_ON(rq->guc_prio != GUC_PRIO_INIT &&
125 		   rq->guc_prio != GUC_PRIO_FINI);
126 
127 	i915_request_free_capture_list(fetch_and_zero(&rq->capture_list));
128 	if (rq->batch_res) {
129 		i915_vma_resource_put(rq->batch_res);
130 		rq->batch_res = NULL;
131 	}
132 
133 	/*
134 	 * The request is put onto a RCU freelist (i.e. the address
135 	 * is immediately reused), mark the fences as being freed now.
136 	 * Otherwise the debugobjects for the fences are only marked as
137 	 * freed when the slab cache itself is freed, and so we would get
138 	 * caught trying to reuse dead objects.
139 	 */
140 	i915_sw_fence_fini(&rq->submit);
141 	i915_sw_fence_fini(&rq->semaphore);
142 
143 	/*
144 	 * Keep one request on each engine for reserved use under mempressure.
145 	 *
146 	 * We do not hold a reference to the engine here and so have to be
147 	 * very careful in what rq->engine we poke. The virtual engine is
148 	 * referenced via the rq->context and we released that ref during
149 	 * i915_request_retire(), ergo we must not dereference a virtual
150 	 * engine here. Not that we would want to, as the only consumer of
151 	 * the reserved engine->request_pool is the power management parking,
152 	 * which must-not-fail, and that is only run on the physical engines.
153 	 *
154 	 * Since the request must have been executed to be have completed,
155 	 * we know that it will have been processed by the HW and will
156 	 * not be unsubmitted again, so rq->engine and rq->execution_mask
157 	 * at this point is stable. rq->execution_mask will be a single
158 	 * bit if the last and _only_ engine it could execution on was a
159 	 * physical engine, if it's multiple bits then it started on and
160 	 * could still be on a virtual engine. Thus if the mask is not a
161 	 * power-of-two we assume that rq->engine may still be a virtual
162 	 * engine and so a dangling invalid pointer that we cannot dereference
163 	 *
164 	 * For example, consider the flow of a bonded request through a virtual
165 	 * engine. The request is created with a wide engine mask (all engines
166 	 * that we might execute on). On processing the bond, the request mask
167 	 * is reduced to one or more engines. If the request is subsequently
168 	 * bound to a single engine, it will then be constrained to only
169 	 * execute on that engine and never returned to the virtual engine
170 	 * after timeslicing away, see __unwind_incomplete_requests(). Thus we
171 	 * know that if the rq->execution_mask is a single bit, rq->engine
172 	 * can be a physical engine with the exact corresponding mask.
173 	 */
174 	if (is_power_of_2(rq->execution_mask) &&
175 	    !cmpxchg(&rq->engine->request_pool, NULL, rq))
176 		return;
177 
178 #ifdef __linux__
179 	kmem_cache_free(slab_requests, rq);
180 #else
181 	pool_put(&slab_requests, rq);
182 #endif
183 }
184 
185 const struct dma_fence_ops i915_fence_ops = {
186 	.get_driver_name = i915_fence_get_driver_name,
187 	.get_timeline_name = i915_fence_get_timeline_name,
188 	.enable_signaling = i915_fence_enable_signaling,
189 	.signaled = i915_fence_signaled,
190 	.wait = i915_fence_wait,
191 	.release = i915_fence_release,
192 };
193 
194 static void irq_execute_cb(struct irq_work *wrk)
195 {
196 	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
197 
198 	i915_sw_fence_complete(cb->fence);
199 #ifdef __linux__
200 	kmem_cache_free(slab_execute_cbs, cb);
201 #else
202 	pool_put(&slab_execute_cbs, cb);
203 #endif
204 }
205 
206 static __always_inline void
207 __notify_execute_cb(struct i915_request *rq, bool (*fn)(struct irq_work *wrk))
208 {
209 	struct execute_cb *cb, *cn;
210 
211 	if (llist_empty(&rq->execute_cb))
212 		return;
213 
214 	llist_for_each_entry_safe(cb, cn,
215 				  llist_del_all(&rq->execute_cb),
216 				  work.node.llist)
217 		fn(&cb->work);
218 }
219 
220 static void __notify_execute_cb_irq(struct i915_request *rq)
221 {
222 	__notify_execute_cb(rq, irq_work_queue);
223 }
224 
225 static bool irq_work_imm(struct irq_work *wrk)
226 {
227 #ifdef __linux__
228 	wrk->func(wrk);
229 #else
230 	wrk->task.t_func(wrk);
231 #endif
232 	return false;
233 }
234 
235 void i915_request_notify_execute_cb_imm(struct i915_request *rq)
236 {
237 	__notify_execute_cb(rq, irq_work_imm);
238 }
239 
240 static void __i915_request_fill(struct i915_request *rq, u8 val)
241 {
242 	void *vaddr = rq->ring->vaddr;
243 	u32 head;
244 
245 	head = rq->infix;
246 	if (rq->postfix < head) {
247 		memset(vaddr + head, val, rq->ring->size - head);
248 		head = 0;
249 	}
250 	memset(vaddr + head, val, rq->postfix - head);
251 }
252 
253 /**
254  * i915_request_active_engine
255  * @rq: request to inspect
256  * @active: pointer in which to return the active engine
257  *
258  * Fills the currently active engine to the @active pointer if the request
259  * is active and still not completed.
260  *
261  * Returns true if request was active or false otherwise.
262  */
263 bool
264 i915_request_active_engine(struct i915_request *rq,
265 			   struct intel_engine_cs **active)
266 {
267 	struct intel_engine_cs *engine, *locked;
268 	bool ret = false;
269 
270 	/*
271 	 * Serialise with __i915_request_submit() so that it sees
272 	 * is-banned?, or we know the request is already inflight.
273 	 *
274 	 * Note that rq->engine is unstable, and so we double
275 	 * check that we have acquired the lock on the final engine.
276 	 */
277 	locked = READ_ONCE(rq->engine);
278 	spin_lock_irq(&locked->sched_engine->lock);
279 	while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
280 		spin_unlock(&locked->sched_engine->lock);
281 		locked = engine;
282 		spin_lock(&locked->sched_engine->lock);
283 	}
284 
285 	if (i915_request_is_active(rq)) {
286 		if (!__i915_request_is_complete(rq))
287 			*active = locked;
288 		ret = true;
289 	}
290 
291 	spin_unlock_irq(&locked->sched_engine->lock);
292 
293 	return ret;
294 }
295 
296 static void __rq_init_watchdog(struct i915_request *rq)
297 {
298 	rq->watchdog.timer.to_func = NULL;
299 }
300 
301 #ifdef __linux__
302 
303 static enum hrtimer_restart __rq_watchdog_expired(struct hrtimer *hrtimer)
304 {
305 	struct i915_request *rq =
306 		container_of(hrtimer, struct i915_request, watchdog.timer);
307 	struct intel_gt *gt = rq->engine->gt;
308 
309 	if (!i915_request_completed(rq)) {
310 		if (llist_add(&rq->watchdog.link, &gt->watchdog.list))
311 			schedule_work(&gt->watchdog.work);
312 	} else {
313 		i915_request_put(rq);
314 	}
315 
316 	return HRTIMER_NORESTART;
317 }
318 
319 #else
320 
321 static void
322 __rq_watchdog_expired(void *arg)
323 {
324 	struct i915_request *rq = (struct i915_request *)arg;
325 	struct intel_gt *gt = rq->engine->gt;
326 
327 	if (!i915_request_completed(rq)) {
328 		if (llist_add(&rq->watchdog.link, &gt->watchdog.list))
329 			schedule_work(&gt->watchdog.work);
330 	} else {
331 		i915_request_put(rq);
332 	}
333 }
334 
335 #endif
336 
337 static void __rq_arm_watchdog(struct i915_request *rq)
338 {
339 	struct i915_request_watchdog *wdg = &rq->watchdog;
340 	struct intel_context *ce = rq->context;
341 
342 	if (!ce->watchdog.timeout_us)
343 		return;
344 
345 	i915_request_get(rq);
346 
347 #ifdef __linux__
348 	hrtimer_init(&wdg->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
349 	wdg->timer.function = __rq_watchdog_expired;
350 	hrtimer_start_range_ns(&wdg->timer,
351 			       ns_to_ktime(ce->watchdog.timeout_us *
352 					   NSEC_PER_USEC),
353 			       NSEC_PER_MSEC,
354 			       HRTIMER_MODE_REL);
355 #else
356 	timeout_set(&wdg->timer, __rq_watchdog_expired, rq);
357 	timeout_add_msec(&wdg->timer, 1);
358 #endif
359 }
360 
361 static void __rq_cancel_watchdog(struct i915_request *rq)
362 {
363 	struct i915_request_watchdog *wdg = &rq->watchdog;
364 
365 	if (wdg->timer.to_func && hrtimer_try_to_cancel(&wdg->timer) > 0)
366 		i915_request_put(rq);
367 }
368 
369 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
370 
371 /**
372  * i915_request_free_capture_list - Free a capture list
373  * @capture: Pointer to the first list item or NULL
374  *
375  */
376 void i915_request_free_capture_list(struct i915_capture_list *capture)
377 {
378 	while (capture) {
379 		struct i915_capture_list *next = capture->next;
380 
381 		i915_vma_resource_put(capture->vma_res);
382 		kfree(capture);
383 		capture = next;
384 	}
385 }
386 
387 #define assert_capture_list_is_null(_rq) GEM_BUG_ON((_rq)->capture_list)
388 
389 #define clear_capture_list(_rq) ((_rq)->capture_list = NULL)
390 
391 #else
392 
393 #define i915_request_free_capture_list(_a) do {} while (0)
394 
395 #define assert_capture_list_is_null(_a) do {} while (0)
396 
397 #define clear_capture_list(_rq) do {} while (0)
398 
399 #endif
400 
401 bool i915_request_retire(struct i915_request *rq)
402 {
403 	if (!__i915_request_is_complete(rq))
404 		return false;
405 
406 	RQ_TRACE(rq, "\n");
407 
408 	GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
409 	trace_i915_request_retire(rq);
410 	i915_request_mark_complete(rq);
411 
412 	__rq_cancel_watchdog(rq);
413 
414 	/*
415 	 * We know the GPU must have read the request to have
416 	 * sent us the seqno + interrupt, so use the position
417 	 * of tail of the request to update the last known position
418 	 * of the GPU head.
419 	 *
420 	 * Note this requires that we are always called in request
421 	 * completion order.
422 	 */
423 	GEM_BUG_ON(!list_is_first(&rq->link,
424 				  &i915_request_timeline(rq)->requests));
425 	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
426 		/* Poison before we release our space in the ring */
427 		__i915_request_fill(rq, POISON_FREE);
428 	rq->ring->head = rq->postfix;
429 
430 	if (!i915_request_signaled(rq)) {
431 		spin_lock_irq(&rq->lock);
432 		dma_fence_signal_locked(&rq->fence);
433 		spin_unlock_irq(&rq->lock);
434 	}
435 
436 	if (test_and_set_bit(I915_FENCE_FLAG_BOOST, &rq->fence.flags))
437 		intel_rps_dec_waiters(&rq->engine->gt->rps);
438 
439 	/*
440 	 * We only loosely track inflight requests across preemption,
441 	 * and so we may find ourselves attempting to retire a _completed_
442 	 * request that we have removed from the HW and put back on a run
443 	 * queue.
444 	 *
445 	 * As we set I915_FENCE_FLAG_ACTIVE on the request, this should be
446 	 * after removing the breadcrumb and signaling it, so that we do not
447 	 * inadvertently attach the breadcrumb to a completed request.
448 	 */
449 	rq->engine->remove_active_request(rq);
450 	GEM_BUG_ON(!llist_empty(&rq->execute_cb));
451 
452 	__list_del_entry(&rq->link); /* poison neither prev/next (RCU walks) */
453 
454 	intel_context_exit(rq->context);
455 	intel_context_unpin(rq->context);
456 
457 	i915_sched_node_fini(&rq->sched);
458 	i915_request_put(rq);
459 
460 	return true;
461 }
462 
463 void i915_request_retire_upto(struct i915_request *rq)
464 {
465 	struct intel_timeline * const tl = i915_request_timeline(rq);
466 	struct i915_request *tmp;
467 
468 	RQ_TRACE(rq, "\n");
469 	GEM_BUG_ON(!__i915_request_is_complete(rq));
470 
471 	do {
472 		tmp = list_first_entry(&tl->requests, typeof(*tmp), link);
473 		GEM_BUG_ON(!i915_request_completed(tmp));
474 	} while (i915_request_retire(tmp) && tmp != rq);
475 }
476 
477 static struct i915_request * const *
478 __engine_active(struct intel_engine_cs *engine)
479 {
480 	return READ_ONCE(engine->execlists.active);
481 }
482 
483 static bool __request_in_flight(const struct i915_request *signal)
484 {
485 	struct i915_request * const *port, *rq;
486 	bool inflight = false;
487 
488 	if (!i915_request_is_ready(signal))
489 		return false;
490 
491 	/*
492 	 * Even if we have unwound the request, it may still be on
493 	 * the GPU (preempt-to-busy). If that request is inside an
494 	 * unpreemptible critical section, it will not be removed. Some
495 	 * GPU functions may even be stuck waiting for the paired request
496 	 * (__await_execution) to be submitted and cannot be preempted
497 	 * until the bond is executing.
498 	 *
499 	 * As we know that there are always preemption points between
500 	 * requests, we know that only the currently executing request
501 	 * may be still active even though we have cleared the flag.
502 	 * However, we can't rely on our tracking of ELSP[0] to know
503 	 * which request is currently active and so maybe stuck, as
504 	 * the tracking maybe an event behind. Instead assume that
505 	 * if the context is still inflight, then it is still active
506 	 * even if the active flag has been cleared.
507 	 *
508 	 * To further complicate matters, if there a pending promotion, the HW
509 	 * may either perform a context switch to the second inflight execlists,
510 	 * or it may switch to the pending set of execlists. In the case of the
511 	 * latter, it may send the ACK and we process the event copying the
512 	 * pending[] over top of inflight[], _overwriting_ our *active. Since
513 	 * this implies the HW is arbitrating and not struck in *active, we do
514 	 * not worry about complete accuracy, but we do require no read/write
515 	 * tearing of the pointer [the read of the pointer must be valid, even
516 	 * as the array is being overwritten, for which we require the writes
517 	 * to avoid tearing.]
518 	 *
519 	 * Note that the read of *execlists->active may race with the promotion
520 	 * of execlists->pending[] to execlists->inflight[], overwritting
521 	 * the value at *execlists->active. This is fine. The promotion implies
522 	 * that we received an ACK from the HW, and so the context is not
523 	 * stuck -- if we do not see ourselves in *active, the inflight status
524 	 * is valid. If instead we see ourselves being copied into *active,
525 	 * we are inflight and may signal the callback.
526 	 */
527 	if (!intel_context_inflight(signal->context))
528 		return false;
529 
530 	rcu_read_lock();
531 	for (port = __engine_active(signal->engine);
532 	     (rq = READ_ONCE(*port)); /* may race with promotion of pending[] */
533 	     port++) {
534 		if (rq->context == signal->context) {
535 			inflight = i915_seqno_passed(rq->fence.seqno,
536 						     signal->fence.seqno);
537 			break;
538 		}
539 	}
540 	rcu_read_unlock();
541 
542 	return inflight;
543 }
544 
545 static int
546 __await_execution(struct i915_request *rq,
547 		  struct i915_request *signal,
548 		  gfp_t gfp)
549 {
550 	struct execute_cb *cb;
551 
552 	if (i915_request_is_active(signal))
553 		return 0;
554 
555 #ifdef __linux__
556 	cb = kmem_cache_alloc(slab_execute_cbs, gfp);
557 #else
558 	cb = pool_get(&slab_execute_cbs,
559 	    (gfp & GFP_NOWAIT) ? PR_NOWAIT : PR_WAITOK);
560 #endif
561 	if (!cb)
562 		return -ENOMEM;
563 
564 	cb->fence = &rq->submit;
565 	i915_sw_fence_await(cb->fence);
566 	init_irq_work(&cb->work, irq_execute_cb);
567 
568 	/*
569 	 * Register the callback first, then see if the signaler is already
570 	 * active. This ensures that if we race with the
571 	 * __notify_execute_cb from i915_request_submit() and we are not
572 	 * included in that list, we get a second bite of the cherry and
573 	 * execute it ourselves. After this point, a future
574 	 * i915_request_submit() will notify us.
575 	 *
576 	 * In i915_request_retire() we set the ACTIVE bit on a completed
577 	 * request (then flush the execute_cb). So by registering the
578 	 * callback first, then checking the ACTIVE bit, we serialise with
579 	 * the completed/retired request.
580 	 */
581 	if (llist_add(&cb->work.node.llist, &signal->execute_cb)) {
582 		if (i915_request_is_active(signal) ||
583 		    __request_in_flight(signal))
584 			i915_request_notify_execute_cb_imm(signal);
585 	}
586 
587 	return 0;
588 }
589 
590 static bool fatal_error(int error)
591 {
592 	switch (error) {
593 	case 0: /* not an error! */
594 	case -EAGAIN: /* innocent victim of a GT reset (__i915_request_reset) */
595 	case -ETIMEDOUT: /* waiting for Godot (timer_i915_sw_fence_wake) */
596 		return false;
597 	default:
598 		return true;
599 	}
600 }
601 
602 void __i915_request_skip(struct i915_request *rq)
603 {
604 	GEM_BUG_ON(!fatal_error(rq->fence.error));
605 
606 	if (rq->infix == rq->postfix)
607 		return;
608 
609 	RQ_TRACE(rq, "error: %d\n", rq->fence.error);
610 
611 	/*
612 	 * As this request likely depends on state from the lost
613 	 * context, clear out all the user operations leaving the
614 	 * breadcrumb at the end (so we get the fence notifications).
615 	 */
616 	__i915_request_fill(rq, 0);
617 	rq->infix = rq->postfix;
618 }
619 
620 bool i915_request_set_error_once(struct i915_request *rq, int error)
621 {
622 	int old;
623 
624 	GEM_BUG_ON(!IS_ERR_VALUE((long)error));
625 
626 	if (i915_request_signaled(rq))
627 		return false;
628 
629 	old = READ_ONCE(rq->fence.error);
630 	do {
631 		if (fatal_error(old))
632 			return false;
633 	} while (!try_cmpxchg(&rq->fence.error, &old, error));
634 
635 	return true;
636 }
637 
638 struct i915_request *i915_request_mark_eio(struct i915_request *rq)
639 {
640 	if (__i915_request_is_complete(rq))
641 		return NULL;
642 
643 	GEM_BUG_ON(i915_request_signaled(rq));
644 
645 	/* As soon as the request is completed, it may be retired */
646 	rq = i915_request_get(rq);
647 
648 	i915_request_set_error_once(rq, -EIO);
649 	i915_request_mark_complete(rq);
650 
651 	return rq;
652 }
653 
654 bool __i915_request_submit(struct i915_request *request)
655 {
656 	struct intel_engine_cs *engine = request->engine;
657 	bool result = false;
658 
659 	RQ_TRACE(request, "\n");
660 
661 	GEM_BUG_ON(!irqs_disabled());
662 	lockdep_assert_held(&engine->sched_engine->lock);
663 
664 	/*
665 	 * With the advent of preempt-to-busy, we frequently encounter
666 	 * requests that we have unsubmitted from HW, but left running
667 	 * until the next ack and so have completed in the meantime. On
668 	 * resubmission of that completed request, we can skip
669 	 * updating the payload, and execlists can even skip submitting
670 	 * the request.
671 	 *
672 	 * We must remove the request from the caller's priority queue,
673 	 * and the caller must only call us when the request is in their
674 	 * priority queue, under the sched_engine->lock. This ensures that the
675 	 * request has *not* yet been retired and we can safely move
676 	 * the request into the engine->active.list where it will be
677 	 * dropped upon retiring. (Otherwise if resubmit a *retired*
678 	 * request, this would be a horrible use-after-free.)
679 	 */
680 	if (__i915_request_is_complete(request)) {
681 		list_del_init(&request->sched.link);
682 		goto active;
683 	}
684 
685 	if (unlikely(!intel_context_is_schedulable(request->context)))
686 		i915_request_set_error_once(request, -EIO);
687 
688 	if (unlikely(fatal_error(request->fence.error)))
689 		__i915_request_skip(request);
690 
691 	/*
692 	 * Are we using semaphores when the gpu is already saturated?
693 	 *
694 	 * Using semaphores incurs a cost in having the GPU poll a
695 	 * memory location, busywaiting for it to change. The continual
696 	 * memory reads can have a noticeable impact on the rest of the
697 	 * system with the extra bus traffic, stalling the cpu as it too
698 	 * tries to access memory across the bus (perf stat -e bus-cycles).
699 	 *
700 	 * If we installed a semaphore on this request and we only submit
701 	 * the request after the signaler completed, that indicates the
702 	 * system is overloaded and using semaphores at this time only
703 	 * increases the amount of work we are doing. If so, we disable
704 	 * further use of semaphores until we are idle again, whence we
705 	 * optimistically try again.
706 	 */
707 	if (request->sched.semaphores &&
708 	    i915_sw_fence_signaled(&request->semaphore))
709 		engine->saturated |= request->sched.semaphores;
710 
711 	engine->emit_fini_breadcrumb(request,
712 				     request->ring->vaddr + request->postfix);
713 
714 	trace_i915_request_execute(request);
715 	if (engine->bump_serial)
716 		engine->bump_serial(engine);
717 	else
718 		engine->serial++;
719 
720 	result = true;
721 
722 	GEM_BUG_ON(test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
723 	engine->add_active_request(request);
724 active:
725 	clear_bit(I915_FENCE_FLAG_PQUEUE, &request->fence.flags);
726 	set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
727 
728 	/*
729 	 * XXX Rollback bonded-execution on __i915_request_unsubmit()?
730 	 *
731 	 * In the future, perhaps when we have an active time-slicing scheduler,
732 	 * it will be interesting to unsubmit parallel execution and remove
733 	 * busywaits from the GPU until their master is restarted. This is
734 	 * quite hairy, we have to carefully rollback the fence and do a
735 	 * preempt-to-idle cycle on the target engine, all the while the
736 	 * master execute_cb may refire.
737 	 */
738 	__notify_execute_cb_irq(request);
739 
740 	/* We may be recursing from the signal callback of another i915 fence */
741 	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
742 		i915_request_enable_breadcrumb(request);
743 
744 	return result;
745 }
746 
747 void i915_request_submit(struct i915_request *request)
748 {
749 	struct intel_engine_cs *engine = request->engine;
750 	unsigned long flags;
751 
752 	/* Will be called from irq-context when using foreign fences. */
753 	spin_lock_irqsave(&engine->sched_engine->lock, flags);
754 
755 	__i915_request_submit(request);
756 
757 	spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
758 }
759 
760 void __i915_request_unsubmit(struct i915_request *request)
761 {
762 	struct intel_engine_cs *engine = request->engine;
763 
764 	/*
765 	 * Only unwind in reverse order, required so that the per-context list
766 	 * is kept in seqno/ring order.
767 	 */
768 	RQ_TRACE(request, "\n");
769 
770 	GEM_BUG_ON(!irqs_disabled());
771 	lockdep_assert_held(&engine->sched_engine->lock);
772 
773 	/*
774 	 * Before we remove this breadcrumb from the signal list, we have
775 	 * to ensure that a concurrent dma_fence_enable_signaling() does not
776 	 * attach itself. We first mark the request as no longer active and
777 	 * make sure that is visible to other cores, and then remove the
778 	 * breadcrumb if attached.
779 	 */
780 	GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
781 	clear_bit_unlock(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
782 	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
783 		i915_request_cancel_breadcrumb(request);
784 
785 	/* We've already spun, don't charge on resubmitting. */
786 	if (request->sched.semaphores && __i915_request_has_started(request))
787 		request->sched.semaphores = 0;
788 
789 	/*
790 	 * We don't need to wake_up any waiters on request->execute, they
791 	 * will get woken by any other event or us re-adding this request
792 	 * to the engine timeline (__i915_request_submit()). The waiters
793 	 * should be quite adapt at finding that the request now has a new
794 	 * global_seqno to the one they went to sleep on.
795 	 */
796 }
797 
798 void i915_request_unsubmit(struct i915_request *request)
799 {
800 	struct intel_engine_cs *engine = request->engine;
801 	unsigned long flags;
802 
803 	/* Will be called from irq-context when using foreign fences. */
804 	spin_lock_irqsave(&engine->sched_engine->lock, flags);
805 
806 	__i915_request_unsubmit(request);
807 
808 	spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
809 }
810 
811 void i915_request_cancel(struct i915_request *rq, int error)
812 {
813 	if (!i915_request_set_error_once(rq, error))
814 		return;
815 
816 	set_bit(I915_FENCE_FLAG_SENTINEL, &rq->fence.flags);
817 
818 	intel_context_cancel_request(rq->context, rq);
819 }
820 
821 static int
822 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
823 {
824 	struct i915_request *request =
825 		container_of(fence, typeof(*request), submit);
826 
827 	switch (state) {
828 	case FENCE_COMPLETE:
829 		trace_i915_request_submit(request);
830 
831 		if (unlikely(fence->error))
832 			i915_request_set_error_once(request, fence->error);
833 		else
834 			__rq_arm_watchdog(request);
835 
836 		/*
837 		 * We need to serialize use of the submit_request() callback
838 		 * with its hotplugging performed during an emergency
839 		 * i915_gem_set_wedged().  We use the RCU mechanism to mark the
840 		 * critical section in order to force i915_gem_set_wedged() to
841 		 * wait until the submit_request() is completed before
842 		 * proceeding.
843 		 */
844 		rcu_read_lock();
845 		request->engine->submit_request(request);
846 		rcu_read_unlock();
847 		break;
848 
849 	case FENCE_FREE:
850 		i915_request_put(request);
851 		break;
852 	}
853 
854 	return NOTIFY_DONE;
855 }
856 
857 static int
858 semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
859 {
860 	struct i915_request *rq = container_of(fence, typeof(*rq), semaphore);
861 
862 	switch (state) {
863 	case FENCE_COMPLETE:
864 		break;
865 
866 	case FENCE_FREE:
867 		i915_request_put(rq);
868 		break;
869 	}
870 
871 	return NOTIFY_DONE;
872 }
873 
874 static void retire_requests(struct intel_timeline *tl)
875 {
876 	struct i915_request *rq, *rn;
877 
878 	list_for_each_entry_safe(rq, rn, &tl->requests, link)
879 		if (!i915_request_retire(rq))
880 			break;
881 }
882 
883 static void __i915_request_ctor(void *);
884 
885 static noinline struct i915_request *
886 request_alloc_slow(struct intel_timeline *tl,
887 		   struct i915_request **rsvd,
888 		   gfp_t gfp)
889 {
890 	struct i915_request *rq;
891 
892 	/* If we cannot wait, dip into our reserves */
893 	if (!gfpflags_allow_blocking(gfp)) {
894 		rq = xchg(rsvd, NULL);
895 		if (!rq) /* Use the normal failure path for one final WARN */
896 			goto out;
897 
898 		return rq;
899 	}
900 
901 	if (list_empty(&tl->requests))
902 		goto out;
903 
904 	/* Move our oldest request to the slab-cache (if not in use!) */
905 	rq = list_first_entry(&tl->requests, typeof(*rq), link);
906 	i915_request_retire(rq);
907 
908 #ifdef __linux__
909 	rq = kmem_cache_alloc(slab_requests,
910 			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
911 #else
912 	rq = pool_get(&slab_requests,
913 	    (gfp & GFP_NOWAIT) ? PR_NOWAIT : PR_WAITOK);
914 	if (rq)
915 		__i915_request_ctor(rq);
916 #endif
917 	if (rq)
918 		return rq;
919 
920 	/* Ratelimit ourselves to prevent oom from malicious clients */
921 	rq = list_last_entry(&tl->requests, typeof(*rq), link);
922 	cond_synchronize_rcu(rq->rcustate);
923 
924 	/* Retire our old requests in the hope that we free some */
925 	retire_requests(tl);
926 
927 out:
928 #ifdef __linux__
929 	return kmem_cache_alloc(slab_requests, gfp);
930 #else
931 	rq = pool_get(&slab_requests,
932 	    (gfp & GFP_NOWAIT) ? PR_NOWAIT : PR_WAITOK);
933 	if (rq)
934 		__i915_request_ctor(rq);
935 	return rq;
936 #endif
937 }
938 
939 static void __i915_request_ctor(void *arg)
940 {
941 	struct i915_request *rq = arg;
942 
943 	/*
944 	 * witness does not understand spin_lock_nested()
945 	 * order reversal in i915 with this lock
946 	 */
947 	mtx_init_flags(&rq->lock, IPL_TTY, NULL, MTX_NOWITNESS);
948 	i915_sched_node_init(&rq->sched);
949 	i915_sw_fence_init(&rq->submit, submit_notify);
950 	i915_sw_fence_init(&rq->semaphore, semaphore_notify);
951 
952 	clear_capture_list(rq);
953 	rq->batch_res = NULL;
954 
955 	init_llist_head(&rq->execute_cb);
956 }
957 
958 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
959 #define clear_batch_ptr(_rq) ((_rq)->batch = NULL)
960 #else
961 #define clear_batch_ptr(_a) do {} while (0)
962 #endif
963 
964 struct i915_request *
965 __i915_request_create(struct intel_context *ce, gfp_t gfp)
966 {
967 	struct intel_timeline *tl = ce->timeline;
968 	struct i915_request *rq;
969 	u32 seqno;
970 	int ret;
971 
972 	might_alloc(gfp);
973 
974 	/* Check that the caller provided an already pinned context */
975 	__intel_context_pin(ce);
976 
977 	/*
978 	 * Beware: Dragons be flying overhead.
979 	 *
980 	 * We use RCU to look up requests in flight. The lookups may
981 	 * race with the request being allocated from the slab freelist.
982 	 * That is the request we are writing to here, may be in the process
983 	 * of being read by __i915_active_request_get_rcu(). As such,
984 	 * we have to be very careful when overwriting the contents. During
985 	 * the RCU lookup, we change chase the request->engine pointer,
986 	 * read the request->global_seqno and increment the reference count.
987 	 *
988 	 * The reference count is incremented atomically. If it is zero,
989 	 * the lookup knows the request is unallocated and complete. Otherwise,
990 	 * it is either still in use, or has been reallocated and reset
991 	 * with dma_fence_init(). This increment is safe for release as we
992 	 * check that the request we have a reference to and matches the active
993 	 * request.
994 	 *
995 	 * Before we increment the refcount, we chase the request->engine
996 	 * pointer. We must not call kmem_cache_zalloc() or else we set
997 	 * that pointer to NULL and cause a crash during the lookup. If
998 	 * we see the request is completed (based on the value of the
999 	 * old engine and seqno), the lookup is complete and reports NULL.
1000 	 * If we decide the request is not completed (new engine or seqno),
1001 	 * then we grab a reference and double check that it is still the
1002 	 * active request - which it won't be and restart the lookup.
1003 	 *
1004 	 * Do not use kmem_cache_zalloc() here!
1005 	 */
1006 #ifdef __linux__
1007 	rq = kmem_cache_alloc(slab_requests,
1008 			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
1009 #else
1010 	rq = pool_get(&slab_requests,
1011 	    (gfp & GFP_NOWAIT) ? PR_NOWAIT : PR_WAITOK);
1012 	if (rq)
1013 		__i915_request_ctor(rq);
1014 #endif
1015 	if (unlikely(!rq)) {
1016 		rq = request_alloc_slow(tl, &ce->engine->request_pool, gfp);
1017 		if (!rq) {
1018 			ret = -ENOMEM;
1019 			goto err_unreserve;
1020 		}
1021 	}
1022 
1023 	rq->context = ce;
1024 	rq->engine = ce->engine;
1025 	rq->ring = ce->ring;
1026 	rq->execution_mask = ce->engine->mask;
1027 	rq->i915 = ce->engine->i915;
1028 
1029 	ret = intel_timeline_get_seqno(tl, rq, &seqno);
1030 	if (ret)
1031 		goto err_free;
1032 
1033 	dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock,
1034 		       tl->fence_context, seqno);
1035 
1036 	RCU_INIT_POINTER(rq->timeline, tl);
1037 	rq->hwsp_seqno = tl->hwsp_seqno;
1038 	GEM_BUG_ON(__i915_request_is_complete(rq));
1039 
1040 	rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
1041 
1042 	rq->guc_prio = GUC_PRIO_INIT;
1043 
1044 	/* We bump the ref for the fence chain */
1045 	i915_sw_fence_reinit(&i915_request_get(rq)->submit);
1046 	i915_sw_fence_reinit(&i915_request_get(rq)->semaphore);
1047 
1048 	i915_sched_node_reinit(&rq->sched);
1049 
1050 	/* No zalloc, everything must be cleared after use */
1051 	clear_batch_ptr(rq);
1052 	__rq_init_watchdog(rq);
1053 	assert_capture_list_is_null(rq);
1054 	GEM_BUG_ON(!llist_empty(&rq->execute_cb));
1055 	GEM_BUG_ON(rq->batch_res);
1056 
1057 	/*
1058 	 * Reserve space in the ring buffer for all the commands required to
1059 	 * eventually emit this request. This is to guarantee that the
1060 	 * i915_request_add() call can't fail. Note that the reserve may need
1061 	 * to be redone if the request is not actually submitted straight
1062 	 * away, e.g. because a GPU scheduler has deferred it.
1063 	 *
1064 	 * Note that due to how we add reserved_space to intel_ring_begin()
1065 	 * we need to double our request to ensure that if we need to wrap
1066 	 * around inside i915_request_add() there is sufficient space at
1067 	 * the beginning of the ring as well.
1068 	 */
1069 	rq->reserved_space =
1070 		2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
1071 
1072 	/*
1073 	 * Record the position of the start of the request so that
1074 	 * should we detect the updated seqno part-way through the
1075 	 * GPU processing the request, we never over-estimate the
1076 	 * position of the head.
1077 	 */
1078 	rq->head = rq->ring->emit;
1079 
1080 	ret = rq->engine->request_alloc(rq);
1081 	if (ret)
1082 		goto err_unwind;
1083 
1084 	rq->infix = rq->ring->emit; /* end of header; start of user payload */
1085 
1086 	intel_context_mark_active(ce);
1087 	list_add_tail_rcu(&rq->link, &tl->requests);
1088 
1089 	return rq;
1090 
1091 err_unwind:
1092 	ce->ring->emit = rq->head;
1093 
1094 	/* Make sure we didn't add ourselves to external state before freeing */
1095 	GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
1096 	GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
1097 
1098 err_free:
1099 #ifdef __linux__
1100 	kmem_cache_free(slab_requests, rq);
1101 #else
1102 	pool_put(&slab_requests, rq);
1103 #endif
1104 err_unreserve:
1105 	intel_context_unpin(ce);
1106 	return ERR_PTR(ret);
1107 }
1108 
1109 struct i915_request *
1110 i915_request_create(struct intel_context *ce)
1111 {
1112 	struct i915_request *rq;
1113 	struct intel_timeline *tl;
1114 
1115 	tl = intel_context_timeline_lock(ce);
1116 	if (IS_ERR(tl))
1117 		return ERR_CAST(tl);
1118 
1119 	/* Move our oldest request to the slab-cache (if not in use!) */
1120 	rq = list_first_entry(&tl->requests, typeof(*rq), link);
1121 	if (!list_is_last(&rq->link, &tl->requests))
1122 		i915_request_retire(rq);
1123 
1124 	intel_context_enter(ce);
1125 	rq = __i915_request_create(ce, GFP_KERNEL);
1126 	intel_context_exit(ce); /* active reference transferred to request */
1127 	if (IS_ERR(rq))
1128 		goto err_unlock;
1129 
1130 	/* Check that we do not interrupt ourselves with a new request */
1131 	rq->cookie = lockdep_pin_lock(&tl->mutex);
1132 
1133 	return rq;
1134 
1135 err_unlock:
1136 	intel_context_timeline_unlock(tl);
1137 	return rq;
1138 }
1139 
1140 static int
1141 i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
1142 {
1143 	struct dma_fence *fence;
1144 	int err;
1145 
1146 	if (i915_request_timeline(rq) == rcu_access_pointer(signal->timeline))
1147 		return 0;
1148 
1149 	if (i915_request_started(signal))
1150 		return 0;
1151 
1152 	/*
1153 	 * The caller holds a reference on @signal, but we do not serialise
1154 	 * against it being retired and removed from the lists.
1155 	 *
1156 	 * We do not hold a reference to the request before @signal, and
1157 	 * so must be very careful to ensure that it is not _recycled_ as
1158 	 * we follow the link backwards.
1159 	 */
1160 	fence = NULL;
1161 	rcu_read_lock();
1162 	do {
1163 		struct list_head *pos = READ_ONCE(signal->link.prev);
1164 		struct i915_request *prev;
1165 
1166 		/* Confirm signal has not been retired, the link is valid */
1167 		if (unlikely(__i915_request_has_started(signal)))
1168 			break;
1169 
1170 		/* Is signal the earliest request on its timeline? */
1171 		if (pos == &rcu_dereference(signal->timeline)->requests)
1172 			break;
1173 
1174 		/*
1175 		 * Peek at the request before us in the timeline. That
1176 		 * request will only be valid before it is retired, so
1177 		 * after acquiring a reference to it, confirm that it is
1178 		 * still part of the signaler's timeline.
1179 		 */
1180 		prev = list_entry(pos, typeof(*prev), link);
1181 		if (!i915_request_get_rcu(prev))
1182 			break;
1183 
1184 		/* After the strong barrier, confirm prev is still attached */
1185 		if (unlikely(READ_ONCE(prev->link.next) != &signal->link)) {
1186 			i915_request_put(prev);
1187 			break;
1188 		}
1189 
1190 		fence = &prev->fence;
1191 	} while (0);
1192 	rcu_read_unlock();
1193 	if (!fence)
1194 		return 0;
1195 
1196 	err = 0;
1197 	if (!intel_timeline_sync_is_later(i915_request_timeline(rq), fence))
1198 		err = i915_sw_fence_await_dma_fence(&rq->submit,
1199 						    fence, 0,
1200 						    I915_FENCE_GFP);
1201 	dma_fence_put(fence);
1202 
1203 	return err;
1204 }
1205 
1206 static intel_engine_mask_t
1207 already_busywaiting(struct i915_request *rq)
1208 {
1209 	/*
1210 	 * Polling a semaphore causes bus traffic, delaying other users of
1211 	 * both the GPU and CPU. We want to limit the impact on others,
1212 	 * while taking advantage of early submission to reduce GPU
1213 	 * latency. Therefore we restrict ourselves to not using more
1214 	 * than one semaphore from each source, and not using a semaphore
1215 	 * if we have detected the engine is saturated (i.e. would not be
1216 	 * submitted early and cause bus traffic reading an already passed
1217 	 * semaphore).
1218 	 *
1219 	 * See the are-we-too-late? check in __i915_request_submit().
1220 	 */
1221 	return rq->sched.semaphores | READ_ONCE(rq->engine->saturated);
1222 }
1223 
1224 static int
1225 __emit_semaphore_wait(struct i915_request *to,
1226 		      struct i915_request *from,
1227 		      u32 seqno)
1228 {
1229 	const int has_token = GRAPHICS_VER(to->engine->i915) >= 12;
1230 	u32 hwsp_offset;
1231 	int len, err;
1232 	u32 *cs;
1233 
1234 	GEM_BUG_ON(GRAPHICS_VER(to->engine->i915) < 8);
1235 	GEM_BUG_ON(i915_request_has_initial_breadcrumb(to));
1236 
1237 	/* We need to pin the signaler's HWSP until we are finished reading. */
1238 	err = intel_timeline_read_hwsp(from, to, &hwsp_offset);
1239 	if (err)
1240 		return err;
1241 
1242 	len = 4;
1243 	if (has_token)
1244 		len += 2;
1245 
1246 	cs = intel_ring_begin(to, len);
1247 	if (IS_ERR(cs))
1248 		return PTR_ERR(cs);
1249 
1250 	/*
1251 	 * Using greater-than-or-equal here means we have to worry
1252 	 * about seqno wraparound. To side step that issue, we swap
1253 	 * the timeline HWSP upon wrapping, so that everyone listening
1254 	 * for the old (pre-wrap) values do not see the much smaller
1255 	 * (post-wrap) values than they were expecting (and so wait
1256 	 * forever).
1257 	 */
1258 	*cs++ = (MI_SEMAPHORE_WAIT |
1259 		 MI_SEMAPHORE_GLOBAL_GTT |
1260 		 MI_SEMAPHORE_POLL |
1261 		 MI_SEMAPHORE_SAD_GTE_SDD) +
1262 		has_token;
1263 	*cs++ = seqno;
1264 	*cs++ = hwsp_offset;
1265 	*cs++ = 0;
1266 	if (has_token) {
1267 		*cs++ = 0;
1268 		*cs++ = MI_NOOP;
1269 	}
1270 
1271 	intel_ring_advance(to, cs);
1272 	return 0;
1273 }
1274 
1275 static bool
1276 can_use_semaphore_wait(struct i915_request *to, struct i915_request *from)
1277 {
1278 	return to->engine->gt->ggtt == from->engine->gt->ggtt;
1279 }
1280 
1281 static int
1282 emit_semaphore_wait(struct i915_request *to,
1283 		    struct i915_request *from,
1284 		    gfp_t gfp)
1285 {
1286 	const intel_engine_mask_t mask = READ_ONCE(from->engine)->mask;
1287 	struct i915_sw_fence *wait = &to->submit;
1288 
1289 	if (!can_use_semaphore_wait(to, from))
1290 		goto await_fence;
1291 
1292 	if (!intel_context_use_semaphores(to->context))
1293 		goto await_fence;
1294 
1295 	if (i915_request_has_initial_breadcrumb(to))
1296 		goto await_fence;
1297 
1298 	/*
1299 	 * If this or its dependents are waiting on an external fence
1300 	 * that may fail catastrophically, then we want to avoid using
1301 	 * sempahores as they bypass the fence signaling metadata, and we
1302 	 * lose the fence->error propagation.
1303 	 */
1304 	if (from->sched.flags & I915_SCHED_HAS_EXTERNAL_CHAIN)
1305 		goto await_fence;
1306 
1307 	/* Just emit the first semaphore we see as request space is limited. */
1308 	if (already_busywaiting(to) & mask)
1309 		goto await_fence;
1310 
1311 	if (i915_request_await_start(to, from) < 0)
1312 		goto await_fence;
1313 
1314 	/* Only submit our spinner after the signaler is running! */
1315 	if (__await_execution(to, from, gfp))
1316 		goto await_fence;
1317 
1318 	if (__emit_semaphore_wait(to, from, from->fence.seqno))
1319 		goto await_fence;
1320 
1321 	to->sched.semaphores |= mask;
1322 	wait = &to->semaphore;
1323 
1324 await_fence:
1325 	return i915_sw_fence_await_dma_fence(wait,
1326 					     &from->fence, 0,
1327 					     I915_FENCE_GFP);
1328 }
1329 
1330 static bool intel_timeline_sync_has_start(struct intel_timeline *tl,
1331 					  struct dma_fence *fence)
1332 {
1333 	return __intel_timeline_sync_is_later(tl,
1334 					      fence->context,
1335 					      fence->seqno - 1);
1336 }
1337 
1338 static int intel_timeline_sync_set_start(struct intel_timeline *tl,
1339 					 const struct dma_fence *fence)
1340 {
1341 	return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1);
1342 }
1343 
1344 static int
1345 __i915_request_await_execution(struct i915_request *to,
1346 			       struct i915_request *from)
1347 {
1348 	int err;
1349 
1350 	GEM_BUG_ON(intel_context_is_barrier(from->context));
1351 
1352 	/* Submit both requests at the same time */
1353 	err = __await_execution(to, from, I915_FENCE_GFP);
1354 	if (err)
1355 		return err;
1356 
1357 	/* Squash repeated depenendices to the same timelines */
1358 	if (intel_timeline_sync_has_start(i915_request_timeline(to),
1359 					  &from->fence))
1360 		return 0;
1361 
1362 	/*
1363 	 * Wait until the start of this request.
1364 	 *
1365 	 * The execution cb fires when we submit the request to HW. But in
1366 	 * many cases this may be long before the request itself is ready to
1367 	 * run (consider that we submit 2 requests for the same context, where
1368 	 * the request of interest is behind an indefinite spinner). So we hook
1369 	 * up to both to reduce our queues and keep the execution lag minimised
1370 	 * in the worst case, though we hope that the await_start is elided.
1371 	 */
1372 	err = i915_request_await_start(to, from);
1373 	if (err < 0)
1374 		return err;
1375 
1376 	/*
1377 	 * Ensure both start together [after all semaphores in signal]
1378 	 *
1379 	 * Now that we are queued to the HW at roughly the same time (thanks
1380 	 * to the execute cb) and are ready to run at roughly the same time
1381 	 * (thanks to the await start), our signaler may still be indefinitely
1382 	 * delayed by waiting on a semaphore from a remote engine. If our
1383 	 * signaler depends on a semaphore, so indirectly do we, and we do not
1384 	 * want to start our payload until our signaler also starts theirs.
1385 	 * So we wait.
1386 	 *
1387 	 * However, there is also a second condition for which we need to wait
1388 	 * for the precise start of the signaler. Consider that the signaler
1389 	 * was submitted in a chain of requests following another context
1390 	 * (with just an ordinary intra-engine fence dependency between the
1391 	 * two). In this case the signaler is queued to HW, but not for
1392 	 * immediate execution, and so we must wait until it reaches the
1393 	 * active slot.
1394 	 */
1395 	if (can_use_semaphore_wait(to, from) &&
1396 	    intel_engine_has_semaphores(to->engine) &&
1397 	    !i915_request_has_initial_breadcrumb(to)) {
1398 		err = __emit_semaphore_wait(to, from, from->fence.seqno - 1);
1399 		if (err < 0)
1400 			return err;
1401 	}
1402 
1403 	/* Couple the dependency tree for PI on this exposed to->fence */
1404 	if (to->engine->sched_engine->schedule) {
1405 		err = i915_sched_node_add_dependency(&to->sched,
1406 						     &from->sched,
1407 						     I915_DEPENDENCY_WEAK);
1408 		if (err < 0)
1409 			return err;
1410 	}
1411 
1412 	return intel_timeline_sync_set_start(i915_request_timeline(to),
1413 					     &from->fence);
1414 }
1415 
1416 static void mark_external(struct i915_request *rq)
1417 {
1418 	/*
1419 	 * The downside of using semaphores is that we lose metadata passing
1420 	 * along the signaling chain. This is particularly nasty when we
1421 	 * need to pass along a fatal error such as EFAULT or EDEADLK. For
1422 	 * fatal errors we want to scrub the request before it is executed,
1423 	 * which means that we cannot preload the request onto HW and have
1424 	 * it wait upon a semaphore.
1425 	 */
1426 	rq->sched.flags |= I915_SCHED_HAS_EXTERNAL_CHAIN;
1427 }
1428 
1429 static int
1430 __i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
1431 {
1432 	mark_external(rq);
1433 	return i915_sw_fence_await_dma_fence(&rq->submit, fence,
1434 					     i915_fence_context_timeout(rq->engine->i915,
1435 									fence->context),
1436 					     I915_FENCE_GFP);
1437 }
1438 
1439 static int
1440 i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
1441 {
1442 	struct dma_fence *iter;
1443 	int err = 0;
1444 
1445 	if (!to_dma_fence_chain(fence))
1446 		return __i915_request_await_external(rq, fence);
1447 
1448 	dma_fence_chain_for_each(iter, fence) {
1449 		struct dma_fence_chain *chain = to_dma_fence_chain(iter);
1450 
1451 		if (!dma_fence_is_i915(chain->fence)) {
1452 			err = __i915_request_await_external(rq, iter);
1453 			break;
1454 		}
1455 
1456 		err = i915_request_await_dma_fence(rq, chain->fence);
1457 		if (err < 0)
1458 			break;
1459 	}
1460 
1461 	dma_fence_put(iter);
1462 	return err;
1463 }
1464 
1465 static inline bool is_parallel_rq(struct i915_request *rq)
1466 {
1467 	return intel_context_is_parallel(rq->context);
1468 }
1469 
1470 static inline struct intel_context *request_to_parent(struct i915_request *rq)
1471 {
1472 	return intel_context_to_parent(rq->context);
1473 }
1474 
1475 static bool is_same_parallel_context(struct i915_request *to,
1476 				     struct i915_request *from)
1477 {
1478 	if (is_parallel_rq(to))
1479 		return request_to_parent(to) == request_to_parent(from);
1480 
1481 	return false;
1482 }
1483 
1484 int
1485 i915_request_await_execution(struct i915_request *rq,
1486 			     struct dma_fence *fence)
1487 {
1488 	struct dma_fence **child = &fence;
1489 	unsigned int nchild = 1;
1490 	int ret;
1491 
1492 	if (dma_fence_is_array(fence)) {
1493 		struct dma_fence_array *array = to_dma_fence_array(fence);
1494 
1495 		/* XXX Error for signal-on-any fence arrays */
1496 
1497 		child = array->fences;
1498 		nchild = array->num_fences;
1499 		GEM_BUG_ON(!nchild);
1500 	}
1501 
1502 	do {
1503 		fence = *child++;
1504 		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
1505 			continue;
1506 
1507 		if (fence->context == rq->fence.context)
1508 			continue;
1509 
1510 		/*
1511 		 * We don't squash repeated fence dependencies here as we
1512 		 * want to run our callback in all cases.
1513 		 */
1514 
1515 		if (dma_fence_is_i915(fence)) {
1516 			if (is_same_parallel_context(rq, to_request(fence)))
1517 				continue;
1518 			ret = __i915_request_await_execution(rq,
1519 							     to_request(fence));
1520 		} else {
1521 			ret = i915_request_await_external(rq, fence);
1522 		}
1523 		if (ret < 0)
1524 			return ret;
1525 	} while (--nchild);
1526 
1527 	return 0;
1528 }
1529 
1530 static int
1531 await_request_submit(struct i915_request *to, struct i915_request *from)
1532 {
1533 	/*
1534 	 * If we are waiting on a virtual engine, then it may be
1535 	 * constrained to execute on a single engine *prior* to submission.
1536 	 * When it is submitted, it will be first submitted to the virtual
1537 	 * engine and then passed to the physical engine. We cannot allow
1538 	 * the waiter to be submitted immediately to the physical engine
1539 	 * as it may then bypass the virtual request.
1540 	 */
1541 	if (to->engine == READ_ONCE(from->engine))
1542 		return i915_sw_fence_await_sw_fence_gfp(&to->submit,
1543 							&from->submit,
1544 							I915_FENCE_GFP);
1545 	else
1546 		return __i915_request_await_execution(to, from);
1547 }
1548 
1549 static int
1550 i915_request_await_request(struct i915_request *to, struct i915_request *from)
1551 {
1552 	int ret;
1553 
1554 	GEM_BUG_ON(to == from);
1555 	GEM_BUG_ON(to->timeline == from->timeline);
1556 
1557 	if (i915_request_completed(from)) {
1558 		i915_sw_fence_set_error_once(&to->submit, from->fence.error);
1559 		return 0;
1560 	}
1561 
1562 	if (to->engine->sched_engine->schedule) {
1563 		ret = i915_sched_node_add_dependency(&to->sched,
1564 						     &from->sched,
1565 						     I915_DEPENDENCY_EXTERNAL);
1566 		if (ret < 0)
1567 			return ret;
1568 	}
1569 
1570 	if (!intel_engine_uses_guc(to->engine) &&
1571 	    is_power_of_2(to->execution_mask | READ_ONCE(from->execution_mask)))
1572 		ret = await_request_submit(to, from);
1573 	else
1574 		ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
1575 	if (ret < 0)
1576 		return ret;
1577 
1578 	return 0;
1579 }
1580 
1581 int
1582 i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
1583 {
1584 	struct dma_fence **child = &fence;
1585 	unsigned int nchild = 1;
1586 	int ret;
1587 
1588 	/*
1589 	 * Note that if the fence-array was created in signal-on-any mode,
1590 	 * we should *not* decompose it into its individual fences. However,
1591 	 * we don't currently store which mode the fence-array is operating
1592 	 * in. Fortunately, the only user of signal-on-any is private to
1593 	 * amdgpu and we should not see any incoming fence-array from
1594 	 * sync-file being in signal-on-any mode.
1595 	 */
1596 	if (dma_fence_is_array(fence)) {
1597 		struct dma_fence_array *array = to_dma_fence_array(fence);
1598 
1599 		child = array->fences;
1600 		nchild = array->num_fences;
1601 		GEM_BUG_ON(!nchild);
1602 	}
1603 
1604 	do {
1605 		fence = *child++;
1606 		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
1607 			continue;
1608 
1609 		/*
1610 		 * Requests on the same timeline are explicitly ordered, along
1611 		 * with their dependencies, by i915_request_add() which ensures
1612 		 * that requests are submitted in-order through each ring.
1613 		 */
1614 		if (fence->context == rq->fence.context)
1615 			continue;
1616 
1617 		/* Squash repeated waits to the same timelines */
1618 		if (fence->context &&
1619 		    intel_timeline_sync_is_later(i915_request_timeline(rq),
1620 						 fence))
1621 			continue;
1622 
1623 		if (dma_fence_is_i915(fence)) {
1624 			if (is_same_parallel_context(rq, to_request(fence)))
1625 				continue;
1626 			ret = i915_request_await_request(rq, to_request(fence));
1627 		} else {
1628 			ret = i915_request_await_external(rq, fence);
1629 		}
1630 		if (ret < 0)
1631 			return ret;
1632 
1633 		/* Record the latest fence used against each timeline */
1634 		if (fence->context)
1635 			intel_timeline_sync_set(i915_request_timeline(rq),
1636 						fence);
1637 	} while (--nchild);
1638 
1639 	return 0;
1640 }
1641 
1642 /**
1643  * i915_request_await_deps - set this request to (async) wait upon a struct
1644  * i915_deps dma_fence collection
1645  * @rq: request we are wishing to use
1646  * @deps: The struct i915_deps containing the dependencies.
1647  *
1648  * Returns 0 if successful, negative error code on error.
1649  */
1650 int i915_request_await_deps(struct i915_request *rq, const struct i915_deps *deps)
1651 {
1652 	int i, err;
1653 
1654 	for (i = 0; i < deps->num_deps; ++i) {
1655 		err = i915_request_await_dma_fence(rq, deps->fences[i]);
1656 		if (err)
1657 			return err;
1658 	}
1659 
1660 	return 0;
1661 }
1662 
1663 /**
1664  * i915_request_await_object - set this request to (async) wait upon a bo
1665  * @to: request we are wishing to use
1666  * @obj: object which may be in use on another ring.
1667  * @write: whether the wait is on behalf of a writer
1668  *
1669  * This code is meant to abstract object synchronization with the GPU.
1670  * Conceptually we serialise writes between engines inside the GPU.
1671  * We only allow one engine to write into a buffer at any time, but
1672  * multiple readers. To ensure each has a coherent view of memory, we must:
1673  *
1674  * - If there is an outstanding write request to the object, the new
1675  *   request must wait for it to complete (either CPU or in hw, requests
1676  *   on the same ring will be naturally ordered).
1677  *
1678  * - If we are a write request (pending_write_domain is set), the new
1679  *   request must wait for outstanding read requests to complete.
1680  *
1681  * Returns 0 if successful, else propagates up the lower layer error.
1682  */
1683 int
1684 i915_request_await_object(struct i915_request *to,
1685 			  struct drm_i915_gem_object *obj,
1686 			  bool write)
1687 {
1688 	struct dma_resv_iter cursor;
1689 	struct dma_fence *fence;
1690 	int ret = 0;
1691 
1692 	dma_resv_for_each_fence(&cursor, obj->base.resv,
1693 				dma_resv_usage_rw(write), fence) {
1694 		ret = i915_request_await_dma_fence(to, fence);
1695 		if (ret)
1696 			break;
1697 	}
1698 
1699 	return ret;
1700 }
1701 
1702 static struct i915_request *
1703 __i915_request_ensure_parallel_ordering(struct i915_request *rq,
1704 					struct intel_timeline *timeline)
1705 {
1706 	struct i915_request *prev;
1707 
1708 	GEM_BUG_ON(!is_parallel_rq(rq));
1709 
1710 	prev = request_to_parent(rq)->parallel.last_rq;
1711 	if (prev) {
1712 		if (!__i915_request_is_complete(prev)) {
1713 			i915_sw_fence_await_sw_fence(&rq->submit,
1714 						     &prev->submit,
1715 						     &rq->submitq);
1716 
1717 			if (rq->engine->sched_engine->schedule)
1718 				__i915_sched_node_add_dependency(&rq->sched,
1719 								 &prev->sched,
1720 								 &rq->dep,
1721 								 0);
1722 		}
1723 		i915_request_put(prev);
1724 	}
1725 
1726 	request_to_parent(rq)->parallel.last_rq = i915_request_get(rq);
1727 
1728 	/*
1729 	 * Users have to put a reference potentially got by
1730 	 * __i915_active_fence_set() to the returned request
1731 	 * when no longer needed
1732 	 */
1733 	return to_request(__i915_active_fence_set(&timeline->last_request,
1734 						  &rq->fence));
1735 }
1736 
1737 static struct i915_request *
1738 __i915_request_ensure_ordering(struct i915_request *rq,
1739 			       struct intel_timeline *timeline)
1740 {
1741 	struct i915_request *prev;
1742 
1743 	GEM_BUG_ON(is_parallel_rq(rq));
1744 
1745 	prev = to_request(__i915_active_fence_set(&timeline->last_request,
1746 						  &rq->fence));
1747 
1748 	if (prev && !__i915_request_is_complete(prev)) {
1749 		bool uses_guc = intel_engine_uses_guc(rq->engine);
1750 		bool pow2 = is_power_of_2(READ_ONCE(prev->engine)->mask |
1751 					  rq->engine->mask);
1752 		bool same_context = prev->context == rq->context;
1753 
1754 		/*
1755 		 * The requests are supposed to be kept in order. However,
1756 		 * we need to be wary in case the timeline->last_request
1757 		 * is used as a barrier for external modification to this
1758 		 * context.
1759 		 */
1760 		GEM_BUG_ON(same_context &&
1761 			   i915_seqno_passed(prev->fence.seqno,
1762 					     rq->fence.seqno));
1763 
1764 		if ((same_context && uses_guc) || (!uses_guc && pow2))
1765 			i915_sw_fence_await_sw_fence(&rq->submit,
1766 						     &prev->submit,
1767 						     &rq->submitq);
1768 		else
1769 			__i915_sw_fence_await_dma_fence(&rq->submit,
1770 							&prev->fence,
1771 							&rq->dmaq);
1772 		if (rq->engine->sched_engine->schedule)
1773 			__i915_sched_node_add_dependency(&rq->sched,
1774 							 &prev->sched,
1775 							 &rq->dep,
1776 							 0);
1777 	}
1778 
1779 	/*
1780 	 * Users have to put the reference to prev potentially got
1781 	 * by __i915_active_fence_set() when no longer needed
1782 	 */
1783 	return prev;
1784 }
1785 
1786 static struct i915_request *
1787 __i915_request_add_to_timeline(struct i915_request *rq)
1788 {
1789 	struct intel_timeline *timeline = i915_request_timeline(rq);
1790 	struct i915_request *prev;
1791 
1792 	/*
1793 	 * Dependency tracking and request ordering along the timeline
1794 	 * is special cased so that we can eliminate redundant ordering
1795 	 * operations while building the request (we know that the timeline
1796 	 * itself is ordered, and here we guarantee it).
1797 	 *
1798 	 * As we know we will need to emit tracking along the timeline,
1799 	 * we embed the hooks into our request struct -- at the cost of
1800 	 * having to have specialised no-allocation interfaces (which will
1801 	 * be beneficial elsewhere).
1802 	 *
1803 	 * A second benefit to open-coding i915_request_await_request is
1804 	 * that we can apply a slight variant of the rules specialised
1805 	 * for timelines that jump between engines (such as virtual engines).
1806 	 * If we consider the case of virtual engine, we must emit a dma-fence
1807 	 * to prevent scheduling of the second request until the first is
1808 	 * complete (to maximise our greedy late load balancing) and this
1809 	 * precludes optimising to use semaphores serialisation of a single
1810 	 * timeline across engines.
1811 	 *
1812 	 * We do not order parallel submission requests on the timeline as each
1813 	 * parallel submission context has its own timeline and the ordering
1814 	 * rules for parallel requests are that they must be submitted in the
1815 	 * order received from the execbuf IOCTL. So rather than using the
1816 	 * timeline we store a pointer to last request submitted in the
1817 	 * relationship in the gem context and insert a submission fence
1818 	 * between that request and request passed into this function or
1819 	 * alternatively we use completion fence if gem context has a single
1820 	 * timeline and this is the first submission of an execbuf IOCTL.
1821 	 */
1822 	if (likely(!is_parallel_rq(rq)))
1823 		prev = __i915_request_ensure_ordering(rq, timeline);
1824 	else
1825 		prev = __i915_request_ensure_parallel_ordering(rq, timeline);
1826 	if (prev)
1827 		i915_request_put(prev);
1828 
1829 	/*
1830 	 * Make sure that no request gazumped us - if it was allocated after
1831 	 * our i915_request_alloc() and called __i915_request_add() before
1832 	 * us, the timeline will hold its seqno which is later than ours.
1833 	 */
1834 	GEM_BUG_ON(timeline->seqno != rq->fence.seqno);
1835 
1836 	return prev;
1837 }
1838 
1839 /*
1840  * NB: This function is not allowed to fail. Doing so would mean the the
1841  * request is not being tracked for completion but the work itself is
1842  * going to happen on the hardware. This would be a Bad Thing(tm).
1843  */
1844 struct i915_request *__i915_request_commit(struct i915_request *rq)
1845 {
1846 	struct intel_engine_cs *engine = rq->engine;
1847 	struct intel_ring *ring = rq->ring;
1848 	u32 *cs;
1849 
1850 	RQ_TRACE(rq, "\n");
1851 
1852 	/*
1853 	 * To ensure that this call will not fail, space for its emissions
1854 	 * should already have been reserved in the ring buffer. Let the ring
1855 	 * know that it is time to use that space up.
1856 	 */
1857 	GEM_BUG_ON(rq->reserved_space > ring->space);
1858 	rq->reserved_space = 0;
1859 	rq->emitted_jiffies = jiffies;
1860 
1861 	/*
1862 	 * Record the position of the start of the breadcrumb so that
1863 	 * should we detect the updated seqno part-way through the
1864 	 * GPU processing the request, we never over-estimate the
1865 	 * position of the ring's HEAD.
1866 	 */
1867 	cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw);
1868 	GEM_BUG_ON(IS_ERR(cs));
1869 	rq->postfix = intel_ring_offset(rq, cs);
1870 
1871 	return __i915_request_add_to_timeline(rq);
1872 }
1873 
1874 void __i915_request_queue_bh(struct i915_request *rq)
1875 {
1876 	i915_sw_fence_commit(&rq->semaphore);
1877 	i915_sw_fence_commit(&rq->submit);
1878 }
1879 
1880 void __i915_request_queue(struct i915_request *rq,
1881 			  const struct i915_sched_attr *attr)
1882 {
1883 	/*
1884 	 * Let the backend know a new request has arrived that may need
1885 	 * to adjust the existing execution schedule due to a high priority
1886 	 * request - i.e. we may want to preempt the current request in order
1887 	 * to run a high priority dependency chain *before* we can execute this
1888 	 * request.
1889 	 *
1890 	 * This is called before the request is ready to run so that we can
1891 	 * decide whether to preempt the entire chain so that it is ready to
1892 	 * run at the earliest possible convenience.
1893 	 */
1894 	if (attr && rq->engine->sched_engine->schedule)
1895 		rq->engine->sched_engine->schedule(rq, attr);
1896 
1897 	local_bh_disable();
1898 	__i915_request_queue_bh(rq);
1899 	local_bh_enable(); /* kick tasklets */
1900 }
1901 
1902 void i915_request_add(struct i915_request *rq)
1903 {
1904 	struct intel_timeline * const tl = i915_request_timeline(rq);
1905 	struct i915_sched_attr attr = {};
1906 	struct i915_gem_context *ctx;
1907 
1908 	lockdep_assert_held(&tl->mutex);
1909 	lockdep_unpin_lock(&tl->mutex, rq->cookie);
1910 
1911 	trace_i915_request_add(rq);
1912 	__i915_request_commit(rq);
1913 
1914 	/* XXX placeholder for selftests */
1915 	rcu_read_lock();
1916 	ctx = rcu_dereference(rq->context->gem_context);
1917 	if (ctx)
1918 		attr = ctx->sched;
1919 	rcu_read_unlock();
1920 
1921 	__i915_request_queue(rq, &attr);
1922 
1923 	mutex_unlock(&tl->mutex);
1924 }
1925 
1926 static unsigned long local_clock_ns(unsigned int *cpu)
1927 {
1928 	unsigned long t;
1929 
1930 	/*
1931 	 * Cheaply and approximately convert from nanoseconds to microseconds.
1932 	 * The result and subsequent calculations are also defined in the same
1933 	 * approximate microseconds units. The principal source of timing
1934 	 * error here is from the simple truncation.
1935 	 *
1936 	 * Note that local_clock() is only defined wrt to the current CPU;
1937 	 * the comparisons are no longer valid if we switch CPUs. Instead of
1938 	 * blocking preemption for the entire busywait, we can detect the CPU
1939 	 * switch and use that as indicator of system load and a reason to
1940 	 * stop busywaiting, see busywait_stop().
1941 	 */
1942 	*cpu = get_cpu();
1943 	t = local_clock();
1944 	put_cpu();
1945 
1946 	return t;
1947 }
1948 
1949 static bool busywait_stop(unsigned long timeout, unsigned int cpu)
1950 {
1951 	unsigned int this_cpu;
1952 
1953 	if (time_after(local_clock_ns(&this_cpu), timeout))
1954 		return true;
1955 
1956 	return this_cpu != cpu;
1957 }
1958 
1959 static bool __i915_spin_request(struct i915_request * const rq, int state)
1960 {
1961 	unsigned long timeout_ns;
1962 	unsigned int cpu;
1963 
1964 	/*
1965 	 * Only wait for the request if we know it is likely to complete.
1966 	 *
1967 	 * We don't track the timestamps around requests, nor the average
1968 	 * request length, so we do not have a good indicator that this
1969 	 * request will complete within the timeout. What we do know is the
1970 	 * order in which requests are executed by the context and so we can
1971 	 * tell if the request has been started. If the request is not even
1972 	 * running yet, it is a fair assumption that it will not complete
1973 	 * within our relatively short timeout.
1974 	 */
1975 	if (!i915_request_is_running(rq))
1976 		return false;
1977 
1978 	/*
1979 	 * When waiting for high frequency requests, e.g. during synchronous
1980 	 * rendering split between the CPU and GPU, the finite amount of time
1981 	 * required to set up the irq and wait upon it limits the response
1982 	 * rate. By busywaiting on the request completion for a short while we
1983 	 * can service the high frequency waits as quick as possible. However,
1984 	 * if it is a slow request, we want to sleep as quickly as possible.
1985 	 * The tradeoff between waiting and sleeping is roughly the time it
1986 	 * takes to sleep on a request, on the order of a microsecond.
1987 	 */
1988 
1989 	timeout_ns = READ_ONCE(rq->engine->props.max_busywait_duration_ns);
1990 	timeout_ns += local_clock_ns(&cpu);
1991 	do {
1992 		if (dma_fence_is_signaled(&rq->fence))
1993 			return true;
1994 
1995 		if (signal_pending_state(state, current))
1996 			break;
1997 
1998 		if (busywait_stop(timeout_ns, cpu))
1999 			break;
2000 
2001 		cpu_relax();
2002 	} while (!drm_need_resched());
2003 
2004 	return false;
2005 }
2006 
2007 struct request_wait {
2008 	struct dma_fence_cb cb;
2009 #ifdef __linux__
2010 	struct task_struct *tsk;
2011 #else
2012 	struct proc *tsk;
2013 #endif
2014 };
2015 
2016 static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
2017 {
2018 	struct request_wait *wait = container_of(cb, typeof(*wait), cb);
2019 
2020 	wake_up_process(fetch_and_zero(&wait->tsk));
2021 }
2022 
2023 /**
2024  * i915_request_wait_timeout - wait until execution of request has finished
2025  * @rq: the request to wait upon
2026  * @flags: how to wait
2027  * @timeout: how long to wait in jiffies
2028  *
2029  * i915_request_wait_timeout() waits for the request to be completed, for a
2030  * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
2031  * unbounded wait).
2032  *
2033  * Returns the remaining time (in jiffies) if the request completed, which may
2034  * be zero if the request is unfinished after the timeout expires.
2035  * If the timeout is 0, it will return 1 if the fence is signaled.
2036  *
2037  * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
2038  * pending before the request completes.
2039  *
2040  * NOTE: This function has the same wait semantics as dma-fence.
2041  */
2042 long i915_request_wait_timeout(struct i915_request *rq,
2043 			       unsigned int flags,
2044 			       long timeout)
2045 {
2046 	const int state = flags & I915_WAIT_INTERRUPTIBLE ?
2047 		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
2048 	struct request_wait wait;
2049 
2050 	might_sleep();
2051 	GEM_BUG_ON(timeout < 0);
2052 
2053 	if (dma_fence_is_signaled(&rq->fence))
2054 		return timeout ?: 1;
2055 
2056 	if (!timeout)
2057 		return -ETIME;
2058 
2059 	trace_i915_request_wait_begin(rq, flags);
2060 
2061 	/*
2062 	 * We must never wait on the GPU while holding a lock as we
2063 	 * may need to perform a GPU reset. So while we don't need to
2064 	 * serialise wait/reset with an explicit lock, we do want
2065 	 * lockdep to detect potential dependency cycles.
2066 	 */
2067 	mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_);
2068 
2069 	/*
2070 	 * Optimistic spin before touching IRQs.
2071 	 *
2072 	 * We may use a rather large value here to offset the penalty of
2073 	 * switching away from the active task. Frequently, the client will
2074 	 * wait upon an old swapbuffer to throttle itself to remain within a
2075 	 * frame of the gpu. If the client is running in lockstep with the gpu,
2076 	 * then it should not be waiting long at all, and a sleep now will incur
2077 	 * extra scheduler latency in producing the next frame. To try to
2078 	 * avoid adding the cost of enabling/disabling the interrupt to the
2079 	 * short wait, we first spin to see if the request would have completed
2080 	 * in the time taken to setup the interrupt.
2081 	 *
2082 	 * We need upto 5us to enable the irq, and upto 20us to hide the
2083 	 * scheduler latency of a context switch, ignoring the secondary
2084 	 * impacts from a context switch such as cache eviction.
2085 	 *
2086 	 * The scheme used for low-latency IO is called "hybrid interrupt
2087 	 * polling". The suggestion there is to sleep until just before you
2088 	 * expect to be woken by the device interrupt and then poll for its
2089 	 * completion. That requires having a good predictor for the request
2090 	 * duration, which we currently lack.
2091 	 */
2092 	if (CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT &&
2093 	    __i915_spin_request(rq, state))
2094 		goto out;
2095 
2096 	/*
2097 	 * This client is about to stall waiting for the GPU. In many cases
2098 	 * this is undesirable and limits the throughput of the system, as
2099 	 * many clients cannot continue processing user input/output whilst
2100 	 * blocked. RPS autotuning may take tens of milliseconds to respond
2101 	 * to the GPU load and thus incurs additional latency for the client.
2102 	 * We can circumvent that by promoting the GPU frequency to maximum
2103 	 * before we sleep. This makes the GPU throttle up much more quickly
2104 	 * (good for benchmarks and user experience, e.g. window animations),
2105 	 * but at a cost of spending more power processing the workload
2106 	 * (bad for battery).
2107 	 */
2108 	if (flags & I915_WAIT_PRIORITY && !i915_request_started(rq))
2109 		intel_rps_boost(rq);
2110 
2111 #ifdef __linux__
2112 	wait.tsk = current;
2113 #else
2114 	wait.tsk = curproc;
2115 #endif
2116 	if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
2117 		goto out;
2118 
2119 	/*
2120 	 * Flush the submission tasklet, but only if it may help this request.
2121 	 *
2122 	 * We sometimes experience some latency between the HW interrupts and
2123 	 * tasklet execution (mostly due to ksoftirqd latency, but it can also
2124 	 * be due to lazy CS events), so lets run the tasklet manually if there
2125 	 * is a chance it may submit this request. If the request is not ready
2126 	 * to run, as it is waiting for other fences to be signaled, flushing
2127 	 * the tasklet is busy work without any advantage for this client.
2128 	 *
2129 	 * If the HW is being lazy, this is the last chance before we go to
2130 	 * sleep to catch any pending events. We will check periodically in
2131 	 * the heartbeat to flush the submission tasklets as a last resort
2132 	 * for unhappy HW.
2133 	 */
2134 	if (i915_request_is_ready(rq))
2135 		__intel_engine_flush_submission(rq->engine, false);
2136 
2137 	for (;;) {
2138 		set_current_state(state);
2139 
2140 		if (dma_fence_is_signaled(&rq->fence))
2141 			break;
2142 
2143 		if (signal_pending_state(state, current)) {
2144 			timeout = -ERESTARTSYS;
2145 			break;
2146 		}
2147 
2148 		if (!timeout) {
2149 			timeout = -ETIME;
2150 			break;
2151 		}
2152 
2153 		timeout = io_schedule_timeout(timeout);
2154 	}
2155 	__set_current_state(TASK_RUNNING);
2156 
2157 	if (READ_ONCE(wait.tsk))
2158 		dma_fence_remove_callback(&rq->fence, &wait.cb);
2159 	GEM_BUG_ON(!list_empty(&wait.cb.node));
2160 
2161 out:
2162 	mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_);
2163 	trace_i915_request_wait_end(rq);
2164 	return timeout;
2165 }
2166 
2167 /**
2168  * i915_request_wait - wait until execution of request has finished
2169  * @rq: the request to wait upon
2170  * @flags: how to wait
2171  * @timeout: how long to wait in jiffies
2172  *
2173  * i915_request_wait() waits for the request to be completed, for a
2174  * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
2175  * unbounded wait).
2176  *
2177  * Returns the remaining time (in jiffies) if the request completed, which may
2178  * be zero or -ETIME if the request is unfinished after the timeout expires.
2179  * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
2180  * pending before the request completes.
2181  *
2182  * NOTE: This function behaves differently from dma-fence wait semantics for
2183  * timeout = 0. It returns 0 on success, and -ETIME if not signaled.
2184  */
2185 long i915_request_wait(struct i915_request *rq,
2186 		       unsigned int flags,
2187 		       long timeout)
2188 {
2189 	long ret = i915_request_wait_timeout(rq, flags, timeout);
2190 
2191 	if (!ret)
2192 		return -ETIME;
2193 
2194 	if (ret > 0 && !timeout)
2195 		return 0;
2196 
2197 	return ret;
2198 }
2199 
2200 static int print_sched_attr(const struct i915_sched_attr *attr,
2201 			    char *buf, int x, int len)
2202 {
2203 	if (attr->priority == I915_PRIORITY_INVALID)
2204 		return x;
2205 
2206 	x += snprintf(buf + x, len - x,
2207 		      " prio=%d", attr->priority);
2208 
2209 	return x;
2210 }
2211 
2212 static char queue_status(const struct i915_request *rq)
2213 {
2214 	if (i915_request_is_active(rq))
2215 		return 'E';
2216 
2217 	if (i915_request_is_ready(rq))
2218 		return intel_engine_is_virtual(rq->engine) ? 'V' : 'R';
2219 
2220 	return 'U';
2221 }
2222 
2223 static const char *run_status(const struct i915_request *rq)
2224 {
2225 	if (__i915_request_is_complete(rq))
2226 		return "!";
2227 
2228 	if (__i915_request_has_started(rq))
2229 		return "*";
2230 
2231 	if (!i915_sw_fence_signaled(&rq->semaphore))
2232 		return "&";
2233 
2234 	return "";
2235 }
2236 
2237 static const char *fence_status(const struct i915_request *rq)
2238 {
2239 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags))
2240 		return "+";
2241 
2242 	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
2243 		return "-";
2244 
2245 	return "";
2246 }
2247 
2248 void i915_request_show(struct drm_printer *m,
2249 		       const struct i915_request *rq,
2250 		       const char *prefix,
2251 		       int indent)
2252 {
2253 	const char *name = rq->fence.ops->get_timeline_name((struct dma_fence *)&rq->fence);
2254 	char buf[80] = "";
2255 	int x = 0;
2256 
2257 	/*
2258 	 * The prefix is used to show the queue status, for which we use
2259 	 * the following flags:
2260 	 *
2261 	 *  U [Unready]
2262 	 *    - initial status upon being submitted by the user
2263 	 *
2264 	 *    - the request is not ready for execution as it is waiting
2265 	 *      for external fences
2266 	 *
2267 	 *  R [Ready]
2268 	 *    - all fences the request was waiting on have been signaled,
2269 	 *      and the request is now ready for execution and will be
2270 	 *      in a backend queue
2271 	 *
2272 	 *    - a ready request may still need to wait on semaphores
2273 	 *      [internal fences]
2274 	 *
2275 	 *  V [Ready/virtual]
2276 	 *    - same as ready, but queued over multiple backends
2277 	 *
2278 	 *  E [Executing]
2279 	 *    - the request has been transferred from the backend queue and
2280 	 *      submitted for execution on HW
2281 	 *
2282 	 *    - a completed request may still be regarded as executing, its
2283 	 *      status may not be updated until it is retired and removed
2284 	 *      from the lists
2285 	 */
2286 
2287 	x = print_sched_attr(&rq->sched.attr, buf, x, sizeof(buf));
2288 
2289 	drm_printf(m, "%s%.*s%c %llx:%lld%s%s %s @ %dms: %s\n",
2290 		   prefix, indent, "                ",
2291 		   queue_status(rq),
2292 		   rq->fence.context, rq->fence.seqno,
2293 		   run_status(rq),
2294 		   fence_status(rq),
2295 		   buf,
2296 		   jiffies_to_msecs(jiffies - rq->emitted_jiffies),
2297 		   name);
2298 }
2299 
2300 static bool engine_match_ring(struct intel_engine_cs *engine, struct i915_request *rq)
2301 {
2302 	u32 ring = ENGINE_READ(engine, RING_START);
2303 
2304 	return ring == i915_ggtt_offset(rq->ring->vma);
2305 }
2306 
2307 static bool match_ring(struct i915_request *rq)
2308 {
2309 	struct intel_engine_cs *engine;
2310 	bool found;
2311 	int i;
2312 
2313 	if (!intel_engine_is_virtual(rq->engine))
2314 		return engine_match_ring(rq->engine, rq);
2315 
2316 	found = false;
2317 	i = 0;
2318 	while ((engine = intel_engine_get_sibling(rq->engine, i++))) {
2319 		found = engine_match_ring(engine, rq);
2320 		if (found)
2321 			break;
2322 	}
2323 
2324 	return found;
2325 }
2326 
2327 enum i915_request_state i915_test_request_state(struct i915_request *rq)
2328 {
2329 	if (i915_request_completed(rq))
2330 		return I915_REQUEST_COMPLETE;
2331 
2332 	if (!i915_request_started(rq))
2333 		return I915_REQUEST_PENDING;
2334 
2335 	if (match_ring(rq))
2336 		return I915_REQUEST_ACTIVE;
2337 
2338 	return I915_REQUEST_QUEUED;
2339 }
2340 
2341 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2342 #include "selftests/mock_request.c"
2343 #include "selftests/i915_request.c"
2344 #endif
2345 
2346 void i915_request_module_exit(void)
2347 {
2348 #ifdef __linux__
2349 	kmem_cache_destroy(slab_execute_cbs);
2350 	kmem_cache_destroy(slab_requests);
2351 #else
2352 	pool_destroy(&slab_execute_cbs);
2353 	pool_destroy(&slab_requests);
2354 #endif
2355 }
2356 
2357 int __init i915_request_module_init(void)
2358 {
2359 #ifdef __linux__
2360 	slab_requests =
2361 		kmem_cache_create("i915_request",
2362 				  sizeof(struct i915_request),
2363 				  __alignof__(struct i915_request),
2364 				  SLAB_HWCACHE_ALIGN |
2365 				  SLAB_RECLAIM_ACCOUNT |
2366 				  SLAB_TYPESAFE_BY_RCU,
2367 				  __i915_request_ctor);
2368 	if (!slab_requests)
2369 		return -ENOMEM;
2370 
2371 	slab_execute_cbs = KMEM_CACHE(execute_cb,
2372 					     SLAB_HWCACHE_ALIGN |
2373 					     SLAB_RECLAIM_ACCOUNT |
2374 					     SLAB_TYPESAFE_BY_RCU);
2375 	if (!slab_execute_cbs)
2376 		goto err_requests;
2377 #else
2378 	pool_init(&slab_requests, sizeof(struct i915_request),
2379 	    CACHELINESIZE, IPL_TTY, 0, "i915_request", NULL);
2380 	pool_init(&slab_execute_cbs, sizeof(struct execute_cb),
2381 	    CACHELINESIZE, IPL_TTY, 0, "i915_exec", NULL);
2382 #endif
2383 
2384 	return 0;
2385 
2386 #ifdef __linux__
2387 err_requests:
2388 	kmem_cache_destroy(slab_requests);
2389 	return -ENOMEM;
2390 #endif
2391 }
2392