1 /* 2 * Copyright © 2015-2016 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Robert Bragg <robert@sixbynine.org> 25 */ 26 27 28 /** 29 * DOC: i915 Perf Overview 30 * 31 * Gen graphics supports a large number of performance counters that can help 32 * driver and application developers understand and optimize their use of the 33 * GPU. 34 * 35 * This i915 perf interface enables userspace to configure and open a file 36 * descriptor representing a stream of GPU metrics which can then be read() as 37 * a stream of sample records. 38 * 39 * The interface is particularly suited to exposing buffered metrics that are 40 * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU. 41 * 42 * Streams representing a single context are accessible to applications with a 43 * corresponding drm file descriptor, such that OpenGL can use the interface 44 * without special privileges. Access to system-wide metrics requires root 45 * privileges by default, unless changed via the dev.i915.perf_event_paranoid 46 * sysctl option. 47 * 48 */ 49 50 /** 51 * DOC: i915 Perf History and Comparison with Core Perf 52 * 53 * The interface was initially inspired by the core Perf infrastructure but 54 * some notable differences are: 55 * 56 * i915 perf file descriptors represent a "stream" instead of an "event"; where 57 * a perf event primarily corresponds to a single 64bit value, while a stream 58 * might sample sets of tightly-coupled counters, depending on the 59 * configuration. For example the Gen OA unit isn't designed to support 60 * orthogonal configurations of individual counters; it's configured for a set 61 * of related counters. Samples for an i915 perf stream capturing OA metrics 62 * will include a set of counter values packed in a compact HW specific format. 63 * The OA unit supports a number of different packing formats which can be 64 * selected by the user opening the stream. Perf has support for grouping 65 * events, but each event in the group is configured, validated and 66 * authenticated individually with separate system calls. 67 * 68 * i915 perf stream configurations are provided as an array of u64 (key,value) 69 * pairs, instead of a fixed struct with multiple miscellaneous config members, 70 * interleaved with event-type specific members. 71 * 72 * i915 perf doesn't support exposing metrics via an mmap'd circular buffer. 73 * The supported metrics are being written to memory by the GPU unsynchronized 74 * with the CPU, using HW specific packing formats for counter sets. Sometimes 75 * the constraints on HW configuration require reports to be filtered before it 76 * would be acceptable to expose them to unprivileged applications - to hide 77 * the metrics of other processes/contexts. For these use cases a read() based 78 * interface is a good fit, and provides an opportunity to filter data as it 79 * gets copied from the GPU mapped buffers to userspace buffers. 80 * 81 * 82 * Issues hit with first prototype based on Core Perf 83 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 84 * 85 * The first prototype of this driver was based on the core perf 86 * infrastructure, and while we did make that mostly work, with some changes to 87 * perf, we found we were breaking or working around too many assumptions baked 88 * into perf's currently cpu centric design. 89 * 90 * In the end we didn't see a clear benefit to making perf's implementation and 91 * interface more complex by changing design assumptions while we knew we still 92 * wouldn't be able to use any existing perf based userspace tools. 93 * 94 * Also considering the Gen specific nature of the Observability hardware and 95 * how userspace will sometimes need to combine i915 perf OA metrics with 96 * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're 97 * expecting the interface to be used by a platform specific userspace such as 98 * OpenGL or tools. This is to say; we aren't inherently missing out on having 99 * a standard vendor/architecture agnostic interface by not using perf. 100 * 101 * 102 * For posterity, in case we might re-visit trying to adapt core perf to be 103 * better suited to exposing i915 metrics these were the main pain points we 104 * hit: 105 * 106 * - The perf based OA PMU driver broke some significant design assumptions: 107 * 108 * Existing perf pmus are used for profiling work on a cpu and we were 109 * introducing the idea of _IS_DEVICE pmus with different security 110 * implications, the need to fake cpu-related data (such as user/kernel 111 * registers) to fit with perf's current design, and adding _DEVICE records 112 * as a way to forward device-specific status records. 113 * 114 * The OA unit writes reports of counters into a circular buffer, without 115 * involvement from the CPU, making our PMU driver the first of a kind. 116 * 117 * Given the way we were periodically forward data from the GPU-mapped, OA 118 * buffer to perf's buffer, those bursts of sample writes looked to perf like 119 * we were sampling too fast and so we had to subvert its throttling checks. 120 * 121 * Perf supports groups of counters and allows those to be read via 122 * transactions internally but transactions currently seem designed to be 123 * explicitly initiated from the cpu (say in response to a userspace read()) 124 * and while we could pull a report out of the OA buffer we can't 125 * trigger a report from the cpu on demand. 126 * 127 * Related to being report based; the OA counters are configured in HW as a 128 * set while perf generally expects counter configurations to be orthogonal. 129 * Although counters can be associated with a group leader as they are 130 * opened, there's no clear precedent for being able to provide group-wide 131 * configuration attributes (for example we want to let userspace choose the 132 * OA unit report format used to capture all counters in a set, or specify a 133 * GPU context to filter metrics on). We avoided using perf's grouping 134 * feature and forwarded OA reports to userspace via perf's 'raw' sample 135 * field. This suited our userspace well considering how coupled the counters 136 * are when dealing with normalizing. It would be inconvenient to split 137 * counters up into separate events, only to require userspace to recombine 138 * them. For Mesa it's also convenient to be forwarded raw, periodic reports 139 * for combining with the side-band raw reports it captures using 140 * MI_REPORT_PERF_COUNT commands. 141 * 142 * - As a side note on perf's grouping feature; there was also some concern 143 * that using PERF_FORMAT_GROUP as a way to pack together counter values 144 * would quite drastically inflate our sample sizes, which would likely 145 * lower the effective sampling resolutions we could use when the available 146 * memory bandwidth is limited. 147 * 148 * With the OA unit's report formats, counters are packed together as 32 149 * or 40bit values, with the largest report size being 256 bytes. 150 * 151 * PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a 152 * documented ordering to the values, implying PERF_FORMAT_ID must also be 153 * used to add a 64bit ID before each value; giving 16 bytes per counter. 154 * 155 * Related to counter orthogonality; we can't time share the OA unit, while 156 * event scheduling is a central design idea within perf for allowing 157 * userspace to open + enable more events than can be configured in HW at any 158 * one time. The OA unit is not designed to allow re-configuration while in 159 * use. We can't reconfigure the OA unit without losing internal OA unit 160 * state which we can't access explicitly to save and restore. Reconfiguring 161 * the OA unit is also relatively slow, involving ~100 register writes. From 162 * userspace Mesa also depends on a stable OA configuration when emitting 163 * MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be 164 * disabled while there are outstanding MI_RPC commands lest we hang the 165 * command streamer. 166 * 167 * The contents of sample records aren't extensible by device drivers (i.e. 168 * the sample_type bits). As an example; Sourab Gupta had been looking to 169 * attach GPU timestamps to our OA samples. We were shoehorning OA reports 170 * into sample records by using the 'raw' field, but it's tricky to pack more 171 * than one thing into this field because events/core.c currently only lets a 172 * pmu give a single raw data pointer plus len which will be copied into the 173 * ring buffer. To include more than the OA report we'd have to copy the 174 * report into an intermediate larger buffer. I'd been considering allowing a 175 * vector of data+len values to be specified for copying the raw data, but 176 * it felt like a kludge to being using the raw field for this purpose. 177 * 178 * - It felt like our perf based PMU was making some technical compromises 179 * just for the sake of using perf: 180 * 181 * perf_event_open() requires events to either relate to a pid or a specific 182 * cpu core, while our device pmu related to neither. Events opened with a 183 * pid will be automatically enabled/disabled according to the scheduling of 184 * that process - so not appropriate for us. When an event is related to a 185 * cpu id, perf ensures pmu methods will be invoked via an inter process 186 * interrupt on that core. To avoid invasive changes our userspace opened OA 187 * perf events for a specific cpu. This was workable but it meant the 188 * majority of the OA driver ran in atomic context, including all OA report 189 * forwarding, which wasn't really necessary in our case and seems to make 190 * our locking requirements somewhat complex as we handled the interaction 191 * with the rest of the i915 driver. 192 */ 193 194 #include <linux/anon_inodes.h> 195 #include <linux/sizes.h> 196 #include <linux/uuid.h> 197 198 #include "gem/i915_gem_context.h" 199 #include "gem/i915_gem_internal.h" 200 #include "gt/intel_engine_pm.h" 201 #include "gt/intel_engine_regs.h" 202 #include "gt/intel_engine_user.h" 203 #include "gt/intel_execlists_submission.h" 204 #include "gt/intel_gpu_commands.h" 205 #include "gt/intel_gt.h" 206 #include "gt/intel_gt_clock_utils.h" 207 #include "gt/intel_gt_regs.h" 208 #include "gt/intel_lrc.h" 209 #include "gt/intel_lrc_reg.h" 210 #include "gt/intel_ring.h" 211 212 #include "i915_drv.h" 213 #include "i915_file_private.h" 214 #include "i915_perf.h" 215 #include "i915_perf_oa_regs.h" 216 217 /* HW requires this to be a power of two, between 128k and 16M, though driver 218 * is currently generally designed assuming the largest 16M size is used such 219 * that the overflow cases are unlikely in normal operation. 220 */ 221 #define OA_BUFFER_SIZE SZ_16M 222 223 #define OA_TAKEN(tail, head) ((tail - head) & (OA_BUFFER_SIZE - 1)) 224 225 /** 226 * DOC: OA Tail Pointer Race 227 * 228 * There's a HW race condition between OA unit tail pointer register updates and 229 * writes to memory whereby the tail pointer can sometimes get ahead of what's 230 * been written out to the OA buffer so far (in terms of what's visible to the 231 * CPU). 232 * 233 * Although this can be observed explicitly while copying reports to userspace 234 * by checking for a zeroed report-id field in tail reports, we want to account 235 * for this earlier, as part of the oa_buffer_check_unlocked to avoid lots of 236 * redundant read() attempts. 237 * 238 * We workaround this issue in oa_buffer_check_unlocked() by reading the reports 239 * in the OA buffer, starting from the tail reported by the HW until we find a 240 * report with its first 2 dwords not 0 meaning its previous report is 241 * completely in memory and ready to be read. Those dwords are also set to 0 242 * once read and the whole buffer is cleared upon OA buffer initialization. The 243 * first dword is the reason for this report while the second is the timestamp, 244 * making the chances of having those 2 fields at 0 fairly unlikely. A more 245 * detailed explanation is available in oa_buffer_check_unlocked(). 246 * 247 * Most of the implementation details for this workaround are in 248 * oa_buffer_check_unlocked() and _append_oa_reports() 249 * 250 * Note for posterity: previously the driver used to define an effective tail 251 * pointer that lagged the real pointer by a 'tail margin' measured in bytes 252 * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency. 253 * This was flawed considering that the OA unit may also automatically generate 254 * non-periodic reports (such as on context switch) or the OA unit may be 255 * enabled without any periodic sampling. 256 */ 257 #define OA_TAIL_MARGIN_NSEC 100000ULL 258 #define INVALID_TAIL_PTR 0xffffffff 259 260 /* The default frequency for checking whether the OA unit has written new 261 * reports to the circular OA buffer... 262 */ 263 #define DEFAULT_POLL_FREQUENCY_HZ 200 264 #define DEFAULT_POLL_PERIOD_NS (NSEC_PER_SEC / DEFAULT_POLL_FREQUENCY_HZ) 265 266 /* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */ 267 static u32 i915_perf_stream_paranoid = true; 268 269 /* The maximum exponent the hardware accepts is 63 (essentially it selects one 270 * of the 64bit timestamp bits to trigger reports from) but there's currently 271 * no known use case for sampling as infrequently as once per 47 thousand years. 272 * 273 * Since the timestamps included in OA reports are only 32bits it seems 274 * reasonable to limit the OA exponent where it's still possible to account for 275 * overflow in OA report timestamps. 276 */ 277 #define OA_EXPONENT_MAX 31 278 279 #define INVALID_CTX_ID 0xffffffff 280 281 /* On Gen8+ automatically triggered OA reports include a 'reason' field... */ 282 #define OAREPORT_REASON_MASK 0x3f 283 #define OAREPORT_REASON_MASK_EXTENDED 0x7f 284 #define OAREPORT_REASON_SHIFT 19 285 #define OAREPORT_REASON_TIMER (1<<0) 286 #define OAREPORT_REASON_CTX_SWITCH (1<<3) 287 #define OAREPORT_REASON_CLK_RATIO (1<<5) 288 289 290 /* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate 291 * 292 * The highest sampling frequency we can theoretically program the OA unit 293 * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell. 294 * 295 * Initialized just before we register the sysctl parameter. 296 */ 297 static int oa_sample_rate_hard_limit; 298 299 /* Theoretically we can program the OA unit to sample every 160ns but don't 300 * allow that by default unless root... 301 * 302 * The default threshold of 100000Hz is based on perf's similar 303 * kernel.perf_event_max_sample_rate sysctl parameter. 304 */ 305 static u32 i915_oa_max_sample_rate = 100000; 306 307 /* XXX: beware if future OA HW adds new report formats that the current 308 * code assumes all reports have a power-of-two size and ~(size - 1) can 309 * be used as a mask to align the OA tail pointer. 310 */ 311 static const struct i915_oa_format oa_formats[I915_OA_FORMAT_MAX] = { 312 [I915_OA_FORMAT_A13] = { 0, 64 }, 313 [I915_OA_FORMAT_A29] = { 1, 128 }, 314 [I915_OA_FORMAT_A13_B8_C8] = { 2, 128 }, 315 /* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */ 316 [I915_OA_FORMAT_B4_C8] = { 4, 64 }, 317 [I915_OA_FORMAT_A45_B8_C8] = { 5, 256 }, 318 [I915_OA_FORMAT_B4_C8_A16] = { 6, 128 }, 319 [I915_OA_FORMAT_C4_B8] = { 7, 64 }, 320 [I915_OA_FORMAT_A12] = { 0, 64 }, 321 [I915_OA_FORMAT_A12_B8_C8] = { 2, 128 }, 322 [I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 }, 323 }; 324 325 #define SAMPLE_OA_REPORT (1<<0) 326 327 /** 328 * struct perf_open_properties - for validated properties given to open a stream 329 * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags 330 * @single_context: Whether a single or all gpu contexts should be monitored 331 * @hold_preemption: Whether the preemption is disabled for the filtered 332 * context 333 * @ctx_handle: A gem ctx handle for use with @single_context 334 * @metrics_set: An ID for an OA unit metric set advertised via sysfs 335 * @oa_format: An OA unit HW report format 336 * @oa_periodic: Whether to enable periodic OA unit sampling 337 * @oa_period_exponent: The OA unit sampling period is derived from this 338 * @engine: The engine (typically rcs0) being monitored by the OA unit 339 * @has_sseu: Whether @sseu was specified by userspace 340 * @sseu: internal SSEU configuration computed either from the userspace 341 * specified configuration in the opening parameters or a default value 342 * (see get_default_sseu_config()) 343 * @poll_oa_period: The period in nanoseconds at which the CPU will check for OA 344 * data availability 345 * 346 * As read_properties_unlocked() enumerates and validates the properties given 347 * to open a stream of metrics the configuration is built up in the structure 348 * which starts out zero initialized. 349 */ 350 struct perf_open_properties { 351 u32 sample_flags; 352 353 u64 single_context:1; 354 u64 hold_preemption:1; 355 u64 ctx_handle; 356 357 /* OA sampling state */ 358 int metrics_set; 359 int oa_format; 360 bool oa_periodic; 361 int oa_period_exponent; 362 363 struct intel_engine_cs *engine; 364 365 bool has_sseu; 366 struct intel_sseu sseu; 367 368 u64 poll_oa_period; 369 }; 370 371 struct i915_oa_config_bo { 372 struct llist_node node; 373 374 struct i915_oa_config *oa_config; 375 struct i915_vma *vma; 376 }; 377 378 static struct ctl_table_header *sysctl_header; 379 380 #ifdef notyet 381 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer); 382 #endif 383 384 void i915_oa_config_release(struct kref *ref) 385 { 386 struct i915_oa_config *oa_config = 387 container_of(ref, typeof(*oa_config), ref); 388 389 kfree(oa_config->flex_regs); 390 kfree(oa_config->b_counter_regs); 391 kfree(oa_config->mux_regs); 392 393 kfree_rcu(oa_config, rcu); 394 } 395 396 struct i915_oa_config * 397 i915_perf_get_oa_config(struct i915_perf *perf, int metrics_set) 398 { 399 struct i915_oa_config *oa_config; 400 401 rcu_read_lock(); 402 oa_config = idr_find(&perf->metrics_idr, metrics_set); 403 if (oa_config) 404 oa_config = i915_oa_config_get(oa_config); 405 rcu_read_unlock(); 406 407 return oa_config; 408 } 409 410 #ifdef notyet 411 412 static void free_oa_config_bo(struct i915_oa_config_bo *oa_bo) 413 { 414 i915_oa_config_put(oa_bo->oa_config); 415 i915_vma_put(oa_bo->vma); 416 kfree(oa_bo); 417 } 418 419 #endif 420 421 static u32 gen12_oa_hw_tail_read(struct i915_perf_stream *stream) 422 { 423 struct intel_uncore *uncore = stream->uncore; 424 425 return intel_uncore_read(uncore, GEN12_OAG_OATAILPTR) & 426 GEN12_OAG_OATAILPTR_MASK; 427 } 428 429 static u32 gen8_oa_hw_tail_read(struct i915_perf_stream *stream) 430 { 431 struct intel_uncore *uncore = stream->uncore; 432 433 return intel_uncore_read(uncore, GEN8_OATAILPTR) & GEN8_OATAILPTR_MASK; 434 } 435 436 static u32 gen7_oa_hw_tail_read(struct i915_perf_stream *stream) 437 { 438 struct intel_uncore *uncore = stream->uncore; 439 u32 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1); 440 441 return oastatus1 & GEN7_OASTATUS1_TAIL_MASK; 442 } 443 444 #ifdef notyet 445 446 /** 447 * oa_buffer_check_unlocked - check for data and update tail ptr state 448 * @stream: i915 stream instance 449 * 450 * This is either called via fops (for blocking reads in user ctx) or the poll 451 * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check 452 * if there is data available for userspace to read. 453 * 454 * This function is central to providing a workaround for the OA unit tail 455 * pointer having a race with respect to what data is visible to the CPU. 456 * It is responsible for reading tail pointers from the hardware and giving 457 * the pointers time to 'age' before they are made available for reading. 458 * (See description of OA_TAIL_MARGIN_NSEC above for further details.) 459 * 460 * Besides returning true when there is data available to read() this function 461 * also updates the tail, aging_tail and aging_timestamp in the oa_buffer 462 * object. 463 * 464 * Note: It's safe to read OA config state here unlocked, assuming that this is 465 * only called while the stream is enabled, while the global OA configuration 466 * can't be modified. 467 * 468 * Returns: %true if the OA buffer contains data, else %false 469 */ 470 static bool oa_buffer_check_unlocked(struct i915_perf_stream *stream) 471 { 472 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 473 int report_size = stream->oa_buffer.format_size; 474 unsigned long flags; 475 bool pollin; 476 u32 hw_tail; 477 u64 now; 478 479 /* We have to consider the (unlikely) possibility that read() errors 480 * could result in an OA buffer reset which might reset the head and 481 * tail state. 482 */ 483 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 484 485 hw_tail = stream->perf->ops.oa_hw_tail_read(stream); 486 487 /* The tail pointer increases in 64 byte increments, 488 * not in report_size steps... 489 */ 490 hw_tail &= ~(report_size - 1); 491 492 now = ktime_get_mono_fast_ns(); 493 494 if (hw_tail == stream->oa_buffer.aging_tail && 495 (now - stream->oa_buffer.aging_timestamp) > OA_TAIL_MARGIN_NSEC) { 496 /* If the HW tail hasn't move since the last check and the HW 497 * tail has been aging for long enough, declare it the new 498 * tail. 499 */ 500 stream->oa_buffer.tail = stream->oa_buffer.aging_tail; 501 } else { 502 u32 head, tail, aged_tail; 503 504 /* NB: The head we observe here might effectively be a little 505 * out of date. If a read() is in progress, the head could be 506 * anywhere between this head and stream->oa_buffer.tail. 507 */ 508 head = stream->oa_buffer.head - gtt_offset; 509 aged_tail = stream->oa_buffer.tail - gtt_offset; 510 511 hw_tail -= gtt_offset; 512 tail = hw_tail; 513 514 /* Walk the stream backward until we find a report with dword 0 515 * & 1 not at 0. Since the circular buffer pointers progress by 516 * increments of 64 bytes and that reports can be up to 256 517 * bytes long, we can't tell whether a report has fully landed 518 * in memory before the first 2 dwords of the following report 519 * have effectively landed. 520 * 521 * This is assuming that the writes of the OA unit land in 522 * memory in the order they were written to. 523 * If not : (╯°□°)╯︵ ┻━┻ 524 */ 525 while (OA_TAKEN(tail, aged_tail) >= report_size) { 526 u32 *report32 = (void *)(stream->oa_buffer.vaddr + tail); 527 528 if (report32[0] != 0 || report32[1] != 0) 529 break; 530 531 tail = (tail - report_size) & (OA_BUFFER_SIZE - 1); 532 } 533 534 if (OA_TAKEN(hw_tail, tail) > report_size && 535 __ratelimit(&stream->perf->tail_pointer_race)) 536 DRM_NOTE("unlanded report(s) head=0x%x " 537 "tail=0x%x hw_tail=0x%x\n", 538 head, tail, hw_tail); 539 540 stream->oa_buffer.tail = gtt_offset + tail; 541 stream->oa_buffer.aging_tail = gtt_offset + hw_tail; 542 stream->oa_buffer.aging_timestamp = now; 543 } 544 545 pollin = OA_TAKEN(stream->oa_buffer.tail - gtt_offset, 546 stream->oa_buffer.head - gtt_offset) >= report_size; 547 548 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 549 550 return pollin; 551 } 552 553 #endif 554 555 /** 556 * append_oa_status - Appends a status record to a userspace read() buffer. 557 * @stream: An i915-perf stream opened for OA metrics 558 * @buf: destination buffer given by userspace 559 * @count: the number of bytes userspace wants to read 560 * @offset: (inout): the current position for writing into @buf 561 * @type: The kind of status to report to userspace 562 * 563 * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`) 564 * into the userspace read() buffer. 565 * 566 * The @buf @offset will only be updated on success. 567 * 568 * Returns: 0 on success, negative error code on failure. 569 */ 570 static int append_oa_status(struct i915_perf_stream *stream, 571 char __user *buf, 572 size_t count, 573 size_t *offset, 574 enum drm_i915_perf_record_type type) 575 { 576 struct drm_i915_perf_record_header header = { type, 0, sizeof(header) }; 577 578 if ((count - *offset) < header.size) 579 return -ENOSPC; 580 581 if (copy_to_user(buf + *offset, &header, sizeof(header))) 582 return -EFAULT; 583 584 (*offset) += header.size; 585 586 return 0; 587 } 588 589 /** 590 * append_oa_sample - Copies single OA report into userspace read() buffer. 591 * @stream: An i915-perf stream opened for OA metrics 592 * @buf: destination buffer given by userspace 593 * @count: the number of bytes userspace wants to read 594 * @offset: (inout): the current position for writing into @buf 595 * @report: A single OA report to (optionally) include as part of the sample 596 * 597 * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*` 598 * properties when opening a stream, tracked as `stream->sample_flags`. This 599 * function copies the requested components of a single sample to the given 600 * read() @buf. 601 * 602 * The @buf @offset will only be updated on success. 603 * 604 * Returns: 0 on success, negative error code on failure. 605 */ 606 static int append_oa_sample(struct i915_perf_stream *stream, 607 char __user *buf, 608 size_t count, 609 size_t *offset, 610 const u8 *report) 611 { 612 int report_size = stream->oa_buffer.format_size; 613 struct drm_i915_perf_record_header header; 614 615 header.type = DRM_I915_PERF_RECORD_SAMPLE; 616 header.pad = 0; 617 header.size = stream->sample_size; 618 619 if ((count - *offset) < header.size) 620 return -ENOSPC; 621 622 buf += *offset; 623 if (copy_to_user(buf, &header, sizeof(header))) 624 return -EFAULT; 625 buf += sizeof(header); 626 627 if (copy_to_user(buf, report, report_size)) 628 return -EFAULT; 629 630 (*offset) += header.size; 631 632 return 0; 633 } 634 635 /** 636 * gen8_append_oa_reports - Copies all buffered OA reports into 637 * userspace read() buffer. 638 * @stream: An i915-perf stream opened for OA metrics 639 * @buf: destination buffer given by userspace 640 * @count: the number of bytes userspace wants to read 641 * @offset: (inout): the current position for writing into @buf 642 * 643 * Notably any error condition resulting in a short read (-%ENOSPC or 644 * -%EFAULT) will be returned even though one or more records may 645 * have been successfully copied. In this case it's up to the caller 646 * to decide if the error should be squashed before returning to 647 * userspace. 648 * 649 * Note: reports are consumed from the head, and appended to the 650 * tail, so the tail chases the head?... If you think that's mad 651 * and back-to-front you're not alone, but this follows the 652 * Gen PRM naming convention. 653 * 654 * Returns: 0 on success, negative error code on failure. 655 */ 656 static int gen8_append_oa_reports(struct i915_perf_stream *stream, 657 char __user *buf, 658 size_t count, 659 size_t *offset) 660 { 661 struct intel_uncore *uncore = stream->uncore; 662 int report_size = stream->oa_buffer.format_size; 663 u8 *oa_buf_base = stream->oa_buffer.vaddr; 664 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 665 u32 mask = (OA_BUFFER_SIZE - 1); 666 size_t start_offset = *offset; 667 unsigned long flags; 668 u32 head, tail; 669 u32 taken; 670 int ret = 0; 671 672 if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled)) 673 return -EIO; 674 675 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 676 677 head = stream->oa_buffer.head; 678 tail = stream->oa_buffer.tail; 679 680 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 681 682 /* 683 * NB: oa_buffer.head/tail include the gtt_offset which we don't want 684 * while indexing relative to oa_buf_base. 685 */ 686 head -= gtt_offset; 687 tail -= gtt_offset; 688 689 /* 690 * An out of bounds or misaligned head or tail pointer implies a driver 691 * bug since we validate + align the tail pointers we read from the 692 * hardware and we are in full control of the head pointer which should 693 * only be incremented by multiples of the report size (notably also 694 * all a power of two). 695 */ 696 if (drm_WARN_ONCE(&uncore->i915->drm, 697 head > OA_BUFFER_SIZE || head % report_size || 698 tail > OA_BUFFER_SIZE || tail % report_size, 699 "Inconsistent OA buffer pointers: head = %u, tail = %u\n", 700 head, tail)) 701 return -EIO; 702 703 704 for (/* none */; 705 (taken = OA_TAKEN(tail, head)); 706 head = (head + report_size) & mask) { 707 u8 *report = oa_buf_base + head; 708 u32 *report32 = (void *)report; 709 u32 ctx_id; 710 u32 reason; 711 712 /* 713 * All the report sizes factor neatly into the buffer 714 * size so we never expect to see a report split 715 * between the beginning and end of the buffer. 716 * 717 * Given the initial alignment check a misalignment 718 * here would imply a driver bug that would result 719 * in an overrun. 720 */ 721 if (drm_WARN_ON(&uncore->i915->drm, 722 (OA_BUFFER_SIZE - head) < report_size)) { 723 drm_err(&uncore->i915->drm, 724 "Spurious OA head ptr: non-integral report offset\n"); 725 break; 726 } 727 728 /* 729 * The reason field includes flags identifying what 730 * triggered this specific report (mostly timer 731 * triggered or e.g. due to a context switch). 732 * 733 * This field is never expected to be zero so we can 734 * check that the report isn't invalid before copying 735 * it to userspace... 736 */ 737 reason = ((report32[0] >> OAREPORT_REASON_SHIFT) & 738 (GRAPHICS_VER(stream->perf->i915) == 12 ? 739 OAREPORT_REASON_MASK_EXTENDED : 740 OAREPORT_REASON_MASK)); 741 742 ctx_id = report32[2] & stream->specific_ctx_id_mask; 743 744 /* 745 * Squash whatever is in the CTX_ID field if it's marked as 746 * invalid to be sure we avoid false-positive, single-context 747 * filtering below... 748 * 749 * Note: that we don't clear the valid_ctx_bit so userspace can 750 * understand that the ID has been squashed by the kernel. 751 */ 752 if (!(report32[0] & stream->perf->gen8_valid_ctx_bit) && 753 GRAPHICS_VER(stream->perf->i915) <= 11) 754 ctx_id = report32[2] = INVALID_CTX_ID; 755 756 /* 757 * NB: For Gen 8 the OA unit no longer supports clock gating 758 * off for a specific context and the kernel can't securely 759 * stop the counters from updating as system-wide / global 760 * values. 761 * 762 * Automatic reports now include a context ID so reports can be 763 * filtered on the cpu but it's not worth trying to 764 * automatically subtract/hide counter progress for other 765 * contexts while filtering since we can't stop userspace 766 * issuing MI_REPORT_PERF_COUNT commands which would still 767 * provide a side-band view of the real values. 768 * 769 * To allow userspace (such as Mesa/GL_INTEL_performance_query) 770 * to normalize counters for a single filtered context then it 771 * needs be forwarded bookend context-switch reports so that it 772 * can track switches in between MI_REPORT_PERF_COUNT commands 773 * and can itself subtract/ignore the progress of counters 774 * associated with other contexts. Note that the hardware 775 * automatically triggers reports when switching to a new 776 * context which are tagged with the ID of the newly active 777 * context. To avoid the complexity (and likely fragility) of 778 * reading ahead while parsing reports to try and minimize 779 * forwarding redundant context switch reports (i.e. between 780 * other, unrelated contexts) we simply elect to forward them 781 * all. 782 * 783 * We don't rely solely on the reason field to identify context 784 * switches since it's not-uncommon for periodic samples to 785 * identify a switch before any 'context switch' report. 786 */ 787 if (!stream->perf->exclusive_stream->ctx || 788 stream->specific_ctx_id == ctx_id || 789 stream->oa_buffer.last_ctx_id == stream->specific_ctx_id || 790 reason & OAREPORT_REASON_CTX_SWITCH) { 791 792 /* 793 * While filtering for a single context we avoid 794 * leaking the IDs of other contexts. 795 */ 796 if (stream->perf->exclusive_stream->ctx && 797 stream->specific_ctx_id != ctx_id) { 798 report32[2] = INVALID_CTX_ID; 799 } 800 801 ret = append_oa_sample(stream, buf, count, offset, 802 report); 803 if (ret) 804 break; 805 806 stream->oa_buffer.last_ctx_id = ctx_id; 807 } 808 809 /* 810 * Clear out the first 2 dword as a mean to detect unlanded 811 * reports. 812 */ 813 report32[0] = 0; 814 report32[1] = 0; 815 } 816 817 if (start_offset != *offset) { 818 i915_reg_t oaheadptr; 819 820 oaheadptr = GRAPHICS_VER(stream->perf->i915) == 12 ? 821 GEN12_OAG_OAHEADPTR : GEN8_OAHEADPTR; 822 823 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 824 825 /* 826 * We removed the gtt_offset for the copy loop above, indexing 827 * relative to oa_buf_base so put back here... 828 */ 829 head += gtt_offset; 830 intel_uncore_write(uncore, oaheadptr, 831 head & GEN12_OAG_OAHEADPTR_MASK); 832 stream->oa_buffer.head = head; 833 834 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 835 } 836 837 return ret; 838 } 839 840 /** 841 * gen8_oa_read - copy status records then buffered OA reports 842 * @stream: An i915-perf stream opened for OA metrics 843 * @buf: destination buffer given by userspace 844 * @count: the number of bytes userspace wants to read 845 * @offset: (inout): the current position for writing into @buf 846 * 847 * Checks OA unit status registers and if necessary appends corresponding 848 * status records for userspace (such as for a buffer full condition) and then 849 * initiate appending any buffered OA reports. 850 * 851 * Updates @offset according to the number of bytes successfully copied into 852 * the userspace buffer. 853 * 854 * NB: some data may be successfully copied to the userspace buffer 855 * even if an error is returned, and this is reflected in the 856 * updated @offset. 857 * 858 * Returns: zero on success or a negative error code 859 */ 860 static int gen8_oa_read(struct i915_perf_stream *stream, 861 char __user *buf, 862 size_t count, 863 size_t *offset) 864 { 865 struct intel_uncore *uncore = stream->uncore; 866 u32 oastatus; 867 i915_reg_t oastatus_reg; 868 int ret; 869 870 if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr)) 871 return -EIO; 872 873 oastatus_reg = GRAPHICS_VER(stream->perf->i915) == 12 ? 874 GEN12_OAG_OASTATUS : GEN8_OASTATUS; 875 876 oastatus = intel_uncore_read(uncore, oastatus_reg); 877 878 /* 879 * We treat OABUFFER_OVERFLOW as a significant error: 880 * 881 * Although theoretically we could handle this more gracefully 882 * sometimes, some Gens don't correctly suppress certain 883 * automatically triggered reports in this condition and so we 884 * have to assume that old reports are now being trampled 885 * over. 886 * 887 * Considering how we don't currently give userspace control 888 * over the OA buffer size and always configure a large 16MB 889 * buffer, then a buffer overflow does anyway likely indicate 890 * that something has gone quite badly wrong. 891 */ 892 if (oastatus & GEN8_OASTATUS_OABUFFER_OVERFLOW) { 893 ret = append_oa_status(stream, buf, count, offset, 894 DRM_I915_PERF_RECORD_OA_BUFFER_LOST); 895 if (ret) 896 return ret; 897 898 drm_dbg(&stream->perf->i915->drm, 899 "OA buffer overflow (exponent = %d): force restart\n", 900 stream->period_exponent); 901 902 stream->perf->ops.oa_disable(stream); 903 stream->perf->ops.oa_enable(stream); 904 905 /* 906 * Note: .oa_enable() is expected to re-init the oabuffer and 907 * reset GEN8_OASTATUS for us 908 */ 909 oastatus = intel_uncore_read(uncore, oastatus_reg); 910 } 911 912 if (oastatus & GEN8_OASTATUS_REPORT_LOST) { 913 ret = append_oa_status(stream, buf, count, offset, 914 DRM_I915_PERF_RECORD_OA_REPORT_LOST); 915 if (ret) 916 return ret; 917 918 intel_uncore_rmw(uncore, oastatus_reg, 919 GEN8_OASTATUS_COUNTER_OVERFLOW | 920 GEN8_OASTATUS_REPORT_LOST, 921 IS_GRAPHICS_VER(uncore->i915, 8, 11) ? 922 (GEN8_OASTATUS_HEAD_POINTER_WRAP | 923 GEN8_OASTATUS_TAIL_POINTER_WRAP) : 0); 924 } 925 926 return gen8_append_oa_reports(stream, buf, count, offset); 927 } 928 929 /** 930 * gen7_append_oa_reports - Copies all buffered OA reports into 931 * userspace read() buffer. 932 * @stream: An i915-perf stream opened for OA metrics 933 * @buf: destination buffer given by userspace 934 * @count: the number of bytes userspace wants to read 935 * @offset: (inout): the current position for writing into @buf 936 * 937 * Notably any error condition resulting in a short read (-%ENOSPC or 938 * -%EFAULT) will be returned even though one or more records may 939 * have been successfully copied. In this case it's up to the caller 940 * to decide if the error should be squashed before returning to 941 * userspace. 942 * 943 * Note: reports are consumed from the head, and appended to the 944 * tail, so the tail chases the head?... If you think that's mad 945 * and back-to-front you're not alone, but this follows the 946 * Gen PRM naming convention. 947 * 948 * Returns: 0 on success, negative error code on failure. 949 */ 950 static int gen7_append_oa_reports(struct i915_perf_stream *stream, 951 char __user *buf, 952 size_t count, 953 size_t *offset) 954 { 955 struct intel_uncore *uncore = stream->uncore; 956 int report_size = stream->oa_buffer.format_size; 957 u8 *oa_buf_base = stream->oa_buffer.vaddr; 958 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 959 u32 mask = (OA_BUFFER_SIZE - 1); 960 size_t start_offset = *offset; 961 unsigned long flags; 962 u32 head, tail; 963 u32 taken; 964 int ret = 0; 965 966 if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled)) 967 return -EIO; 968 969 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 970 971 head = stream->oa_buffer.head; 972 tail = stream->oa_buffer.tail; 973 974 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 975 976 /* NB: oa_buffer.head/tail include the gtt_offset which we don't want 977 * while indexing relative to oa_buf_base. 978 */ 979 head -= gtt_offset; 980 tail -= gtt_offset; 981 982 /* An out of bounds or misaligned head or tail pointer implies a driver 983 * bug since we validate + align the tail pointers we read from the 984 * hardware and we are in full control of the head pointer which should 985 * only be incremented by multiples of the report size (notably also 986 * all a power of two). 987 */ 988 if (drm_WARN_ONCE(&uncore->i915->drm, 989 head > OA_BUFFER_SIZE || head % report_size || 990 tail > OA_BUFFER_SIZE || tail % report_size, 991 "Inconsistent OA buffer pointers: head = %u, tail = %u\n", 992 head, tail)) 993 return -EIO; 994 995 996 for (/* none */; 997 (taken = OA_TAKEN(tail, head)); 998 head = (head + report_size) & mask) { 999 u8 *report = oa_buf_base + head; 1000 u32 *report32 = (void *)report; 1001 1002 /* All the report sizes factor neatly into the buffer 1003 * size so we never expect to see a report split 1004 * between the beginning and end of the buffer. 1005 * 1006 * Given the initial alignment check a misalignment 1007 * here would imply a driver bug that would result 1008 * in an overrun. 1009 */ 1010 if (drm_WARN_ON(&uncore->i915->drm, 1011 (OA_BUFFER_SIZE - head) < report_size)) { 1012 drm_err(&uncore->i915->drm, 1013 "Spurious OA head ptr: non-integral report offset\n"); 1014 break; 1015 } 1016 1017 /* The report-ID field for periodic samples includes 1018 * some undocumented flags related to what triggered 1019 * the report and is never expected to be zero so we 1020 * can check that the report isn't invalid before 1021 * copying it to userspace... 1022 */ 1023 if (report32[0] == 0) { 1024 if (__ratelimit(&stream->perf->spurious_report_rs)) 1025 DRM_NOTE("Skipping spurious, invalid OA report\n"); 1026 continue; 1027 } 1028 1029 ret = append_oa_sample(stream, buf, count, offset, report); 1030 if (ret) 1031 break; 1032 1033 /* Clear out the first 2 dwords as a mean to detect unlanded 1034 * reports. 1035 */ 1036 report32[0] = 0; 1037 report32[1] = 0; 1038 } 1039 1040 if (start_offset != *offset) { 1041 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1042 1043 /* We removed the gtt_offset for the copy loop above, indexing 1044 * relative to oa_buf_base so put back here... 1045 */ 1046 head += gtt_offset; 1047 1048 intel_uncore_write(uncore, GEN7_OASTATUS2, 1049 (head & GEN7_OASTATUS2_HEAD_MASK) | 1050 GEN7_OASTATUS2_MEM_SELECT_GGTT); 1051 stream->oa_buffer.head = head; 1052 1053 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1054 } 1055 1056 return ret; 1057 } 1058 1059 /** 1060 * gen7_oa_read - copy status records then buffered OA reports 1061 * @stream: An i915-perf stream opened for OA metrics 1062 * @buf: destination buffer given by userspace 1063 * @count: the number of bytes userspace wants to read 1064 * @offset: (inout): the current position for writing into @buf 1065 * 1066 * Checks Gen 7 specific OA unit status registers and if necessary appends 1067 * corresponding status records for userspace (such as for a buffer full 1068 * condition) and then initiate appending any buffered OA reports. 1069 * 1070 * Updates @offset according to the number of bytes successfully copied into 1071 * the userspace buffer. 1072 * 1073 * Returns: zero on success or a negative error code 1074 */ 1075 static int gen7_oa_read(struct i915_perf_stream *stream, 1076 char __user *buf, 1077 size_t count, 1078 size_t *offset) 1079 { 1080 struct intel_uncore *uncore = stream->uncore; 1081 u32 oastatus1; 1082 int ret; 1083 1084 if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr)) 1085 return -EIO; 1086 1087 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1); 1088 1089 /* XXX: On Haswell we don't have a safe way to clear oastatus1 1090 * bits while the OA unit is enabled (while the tail pointer 1091 * may be updated asynchronously) so we ignore status bits 1092 * that have already been reported to userspace. 1093 */ 1094 oastatus1 &= ~stream->perf->gen7_latched_oastatus1; 1095 1096 /* We treat OABUFFER_OVERFLOW as a significant error: 1097 * 1098 * - The status can be interpreted to mean that the buffer is 1099 * currently full (with a higher precedence than OA_TAKEN() 1100 * which will start to report a near-empty buffer after an 1101 * overflow) but it's awkward that we can't clear the status 1102 * on Haswell, so without a reset we won't be able to catch 1103 * the state again. 1104 * 1105 * - Since it also implies the HW has started overwriting old 1106 * reports it may also affect our sanity checks for invalid 1107 * reports when copying to userspace that assume new reports 1108 * are being written to cleared memory. 1109 * 1110 * - In the future we may want to introduce a flight recorder 1111 * mode where the driver will automatically maintain a safe 1112 * guard band between head/tail, avoiding this overflow 1113 * condition, but we avoid the added driver complexity for 1114 * now. 1115 */ 1116 if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) { 1117 ret = append_oa_status(stream, buf, count, offset, 1118 DRM_I915_PERF_RECORD_OA_BUFFER_LOST); 1119 if (ret) 1120 return ret; 1121 1122 drm_dbg(&stream->perf->i915->drm, 1123 "OA buffer overflow (exponent = %d): force restart\n", 1124 stream->period_exponent); 1125 1126 stream->perf->ops.oa_disable(stream); 1127 stream->perf->ops.oa_enable(stream); 1128 1129 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1); 1130 } 1131 1132 if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) { 1133 ret = append_oa_status(stream, buf, count, offset, 1134 DRM_I915_PERF_RECORD_OA_REPORT_LOST); 1135 if (ret) 1136 return ret; 1137 stream->perf->gen7_latched_oastatus1 |= 1138 GEN7_OASTATUS1_REPORT_LOST; 1139 } 1140 1141 return gen7_append_oa_reports(stream, buf, count, offset); 1142 } 1143 1144 #ifdef notyet 1145 1146 /** 1147 * i915_oa_wait_unlocked - handles blocking IO until OA data available 1148 * @stream: An i915-perf stream opened for OA metrics 1149 * 1150 * Called when userspace tries to read() from a blocking stream FD opened 1151 * for OA metrics. It waits until the hrtimer callback finds a non-empty 1152 * OA buffer and wakes us. 1153 * 1154 * Note: it's acceptable to have this return with some false positives 1155 * since any subsequent read handling will return -EAGAIN if there isn't 1156 * really data ready for userspace yet. 1157 * 1158 * Returns: zero on success or a negative error code 1159 */ 1160 static int i915_oa_wait_unlocked(struct i915_perf_stream *stream) 1161 { 1162 /* We would wait indefinitely if periodic sampling is not enabled */ 1163 if (!stream->periodic) 1164 return -EIO; 1165 1166 return wait_event_interruptible(stream->poll_wq, 1167 oa_buffer_check_unlocked(stream)); 1168 } 1169 1170 /** 1171 * i915_oa_poll_wait - call poll_wait() for an OA stream poll() 1172 * @stream: An i915-perf stream opened for OA metrics 1173 * @file: An i915 perf stream file 1174 * @wait: poll() state table 1175 * 1176 * For handling userspace polling on an i915 perf stream opened for OA metrics, 1177 * this starts a poll_wait with the wait queue that our hrtimer callback wakes 1178 * when it sees data ready to read in the circular OA buffer. 1179 */ 1180 static void i915_oa_poll_wait(struct i915_perf_stream *stream, 1181 struct file *file, 1182 poll_table *wait) 1183 { 1184 poll_wait(file, &stream->poll_wq, wait); 1185 } 1186 1187 /** 1188 * i915_oa_read - just calls through to &i915_oa_ops->read 1189 * @stream: An i915-perf stream opened for OA metrics 1190 * @buf: destination buffer given by userspace 1191 * @count: the number of bytes userspace wants to read 1192 * @offset: (inout): the current position for writing into @buf 1193 * 1194 * Updates @offset according to the number of bytes successfully copied into 1195 * the userspace buffer. 1196 * 1197 * Returns: zero on success or a negative error code 1198 */ 1199 static int i915_oa_read(struct i915_perf_stream *stream, 1200 char __user *buf, 1201 size_t count, 1202 size_t *offset) 1203 { 1204 return stream->perf->ops.read(stream, buf, count, offset); 1205 } 1206 1207 static struct intel_context *oa_pin_context(struct i915_perf_stream *stream) 1208 { 1209 struct i915_gem_engines_iter it; 1210 struct i915_gem_context *ctx = stream->ctx; 1211 struct intel_context *ce; 1212 struct i915_gem_ww_ctx ww; 1213 int err = -ENODEV; 1214 1215 for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) { 1216 if (ce->engine != stream->engine) /* first match! */ 1217 continue; 1218 1219 err = 0; 1220 break; 1221 } 1222 i915_gem_context_unlock_engines(ctx); 1223 1224 if (err) 1225 return ERR_PTR(err); 1226 1227 i915_gem_ww_ctx_init(&ww, true); 1228 retry: 1229 /* 1230 * As the ID is the gtt offset of the context's vma we 1231 * pin the vma to ensure the ID remains fixed. 1232 */ 1233 err = intel_context_pin_ww(ce, &ww); 1234 if (err == -EDEADLK) { 1235 err = i915_gem_ww_ctx_backoff(&ww); 1236 if (!err) 1237 goto retry; 1238 } 1239 i915_gem_ww_ctx_fini(&ww); 1240 1241 if (err) 1242 return ERR_PTR(err); 1243 1244 stream->pinned_ctx = ce; 1245 return stream->pinned_ctx; 1246 } 1247 1248 /** 1249 * oa_get_render_ctx_id - determine and hold ctx hw id 1250 * @stream: An i915-perf stream opened for OA metrics 1251 * 1252 * Determine the render context hw id, and ensure it remains fixed for the 1253 * lifetime of the stream. This ensures that we don't have to worry about 1254 * updating the context ID in OACONTROL on the fly. 1255 * 1256 * Returns: zero on success or a negative error code 1257 */ 1258 static int oa_get_render_ctx_id(struct i915_perf_stream *stream) 1259 { 1260 struct intel_context *ce; 1261 1262 ce = oa_pin_context(stream); 1263 if (IS_ERR(ce)) 1264 return PTR_ERR(ce); 1265 1266 switch (GRAPHICS_VER(ce->engine->i915)) { 1267 case 7: { 1268 /* 1269 * On Haswell we don't do any post processing of the reports 1270 * and don't need to use the mask. 1271 */ 1272 stream->specific_ctx_id = i915_ggtt_offset(ce->state); 1273 stream->specific_ctx_id_mask = 0; 1274 break; 1275 } 1276 1277 case 8: 1278 case 9: 1279 if (intel_engine_uses_guc(ce->engine)) { 1280 /* 1281 * When using GuC, the context descriptor we write in 1282 * i915 is read by GuC and rewritten before it's 1283 * actually written into the hardware. The LRCA is 1284 * what is put into the context id field of the 1285 * context descriptor by GuC. Because it's aligned to 1286 * a page, the lower 12bits are always at 0 and 1287 * dropped by GuC. They won't be part of the context 1288 * ID in the OA reports, so squash those lower bits. 1289 */ 1290 stream->specific_ctx_id = ce->lrc.lrca >> 12; 1291 1292 /* 1293 * GuC uses the top bit to signal proxy submission, so 1294 * ignore that bit. 1295 */ 1296 stream->specific_ctx_id_mask = 1297 (1U << (GEN8_CTX_ID_WIDTH - 1)) - 1; 1298 } else { 1299 stream->specific_ctx_id_mask = 1300 (1U << GEN8_CTX_ID_WIDTH) - 1; 1301 stream->specific_ctx_id = stream->specific_ctx_id_mask; 1302 } 1303 break; 1304 1305 case 11: 1306 case 12: 1307 if (GRAPHICS_VER_FULL(ce->engine->i915) >= IP_VER(12, 50)) { 1308 stream->specific_ctx_id_mask = 1309 ((1U << XEHP_SW_CTX_ID_WIDTH) - 1) << 1310 (XEHP_SW_CTX_ID_SHIFT - 32); 1311 stream->specific_ctx_id = 1312 (XEHP_MAX_CONTEXT_HW_ID - 1) << 1313 (XEHP_SW_CTX_ID_SHIFT - 32); 1314 } else { 1315 stream->specific_ctx_id_mask = 1316 ((1U << GEN11_SW_CTX_ID_WIDTH) - 1) << (GEN11_SW_CTX_ID_SHIFT - 32); 1317 /* 1318 * Pick an unused context id 1319 * 0 - BITS_PER_LONG are used by other contexts 1320 * GEN12_MAX_CONTEXT_HW_ID (0x7ff) is used by idle context 1321 */ 1322 stream->specific_ctx_id = 1323 (GEN12_MAX_CONTEXT_HW_ID - 1) << (GEN11_SW_CTX_ID_SHIFT - 32); 1324 } 1325 break; 1326 1327 default: 1328 MISSING_CASE(GRAPHICS_VER(ce->engine->i915)); 1329 } 1330 1331 ce->tag = stream->specific_ctx_id; 1332 1333 drm_dbg(&stream->perf->i915->drm, 1334 "filtering on ctx_id=0x%x ctx_id_mask=0x%x\n", 1335 stream->specific_ctx_id, 1336 stream->specific_ctx_id_mask); 1337 1338 return 0; 1339 } 1340 1341 /** 1342 * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold 1343 * @stream: An i915-perf stream opened for OA metrics 1344 * 1345 * In case anything needed doing to ensure the context HW ID would remain valid 1346 * for the lifetime of the stream, then that can be undone here. 1347 */ 1348 static void oa_put_render_ctx_id(struct i915_perf_stream *stream) 1349 { 1350 struct intel_context *ce; 1351 1352 ce = fetch_and_zero(&stream->pinned_ctx); 1353 if (ce) { 1354 ce->tag = 0; /* recomputed on next submission after parking */ 1355 intel_context_unpin(ce); 1356 } 1357 1358 stream->specific_ctx_id = INVALID_CTX_ID; 1359 stream->specific_ctx_id_mask = 0; 1360 } 1361 1362 static void 1363 free_oa_buffer(struct i915_perf_stream *stream) 1364 { 1365 i915_vma_unpin_and_release(&stream->oa_buffer.vma, 1366 I915_VMA_RELEASE_MAP); 1367 1368 stream->oa_buffer.vaddr = NULL; 1369 } 1370 1371 static void 1372 free_oa_configs(struct i915_perf_stream *stream) 1373 { 1374 struct i915_oa_config_bo *oa_bo, *tmp; 1375 1376 i915_oa_config_put(stream->oa_config); 1377 llist_for_each_entry_safe(oa_bo, tmp, stream->oa_config_bos.first, node) 1378 free_oa_config_bo(oa_bo); 1379 } 1380 1381 static void 1382 free_noa_wait(struct i915_perf_stream *stream) 1383 { 1384 i915_vma_unpin_and_release(&stream->noa_wait, 0); 1385 } 1386 1387 static void i915_oa_stream_destroy(struct i915_perf_stream *stream) 1388 { 1389 struct i915_perf *perf = stream->perf; 1390 1391 if (WARN_ON(stream != perf->exclusive_stream)) 1392 return; 1393 1394 /* 1395 * Unset exclusive_stream first, it will be checked while disabling 1396 * the metric set on gen8+. 1397 * 1398 * See i915_oa_init_reg_state() and lrc_configure_all_contexts() 1399 */ 1400 WRITE_ONCE(perf->exclusive_stream, NULL); 1401 perf->ops.disable_metric_set(stream); 1402 1403 free_oa_buffer(stream); 1404 1405 intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL); 1406 intel_engine_pm_put(stream->engine); 1407 1408 if (stream->ctx) 1409 oa_put_render_ctx_id(stream); 1410 1411 free_oa_configs(stream); 1412 free_noa_wait(stream); 1413 1414 if (perf->spurious_report_rs.missed) { 1415 DRM_NOTE("%d spurious OA report notices suppressed due to ratelimiting\n", 1416 perf->spurious_report_rs.missed); 1417 } 1418 } 1419 1420 #endif 1421 1422 static void gen7_init_oa_buffer(struct i915_perf_stream *stream) 1423 { 1424 struct intel_uncore *uncore = stream->uncore; 1425 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 1426 unsigned long flags; 1427 1428 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1429 1430 /* Pre-DevBDW: OABUFFER must be set with counters off, 1431 * before OASTATUS1, but after OASTATUS2 1432 */ 1433 intel_uncore_write(uncore, GEN7_OASTATUS2, /* head */ 1434 gtt_offset | GEN7_OASTATUS2_MEM_SELECT_GGTT); 1435 stream->oa_buffer.head = gtt_offset; 1436 1437 intel_uncore_write(uncore, GEN7_OABUFFER, gtt_offset); 1438 1439 intel_uncore_write(uncore, GEN7_OASTATUS1, /* tail */ 1440 gtt_offset | OABUFFER_SIZE_16M); 1441 1442 /* Mark that we need updated tail pointers to read from... */ 1443 stream->oa_buffer.aging_tail = INVALID_TAIL_PTR; 1444 stream->oa_buffer.tail = gtt_offset; 1445 1446 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1447 1448 /* On Haswell we have to track which OASTATUS1 flags we've 1449 * already seen since they can't be cleared while periodic 1450 * sampling is enabled. 1451 */ 1452 stream->perf->gen7_latched_oastatus1 = 0; 1453 1454 /* NB: although the OA buffer will initially be allocated 1455 * zeroed via shmfs (and so this memset is redundant when 1456 * first allocating), we may re-init the OA buffer, either 1457 * when re-enabling a stream or in error/reset paths. 1458 * 1459 * The reason we clear the buffer for each re-init is for the 1460 * sanity check in gen7_append_oa_reports() that looks at the 1461 * report-id field to make sure it's non-zero which relies on 1462 * the assumption that new reports are being written to zeroed 1463 * memory... 1464 */ 1465 memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE); 1466 } 1467 1468 static void gen8_init_oa_buffer(struct i915_perf_stream *stream) 1469 { 1470 struct intel_uncore *uncore = stream->uncore; 1471 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 1472 unsigned long flags; 1473 1474 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1475 1476 intel_uncore_write(uncore, GEN8_OASTATUS, 0); 1477 intel_uncore_write(uncore, GEN8_OAHEADPTR, gtt_offset); 1478 stream->oa_buffer.head = gtt_offset; 1479 1480 intel_uncore_write(uncore, GEN8_OABUFFER_UDW, 0); 1481 1482 /* 1483 * PRM says: 1484 * 1485 * "This MMIO must be set before the OATAILPTR 1486 * register and after the OAHEADPTR register. This is 1487 * to enable proper functionality of the overflow 1488 * bit." 1489 */ 1490 intel_uncore_write(uncore, GEN8_OABUFFER, gtt_offset | 1491 OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT); 1492 intel_uncore_write(uncore, GEN8_OATAILPTR, gtt_offset & GEN8_OATAILPTR_MASK); 1493 1494 /* Mark that we need updated tail pointers to read from... */ 1495 stream->oa_buffer.aging_tail = INVALID_TAIL_PTR; 1496 stream->oa_buffer.tail = gtt_offset; 1497 1498 /* 1499 * Reset state used to recognise context switches, affecting which 1500 * reports we will forward to userspace while filtering for a single 1501 * context. 1502 */ 1503 stream->oa_buffer.last_ctx_id = INVALID_CTX_ID; 1504 1505 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1506 1507 /* 1508 * NB: although the OA buffer will initially be allocated 1509 * zeroed via shmfs (and so this memset is redundant when 1510 * first allocating), we may re-init the OA buffer, either 1511 * when re-enabling a stream or in error/reset paths. 1512 * 1513 * The reason we clear the buffer for each re-init is for the 1514 * sanity check in gen8_append_oa_reports() that looks at the 1515 * reason field to make sure it's non-zero which relies on 1516 * the assumption that new reports are being written to zeroed 1517 * memory... 1518 */ 1519 memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE); 1520 } 1521 1522 static void gen12_init_oa_buffer(struct i915_perf_stream *stream) 1523 { 1524 struct intel_uncore *uncore = stream->uncore; 1525 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 1526 unsigned long flags; 1527 1528 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1529 1530 intel_uncore_write(uncore, GEN12_OAG_OASTATUS, 0); 1531 intel_uncore_write(uncore, GEN12_OAG_OAHEADPTR, 1532 gtt_offset & GEN12_OAG_OAHEADPTR_MASK); 1533 stream->oa_buffer.head = gtt_offset; 1534 1535 /* 1536 * PRM says: 1537 * 1538 * "This MMIO must be set before the OATAILPTR 1539 * register and after the OAHEADPTR register. This is 1540 * to enable proper functionality of the overflow 1541 * bit." 1542 */ 1543 intel_uncore_write(uncore, GEN12_OAG_OABUFFER, gtt_offset | 1544 OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT); 1545 intel_uncore_write(uncore, GEN12_OAG_OATAILPTR, 1546 gtt_offset & GEN12_OAG_OATAILPTR_MASK); 1547 1548 /* Mark that we need updated tail pointers to read from... */ 1549 stream->oa_buffer.aging_tail = INVALID_TAIL_PTR; 1550 stream->oa_buffer.tail = gtt_offset; 1551 1552 /* 1553 * Reset state used to recognise context switches, affecting which 1554 * reports we will forward to userspace while filtering for a single 1555 * context. 1556 */ 1557 stream->oa_buffer.last_ctx_id = INVALID_CTX_ID; 1558 1559 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1560 1561 /* 1562 * NB: although the OA buffer will initially be allocated 1563 * zeroed via shmfs (and so this memset is redundant when 1564 * first allocating), we may re-init the OA buffer, either 1565 * when re-enabling a stream or in error/reset paths. 1566 * 1567 * The reason we clear the buffer for each re-init is for the 1568 * sanity check in gen8_append_oa_reports() that looks at the 1569 * reason field to make sure it's non-zero which relies on 1570 * the assumption that new reports are being written to zeroed 1571 * memory... 1572 */ 1573 memset(stream->oa_buffer.vaddr, 0, 1574 stream->oa_buffer.vma->size); 1575 } 1576 1577 #ifdef notyet 1578 1579 static int alloc_oa_buffer(struct i915_perf_stream *stream) 1580 { 1581 struct drm_i915_private *i915 = stream->perf->i915; 1582 struct drm_i915_gem_object *bo; 1583 struct i915_vma *vma; 1584 int ret; 1585 1586 if (drm_WARN_ON(&i915->drm, stream->oa_buffer.vma)) 1587 return -ENODEV; 1588 1589 BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE); 1590 BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M); 1591 1592 bo = i915_gem_object_create_shmem(stream->perf->i915, OA_BUFFER_SIZE); 1593 if (IS_ERR(bo)) { 1594 drm_err(&i915->drm, "Failed to allocate OA buffer\n"); 1595 return PTR_ERR(bo); 1596 } 1597 1598 i915_gem_object_set_cache_coherency(bo, I915_CACHE_LLC); 1599 1600 /* PreHSW required 512K alignment, HSW requires 16M */ 1601 vma = i915_gem_object_ggtt_pin(bo, NULL, 0, SZ_16M, 0); 1602 if (IS_ERR(vma)) { 1603 ret = PTR_ERR(vma); 1604 goto err_unref; 1605 } 1606 stream->oa_buffer.vma = vma; 1607 1608 stream->oa_buffer.vaddr = 1609 i915_gem_object_pin_map_unlocked(bo, I915_MAP_WB); 1610 if (IS_ERR(stream->oa_buffer.vaddr)) { 1611 ret = PTR_ERR(stream->oa_buffer.vaddr); 1612 goto err_unpin; 1613 } 1614 1615 return 0; 1616 1617 err_unpin: 1618 __i915_vma_unpin(vma); 1619 1620 err_unref: 1621 i915_gem_object_put(bo); 1622 1623 stream->oa_buffer.vaddr = NULL; 1624 stream->oa_buffer.vma = NULL; 1625 1626 return ret; 1627 } 1628 1629 static u32 *save_restore_register(struct i915_perf_stream *stream, u32 *cs, 1630 bool save, i915_reg_t reg, u32 offset, 1631 u32 dword_count) 1632 { 1633 u32 cmd; 1634 u32 d; 1635 1636 cmd = save ? MI_STORE_REGISTER_MEM : MI_LOAD_REGISTER_MEM; 1637 cmd |= MI_SRM_LRM_GLOBAL_GTT; 1638 if (GRAPHICS_VER(stream->perf->i915) >= 8) 1639 cmd++; 1640 1641 for (d = 0; d < dword_count; d++) { 1642 *cs++ = cmd; 1643 *cs++ = i915_mmio_reg_offset(reg) + 4 * d; 1644 *cs++ = intel_gt_scratch_offset(stream->engine->gt, 1645 offset) + 4 * d; 1646 *cs++ = 0; 1647 } 1648 1649 return cs; 1650 } 1651 1652 static int alloc_noa_wait(struct i915_perf_stream *stream) 1653 { 1654 struct drm_i915_private *i915 = stream->perf->i915; 1655 struct drm_i915_gem_object *bo; 1656 struct i915_vma *vma; 1657 const u64 delay_ticks = 0xffffffffffffffff - 1658 intel_gt_ns_to_clock_interval(to_gt(stream->perf->i915), 1659 atomic64_read(&stream->perf->noa_programming_delay)); 1660 const u32 base = stream->engine->mmio_base; 1661 #define CS_GPR(x) GEN8_RING_CS_GPR(base, x) 1662 u32 *batch, *ts0, *cs, *jump; 1663 struct i915_gem_ww_ctx ww; 1664 int ret, i; 1665 enum { 1666 START_TS, 1667 NOW_TS, 1668 DELTA_TS, 1669 JUMP_PREDICATE, 1670 DELTA_TARGET, 1671 N_CS_GPR 1672 }; 1673 1674 bo = i915_gem_object_create_internal(i915, 4096); 1675 if (IS_ERR(bo)) { 1676 drm_err(&i915->drm, 1677 "Failed to allocate NOA wait batchbuffer\n"); 1678 return PTR_ERR(bo); 1679 } 1680 1681 i915_gem_ww_ctx_init(&ww, true); 1682 retry: 1683 ret = i915_gem_object_lock(bo, &ww); 1684 if (ret) 1685 goto out_ww; 1686 1687 /* 1688 * We pin in GGTT because we jump into this buffer now because 1689 * multiple OA config BOs will have a jump to this address and it 1690 * needs to be fixed during the lifetime of the i915/perf stream. 1691 */ 1692 vma = i915_gem_object_ggtt_pin_ww(bo, &ww, NULL, 0, 0, PIN_HIGH); 1693 if (IS_ERR(vma)) { 1694 ret = PTR_ERR(vma); 1695 goto out_ww; 1696 } 1697 1698 batch = cs = i915_gem_object_pin_map(bo, I915_MAP_WB); 1699 if (IS_ERR(batch)) { 1700 ret = PTR_ERR(batch); 1701 goto err_unpin; 1702 } 1703 1704 /* Save registers. */ 1705 for (i = 0; i < N_CS_GPR; i++) 1706 cs = save_restore_register( 1707 stream, cs, true /* save */, CS_GPR(i), 1708 INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR + 8 * i, 2); 1709 cs = save_restore_register( 1710 stream, cs, true /* save */, MI_PREDICATE_RESULT_1(RENDER_RING_BASE), 1711 INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1, 1); 1712 1713 /* First timestamp snapshot location. */ 1714 ts0 = cs; 1715 1716 /* 1717 * Initial snapshot of the timestamp register to implement the wait. 1718 * We work with 32b values, so clear out the top 32b bits of the 1719 * register because the ALU works 64bits. 1720 */ 1721 *cs++ = MI_LOAD_REGISTER_IMM(1); 1722 *cs++ = i915_mmio_reg_offset(CS_GPR(START_TS)) + 4; 1723 *cs++ = 0; 1724 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 1725 *cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base)); 1726 *cs++ = i915_mmio_reg_offset(CS_GPR(START_TS)); 1727 1728 /* 1729 * This is the location we're going to jump back into until the 1730 * required amount of time has passed. 1731 */ 1732 jump = cs; 1733 1734 /* 1735 * Take another snapshot of the timestamp register. Take care to clear 1736 * up the top 32bits of CS_GPR(1) as we're using it for other 1737 * operations below. 1738 */ 1739 *cs++ = MI_LOAD_REGISTER_IMM(1); 1740 *cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS)) + 4; 1741 *cs++ = 0; 1742 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 1743 *cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base)); 1744 *cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS)); 1745 1746 /* 1747 * Do a diff between the 2 timestamps and store the result back into 1748 * CS_GPR(1). 1749 */ 1750 *cs++ = MI_MATH(5); 1751 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(NOW_TS)); 1752 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(START_TS)); 1753 *cs++ = MI_MATH_SUB; 1754 *cs++ = MI_MATH_STORE(MI_MATH_REG(DELTA_TS), MI_MATH_REG_ACCU); 1755 *cs++ = MI_MATH_STORE(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF); 1756 1757 /* 1758 * Transfer the carry flag (set to 1 if ts1 < ts0, meaning the 1759 * timestamp have rolled over the 32bits) into the predicate register 1760 * to be used for the predicated jump. 1761 */ 1762 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 1763 *cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE)); 1764 *cs++ = i915_mmio_reg_offset(MI_PREDICATE_RESULT_1(RENDER_RING_BASE)); 1765 1766 /* Restart from the beginning if we had timestamps roll over. */ 1767 *cs++ = (GRAPHICS_VER(i915) < 8 ? 1768 MI_BATCH_BUFFER_START : 1769 MI_BATCH_BUFFER_START_GEN8) | 1770 MI_BATCH_PREDICATE; 1771 *cs++ = i915_ggtt_offset(vma) + (ts0 - batch) * 4; 1772 *cs++ = 0; 1773 1774 /* 1775 * Now add the diff between to previous timestamps and add it to : 1776 * (((1 * << 64) - 1) - delay_ns) 1777 * 1778 * When the Carry Flag contains 1 this means the elapsed time is 1779 * longer than the expected delay, and we can exit the wait loop. 1780 */ 1781 *cs++ = MI_LOAD_REGISTER_IMM(2); 1782 *cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET)); 1783 *cs++ = lower_32_bits(delay_ticks); 1784 *cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET)) + 4; 1785 *cs++ = upper_32_bits(delay_ticks); 1786 1787 *cs++ = MI_MATH(4); 1788 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(DELTA_TS)); 1789 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(DELTA_TARGET)); 1790 *cs++ = MI_MATH_ADD; 1791 *cs++ = MI_MATH_STOREINV(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF); 1792 1793 *cs++ = MI_ARB_CHECK; 1794 1795 /* 1796 * Transfer the result into the predicate register to be used for the 1797 * predicated jump. 1798 */ 1799 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 1800 *cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE)); 1801 *cs++ = i915_mmio_reg_offset(MI_PREDICATE_RESULT_1(RENDER_RING_BASE)); 1802 1803 /* Predicate the jump. */ 1804 *cs++ = (GRAPHICS_VER(i915) < 8 ? 1805 MI_BATCH_BUFFER_START : 1806 MI_BATCH_BUFFER_START_GEN8) | 1807 MI_BATCH_PREDICATE; 1808 *cs++ = i915_ggtt_offset(vma) + (jump - batch) * 4; 1809 *cs++ = 0; 1810 1811 /* Restore registers. */ 1812 for (i = 0; i < N_CS_GPR; i++) 1813 cs = save_restore_register( 1814 stream, cs, false /* restore */, CS_GPR(i), 1815 INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR + 8 * i, 2); 1816 cs = save_restore_register( 1817 stream, cs, false /* restore */, MI_PREDICATE_RESULT_1(RENDER_RING_BASE), 1818 INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1, 1); 1819 1820 /* And return to the ring. */ 1821 *cs++ = MI_BATCH_BUFFER_END; 1822 1823 GEM_BUG_ON(cs - batch > PAGE_SIZE / sizeof(*batch)); 1824 1825 i915_gem_object_flush_map(bo); 1826 __i915_gem_object_release_map(bo); 1827 1828 stream->noa_wait = vma; 1829 goto out_ww; 1830 1831 err_unpin: 1832 i915_vma_unpin_and_release(&vma, 0); 1833 out_ww: 1834 if (ret == -EDEADLK) { 1835 ret = i915_gem_ww_ctx_backoff(&ww); 1836 if (!ret) 1837 goto retry; 1838 } 1839 i915_gem_ww_ctx_fini(&ww); 1840 if (ret) 1841 i915_gem_object_put(bo); 1842 return ret; 1843 } 1844 1845 #endif 1846 1847 static u32 *write_cs_mi_lri(u32 *cs, 1848 const struct i915_oa_reg *reg_data, 1849 u32 n_regs) 1850 { 1851 u32 i; 1852 1853 for (i = 0; i < n_regs; i++) { 1854 if ((i % MI_LOAD_REGISTER_IMM_MAX_REGS) == 0) { 1855 u32 n_lri = min_t(u32, 1856 n_regs - i, 1857 MI_LOAD_REGISTER_IMM_MAX_REGS); 1858 1859 *cs++ = MI_LOAD_REGISTER_IMM(n_lri); 1860 } 1861 *cs++ = i915_mmio_reg_offset(reg_data[i].addr); 1862 *cs++ = reg_data[i].value; 1863 } 1864 1865 return cs; 1866 } 1867 1868 static int num_lri_dwords(int num_regs) 1869 { 1870 int count = 0; 1871 1872 if (num_regs > 0) { 1873 count += DIV_ROUND_UP(num_regs, MI_LOAD_REGISTER_IMM_MAX_REGS); 1874 count += num_regs * 2; 1875 } 1876 1877 return count; 1878 } 1879 1880 static struct i915_oa_config_bo * 1881 alloc_oa_config_buffer(struct i915_perf_stream *stream, 1882 struct i915_oa_config *oa_config) 1883 { 1884 struct drm_i915_gem_object *obj; 1885 struct i915_oa_config_bo *oa_bo; 1886 struct i915_gem_ww_ctx ww; 1887 size_t config_length = 0; 1888 u32 *cs; 1889 int err; 1890 1891 oa_bo = kzalloc(sizeof(*oa_bo), GFP_KERNEL); 1892 if (!oa_bo) 1893 return ERR_PTR(-ENOMEM); 1894 1895 config_length += num_lri_dwords(oa_config->mux_regs_len); 1896 config_length += num_lri_dwords(oa_config->b_counter_regs_len); 1897 config_length += num_lri_dwords(oa_config->flex_regs_len); 1898 config_length += 3; /* MI_BATCH_BUFFER_START */ 1899 config_length = roundup2(sizeof(u32) * config_length, I915_GTT_PAGE_SIZE); 1900 1901 obj = i915_gem_object_create_shmem(stream->perf->i915, config_length); 1902 if (IS_ERR(obj)) { 1903 err = PTR_ERR(obj); 1904 goto err_free; 1905 } 1906 1907 i915_gem_ww_ctx_init(&ww, true); 1908 retry: 1909 err = i915_gem_object_lock(obj, &ww); 1910 if (err) 1911 goto out_ww; 1912 1913 cs = i915_gem_object_pin_map(obj, I915_MAP_WB); 1914 if (IS_ERR(cs)) { 1915 err = PTR_ERR(cs); 1916 goto out_ww; 1917 } 1918 1919 cs = write_cs_mi_lri(cs, 1920 oa_config->mux_regs, 1921 oa_config->mux_regs_len); 1922 cs = write_cs_mi_lri(cs, 1923 oa_config->b_counter_regs, 1924 oa_config->b_counter_regs_len); 1925 cs = write_cs_mi_lri(cs, 1926 oa_config->flex_regs, 1927 oa_config->flex_regs_len); 1928 1929 /* Jump into the active wait. */ 1930 *cs++ = (GRAPHICS_VER(stream->perf->i915) < 8 ? 1931 MI_BATCH_BUFFER_START : 1932 MI_BATCH_BUFFER_START_GEN8); 1933 *cs++ = i915_ggtt_offset(stream->noa_wait); 1934 *cs++ = 0; 1935 1936 i915_gem_object_flush_map(obj); 1937 __i915_gem_object_release_map(obj); 1938 1939 oa_bo->vma = i915_vma_instance(obj, 1940 &stream->engine->gt->ggtt->vm, 1941 NULL); 1942 if (IS_ERR(oa_bo->vma)) { 1943 err = PTR_ERR(oa_bo->vma); 1944 goto out_ww; 1945 } 1946 1947 oa_bo->oa_config = i915_oa_config_get(oa_config); 1948 llist_add(&oa_bo->node, &stream->oa_config_bos); 1949 1950 out_ww: 1951 if (err == -EDEADLK) { 1952 err = i915_gem_ww_ctx_backoff(&ww); 1953 if (!err) 1954 goto retry; 1955 } 1956 i915_gem_ww_ctx_fini(&ww); 1957 1958 if (err) 1959 i915_gem_object_put(obj); 1960 err_free: 1961 if (err) { 1962 kfree(oa_bo); 1963 return ERR_PTR(err); 1964 } 1965 return oa_bo; 1966 } 1967 1968 static struct i915_vma * 1969 get_oa_vma(struct i915_perf_stream *stream, struct i915_oa_config *oa_config) 1970 { 1971 struct i915_oa_config_bo *oa_bo; 1972 1973 /* 1974 * Look for the buffer in the already allocated BOs attached 1975 * to the stream. 1976 */ 1977 llist_for_each_entry(oa_bo, stream->oa_config_bos.first, node) { 1978 if (oa_bo->oa_config == oa_config && 1979 memcmp(oa_bo->oa_config->uuid, 1980 oa_config->uuid, 1981 sizeof(oa_config->uuid)) == 0) 1982 goto out; 1983 } 1984 1985 oa_bo = alloc_oa_config_buffer(stream, oa_config); 1986 if (IS_ERR(oa_bo)) 1987 return ERR_CAST(oa_bo); 1988 1989 out: 1990 return i915_vma_get(oa_bo->vma); 1991 } 1992 1993 static int 1994 emit_oa_config(struct i915_perf_stream *stream, 1995 struct i915_oa_config *oa_config, 1996 struct intel_context *ce, 1997 struct i915_active *active) 1998 { 1999 struct i915_request *rq; 2000 struct i915_vma *vma; 2001 struct i915_gem_ww_ctx ww; 2002 int err; 2003 2004 vma = get_oa_vma(stream, oa_config); 2005 if (IS_ERR(vma)) 2006 return PTR_ERR(vma); 2007 2008 i915_gem_ww_ctx_init(&ww, true); 2009 retry: 2010 err = i915_gem_object_lock(vma->obj, &ww); 2011 if (err) 2012 goto err; 2013 2014 err = i915_vma_pin_ww(vma, &ww, 0, 0, PIN_GLOBAL | PIN_HIGH); 2015 if (err) 2016 goto err; 2017 2018 intel_engine_pm_get(ce->engine); 2019 rq = i915_request_create(ce); 2020 intel_engine_pm_put(ce->engine); 2021 if (IS_ERR(rq)) { 2022 err = PTR_ERR(rq); 2023 goto err_vma_unpin; 2024 } 2025 2026 if (!IS_ERR_OR_NULL(active)) { 2027 /* After all individual context modifications */ 2028 err = i915_request_await_active(rq, active, 2029 I915_ACTIVE_AWAIT_ACTIVE); 2030 if (err) 2031 goto err_add_request; 2032 2033 err = i915_active_add_request(active, rq); 2034 if (err) 2035 goto err_add_request; 2036 } 2037 2038 err = i915_request_await_object(rq, vma->obj, 0); 2039 if (!err) 2040 err = i915_vma_move_to_active(vma, rq, 0); 2041 if (err) 2042 goto err_add_request; 2043 2044 err = rq->engine->emit_bb_start(rq, 2045 vma->node.start, 0, 2046 I915_DISPATCH_SECURE); 2047 if (err) 2048 goto err_add_request; 2049 2050 err_add_request: 2051 i915_request_add(rq); 2052 err_vma_unpin: 2053 i915_vma_unpin(vma); 2054 err: 2055 if (err == -EDEADLK) { 2056 err = i915_gem_ww_ctx_backoff(&ww); 2057 if (!err) 2058 goto retry; 2059 } 2060 2061 i915_gem_ww_ctx_fini(&ww); 2062 i915_vma_put(vma); 2063 return err; 2064 } 2065 2066 static struct intel_context *oa_context(struct i915_perf_stream *stream) 2067 { 2068 return stream->pinned_ctx ?: stream->engine->kernel_context; 2069 } 2070 2071 static int 2072 hsw_enable_metric_set(struct i915_perf_stream *stream, 2073 struct i915_active *active) 2074 { 2075 struct intel_uncore *uncore = stream->uncore; 2076 2077 /* 2078 * PRM: 2079 * 2080 * OA unit is using “crclk” for its functionality. When trunk 2081 * level clock gating takes place, OA clock would be gated, 2082 * unable to count the events from non-render clock domain. 2083 * Render clock gating must be disabled when OA is enabled to 2084 * count the events from non-render domain. Unit level clock 2085 * gating for RCS should also be disabled. 2086 */ 2087 intel_uncore_rmw(uncore, GEN7_MISCCPCTL, 2088 GEN7_DOP_CLOCK_GATE_ENABLE, 0); 2089 intel_uncore_rmw(uncore, GEN6_UCGCTL1, 2090 0, GEN6_CSUNIT_CLOCK_GATE_DISABLE); 2091 2092 return emit_oa_config(stream, 2093 stream->oa_config, oa_context(stream), 2094 active); 2095 } 2096 2097 static void hsw_disable_metric_set(struct i915_perf_stream *stream) 2098 { 2099 struct intel_uncore *uncore = stream->uncore; 2100 2101 intel_uncore_rmw(uncore, GEN6_UCGCTL1, 2102 GEN6_CSUNIT_CLOCK_GATE_DISABLE, 0); 2103 intel_uncore_rmw(uncore, GEN7_MISCCPCTL, 2104 0, GEN7_DOP_CLOCK_GATE_ENABLE); 2105 2106 intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0); 2107 } 2108 2109 static u32 oa_config_flex_reg(const struct i915_oa_config *oa_config, 2110 i915_reg_t reg) 2111 { 2112 u32 mmio = i915_mmio_reg_offset(reg); 2113 int i; 2114 2115 /* 2116 * This arbitrary default will select the 'EU FPU0 Pipeline 2117 * Active' event. In the future it's anticipated that there 2118 * will be an explicit 'No Event' we can select, but not yet... 2119 */ 2120 if (!oa_config) 2121 return 0; 2122 2123 for (i = 0; i < oa_config->flex_regs_len; i++) { 2124 if (i915_mmio_reg_offset(oa_config->flex_regs[i].addr) == mmio) 2125 return oa_config->flex_regs[i].value; 2126 } 2127 2128 return 0; 2129 } 2130 /* 2131 * NB: It must always remain pointer safe to run this even if the OA unit 2132 * has been disabled. 2133 * 2134 * It's fine to put out-of-date values into these per-context registers 2135 * in the case that the OA unit has been disabled. 2136 */ 2137 static void 2138 gen8_update_reg_state_unlocked(const struct intel_context *ce, 2139 const struct i915_perf_stream *stream) 2140 { 2141 u32 ctx_oactxctrl = stream->perf->ctx_oactxctrl_offset; 2142 u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset; 2143 /* The MMIO offsets for Flex EU registers aren't contiguous */ 2144 static const i915_reg_t flex_regs[] = { 2145 EU_PERF_CNTL0, 2146 EU_PERF_CNTL1, 2147 EU_PERF_CNTL2, 2148 EU_PERF_CNTL3, 2149 EU_PERF_CNTL4, 2150 EU_PERF_CNTL5, 2151 EU_PERF_CNTL6, 2152 }; 2153 u32 *reg_state = ce->lrc_reg_state; 2154 int i; 2155 2156 reg_state[ctx_oactxctrl + 1] = 2157 (stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) | 2158 (stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) | 2159 GEN8_OA_COUNTER_RESUME; 2160 2161 for (i = 0; i < ARRAY_SIZE(flex_regs); i++) 2162 reg_state[ctx_flexeu0 + i * 2 + 1] = 2163 oa_config_flex_reg(stream->oa_config, flex_regs[i]); 2164 } 2165 2166 struct flex { 2167 i915_reg_t reg; 2168 u32 offset; 2169 u32 value; 2170 }; 2171 2172 static int 2173 gen8_store_flex(struct i915_request *rq, 2174 struct intel_context *ce, 2175 const struct flex *flex, unsigned int count) 2176 { 2177 u32 offset; 2178 u32 *cs; 2179 2180 cs = intel_ring_begin(rq, 4 * count); 2181 if (IS_ERR(cs)) 2182 return PTR_ERR(cs); 2183 2184 offset = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET; 2185 do { 2186 *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT; 2187 *cs++ = offset + flex->offset * sizeof(u32); 2188 *cs++ = 0; 2189 *cs++ = flex->value; 2190 } while (flex++, --count); 2191 2192 intel_ring_advance(rq, cs); 2193 2194 return 0; 2195 } 2196 2197 static int 2198 gen8_load_flex(struct i915_request *rq, 2199 struct intel_context *ce, 2200 const struct flex *flex, unsigned int count) 2201 { 2202 u32 *cs; 2203 2204 GEM_BUG_ON(!count || count > 63); 2205 2206 cs = intel_ring_begin(rq, 2 * count + 2); 2207 if (IS_ERR(cs)) 2208 return PTR_ERR(cs); 2209 2210 *cs++ = MI_LOAD_REGISTER_IMM(count); 2211 do { 2212 *cs++ = i915_mmio_reg_offset(flex->reg); 2213 *cs++ = flex->value; 2214 } while (flex++, --count); 2215 *cs++ = MI_NOOP; 2216 2217 intel_ring_advance(rq, cs); 2218 2219 return 0; 2220 } 2221 2222 static int gen8_modify_context(struct intel_context *ce, 2223 const struct flex *flex, unsigned int count) 2224 { 2225 struct i915_request *rq; 2226 int err; 2227 2228 rq = intel_engine_create_kernel_request(ce->engine); 2229 if (IS_ERR(rq)) 2230 return PTR_ERR(rq); 2231 2232 /* Serialise with the remote context */ 2233 err = intel_context_prepare_remote_request(ce, rq); 2234 if (err == 0) 2235 err = gen8_store_flex(rq, ce, flex, count); 2236 2237 i915_request_add(rq); 2238 return err; 2239 } 2240 2241 static int 2242 gen8_modify_self(struct intel_context *ce, 2243 const struct flex *flex, unsigned int count, 2244 struct i915_active *active) 2245 { 2246 struct i915_request *rq; 2247 int err; 2248 2249 intel_engine_pm_get(ce->engine); 2250 rq = i915_request_create(ce); 2251 intel_engine_pm_put(ce->engine); 2252 if (IS_ERR(rq)) 2253 return PTR_ERR(rq); 2254 2255 if (!IS_ERR_OR_NULL(active)) { 2256 err = i915_active_add_request(active, rq); 2257 if (err) 2258 goto err_add_request; 2259 } 2260 2261 err = gen8_load_flex(rq, ce, flex, count); 2262 if (err) 2263 goto err_add_request; 2264 2265 err_add_request: 2266 i915_request_add(rq); 2267 return err; 2268 } 2269 2270 static int gen8_configure_context(struct i915_gem_context *ctx, 2271 struct flex *flex, unsigned int count) 2272 { 2273 struct i915_gem_engines_iter it; 2274 struct intel_context *ce; 2275 int err = 0; 2276 2277 for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) { 2278 GEM_BUG_ON(ce == ce->engine->kernel_context); 2279 2280 if (ce->engine->class != RENDER_CLASS) 2281 continue; 2282 2283 /* Otherwise OA settings will be set upon first use */ 2284 if (!intel_context_pin_if_active(ce)) 2285 continue; 2286 2287 flex->value = intel_sseu_make_rpcs(ce->engine->gt, &ce->sseu); 2288 err = gen8_modify_context(ce, flex, count); 2289 2290 intel_context_unpin(ce); 2291 if (err) 2292 break; 2293 } 2294 i915_gem_context_unlock_engines(ctx); 2295 2296 return err; 2297 } 2298 2299 static int gen12_configure_oar_context(struct i915_perf_stream *stream, 2300 struct i915_active *active) 2301 { 2302 int err; 2303 struct intel_context *ce = stream->pinned_ctx; 2304 u32 format = stream->oa_buffer.format; 2305 struct flex regs_context[] = { 2306 { 2307 GEN8_OACTXCONTROL, 2308 stream->perf->ctx_oactxctrl_offset + 1, 2309 active ? GEN8_OA_COUNTER_RESUME : 0, 2310 }, 2311 }; 2312 /* Offsets in regs_lri are not used since this configuration is only 2313 * applied using LRI. Initialize the correct offsets for posterity. 2314 */ 2315 #define GEN12_OAR_OACONTROL_OFFSET 0x5B0 2316 struct flex regs_lri[] = { 2317 { 2318 GEN12_OAR_OACONTROL, 2319 GEN12_OAR_OACONTROL_OFFSET + 1, 2320 (format << GEN12_OAR_OACONTROL_COUNTER_FORMAT_SHIFT) | 2321 (active ? GEN12_OAR_OACONTROL_COUNTER_ENABLE : 0) 2322 }, 2323 { 2324 RING_CONTEXT_CONTROL(ce->engine->mmio_base), 2325 CTX_CONTEXT_CONTROL, 2326 _MASKED_FIELD(GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE, 2327 active ? 2328 GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE : 2329 0) 2330 }, 2331 }; 2332 2333 /* Modify the context image of pinned context with regs_context*/ 2334 err = intel_context_lock_pinned(ce); 2335 if (err) 2336 return err; 2337 2338 err = gen8_modify_context(ce, regs_context, ARRAY_SIZE(regs_context)); 2339 intel_context_unlock_pinned(ce); 2340 if (err) 2341 return err; 2342 2343 /* Apply regs_lri using LRI with pinned context */ 2344 return gen8_modify_self(ce, regs_lri, ARRAY_SIZE(regs_lri), active); 2345 } 2346 2347 /* 2348 * Manages updating the per-context aspects of the OA stream 2349 * configuration across all contexts. 2350 * 2351 * The awkward consideration here is that OACTXCONTROL controls the 2352 * exponent for periodic sampling which is primarily used for system 2353 * wide profiling where we'd like a consistent sampling period even in 2354 * the face of context switches. 2355 * 2356 * Our approach of updating the register state context (as opposed to 2357 * say using a workaround batch buffer) ensures that the hardware 2358 * won't automatically reload an out-of-date timer exponent even 2359 * transiently before a WA BB could be parsed. 2360 * 2361 * This function needs to: 2362 * - Ensure the currently running context's per-context OA state is 2363 * updated 2364 * - Ensure that all existing contexts will have the correct per-context 2365 * OA state if they are scheduled for use. 2366 * - Ensure any new contexts will be initialized with the correct 2367 * per-context OA state. 2368 * 2369 * Note: it's only the RCS/Render context that has any OA state. 2370 * Note: the first flex register passed must always be R_PWR_CLK_STATE 2371 */ 2372 static int 2373 oa_configure_all_contexts(struct i915_perf_stream *stream, 2374 struct flex *regs, 2375 size_t num_regs, 2376 struct i915_active *active) 2377 { 2378 struct drm_i915_private *i915 = stream->perf->i915; 2379 struct intel_engine_cs *engine; 2380 struct i915_gem_context *ctx, *cn; 2381 int err; 2382 2383 lockdep_assert_held(&stream->perf->lock); 2384 2385 /* 2386 * The OA register config is setup through the context image. This image 2387 * might be written to by the GPU on context switch (in particular on 2388 * lite-restore). This means we can't safely update a context's image, 2389 * if this context is scheduled/submitted to run on the GPU. 2390 * 2391 * We could emit the OA register config through the batch buffer but 2392 * this might leave small interval of time where the OA unit is 2393 * configured at an invalid sampling period. 2394 * 2395 * Note that since we emit all requests from a single ring, there 2396 * is still an implicit global barrier here that may cause a high 2397 * priority context to wait for an otherwise independent low priority 2398 * context. Contexts idle at the time of reconfiguration are not 2399 * trapped behind the barrier. 2400 */ 2401 spin_lock(&i915->gem.contexts.lock); 2402 list_for_each_entry_safe(ctx, cn, &i915->gem.contexts.list, link) { 2403 if (!kref_get_unless_zero(&ctx->ref)) 2404 continue; 2405 2406 spin_unlock(&i915->gem.contexts.lock); 2407 2408 err = gen8_configure_context(ctx, regs, num_regs); 2409 if (err) { 2410 i915_gem_context_put(ctx); 2411 return err; 2412 } 2413 2414 spin_lock(&i915->gem.contexts.lock); 2415 list_safe_reset_next(ctx, cn, link); 2416 i915_gem_context_put(ctx); 2417 } 2418 spin_unlock(&i915->gem.contexts.lock); 2419 2420 /* 2421 * After updating all other contexts, we need to modify ourselves. 2422 * If we don't modify the kernel_context, we do not get events while 2423 * idle. 2424 */ 2425 for_each_uabi_engine(engine, i915) { 2426 struct intel_context *ce = engine->kernel_context; 2427 2428 if (engine->class != RENDER_CLASS) 2429 continue; 2430 2431 regs[0].value = intel_sseu_make_rpcs(engine->gt, &ce->sseu); 2432 2433 err = gen8_modify_self(ce, regs, num_regs, active); 2434 if (err) 2435 return err; 2436 } 2437 2438 return 0; 2439 } 2440 2441 static int 2442 gen12_configure_all_contexts(struct i915_perf_stream *stream, 2443 const struct i915_oa_config *oa_config, 2444 struct i915_active *active) 2445 { 2446 struct flex regs[] = { 2447 { 2448 GEN8_R_PWR_CLK_STATE(RENDER_RING_BASE), 2449 CTX_R_PWR_CLK_STATE, 2450 }, 2451 }; 2452 2453 return oa_configure_all_contexts(stream, 2454 regs, ARRAY_SIZE(regs), 2455 active); 2456 } 2457 2458 static int 2459 lrc_configure_all_contexts(struct i915_perf_stream *stream, 2460 const struct i915_oa_config *oa_config, 2461 struct i915_active *active) 2462 { 2463 /* The MMIO offsets for Flex EU registers aren't contiguous */ 2464 const u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset; 2465 #define ctx_flexeuN(N) (ctx_flexeu0 + 2 * (N) + 1) 2466 struct flex regs[] = { 2467 { 2468 GEN8_R_PWR_CLK_STATE(RENDER_RING_BASE), 2469 CTX_R_PWR_CLK_STATE, 2470 }, 2471 { 2472 GEN8_OACTXCONTROL, 2473 stream->perf->ctx_oactxctrl_offset + 1, 2474 }, 2475 { EU_PERF_CNTL0, ctx_flexeuN(0) }, 2476 { EU_PERF_CNTL1, ctx_flexeuN(1) }, 2477 { EU_PERF_CNTL2, ctx_flexeuN(2) }, 2478 { EU_PERF_CNTL3, ctx_flexeuN(3) }, 2479 { EU_PERF_CNTL4, ctx_flexeuN(4) }, 2480 { EU_PERF_CNTL5, ctx_flexeuN(5) }, 2481 { EU_PERF_CNTL6, ctx_flexeuN(6) }, 2482 }; 2483 #undef ctx_flexeuN 2484 int i; 2485 2486 regs[1].value = 2487 (stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) | 2488 (stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) | 2489 GEN8_OA_COUNTER_RESUME; 2490 2491 for (i = 2; i < ARRAY_SIZE(regs); i++) 2492 regs[i].value = oa_config_flex_reg(oa_config, regs[i].reg); 2493 2494 return oa_configure_all_contexts(stream, 2495 regs, ARRAY_SIZE(regs), 2496 active); 2497 } 2498 2499 static int 2500 gen8_enable_metric_set(struct i915_perf_stream *stream, 2501 struct i915_active *active) 2502 { 2503 struct intel_uncore *uncore = stream->uncore; 2504 struct i915_oa_config *oa_config = stream->oa_config; 2505 int ret; 2506 2507 /* 2508 * We disable slice/unslice clock ratio change reports on SKL since 2509 * they are too noisy. The HW generates a lot of redundant reports 2510 * where the ratio hasn't really changed causing a lot of redundant 2511 * work to processes and increasing the chances we'll hit buffer 2512 * overruns. 2513 * 2514 * Although we don't currently use the 'disable overrun' OABUFFER 2515 * feature it's worth noting that clock ratio reports have to be 2516 * disabled before considering to use that feature since the HW doesn't 2517 * correctly block these reports. 2518 * 2519 * Currently none of the high-level metrics we have depend on knowing 2520 * this ratio to normalize. 2521 * 2522 * Note: This register is not power context saved and restored, but 2523 * that's OK considering that we disable RC6 while the OA unit is 2524 * enabled. 2525 * 2526 * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to 2527 * be read back from automatically triggered reports, as part of the 2528 * RPT_ID field. 2529 */ 2530 if (IS_GRAPHICS_VER(stream->perf->i915, 9, 11)) { 2531 intel_uncore_write(uncore, GEN8_OA_DEBUG, 2532 _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS | 2533 GEN9_OA_DEBUG_INCLUDE_CLK_RATIO)); 2534 } 2535 2536 /* 2537 * Update all contexts prior writing the mux configurations as we need 2538 * to make sure all slices/subslices are ON before writing to NOA 2539 * registers. 2540 */ 2541 ret = lrc_configure_all_contexts(stream, oa_config, active); 2542 if (ret) 2543 return ret; 2544 2545 return emit_oa_config(stream, 2546 stream->oa_config, oa_context(stream), 2547 active); 2548 } 2549 2550 static u32 oag_report_ctx_switches(const struct i915_perf_stream *stream) 2551 { 2552 return _MASKED_FIELD(GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS, 2553 (stream->sample_flags & SAMPLE_OA_REPORT) ? 2554 0 : GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS); 2555 } 2556 2557 static int 2558 gen12_enable_metric_set(struct i915_perf_stream *stream, 2559 struct i915_active *active) 2560 { 2561 struct intel_uncore *uncore = stream->uncore; 2562 struct i915_oa_config *oa_config = stream->oa_config; 2563 bool periodic = stream->periodic; 2564 u32 period_exponent = stream->period_exponent; 2565 int ret; 2566 2567 intel_uncore_write(uncore, GEN12_OAG_OA_DEBUG, 2568 /* Disable clk ratio reports, like previous Gens. */ 2569 _MASKED_BIT_ENABLE(GEN12_OAG_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS | 2570 GEN12_OAG_OA_DEBUG_INCLUDE_CLK_RATIO) | 2571 /* 2572 * If the user didn't require OA reports, instruct 2573 * the hardware not to emit ctx switch reports. 2574 */ 2575 oag_report_ctx_switches(stream)); 2576 2577 intel_uncore_write(uncore, GEN12_OAG_OAGLBCTXCTRL, periodic ? 2578 (GEN12_OAG_OAGLBCTXCTRL_COUNTER_RESUME | 2579 GEN12_OAG_OAGLBCTXCTRL_TIMER_ENABLE | 2580 (period_exponent << GEN12_OAG_OAGLBCTXCTRL_TIMER_PERIOD_SHIFT)) 2581 : 0); 2582 2583 /* 2584 * Update all contexts prior writing the mux configurations as we need 2585 * to make sure all slices/subslices are ON before writing to NOA 2586 * registers. 2587 */ 2588 ret = gen12_configure_all_contexts(stream, oa_config, active); 2589 if (ret) 2590 return ret; 2591 2592 /* 2593 * For Gen12, performance counters are context 2594 * saved/restored. Only enable it for the context that 2595 * requested this. 2596 */ 2597 if (stream->ctx) { 2598 ret = gen12_configure_oar_context(stream, active); 2599 if (ret) 2600 return ret; 2601 } 2602 2603 return emit_oa_config(stream, 2604 stream->oa_config, oa_context(stream), 2605 active); 2606 } 2607 2608 static void gen8_disable_metric_set(struct i915_perf_stream *stream) 2609 { 2610 struct intel_uncore *uncore = stream->uncore; 2611 2612 /* Reset all contexts' slices/subslices configurations. */ 2613 lrc_configure_all_contexts(stream, NULL, NULL); 2614 2615 intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0); 2616 } 2617 2618 static void gen11_disable_metric_set(struct i915_perf_stream *stream) 2619 { 2620 struct intel_uncore *uncore = stream->uncore; 2621 2622 /* Reset all contexts' slices/subslices configurations. */ 2623 lrc_configure_all_contexts(stream, NULL, NULL); 2624 2625 /* Make sure we disable noa to save power. */ 2626 intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0); 2627 } 2628 2629 static void gen12_disable_metric_set(struct i915_perf_stream *stream) 2630 { 2631 struct intel_uncore *uncore = stream->uncore; 2632 2633 /* Reset all contexts' slices/subslices configurations. */ 2634 gen12_configure_all_contexts(stream, NULL, NULL); 2635 2636 /* disable the context save/restore or OAR counters */ 2637 if (stream->ctx) 2638 gen12_configure_oar_context(stream, NULL); 2639 2640 /* Make sure we disable noa to save power. */ 2641 intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0); 2642 } 2643 2644 static void gen7_oa_enable(struct i915_perf_stream *stream) 2645 { 2646 struct intel_uncore *uncore = stream->uncore; 2647 struct i915_gem_context *ctx = stream->ctx; 2648 u32 ctx_id = stream->specific_ctx_id; 2649 bool periodic = stream->periodic; 2650 u32 period_exponent = stream->period_exponent; 2651 u32 report_format = stream->oa_buffer.format; 2652 2653 /* 2654 * Reset buf pointers so we don't forward reports from before now. 2655 * 2656 * Think carefully if considering trying to avoid this, since it 2657 * also ensures status flags and the buffer itself are cleared 2658 * in error paths, and we have checks for invalid reports based 2659 * on the assumption that certain fields are written to zeroed 2660 * memory which this helps maintains. 2661 */ 2662 gen7_init_oa_buffer(stream); 2663 2664 intel_uncore_write(uncore, GEN7_OACONTROL, 2665 (ctx_id & GEN7_OACONTROL_CTX_MASK) | 2666 (period_exponent << 2667 GEN7_OACONTROL_TIMER_PERIOD_SHIFT) | 2668 (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) | 2669 (report_format << GEN7_OACONTROL_FORMAT_SHIFT) | 2670 (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) | 2671 GEN7_OACONTROL_ENABLE); 2672 } 2673 2674 static void gen8_oa_enable(struct i915_perf_stream *stream) 2675 { 2676 struct intel_uncore *uncore = stream->uncore; 2677 u32 report_format = stream->oa_buffer.format; 2678 2679 /* 2680 * Reset buf pointers so we don't forward reports from before now. 2681 * 2682 * Think carefully if considering trying to avoid this, since it 2683 * also ensures status flags and the buffer itself are cleared 2684 * in error paths, and we have checks for invalid reports based 2685 * on the assumption that certain fields are written to zeroed 2686 * memory which this helps maintains. 2687 */ 2688 gen8_init_oa_buffer(stream); 2689 2690 /* 2691 * Note: we don't rely on the hardware to perform single context 2692 * filtering and instead filter on the cpu based on the context-id 2693 * field of reports 2694 */ 2695 intel_uncore_write(uncore, GEN8_OACONTROL, 2696 (report_format << GEN8_OA_REPORT_FORMAT_SHIFT) | 2697 GEN8_OA_COUNTER_ENABLE); 2698 } 2699 2700 static void gen12_oa_enable(struct i915_perf_stream *stream) 2701 { 2702 struct intel_uncore *uncore = stream->uncore; 2703 u32 report_format = stream->oa_buffer.format; 2704 2705 /* 2706 * If we don't want OA reports from the OA buffer, then we don't even 2707 * need to program the OAG unit. 2708 */ 2709 if (!(stream->sample_flags & SAMPLE_OA_REPORT)) 2710 return; 2711 2712 gen12_init_oa_buffer(stream); 2713 2714 intel_uncore_write(uncore, GEN12_OAG_OACONTROL, 2715 (report_format << GEN12_OAG_OACONTROL_OA_COUNTER_FORMAT_SHIFT) | 2716 GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE); 2717 } 2718 2719 #ifdef notyet 2720 2721 /** 2722 * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream 2723 * @stream: An i915 perf stream opened for OA metrics 2724 * 2725 * [Re]enables hardware periodic sampling according to the period configured 2726 * when opening the stream. This also starts a hrtimer that will periodically 2727 * check for data in the circular OA buffer for notifying userspace (e.g. 2728 * during a read() or poll()). 2729 */ 2730 static void i915_oa_stream_enable(struct i915_perf_stream *stream) 2731 { 2732 stream->pollin = false; 2733 2734 stream->perf->ops.oa_enable(stream); 2735 2736 if (stream->sample_flags & SAMPLE_OA_REPORT) 2737 hrtimer_start(&stream->poll_check_timer, 2738 ns_to_ktime(stream->poll_oa_period), 2739 HRTIMER_MODE_REL_PINNED); 2740 } 2741 2742 #endif 2743 2744 static void gen7_oa_disable(struct i915_perf_stream *stream) 2745 { 2746 struct intel_uncore *uncore = stream->uncore; 2747 2748 intel_uncore_write(uncore, GEN7_OACONTROL, 0); 2749 if (intel_wait_for_register(uncore, 2750 GEN7_OACONTROL, GEN7_OACONTROL_ENABLE, 0, 2751 50)) 2752 drm_err(&stream->perf->i915->drm, 2753 "wait for OA to be disabled timed out\n"); 2754 } 2755 2756 static void gen8_oa_disable(struct i915_perf_stream *stream) 2757 { 2758 struct intel_uncore *uncore = stream->uncore; 2759 2760 intel_uncore_write(uncore, GEN8_OACONTROL, 0); 2761 if (intel_wait_for_register(uncore, 2762 GEN8_OACONTROL, GEN8_OA_COUNTER_ENABLE, 0, 2763 50)) 2764 drm_err(&stream->perf->i915->drm, 2765 "wait for OA to be disabled timed out\n"); 2766 } 2767 2768 static void gen12_oa_disable(struct i915_perf_stream *stream) 2769 { 2770 struct intel_uncore *uncore = stream->uncore; 2771 2772 intel_uncore_write(uncore, GEN12_OAG_OACONTROL, 0); 2773 if (intel_wait_for_register(uncore, 2774 GEN12_OAG_OACONTROL, 2775 GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE, 0, 2776 50)) 2777 drm_err(&stream->perf->i915->drm, 2778 "wait for OA to be disabled timed out\n"); 2779 2780 intel_uncore_write(uncore, GEN12_OA_TLB_INV_CR, 1); 2781 if (intel_wait_for_register(uncore, 2782 GEN12_OA_TLB_INV_CR, 2783 1, 0, 2784 50)) 2785 drm_err(&stream->perf->i915->drm, 2786 "wait for OA tlb invalidate timed out\n"); 2787 } 2788 2789 #ifdef notyet 2790 2791 /** 2792 * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream 2793 * @stream: An i915 perf stream opened for OA metrics 2794 * 2795 * Stops the OA unit from periodically writing counter reports into the 2796 * circular OA buffer. This also stops the hrtimer that periodically checks for 2797 * data in the circular OA buffer, for notifying userspace. 2798 */ 2799 static void i915_oa_stream_disable(struct i915_perf_stream *stream) 2800 { 2801 stream->perf->ops.oa_disable(stream); 2802 2803 if (stream->sample_flags & SAMPLE_OA_REPORT) 2804 hrtimer_cancel(&stream->poll_check_timer); 2805 } 2806 2807 static const struct i915_perf_stream_ops i915_oa_stream_ops = { 2808 .destroy = i915_oa_stream_destroy, 2809 .enable = i915_oa_stream_enable, 2810 .disable = i915_oa_stream_disable, 2811 .wait_unlocked = i915_oa_wait_unlocked, 2812 .poll_wait = i915_oa_poll_wait, 2813 .read = i915_oa_read, 2814 }; 2815 2816 static int i915_perf_stream_enable_sync(struct i915_perf_stream *stream) 2817 { 2818 struct i915_active *active; 2819 int err; 2820 2821 active = i915_active_create(); 2822 if (!active) 2823 return -ENOMEM; 2824 2825 err = stream->perf->ops.enable_metric_set(stream, active); 2826 if (err == 0) 2827 __i915_active_wait(active, TASK_UNINTERRUPTIBLE); 2828 2829 i915_active_put(active); 2830 return err; 2831 } 2832 2833 static void 2834 get_default_sseu_config(struct intel_sseu *out_sseu, 2835 struct intel_engine_cs *engine) 2836 { 2837 const struct sseu_dev_info *devinfo_sseu = &engine->gt->info.sseu; 2838 2839 *out_sseu = intel_sseu_from_device_info(devinfo_sseu); 2840 2841 if (GRAPHICS_VER(engine->i915) == 11) { 2842 /* 2843 * We only need subslice count so it doesn't matter which ones 2844 * we select - just turn off low bits in the amount of half of 2845 * all available subslices per slice. 2846 */ 2847 out_sseu->subslice_mask = 2848 ~(~0 << (hweight8(out_sseu->subslice_mask) / 2)); 2849 out_sseu->slice_mask = 0x1; 2850 } 2851 } 2852 2853 #endif 2854 2855 static int 2856 get_sseu_config(struct intel_sseu *out_sseu, 2857 struct intel_engine_cs *engine, 2858 const struct drm_i915_gem_context_param_sseu *drm_sseu) 2859 { 2860 if (drm_sseu->engine.engine_class != engine->uabi_class || 2861 drm_sseu->engine.engine_instance != engine->uabi_instance) 2862 return -EINVAL; 2863 2864 return i915_gem_user_to_context_sseu(engine->gt, drm_sseu, out_sseu); 2865 } 2866 2867 #ifdef notyet 2868 2869 /** 2870 * i915_oa_stream_init - validate combined props for OA stream and init 2871 * @stream: An i915 perf stream 2872 * @param: The open parameters passed to `DRM_I915_PERF_OPEN` 2873 * @props: The property state that configures stream (individually validated) 2874 * 2875 * While read_properties_unlocked() validates properties in isolation it 2876 * doesn't ensure that the combination necessarily makes sense. 2877 * 2878 * At this point it has been determined that userspace wants a stream of 2879 * OA metrics, but still we need to further validate the combined 2880 * properties are OK. 2881 * 2882 * If the configuration makes sense then we can allocate memory for 2883 * a circular OA buffer and apply the requested metric set configuration. 2884 * 2885 * Returns: zero on success or a negative error code. 2886 */ 2887 static int i915_oa_stream_init(struct i915_perf_stream *stream, 2888 struct drm_i915_perf_open_param *param, 2889 struct perf_open_properties *props) 2890 { 2891 struct drm_i915_private *i915 = stream->perf->i915; 2892 struct i915_perf *perf = stream->perf; 2893 int format_size; 2894 int ret; 2895 2896 if (!props->engine) { 2897 drm_dbg(&stream->perf->i915->drm, 2898 "OA engine not specified\n"); 2899 return -EINVAL; 2900 } 2901 2902 /* 2903 * If the sysfs metrics/ directory wasn't registered for some 2904 * reason then don't let userspace try their luck with config 2905 * IDs 2906 */ 2907 if (!perf->metrics_kobj) { 2908 drm_dbg(&stream->perf->i915->drm, 2909 "OA metrics weren't advertised via sysfs\n"); 2910 return -EINVAL; 2911 } 2912 2913 if (!(props->sample_flags & SAMPLE_OA_REPORT) && 2914 (GRAPHICS_VER(perf->i915) < 12 || !stream->ctx)) { 2915 drm_dbg(&stream->perf->i915->drm, 2916 "Only OA report sampling supported\n"); 2917 return -EINVAL; 2918 } 2919 2920 if (!perf->ops.enable_metric_set) { 2921 drm_dbg(&stream->perf->i915->drm, 2922 "OA unit not supported\n"); 2923 return -ENODEV; 2924 } 2925 2926 /* 2927 * To avoid the complexity of having to accurately filter 2928 * counter reports and marshal to the appropriate client 2929 * we currently only allow exclusive access 2930 */ 2931 if (perf->exclusive_stream) { 2932 drm_dbg(&stream->perf->i915->drm, 2933 "OA unit already in use\n"); 2934 return -EBUSY; 2935 } 2936 2937 if (!props->oa_format) { 2938 drm_dbg(&stream->perf->i915->drm, 2939 "OA report format not specified\n"); 2940 return -EINVAL; 2941 } 2942 2943 stream->engine = props->engine; 2944 stream->uncore = stream->engine->gt->uncore; 2945 2946 stream->sample_size = sizeof(struct drm_i915_perf_record_header); 2947 2948 format_size = perf->oa_formats[props->oa_format].size; 2949 2950 stream->sample_flags = props->sample_flags; 2951 stream->sample_size += format_size; 2952 2953 stream->oa_buffer.format_size = format_size; 2954 if (drm_WARN_ON(&i915->drm, stream->oa_buffer.format_size == 0)) 2955 return -EINVAL; 2956 2957 stream->hold_preemption = props->hold_preemption; 2958 2959 stream->oa_buffer.format = 2960 perf->oa_formats[props->oa_format].format; 2961 2962 stream->periodic = props->oa_periodic; 2963 if (stream->periodic) 2964 stream->period_exponent = props->oa_period_exponent; 2965 2966 if (stream->ctx) { 2967 ret = oa_get_render_ctx_id(stream); 2968 if (ret) { 2969 drm_dbg(&stream->perf->i915->drm, 2970 "Invalid context id to filter with\n"); 2971 return ret; 2972 } 2973 } 2974 2975 ret = alloc_noa_wait(stream); 2976 if (ret) { 2977 drm_dbg(&stream->perf->i915->drm, 2978 "Unable to allocate NOA wait batch buffer\n"); 2979 goto err_noa_wait_alloc; 2980 } 2981 2982 stream->oa_config = i915_perf_get_oa_config(perf, props->metrics_set); 2983 if (!stream->oa_config) { 2984 drm_dbg(&stream->perf->i915->drm, 2985 "Invalid OA config id=%i\n", props->metrics_set); 2986 ret = -EINVAL; 2987 goto err_config; 2988 } 2989 2990 /* PRM - observability performance counters: 2991 * 2992 * OACONTROL, performance counter enable, note: 2993 * 2994 * "When this bit is set, in order to have coherent counts, 2995 * RC6 power state and trunk clock gating must be disabled. 2996 * This can be achieved by programming MMIO registers as 2997 * 0xA094=0 and 0xA090[31]=1" 2998 * 2999 * In our case we are expecting that taking pm + FORCEWAKE 3000 * references will effectively disable RC6. 3001 */ 3002 intel_engine_pm_get(stream->engine); 3003 intel_uncore_forcewake_get(stream->uncore, FORCEWAKE_ALL); 3004 3005 ret = alloc_oa_buffer(stream); 3006 if (ret) 3007 goto err_oa_buf_alloc; 3008 3009 stream->ops = &i915_oa_stream_ops; 3010 3011 perf->sseu = props->sseu; 3012 WRITE_ONCE(perf->exclusive_stream, stream); 3013 3014 ret = i915_perf_stream_enable_sync(stream); 3015 if (ret) { 3016 drm_dbg(&stream->perf->i915->drm, 3017 "Unable to enable metric set\n"); 3018 goto err_enable; 3019 } 3020 3021 drm_dbg(&stream->perf->i915->drm, 3022 "opening stream oa config uuid=%s\n", 3023 stream->oa_config->uuid); 3024 3025 hrtimer_init(&stream->poll_check_timer, 3026 CLOCK_MONOTONIC, HRTIMER_MODE_REL); 3027 stream->poll_check_timer.function = oa_poll_check_timer_cb; 3028 init_waitqueue_head(&stream->poll_wq); 3029 mtx_init(&stream->oa_buffer.ptr_lock, IPL_TTY); 3030 3031 return 0; 3032 3033 err_enable: 3034 WRITE_ONCE(perf->exclusive_stream, NULL); 3035 perf->ops.disable_metric_set(stream); 3036 3037 free_oa_buffer(stream); 3038 3039 err_oa_buf_alloc: 3040 free_oa_configs(stream); 3041 3042 intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL); 3043 intel_engine_pm_put(stream->engine); 3044 3045 err_config: 3046 free_noa_wait(stream); 3047 3048 err_noa_wait_alloc: 3049 if (stream->ctx) 3050 oa_put_render_ctx_id(stream); 3051 3052 return ret; 3053 } 3054 3055 #endif 3056 3057 void i915_oa_init_reg_state(const struct intel_context *ce, 3058 const struct intel_engine_cs *engine) 3059 { 3060 struct i915_perf_stream *stream; 3061 3062 if (engine->class != RENDER_CLASS) 3063 return; 3064 3065 /* perf.exclusive_stream serialised by lrc_configure_all_contexts() */ 3066 stream = READ_ONCE(engine->i915->perf.exclusive_stream); 3067 if (stream && GRAPHICS_VER(stream->perf->i915) < 12) 3068 gen8_update_reg_state_unlocked(ce, stream); 3069 } 3070 3071 #ifdef notyet 3072 3073 /** 3074 * i915_perf_read - handles read() FOP for i915 perf stream FDs 3075 * @file: An i915 perf stream file 3076 * @buf: destination buffer given by userspace 3077 * @count: the number of bytes userspace wants to read 3078 * @ppos: (inout) file seek position (unused) 3079 * 3080 * The entry point for handling a read() on a stream file descriptor from 3081 * userspace. Most of the work is left to the i915_perf_read_locked() and 3082 * &i915_perf_stream_ops->read but to save having stream implementations (of 3083 * which we might have multiple later) we handle blocking read here. 3084 * 3085 * We can also consistently treat trying to read from a disabled stream 3086 * as an IO error so implementations can assume the stream is enabled 3087 * while reading. 3088 * 3089 * Returns: The number of bytes copied or a negative error code on failure. 3090 */ 3091 static ssize_t i915_perf_read(struct file *file, 3092 char __user *buf, 3093 size_t count, 3094 loff_t *ppos) 3095 { 3096 struct i915_perf_stream *stream = file->private_data; 3097 struct i915_perf *perf = stream->perf; 3098 size_t offset = 0; 3099 int ret; 3100 3101 /* To ensure it's handled consistently we simply treat all reads of a 3102 * disabled stream as an error. In particular it might otherwise lead 3103 * to a deadlock for blocking file descriptors... 3104 */ 3105 if (!stream->enabled || !(stream->sample_flags & SAMPLE_OA_REPORT)) 3106 return -EIO; 3107 3108 if (!(file->f_flags & O_NONBLOCK)) { 3109 /* There's the small chance of false positives from 3110 * stream->ops->wait_unlocked. 3111 * 3112 * E.g. with single context filtering since we only wait until 3113 * oabuffer has >= 1 report we don't immediately know whether 3114 * any reports really belong to the current context 3115 */ 3116 do { 3117 ret = stream->ops->wait_unlocked(stream); 3118 if (ret) 3119 return ret; 3120 3121 mutex_lock(&perf->lock); 3122 ret = stream->ops->read(stream, buf, count, &offset); 3123 mutex_unlock(&perf->lock); 3124 } while (!offset && !ret); 3125 } else { 3126 mutex_lock(&perf->lock); 3127 ret = stream->ops->read(stream, buf, count, &offset); 3128 mutex_unlock(&perf->lock); 3129 } 3130 3131 /* We allow the poll checking to sometimes report false positive EPOLLIN 3132 * events where we might actually report EAGAIN on read() if there's 3133 * not really any data available. In this situation though we don't 3134 * want to enter a busy loop between poll() reporting a EPOLLIN event 3135 * and read() returning -EAGAIN. Clearing the oa.pollin state here 3136 * effectively ensures we back off until the next hrtimer callback 3137 * before reporting another EPOLLIN event. 3138 * The exception to this is if ops->read() returned -ENOSPC which means 3139 * that more OA data is available than could fit in the user provided 3140 * buffer. In this case we want the next poll() call to not block. 3141 */ 3142 if (ret != -ENOSPC) 3143 stream->pollin = false; 3144 3145 /* Possible values for ret are 0, -EFAULT, -ENOSPC, -EIO, ... */ 3146 return offset ?: (ret ?: -EAGAIN); 3147 } 3148 3149 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer) 3150 { 3151 struct i915_perf_stream *stream = 3152 container_of(hrtimer, typeof(*stream), poll_check_timer); 3153 3154 if (oa_buffer_check_unlocked(stream)) { 3155 stream->pollin = true; 3156 wake_up(&stream->poll_wq); 3157 } 3158 3159 hrtimer_forward_now(hrtimer, 3160 ns_to_ktime(stream->poll_oa_period)); 3161 3162 return HRTIMER_RESTART; 3163 } 3164 3165 /** 3166 * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream 3167 * @stream: An i915 perf stream 3168 * @file: An i915 perf stream file 3169 * @wait: poll() state table 3170 * 3171 * For handling userspace polling on an i915 perf stream, this calls through to 3172 * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that 3173 * will be woken for new stream data. 3174 * 3175 * Note: The &perf->lock mutex has been taken to serialize 3176 * with any non-file-operation driver hooks. 3177 * 3178 * Returns: any poll events that are ready without sleeping 3179 */ 3180 static __poll_t i915_perf_poll_locked(struct i915_perf_stream *stream, 3181 struct file *file, 3182 poll_table *wait) 3183 { 3184 __poll_t events = 0; 3185 3186 stream->ops->poll_wait(stream, file, wait); 3187 3188 /* Note: we don't explicitly check whether there's something to read 3189 * here since this path may be very hot depending on what else 3190 * userspace is polling, or on the timeout in use. We rely solely on 3191 * the hrtimer/oa_poll_check_timer_cb to notify us when there are 3192 * samples to read. 3193 */ 3194 if (stream->pollin) 3195 events |= EPOLLIN; 3196 3197 return events; 3198 } 3199 3200 /** 3201 * i915_perf_poll - call poll_wait() with a suitable wait queue for stream 3202 * @file: An i915 perf stream file 3203 * @wait: poll() state table 3204 * 3205 * For handling userspace polling on an i915 perf stream, this ensures 3206 * poll_wait() gets called with a wait queue that will be woken for new stream 3207 * data. 3208 * 3209 * Note: Implementation deferred to i915_perf_poll_locked() 3210 * 3211 * Returns: any poll events that are ready without sleeping 3212 */ 3213 static __poll_t i915_perf_poll(struct file *file, poll_table *wait) 3214 { 3215 struct i915_perf_stream *stream = file->private_data; 3216 struct i915_perf *perf = stream->perf; 3217 __poll_t ret; 3218 3219 mutex_lock(&perf->lock); 3220 ret = i915_perf_poll_locked(stream, file, wait); 3221 mutex_unlock(&perf->lock); 3222 3223 return ret; 3224 } 3225 3226 /** 3227 * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl 3228 * @stream: A disabled i915 perf stream 3229 * 3230 * [Re]enables the associated capture of data for this stream. 3231 * 3232 * If a stream was previously enabled then there's currently no intention 3233 * to provide userspace any guarantee about the preservation of previously 3234 * buffered data. 3235 */ 3236 static void i915_perf_enable_locked(struct i915_perf_stream *stream) 3237 { 3238 if (stream->enabled) 3239 return; 3240 3241 /* Allow stream->ops->enable() to refer to this */ 3242 stream->enabled = true; 3243 3244 if (stream->ops->enable) 3245 stream->ops->enable(stream); 3246 3247 if (stream->hold_preemption) 3248 intel_context_set_nopreempt(stream->pinned_ctx); 3249 } 3250 3251 /** 3252 * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl 3253 * @stream: An enabled i915 perf stream 3254 * 3255 * Disables the associated capture of data for this stream. 3256 * 3257 * The intention is that disabling an re-enabling a stream will ideally be 3258 * cheaper than destroying and re-opening a stream with the same configuration, 3259 * though there are no formal guarantees about what state or buffered data 3260 * must be retained between disabling and re-enabling a stream. 3261 * 3262 * Note: while a stream is disabled it's considered an error for userspace 3263 * to attempt to read from the stream (-EIO). 3264 */ 3265 static void i915_perf_disable_locked(struct i915_perf_stream *stream) 3266 { 3267 if (!stream->enabled) 3268 return; 3269 3270 /* Allow stream->ops->disable() to refer to this */ 3271 stream->enabled = false; 3272 3273 if (stream->hold_preemption) 3274 intel_context_clear_nopreempt(stream->pinned_ctx); 3275 3276 if (stream->ops->disable) 3277 stream->ops->disable(stream); 3278 } 3279 3280 static long i915_perf_config_locked(struct i915_perf_stream *stream, 3281 unsigned long metrics_set) 3282 { 3283 struct i915_oa_config *config; 3284 long ret = stream->oa_config->id; 3285 3286 config = i915_perf_get_oa_config(stream->perf, metrics_set); 3287 if (!config) 3288 return -EINVAL; 3289 3290 if (config != stream->oa_config) { 3291 int err; 3292 3293 /* 3294 * If OA is bound to a specific context, emit the 3295 * reconfiguration inline from that context. The update 3296 * will then be ordered with respect to submission on that 3297 * context. 3298 * 3299 * When set globally, we use a low priority kernel context, 3300 * so it will effectively take effect when idle. 3301 */ 3302 err = emit_oa_config(stream, config, oa_context(stream), NULL); 3303 if (!err) 3304 config = xchg(&stream->oa_config, config); 3305 else 3306 ret = err; 3307 } 3308 3309 i915_oa_config_put(config); 3310 3311 return ret; 3312 } 3313 3314 /** 3315 * i915_perf_ioctl_locked - support ioctl() usage with i915 perf stream FDs 3316 * @stream: An i915 perf stream 3317 * @cmd: the ioctl request 3318 * @arg: the ioctl data 3319 * 3320 * Note: The &perf->lock mutex has been taken to serialize 3321 * with any non-file-operation driver hooks. 3322 * 3323 * Returns: zero on success or a negative error code. Returns -EINVAL for 3324 * an unknown ioctl request. 3325 */ 3326 static long i915_perf_ioctl_locked(struct i915_perf_stream *stream, 3327 unsigned int cmd, 3328 unsigned long arg) 3329 { 3330 switch (cmd) { 3331 case I915_PERF_IOCTL_ENABLE: 3332 i915_perf_enable_locked(stream); 3333 return 0; 3334 case I915_PERF_IOCTL_DISABLE: 3335 i915_perf_disable_locked(stream); 3336 return 0; 3337 case I915_PERF_IOCTL_CONFIG: 3338 return i915_perf_config_locked(stream, arg); 3339 } 3340 3341 return -EINVAL; 3342 } 3343 3344 /** 3345 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs 3346 * @file: An i915 perf stream file 3347 * @cmd: the ioctl request 3348 * @arg: the ioctl data 3349 * 3350 * Implementation deferred to i915_perf_ioctl_locked(). 3351 * 3352 * Returns: zero on success or a negative error code. Returns -EINVAL for 3353 * an unknown ioctl request. 3354 */ 3355 static long i915_perf_ioctl(struct file *file, 3356 unsigned int cmd, 3357 unsigned long arg) 3358 { 3359 struct i915_perf_stream *stream = file->private_data; 3360 struct i915_perf *perf = stream->perf; 3361 long ret; 3362 3363 mutex_lock(&perf->lock); 3364 ret = i915_perf_ioctl_locked(stream, cmd, arg); 3365 mutex_unlock(&perf->lock); 3366 3367 return ret; 3368 } 3369 3370 /** 3371 * i915_perf_destroy_locked - destroy an i915 perf stream 3372 * @stream: An i915 perf stream 3373 * 3374 * Frees all resources associated with the given i915 perf @stream, disabling 3375 * any associated data capture in the process. 3376 * 3377 * Note: The &perf->lock mutex has been taken to serialize 3378 * with any non-file-operation driver hooks. 3379 */ 3380 static void i915_perf_destroy_locked(struct i915_perf_stream *stream) 3381 { 3382 if (stream->enabled) 3383 i915_perf_disable_locked(stream); 3384 3385 if (stream->ops->destroy) 3386 stream->ops->destroy(stream); 3387 3388 if (stream->ctx) 3389 i915_gem_context_put(stream->ctx); 3390 3391 kfree(stream); 3392 } 3393 3394 /** 3395 * i915_perf_release - handles userspace close() of a stream file 3396 * @inode: anonymous inode associated with file 3397 * @file: An i915 perf stream file 3398 * 3399 * Cleans up any resources associated with an open i915 perf stream file. 3400 * 3401 * NB: close() can't really fail from the userspace point of view. 3402 * 3403 * Returns: zero on success or a negative error code. 3404 */ 3405 static int i915_perf_release(struct inode *inode, struct file *file) 3406 { 3407 struct i915_perf_stream *stream = file->private_data; 3408 struct i915_perf *perf = stream->perf; 3409 3410 mutex_lock(&perf->lock); 3411 i915_perf_destroy_locked(stream); 3412 mutex_unlock(&perf->lock); 3413 3414 /* Release the reference the perf stream kept on the driver. */ 3415 drm_dev_put(&perf->i915->drm); 3416 3417 return 0; 3418 } 3419 3420 3421 static const struct file_operations fops = { 3422 .owner = THIS_MODULE, 3423 .llseek = no_llseek, 3424 .release = i915_perf_release, 3425 .poll = i915_perf_poll, 3426 .read = i915_perf_read, 3427 .unlocked_ioctl = i915_perf_ioctl, 3428 /* Our ioctl have no arguments, so it's safe to use the same function 3429 * to handle 32bits compatibility. 3430 */ 3431 .compat_ioctl = i915_perf_ioctl, 3432 }; 3433 3434 #endif /* notyet */ 3435 3436 /** 3437 * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD 3438 * @perf: i915 perf instance 3439 * @param: The open parameters passed to 'DRM_I915_PERF_OPEN` 3440 * @props: individually validated u64 property value pairs 3441 * @file: drm file 3442 * 3443 * See i915_perf_ioctl_open() for interface details. 3444 * 3445 * Implements further stream config validation and stream initialization on 3446 * behalf of i915_perf_open_ioctl() with the &perf->lock mutex 3447 * taken to serialize with any non-file-operation driver hooks. 3448 * 3449 * Note: at this point the @props have only been validated in isolation and 3450 * it's still necessary to validate that the combination of properties makes 3451 * sense. 3452 * 3453 * In the case where userspace is interested in OA unit metrics then further 3454 * config validation and stream initialization details will be handled by 3455 * i915_oa_stream_init(). The code here should only validate config state that 3456 * will be relevant to all stream types / backends. 3457 * 3458 * Returns: zero on success or a negative error code. 3459 */ 3460 static int 3461 i915_perf_open_ioctl_locked(struct i915_perf *perf, 3462 struct drm_i915_perf_open_param *param, 3463 struct perf_open_properties *props, 3464 struct drm_file *file) 3465 { 3466 STUB(); 3467 return -ENOSYS; 3468 #ifdef notyet 3469 struct i915_gem_context *specific_ctx = NULL; 3470 struct i915_perf_stream *stream = NULL; 3471 unsigned long f_flags = 0; 3472 bool privileged_op = true; 3473 int stream_fd; 3474 int ret; 3475 3476 if (props->single_context) { 3477 u32 ctx_handle = props->ctx_handle; 3478 struct drm_i915_file_private *file_priv = file->driver_priv; 3479 3480 specific_ctx = i915_gem_context_lookup(file_priv, ctx_handle); 3481 if (IS_ERR(specific_ctx)) { 3482 drm_dbg(&perf->i915->drm, 3483 "Failed to look up context with ID %u for opening perf stream\n", 3484 ctx_handle); 3485 ret = PTR_ERR(specific_ctx); 3486 goto err; 3487 } 3488 } 3489 3490 /* 3491 * On Haswell the OA unit supports clock gating off for a specific 3492 * context and in this mode there's no visibility of metrics for the 3493 * rest of the system, which we consider acceptable for a 3494 * non-privileged client. 3495 * 3496 * For Gen8->11 the OA unit no longer supports clock gating off for a 3497 * specific context and the kernel can't securely stop the counters 3498 * from updating as system-wide / global values. Even though we can 3499 * filter reports based on the included context ID we can't block 3500 * clients from seeing the raw / global counter values via 3501 * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to 3502 * enable the OA unit by default. 3503 * 3504 * For Gen12+ we gain a new OAR unit that only monitors the RCS on a 3505 * per context basis. So we can relax requirements there if the user 3506 * doesn't request global stream access (i.e. query based sampling 3507 * using MI_RECORD_PERF_COUNT. 3508 */ 3509 if (IS_HASWELL(perf->i915) && specific_ctx) 3510 privileged_op = false; 3511 else if (GRAPHICS_VER(perf->i915) == 12 && specific_ctx && 3512 (props->sample_flags & SAMPLE_OA_REPORT) == 0) 3513 privileged_op = false; 3514 3515 if (props->hold_preemption) { 3516 if (!props->single_context) { 3517 drm_dbg(&perf->i915->drm, 3518 "preemption disable with no context\n"); 3519 ret = -EINVAL; 3520 goto err; 3521 } 3522 privileged_op = true; 3523 } 3524 3525 /* 3526 * Asking for SSEU configuration is a priviliged operation. 3527 */ 3528 if (props->has_sseu) 3529 privileged_op = true; 3530 else 3531 get_default_sseu_config(&props->sseu, props->engine); 3532 3533 /* Similar to perf's kernel.perf_paranoid_cpu sysctl option 3534 * we check a dev.i915.perf_stream_paranoid sysctl option 3535 * to determine if it's ok to access system wide OA counters 3536 * without CAP_PERFMON or CAP_SYS_ADMIN privileges. 3537 */ 3538 if (privileged_op && 3539 i915_perf_stream_paranoid && !perfmon_capable()) { 3540 drm_dbg(&perf->i915->drm, 3541 "Insufficient privileges to open i915 perf stream\n"); 3542 ret = -EACCES; 3543 goto err_ctx; 3544 } 3545 3546 stream = kzalloc(sizeof(*stream), GFP_KERNEL); 3547 if (!stream) { 3548 ret = -ENOMEM; 3549 goto err_ctx; 3550 } 3551 3552 stream->perf = perf; 3553 stream->ctx = specific_ctx; 3554 stream->poll_oa_period = props->poll_oa_period; 3555 3556 ret = i915_oa_stream_init(stream, param, props); 3557 if (ret) 3558 goto err_alloc; 3559 3560 /* we avoid simply assigning stream->sample_flags = props->sample_flags 3561 * to have _stream_init check the combination of sample flags more 3562 * thoroughly, but still this is the expected result at this point. 3563 */ 3564 if (WARN_ON(stream->sample_flags != props->sample_flags)) { 3565 ret = -ENODEV; 3566 goto err_flags; 3567 } 3568 3569 if (param->flags & I915_PERF_FLAG_FD_CLOEXEC) 3570 f_flags |= O_CLOEXEC; 3571 if (param->flags & I915_PERF_FLAG_FD_NONBLOCK) 3572 f_flags |= O_NONBLOCK; 3573 3574 stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags); 3575 if (stream_fd < 0) { 3576 ret = stream_fd; 3577 goto err_flags; 3578 } 3579 3580 if (!(param->flags & I915_PERF_FLAG_DISABLED)) 3581 i915_perf_enable_locked(stream); 3582 3583 /* Take a reference on the driver that will be kept with stream_fd 3584 * until its release. 3585 */ 3586 drm_dev_get(&perf->i915->drm); 3587 3588 return stream_fd; 3589 3590 err_flags: 3591 if (stream->ops->destroy) 3592 stream->ops->destroy(stream); 3593 err_alloc: 3594 kfree(stream); 3595 err_ctx: 3596 if (specific_ctx) 3597 i915_gem_context_put(specific_ctx); 3598 err: 3599 return ret; 3600 #endif 3601 } 3602 3603 static u64 oa_exponent_to_ns(struct i915_perf *perf, int exponent) 3604 { 3605 return intel_gt_clock_interval_to_ns(to_gt(perf->i915), 3606 2ULL << exponent); 3607 } 3608 3609 static __always_inline bool 3610 oa_format_valid(struct i915_perf *perf, enum drm_i915_oa_format format) 3611 { 3612 return test_bit(format, perf->format_mask); 3613 } 3614 3615 static __always_inline void 3616 oa_format_add(struct i915_perf *perf, enum drm_i915_oa_format format) 3617 { 3618 __set_bit(format, perf->format_mask); 3619 } 3620 3621 /** 3622 * read_properties_unlocked - validate + copy userspace stream open properties 3623 * @perf: i915 perf instance 3624 * @uprops: The array of u64 key value pairs given by userspace 3625 * @n_props: The number of key value pairs expected in @uprops 3626 * @props: The stream configuration built up while validating properties 3627 * 3628 * Note this function only validates properties in isolation it doesn't 3629 * validate that the combination of properties makes sense or that all 3630 * properties necessary for a particular kind of stream have been set. 3631 * 3632 * Note that there currently aren't any ordering requirements for properties so 3633 * we shouldn't validate or assume anything about ordering here. This doesn't 3634 * rule out defining new properties with ordering requirements in the future. 3635 */ 3636 static int read_properties_unlocked(struct i915_perf *perf, 3637 u64 __user *uprops, 3638 u32 n_props, 3639 struct perf_open_properties *props) 3640 { 3641 u64 __user *uprop = uprops; 3642 u32 i; 3643 int ret; 3644 3645 memset(props, 0, sizeof(struct perf_open_properties)); 3646 props->poll_oa_period = DEFAULT_POLL_PERIOD_NS; 3647 3648 if (!n_props) { 3649 drm_dbg(&perf->i915->drm, 3650 "No i915 perf properties given\n"); 3651 return -EINVAL; 3652 } 3653 3654 /* At the moment we only support using i915-perf on the RCS. */ 3655 props->engine = intel_engine_lookup_user(perf->i915, 3656 I915_ENGINE_CLASS_RENDER, 3657 0); 3658 if (!props->engine) { 3659 drm_dbg(&perf->i915->drm, 3660 "No RENDER-capable engines\n"); 3661 return -EINVAL; 3662 } 3663 3664 /* Considering that ID = 0 is reserved and assuming that we don't 3665 * (currently) expect any configurations to ever specify duplicate 3666 * values for a particular property ID then the last _PROP_MAX value is 3667 * one greater than the maximum number of properties we expect to get 3668 * from userspace. 3669 */ 3670 if (n_props >= DRM_I915_PERF_PROP_MAX) { 3671 drm_dbg(&perf->i915->drm, 3672 "More i915 perf properties specified than exist\n"); 3673 return -EINVAL; 3674 } 3675 3676 for (i = 0; i < n_props; i++) { 3677 u64 oa_period, oa_freq_hz; 3678 u64 id, value; 3679 3680 ret = get_user(id, uprop); 3681 if (ret) 3682 return ret; 3683 3684 ret = get_user(value, uprop + 1); 3685 if (ret) 3686 return ret; 3687 3688 if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) { 3689 drm_dbg(&perf->i915->drm, 3690 "Unknown i915 perf property ID\n"); 3691 return -EINVAL; 3692 } 3693 3694 switch ((enum drm_i915_perf_property_id)id) { 3695 case DRM_I915_PERF_PROP_CTX_HANDLE: 3696 props->single_context = 1; 3697 props->ctx_handle = value; 3698 break; 3699 case DRM_I915_PERF_PROP_SAMPLE_OA: 3700 if (value) 3701 props->sample_flags |= SAMPLE_OA_REPORT; 3702 break; 3703 case DRM_I915_PERF_PROP_OA_METRICS_SET: 3704 if (value == 0) { 3705 drm_dbg(&perf->i915->drm, 3706 "Unknown OA metric set ID\n"); 3707 return -EINVAL; 3708 } 3709 props->metrics_set = value; 3710 break; 3711 case DRM_I915_PERF_PROP_OA_FORMAT: 3712 if (value == 0 || value >= I915_OA_FORMAT_MAX) { 3713 drm_dbg(&perf->i915->drm, 3714 "Out-of-range OA report format %llu\n", 3715 value); 3716 return -EINVAL; 3717 } 3718 if (!oa_format_valid(perf, value)) { 3719 drm_dbg(&perf->i915->drm, 3720 "Unsupported OA report format %llu\n", 3721 value); 3722 return -EINVAL; 3723 } 3724 props->oa_format = value; 3725 break; 3726 case DRM_I915_PERF_PROP_OA_EXPONENT: 3727 if (value > OA_EXPONENT_MAX) { 3728 drm_dbg(&perf->i915->drm, 3729 "OA timer exponent too high (> %u)\n", 3730 OA_EXPONENT_MAX); 3731 return -EINVAL; 3732 } 3733 3734 /* Theoretically we can program the OA unit to sample 3735 * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns 3736 * for BXT. We don't allow such high sampling 3737 * frequencies by default unless root. 3738 */ 3739 3740 BUILD_BUG_ON(sizeof(oa_period) != 8); 3741 oa_period = oa_exponent_to_ns(perf, value); 3742 3743 /* This check is primarily to ensure that oa_period <= 3744 * UINT32_MAX (before passing to do_div which only 3745 * accepts a u32 denominator), but we can also skip 3746 * checking anything < 1Hz which implicitly can't be 3747 * limited via an integer oa_max_sample_rate. 3748 */ 3749 if (oa_period <= NSEC_PER_SEC) { 3750 u64 tmp = NSEC_PER_SEC; 3751 do_div(tmp, oa_period); 3752 oa_freq_hz = tmp; 3753 } else 3754 oa_freq_hz = 0; 3755 3756 if (oa_freq_hz > i915_oa_max_sample_rate && !perfmon_capable()) { 3757 drm_dbg(&perf->i915->drm, 3758 "OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without CAP_PERFMON or CAP_SYS_ADMIN privileges\n", 3759 i915_oa_max_sample_rate); 3760 return -EACCES; 3761 } 3762 3763 props->oa_periodic = true; 3764 props->oa_period_exponent = value; 3765 break; 3766 case DRM_I915_PERF_PROP_HOLD_PREEMPTION: 3767 props->hold_preemption = !!value; 3768 break; 3769 case DRM_I915_PERF_PROP_GLOBAL_SSEU: { 3770 struct drm_i915_gem_context_param_sseu user_sseu; 3771 3772 if (GRAPHICS_VER_FULL(perf->i915) >= IP_VER(12, 50)) { 3773 drm_dbg(&perf->i915->drm, 3774 "SSEU config not supported on gfx %x\n", 3775 GRAPHICS_VER_FULL(perf->i915)); 3776 return -ENODEV; 3777 } 3778 3779 if (copy_from_user(&user_sseu, 3780 u64_to_user_ptr(value), 3781 sizeof(user_sseu))) { 3782 drm_dbg(&perf->i915->drm, 3783 "Unable to copy global sseu parameter\n"); 3784 return -EFAULT; 3785 } 3786 3787 ret = get_sseu_config(&props->sseu, props->engine, &user_sseu); 3788 if (ret) { 3789 drm_dbg(&perf->i915->drm, 3790 "Invalid SSEU configuration\n"); 3791 return ret; 3792 } 3793 props->has_sseu = true; 3794 break; 3795 } 3796 case DRM_I915_PERF_PROP_POLL_OA_PERIOD: 3797 if (value < 100000 /* 100us */) { 3798 drm_dbg(&perf->i915->drm, 3799 "OA availability timer too small (%lluns < 100us)\n", 3800 value); 3801 return -EINVAL; 3802 } 3803 props->poll_oa_period = value; 3804 break; 3805 case DRM_I915_PERF_PROP_MAX: 3806 MISSING_CASE(id); 3807 return -EINVAL; 3808 } 3809 3810 uprop += 2; 3811 } 3812 3813 return 0; 3814 } 3815 3816 /** 3817 * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD 3818 * @dev: drm device 3819 * @data: ioctl data copied from userspace (unvalidated) 3820 * @file: drm file 3821 * 3822 * Validates the stream open parameters given by userspace including flags 3823 * and an array of u64 key, value pair properties. 3824 * 3825 * Very little is assumed up front about the nature of the stream being 3826 * opened (for instance we don't assume it's for periodic OA unit metrics). An 3827 * i915-perf stream is expected to be a suitable interface for other forms of 3828 * buffered data written by the GPU besides periodic OA metrics. 3829 * 3830 * Note we copy the properties from userspace outside of the i915 perf 3831 * mutex to avoid an awkward lockdep with mmap_lock. 3832 * 3833 * Most of the implementation details are handled by 3834 * i915_perf_open_ioctl_locked() after taking the &perf->lock 3835 * mutex for serializing with any non-file-operation driver hooks. 3836 * 3837 * Return: A newly opened i915 Perf stream file descriptor or negative 3838 * error code on failure. 3839 */ 3840 int i915_perf_open_ioctl(struct drm_device *dev, void *data, 3841 struct drm_file *file) 3842 { 3843 struct i915_perf *perf = &to_i915(dev)->perf; 3844 struct drm_i915_perf_open_param *param = data; 3845 struct perf_open_properties props; 3846 u32 known_open_flags; 3847 int ret; 3848 3849 if (!perf->i915) { 3850 drm_dbg(&perf->i915->drm, 3851 "i915 perf interface not available for this system\n"); 3852 return -ENOTSUPP; 3853 } 3854 3855 known_open_flags = I915_PERF_FLAG_FD_CLOEXEC | 3856 I915_PERF_FLAG_FD_NONBLOCK | 3857 I915_PERF_FLAG_DISABLED; 3858 if (param->flags & ~known_open_flags) { 3859 drm_dbg(&perf->i915->drm, 3860 "Unknown drm_i915_perf_open_param flag\n"); 3861 return -EINVAL; 3862 } 3863 3864 ret = read_properties_unlocked(perf, 3865 u64_to_user_ptr(param->properties_ptr), 3866 param->num_properties, 3867 &props); 3868 if (ret) 3869 return ret; 3870 3871 mutex_lock(&perf->lock); 3872 ret = i915_perf_open_ioctl_locked(perf, param, &props, file); 3873 mutex_unlock(&perf->lock); 3874 3875 return ret; 3876 } 3877 3878 /** 3879 * i915_perf_register - exposes i915-perf to userspace 3880 * @i915: i915 device instance 3881 * 3882 * In particular OA metric sets are advertised under a sysfs metrics/ 3883 * directory allowing userspace to enumerate valid IDs that can be 3884 * used to open an i915-perf stream. 3885 */ 3886 void i915_perf_register(struct drm_i915_private *i915) 3887 { 3888 #ifdef __linux__ 3889 struct i915_perf *perf = &i915->perf; 3890 3891 if (!perf->i915) 3892 return; 3893 3894 /* To be sure we're synchronized with an attempted 3895 * i915_perf_open_ioctl(); considering that we register after 3896 * being exposed to userspace. 3897 */ 3898 mutex_lock(&perf->lock); 3899 3900 perf->metrics_kobj = 3901 kobject_create_and_add("metrics", 3902 &i915->drm.primary->kdev->kobj); 3903 3904 mutex_unlock(&perf->lock); 3905 #endif 3906 } 3907 3908 /** 3909 * i915_perf_unregister - hide i915-perf from userspace 3910 * @i915: i915 device instance 3911 * 3912 * i915-perf state cleanup is split up into an 'unregister' and 3913 * 'deinit' phase where the interface is first hidden from 3914 * userspace by i915_perf_unregister() before cleaning up 3915 * remaining state in i915_perf_fini(). 3916 */ 3917 void i915_perf_unregister(struct drm_i915_private *i915) 3918 { 3919 struct i915_perf *perf = &i915->perf; 3920 3921 if (!perf->metrics_kobj) 3922 return; 3923 3924 kobject_put(perf->metrics_kobj); 3925 perf->metrics_kobj = NULL; 3926 } 3927 3928 static bool gen8_is_valid_flex_addr(struct i915_perf *perf, u32 addr) 3929 { 3930 static const i915_reg_t flex_eu_regs[] = { 3931 EU_PERF_CNTL0, 3932 EU_PERF_CNTL1, 3933 EU_PERF_CNTL2, 3934 EU_PERF_CNTL3, 3935 EU_PERF_CNTL4, 3936 EU_PERF_CNTL5, 3937 EU_PERF_CNTL6, 3938 }; 3939 int i; 3940 3941 for (i = 0; i < ARRAY_SIZE(flex_eu_regs); i++) { 3942 if (i915_mmio_reg_offset(flex_eu_regs[i]) == addr) 3943 return true; 3944 } 3945 return false; 3946 } 3947 3948 static bool reg_in_range_table(u32 addr, const struct i915_range *table) 3949 { 3950 while (table->start || table->end) { 3951 if (addr >= table->start && addr <= table->end) 3952 return true; 3953 3954 table++; 3955 } 3956 3957 return false; 3958 } 3959 3960 #define REG_EQUAL(addr, mmio) \ 3961 ((addr) == i915_mmio_reg_offset(mmio)) 3962 3963 static const struct i915_range gen7_oa_b_counters[] = { 3964 { .start = 0x2710, .end = 0x272c }, /* OASTARTTRIG[1-8] */ 3965 { .start = 0x2740, .end = 0x275c }, /* OAREPORTTRIG[1-8] */ 3966 { .start = 0x2770, .end = 0x27ac }, /* OACEC[0-7][0-1] */ 3967 {} 3968 }; 3969 3970 static const struct i915_range gen12_oa_b_counters[] = { 3971 { .start = 0x2b2c, .end = 0x2b2c }, /* GEN12_OAG_OA_PESS */ 3972 { .start = 0xd900, .end = 0xd91c }, /* GEN12_OAG_OASTARTTRIG[1-8] */ 3973 { .start = 0xd920, .end = 0xd93c }, /* GEN12_OAG_OAREPORTTRIG1[1-8] */ 3974 { .start = 0xd940, .end = 0xd97c }, /* GEN12_OAG_CEC[0-7][0-1] */ 3975 { .start = 0xdc00, .end = 0xdc3c }, /* GEN12_OAG_SCEC[0-7][0-1] */ 3976 { .start = 0xdc40, .end = 0xdc40 }, /* GEN12_OAG_SPCTR_CNF */ 3977 { .start = 0xdc44, .end = 0xdc44 }, /* GEN12_OAA_DBG_REG */ 3978 {} 3979 }; 3980 3981 static const struct i915_range gen7_oa_mux_regs[] = { 3982 { .start = 0x91b8, .end = 0x91cc }, /* OA_PERFCNT[1-2], OA_PERFMATRIX */ 3983 { .start = 0x9800, .end = 0x9888 }, /* MICRO_BP0_0 - NOA_WRITE */ 3984 { .start = 0xe180, .end = 0xe180 }, /* HALF_SLICE_CHICKEN2 */ 3985 {} 3986 }; 3987 3988 static const struct i915_range hsw_oa_mux_regs[] = { 3989 { .start = 0x09e80, .end = 0x09ea4 }, /* HSW_MBVID2_NOA[0-9] */ 3990 { .start = 0x09ec0, .end = 0x09ec0 }, /* HSW_MBVID2_MISR0 */ 3991 { .start = 0x25100, .end = 0x2ff90 }, 3992 {} 3993 }; 3994 3995 static const struct i915_range chv_oa_mux_regs[] = { 3996 { .start = 0x182300, .end = 0x1823a4 }, 3997 {} 3998 }; 3999 4000 static const struct i915_range gen8_oa_mux_regs[] = { 4001 { .start = 0x0d00, .end = 0x0d2c }, /* RPM_CONFIG[0-1], NOA_CONFIG[0-8] */ 4002 { .start = 0x20cc, .end = 0x20cc }, /* WAIT_FOR_RC6_EXIT */ 4003 {} 4004 }; 4005 4006 static const struct i915_range gen11_oa_mux_regs[] = { 4007 { .start = 0x91c8, .end = 0x91dc }, /* OA_PERFCNT[3-4] */ 4008 {} 4009 }; 4010 4011 static const struct i915_range gen12_oa_mux_regs[] = { 4012 { .start = 0x0d00, .end = 0x0d04 }, /* RPM_CONFIG[0-1] */ 4013 { .start = 0x0d0c, .end = 0x0d2c }, /* NOA_CONFIG[0-8] */ 4014 { .start = 0x9840, .end = 0x9840 }, /* GDT_CHICKEN_BITS */ 4015 { .start = 0x9884, .end = 0x9888 }, /* NOA_WRITE */ 4016 { .start = 0x20cc, .end = 0x20cc }, /* WAIT_FOR_RC6_EXIT */ 4017 {} 4018 }; 4019 4020 static bool gen7_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr) 4021 { 4022 return reg_in_range_table(addr, gen7_oa_b_counters); 4023 } 4024 4025 static bool gen8_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 4026 { 4027 return reg_in_range_table(addr, gen7_oa_mux_regs) || 4028 reg_in_range_table(addr, gen8_oa_mux_regs); 4029 } 4030 4031 static bool gen11_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 4032 { 4033 return reg_in_range_table(addr, gen7_oa_mux_regs) || 4034 reg_in_range_table(addr, gen8_oa_mux_regs) || 4035 reg_in_range_table(addr, gen11_oa_mux_regs); 4036 } 4037 4038 static bool hsw_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 4039 { 4040 return reg_in_range_table(addr, gen7_oa_mux_regs) || 4041 reg_in_range_table(addr, hsw_oa_mux_regs); 4042 } 4043 4044 static bool chv_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 4045 { 4046 return reg_in_range_table(addr, gen7_oa_mux_regs) || 4047 reg_in_range_table(addr, chv_oa_mux_regs); 4048 } 4049 4050 static bool gen12_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr) 4051 { 4052 return reg_in_range_table(addr, gen12_oa_b_counters); 4053 } 4054 4055 static bool gen12_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 4056 { 4057 return reg_in_range_table(addr, gen12_oa_mux_regs); 4058 } 4059 4060 #ifdef notyet 4061 4062 static u32 mask_reg_value(u32 reg, u32 val) 4063 { 4064 /* HALF_SLICE_CHICKEN2 is programmed with a the 4065 * WaDisableSTUnitPowerOptimization workaround. Make sure the value 4066 * programmed by userspace doesn't change this. 4067 */ 4068 if (REG_EQUAL(reg, HALF_SLICE_CHICKEN2)) 4069 val = val & ~_MASKED_BIT_ENABLE(GEN8_ST_PO_DISABLE); 4070 4071 /* WAIT_FOR_RC6_EXIT has only one bit fullfilling the function 4072 * indicated by its name and a bunch of selection fields used by OA 4073 * configs. 4074 */ 4075 if (REG_EQUAL(reg, WAIT_FOR_RC6_EXIT)) 4076 val = val & ~_MASKED_BIT_ENABLE(HSW_WAIT_FOR_RC6_EXIT_ENABLE); 4077 4078 return val; 4079 } 4080 4081 static struct i915_oa_reg *alloc_oa_regs(struct i915_perf *perf, 4082 bool (*is_valid)(struct i915_perf *perf, u32 addr), 4083 u32 __user *regs, 4084 u32 n_regs) 4085 { 4086 struct i915_oa_reg *oa_regs; 4087 int err; 4088 u32 i; 4089 4090 if (!n_regs) 4091 return NULL; 4092 4093 /* No is_valid function means we're not allowing any register to be programmed. */ 4094 GEM_BUG_ON(!is_valid); 4095 if (!is_valid) 4096 return ERR_PTR(-EINVAL); 4097 4098 oa_regs = kmalloc_array(n_regs, sizeof(*oa_regs), GFP_KERNEL); 4099 if (!oa_regs) 4100 return ERR_PTR(-ENOMEM); 4101 4102 for (i = 0; i < n_regs; i++) { 4103 u32 addr, value; 4104 4105 err = get_user(addr, regs); 4106 if (err) 4107 goto addr_err; 4108 4109 if (!is_valid(perf, addr)) { 4110 drm_dbg(&perf->i915->drm, 4111 "Invalid oa_reg address: %X\n", addr); 4112 err = -EINVAL; 4113 goto addr_err; 4114 } 4115 4116 err = get_user(value, regs + 1); 4117 if (err) 4118 goto addr_err; 4119 4120 oa_regs[i].addr = _MMIO(addr); 4121 oa_regs[i].value = mask_reg_value(addr, value); 4122 4123 regs += 2; 4124 } 4125 4126 return oa_regs; 4127 4128 addr_err: 4129 kfree(oa_regs); 4130 return ERR_PTR(err); 4131 } 4132 4133 static ssize_t show_dynamic_id(struct kobject *kobj, 4134 struct kobj_attribute *attr, 4135 char *buf) 4136 { 4137 struct i915_oa_config *oa_config = 4138 container_of(attr, typeof(*oa_config), sysfs_metric_id); 4139 4140 return sprintf(buf, "%d\n", oa_config->id); 4141 } 4142 4143 static int create_dynamic_oa_sysfs_entry(struct i915_perf *perf, 4144 struct i915_oa_config *oa_config) 4145 { 4146 sysfs_attr_init(&oa_config->sysfs_metric_id.attr); 4147 oa_config->sysfs_metric_id.attr.name = "id"; 4148 oa_config->sysfs_metric_id.attr.mode = S_IRUGO; 4149 oa_config->sysfs_metric_id.show = show_dynamic_id; 4150 oa_config->sysfs_metric_id.store = NULL; 4151 4152 oa_config->attrs[0] = &oa_config->sysfs_metric_id.attr; 4153 oa_config->attrs[1] = NULL; 4154 4155 oa_config->sysfs_metric.name = oa_config->uuid; 4156 oa_config->sysfs_metric.attrs = oa_config->attrs; 4157 4158 return sysfs_create_group(perf->metrics_kobj, 4159 &oa_config->sysfs_metric); 4160 } 4161 4162 #endif 4163 4164 /** 4165 * i915_perf_add_config_ioctl - DRM ioctl() for userspace to add a new OA config 4166 * @dev: drm device 4167 * @data: ioctl data (pointer to struct drm_i915_perf_oa_config) copied from 4168 * userspace (unvalidated) 4169 * @file: drm file 4170 * 4171 * Validates the submitted OA register to be saved into a new OA config that 4172 * can then be used for programming the OA unit and its NOA network. 4173 * 4174 * Returns: A new allocated config number to be used with the perf open ioctl 4175 * or a negative error code on failure. 4176 */ 4177 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data, 4178 struct drm_file *file) 4179 { 4180 STUB(); 4181 return -ENOSYS; 4182 #ifdef notyet 4183 struct i915_perf *perf = &to_i915(dev)->perf; 4184 struct drm_i915_perf_oa_config *args = data; 4185 struct i915_oa_config *oa_config, *tmp; 4186 struct i915_oa_reg *regs; 4187 int err, id; 4188 4189 if (!perf->i915) { 4190 drm_dbg(&perf->i915->drm, 4191 "i915 perf interface not available for this system\n"); 4192 return -ENOTSUPP; 4193 } 4194 4195 if (!perf->metrics_kobj) { 4196 drm_dbg(&perf->i915->drm, 4197 "OA metrics weren't advertised via sysfs\n"); 4198 return -EINVAL; 4199 } 4200 4201 if (i915_perf_stream_paranoid && !perfmon_capable()) { 4202 drm_dbg(&perf->i915->drm, 4203 "Insufficient privileges to add i915 OA config\n"); 4204 return -EACCES; 4205 } 4206 4207 if ((!args->mux_regs_ptr || !args->n_mux_regs) && 4208 (!args->boolean_regs_ptr || !args->n_boolean_regs) && 4209 (!args->flex_regs_ptr || !args->n_flex_regs)) { 4210 drm_dbg(&perf->i915->drm, 4211 "No OA registers given\n"); 4212 return -EINVAL; 4213 } 4214 4215 oa_config = kzalloc(sizeof(*oa_config), GFP_KERNEL); 4216 if (!oa_config) { 4217 drm_dbg(&perf->i915->drm, 4218 "Failed to allocate memory for the OA config\n"); 4219 return -ENOMEM; 4220 } 4221 4222 oa_config->perf = perf; 4223 kref_init(&oa_config->ref); 4224 4225 if (!uuid_is_valid(args->uuid)) { 4226 drm_dbg(&perf->i915->drm, 4227 "Invalid uuid format for OA config\n"); 4228 err = -EINVAL; 4229 goto reg_err; 4230 } 4231 4232 /* Last character in oa_config->uuid will be 0 because oa_config is 4233 * kzalloc. 4234 */ 4235 memcpy(oa_config->uuid, args->uuid, sizeof(args->uuid)); 4236 4237 oa_config->mux_regs_len = args->n_mux_regs; 4238 regs = alloc_oa_regs(perf, 4239 perf->ops.is_valid_mux_reg, 4240 u64_to_user_ptr(args->mux_regs_ptr), 4241 args->n_mux_regs); 4242 4243 if (IS_ERR(regs)) { 4244 drm_dbg(&perf->i915->drm, 4245 "Failed to create OA config for mux_regs\n"); 4246 err = PTR_ERR(regs); 4247 goto reg_err; 4248 } 4249 oa_config->mux_regs = regs; 4250 4251 oa_config->b_counter_regs_len = args->n_boolean_regs; 4252 regs = alloc_oa_regs(perf, 4253 perf->ops.is_valid_b_counter_reg, 4254 u64_to_user_ptr(args->boolean_regs_ptr), 4255 args->n_boolean_regs); 4256 4257 if (IS_ERR(regs)) { 4258 drm_dbg(&perf->i915->drm, 4259 "Failed to create OA config for b_counter_regs\n"); 4260 err = PTR_ERR(regs); 4261 goto reg_err; 4262 } 4263 oa_config->b_counter_regs = regs; 4264 4265 if (GRAPHICS_VER(perf->i915) < 8) { 4266 if (args->n_flex_regs != 0) { 4267 err = -EINVAL; 4268 goto reg_err; 4269 } 4270 } else { 4271 oa_config->flex_regs_len = args->n_flex_regs; 4272 regs = alloc_oa_regs(perf, 4273 perf->ops.is_valid_flex_reg, 4274 u64_to_user_ptr(args->flex_regs_ptr), 4275 args->n_flex_regs); 4276 4277 if (IS_ERR(regs)) { 4278 drm_dbg(&perf->i915->drm, 4279 "Failed to create OA config for flex_regs\n"); 4280 err = PTR_ERR(regs); 4281 goto reg_err; 4282 } 4283 oa_config->flex_regs = regs; 4284 } 4285 4286 err = mutex_lock_interruptible(&perf->metrics_lock); 4287 if (err) 4288 goto reg_err; 4289 4290 /* We shouldn't have too many configs, so this iteration shouldn't be 4291 * too costly. 4292 */ 4293 idr_for_each_entry(&perf->metrics_idr, tmp, id) { 4294 if (!strcmp(tmp->uuid, oa_config->uuid)) { 4295 drm_dbg(&perf->i915->drm, 4296 "OA config already exists with this uuid\n"); 4297 err = -EADDRINUSE; 4298 goto sysfs_err; 4299 } 4300 } 4301 4302 err = create_dynamic_oa_sysfs_entry(perf, oa_config); 4303 if (err) { 4304 drm_dbg(&perf->i915->drm, 4305 "Failed to create sysfs entry for OA config\n"); 4306 goto sysfs_err; 4307 } 4308 4309 /* Config id 0 is invalid, id 1 for kernel stored test config. */ 4310 oa_config->id = idr_alloc(&perf->metrics_idr, 4311 oa_config, 2, 4312 0, GFP_KERNEL); 4313 if (oa_config->id < 0) { 4314 drm_dbg(&perf->i915->drm, 4315 "Failed to create sysfs entry for OA config\n"); 4316 err = oa_config->id; 4317 goto sysfs_err; 4318 } 4319 id = oa_config->id; 4320 4321 drm_dbg(&perf->i915->drm, 4322 "Added config %s id=%i\n", oa_config->uuid, oa_config->id); 4323 mutex_unlock(&perf->metrics_lock); 4324 4325 return id; 4326 4327 sysfs_err: 4328 mutex_unlock(&perf->metrics_lock); 4329 reg_err: 4330 i915_oa_config_put(oa_config); 4331 drm_dbg(&perf->i915->drm, 4332 "Failed to add new OA config\n"); 4333 return err; 4334 #endif 4335 } 4336 4337 /** 4338 * i915_perf_remove_config_ioctl - DRM ioctl() for userspace to remove an OA config 4339 * @dev: drm device 4340 * @data: ioctl data (pointer to u64 integer) copied from userspace 4341 * @file: drm file 4342 * 4343 * Configs can be removed while being used, the will stop appearing in sysfs 4344 * and their content will be freed when the stream using the config is closed. 4345 * 4346 * Returns: 0 on success or a negative error code on failure. 4347 */ 4348 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data, 4349 struct drm_file *file) 4350 { 4351 struct i915_perf *perf = &to_i915(dev)->perf; 4352 u64 *arg = data; 4353 struct i915_oa_config *oa_config; 4354 int ret; 4355 4356 if (!perf->i915) { 4357 drm_dbg(&perf->i915->drm, 4358 "i915 perf interface not available for this system\n"); 4359 return -ENOTSUPP; 4360 } 4361 4362 if (i915_perf_stream_paranoid && !perfmon_capable()) { 4363 drm_dbg(&perf->i915->drm, 4364 "Insufficient privileges to remove i915 OA config\n"); 4365 return -EACCES; 4366 } 4367 4368 ret = mutex_lock_interruptible(&perf->metrics_lock); 4369 if (ret) 4370 return ret; 4371 4372 oa_config = idr_find(&perf->metrics_idr, *arg); 4373 if (!oa_config) { 4374 drm_dbg(&perf->i915->drm, 4375 "Failed to remove unknown OA config\n"); 4376 ret = -ENOENT; 4377 goto err_unlock; 4378 } 4379 4380 GEM_BUG_ON(*arg != oa_config->id); 4381 4382 sysfs_remove_group(perf->metrics_kobj, &oa_config->sysfs_metric); 4383 4384 idr_remove(&perf->metrics_idr, *arg); 4385 4386 mutex_unlock(&perf->metrics_lock); 4387 4388 drm_dbg(&perf->i915->drm, 4389 "Removed config %s id=%i\n", oa_config->uuid, oa_config->id); 4390 4391 i915_oa_config_put(oa_config); 4392 4393 return 0; 4394 4395 err_unlock: 4396 mutex_unlock(&perf->metrics_lock); 4397 return ret; 4398 } 4399 4400 #ifdef notyet 4401 static struct ctl_table oa_table[] = { 4402 { 4403 .procname = "perf_stream_paranoid", 4404 .data = &i915_perf_stream_paranoid, 4405 .maxlen = sizeof(i915_perf_stream_paranoid), 4406 .mode = 0644, 4407 .proc_handler = proc_dointvec_minmax, 4408 .extra1 = SYSCTL_ZERO, 4409 .extra2 = SYSCTL_ONE, 4410 }, 4411 { 4412 .procname = "oa_max_sample_rate", 4413 .data = &i915_oa_max_sample_rate, 4414 .maxlen = sizeof(i915_oa_max_sample_rate), 4415 .mode = 0644, 4416 .proc_handler = proc_dointvec_minmax, 4417 .extra1 = SYSCTL_ZERO, 4418 .extra2 = &oa_sample_rate_hard_limit, 4419 }, 4420 {} 4421 }; 4422 #endif 4423 4424 static void oa_init_supported_formats(struct i915_perf *perf) 4425 { 4426 struct drm_i915_private *i915 = perf->i915; 4427 enum intel_platform platform = INTEL_INFO(i915)->platform; 4428 4429 switch (platform) { 4430 case INTEL_HASWELL: 4431 oa_format_add(perf, I915_OA_FORMAT_A13); 4432 oa_format_add(perf, I915_OA_FORMAT_A13); 4433 oa_format_add(perf, I915_OA_FORMAT_A29); 4434 oa_format_add(perf, I915_OA_FORMAT_A13_B8_C8); 4435 oa_format_add(perf, I915_OA_FORMAT_B4_C8); 4436 oa_format_add(perf, I915_OA_FORMAT_A45_B8_C8); 4437 oa_format_add(perf, I915_OA_FORMAT_B4_C8_A16); 4438 oa_format_add(perf, I915_OA_FORMAT_C4_B8); 4439 break; 4440 4441 case INTEL_BROADWELL: 4442 case INTEL_CHERRYVIEW: 4443 case INTEL_SKYLAKE: 4444 case INTEL_BROXTON: 4445 case INTEL_KABYLAKE: 4446 case INTEL_GEMINILAKE: 4447 case INTEL_COFFEELAKE: 4448 case INTEL_COMETLAKE: 4449 case INTEL_ICELAKE: 4450 case INTEL_ELKHARTLAKE: 4451 case INTEL_JASPERLAKE: 4452 case INTEL_TIGERLAKE: 4453 case INTEL_ROCKETLAKE: 4454 case INTEL_DG1: 4455 case INTEL_ALDERLAKE_S: 4456 case INTEL_ALDERLAKE_P: 4457 oa_format_add(perf, I915_OA_FORMAT_A12); 4458 oa_format_add(perf, I915_OA_FORMAT_A12_B8_C8); 4459 oa_format_add(perf, I915_OA_FORMAT_A32u40_A4u32_B8_C8); 4460 oa_format_add(perf, I915_OA_FORMAT_C4_B8); 4461 break; 4462 4463 default: 4464 MISSING_CASE(platform); 4465 } 4466 } 4467 4468 /** 4469 * i915_perf_init - initialize i915-perf state on module bind 4470 * @i915: i915 device instance 4471 * 4472 * Initializes i915-perf state without exposing anything to userspace. 4473 * 4474 * Note: i915-perf initialization is split into an 'init' and 'register' 4475 * phase with the i915_perf_register() exposing state to userspace. 4476 */ 4477 void i915_perf_init(struct drm_i915_private *i915) 4478 { 4479 struct i915_perf *perf = &i915->perf; 4480 4481 /* XXX const struct i915_perf_ops! */ 4482 4483 /* i915_perf is not enabled for DG2 yet */ 4484 if (IS_DG2(i915)) 4485 return; 4486 4487 perf->oa_formats = oa_formats; 4488 if (IS_HASWELL(i915)) { 4489 perf->ops.is_valid_b_counter_reg = gen7_is_valid_b_counter_addr; 4490 perf->ops.is_valid_mux_reg = hsw_is_valid_mux_addr; 4491 perf->ops.is_valid_flex_reg = NULL; 4492 perf->ops.enable_metric_set = hsw_enable_metric_set; 4493 perf->ops.disable_metric_set = hsw_disable_metric_set; 4494 perf->ops.oa_enable = gen7_oa_enable; 4495 perf->ops.oa_disable = gen7_oa_disable; 4496 perf->ops.read = gen7_oa_read; 4497 perf->ops.oa_hw_tail_read = gen7_oa_hw_tail_read; 4498 } else if (HAS_LOGICAL_RING_CONTEXTS(i915)) { 4499 /* Note: that although we could theoretically also support the 4500 * legacy ringbuffer mode on BDW (and earlier iterations of 4501 * this driver, before upstreaming did this) it didn't seem 4502 * worth the complexity to maintain now that BDW+ enable 4503 * execlist mode by default. 4504 */ 4505 perf->ops.read = gen8_oa_read; 4506 4507 if (IS_GRAPHICS_VER(i915, 8, 9)) { 4508 perf->ops.is_valid_b_counter_reg = 4509 gen7_is_valid_b_counter_addr; 4510 perf->ops.is_valid_mux_reg = 4511 gen8_is_valid_mux_addr; 4512 perf->ops.is_valid_flex_reg = 4513 gen8_is_valid_flex_addr; 4514 4515 if (IS_CHERRYVIEW(i915)) { 4516 perf->ops.is_valid_mux_reg = 4517 chv_is_valid_mux_addr; 4518 } 4519 4520 perf->ops.oa_enable = gen8_oa_enable; 4521 perf->ops.oa_disable = gen8_oa_disable; 4522 perf->ops.enable_metric_set = gen8_enable_metric_set; 4523 perf->ops.disable_metric_set = gen8_disable_metric_set; 4524 perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read; 4525 4526 if (GRAPHICS_VER(i915) == 8) { 4527 perf->ctx_oactxctrl_offset = 0x120; 4528 perf->ctx_flexeu0_offset = 0x2ce; 4529 4530 perf->gen8_valid_ctx_bit = BIT(25); 4531 } else { 4532 perf->ctx_oactxctrl_offset = 0x128; 4533 perf->ctx_flexeu0_offset = 0x3de; 4534 4535 perf->gen8_valid_ctx_bit = BIT(16); 4536 } 4537 } else if (GRAPHICS_VER(i915) == 11) { 4538 perf->ops.is_valid_b_counter_reg = 4539 gen7_is_valid_b_counter_addr; 4540 perf->ops.is_valid_mux_reg = 4541 gen11_is_valid_mux_addr; 4542 perf->ops.is_valid_flex_reg = 4543 gen8_is_valid_flex_addr; 4544 4545 perf->ops.oa_enable = gen8_oa_enable; 4546 perf->ops.oa_disable = gen8_oa_disable; 4547 perf->ops.enable_metric_set = gen8_enable_metric_set; 4548 perf->ops.disable_metric_set = gen11_disable_metric_set; 4549 perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read; 4550 4551 perf->ctx_oactxctrl_offset = 0x124; 4552 perf->ctx_flexeu0_offset = 0x78e; 4553 4554 perf->gen8_valid_ctx_bit = BIT(16); 4555 } else if (GRAPHICS_VER(i915) == 12) { 4556 perf->ops.is_valid_b_counter_reg = 4557 gen12_is_valid_b_counter_addr; 4558 perf->ops.is_valid_mux_reg = 4559 gen12_is_valid_mux_addr; 4560 perf->ops.is_valid_flex_reg = 4561 gen8_is_valid_flex_addr; 4562 4563 perf->ops.oa_enable = gen12_oa_enable; 4564 perf->ops.oa_disable = gen12_oa_disable; 4565 perf->ops.enable_metric_set = gen12_enable_metric_set; 4566 perf->ops.disable_metric_set = gen12_disable_metric_set; 4567 perf->ops.oa_hw_tail_read = gen12_oa_hw_tail_read; 4568 4569 perf->ctx_flexeu0_offset = 0; 4570 perf->ctx_oactxctrl_offset = 0x144; 4571 } 4572 } 4573 4574 if (perf->ops.enable_metric_set) { 4575 rw_init(&perf->lock, "perflk"); 4576 4577 /* Choose a representative limit */ 4578 oa_sample_rate_hard_limit = to_gt(i915)->clock_frequency / 2; 4579 4580 rw_init(&perf->metrics_lock, "metricslk"); 4581 idr_init_base(&perf->metrics_idr, 1); 4582 4583 /* We set up some ratelimit state to potentially throttle any 4584 * _NOTES about spurious, invalid OA reports which we don't 4585 * forward to userspace. 4586 * 4587 * We print a _NOTE about any throttling when closing the 4588 * stream instead of waiting until driver _fini which no one 4589 * would ever see. 4590 * 4591 * Using the same limiting factors as printk_ratelimit() 4592 */ 4593 ratelimit_state_init(&perf->spurious_report_rs, 5 * HZ, 10); 4594 /* Since we use a DRM_NOTE for spurious reports it would be 4595 * inconsistent to let __ratelimit() automatically print a 4596 * warning for throttling. 4597 */ 4598 ratelimit_set_flags(&perf->spurious_report_rs, 4599 RATELIMIT_MSG_ON_RELEASE); 4600 4601 ratelimit_state_init(&perf->tail_pointer_race, 4602 5 * HZ, 10); 4603 ratelimit_set_flags(&perf->tail_pointer_race, 4604 RATELIMIT_MSG_ON_RELEASE); 4605 4606 atomic64_set(&perf->noa_programming_delay, 4607 500 * 1000 /* 500us */); 4608 4609 perf->i915 = i915; 4610 4611 oa_init_supported_formats(perf); 4612 } 4613 } 4614 4615 static int destroy_config(int id, void *p, void *data) 4616 { 4617 i915_oa_config_put(p); 4618 return 0; 4619 } 4620 4621 int i915_perf_sysctl_register(void) 4622 { 4623 #ifdef notyet 4624 sysctl_header = register_sysctl("dev/i915", oa_table); 4625 #endif 4626 return 0; 4627 } 4628 4629 void i915_perf_sysctl_unregister(void) 4630 { 4631 #ifdef notyet 4632 unregister_sysctl_table(sysctl_header); 4633 #endif 4634 } 4635 4636 /** 4637 * i915_perf_fini - Counter part to i915_perf_init() 4638 * @i915: i915 device instance 4639 */ 4640 void i915_perf_fini(struct drm_i915_private *i915) 4641 { 4642 struct i915_perf *perf = &i915->perf; 4643 4644 if (!perf->i915) 4645 return; 4646 4647 idr_for_each(&perf->metrics_idr, destroy_config, perf); 4648 idr_destroy(&perf->metrics_idr); 4649 4650 memset(&perf->ops, 0, sizeof(perf->ops)); 4651 perf->i915 = NULL; 4652 } 4653 4654 /** 4655 * i915_perf_ioctl_version - Version of the i915-perf subsystem 4656 * 4657 * This version number is used by userspace to detect available features. 4658 */ 4659 int i915_perf_ioctl_version(void) 4660 { 4661 /* 4662 * 1: Initial version 4663 * I915_PERF_IOCTL_ENABLE 4664 * I915_PERF_IOCTL_DISABLE 4665 * 4666 * 2: Added runtime modification of OA config. 4667 * I915_PERF_IOCTL_CONFIG 4668 * 4669 * 3: Add DRM_I915_PERF_PROP_HOLD_PREEMPTION parameter to hold 4670 * preemption on a particular context so that performance data is 4671 * accessible from a delta of MI_RPC reports without looking at the 4672 * OA buffer. 4673 * 4674 * 4: Add DRM_I915_PERF_PROP_ALLOWED_SSEU to limit what contexts can 4675 * be run for the duration of the performance recording based on 4676 * their SSEU configuration. 4677 * 4678 * 5: Add DRM_I915_PERF_PROP_POLL_OA_PERIOD parameter that controls the 4679 * interval for the hrtimer used to check for OA data. 4680 */ 4681 return 5; 4682 } 4683 4684 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 4685 #include "selftests/i915_perf.c" 4686 #endif 4687