xref: /openbsd-src/sys/dev/pci/drm/i915/i915_irq.c (revision 99fd087599a8791921855f21bd7e36130f39aadc)
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39 
40 /**
41  * DOC: interrupt handling
42  *
43  * These functions provide the basic support for enabling and disabling the
44  * interrupt handling support. There's a lot more functionality in i915_irq.c
45  * and related files, but that will be described in separate chapters.
46  */
47 
48 static const u32 hpd_ilk[HPD_NUM_PINS] = {
49 	[HPD_PORT_A] = DE_DP_A_HOTPLUG,
50 };
51 
52 static const u32 hpd_ivb[HPD_NUM_PINS] = {
53 	[HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
54 };
55 
56 static const u32 hpd_bdw[HPD_NUM_PINS] = {
57 	[HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
58 };
59 
60 static const u32 hpd_ibx[HPD_NUM_PINS] = {
61 	[HPD_CRT] = SDE_CRT_HOTPLUG,
62 	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
63 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG,
64 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG,
65 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG
66 };
67 
68 static const u32 hpd_cpt[HPD_NUM_PINS] = {
69 	[HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
70 	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
71 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
72 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
73 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
74 };
75 
76 static const u32 hpd_spt[HPD_NUM_PINS] = {
77 	[HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
78 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
79 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
80 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
81 	[HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
82 };
83 
84 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
85 	[HPD_CRT] = CRT_HOTPLUG_INT_EN,
86 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
87 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
88 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
89 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
90 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
91 };
92 
93 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
94 	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
95 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
96 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
97 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
98 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
99 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
100 };
101 
102 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
103 	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
104 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
105 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
106 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
107 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
108 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
109 };
110 
111 /* BXT hpd list */
112 static const u32 hpd_bxt[HPD_NUM_PINS] = {
113 	[HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
114 	[HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
115 	[HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
116 };
117 
118 static const u32 hpd_gen11[HPD_NUM_PINS] = {
119 	[HPD_PORT_C] = GEN11_TC1_HOTPLUG | GEN11_TBT1_HOTPLUG,
120 	[HPD_PORT_D] = GEN11_TC2_HOTPLUG | GEN11_TBT2_HOTPLUG,
121 	[HPD_PORT_E] = GEN11_TC3_HOTPLUG | GEN11_TBT3_HOTPLUG,
122 	[HPD_PORT_F] = GEN11_TC4_HOTPLUG | GEN11_TBT4_HOTPLUG
123 };
124 
125 static const u32 hpd_icp[HPD_NUM_PINS] = {
126 	[HPD_PORT_A] = SDE_DDIA_HOTPLUG_ICP,
127 	[HPD_PORT_B] = SDE_DDIB_HOTPLUG_ICP,
128 	[HPD_PORT_C] = SDE_TC1_HOTPLUG_ICP,
129 	[HPD_PORT_D] = SDE_TC2_HOTPLUG_ICP,
130 	[HPD_PORT_E] = SDE_TC3_HOTPLUG_ICP,
131 	[HPD_PORT_F] = SDE_TC4_HOTPLUG_ICP
132 };
133 
134 /* IIR can theoretically queue up two events. Be paranoid. */
135 #define GEN8_IRQ_RESET_NDX(type, which) do { \
136 	I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
137 	POSTING_READ(GEN8_##type##_IMR(which)); \
138 	I915_WRITE(GEN8_##type##_IER(which), 0); \
139 	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
140 	POSTING_READ(GEN8_##type##_IIR(which)); \
141 	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
142 	POSTING_READ(GEN8_##type##_IIR(which)); \
143 } while (0)
144 
145 #define GEN3_IRQ_RESET(type) do { \
146 	I915_WRITE(type##IMR, 0xffffffff); \
147 	POSTING_READ(type##IMR); \
148 	I915_WRITE(type##IER, 0); \
149 	I915_WRITE(type##IIR, 0xffffffff); \
150 	POSTING_READ(type##IIR); \
151 	I915_WRITE(type##IIR, 0xffffffff); \
152 	POSTING_READ(type##IIR); \
153 } while (0)
154 
155 #define GEN2_IRQ_RESET(type) do { \
156 	I915_WRITE16(type##IMR, 0xffff); \
157 	POSTING_READ16(type##IMR); \
158 	I915_WRITE16(type##IER, 0); \
159 	I915_WRITE16(type##IIR, 0xffff); \
160 	POSTING_READ16(type##IIR); \
161 	I915_WRITE16(type##IIR, 0xffff); \
162 	POSTING_READ16(type##IIR); \
163 } while (0)
164 
165 /*
166  * We should clear IMR at preinstall/uninstall, and just check at postinstall.
167  */
168 static void gen3_assert_iir_is_zero(struct drm_i915_private *dev_priv,
169 				    i915_reg_t reg)
170 {
171 	u32 val = I915_READ(reg);
172 
173 	if (val == 0)
174 		return;
175 
176 	WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
177 	     i915_mmio_reg_offset(reg), val);
178 	I915_WRITE(reg, 0xffffffff);
179 	POSTING_READ(reg);
180 	I915_WRITE(reg, 0xffffffff);
181 	POSTING_READ(reg);
182 }
183 
184 static void gen2_assert_iir_is_zero(struct drm_i915_private *dev_priv,
185 				    i915_reg_t reg)
186 {
187 	u16 val = I915_READ16(reg);
188 
189 	if (val == 0)
190 		return;
191 
192 	WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
193 	     i915_mmio_reg_offset(reg), val);
194 	I915_WRITE16(reg, 0xffff);
195 	POSTING_READ16(reg);
196 	I915_WRITE16(reg, 0xffff);
197 	POSTING_READ16(reg);
198 }
199 
200 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
201 	gen3_assert_iir_is_zero(dev_priv, GEN8_##type##_IIR(which)); \
202 	I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
203 	I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
204 	POSTING_READ(GEN8_##type##_IMR(which)); \
205 } while (0)
206 
207 #define GEN3_IRQ_INIT(type, imr_val, ier_val) do { \
208 	gen3_assert_iir_is_zero(dev_priv, type##IIR); \
209 	I915_WRITE(type##IER, (ier_val)); \
210 	I915_WRITE(type##IMR, (imr_val)); \
211 	POSTING_READ(type##IMR); \
212 } while (0)
213 
214 #define GEN2_IRQ_INIT(type, imr_val, ier_val) do { \
215 	gen2_assert_iir_is_zero(dev_priv, type##IIR); \
216 	I915_WRITE16(type##IER, (ier_val)); \
217 	I915_WRITE16(type##IMR, (imr_val)); \
218 	POSTING_READ16(type##IMR); \
219 } while (0)
220 
221 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
222 static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
223 
224 /* For display hotplug interrupt */
225 static inline void
226 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
227 				     uint32_t mask,
228 				     uint32_t bits)
229 {
230 	uint32_t val;
231 
232 	lockdep_assert_held(&dev_priv->irq_lock);
233 	WARN_ON(bits & ~mask);
234 
235 	val = I915_READ(PORT_HOTPLUG_EN);
236 	val &= ~mask;
237 	val |= bits;
238 	I915_WRITE(PORT_HOTPLUG_EN, val);
239 }
240 
241 /**
242  * i915_hotplug_interrupt_update - update hotplug interrupt enable
243  * @dev_priv: driver private
244  * @mask: bits to update
245  * @bits: bits to enable
246  * NOTE: the HPD enable bits are modified both inside and outside
247  * of an interrupt context. To avoid that read-modify-write cycles
248  * interfer, these bits are protected by a spinlock. Since this
249  * function is usually not called from a context where the lock is
250  * held already, this function acquires the lock itself. A non-locking
251  * version is also available.
252  */
253 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
254 				   uint32_t mask,
255 				   uint32_t bits)
256 {
257 	spin_lock_irq(&dev_priv->irq_lock);
258 	i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
259 	spin_unlock_irq(&dev_priv->irq_lock);
260 }
261 
262 static u32
263 gen11_gt_engine_identity(struct drm_i915_private * const i915,
264 			 const unsigned int bank, const unsigned int bit);
265 
266 static bool gen11_reset_one_iir(struct drm_i915_private * const i915,
267 				const unsigned int bank,
268 				const unsigned int bit)
269 {
270 	void __iomem * const regs = i915->regs;
271 	u32 dw;
272 
273 	lockdep_assert_held(&i915->irq_lock);
274 
275 	dw = raw_reg_read(regs, GEN11_GT_INTR_DW(bank));
276 	if (dw & BIT(bit)) {
277 		/*
278 		 * According to the BSpec, DW_IIR bits cannot be cleared without
279 		 * first servicing the Selector & Shared IIR registers.
280 		 */
281 		gen11_gt_engine_identity(i915, bank, bit);
282 
283 		/*
284 		 * We locked GT INT DW by reading it. If we want to (try
285 		 * to) recover from this succesfully, we need to clear
286 		 * our bit, otherwise we are locking the register for
287 		 * everybody.
288 		 */
289 		raw_reg_write(regs, GEN11_GT_INTR_DW(bank), BIT(bit));
290 
291 		return true;
292 	}
293 
294 	return false;
295 }
296 
297 /**
298  * ilk_update_display_irq - update DEIMR
299  * @dev_priv: driver private
300  * @interrupt_mask: mask of interrupt bits to update
301  * @enabled_irq_mask: mask of interrupt bits to enable
302  */
303 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
304 			    uint32_t interrupt_mask,
305 			    uint32_t enabled_irq_mask)
306 {
307 	uint32_t new_val;
308 
309 	lockdep_assert_held(&dev_priv->irq_lock);
310 
311 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
312 
313 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
314 		return;
315 
316 	new_val = dev_priv->irq_mask;
317 	new_val &= ~interrupt_mask;
318 	new_val |= (~enabled_irq_mask & interrupt_mask);
319 
320 	if (new_val != dev_priv->irq_mask) {
321 		dev_priv->irq_mask = new_val;
322 		I915_WRITE(DEIMR, dev_priv->irq_mask);
323 		POSTING_READ(DEIMR);
324 	}
325 }
326 
327 /**
328  * ilk_update_gt_irq - update GTIMR
329  * @dev_priv: driver private
330  * @interrupt_mask: mask of interrupt bits to update
331  * @enabled_irq_mask: mask of interrupt bits to enable
332  */
333 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
334 			      uint32_t interrupt_mask,
335 			      uint32_t enabled_irq_mask)
336 {
337 	lockdep_assert_held(&dev_priv->irq_lock);
338 
339 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
340 
341 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
342 		return;
343 
344 	dev_priv->gt_irq_mask &= ~interrupt_mask;
345 	dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
346 	I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
347 }
348 
349 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
350 {
351 	ilk_update_gt_irq(dev_priv, mask, mask);
352 	POSTING_READ_FW(GTIMR);
353 }
354 
355 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
356 {
357 	ilk_update_gt_irq(dev_priv, mask, 0);
358 }
359 
360 static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv)
361 {
362 	WARN_ON_ONCE(INTEL_GEN(dev_priv) >= 11);
363 
364 	return INTEL_GEN(dev_priv) >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
365 }
366 
367 static i915_reg_t gen6_pm_imr(struct drm_i915_private *dev_priv)
368 {
369 	if (INTEL_GEN(dev_priv) >= 11)
370 		return GEN11_GPM_WGBOXPERF_INTR_MASK;
371 	else if (INTEL_GEN(dev_priv) >= 8)
372 		return GEN8_GT_IMR(2);
373 	else
374 		return GEN6_PMIMR;
375 }
376 
377 static i915_reg_t gen6_pm_ier(struct drm_i915_private *dev_priv)
378 {
379 	if (INTEL_GEN(dev_priv) >= 11)
380 		return GEN11_GPM_WGBOXPERF_INTR_ENABLE;
381 	else if (INTEL_GEN(dev_priv) >= 8)
382 		return GEN8_GT_IER(2);
383 	else
384 		return GEN6_PMIER;
385 }
386 
387 /**
388  * snb_update_pm_irq - update GEN6_PMIMR
389  * @dev_priv: driver private
390  * @interrupt_mask: mask of interrupt bits to update
391  * @enabled_irq_mask: mask of interrupt bits to enable
392  */
393 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
394 			      uint32_t interrupt_mask,
395 			      uint32_t enabled_irq_mask)
396 {
397 	uint32_t new_val;
398 
399 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
400 
401 	lockdep_assert_held(&dev_priv->irq_lock);
402 
403 	new_val = dev_priv->pm_imr;
404 	new_val &= ~interrupt_mask;
405 	new_val |= (~enabled_irq_mask & interrupt_mask);
406 
407 	if (new_val != dev_priv->pm_imr) {
408 		dev_priv->pm_imr = new_val;
409 		I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_imr);
410 		POSTING_READ(gen6_pm_imr(dev_priv));
411 	}
412 }
413 
414 void gen6_unmask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
415 {
416 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
417 		return;
418 
419 	snb_update_pm_irq(dev_priv, mask, mask);
420 }
421 
422 static void __gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
423 {
424 	snb_update_pm_irq(dev_priv, mask, 0);
425 }
426 
427 void gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
428 {
429 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
430 		return;
431 
432 	__gen6_mask_pm_irq(dev_priv, mask);
433 }
434 
435 static void gen6_reset_pm_iir(struct drm_i915_private *dev_priv, u32 reset_mask)
436 {
437 	i915_reg_t reg = gen6_pm_iir(dev_priv);
438 
439 	lockdep_assert_held(&dev_priv->irq_lock);
440 
441 	I915_WRITE(reg, reset_mask);
442 	I915_WRITE(reg, reset_mask);
443 	POSTING_READ(reg);
444 }
445 
446 static void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, u32 enable_mask)
447 {
448 	lockdep_assert_held(&dev_priv->irq_lock);
449 
450 	dev_priv->pm_ier |= enable_mask;
451 	I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier);
452 	gen6_unmask_pm_irq(dev_priv, enable_mask);
453 	/* unmask_pm_irq provides an implicit barrier (POSTING_READ) */
454 }
455 
456 static void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, u32 disable_mask)
457 {
458 	lockdep_assert_held(&dev_priv->irq_lock);
459 
460 	dev_priv->pm_ier &= ~disable_mask;
461 	__gen6_mask_pm_irq(dev_priv, disable_mask);
462 	I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier);
463 	/* though a barrier is missing here, but don't really need a one */
464 }
465 
466 void gen11_reset_rps_interrupts(struct drm_i915_private *dev_priv)
467 {
468 	spin_lock_irq(&dev_priv->irq_lock);
469 
470 	while (gen11_reset_one_iir(dev_priv, 0, GEN11_GTPM))
471 		;
472 
473 	dev_priv->gt_pm.rps.pm_iir = 0;
474 
475 	spin_unlock_irq(&dev_priv->irq_lock);
476 }
477 
478 void gen6_reset_rps_interrupts(struct drm_i915_private *dev_priv)
479 {
480 	spin_lock_irq(&dev_priv->irq_lock);
481 	gen6_reset_pm_iir(dev_priv, dev_priv->pm_rps_events);
482 	dev_priv->gt_pm.rps.pm_iir = 0;
483 	spin_unlock_irq(&dev_priv->irq_lock);
484 }
485 
486 void gen6_enable_rps_interrupts(struct drm_i915_private *dev_priv)
487 {
488 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
489 
490 	if (READ_ONCE(rps->interrupts_enabled))
491 		return;
492 
493 	spin_lock_irq(&dev_priv->irq_lock);
494 	WARN_ON_ONCE(rps->pm_iir);
495 
496 	if (INTEL_GEN(dev_priv) >= 11)
497 		WARN_ON_ONCE(gen11_reset_one_iir(dev_priv, 0, GEN11_GTPM));
498 	else
499 		WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
500 
501 	rps->interrupts_enabled = true;
502 	gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
503 
504 	spin_unlock_irq(&dev_priv->irq_lock);
505 }
506 
507 void gen6_disable_rps_interrupts(struct drm_i915_private *dev_priv)
508 {
509 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
510 
511 	if (!READ_ONCE(rps->interrupts_enabled))
512 		return;
513 
514 	spin_lock_irq(&dev_priv->irq_lock);
515 	rps->interrupts_enabled = false;
516 
517 	I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0u));
518 
519 	gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
520 
521 	spin_unlock_irq(&dev_priv->irq_lock);
522 	synchronize_irq(dev_priv->drm.irq);
523 
524 	/* Now that we will not be generating any more work, flush any
525 	 * outstanding tasks. As we are called on the RPS idle path,
526 	 * we will reset the GPU to minimum frequencies, so the current
527 	 * state of the worker can be discarded.
528 	 */
529 	cancel_work_sync(&rps->work);
530 	if (INTEL_GEN(dev_priv) >= 11)
531 		gen11_reset_rps_interrupts(dev_priv);
532 	else
533 		gen6_reset_rps_interrupts(dev_priv);
534 }
535 
536 void gen9_reset_guc_interrupts(struct drm_i915_private *dev_priv)
537 {
538 	assert_rpm_wakelock_held(dev_priv);
539 
540 	spin_lock_irq(&dev_priv->irq_lock);
541 	gen6_reset_pm_iir(dev_priv, dev_priv->pm_guc_events);
542 	spin_unlock_irq(&dev_priv->irq_lock);
543 }
544 
545 void gen9_enable_guc_interrupts(struct drm_i915_private *dev_priv)
546 {
547 	assert_rpm_wakelock_held(dev_priv);
548 
549 	spin_lock_irq(&dev_priv->irq_lock);
550 	if (!dev_priv->guc.interrupts_enabled) {
551 		WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) &
552 				       dev_priv->pm_guc_events);
553 		dev_priv->guc.interrupts_enabled = true;
554 		gen6_enable_pm_irq(dev_priv, dev_priv->pm_guc_events);
555 	}
556 	spin_unlock_irq(&dev_priv->irq_lock);
557 }
558 
559 void gen9_disable_guc_interrupts(struct drm_i915_private *dev_priv)
560 {
561 	assert_rpm_wakelock_held(dev_priv);
562 
563 	spin_lock_irq(&dev_priv->irq_lock);
564 	dev_priv->guc.interrupts_enabled = false;
565 
566 	gen6_disable_pm_irq(dev_priv, dev_priv->pm_guc_events);
567 
568 	spin_unlock_irq(&dev_priv->irq_lock);
569 	synchronize_irq(dev_priv->drm.irq);
570 
571 	gen9_reset_guc_interrupts(dev_priv);
572 }
573 
574 /**
575  * bdw_update_port_irq - update DE port interrupt
576  * @dev_priv: driver private
577  * @interrupt_mask: mask of interrupt bits to update
578  * @enabled_irq_mask: mask of interrupt bits to enable
579  */
580 static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
581 				uint32_t interrupt_mask,
582 				uint32_t enabled_irq_mask)
583 {
584 	uint32_t new_val;
585 	uint32_t old_val;
586 
587 	lockdep_assert_held(&dev_priv->irq_lock);
588 
589 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
590 
591 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
592 		return;
593 
594 	old_val = I915_READ(GEN8_DE_PORT_IMR);
595 
596 	new_val = old_val;
597 	new_val &= ~interrupt_mask;
598 	new_val |= (~enabled_irq_mask & interrupt_mask);
599 
600 	if (new_val != old_val) {
601 		I915_WRITE(GEN8_DE_PORT_IMR, new_val);
602 		POSTING_READ(GEN8_DE_PORT_IMR);
603 	}
604 }
605 
606 /**
607  * bdw_update_pipe_irq - update DE pipe interrupt
608  * @dev_priv: driver private
609  * @pipe: pipe whose interrupt to update
610  * @interrupt_mask: mask of interrupt bits to update
611  * @enabled_irq_mask: mask of interrupt bits to enable
612  */
613 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
614 			 enum pipe pipe,
615 			 uint32_t interrupt_mask,
616 			 uint32_t enabled_irq_mask)
617 {
618 	uint32_t new_val;
619 
620 	lockdep_assert_held(&dev_priv->irq_lock);
621 
622 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
623 
624 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
625 		return;
626 
627 	new_val = dev_priv->de_irq_mask[pipe];
628 	new_val &= ~interrupt_mask;
629 	new_val |= (~enabled_irq_mask & interrupt_mask);
630 
631 	if (new_val != dev_priv->de_irq_mask[pipe]) {
632 		dev_priv->de_irq_mask[pipe] = new_val;
633 		I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
634 		POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
635 	}
636 }
637 
638 /**
639  * ibx_display_interrupt_update - update SDEIMR
640  * @dev_priv: driver private
641  * @interrupt_mask: mask of interrupt bits to update
642  * @enabled_irq_mask: mask of interrupt bits to enable
643  */
644 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
645 				  uint32_t interrupt_mask,
646 				  uint32_t enabled_irq_mask)
647 {
648 	uint32_t sdeimr = I915_READ(SDEIMR);
649 	sdeimr &= ~interrupt_mask;
650 	sdeimr |= (~enabled_irq_mask & interrupt_mask);
651 
652 	WARN_ON(enabled_irq_mask & ~interrupt_mask);
653 
654 	lockdep_assert_held(&dev_priv->irq_lock);
655 
656 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
657 		return;
658 
659 	I915_WRITE(SDEIMR, sdeimr);
660 	POSTING_READ(SDEIMR);
661 }
662 
663 u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv,
664 			      enum pipe pipe)
665 {
666 	u32 status_mask = dev_priv->pipestat_irq_mask[pipe];
667 	u32 enable_mask = status_mask << 16;
668 
669 	lockdep_assert_held(&dev_priv->irq_lock);
670 
671 	if (INTEL_GEN(dev_priv) < 5)
672 		goto out;
673 
674 	/*
675 	 * On pipe A we don't support the PSR interrupt yet,
676 	 * on pipe B and C the same bit MBZ.
677 	 */
678 	if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
679 		return 0;
680 	/*
681 	 * On pipe B and C we don't support the PSR interrupt yet, on pipe
682 	 * A the same bit is for perf counters which we don't use either.
683 	 */
684 	if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
685 		return 0;
686 
687 	enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
688 			 SPRITE0_FLIP_DONE_INT_EN_VLV |
689 			 SPRITE1_FLIP_DONE_INT_EN_VLV);
690 	if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
691 		enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
692 	if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
693 		enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
694 
695 out:
696 	WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
697 		  status_mask & ~PIPESTAT_INT_STATUS_MASK,
698 		  "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
699 		  pipe_name(pipe), enable_mask, status_mask);
700 
701 	return enable_mask;
702 }
703 
704 void i915_enable_pipestat(struct drm_i915_private *dev_priv,
705 			  enum pipe pipe, u32 status_mask)
706 {
707 	i915_reg_t reg = PIPESTAT(pipe);
708 	u32 enable_mask;
709 
710 	WARN_ONCE(status_mask & ~PIPESTAT_INT_STATUS_MASK,
711 		  "pipe %c: status_mask=0x%x\n",
712 		  pipe_name(pipe), status_mask);
713 
714 	lockdep_assert_held(&dev_priv->irq_lock);
715 	WARN_ON(!intel_irqs_enabled(dev_priv));
716 
717 	if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == status_mask)
718 		return;
719 
720 	dev_priv->pipestat_irq_mask[pipe] |= status_mask;
721 	enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
722 
723 	I915_WRITE(reg, enable_mask | status_mask);
724 	POSTING_READ(reg);
725 }
726 
727 void i915_disable_pipestat(struct drm_i915_private *dev_priv,
728 			   enum pipe pipe, u32 status_mask)
729 {
730 	i915_reg_t reg = PIPESTAT(pipe);
731 	u32 enable_mask;
732 
733 	WARN_ONCE(status_mask & ~PIPESTAT_INT_STATUS_MASK,
734 		  "pipe %c: status_mask=0x%x\n",
735 		  pipe_name(pipe), status_mask);
736 
737 	lockdep_assert_held(&dev_priv->irq_lock);
738 	WARN_ON(!intel_irqs_enabled(dev_priv));
739 
740 	if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == 0)
741 		return;
742 
743 	dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
744 	enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
745 
746 	I915_WRITE(reg, enable_mask | status_mask);
747 	POSTING_READ(reg);
748 }
749 
750 /**
751  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
752  * @dev_priv: i915 device private
753  */
754 static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv)
755 {
756 	if (!dev_priv->opregion.asle || !IS_MOBILE(dev_priv))
757 		return;
758 
759 	spin_lock_irq(&dev_priv->irq_lock);
760 
761 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
762 	if (INTEL_GEN(dev_priv) >= 4)
763 		i915_enable_pipestat(dev_priv, PIPE_A,
764 				     PIPE_LEGACY_BLC_EVENT_STATUS);
765 
766 	spin_unlock_irq(&dev_priv->irq_lock);
767 }
768 
769 /*
770  * This timing diagram depicts the video signal in and
771  * around the vertical blanking period.
772  *
773  * Assumptions about the fictitious mode used in this example:
774  *  vblank_start >= 3
775  *  vsync_start = vblank_start + 1
776  *  vsync_end = vblank_start + 2
777  *  vtotal = vblank_start + 3
778  *
779  *           start of vblank:
780  *           latch double buffered registers
781  *           increment frame counter (ctg+)
782  *           generate start of vblank interrupt (gen4+)
783  *           |
784  *           |          frame start:
785  *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
786  *           |          may be shifted forward 1-3 extra lines via PIPECONF
787  *           |          |
788  *           |          |  start of vsync:
789  *           |          |  generate vsync interrupt
790  *           |          |  |
791  * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
792  *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
793  * ----va---> <-----------------vb--------------------> <--------va-------------
794  *       |          |       <----vs----->                     |
795  * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
796  * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
797  * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
798  *       |          |                                         |
799  *       last visible pixel                                   first visible pixel
800  *                  |                                         increment frame counter (gen3/4)
801  *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
802  *
803  * x  = horizontal active
804  * _  = horizontal blanking
805  * hs = horizontal sync
806  * va = vertical active
807  * vb = vertical blanking
808  * vs = vertical sync
809  * vbs = vblank_start (number)
810  *
811  * Summary:
812  * - most events happen at the start of horizontal sync
813  * - frame start happens at the start of horizontal blank, 1-4 lines
814  *   (depending on PIPECONF settings) after the start of vblank
815  * - gen3/4 pixel and frame counter are synchronized with the start
816  *   of horizontal active on the first line of vertical active
817  */
818 
819 /* Called from drm generic code, passed a 'crtc', which
820  * we use as a pipe index
821  */
822 static u32 i915_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
823 {
824 	struct drm_i915_private *dev_priv = to_i915(dev);
825 	i915_reg_t high_frame, low_frame;
826 	u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
827 	const struct drm_display_mode *mode = &dev->vblank[pipe].hwmode;
828 	unsigned long irqflags;
829 
830 	htotal = mode->crtc_htotal;
831 	hsync_start = mode->crtc_hsync_start;
832 	vbl_start = mode->crtc_vblank_start;
833 	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
834 		vbl_start = DIV_ROUND_UP(vbl_start, 2);
835 
836 	/* Convert to pixel count */
837 	vbl_start *= htotal;
838 
839 	/* Start of vblank event occurs at start of hsync */
840 	vbl_start -= htotal - hsync_start;
841 
842 	high_frame = PIPEFRAME(pipe);
843 	low_frame = PIPEFRAMEPIXEL(pipe);
844 
845 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
846 
847 	/*
848 	 * High & low register fields aren't synchronized, so make sure
849 	 * we get a low value that's stable across two reads of the high
850 	 * register.
851 	 */
852 	do {
853 		high1 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
854 		low   = I915_READ_FW(low_frame);
855 		high2 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
856 	} while (high1 != high2);
857 
858 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
859 
860 	high1 >>= PIPE_FRAME_HIGH_SHIFT;
861 	pixel = low & PIPE_PIXEL_MASK;
862 	low >>= PIPE_FRAME_LOW_SHIFT;
863 
864 	/*
865 	 * The frame counter increments at beginning of active.
866 	 * Cook up a vblank counter by also checking the pixel
867 	 * counter against vblank start.
868 	 */
869 	return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
870 }
871 
872 static u32 g4x_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
873 {
874 	struct drm_i915_private *dev_priv = to_i915(dev);
875 
876 	return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
877 }
878 
879 /*
880  * On certain encoders on certain platforms, pipe
881  * scanline register will not work to get the scanline,
882  * since the timings are driven from the PORT or issues
883  * with scanline register updates.
884  * This function will use Framestamp and current
885  * timestamp registers to calculate the scanline.
886  */
887 static u32 __intel_get_crtc_scanline_from_timestamp(struct intel_crtc *crtc)
888 {
889 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
890 	struct drm_vblank_crtc *vblank =
891 		&crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
892 	const struct drm_display_mode *mode = &vblank->hwmode;
893 	u32 vblank_start = mode->crtc_vblank_start;
894 	u32 vtotal = mode->crtc_vtotal;
895 	u32 htotal = mode->crtc_htotal;
896 	u32 clock = mode->crtc_clock;
897 	u32 scanline, scan_prev_time, scan_curr_time, scan_post_time;
898 
899 	/*
900 	 * To avoid the race condition where we might cross into the
901 	 * next vblank just between the PIPE_FRMTMSTMP and TIMESTAMP_CTR
902 	 * reads. We make sure we read PIPE_FRMTMSTMP and TIMESTAMP_CTR
903 	 * during the same frame.
904 	 */
905 	do {
906 		/*
907 		 * This field provides read back of the display
908 		 * pipe frame time stamp. The time stamp value
909 		 * is sampled at every start of vertical blank.
910 		 */
911 		scan_prev_time = I915_READ_FW(PIPE_FRMTMSTMP(crtc->pipe));
912 
913 		/*
914 		 * The TIMESTAMP_CTR register has the current
915 		 * time stamp value.
916 		 */
917 		scan_curr_time = I915_READ_FW(IVB_TIMESTAMP_CTR);
918 
919 		scan_post_time = I915_READ_FW(PIPE_FRMTMSTMP(crtc->pipe));
920 	} while (scan_post_time != scan_prev_time);
921 
922 	scanline = div_u64(mul_u32_u32(scan_curr_time - scan_prev_time,
923 					clock), 1000 * htotal);
924 	scanline = min(scanline, vtotal - 1);
925 	scanline = (scanline + vblank_start) % vtotal;
926 
927 	return scanline;
928 }
929 
930 /* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */
931 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
932 {
933 	struct drm_device *dev = crtc->base.dev;
934 	struct drm_i915_private *dev_priv = to_i915(dev);
935 	const struct drm_display_mode *mode;
936 	struct drm_vblank_crtc *vblank;
937 	enum pipe pipe = crtc->pipe;
938 	int position, vtotal;
939 
940 	if (!crtc->active)
941 		return -1;
942 
943 	vblank = &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
944 	mode = &vblank->hwmode;
945 
946 	if (mode->private_flags & I915_MODE_FLAG_GET_SCANLINE_FROM_TIMESTAMP)
947 		return __intel_get_crtc_scanline_from_timestamp(crtc);
948 
949 	vtotal = mode->crtc_vtotal;
950 	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
951 		vtotal /= 2;
952 
953 	if (IS_GEN2(dev_priv))
954 		position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
955 	else
956 		position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
957 
958 	/*
959 	 * On HSW, the DSL reg (0x70000) appears to return 0 if we
960 	 * read it just before the start of vblank.  So try it again
961 	 * so we don't accidentally end up spanning a vblank frame
962 	 * increment, causing the pipe_update_end() code to squak at us.
963 	 *
964 	 * The nature of this problem means we can't simply check the ISR
965 	 * bit and return the vblank start value; nor can we use the scanline
966 	 * debug register in the transcoder as it appears to have the same
967 	 * problem.  We may need to extend this to include other platforms,
968 	 * but so far testing only shows the problem on HSW.
969 	 */
970 	if (HAS_DDI(dev_priv) && !position) {
971 		int i, temp;
972 
973 		for (i = 0; i < 100; i++) {
974 			udelay(1);
975 			temp = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
976 			if (temp != position) {
977 				position = temp;
978 				break;
979 			}
980 		}
981 	}
982 
983 	/*
984 	 * See update_scanline_offset() for the details on the
985 	 * scanline_offset adjustment.
986 	 */
987 	return (position + crtc->scanline_offset) % vtotal;
988 }
989 
990 static bool i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
991 				     bool in_vblank_irq, int *vpos, int *hpos,
992 				     ktime_t *stime, ktime_t *etime,
993 				     const struct drm_display_mode *mode)
994 {
995 	struct drm_i915_private *dev_priv = to_i915(dev);
996 	struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv,
997 								pipe);
998 	int position;
999 	int vbl_start, vbl_end, hsync_start, htotal, vtotal;
1000 	unsigned long irqflags;
1001 
1002 	if (WARN_ON(!mode->crtc_clock)) {
1003 		DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
1004 				 "pipe %c\n", pipe_name(pipe));
1005 		return false;
1006 	}
1007 
1008 	htotal = mode->crtc_htotal;
1009 	hsync_start = mode->crtc_hsync_start;
1010 	vtotal = mode->crtc_vtotal;
1011 	vbl_start = mode->crtc_vblank_start;
1012 	vbl_end = mode->crtc_vblank_end;
1013 
1014 	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
1015 		vbl_start = DIV_ROUND_UP(vbl_start, 2);
1016 		vbl_end /= 2;
1017 		vtotal /= 2;
1018 	}
1019 
1020 	/*
1021 	 * Lock uncore.lock, as we will do multiple timing critical raw
1022 	 * register reads, potentially with preemption disabled, so the
1023 	 * following code must not block on uncore.lock.
1024 	 */
1025 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
1026 
1027 	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
1028 
1029 	/* Get optional system timestamp before query. */
1030 	if (stime)
1031 		*stime = ktime_get();
1032 
1033 	if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
1034 		/* No obvious pixelcount register. Only query vertical
1035 		 * scanout position from Display scan line register.
1036 		 */
1037 		position = __intel_get_crtc_scanline(intel_crtc);
1038 	} else {
1039 		/* Have access to pixelcount since start of frame.
1040 		 * We can split this into vertical and horizontal
1041 		 * scanout position.
1042 		 */
1043 		position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
1044 
1045 		/* convert to pixel counts */
1046 		vbl_start *= htotal;
1047 		vbl_end *= htotal;
1048 		vtotal *= htotal;
1049 
1050 		/*
1051 		 * In interlaced modes, the pixel counter counts all pixels,
1052 		 * so one field will have htotal more pixels. In order to avoid
1053 		 * the reported position from jumping backwards when the pixel
1054 		 * counter is beyond the length of the shorter field, just
1055 		 * clamp the position the length of the shorter field. This
1056 		 * matches how the scanline counter based position works since
1057 		 * the scanline counter doesn't count the two half lines.
1058 		 */
1059 		if (position >= vtotal)
1060 			position = vtotal - 1;
1061 
1062 		/*
1063 		 * Start of vblank interrupt is triggered at start of hsync,
1064 		 * just prior to the first active line of vblank. However we
1065 		 * consider lines to start at the leading edge of horizontal
1066 		 * active. So, should we get here before we've crossed into
1067 		 * the horizontal active of the first line in vblank, we would
1068 		 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
1069 		 * always add htotal-hsync_start to the current pixel position.
1070 		 */
1071 		position = (position + htotal - hsync_start) % vtotal;
1072 	}
1073 
1074 	/* Get optional system timestamp after query. */
1075 	if (etime)
1076 		*etime = ktime_get();
1077 
1078 	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
1079 
1080 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
1081 
1082 	/*
1083 	 * While in vblank, position will be negative
1084 	 * counting up towards 0 at vbl_end. And outside
1085 	 * vblank, position will be positive counting
1086 	 * up since vbl_end.
1087 	 */
1088 	if (position >= vbl_start)
1089 		position -= vbl_end;
1090 	else
1091 		position += vtotal - vbl_end;
1092 
1093 	if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
1094 		*vpos = position;
1095 		*hpos = 0;
1096 	} else {
1097 		*vpos = position / htotal;
1098 		*hpos = position - (*vpos * htotal);
1099 	}
1100 
1101 	return true;
1102 }
1103 
1104 int intel_get_crtc_scanline(struct intel_crtc *crtc)
1105 {
1106 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1107 	unsigned long irqflags;
1108 	int position;
1109 
1110 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
1111 	position = __intel_get_crtc_scanline(crtc);
1112 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
1113 
1114 	return position;
1115 }
1116 
1117 static void ironlake_rps_change_irq_handler(struct drm_i915_private *dev_priv)
1118 {
1119 	u32 busy_up, busy_down, max_avg, min_avg;
1120 	u8 new_delay;
1121 
1122 	spin_lock(&mchdev_lock);
1123 
1124 	I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
1125 
1126 	new_delay = dev_priv->ips.cur_delay;
1127 
1128 	I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
1129 	busy_up = I915_READ(RCPREVBSYTUPAVG);
1130 	busy_down = I915_READ(RCPREVBSYTDNAVG);
1131 	max_avg = I915_READ(RCBMAXAVG);
1132 	min_avg = I915_READ(RCBMINAVG);
1133 
1134 	/* Handle RCS change request from hw */
1135 	if (busy_up > max_avg) {
1136 		if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
1137 			new_delay = dev_priv->ips.cur_delay - 1;
1138 		if (new_delay < dev_priv->ips.max_delay)
1139 			new_delay = dev_priv->ips.max_delay;
1140 	} else if (busy_down < min_avg) {
1141 		if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
1142 			new_delay = dev_priv->ips.cur_delay + 1;
1143 		if (new_delay > dev_priv->ips.min_delay)
1144 			new_delay = dev_priv->ips.min_delay;
1145 	}
1146 
1147 	if (ironlake_set_drps(dev_priv, new_delay))
1148 		dev_priv->ips.cur_delay = new_delay;
1149 
1150 	spin_unlock(&mchdev_lock);
1151 
1152 	return;
1153 }
1154 
1155 static void notify_ring(struct intel_engine_cs *engine)
1156 {
1157 	const u32 seqno = intel_engine_get_seqno(engine);
1158 	struct i915_request *rq = NULL;
1159 #ifdef __linux__
1160 	struct task_struct *tsk = NULL;
1161 #else
1162 	struct proc *tsk = NULL;
1163 #endif
1164 
1165 	struct intel_wait *wait;
1166 
1167 	if (unlikely(!engine->breadcrumbs.irq_armed))
1168 		return;
1169 
1170 	rcu_read_lock();
1171 
1172 	spin_lock(&engine->breadcrumbs.irq_lock);
1173 	wait = engine->breadcrumbs.irq_wait;
1174 	if (wait) {
1175 		/*
1176 		 * We use a callback from the dma-fence to submit
1177 		 * requests after waiting on our own requests. To
1178 		 * ensure minimum delay in queuing the next request to
1179 		 * hardware, signal the fence now rather than wait for
1180 		 * the signaler to be woken up. We still wake up the
1181 		 * waiter in order to handle the irq-seqno coherency
1182 		 * issues (we may receive the interrupt before the
1183 		 * seqno is written, see __i915_request_irq_complete())
1184 		 * and to handle coalescing of multiple seqno updates
1185 		 * and many waiters.
1186 		 */
1187 		if (i915_seqno_passed(seqno, wait->seqno)) {
1188 			struct i915_request *waiter = wait->request;
1189 
1190 			if (waiter &&
1191 			    !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
1192 				      &waiter->fence.flags) &&
1193 			    intel_wait_check_request(wait, waiter))
1194 				rq = i915_request_get(waiter);
1195 
1196 			tsk = wait->tsk;
1197 		} else {
1198 			if (engine->irq_seqno_barrier &&
1199 			    i915_seqno_passed(seqno, wait->seqno - 1)) {
1200 				set_bit(ENGINE_IRQ_BREADCRUMB,
1201 					&engine->irq_posted);
1202 				tsk = wait->tsk;
1203 			}
1204 		}
1205 
1206 		engine->breadcrumbs.irq_count++;
1207 	} else {
1208 		if (engine->breadcrumbs.irq_armed)
1209 			__intel_engine_disarm_breadcrumbs(engine);
1210 	}
1211 	spin_unlock(&engine->breadcrumbs.irq_lock);
1212 
1213 	if (rq) {
1214 		spin_lock(&rq->lock);
1215 		dma_fence_signal_locked(&rq->fence);
1216 		GEM_BUG_ON(!i915_request_completed(rq));
1217 		spin_unlock(&rq->lock);
1218 
1219 		i915_request_put(rq);
1220 	}
1221 
1222 #ifdef __linux__
1223 	if (tsk && tsk->state & TASK_NORMAL)
1224 #else
1225 	if (tsk && tsk->p_stat == SSLEEP)
1226 #endif
1227 		wake_up_process(tsk);
1228 
1229 	rcu_read_unlock();
1230 
1231 	trace_intel_engine_notify(engine, wait);
1232 }
1233 
1234 static void vlv_c0_read(struct drm_i915_private *dev_priv,
1235 			struct intel_rps_ei *ei)
1236 {
1237 	ei->ktime = ktime_get_raw();
1238 	ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
1239 	ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
1240 }
1241 
1242 void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
1243 {
1244 	memset(&dev_priv->gt_pm.rps.ei, 0, sizeof(dev_priv->gt_pm.rps.ei));
1245 }
1246 
1247 static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1248 {
1249 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
1250 	const struct intel_rps_ei *prev = &rps->ei;
1251 	struct intel_rps_ei now;
1252 	u32 events = 0;
1253 
1254 	if ((pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) == 0)
1255 		return 0;
1256 
1257 	vlv_c0_read(dev_priv, &now);
1258 
1259 #ifdef __linux__
1260 	if (prev->ktime) {
1261 #else
1262 	if (ktime_to_ns(prev->ktime)) {
1263 #endif
1264 		u64 time, c0;
1265 		u32 render, media;
1266 
1267 		time = ktime_us_delta(now.ktime, prev->ktime);
1268 
1269 		time *= dev_priv->czclk_freq;
1270 
1271 		/* Workload can be split between render + media,
1272 		 * e.g. SwapBuffers being blitted in X after being rendered in
1273 		 * mesa. To account for this we need to combine both engines
1274 		 * into our activity counter.
1275 		 */
1276 		render = now.render_c0 - prev->render_c0;
1277 		media = now.media_c0 - prev->media_c0;
1278 		c0 = max(render, media);
1279 		c0 *= 1000 * 100 << 8; /* to usecs and scale to threshold% */
1280 
1281 		if (c0 > time * rps->power.up_threshold)
1282 			events = GEN6_PM_RP_UP_THRESHOLD;
1283 		else if (c0 < time * rps->power.down_threshold)
1284 			events = GEN6_PM_RP_DOWN_THRESHOLD;
1285 	}
1286 
1287 	rps->ei = now;
1288 	return events;
1289 }
1290 
1291 static void gen6_pm_rps_work(struct work_struct *work)
1292 {
1293 	struct drm_i915_private *dev_priv =
1294 		container_of(work, struct drm_i915_private, gt_pm.rps.work);
1295 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
1296 	bool client_boost = false;
1297 	int new_delay, adj, min, max;
1298 	u32 pm_iir = 0;
1299 
1300 	spin_lock_irq(&dev_priv->irq_lock);
1301 	if (rps->interrupts_enabled) {
1302 		pm_iir = fetch_and_zero(&rps->pm_iir);
1303 		client_boost = atomic_read(&rps->num_waiters);
1304 	}
1305 	spin_unlock_irq(&dev_priv->irq_lock);
1306 
1307 	/* Make sure we didn't queue anything we're not going to process. */
1308 	WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1309 	if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
1310 		goto out;
1311 
1312 	mutex_lock(&dev_priv->pcu_lock);
1313 
1314 	pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1315 
1316 	adj = rps->last_adj;
1317 	new_delay = rps->cur_freq;
1318 	min = rps->min_freq_softlimit;
1319 	max = rps->max_freq_softlimit;
1320 	if (client_boost)
1321 		max = rps->max_freq;
1322 	if (client_boost && new_delay < rps->boost_freq) {
1323 		new_delay = rps->boost_freq;
1324 		adj = 0;
1325 	} else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1326 		if (adj > 0)
1327 			adj *= 2;
1328 		else /* CHV needs even encode values */
1329 			adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
1330 
1331 		if (new_delay >= rps->max_freq_softlimit)
1332 			adj = 0;
1333 	} else if (client_boost) {
1334 		adj = 0;
1335 	} else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1336 		if (rps->cur_freq > rps->efficient_freq)
1337 			new_delay = rps->efficient_freq;
1338 		else if (rps->cur_freq > rps->min_freq_softlimit)
1339 			new_delay = rps->min_freq_softlimit;
1340 		adj = 0;
1341 	} else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1342 		if (adj < 0)
1343 			adj *= 2;
1344 		else /* CHV needs even encode values */
1345 			adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1346 
1347 		if (new_delay <= rps->min_freq_softlimit)
1348 			adj = 0;
1349 	} else { /* unknown event */
1350 		adj = 0;
1351 	}
1352 
1353 	rps->last_adj = adj;
1354 
1355 	/* sysfs frequency interfaces may have snuck in while servicing the
1356 	 * interrupt
1357 	 */
1358 	new_delay += adj;
1359 	new_delay = clamp_t(int, new_delay, min, max);
1360 
1361 	if (intel_set_rps(dev_priv, new_delay)) {
1362 		DRM_DEBUG_DRIVER("Failed to set new GPU frequency\n");
1363 		rps->last_adj = 0;
1364 	}
1365 
1366 	mutex_unlock(&dev_priv->pcu_lock);
1367 
1368 out:
1369 	/* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1370 	spin_lock_irq(&dev_priv->irq_lock);
1371 	if (rps->interrupts_enabled)
1372 		gen6_unmask_pm_irq(dev_priv, dev_priv->pm_rps_events);
1373 	spin_unlock_irq(&dev_priv->irq_lock);
1374 }
1375 
1376 
1377 /**
1378  * ivybridge_parity_work - Workqueue called when a parity error interrupt
1379  * occurred.
1380  * @work: workqueue struct
1381  *
1382  * Doesn't actually do anything except notify userspace. As a consequence of
1383  * this event, userspace should try to remap the bad rows since statistically
1384  * it is likely the same row is more likely to go bad again.
1385  */
1386 static void ivybridge_parity_work(struct work_struct *work)
1387 {
1388 	struct drm_i915_private *dev_priv =
1389 		container_of(work, typeof(*dev_priv), l3_parity.error_work);
1390 	u32 error_status, row, bank, subbank;
1391 	char *parity_event[6];
1392 	uint32_t misccpctl;
1393 	uint8_t slice = 0;
1394 
1395 	/* We must turn off DOP level clock gating to access the L3 registers.
1396 	 * In order to prevent a get/put style interface, acquire struct mutex
1397 	 * any time we access those registers.
1398 	 */
1399 	mutex_lock(&dev_priv->drm.struct_mutex);
1400 
1401 	/* If we've screwed up tracking, just let the interrupt fire again */
1402 	if (WARN_ON(!dev_priv->l3_parity.which_slice))
1403 		goto out;
1404 
1405 	misccpctl = I915_READ(GEN7_MISCCPCTL);
1406 	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1407 	POSTING_READ(GEN7_MISCCPCTL);
1408 
1409 	while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1410 		i915_reg_t reg;
1411 
1412 		slice--;
1413 		if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv)))
1414 			break;
1415 
1416 		dev_priv->l3_parity.which_slice &= ~(1<<slice);
1417 
1418 		reg = GEN7_L3CDERRST1(slice);
1419 
1420 		error_status = I915_READ(reg);
1421 		row = GEN7_PARITY_ERROR_ROW(error_status);
1422 		bank = GEN7_PARITY_ERROR_BANK(error_status);
1423 		subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1424 
1425 		I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1426 		POSTING_READ(reg);
1427 
1428 		parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1429 		parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1430 		parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1431 		parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1432 		parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1433 		parity_event[5] = NULL;
1434 
1435 		kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj,
1436 				   KOBJ_CHANGE, parity_event);
1437 
1438 		DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1439 			  slice, row, bank, subbank);
1440 
1441 		kfree(parity_event[4]);
1442 		kfree(parity_event[3]);
1443 		kfree(parity_event[2]);
1444 		kfree(parity_event[1]);
1445 	}
1446 
1447 	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1448 
1449 out:
1450 	WARN_ON(dev_priv->l3_parity.which_slice);
1451 	spin_lock_irq(&dev_priv->irq_lock);
1452 	gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1453 	spin_unlock_irq(&dev_priv->irq_lock);
1454 
1455 	mutex_unlock(&dev_priv->drm.struct_mutex);
1456 }
1457 
1458 static void ivybridge_parity_error_irq_handler(struct drm_i915_private *dev_priv,
1459 					       u32 iir)
1460 {
1461 	if (!HAS_L3_DPF(dev_priv))
1462 		return;
1463 
1464 	spin_lock(&dev_priv->irq_lock);
1465 	gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1466 	spin_unlock(&dev_priv->irq_lock);
1467 
1468 	iir &= GT_PARITY_ERROR(dev_priv);
1469 	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1470 		dev_priv->l3_parity.which_slice |= 1 << 1;
1471 
1472 	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1473 		dev_priv->l3_parity.which_slice |= 1 << 0;
1474 
1475 	queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1476 }
1477 
1478 static void ilk_gt_irq_handler(struct drm_i915_private *dev_priv,
1479 			       u32 gt_iir)
1480 {
1481 	if (gt_iir & GT_RENDER_USER_INTERRUPT)
1482 		notify_ring(dev_priv->engine[RCS]);
1483 	if (gt_iir & ILK_BSD_USER_INTERRUPT)
1484 		notify_ring(dev_priv->engine[VCS]);
1485 }
1486 
1487 static void snb_gt_irq_handler(struct drm_i915_private *dev_priv,
1488 			       u32 gt_iir)
1489 {
1490 	if (gt_iir & GT_RENDER_USER_INTERRUPT)
1491 		notify_ring(dev_priv->engine[RCS]);
1492 	if (gt_iir & GT_BSD_USER_INTERRUPT)
1493 		notify_ring(dev_priv->engine[VCS]);
1494 	if (gt_iir & GT_BLT_USER_INTERRUPT)
1495 		notify_ring(dev_priv->engine[BCS]);
1496 
1497 	if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1498 		      GT_BSD_CS_ERROR_INTERRUPT |
1499 		      GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1500 		DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1501 
1502 	if (gt_iir & GT_PARITY_ERROR(dev_priv))
1503 		ivybridge_parity_error_irq_handler(dev_priv, gt_iir);
1504 }
1505 
1506 static void
1507 gen8_cs_irq_handler(struct intel_engine_cs *engine, u32 iir)
1508 {
1509 	bool tasklet = false;
1510 
1511 	if (iir & GT_CONTEXT_SWITCH_INTERRUPT)
1512 		tasklet = true;
1513 
1514 	if (iir & GT_RENDER_USER_INTERRUPT) {
1515 		notify_ring(engine);
1516 		tasklet |= USES_GUC_SUBMISSION(engine->i915);
1517 	}
1518 
1519 	if (tasklet)
1520 		tasklet_hi_schedule(&engine->execlists.tasklet);
1521 }
1522 
1523 static void gen8_gt_irq_ack(struct drm_i915_private *i915,
1524 			    u32 master_ctl, u32 gt_iir[4])
1525 {
1526 	void __iomem * const regs = i915->regs;
1527 
1528 #define GEN8_GT_IRQS (GEN8_GT_RCS_IRQ | \
1529 		      GEN8_GT_BCS_IRQ | \
1530 		      GEN8_GT_VCS1_IRQ | \
1531 		      GEN8_GT_VCS2_IRQ | \
1532 		      GEN8_GT_VECS_IRQ | \
1533 		      GEN8_GT_PM_IRQ | \
1534 		      GEN8_GT_GUC_IRQ)
1535 
1536 	if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1537 		gt_iir[0] = raw_reg_read(regs, GEN8_GT_IIR(0));
1538 		if (likely(gt_iir[0]))
1539 			raw_reg_write(regs, GEN8_GT_IIR(0), gt_iir[0]);
1540 	}
1541 
1542 	if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1543 		gt_iir[1] = raw_reg_read(regs, GEN8_GT_IIR(1));
1544 		if (likely(gt_iir[1]))
1545 			raw_reg_write(regs, GEN8_GT_IIR(1), gt_iir[1]);
1546 	}
1547 
1548 	if (master_ctl & (GEN8_GT_PM_IRQ | GEN8_GT_GUC_IRQ)) {
1549 		gt_iir[2] = raw_reg_read(regs, GEN8_GT_IIR(2));
1550 		if (likely(gt_iir[2] & (i915->pm_rps_events |
1551 					i915->pm_guc_events)))
1552 			raw_reg_write(regs, GEN8_GT_IIR(2),
1553 				      gt_iir[2] & (i915->pm_rps_events |
1554 						   i915->pm_guc_events));
1555 	}
1556 
1557 	if (master_ctl & GEN8_GT_VECS_IRQ) {
1558 		gt_iir[3] = raw_reg_read(regs, GEN8_GT_IIR(3));
1559 		if (likely(gt_iir[3]))
1560 			raw_reg_write(regs, GEN8_GT_IIR(3), gt_iir[3]);
1561 	}
1562 }
1563 
1564 static void gen8_gt_irq_handler(struct drm_i915_private *i915,
1565 				u32 master_ctl, u32 gt_iir[4])
1566 {
1567 	if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1568 		gen8_cs_irq_handler(i915->engine[RCS],
1569 				    gt_iir[0] >> GEN8_RCS_IRQ_SHIFT);
1570 		gen8_cs_irq_handler(i915->engine[BCS],
1571 				    gt_iir[0] >> GEN8_BCS_IRQ_SHIFT);
1572 	}
1573 
1574 	if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1575 		gen8_cs_irq_handler(i915->engine[VCS],
1576 				    gt_iir[1] >> GEN8_VCS1_IRQ_SHIFT);
1577 		gen8_cs_irq_handler(i915->engine[VCS2],
1578 				    gt_iir[1] >> GEN8_VCS2_IRQ_SHIFT);
1579 	}
1580 
1581 	if (master_ctl & GEN8_GT_VECS_IRQ) {
1582 		gen8_cs_irq_handler(i915->engine[VECS],
1583 				    gt_iir[3] >> GEN8_VECS_IRQ_SHIFT);
1584 	}
1585 
1586 	if (master_ctl & (GEN8_GT_PM_IRQ | GEN8_GT_GUC_IRQ)) {
1587 		gen6_rps_irq_handler(i915, gt_iir[2]);
1588 		gen9_guc_irq_handler(i915, gt_iir[2]);
1589 	}
1590 }
1591 
1592 static bool gen11_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1593 {
1594 	switch (pin) {
1595 	case HPD_PORT_C:
1596 		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC1);
1597 	case HPD_PORT_D:
1598 		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC2);
1599 	case HPD_PORT_E:
1600 		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC3);
1601 	case HPD_PORT_F:
1602 		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC4);
1603 	default:
1604 		return false;
1605 	}
1606 }
1607 
1608 static bool bxt_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1609 {
1610 	switch (pin) {
1611 	case HPD_PORT_A:
1612 		return val & PORTA_HOTPLUG_LONG_DETECT;
1613 	case HPD_PORT_B:
1614 		return val & PORTB_HOTPLUG_LONG_DETECT;
1615 	case HPD_PORT_C:
1616 		return val & PORTC_HOTPLUG_LONG_DETECT;
1617 	default:
1618 		return false;
1619 	}
1620 }
1621 
1622 static bool icp_ddi_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1623 {
1624 	switch (pin) {
1625 	case HPD_PORT_A:
1626 		return val & ICP_DDIA_HPD_LONG_DETECT;
1627 	case HPD_PORT_B:
1628 		return val & ICP_DDIB_HPD_LONG_DETECT;
1629 	default:
1630 		return false;
1631 	}
1632 }
1633 
1634 static bool icp_tc_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1635 {
1636 	switch (pin) {
1637 	case HPD_PORT_C:
1638 		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC1);
1639 	case HPD_PORT_D:
1640 		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC2);
1641 	case HPD_PORT_E:
1642 		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC3);
1643 	case HPD_PORT_F:
1644 		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC4);
1645 	default:
1646 		return false;
1647 	}
1648 }
1649 
1650 static bool spt_port_hotplug2_long_detect(enum hpd_pin pin, u32 val)
1651 {
1652 	switch (pin) {
1653 	case HPD_PORT_E:
1654 		return val & PORTE_HOTPLUG_LONG_DETECT;
1655 	default:
1656 		return false;
1657 	}
1658 }
1659 
1660 static bool spt_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1661 {
1662 	switch (pin) {
1663 	case HPD_PORT_A:
1664 		return val & PORTA_HOTPLUG_LONG_DETECT;
1665 	case HPD_PORT_B:
1666 		return val & PORTB_HOTPLUG_LONG_DETECT;
1667 	case HPD_PORT_C:
1668 		return val & PORTC_HOTPLUG_LONG_DETECT;
1669 	case HPD_PORT_D:
1670 		return val & PORTD_HOTPLUG_LONG_DETECT;
1671 	default:
1672 		return false;
1673 	}
1674 }
1675 
1676 static bool ilk_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1677 {
1678 	switch (pin) {
1679 	case HPD_PORT_A:
1680 		return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1681 	default:
1682 		return false;
1683 	}
1684 }
1685 
1686 static bool pch_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1687 {
1688 	switch (pin) {
1689 	case HPD_PORT_B:
1690 		return val & PORTB_HOTPLUG_LONG_DETECT;
1691 	case HPD_PORT_C:
1692 		return val & PORTC_HOTPLUG_LONG_DETECT;
1693 	case HPD_PORT_D:
1694 		return val & PORTD_HOTPLUG_LONG_DETECT;
1695 	default:
1696 		return false;
1697 	}
1698 }
1699 
1700 static bool i9xx_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1701 {
1702 	switch (pin) {
1703 	case HPD_PORT_B:
1704 		return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1705 	case HPD_PORT_C:
1706 		return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1707 	case HPD_PORT_D:
1708 		return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1709 	default:
1710 		return false;
1711 	}
1712 }
1713 
1714 /*
1715  * Get a bit mask of pins that have triggered, and which ones may be long.
1716  * This can be called multiple times with the same masks to accumulate
1717  * hotplug detection results from several registers.
1718  *
1719  * Note that the caller is expected to zero out the masks initially.
1720  */
1721 static void intel_get_hpd_pins(struct drm_i915_private *dev_priv,
1722 			       u32 *pin_mask, u32 *long_mask,
1723 			       u32 hotplug_trigger, u32 dig_hotplug_reg,
1724 			       const u32 hpd[HPD_NUM_PINS],
1725 			       bool long_pulse_detect(enum hpd_pin pin, u32 val))
1726 {
1727 	enum hpd_pin pin;
1728 
1729 	for_each_hpd_pin(pin) {
1730 		if ((hpd[pin] & hotplug_trigger) == 0)
1731 			continue;
1732 
1733 		*pin_mask |= BIT(pin);
1734 
1735 		if (long_pulse_detect(pin, dig_hotplug_reg))
1736 			*long_mask |= BIT(pin);
1737 	}
1738 
1739 	DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x, long 0x%08x\n",
1740 			 hotplug_trigger, dig_hotplug_reg, *pin_mask, *long_mask);
1741 
1742 }
1743 
1744 static void gmbus_irq_handler(struct drm_i915_private *dev_priv)
1745 {
1746 	wake_up_all(&dev_priv->gmbus_wait_queue);
1747 }
1748 
1749 static void dp_aux_irq_handler(struct drm_i915_private *dev_priv)
1750 {
1751 	wake_up_all(&dev_priv->gmbus_wait_queue);
1752 }
1753 
1754 #if defined(CONFIG_DEBUG_FS)
1755 static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1756 					 enum pipe pipe,
1757 					 uint32_t crc0, uint32_t crc1,
1758 					 uint32_t crc2, uint32_t crc3,
1759 					 uint32_t crc4)
1760 {
1761 	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1762 	struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
1763 	uint32_t crcs[5];
1764 
1765 	spin_lock(&pipe_crc->lock);
1766 	/*
1767 	 * For some not yet identified reason, the first CRC is
1768 	 * bonkers. So let's just wait for the next vblank and read
1769 	 * out the buggy result.
1770 	 *
1771 	 * On GEN8+ sometimes the second CRC is bonkers as well, so
1772 	 * don't trust that one either.
1773 	 */
1774 	if (pipe_crc->skipped <= 0 ||
1775 	    (INTEL_GEN(dev_priv) >= 8 && pipe_crc->skipped == 1)) {
1776 		pipe_crc->skipped++;
1777 		spin_unlock(&pipe_crc->lock);
1778 		return;
1779 	}
1780 	spin_unlock(&pipe_crc->lock);
1781 
1782 	crcs[0] = crc0;
1783 	crcs[1] = crc1;
1784 	crcs[2] = crc2;
1785 	crcs[3] = crc3;
1786 	crcs[4] = crc4;
1787 	drm_crtc_add_crc_entry(&crtc->base, true,
1788 				drm_crtc_accurate_vblank_count(&crtc->base),
1789 				crcs);
1790 }
1791 #else
1792 static inline void
1793 display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1794 			     enum pipe pipe,
1795 			     uint32_t crc0, uint32_t crc1,
1796 			     uint32_t crc2, uint32_t crc3,
1797 			     uint32_t crc4) {}
1798 #endif
1799 
1800 
1801 static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1802 				     enum pipe pipe)
1803 {
1804 	display_pipe_crc_irq_handler(dev_priv, pipe,
1805 				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1806 				     0, 0, 0, 0);
1807 }
1808 
1809 static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1810 				     enum pipe pipe)
1811 {
1812 	display_pipe_crc_irq_handler(dev_priv, pipe,
1813 				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1814 				     I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1815 				     I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1816 				     I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1817 				     I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1818 }
1819 
1820 static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1821 				      enum pipe pipe)
1822 {
1823 	uint32_t res1, res2;
1824 
1825 	if (INTEL_GEN(dev_priv) >= 3)
1826 		res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1827 	else
1828 		res1 = 0;
1829 
1830 	if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
1831 		res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1832 	else
1833 		res2 = 0;
1834 
1835 	display_pipe_crc_irq_handler(dev_priv, pipe,
1836 				     I915_READ(PIPE_CRC_RES_RED(pipe)),
1837 				     I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1838 				     I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1839 				     res1, res2);
1840 }
1841 
1842 /* The RPS events need forcewake, so we add them to a work queue and mask their
1843  * IMR bits until the work is done. Other interrupts can be processed without
1844  * the work queue. */
1845 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1846 {
1847 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
1848 
1849 	if (pm_iir & dev_priv->pm_rps_events) {
1850 		spin_lock(&dev_priv->irq_lock);
1851 		gen6_mask_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1852 		if (rps->interrupts_enabled) {
1853 			rps->pm_iir |= pm_iir & dev_priv->pm_rps_events;
1854 			schedule_work(&rps->work);
1855 		}
1856 		spin_unlock(&dev_priv->irq_lock);
1857 	}
1858 
1859 	if (INTEL_GEN(dev_priv) >= 8)
1860 		return;
1861 
1862 	if (HAS_VEBOX(dev_priv)) {
1863 		if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1864 			notify_ring(dev_priv->engine[VECS]);
1865 
1866 		if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1867 			DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1868 	}
1869 }
1870 
1871 static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 gt_iir)
1872 {
1873 	if (gt_iir & GEN9_GUC_TO_HOST_INT_EVENT)
1874 		intel_guc_to_host_event_handler(&dev_priv->guc);
1875 }
1876 
1877 static void i9xx_pipestat_irq_reset(struct drm_i915_private *dev_priv)
1878 {
1879 	enum pipe pipe;
1880 
1881 	for_each_pipe(dev_priv, pipe) {
1882 		I915_WRITE(PIPESTAT(pipe),
1883 			   PIPESTAT_INT_STATUS_MASK |
1884 			   PIPE_FIFO_UNDERRUN_STATUS);
1885 
1886 		dev_priv->pipestat_irq_mask[pipe] = 0;
1887 	}
1888 }
1889 
1890 static void i9xx_pipestat_irq_ack(struct drm_i915_private *dev_priv,
1891 				  u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1892 {
1893 	int pipe;
1894 
1895 	spin_lock(&dev_priv->irq_lock);
1896 
1897 	if (!dev_priv->display_irqs_enabled) {
1898 		spin_unlock(&dev_priv->irq_lock);
1899 		return;
1900 	}
1901 
1902 	for_each_pipe(dev_priv, pipe) {
1903 		i915_reg_t reg;
1904 		u32 status_mask, enable_mask, iir_bit = 0;
1905 
1906 		/*
1907 		 * PIPESTAT bits get signalled even when the interrupt is
1908 		 * disabled with the mask bits, and some of the status bits do
1909 		 * not generate interrupts at all (like the underrun bit). Hence
1910 		 * we need to be careful that we only handle what we want to
1911 		 * handle.
1912 		 */
1913 
1914 		/* fifo underruns are filterered in the underrun handler. */
1915 		status_mask = PIPE_FIFO_UNDERRUN_STATUS;
1916 
1917 		switch (pipe) {
1918 		case PIPE_A:
1919 			iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1920 			break;
1921 		case PIPE_B:
1922 			iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1923 			break;
1924 		case PIPE_C:
1925 			iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1926 			break;
1927 		}
1928 		if (iir & iir_bit)
1929 			status_mask |= dev_priv->pipestat_irq_mask[pipe];
1930 
1931 		if (!status_mask)
1932 			continue;
1933 
1934 		reg = PIPESTAT(pipe);
1935 		pipe_stats[pipe] = I915_READ(reg) & status_mask;
1936 		enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
1937 
1938 		/*
1939 		 * Clear the PIPE*STAT regs before the IIR
1940 		 *
1941 		 * Toggle the enable bits to make sure we get an
1942 		 * edge in the ISR pipe event bit if we don't clear
1943 		 * all the enabled status bits. Otherwise the edge
1944 		 * triggered IIR on i965/g4x wouldn't notice that
1945 		 * an interrupt is still pending.
1946 		 */
1947 		if (pipe_stats[pipe]) {
1948 			I915_WRITE(reg, pipe_stats[pipe]);
1949 			I915_WRITE(reg, enable_mask);
1950 		}
1951 	}
1952 	spin_unlock(&dev_priv->irq_lock);
1953 }
1954 
1955 static void i8xx_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1956 				      u16 iir, u32 pipe_stats[I915_MAX_PIPES])
1957 {
1958 	enum pipe pipe;
1959 
1960 	for_each_pipe(dev_priv, pipe) {
1961 		if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1962 			drm_handle_vblank(&dev_priv->drm, pipe);
1963 
1964 		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1965 			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1966 
1967 		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1968 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1969 	}
1970 }
1971 
1972 static void i915_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1973 				      u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1974 {
1975 	bool blc_event = false;
1976 	enum pipe pipe;
1977 
1978 	for_each_pipe(dev_priv, pipe) {
1979 		if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1980 			drm_handle_vblank(&dev_priv->drm, pipe);
1981 
1982 		if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1983 			blc_event = true;
1984 
1985 		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1986 			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1987 
1988 		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1989 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1990 	}
1991 
1992 	if (blc_event || (iir & I915_ASLE_INTERRUPT))
1993 		intel_opregion_asle_intr(dev_priv);
1994 }
1995 
1996 static void i965_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1997 				      u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1998 {
1999 	bool blc_event = false;
2000 	enum pipe pipe;
2001 
2002 	for_each_pipe(dev_priv, pipe) {
2003 		if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
2004 			drm_handle_vblank(&dev_priv->drm, pipe);
2005 
2006 		if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
2007 			blc_event = true;
2008 
2009 		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
2010 			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2011 
2012 		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
2013 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2014 	}
2015 
2016 	if (blc_event || (iir & I915_ASLE_INTERRUPT))
2017 		intel_opregion_asle_intr(dev_priv);
2018 
2019 	if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
2020 		gmbus_irq_handler(dev_priv);
2021 }
2022 
2023 static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv,
2024 					    u32 pipe_stats[I915_MAX_PIPES])
2025 {
2026 	enum pipe pipe;
2027 
2028 	for_each_pipe(dev_priv, pipe) {
2029 		if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
2030 			drm_handle_vblank(&dev_priv->drm, pipe);
2031 
2032 		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
2033 			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2034 
2035 		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
2036 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2037 	}
2038 
2039 	if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
2040 		gmbus_irq_handler(dev_priv);
2041 }
2042 
2043 static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv)
2044 {
2045 	u32 hotplug_status = 0, hotplug_status_mask;
2046 	int i;
2047 
2048 	if (IS_G4X(dev_priv) ||
2049 	    IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2050 		hotplug_status_mask = HOTPLUG_INT_STATUS_G4X |
2051 			DP_AUX_CHANNEL_MASK_INT_STATUS_G4X;
2052 	else
2053 		hotplug_status_mask = HOTPLUG_INT_STATUS_I915;
2054 
2055 	/*
2056 	 * We absolutely have to clear all the pending interrupt
2057 	 * bits in PORT_HOTPLUG_STAT. Otherwise the ISR port
2058 	 * interrupt bit won't have an edge, and the i965/g4x
2059 	 * edge triggered IIR will not notice that an interrupt
2060 	 * is still pending. We can't use PORT_HOTPLUG_EN to
2061 	 * guarantee the edge as the act of toggling the enable
2062 	 * bits can itself generate a new hotplug interrupt :(
2063 	 */
2064 	for (i = 0; i < 10; i++) {
2065 		u32 tmp = I915_READ(PORT_HOTPLUG_STAT) & hotplug_status_mask;
2066 
2067 		if (tmp == 0)
2068 			return hotplug_status;
2069 
2070 		hotplug_status |= tmp;
2071 		I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
2072 	}
2073 
2074 	WARN_ONCE(1,
2075 		  "PORT_HOTPLUG_STAT did not clear (0x%08x)\n",
2076 		  I915_READ(PORT_HOTPLUG_STAT));
2077 
2078 	return hotplug_status;
2079 }
2080 
2081 static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv,
2082 				 u32 hotplug_status)
2083 {
2084 	u32 pin_mask = 0, long_mask = 0;
2085 
2086 	if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
2087 	    IS_CHERRYVIEW(dev_priv)) {
2088 		u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
2089 
2090 		if (hotplug_trigger) {
2091 			intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2092 					   hotplug_trigger, hotplug_trigger,
2093 					   hpd_status_g4x,
2094 					   i9xx_port_hotplug_long_detect);
2095 
2096 			intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2097 		}
2098 
2099 		if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
2100 			dp_aux_irq_handler(dev_priv);
2101 	} else {
2102 		u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
2103 
2104 		if (hotplug_trigger) {
2105 			intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2106 					   hotplug_trigger, hotplug_trigger,
2107 					   hpd_status_i915,
2108 					   i9xx_port_hotplug_long_detect);
2109 			intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2110 		}
2111 	}
2112 }
2113 
2114 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
2115 {
2116 	struct drm_device *dev = arg;
2117 	struct drm_i915_private *dev_priv = to_i915(dev);
2118 	irqreturn_t ret = IRQ_NONE;
2119 
2120 	if (!intel_irqs_enabled(dev_priv))
2121 		return IRQ_NONE;
2122 
2123 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2124 	disable_rpm_wakeref_asserts(dev_priv);
2125 
2126 	do {
2127 		u32 iir, gt_iir, pm_iir;
2128 		u32 pipe_stats[I915_MAX_PIPES] = {};
2129 		u32 hotplug_status = 0;
2130 		u32 ier = 0;
2131 
2132 		gt_iir = I915_READ(GTIIR);
2133 		pm_iir = I915_READ(GEN6_PMIIR);
2134 		iir = I915_READ(VLV_IIR);
2135 
2136 		if (gt_iir == 0 && pm_iir == 0 && iir == 0)
2137 			break;
2138 
2139 		ret = IRQ_HANDLED;
2140 
2141 		/*
2142 		 * Theory on interrupt generation, based on empirical evidence:
2143 		 *
2144 		 * x = ((VLV_IIR & VLV_IER) ||
2145 		 *      (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
2146 		 *       (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
2147 		 *
2148 		 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
2149 		 * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
2150 		 * guarantee the CPU interrupt will be raised again even if we
2151 		 * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
2152 		 * bits this time around.
2153 		 */
2154 		I915_WRITE(VLV_MASTER_IER, 0);
2155 		ier = I915_READ(VLV_IER);
2156 		I915_WRITE(VLV_IER, 0);
2157 
2158 		if (gt_iir)
2159 			I915_WRITE(GTIIR, gt_iir);
2160 		if (pm_iir)
2161 			I915_WRITE(GEN6_PMIIR, pm_iir);
2162 
2163 		if (iir & I915_DISPLAY_PORT_INTERRUPT)
2164 			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
2165 
2166 		/* Call regardless, as some status bits might not be
2167 		 * signalled in iir */
2168 		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
2169 
2170 		if (iir & (I915_LPE_PIPE_A_INTERRUPT |
2171 			   I915_LPE_PIPE_B_INTERRUPT))
2172 			intel_lpe_audio_irq_handler(dev_priv);
2173 
2174 		/*
2175 		 * VLV_IIR is single buffered, and reflects the level
2176 		 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
2177 		 */
2178 		if (iir)
2179 			I915_WRITE(VLV_IIR, iir);
2180 
2181 		I915_WRITE(VLV_IER, ier);
2182 		I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
2183 
2184 		if (gt_iir)
2185 			snb_gt_irq_handler(dev_priv, gt_iir);
2186 		if (pm_iir)
2187 			gen6_rps_irq_handler(dev_priv, pm_iir);
2188 
2189 		if (hotplug_status)
2190 			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
2191 
2192 		valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
2193 	} while (0);
2194 
2195 	enable_rpm_wakeref_asserts(dev_priv);
2196 
2197 	return ret;
2198 }
2199 
2200 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
2201 {
2202 	struct drm_device *dev = arg;
2203 	struct drm_i915_private *dev_priv = to_i915(dev);
2204 	irqreturn_t ret = IRQ_NONE;
2205 
2206 	if (!intel_irqs_enabled(dev_priv))
2207 		return IRQ_NONE;
2208 
2209 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2210 	disable_rpm_wakeref_asserts(dev_priv);
2211 
2212 	do {
2213 		u32 master_ctl, iir;
2214 		u32 pipe_stats[I915_MAX_PIPES] = {};
2215 		u32 hotplug_status = 0;
2216 		u32 gt_iir[4];
2217 		u32 ier = 0;
2218 
2219 		master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
2220 		iir = I915_READ(VLV_IIR);
2221 
2222 		if (master_ctl == 0 && iir == 0)
2223 			break;
2224 
2225 		ret = IRQ_HANDLED;
2226 
2227 		/*
2228 		 * Theory on interrupt generation, based on empirical evidence:
2229 		 *
2230 		 * x = ((VLV_IIR & VLV_IER) ||
2231 		 *      ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
2232 		 *       (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
2233 		 *
2234 		 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
2235 		 * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
2236 		 * guarantee the CPU interrupt will be raised again even if we
2237 		 * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
2238 		 * bits this time around.
2239 		 */
2240 		I915_WRITE(GEN8_MASTER_IRQ, 0);
2241 		ier = I915_READ(VLV_IER);
2242 		I915_WRITE(VLV_IER, 0);
2243 
2244 		gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
2245 
2246 		if (iir & I915_DISPLAY_PORT_INTERRUPT)
2247 			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
2248 
2249 		/* Call regardless, as some status bits might not be
2250 		 * signalled in iir */
2251 		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
2252 
2253 		if (iir & (I915_LPE_PIPE_A_INTERRUPT |
2254 			   I915_LPE_PIPE_B_INTERRUPT |
2255 			   I915_LPE_PIPE_C_INTERRUPT))
2256 			intel_lpe_audio_irq_handler(dev_priv);
2257 
2258 		/*
2259 		 * VLV_IIR is single buffered, and reflects the level
2260 		 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
2261 		 */
2262 		if (iir)
2263 			I915_WRITE(VLV_IIR, iir);
2264 
2265 		I915_WRITE(VLV_IER, ier);
2266 		I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2267 
2268 		gen8_gt_irq_handler(dev_priv, master_ctl, gt_iir);
2269 
2270 		if (hotplug_status)
2271 			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
2272 
2273 		valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
2274 	} while (0);
2275 
2276 	enable_rpm_wakeref_asserts(dev_priv);
2277 
2278 	return ret;
2279 }
2280 
2281 static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv,
2282 				u32 hotplug_trigger,
2283 				const u32 hpd[HPD_NUM_PINS])
2284 {
2285 	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2286 
2287 	/*
2288 	 * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
2289 	 * unless we touch the hotplug register, even if hotplug_trigger is
2290 	 * zero. Not acking leads to "The master control interrupt lied (SDE)!"
2291 	 * errors.
2292 	 */
2293 	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2294 	if (!hotplug_trigger) {
2295 		u32 mask = PORTA_HOTPLUG_STATUS_MASK |
2296 			PORTD_HOTPLUG_STATUS_MASK |
2297 			PORTC_HOTPLUG_STATUS_MASK |
2298 			PORTB_HOTPLUG_STATUS_MASK;
2299 		dig_hotplug_reg &= ~mask;
2300 	}
2301 
2302 	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2303 	if (!hotplug_trigger)
2304 		return;
2305 
2306 	intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
2307 			   dig_hotplug_reg, hpd,
2308 			   pch_port_hotplug_long_detect);
2309 
2310 	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2311 }
2312 
2313 static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2314 {
2315 	int pipe;
2316 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
2317 
2318 	ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ibx);
2319 
2320 	if (pch_iir & SDE_AUDIO_POWER_MASK) {
2321 		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
2322 			       SDE_AUDIO_POWER_SHIFT);
2323 		DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
2324 				 port_name(port));
2325 	}
2326 
2327 	if (pch_iir & SDE_AUX_MASK)
2328 		dp_aux_irq_handler(dev_priv);
2329 
2330 	if (pch_iir & SDE_GMBUS)
2331 		gmbus_irq_handler(dev_priv);
2332 
2333 	if (pch_iir & SDE_AUDIO_HDCP_MASK)
2334 		DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
2335 
2336 	if (pch_iir & SDE_AUDIO_TRANS_MASK)
2337 		DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
2338 
2339 	if (pch_iir & SDE_POISON)
2340 		DRM_ERROR("PCH poison interrupt\n");
2341 
2342 	if (pch_iir & SDE_FDI_MASK)
2343 		for_each_pipe(dev_priv, pipe)
2344 			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2345 					 pipe_name(pipe),
2346 					 I915_READ(FDI_RX_IIR(pipe)));
2347 
2348 	if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
2349 		DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
2350 
2351 	if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
2352 		DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
2353 
2354 	if (pch_iir & SDE_TRANSA_FIFO_UNDER)
2355 		intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_A);
2356 
2357 	if (pch_iir & SDE_TRANSB_FIFO_UNDER)
2358 		intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_B);
2359 }
2360 
2361 static void ivb_err_int_handler(struct drm_i915_private *dev_priv)
2362 {
2363 	u32 err_int = I915_READ(GEN7_ERR_INT);
2364 	enum pipe pipe;
2365 
2366 	if (err_int & ERR_INT_POISON)
2367 		DRM_ERROR("Poison interrupt\n");
2368 
2369 	for_each_pipe(dev_priv, pipe) {
2370 		if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
2371 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2372 
2373 		if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
2374 			if (IS_IVYBRIDGE(dev_priv))
2375 				ivb_pipe_crc_irq_handler(dev_priv, pipe);
2376 			else
2377 				hsw_pipe_crc_irq_handler(dev_priv, pipe);
2378 		}
2379 	}
2380 
2381 	I915_WRITE(GEN7_ERR_INT, err_int);
2382 }
2383 
2384 static void cpt_serr_int_handler(struct drm_i915_private *dev_priv)
2385 {
2386 	u32 serr_int = I915_READ(SERR_INT);
2387 	enum pipe pipe;
2388 
2389 	if (serr_int & SERR_INT_POISON)
2390 		DRM_ERROR("PCH poison interrupt\n");
2391 
2392 	for_each_pipe(dev_priv, pipe)
2393 		if (serr_int & SERR_INT_TRANS_FIFO_UNDERRUN(pipe))
2394 			intel_pch_fifo_underrun_irq_handler(dev_priv, pipe);
2395 
2396 	I915_WRITE(SERR_INT, serr_int);
2397 }
2398 
2399 static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2400 {
2401 	int pipe;
2402 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
2403 
2404 	ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_cpt);
2405 
2406 	if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2407 		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2408 			       SDE_AUDIO_POWER_SHIFT_CPT);
2409 		DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2410 				 port_name(port));
2411 	}
2412 
2413 	if (pch_iir & SDE_AUX_MASK_CPT)
2414 		dp_aux_irq_handler(dev_priv);
2415 
2416 	if (pch_iir & SDE_GMBUS_CPT)
2417 		gmbus_irq_handler(dev_priv);
2418 
2419 	if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2420 		DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2421 
2422 	if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2423 		DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2424 
2425 	if (pch_iir & SDE_FDI_MASK_CPT)
2426 		for_each_pipe(dev_priv, pipe)
2427 			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2428 					 pipe_name(pipe),
2429 					 I915_READ(FDI_RX_IIR(pipe)));
2430 
2431 	if (pch_iir & SDE_ERROR_CPT)
2432 		cpt_serr_int_handler(dev_priv);
2433 }
2434 
2435 static void icp_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2436 {
2437 	u32 ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_ICP;
2438 	u32 tc_hotplug_trigger = pch_iir & SDE_TC_MASK_ICP;
2439 	u32 pin_mask = 0, long_mask = 0;
2440 
2441 	if (ddi_hotplug_trigger) {
2442 		u32 dig_hotplug_reg;
2443 
2444 		dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_DDI);
2445 		I915_WRITE(SHOTPLUG_CTL_DDI, dig_hotplug_reg);
2446 
2447 		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2448 				   ddi_hotplug_trigger,
2449 				   dig_hotplug_reg, hpd_icp,
2450 				   icp_ddi_port_hotplug_long_detect);
2451 	}
2452 
2453 	if (tc_hotplug_trigger) {
2454 		u32 dig_hotplug_reg;
2455 
2456 		dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_TC);
2457 		I915_WRITE(SHOTPLUG_CTL_TC, dig_hotplug_reg);
2458 
2459 		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2460 				   tc_hotplug_trigger,
2461 				   dig_hotplug_reg, hpd_icp,
2462 				   icp_tc_port_hotplug_long_detect);
2463 	}
2464 
2465 	if (pin_mask)
2466 		intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2467 
2468 	if (pch_iir & SDE_GMBUS_ICP)
2469 		gmbus_irq_handler(dev_priv);
2470 }
2471 
2472 static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2473 {
2474 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
2475 		~SDE_PORTE_HOTPLUG_SPT;
2476 	u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
2477 	u32 pin_mask = 0, long_mask = 0;
2478 
2479 	if (hotplug_trigger) {
2480 		u32 dig_hotplug_reg;
2481 
2482 		dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2483 		I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2484 
2485 		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2486 				   hotplug_trigger, dig_hotplug_reg, hpd_spt,
2487 				   spt_port_hotplug_long_detect);
2488 	}
2489 
2490 	if (hotplug2_trigger) {
2491 		u32 dig_hotplug_reg;
2492 
2493 		dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
2494 		I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
2495 
2496 		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2497 				   hotplug2_trigger, dig_hotplug_reg, hpd_spt,
2498 				   spt_port_hotplug2_long_detect);
2499 	}
2500 
2501 	if (pin_mask)
2502 		intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2503 
2504 	if (pch_iir & SDE_GMBUS_CPT)
2505 		gmbus_irq_handler(dev_priv);
2506 }
2507 
2508 static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv,
2509 				u32 hotplug_trigger,
2510 				const u32 hpd[HPD_NUM_PINS])
2511 {
2512 	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2513 
2514 	dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
2515 	I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
2516 
2517 	intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
2518 			   dig_hotplug_reg, hpd,
2519 			   ilk_port_hotplug_long_detect);
2520 
2521 	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2522 }
2523 
2524 static void ilk_display_irq_handler(struct drm_i915_private *dev_priv,
2525 				    u32 de_iir)
2526 {
2527 	enum pipe pipe;
2528 	u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2529 
2530 	if (hotplug_trigger)
2531 		ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ilk);
2532 
2533 	if (de_iir & DE_AUX_CHANNEL_A)
2534 		dp_aux_irq_handler(dev_priv);
2535 
2536 	if (de_iir & DE_GSE)
2537 		intel_opregion_asle_intr(dev_priv);
2538 
2539 	if (de_iir & DE_POISON)
2540 		DRM_ERROR("Poison interrupt\n");
2541 
2542 	for_each_pipe(dev_priv, pipe) {
2543 		if (de_iir & DE_PIPE_VBLANK(pipe))
2544 			drm_handle_vblank(&dev_priv->drm, pipe);
2545 
2546 		if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2547 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2548 
2549 		if (de_iir & DE_PIPE_CRC_DONE(pipe))
2550 			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2551 	}
2552 
2553 	/* check event from PCH */
2554 	if (de_iir & DE_PCH_EVENT) {
2555 		u32 pch_iir = I915_READ(SDEIIR);
2556 
2557 		if (HAS_PCH_CPT(dev_priv))
2558 			cpt_irq_handler(dev_priv, pch_iir);
2559 		else
2560 			ibx_irq_handler(dev_priv, pch_iir);
2561 
2562 		/* should clear PCH hotplug event before clear CPU irq */
2563 		I915_WRITE(SDEIIR, pch_iir);
2564 	}
2565 
2566 	if (IS_GEN5(dev_priv) && de_iir & DE_PCU_EVENT)
2567 		ironlake_rps_change_irq_handler(dev_priv);
2568 }
2569 
2570 static void ivb_display_irq_handler(struct drm_i915_private *dev_priv,
2571 				    u32 de_iir)
2572 {
2573 	enum pipe pipe;
2574 	u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2575 
2576 	if (hotplug_trigger)
2577 		ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ivb);
2578 
2579 	if (de_iir & DE_ERR_INT_IVB)
2580 		ivb_err_int_handler(dev_priv);
2581 
2582 	if (de_iir & DE_EDP_PSR_INT_HSW) {
2583 		u32 psr_iir = I915_READ(EDP_PSR_IIR);
2584 
2585 		intel_psr_irq_handler(dev_priv, psr_iir);
2586 		I915_WRITE(EDP_PSR_IIR, psr_iir);
2587 	}
2588 
2589 	if (de_iir & DE_AUX_CHANNEL_A_IVB)
2590 		dp_aux_irq_handler(dev_priv);
2591 
2592 	if (de_iir & DE_GSE_IVB)
2593 		intel_opregion_asle_intr(dev_priv);
2594 
2595 	for_each_pipe(dev_priv, pipe) {
2596 		if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)))
2597 			drm_handle_vblank(&dev_priv->drm, pipe);
2598 	}
2599 
2600 	/* check event from PCH */
2601 	if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) {
2602 		u32 pch_iir = I915_READ(SDEIIR);
2603 
2604 		cpt_irq_handler(dev_priv, pch_iir);
2605 
2606 		/* clear PCH hotplug event before clear CPU irq */
2607 		I915_WRITE(SDEIIR, pch_iir);
2608 	}
2609 }
2610 
2611 /*
2612  * To handle irqs with the minimum potential races with fresh interrupts, we:
2613  * 1 - Disable Master Interrupt Control.
2614  * 2 - Find the source(s) of the interrupt.
2615  * 3 - Clear the Interrupt Identity bits (IIR).
2616  * 4 - Process the interrupt(s) that had bits set in the IIRs.
2617  * 5 - Re-enable Master Interrupt Control.
2618  */
2619 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2620 {
2621 	struct drm_device *dev = arg;
2622 	struct drm_i915_private *dev_priv = to_i915(dev);
2623 	u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2624 	irqreturn_t ret = IRQ_NONE;
2625 
2626 	if (!intel_irqs_enabled(dev_priv))
2627 		return IRQ_NONE;
2628 
2629 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2630 	disable_rpm_wakeref_asserts(dev_priv);
2631 
2632 	/* disable master interrupt before clearing iir  */
2633 	de_ier = I915_READ(DEIER);
2634 	I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2635 
2636 	/* Disable south interrupts. We'll only write to SDEIIR once, so further
2637 	 * interrupts will will be stored on its back queue, and then we'll be
2638 	 * able to process them after we restore SDEIER (as soon as we restore
2639 	 * it, we'll get an interrupt if SDEIIR still has something to process
2640 	 * due to its back queue). */
2641 	if (!HAS_PCH_NOP(dev_priv)) {
2642 		sde_ier = I915_READ(SDEIER);
2643 		I915_WRITE(SDEIER, 0);
2644 	}
2645 
2646 	/* Find, clear, then process each source of interrupt */
2647 
2648 	gt_iir = I915_READ(GTIIR);
2649 	if (gt_iir) {
2650 		I915_WRITE(GTIIR, gt_iir);
2651 		ret = IRQ_HANDLED;
2652 		if (INTEL_GEN(dev_priv) >= 6)
2653 			snb_gt_irq_handler(dev_priv, gt_iir);
2654 		else
2655 			ilk_gt_irq_handler(dev_priv, gt_iir);
2656 	}
2657 
2658 	de_iir = I915_READ(DEIIR);
2659 	if (de_iir) {
2660 		I915_WRITE(DEIIR, de_iir);
2661 		ret = IRQ_HANDLED;
2662 		if (INTEL_GEN(dev_priv) >= 7)
2663 			ivb_display_irq_handler(dev_priv, de_iir);
2664 		else
2665 			ilk_display_irq_handler(dev_priv, de_iir);
2666 	}
2667 
2668 	if (INTEL_GEN(dev_priv) >= 6) {
2669 		u32 pm_iir = I915_READ(GEN6_PMIIR);
2670 		if (pm_iir) {
2671 			I915_WRITE(GEN6_PMIIR, pm_iir);
2672 			ret = IRQ_HANDLED;
2673 			gen6_rps_irq_handler(dev_priv, pm_iir);
2674 		}
2675 	}
2676 
2677 	I915_WRITE(DEIER, de_ier);
2678 	if (!HAS_PCH_NOP(dev_priv))
2679 		I915_WRITE(SDEIER, sde_ier);
2680 
2681 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2682 	enable_rpm_wakeref_asserts(dev_priv);
2683 
2684 	return ret;
2685 }
2686 
2687 static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv,
2688 				u32 hotplug_trigger,
2689 				const u32 hpd[HPD_NUM_PINS])
2690 {
2691 	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2692 
2693 	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2694 	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2695 
2696 	intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
2697 			   dig_hotplug_reg, hpd,
2698 			   bxt_port_hotplug_long_detect);
2699 
2700 	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2701 }
2702 
2703 static void gen11_hpd_irq_handler(struct drm_i915_private *dev_priv, u32 iir)
2704 {
2705 	u32 pin_mask = 0, long_mask = 0;
2706 	u32 trigger_tc = iir & GEN11_DE_TC_HOTPLUG_MASK;
2707 	u32 trigger_tbt = iir & GEN11_DE_TBT_HOTPLUG_MASK;
2708 
2709 	if (trigger_tc) {
2710 		u32 dig_hotplug_reg;
2711 
2712 		dig_hotplug_reg = I915_READ(GEN11_TC_HOTPLUG_CTL);
2713 		I915_WRITE(GEN11_TC_HOTPLUG_CTL, dig_hotplug_reg);
2714 
2715 		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, trigger_tc,
2716 				   dig_hotplug_reg, hpd_gen11,
2717 				   gen11_port_hotplug_long_detect);
2718 	}
2719 
2720 	if (trigger_tbt) {
2721 		u32 dig_hotplug_reg;
2722 
2723 		dig_hotplug_reg = I915_READ(GEN11_TBT_HOTPLUG_CTL);
2724 		I915_WRITE(GEN11_TBT_HOTPLUG_CTL, dig_hotplug_reg);
2725 
2726 		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, trigger_tbt,
2727 				   dig_hotplug_reg, hpd_gen11,
2728 				   gen11_port_hotplug_long_detect);
2729 	}
2730 
2731 	if (pin_mask)
2732 		intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2733 	else
2734 		DRM_ERROR("Unexpected DE HPD interrupt 0x%08x\n", iir);
2735 }
2736 
2737 static irqreturn_t
2738 gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2739 {
2740 	irqreturn_t ret = IRQ_NONE;
2741 	u32 iir;
2742 	enum pipe pipe;
2743 
2744 	if (master_ctl & GEN8_DE_MISC_IRQ) {
2745 		iir = I915_READ(GEN8_DE_MISC_IIR);
2746 		if (iir) {
2747 			bool found = false;
2748 
2749 			I915_WRITE(GEN8_DE_MISC_IIR, iir);
2750 			ret = IRQ_HANDLED;
2751 
2752 			if (iir & GEN8_DE_MISC_GSE) {
2753 				intel_opregion_asle_intr(dev_priv);
2754 				found = true;
2755 			}
2756 
2757 			if (iir & GEN8_DE_EDP_PSR) {
2758 				u32 psr_iir = I915_READ(EDP_PSR_IIR);
2759 
2760 				intel_psr_irq_handler(dev_priv, psr_iir);
2761 				I915_WRITE(EDP_PSR_IIR, psr_iir);
2762 				found = true;
2763 			}
2764 
2765 			if (!found)
2766 				DRM_ERROR("Unexpected DE Misc interrupt\n");
2767 		}
2768 		else
2769 			DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2770 	}
2771 
2772 	if (INTEL_GEN(dev_priv) >= 11 && (master_ctl & GEN11_DE_HPD_IRQ)) {
2773 		iir = I915_READ(GEN11_DE_HPD_IIR);
2774 		if (iir) {
2775 			I915_WRITE(GEN11_DE_HPD_IIR, iir);
2776 			ret = IRQ_HANDLED;
2777 			gen11_hpd_irq_handler(dev_priv, iir);
2778 		} else {
2779 			DRM_ERROR("The master control interrupt lied, (DE HPD)!\n");
2780 		}
2781 	}
2782 
2783 	if (master_ctl & GEN8_DE_PORT_IRQ) {
2784 		iir = I915_READ(GEN8_DE_PORT_IIR);
2785 		if (iir) {
2786 			u32 tmp_mask;
2787 			bool found = false;
2788 
2789 			I915_WRITE(GEN8_DE_PORT_IIR, iir);
2790 			ret = IRQ_HANDLED;
2791 
2792 			tmp_mask = GEN8_AUX_CHANNEL_A;
2793 			if (INTEL_GEN(dev_priv) >= 9)
2794 				tmp_mask |= GEN9_AUX_CHANNEL_B |
2795 					    GEN9_AUX_CHANNEL_C |
2796 					    GEN9_AUX_CHANNEL_D;
2797 
2798 			if (INTEL_GEN(dev_priv) >= 11)
2799 				tmp_mask |= ICL_AUX_CHANNEL_E;
2800 
2801 			if (IS_CNL_WITH_PORT_F(dev_priv) ||
2802 			    INTEL_GEN(dev_priv) >= 11)
2803 				tmp_mask |= CNL_AUX_CHANNEL_F;
2804 
2805 			if (iir & tmp_mask) {
2806 				dp_aux_irq_handler(dev_priv);
2807 				found = true;
2808 			}
2809 
2810 			if (IS_GEN9_LP(dev_priv)) {
2811 				tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
2812 				if (tmp_mask) {
2813 					bxt_hpd_irq_handler(dev_priv, tmp_mask,
2814 							    hpd_bxt);
2815 					found = true;
2816 				}
2817 			} else if (IS_BROADWELL(dev_priv)) {
2818 				tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
2819 				if (tmp_mask) {
2820 					ilk_hpd_irq_handler(dev_priv,
2821 							    tmp_mask, hpd_bdw);
2822 					found = true;
2823 				}
2824 			}
2825 
2826 			if (IS_GEN9_LP(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) {
2827 				gmbus_irq_handler(dev_priv);
2828 				found = true;
2829 			}
2830 
2831 			if (!found)
2832 				DRM_ERROR("Unexpected DE Port interrupt\n");
2833 		}
2834 		else
2835 			DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2836 	}
2837 
2838 	for_each_pipe(dev_priv, pipe) {
2839 		u32 fault_errors;
2840 
2841 		if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2842 			continue;
2843 
2844 		iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2845 		if (!iir) {
2846 			DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2847 			continue;
2848 		}
2849 
2850 		ret = IRQ_HANDLED;
2851 		I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
2852 
2853 		if (iir & GEN8_PIPE_VBLANK)
2854 			drm_handle_vblank(&dev_priv->drm, pipe);
2855 
2856 		if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2857 			hsw_pipe_crc_irq_handler(dev_priv, pipe);
2858 
2859 		if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2860 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2861 
2862 		fault_errors = iir;
2863 		if (INTEL_GEN(dev_priv) >= 9)
2864 			fault_errors &= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2865 		else
2866 			fault_errors &= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2867 
2868 		if (fault_errors)
2869 			DRM_ERROR("Fault errors on pipe %c: 0x%08x\n",
2870 				  pipe_name(pipe),
2871 				  fault_errors);
2872 	}
2873 
2874 	if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) &&
2875 	    master_ctl & GEN8_DE_PCH_IRQ) {
2876 		/*
2877 		 * FIXME(BDW): Assume for now that the new interrupt handling
2878 		 * scheme also closed the SDE interrupt handling race we've seen
2879 		 * on older pch-split platforms. But this needs testing.
2880 		 */
2881 		iir = I915_READ(SDEIIR);
2882 		if (iir) {
2883 			I915_WRITE(SDEIIR, iir);
2884 			ret = IRQ_HANDLED;
2885 
2886 			if (HAS_PCH_ICP(dev_priv))
2887 				icp_irq_handler(dev_priv, iir);
2888 			else if (HAS_PCH_SPT(dev_priv) ||
2889 				 HAS_PCH_KBP(dev_priv) ||
2890 				 HAS_PCH_CNP(dev_priv))
2891 				spt_irq_handler(dev_priv, iir);
2892 			else
2893 				cpt_irq_handler(dev_priv, iir);
2894 		} else {
2895 			/*
2896 			 * Like on previous PCH there seems to be something
2897 			 * fishy going on with forwarding PCH interrupts.
2898 			 */
2899 			DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
2900 		}
2901 	}
2902 
2903 	return ret;
2904 }
2905 
2906 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2907 {
2908 	struct drm_i915_private *dev_priv = to_i915(arg);
2909 	u32 master_ctl;
2910 	u32 gt_iir[4];
2911 
2912 	if (!intel_irqs_enabled(dev_priv))
2913 		return IRQ_NONE;
2914 
2915 	master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
2916 	master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2917 	if (!master_ctl)
2918 		return IRQ_NONE;
2919 
2920 	I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
2921 
2922 	/* Find, clear, then process each source of interrupt */
2923 	gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
2924 
2925 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2926 	if (master_ctl & ~GEN8_GT_IRQS) {
2927 		disable_rpm_wakeref_asserts(dev_priv);
2928 		gen8_de_irq_handler(dev_priv, master_ctl);
2929 		enable_rpm_wakeref_asserts(dev_priv);
2930 	}
2931 
2932 	I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2933 
2934 	gen8_gt_irq_handler(dev_priv, master_ctl, gt_iir);
2935 
2936 	return IRQ_HANDLED;
2937 }
2938 
2939 struct wedge_me {
2940 	struct delayed_work work;
2941 	struct drm_i915_private *i915;
2942 	const char *name;
2943 };
2944 
2945 static void wedge_me(struct work_struct *work)
2946 {
2947 	struct wedge_me *w = container_of(work, typeof(*w), work.work);
2948 
2949 	dev_err(w->i915->drm.dev,
2950 		"%s timed out, cancelling all in-flight rendering.\n",
2951 		w->name);
2952 	i915_gem_set_wedged(w->i915);
2953 }
2954 
2955 static void __init_wedge(struct wedge_me *w,
2956 			 struct drm_i915_private *i915,
2957 			 long timeout,
2958 			 const char *name)
2959 {
2960 	w->i915 = i915;
2961 	w->name = name;
2962 
2963 	INIT_DELAYED_WORK_ONSTACK(&w->work, wedge_me);
2964 	schedule_delayed_work(&w->work, timeout);
2965 }
2966 
2967 static void __fini_wedge(struct wedge_me *w)
2968 {
2969 	cancel_delayed_work_sync(&w->work);
2970 	destroy_delayed_work_on_stack(&w->work);
2971 	w->i915 = NULL;
2972 }
2973 
2974 #define i915_wedge_on_timeout(W, DEV, TIMEOUT)				\
2975 	for (__init_wedge((W), (DEV), (TIMEOUT), __func__);		\
2976 	     (W)->i915;							\
2977 	     __fini_wedge((W)))
2978 
2979 static u32
2980 gen11_gt_engine_identity(struct drm_i915_private * const i915,
2981 			 const unsigned int bank, const unsigned int bit)
2982 {
2983 	void __iomem * const regs = i915->regs;
2984 	u32 timeout_ts;
2985 	u32 ident;
2986 
2987 	lockdep_assert_held(&i915->irq_lock);
2988 
2989 	raw_reg_write(regs, GEN11_IIR_REG_SELECTOR(bank), BIT(bit));
2990 
2991 	/*
2992 	 * NB: Specs do not specify how long to spin wait,
2993 	 * so we do ~100us as an educated guess.
2994 	 */
2995 	timeout_ts = (local_clock() >> 10) + 100;
2996 	do {
2997 		ident = raw_reg_read(regs, GEN11_INTR_IDENTITY_REG(bank));
2998 	} while (!(ident & GEN11_INTR_DATA_VALID) &&
2999 		 !time_after32(local_clock() >> 10, timeout_ts));
3000 
3001 	if (unlikely(!(ident & GEN11_INTR_DATA_VALID))) {
3002 		DRM_ERROR("INTR_IDENTITY_REG%u:%u 0x%08x not valid!\n",
3003 			  bank, bit, ident);
3004 		return 0;
3005 	}
3006 
3007 	raw_reg_write(regs, GEN11_INTR_IDENTITY_REG(bank),
3008 		      GEN11_INTR_DATA_VALID);
3009 
3010 	return ident;
3011 }
3012 
3013 static void
3014 gen11_other_irq_handler(struct drm_i915_private * const i915,
3015 			const u8 instance, const u16 iir)
3016 {
3017 	if (instance == OTHER_GTPM_INSTANCE)
3018 		return gen6_rps_irq_handler(i915, iir);
3019 
3020 	WARN_ONCE(1, "unhandled other interrupt instance=0x%x, iir=0x%x\n",
3021 		  instance, iir);
3022 }
3023 
3024 static void
3025 gen11_engine_irq_handler(struct drm_i915_private * const i915,
3026 			 const u8 class, const u8 instance, const u16 iir)
3027 {
3028 	struct intel_engine_cs *engine;
3029 
3030 	if (instance <= MAX_ENGINE_INSTANCE)
3031 		engine = i915->engine_class[class][instance];
3032 	else
3033 		engine = NULL;
3034 
3035 	if (likely(engine))
3036 		return gen8_cs_irq_handler(engine, iir);
3037 
3038 	WARN_ONCE(1, "unhandled engine interrupt class=0x%x, instance=0x%x\n",
3039 		  class, instance);
3040 }
3041 
3042 static void
3043 gen11_gt_identity_handler(struct drm_i915_private * const i915,
3044 			  const u32 identity)
3045 {
3046 	const u8 class = GEN11_INTR_ENGINE_CLASS(identity);
3047 	const u8 instance = GEN11_INTR_ENGINE_INSTANCE(identity);
3048 	const u16 intr = GEN11_INTR_ENGINE_INTR(identity);
3049 
3050 	if (unlikely(!intr))
3051 		return;
3052 
3053 	if (class <= COPY_ENGINE_CLASS)
3054 		return gen11_engine_irq_handler(i915, class, instance, intr);
3055 
3056 	if (class == OTHER_CLASS)
3057 		return gen11_other_irq_handler(i915, instance, intr);
3058 
3059 	WARN_ONCE(1, "unknown interrupt class=0x%x, instance=0x%x, intr=0x%x\n",
3060 		  class, instance, intr);
3061 }
3062 
3063 static void
3064 gen11_gt_bank_handler(struct drm_i915_private * const i915,
3065 		      const unsigned int bank)
3066 {
3067 	void __iomem * const regs = i915->regs;
3068 	unsigned long intr_dw;
3069 	unsigned int bit;
3070 
3071 	lockdep_assert_held(&i915->irq_lock);
3072 
3073 	intr_dw = raw_reg_read(regs, GEN11_GT_INTR_DW(bank));
3074 
3075 	if (unlikely(!intr_dw)) {
3076 		DRM_ERROR("GT_INTR_DW%u blank!\n", bank);
3077 		return;
3078 	}
3079 
3080 	for_each_set_bit(bit, &intr_dw, 32) {
3081 		const u32 ident = gen11_gt_engine_identity(i915,
3082 							   bank, bit);
3083 
3084 		gen11_gt_identity_handler(i915, ident);
3085 	}
3086 
3087 	/* Clear must be after shared has been served for engine */
3088 	raw_reg_write(regs, GEN11_GT_INTR_DW(bank), intr_dw);
3089 }
3090 
3091 static void
3092 gen11_gt_irq_handler(struct drm_i915_private * const i915,
3093 		     const u32 master_ctl)
3094 {
3095 	unsigned int bank;
3096 
3097 	spin_lock(&i915->irq_lock);
3098 
3099 	for (bank = 0; bank < 2; bank++) {
3100 		if (master_ctl & GEN11_GT_DW_IRQ(bank))
3101 			gen11_gt_bank_handler(i915, bank);
3102 	}
3103 
3104 	spin_unlock(&i915->irq_lock);
3105 }
3106 
3107 static u32
3108 gen11_gu_misc_irq_ack(struct drm_i915_private *dev_priv, const u32 master_ctl)
3109 {
3110 	void __iomem * const regs = dev_priv->regs;
3111 	u32 iir;
3112 
3113 	if (!(master_ctl & GEN11_GU_MISC_IRQ))
3114 		return 0;
3115 
3116 	iir = raw_reg_read(regs, GEN11_GU_MISC_IIR);
3117 	if (likely(iir))
3118 		raw_reg_write(regs, GEN11_GU_MISC_IIR, iir);
3119 
3120 	return iir;
3121 }
3122 
3123 static void
3124 gen11_gu_misc_irq_handler(struct drm_i915_private *dev_priv, const u32 iir)
3125 {
3126 	if (iir & GEN11_GU_MISC_GSE)
3127 		intel_opregion_asle_intr(dev_priv);
3128 }
3129 
3130 static irqreturn_t gen11_irq_handler(int irq, void *arg)
3131 {
3132 	struct drm_i915_private * const i915 = to_i915(arg);
3133 	void __iomem * const regs = i915->regs;
3134 	u32 master_ctl;
3135 	u32 gu_misc_iir;
3136 
3137 	if (!intel_irqs_enabled(i915))
3138 		return IRQ_NONE;
3139 
3140 	master_ctl = raw_reg_read(regs, GEN11_GFX_MSTR_IRQ);
3141 	master_ctl &= ~GEN11_MASTER_IRQ;
3142 	if (!master_ctl)
3143 		return IRQ_NONE;
3144 
3145 	/* Disable interrupts. */
3146 	raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, 0);
3147 
3148 	/* Find, clear, then process each source of interrupt. */
3149 	gen11_gt_irq_handler(i915, master_ctl);
3150 
3151 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
3152 	if (master_ctl & GEN11_DISPLAY_IRQ) {
3153 		const u32 disp_ctl = raw_reg_read(regs, GEN11_DISPLAY_INT_CTL);
3154 
3155 		disable_rpm_wakeref_asserts(i915);
3156 		/*
3157 		 * GEN11_DISPLAY_INT_CTL has same format as GEN8_MASTER_IRQ
3158 		 * for the display related bits.
3159 		 */
3160 		gen8_de_irq_handler(i915, disp_ctl);
3161 		enable_rpm_wakeref_asserts(i915);
3162 	}
3163 
3164 	gu_misc_iir = gen11_gu_misc_irq_ack(i915, master_ctl);
3165 
3166 	/* Acknowledge and enable interrupts. */
3167 	raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, GEN11_MASTER_IRQ | master_ctl);
3168 
3169 	gen11_gu_misc_irq_handler(i915, gu_misc_iir);
3170 
3171 	return IRQ_HANDLED;
3172 }
3173 
3174 static void i915_reset_device(struct drm_i915_private *dev_priv,
3175 			      u32 engine_mask,
3176 			      const char *reason)
3177 {
3178 	struct i915_gpu_error *error = &dev_priv->gpu_error;
3179 #ifdef notyet
3180 	struct kobject *kobj = &dev_priv->drm.primary->kdev->kobj;
3181 	char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
3182 	char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
3183 	char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
3184 #endif
3185 	struct wedge_me w;
3186 
3187 	kobject_uevent_env(kobj, KOBJ_CHANGE, error_event);
3188 
3189 	DRM_DEBUG_DRIVER("resetting chip\n");
3190 	kobject_uevent_env(kobj, KOBJ_CHANGE, reset_event);
3191 
3192 	/* Use a watchdog to ensure that our reset completes */
3193 	i915_wedge_on_timeout(&w, dev_priv, 5*HZ) {
3194 		intel_prepare_reset(dev_priv);
3195 
3196 		error->reason = reason;
3197 		error->stalled_mask = engine_mask;
3198 
3199 		/* Signal that locked waiters should reset the GPU */
3200 		smp_mb__before_atomic();
3201 		set_bit(I915_RESET_HANDOFF, &error->flags);
3202 		wake_up_all(&error->wait_queue);
3203 
3204 		/* Wait for anyone holding the lock to wakeup, without
3205 		 * blocking indefinitely on struct_mutex.
3206 		 */
3207 		do {
3208 			if (mutex_trylock(&dev_priv->drm.struct_mutex)) {
3209 				i915_reset(dev_priv, engine_mask, reason);
3210 				mutex_unlock(&dev_priv->drm.struct_mutex);
3211 			}
3212 		} while (wait_on_bit_timeout(&error->flags,
3213 					     I915_RESET_HANDOFF,
3214 					     TASK_UNINTERRUPTIBLE,
3215 					     1));
3216 
3217 		error->stalled_mask = 0;
3218 		error->reason = NULL;
3219 
3220 		intel_finish_reset(dev_priv);
3221 	}
3222 
3223 	if (!test_bit(I915_WEDGED, &error->flags))
3224 		kobject_uevent_env(kobj, KOBJ_CHANGE, reset_done_event);
3225 }
3226 
3227 static void i915_clear_error_registers(struct drm_i915_private *dev_priv)
3228 {
3229 	u32 eir;
3230 
3231 	if (!IS_GEN2(dev_priv))
3232 		I915_WRITE(PGTBL_ER, I915_READ(PGTBL_ER));
3233 
3234 	if (INTEL_GEN(dev_priv) < 4)
3235 		I915_WRITE(IPEIR, I915_READ(IPEIR));
3236 	else
3237 		I915_WRITE(IPEIR_I965, I915_READ(IPEIR_I965));
3238 
3239 	I915_WRITE(EIR, I915_READ(EIR));
3240 	eir = I915_READ(EIR);
3241 	if (eir) {
3242 		/*
3243 		 * some errors might have become stuck,
3244 		 * mask them.
3245 		 */
3246 		DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masking\n", eir);
3247 		I915_WRITE(EMR, I915_READ(EMR) | eir);
3248 		I915_WRITE(IIR, I915_MASTER_ERROR_INTERRUPT);
3249 	}
3250 }
3251 
3252 /**
3253  * i915_handle_error - handle a gpu error
3254  * @dev_priv: i915 device private
3255  * @engine_mask: mask representing engines that are hung
3256  * @flags: control flags
3257  * @fmt: Error message format string
3258  *
3259  * Do some basic checking of register state at error time and
3260  * dump it to the syslog.  Also call i915_capture_error_state() to make
3261  * sure we get a record and make it available in debugfs.  Fire a uevent
3262  * so userspace knows something bad happened (should trigger collection
3263  * of a ring dump etc.).
3264  */
3265 void i915_handle_error(struct drm_i915_private *dev_priv,
3266 		       u32 engine_mask,
3267 		       unsigned long flags,
3268 		       const char *fmt, ...)
3269 {
3270 	struct intel_engine_cs *engine;
3271 	unsigned int tmp;
3272 	char error_msg[80];
3273 	char *msg = NULL;
3274 
3275 	if (fmt) {
3276 		va_list args;
3277 
3278 		va_start(args, fmt);
3279 		vsnprintf(error_msg, sizeof(error_msg), fmt, args);
3280 		va_end(args);
3281 
3282 		msg = error_msg;
3283 	}
3284 
3285 	/*
3286 	 * In most cases it's guaranteed that we get here with an RPM
3287 	 * reference held, for example because there is a pending GPU
3288 	 * request that won't finish until the reset is done. This
3289 	 * isn't the case at least when we get here by doing a
3290 	 * simulated reset via debugfs, so get an RPM reference.
3291 	 */
3292 	intel_runtime_pm_get(dev_priv);
3293 
3294 	engine_mask &= INTEL_INFO(dev_priv)->ring_mask;
3295 
3296 	if (flags & I915_ERROR_CAPTURE) {
3297 		i915_capture_error_state(dev_priv, engine_mask, msg);
3298 		i915_clear_error_registers(dev_priv);
3299 	}
3300 
3301 	/*
3302 	 * Try engine reset when available. We fall back to full reset if
3303 	 * single reset fails.
3304 	 */
3305 	if (intel_has_reset_engine(dev_priv)) {
3306 		for_each_engine_masked(engine, dev_priv, engine_mask, tmp) {
3307 			BUILD_BUG_ON(I915_RESET_MODESET >= I915_RESET_ENGINE);
3308 			if (test_and_set_bit(I915_RESET_ENGINE + engine->id,
3309 					     &dev_priv->gpu_error.flags))
3310 				continue;
3311 
3312 			if (i915_reset_engine(engine, msg) == 0)
3313 				engine_mask &= ~intel_engine_flag(engine);
3314 
3315 			clear_bit(I915_RESET_ENGINE + engine->id,
3316 				  &dev_priv->gpu_error.flags);
3317 			wake_up_bit(&dev_priv->gpu_error.flags,
3318 				    I915_RESET_ENGINE + engine->id);
3319 		}
3320 	}
3321 
3322 	if (!engine_mask)
3323 		goto out;
3324 
3325 	/* Full reset needs the mutex, stop any other user trying to do so. */
3326 	if (test_and_set_bit(I915_RESET_BACKOFF, &dev_priv->gpu_error.flags)) {
3327 		wait_event(dev_priv->gpu_error.reset_queue,
3328 			   !test_bit(I915_RESET_BACKOFF,
3329 				     &dev_priv->gpu_error.flags));
3330 		goto out;
3331 	}
3332 
3333 	/* Prevent any other reset-engine attempt. */
3334 	for_each_engine(engine, dev_priv, tmp) {
3335 		while (test_and_set_bit(I915_RESET_ENGINE + engine->id,
3336 					&dev_priv->gpu_error.flags))
3337 			wait_on_bit(&dev_priv->gpu_error.flags,
3338 				    I915_RESET_ENGINE + engine->id,
3339 				    TASK_UNINTERRUPTIBLE);
3340 	}
3341 
3342 	i915_reset_device(dev_priv, engine_mask, msg);
3343 
3344 	for_each_engine(engine, dev_priv, tmp) {
3345 		clear_bit(I915_RESET_ENGINE + engine->id,
3346 			  &dev_priv->gpu_error.flags);
3347 	}
3348 
3349 	clear_bit(I915_RESET_BACKOFF, &dev_priv->gpu_error.flags);
3350 	wake_up_all(&dev_priv->gpu_error.reset_queue);
3351 
3352 out:
3353 	intel_runtime_pm_put(dev_priv);
3354 }
3355 
3356 /* Called from drm generic code, passed 'crtc' which
3357  * we use as a pipe index
3358  */
3359 static int i8xx_enable_vblank(struct drm_device *dev, unsigned int pipe)
3360 {
3361 	struct drm_i915_private *dev_priv = to_i915(dev);
3362 	unsigned long irqflags;
3363 
3364 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3365 	i915_enable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
3366 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3367 
3368 	return 0;
3369 }
3370 
3371 static int i965_enable_vblank(struct drm_device *dev, unsigned int pipe)
3372 {
3373 	struct drm_i915_private *dev_priv = to_i915(dev);
3374 	unsigned long irqflags;
3375 
3376 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3377 	i915_enable_pipestat(dev_priv, pipe,
3378 			     PIPE_START_VBLANK_INTERRUPT_STATUS);
3379 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3380 
3381 	return 0;
3382 }
3383 
3384 static int ironlake_enable_vblank(struct drm_device *dev, unsigned int pipe)
3385 {
3386 	struct drm_i915_private *dev_priv = to_i915(dev);
3387 	unsigned long irqflags;
3388 	uint32_t bit = INTEL_GEN(dev_priv) >= 7 ?
3389 		DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
3390 
3391 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3392 	ilk_enable_display_irq(dev_priv, bit);
3393 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3394 
3395 	/* Even though there is no DMC, frame counter can get stuck when
3396 	 * PSR is active as no frames are generated.
3397 	 */
3398 	if (HAS_PSR(dev_priv))
3399 		drm_vblank_restore(dev, pipe);
3400 
3401 	return 0;
3402 }
3403 
3404 static int gen8_enable_vblank(struct drm_device *dev, unsigned int pipe)
3405 {
3406 	struct drm_i915_private *dev_priv = to_i915(dev);
3407 	unsigned long irqflags;
3408 
3409 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3410 	bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
3411 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3412 
3413 	/* Even if there is no DMC, frame counter can get stuck when
3414 	 * PSR is active as no frames are generated, so check only for PSR.
3415 	 */
3416 	if (HAS_PSR(dev_priv))
3417 		drm_vblank_restore(dev, pipe);
3418 
3419 	return 0;
3420 }
3421 
3422 /* Called from drm generic code, passed 'crtc' which
3423  * we use as a pipe index
3424  */
3425 static void i8xx_disable_vblank(struct drm_device *dev, unsigned int pipe)
3426 {
3427 	struct drm_i915_private *dev_priv = to_i915(dev);
3428 	unsigned long irqflags;
3429 
3430 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3431 	i915_disable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
3432 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3433 }
3434 
3435 static void i965_disable_vblank(struct drm_device *dev, unsigned int pipe)
3436 {
3437 	struct drm_i915_private *dev_priv = to_i915(dev);
3438 	unsigned long irqflags;
3439 
3440 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3441 	i915_disable_pipestat(dev_priv, pipe,
3442 			      PIPE_START_VBLANK_INTERRUPT_STATUS);
3443 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3444 }
3445 
3446 static void ironlake_disable_vblank(struct drm_device *dev, unsigned int pipe)
3447 {
3448 	struct drm_i915_private *dev_priv = to_i915(dev);
3449 	unsigned long irqflags;
3450 	uint32_t bit = INTEL_GEN(dev_priv) >= 7 ?
3451 		DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
3452 
3453 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3454 	ilk_disable_display_irq(dev_priv, bit);
3455 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3456 }
3457 
3458 static void gen8_disable_vblank(struct drm_device *dev, unsigned int pipe)
3459 {
3460 	struct drm_i915_private *dev_priv = to_i915(dev);
3461 	unsigned long irqflags;
3462 
3463 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3464 	bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
3465 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3466 }
3467 
3468 static void ibx_irq_reset(struct drm_i915_private *dev_priv)
3469 {
3470 	if (HAS_PCH_NOP(dev_priv))
3471 		return;
3472 
3473 	GEN3_IRQ_RESET(SDE);
3474 
3475 	if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
3476 		I915_WRITE(SERR_INT, 0xffffffff);
3477 }
3478 
3479 /*
3480  * SDEIER is also touched by the interrupt handler to work around missed PCH
3481  * interrupts. Hence we can't update it after the interrupt handler is enabled -
3482  * instead we unconditionally enable all PCH interrupt sources here, but then
3483  * only unmask them as needed with SDEIMR.
3484  *
3485  * This function needs to be called before interrupts are enabled.
3486  */
3487 static void ibx_irq_pre_postinstall(struct drm_device *dev)
3488 {
3489 	struct drm_i915_private *dev_priv = to_i915(dev);
3490 
3491 	if (HAS_PCH_NOP(dev_priv))
3492 		return;
3493 
3494 	WARN_ON(I915_READ(SDEIER) != 0);
3495 	I915_WRITE(SDEIER, 0xffffffff);
3496 	POSTING_READ(SDEIER);
3497 }
3498 
3499 static void gen5_gt_irq_reset(struct drm_i915_private *dev_priv)
3500 {
3501 	GEN3_IRQ_RESET(GT);
3502 	if (INTEL_GEN(dev_priv) >= 6)
3503 		GEN3_IRQ_RESET(GEN6_PM);
3504 }
3505 
3506 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
3507 {
3508 	if (IS_CHERRYVIEW(dev_priv))
3509 		I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3510 	else
3511 		I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3512 
3513 	i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
3514 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3515 
3516 	i9xx_pipestat_irq_reset(dev_priv);
3517 
3518 	GEN3_IRQ_RESET(VLV_);
3519 	dev_priv->irq_mask = ~0u;
3520 }
3521 
3522 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
3523 {
3524 	u32 pipestat_mask;
3525 	u32 enable_mask;
3526 	enum pipe pipe;
3527 
3528 	pipestat_mask = PIPE_CRC_DONE_INTERRUPT_STATUS;
3529 
3530 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3531 	for_each_pipe(dev_priv, pipe)
3532 		i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
3533 
3534 	enable_mask = I915_DISPLAY_PORT_INTERRUPT |
3535 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3536 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3537 		I915_LPE_PIPE_A_INTERRUPT |
3538 		I915_LPE_PIPE_B_INTERRUPT;
3539 
3540 	if (IS_CHERRYVIEW(dev_priv))
3541 		enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT |
3542 			I915_LPE_PIPE_C_INTERRUPT;
3543 
3544 	WARN_ON(dev_priv->irq_mask != ~0u);
3545 
3546 	dev_priv->irq_mask = ~enable_mask;
3547 
3548 	GEN3_IRQ_INIT(VLV_, dev_priv->irq_mask, enable_mask);
3549 }
3550 
3551 /* drm_dma.h hooks
3552 */
3553 static void ironlake_irq_reset(struct drm_device *dev)
3554 {
3555 	struct drm_i915_private *dev_priv = to_i915(dev);
3556 
3557 	if (IS_GEN5(dev_priv))
3558 		I915_WRITE(HWSTAM, 0xffffffff);
3559 
3560 	GEN3_IRQ_RESET(DE);
3561 	if (IS_GEN7(dev_priv))
3562 		I915_WRITE(GEN7_ERR_INT, 0xffffffff);
3563 
3564 	if (IS_HASWELL(dev_priv)) {
3565 		I915_WRITE(EDP_PSR_IMR, 0xffffffff);
3566 		I915_WRITE(EDP_PSR_IIR, 0xffffffff);
3567 	}
3568 
3569 	gen5_gt_irq_reset(dev_priv);
3570 
3571 	ibx_irq_reset(dev_priv);
3572 }
3573 
3574 static void valleyview_irq_reset(struct drm_device *dev)
3575 {
3576 	struct drm_i915_private *dev_priv = to_i915(dev);
3577 
3578 	I915_WRITE(VLV_MASTER_IER, 0);
3579 	POSTING_READ(VLV_MASTER_IER);
3580 
3581 	gen5_gt_irq_reset(dev_priv);
3582 
3583 	spin_lock_irq(&dev_priv->irq_lock);
3584 	if (dev_priv->display_irqs_enabled)
3585 		vlv_display_irq_reset(dev_priv);
3586 	spin_unlock_irq(&dev_priv->irq_lock);
3587 }
3588 
3589 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3590 {
3591 	GEN8_IRQ_RESET_NDX(GT, 0);
3592 	GEN8_IRQ_RESET_NDX(GT, 1);
3593 	GEN8_IRQ_RESET_NDX(GT, 2);
3594 	GEN8_IRQ_RESET_NDX(GT, 3);
3595 }
3596 
3597 static void gen8_irq_reset(struct drm_device *dev)
3598 {
3599 	struct drm_i915_private *dev_priv = to_i915(dev);
3600 	int pipe;
3601 
3602 	I915_WRITE(GEN8_MASTER_IRQ, 0);
3603 	POSTING_READ(GEN8_MASTER_IRQ);
3604 
3605 	gen8_gt_irq_reset(dev_priv);
3606 
3607 	I915_WRITE(EDP_PSR_IMR, 0xffffffff);
3608 	I915_WRITE(EDP_PSR_IIR, 0xffffffff);
3609 
3610 	for_each_pipe(dev_priv, pipe)
3611 		if (intel_display_power_is_enabled(dev_priv,
3612 						   POWER_DOMAIN_PIPE(pipe)))
3613 			GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3614 
3615 	GEN3_IRQ_RESET(GEN8_DE_PORT_);
3616 	GEN3_IRQ_RESET(GEN8_DE_MISC_);
3617 	GEN3_IRQ_RESET(GEN8_PCU_);
3618 
3619 	if (HAS_PCH_SPLIT(dev_priv))
3620 		ibx_irq_reset(dev_priv);
3621 }
3622 
3623 static void gen11_gt_irq_reset(struct drm_i915_private *dev_priv)
3624 {
3625 	/* Disable RCS, BCS, VCS and VECS class engines. */
3626 	I915_WRITE(GEN11_RENDER_COPY_INTR_ENABLE, 0);
3627 	I915_WRITE(GEN11_VCS_VECS_INTR_ENABLE,	  0);
3628 
3629 	/* Restore masks irqs on RCS, BCS, VCS and VECS engines. */
3630 	I915_WRITE(GEN11_RCS0_RSVD_INTR_MASK,	~0);
3631 	I915_WRITE(GEN11_BCS_RSVD_INTR_MASK,	~0);
3632 	I915_WRITE(GEN11_VCS0_VCS1_INTR_MASK,	~0);
3633 	I915_WRITE(GEN11_VCS2_VCS3_INTR_MASK,	~0);
3634 	I915_WRITE(GEN11_VECS0_VECS1_INTR_MASK,	~0);
3635 
3636 	I915_WRITE(GEN11_GPM_WGBOXPERF_INTR_ENABLE, 0);
3637 	I915_WRITE(GEN11_GPM_WGBOXPERF_INTR_MASK,  ~0);
3638 }
3639 
3640 static void gen11_irq_reset(struct drm_device *dev)
3641 {
3642 	struct drm_i915_private *dev_priv = dev->dev_private;
3643 	int pipe;
3644 
3645 	I915_WRITE(GEN11_GFX_MSTR_IRQ, 0);
3646 	POSTING_READ(GEN11_GFX_MSTR_IRQ);
3647 
3648 	gen11_gt_irq_reset(dev_priv);
3649 
3650 	I915_WRITE(GEN11_DISPLAY_INT_CTL, 0);
3651 
3652 	for_each_pipe(dev_priv, pipe)
3653 		if (intel_display_power_is_enabled(dev_priv,
3654 						   POWER_DOMAIN_PIPE(pipe)))
3655 			GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3656 
3657 	GEN3_IRQ_RESET(GEN8_DE_PORT_);
3658 	GEN3_IRQ_RESET(GEN8_DE_MISC_);
3659 	GEN3_IRQ_RESET(GEN11_DE_HPD_);
3660 	GEN3_IRQ_RESET(GEN11_GU_MISC_);
3661 	GEN3_IRQ_RESET(GEN8_PCU_);
3662 
3663 	if (HAS_PCH_ICP(dev_priv))
3664 		GEN3_IRQ_RESET(SDE);
3665 }
3666 
3667 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3668 				     u8 pipe_mask)
3669 {
3670 	uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3671 	enum pipe pipe;
3672 
3673 	spin_lock_irq(&dev_priv->irq_lock);
3674 
3675 	if (!intel_irqs_enabled(dev_priv)) {
3676 		spin_unlock_irq(&dev_priv->irq_lock);
3677 		return;
3678 	}
3679 
3680 	for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3681 		GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3682 				  dev_priv->de_irq_mask[pipe],
3683 				  ~dev_priv->de_irq_mask[pipe] | extra_ier);
3684 
3685 	spin_unlock_irq(&dev_priv->irq_lock);
3686 }
3687 
3688 void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
3689 				     u8 pipe_mask)
3690 {
3691 	enum pipe pipe;
3692 
3693 	spin_lock_irq(&dev_priv->irq_lock);
3694 
3695 	if (!intel_irqs_enabled(dev_priv)) {
3696 		spin_unlock_irq(&dev_priv->irq_lock);
3697 		return;
3698 	}
3699 
3700 	for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3701 		GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3702 
3703 	spin_unlock_irq(&dev_priv->irq_lock);
3704 
3705 	/* make sure we're done processing display irqs */
3706 	synchronize_irq(dev_priv->drm.irq);
3707 }
3708 
3709 static void cherryview_irq_reset(struct drm_device *dev)
3710 {
3711 	struct drm_i915_private *dev_priv = to_i915(dev);
3712 
3713 	I915_WRITE(GEN8_MASTER_IRQ, 0);
3714 	POSTING_READ(GEN8_MASTER_IRQ);
3715 
3716 	gen8_gt_irq_reset(dev_priv);
3717 
3718 	GEN3_IRQ_RESET(GEN8_PCU_);
3719 
3720 	spin_lock_irq(&dev_priv->irq_lock);
3721 	if (dev_priv->display_irqs_enabled)
3722 		vlv_display_irq_reset(dev_priv);
3723 	spin_unlock_irq(&dev_priv->irq_lock);
3724 }
3725 
3726 static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv,
3727 				  const u32 hpd[HPD_NUM_PINS])
3728 {
3729 	struct intel_encoder *encoder;
3730 	u32 enabled_irqs = 0;
3731 
3732 	for_each_intel_encoder(&dev_priv->drm, encoder)
3733 		if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
3734 			enabled_irqs |= hpd[encoder->hpd_pin];
3735 
3736 	return enabled_irqs;
3737 }
3738 
3739 static void ibx_hpd_detection_setup(struct drm_i915_private *dev_priv)
3740 {
3741 	u32 hotplug;
3742 
3743 	/*
3744 	 * Enable digital hotplug on the PCH, and configure the DP short pulse
3745 	 * duration to 2ms (which is the minimum in the Display Port spec).
3746 	 * The pulse duration bits are reserved on LPT+.
3747 	 */
3748 	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3749 	hotplug &= ~(PORTB_PULSE_DURATION_MASK |
3750 		     PORTC_PULSE_DURATION_MASK |
3751 		     PORTD_PULSE_DURATION_MASK);
3752 	hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3753 	hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3754 	hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3755 	/*
3756 	 * When CPU and PCH are on the same package, port A
3757 	 * HPD must be enabled in both north and south.
3758 	 */
3759 	if (HAS_PCH_LPT_LP(dev_priv))
3760 		hotplug |= PORTA_HOTPLUG_ENABLE;
3761 	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3762 }
3763 
3764 static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv)
3765 {
3766 	u32 hotplug_irqs, enabled_irqs;
3767 
3768 	if (HAS_PCH_IBX(dev_priv)) {
3769 		hotplug_irqs = SDE_HOTPLUG_MASK;
3770 		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ibx);
3771 	} else {
3772 		hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3773 		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_cpt);
3774 	}
3775 
3776 	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3777 
3778 	ibx_hpd_detection_setup(dev_priv);
3779 }
3780 
3781 static void icp_hpd_detection_setup(struct drm_i915_private *dev_priv)
3782 {
3783 	u32 hotplug;
3784 
3785 	hotplug = I915_READ(SHOTPLUG_CTL_DDI);
3786 	hotplug |= ICP_DDIA_HPD_ENABLE |
3787 		   ICP_DDIB_HPD_ENABLE;
3788 	I915_WRITE(SHOTPLUG_CTL_DDI, hotplug);
3789 
3790 	hotplug = I915_READ(SHOTPLUG_CTL_TC);
3791 	hotplug |= ICP_TC_HPD_ENABLE(PORT_TC1) |
3792 		   ICP_TC_HPD_ENABLE(PORT_TC2) |
3793 		   ICP_TC_HPD_ENABLE(PORT_TC3) |
3794 		   ICP_TC_HPD_ENABLE(PORT_TC4);
3795 	I915_WRITE(SHOTPLUG_CTL_TC, hotplug);
3796 }
3797 
3798 static void icp_hpd_irq_setup(struct drm_i915_private *dev_priv)
3799 {
3800 	u32 hotplug_irqs, enabled_irqs;
3801 
3802 	hotplug_irqs = SDE_DDI_MASK_ICP | SDE_TC_MASK_ICP;
3803 	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_icp);
3804 
3805 	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3806 
3807 	icp_hpd_detection_setup(dev_priv);
3808 }
3809 
3810 static void gen11_hpd_detection_setup(struct drm_i915_private *dev_priv)
3811 {
3812 	u32 hotplug;
3813 
3814 	hotplug = I915_READ(GEN11_TC_HOTPLUG_CTL);
3815 	hotplug |= GEN11_HOTPLUG_CTL_ENABLE(PORT_TC1) |
3816 		   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC2) |
3817 		   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC3) |
3818 		   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC4);
3819 	I915_WRITE(GEN11_TC_HOTPLUG_CTL, hotplug);
3820 
3821 	hotplug = I915_READ(GEN11_TBT_HOTPLUG_CTL);
3822 	hotplug |= GEN11_HOTPLUG_CTL_ENABLE(PORT_TC1) |
3823 		   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC2) |
3824 		   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC3) |
3825 		   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC4);
3826 	I915_WRITE(GEN11_TBT_HOTPLUG_CTL, hotplug);
3827 }
3828 
3829 static void gen11_hpd_irq_setup(struct drm_i915_private *dev_priv)
3830 {
3831 	u32 hotplug_irqs, enabled_irqs;
3832 	u32 val;
3833 
3834 	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_gen11);
3835 	hotplug_irqs = GEN11_DE_TC_HOTPLUG_MASK | GEN11_DE_TBT_HOTPLUG_MASK;
3836 
3837 	val = I915_READ(GEN11_DE_HPD_IMR);
3838 	val &= ~hotplug_irqs;
3839 	I915_WRITE(GEN11_DE_HPD_IMR, val);
3840 	POSTING_READ(GEN11_DE_HPD_IMR);
3841 
3842 	gen11_hpd_detection_setup(dev_priv);
3843 
3844 	if (HAS_PCH_ICP(dev_priv))
3845 		icp_hpd_irq_setup(dev_priv);
3846 }
3847 
3848 static void spt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3849 {
3850 	u32 val, hotplug;
3851 
3852 	/* Display WA #1179 WaHardHangonHotPlug: cnp */
3853 	if (HAS_PCH_CNP(dev_priv)) {
3854 		val = I915_READ(SOUTH_CHICKEN1);
3855 		val &= ~CHASSIS_CLK_REQ_DURATION_MASK;
3856 		val |= CHASSIS_CLK_REQ_DURATION(0xf);
3857 		I915_WRITE(SOUTH_CHICKEN1, val);
3858 	}
3859 
3860 	/* Enable digital hotplug on the PCH */
3861 	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3862 	hotplug |= PORTA_HOTPLUG_ENABLE |
3863 		   PORTB_HOTPLUG_ENABLE |
3864 		   PORTC_HOTPLUG_ENABLE |
3865 		   PORTD_HOTPLUG_ENABLE;
3866 	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3867 
3868 	hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3869 	hotplug |= PORTE_HOTPLUG_ENABLE;
3870 	I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3871 }
3872 
3873 static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3874 {
3875 	u32 hotplug_irqs, enabled_irqs;
3876 
3877 	hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3878 	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_spt);
3879 
3880 	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3881 
3882 	spt_hpd_detection_setup(dev_priv);
3883 }
3884 
3885 static void ilk_hpd_detection_setup(struct drm_i915_private *dev_priv)
3886 {
3887 	u32 hotplug;
3888 
3889 	/*
3890 	 * Enable digital hotplug on the CPU, and configure the DP short pulse
3891 	 * duration to 2ms (which is the minimum in the Display Port spec)
3892 	 * The pulse duration bits are reserved on HSW+.
3893 	 */
3894 	hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3895 	hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3896 	hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE |
3897 		   DIGITAL_PORTA_PULSE_DURATION_2ms;
3898 	I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3899 }
3900 
3901 static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv)
3902 {
3903 	u32 hotplug_irqs, enabled_irqs;
3904 
3905 	if (INTEL_GEN(dev_priv) >= 8) {
3906 		hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3907 		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bdw);
3908 
3909 		bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3910 	} else if (INTEL_GEN(dev_priv) >= 7) {
3911 		hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3912 		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ivb);
3913 
3914 		ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3915 	} else {
3916 		hotplug_irqs = DE_DP_A_HOTPLUG;
3917 		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ilk);
3918 
3919 		ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3920 	}
3921 
3922 	ilk_hpd_detection_setup(dev_priv);
3923 
3924 	ibx_hpd_irq_setup(dev_priv);
3925 }
3926 
3927 static void __bxt_hpd_detection_setup(struct drm_i915_private *dev_priv,
3928 				      u32 enabled_irqs)
3929 {
3930 	u32 hotplug;
3931 
3932 	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3933 	hotplug |= PORTA_HOTPLUG_ENABLE |
3934 		   PORTB_HOTPLUG_ENABLE |
3935 		   PORTC_HOTPLUG_ENABLE;
3936 
3937 	DRM_DEBUG_KMS("Invert bit setting: hp_ctl:%x hp_port:%x\n",
3938 		      hotplug, enabled_irqs);
3939 	hotplug &= ~BXT_DDI_HPD_INVERT_MASK;
3940 
3941 	/*
3942 	 * For BXT invert bit has to be set based on AOB design
3943 	 * for HPD detection logic, update it based on VBT fields.
3944 	 */
3945 	if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) &&
3946 	    intel_bios_is_port_hpd_inverted(dev_priv, PORT_A))
3947 		hotplug |= BXT_DDIA_HPD_INVERT;
3948 	if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) &&
3949 	    intel_bios_is_port_hpd_inverted(dev_priv, PORT_B))
3950 		hotplug |= BXT_DDIB_HPD_INVERT;
3951 	if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) &&
3952 	    intel_bios_is_port_hpd_inverted(dev_priv, PORT_C))
3953 		hotplug |= BXT_DDIC_HPD_INVERT;
3954 
3955 	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3956 }
3957 
3958 static void bxt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3959 {
3960 	__bxt_hpd_detection_setup(dev_priv, BXT_DE_PORT_HOTPLUG_MASK);
3961 }
3962 
3963 static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3964 {
3965 	u32 hotplug_irqs, enabled_irqs;
3966 
3967 	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bxt);
3968 	hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3969 
3970 	bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3971 
3972 	__bxt_hpd_detection_setup(dev_priv, enabled_irqs);
3973 }
3974 
3975 static void ibx_irq_postinstall(struct drm_device *dev)
3976 {
3977 	struct drm_i915_private *dev_priv = to_i915(dev);
3978 	u32 mask;
3979 
3980 	if (HAS_PCH_NOP(dev_priv))
3981 		return;
3982 
3983 	if (HAS_PCH_IBX(dev_priv))
3984 		mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3985 	else if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
3986 		mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3987 	else
3988 		mask = SDE_GMBUS_CPT;
3989 
3990 	gen3_assert_iir_is_zero(dev_priv, SDEIIR);
3991 	I915_WRITE(SDEIMR, ~mask);
3992 
3993 	if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
3994 	    HAS_PCH_LPT(dev_priv))
3995 		ibx_hpd_detection_setup(dev_priv);
3996 	else
3997 		spt_hpd_detection_setup(dev_priv);
3998 }
3999 
4000 static void gen5_gt_irq_postinstall(struct drm_device *dev)
4001 {
4002 	struct drm_i915_private *dev_priv = to_i915(dev);
4003 	u32 pm_irqs, gt_irqs;
4004 
4005 	pm_irqs = gt_irqs = 0;
4006 
4007 	dev_priv->gt_irq_mask = ~0;
4008 	if (HAS_L3_DPF(dev_priv)) {
4009 		/* L3 parity interrupt is always unmasked. */
4010 		dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev_priv);
4011 		gt_irqs |= GT_PARITY_ERROR(dev_priv);
4012 	}
4013 
4014 	gt_irqs |= GT_RENDER_USER_INTERRUPT;
4015 	if (IS_GEN5(dev_priv)) {
4016 		gt_irqs |= ILK_BSD_USER_INTERRUPT;
4017 	} else {
4018 		gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
4019 	}
4020 
4021 	GEN3_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
4022 
4023 	if (INTEL_GEN(dev_priv) >= 6) {
4024 		/*
4025 		 * RPS interrupts will get enabled/disabled on demand when RPS
4026 		 * itself is enabled/disabled.
4027 		 */
4028 		if (HAS_VEBOX(dev_priv)) {
4029 			pm_irqs |= PM_VEBOX_USER_INTERRUPT;
4030 			dev_priv->pm_ier |= PM_VEBOX_USER_INTERRUPT;
4031 		}
4032 
4033 		dev_priv->pm_imr = 0xffffffff;
4034 		GEN3_IRQ_INIT(GEN6_PM, dev_priv->pm_imr, pm_irqs);
4035 	}
4036 }
4037 
4038 static int ironlake_irq_postinstall(struct drm_device *dev)
4039 {
4040 	struct drm_i915_private *dev_priv = to_i915(dev);
4041 	u32 display_mask, extra_mask;
4042 
4043 	if (INTEL_GEN(dev_priv) >= 7) {
4044 		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
4045 				DE_PCH_EVENT_IVB | DE_AUX_CHANNEL_A_IVB);
4046 		extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
4047 			      DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
4048 			      DE_DP_A_HOTPLUG_IVB);
4049 	} else {
4050 		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
4051 				DE_AUX_CHANNEL_A | DE_PIPEB_CRC_DONE |
4052 				DE_PIPEA_CRC_DONE | DE_POISON);
4053 		extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
4054 			      DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
4055 			      DE_DP_A_HOTPLUG);
4056 	}
4057 
4058 	if (IS_HASWELL(dev_priv)) {
4059 		gen3_assert_iir_is_zero(dev_priv, EDP_PSR_IIR);
4060 		intel_psr_irq_control(dev_priv, dev_priv->psr.debug);
4061 		display_mask |= DE_EDP_PSR_INT_HSW;
4062 	}
4063 
4064 	dev_priv->irq_mask = ~display_mask;
4065 
4066 	ibx_irq_pre_postinstall(dev);
4067 
4068 	GEN3_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
4069 
4070 	gen5_gt_irq_postinstall(dev);
4071 
4072 	ilk_hpd_detection_setup(dev_priv);
4073 
4074 	ibx_irq_postinstall(dev);
4075 
4076 	if (IS_IRONLAKE_M(dev_priv)) {
4077 		/* Enable PCU event interrupts
4078 		 *
4079 		 * spinlocking not required here for correctness since interrupt
4080 		 * setup is guaranteed to run in single-threaded context. But we
4081 		 * need it to make the assert_spin_locked happy. */
4082 		spin_lock_irq(&dev_priv->irq_lock);
4083 		ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
4084 		spin_unlock_irq(&dev_priv->irq_lock);
4085 	}
4086 
4087 	return 0;
4088 }
4089 
4090 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
4091 {
4092 	lockdep_assert_held(&dev_priv->irq_lock);
4093 
4094 	if (dev_priv->display_irqs_enabled)
4095 		return;
4096 
4097 	dev_priv->display_irqs_enabled = true;
4098 
4099 	if (intel_irqs_enabled(dev_priv)) {
4100 		vlv_display_irq_reset(dev_priv);
4101 		vlv_display_irq_postinstall(dev_priv);
4102 	}
4103 }
4104 
4105 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
4106 {
4107 	lockdep_assert_held(&dev_priv->irq_lock);
4108 
4109 	if (!dev_priv->display_irqs_enabled)
4110 		return;
4111 
4112 	dev_priv->display_irqs_enabled = false;
4113 
4114 	if (intel_irqs_enabled(dev_priv))
4115 		vlv_display_irq_reset(dev_priv);
4116 }
4117 
4118 
4119 static int valleyview_irq_postinstall(struct drm_device *dev)
4120 {
4121 	struct drm_i915_private *dev_priv = to_i915(dev);
4122 
4123 	gen5_gt_irq_postinstall(dev);
4124 
4125 	spin_lock_irq(&dev_priv->irq_lock);
4126 	if (dev_priv->display_irqs_enabled)
4127 		vlv_display_irq_postinstall(dev_priv);
4128 	spin_unlock_irq(&dev_priv->irq_lock);
4129 
4130 	I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
4131 	POSTING_READ(VLV_MASTER_IER);
4132 
4133 	return 0;
4134 }
4135 
4136 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
4137 {
4138 	/* These are interrupts we'll toggle with the ring mask register */
4139 	uint32_t gt_interrupts[] = {
4140 		GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
4141 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
4142 			GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
4143 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
4144 		GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
4145 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
4146 			GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
4147 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
4148 		0,
4149 		GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
4150 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
4151 		};
4152 
4153 	if (HAS_L3_DPF(dev_priv))
4154 		gt_interrupts[0] |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
4155 
4156 	dev_priv->pm_ier = 0x0;
4157 	dev_priv->pm_imr = ~dev_priv->pm_ier;
4158 	GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
4159 	GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
4160 	/*
4161 	 * RPS interrupts will get enabled/disabled on demand when RPS itself
4162 	 * is enabled/disabled. Same wil be the case for GuC interrupts.
4163 	 */
4164 	GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_imr, dev_priv->pm_ier);
4165 	GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
4166 }
4167 
4168 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
4169 {
4170 	uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
4171 	uint32_t de_pipe_enables;
4172 	u32 de_port_masked = GEN8_AUX_CHANNEL_A;
4173 	u32 de_port_enables;
4174 	u32 de_misc_masked = GEN8_DE_EDP_PSR;
4175 	enum pipe pipe;
4176 
4177 	if (INTEL_GEN(dev_priv) <= 10)
4178 		de_misc_masked |= GEN8_DE_MISC_GSE;
4179 
4180 	if (INTEL_GEN(dev_priv) >= 9) {
4181 		de_pipe_masked |= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
4182 		de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
4183 				  GEN9_AUX_CHANNEL_D;
4184 		if (IS_GEN9_LP(dev_priv))
4185 			de_port_masked |= BXT_DE_PORT_GMBUS;
4186 	} else {
4187 		de_pipe_masked |= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
4188 	}
4189 
4190 	if (INTEL_GEN(dev_priv) >= 11)
4191 		de_port_masked |= ICL_AUX_CHANNEL_E;
4192 
4193 	if (IS_CNL_WITH_PORT_F(dev_priv) || INTEL_GEN(dev_priv) >= 11)
4194 		de_port_masked |= CNL_AUX_CHANNEL_F;
4195 
4196 	de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
4197 					   GEN8_PIPE_FIFO_UNDERRUN;
4198 
4199 	de_port_enables = de_port_masked;
4200 	if (IS_GEN9_LP(dev_priv))
4201 		de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
4202 	else if (IS_BROADWELL(dev_priv))
4203 		de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
4204 
4205 	gen3_assert_iir_is_zero(dev_priv, EDP_PSR_IIR);
4206 	intel_psr_irq_control(dev_priv, dev_priv->psr.debug);
4207 
4208 	for_each_pipe(dev_priv, pipe) {
4209 		dev_priv->de_irq_mask[pipe] = ~de_pipe_masked;
4210 
4211 		if (intel_display_power_is_enabled(dev_priv,
4212 				POWER_DOMAIN_PIPE(pipe)))
4213 			GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
4214 					  dev_priv->de_irq_mask[pipe],
4215 					  de_pipe_enables);
4216 	}
4217 
4218 	GEN3_IRQ_INIT(GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
4219 	GEN3_IRQ_INIT(GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked);
4220 
4221 	if (INTEL_GEN(dev_priv) >= 11) {
4222 		u32 de_hpd_masked = 0;
4223 		u32 de_hpd_enables = GEN11_DE_TC_HOTPLUG_MASK |
4224 				     GEN11_DE_TBT_HOTPLUG_MASK;
4225 
4226 		GEN3_IRQ_INIT(GEN11_DE_HPD_, ~de_hpd_masked, de_hpd_enables);
4227 		gen11_hpd_detection_setup(dev_priv);
4228 	} else if (IS_GEN9_LP(dev_priv)) {
4229 		bxt_hpd_detection_setup(dev_priv);
4230 	} else if (IS_BROADWELL(dev_priv)) {
4231 		ilk_hpd_detection_setup(dev_priv);
4232 	}
4233 }
4234 
4235 static int gen8_irq_postinstall(struct drm_device *dev)
4236 {
4237 	struct drm_i915_private *dev_priv = to_i915(dev);
4238 
4239 	if (HAS_PCH_SPLIT(dev_priv))
4240 		ibx_irq_pre_postinstall(dev);
4241 
4242 	gen8_gt_irq_postinstall(dev_priv);
4243 	gen8_de_irq_postinstall(dev_priv);
4244 
4245 	if (HAS_PCH_SPLIT(dev_priv))
4246 		ibx_irq_postinstall(dev);
4247 
4248 	I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
4249 	POSTING_READ(GEN8_MASTER_IRQ);
4250 
4251 	return 0;
4252 }
4253 
4254 static void gen11_gt_irq_postinstall(struct drm_i915_private *dev_priv)
4255 {
4256 	const u32 irqs = GT_RENDER_USER_INTERRUPT | GT_CONTEXT_SWITCH_INTERRUPT;
4257 
4258 	BUILD_BUG_ON(irqs & 0xffff0000);
4259 
4260 	/* Enable RCS, BCS, VCS and VECS class interrupts. */
4261 	I915_WRITE(GEN11_RENDER_COPY_INTR_ENABLE, irqs << 16 | irqs);
4262 	I915_WRITE(GEN11_VCS_VECS_INTR_ENABLE,	  irqs << 16 | irqs);
4263 
4264 	/* Unmask irqs on RCS, BCS, VCS and VECS engines. */
4265 	I915_WRITE(GEN11_RCS0_RSVD_INTR_MASK,	~(irqs << 16));
4266 	I915_WRITE(GEN11_BCS_RSVD_INTR_MASK,	~(irqs << 16));
4267 	I915_WRITE(GEN11_VCS0_VCS1_INTR_MASK,	~(irqs | irqs << 16));
4268 	I915_WRITE(GEN11_VCS2_VCS3_INTR_MASK,	~(irqs | irqs << 16));
4269 	I915_WRITE(GEN11_VECS0_VECS1_INTR_MASK,	~(irqs | irqs << 16));
4270 
4271 	/*
4272 	 * RPS interrupts will get enabled/disabled on demand when RPS itself
4273 	 * is enabled/disabled.
4274 	 */
4275 	dev_priv->pm_ier = 0x0;
4276 	dev_priv->pm_imr = ~dev_priv->pm_ier;
4277 	I915_WRITE(GEN11_GPM_WGBOXPERF_INTR_ENABLE, 0);
4278 	I915_WRITE(GEN11_GPM_WGBOXPERF_INTR_MASK,  ~0);
4279 }
4280 
4281 static void icp_irq_postinstall(struct drm_device *dev)
4282 {
4283 	struct drm_i915_private *dev_priv = to_i915(dev);
4284 	u32 mask = SDE_GMBUS_ICP;
4285 
4286 	WARN_ON(I915_READ(SDEIER) != 0);
4287 	I915_WRITE(SDEIER, 0xffffffff);
4288 	POSTING_READ(SDEIER);
4289 
4290 	gen3_assert_iir_is_zero(dev_priv, SDEIIR);
4291 	I915_WRITE(SDEIMR, ~mask);
4292 
4293 	icp_hpd_detection_setup(dev_priv);
4294 }
4295 
4296 static int gen11_irq_postinstall(struct drm_device *dev)
4297 {
4298 	struct drm_i915_private *dev_priv = dev->dev_private;
4299 	u32 gu_misc_masked = GEN11_GU_MISC_GSE;
4300 
4301 	if (HAS_PCH_ICP(dev_priv))
4302 		icp_irq_postinstall(dev);
4303 
4304 	gen11_gt_irq_postinstall(dev_priv);
4305 	gen8_de_irq_postinstall(dev_priv);
4306 
4307 	GEN3_IRQ_INIT(GEN11_GU_MISC_, ~gu_misc_masked, gu_misc_masked);
4308 
4309 	I915_WRITE(GEN11_DISPLAY_INT_CTL, GEN11_DISPLAY_IRQ_ENABLE);
4310 
4311 	I915_WRITE(GEN11_GFX_MSTR_IRQ, GEN11_MASTER_IRQ);
4312 	POSTING_READ(GEN11_GFX_MSTR_IRQ);
4313 
4314 	return 0;
4315 }
4316 
4317 static int cherryview_irq_postinstall(struct drm_device *dev)
4318 {
4319 	struct drm_i915_private *dev_priv = to_i915(dev);
4320 
4321 	gen8_gt_irq_postinstall(dev_priv);
4322 
4323 	spin_lock_irq(&dev_priv->irq_lock);
4324 	if (dev_priv->display_irqs_enabled)
4325 		vlv_display_irq_postinstall(dev_priv);
4326 	spin_unlock_irq(&dev_priv->irq_lock);
4327 
4328 	I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
4329 	POSTING_READ(GEN8_MASTER_IRQ);
4330 
4331 	return 0;
4332 }
4333 
4334 static void i8xx_irq_reset(struct drm_device *dev)
4335 {
4336 	struct drm_i915_private *dev_priv = to_i915(dev);
4337 
4338 	i9xx_pipestat_irq_reset(dev_priv);
4339 
4340 	I915_WRITE16(HWSTAM, 0xffff);
4341 
4342 	GEN2_IRQ_RESET();
4343 }
4344 
4345 static int i8xx_irq_postinstall(struct drm_device *dev)
4346 {
4347 	struct drm_i915_private *dev_priv = to_i915(dev);
4348 	u16 enable_mask;
4349 
4350 	I915_WRITE16(EMR, ~(I915_ERROR_PAGE_TABLE |
4351 			    I915_ERROR_MEMORY_REFRESH));
4352 
4353 	/* Unmask the interrupts that we always want on. */
4354 	dev_priv->irq_mask =
4355 		~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4356 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4357 		  I915_MASTER_ERROR_INTERRUPT);
4358 
4359 	enable_mask =
4360 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4361 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4362 		I915_MASTER_ERROR_INTERRUPT |
4363 		I915_USER_INTERRUPT;
4364 
4365 	GEN2_IRQ_INIT(, dev_priv->irq_mask, enable_mask);
4366 
4367 	/* Interrupt setup is already guaranteed to be single-threaded, this is
4368 	 * just to make the assert_spin_locked check happy. */
4369 	spin_lock_irq(&dev_priv->irq_lock);
4370 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4371 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4372 	spin_unlock_irq(&dev_priv->irq_lock);
4373 
4374 	return 0;
4375 }
4376 
4377 static void i8xx_error_irq_ack(struct drm_i915_private *dev_priv,
4378 			       u16 *eir, u16 *eir_stuck)
4379 {
4380 	u16 emr;
4381 
4382 	*eir = I915_READ16(EIR);
4383 
4384 	if (*eir)
4385 		I915_WRITE16(EIR, *eir);
4386 
4387 	*eir_stuck = I915_READ16(EIR);
4388 	if (*eir_stuck == 0)
4389 		return;
4390 
4391 	/*
4392 	 * Toggle all EMR bits to make sure we get an edge
4393 	 * in the ISR master error bit if we don't clear
4394 	 * all the EIR bits. Otherwise the edge triggered
4395 	 * IIR on i965/g4x wouldn't notice that an interrupt
4396 	 * is still pending. Also some EIR bits can't be
4397 	 * cleared except by handling the underlying error
4398 	 * (or by a GPU reset) so we mask any bit that
4399 	 * remains set.
4400 	 */
4401 	emr = I915_READ16(EMR);
4402 	I915_WRITE16(EMR, 0xffff);
4403 	I915_WRITE16(EMR, emr | *eir_stuck);
4404 }
4405 
4406 static void i8xx_error_irq_handler(struct drm_i915_private *dev_priv,
4407 				   u16 eir, u16 eir_stuck)
4408 {
4409 	DRM_DEBUG("Master Error: EIR 0x%04x\n", eir);
4410 
4411 	if (eir_stuck)
4412 		DRM_DEBUG_DRIVER("EIR stuck: 0x%04x, masked\n", eir_stuck);
4413 }
4414 
4415 static void i9xx_error_irq_ack(struct drm_i915_private *dev_priv,
4416 			       u32 *eir, u32 *eir_stuck)
4417 {
4418 	u32 emr;
4419 
4420 	*eir = I915_READ(EIR);
4421 
4422 	I915_WRITE(EIR, *eir);
4423 
4424 	*eir_stuck = I915_READ(EIR);
4425 	if (*eir_stuck == 0)
4426 		return;
4427 
4428 	/*
4429 	 * Toggle all EMR bits to make sure we get an edge
4430 	 * in the ISR master error bit if we don't clear
4431 	 * all the EIR bits. Otherwise the edge triggered
4432 	 * IIR on i965/g4x wouldn't notice that an interrupt
4433 	 * is still pending. Also some EIR bits can't be
4434 	 * cleared except by handling the underlying error
4435 	 * (or by a GPU reset) so we mask any bit that
4436 	 * remains set.
4437 	 */
4438 	emr = I915_READ(EMR);
4439 	I915_WRITE(EMR, 0xffffffff);
4440 	I915_WRITE(EMR, emr | *eir_stuck);
4441 }
4442 
4443 static void i9xx_error_irq_handler(struct drm_i915_private *dev_priv,
4444 				   u32 eir, u32 eir_stuck)
4445 {
4446 	DRM_DEBUG("Master Error, EIR 0x%08x\n", eir);
4447 
4448 	if (eir_stuck)
4449 		DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masked\n", eir_stuck);
4450 }
4451 
4452 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
4453 {
4454 	struct drm_device *dev = arg;
4455 	struct drm_i915_private *dev_priv = to_i915(dev);
4456 	irqreturn_t ret = IRQ_NONE;
4457 
4458 	if (!intel_irqs_enabled(dev_priv))
4459 		return IRQ_NONE;
4460 
4461 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
4462 	disable_rpm_wakeref_asserts(dev_priv);
4463 
4464 	do {
4465 		u32 pipe_stats[I915_MAX_PIPES] = {};
4466 		u16 eir = 0, eir_stuck = 0;
4467 		u16 iir;
4468 
4469 		iir = I915_READ16(IIR);
4470 		if (iir == 0)
4471 			break;
4472 
4473 		ret = IRQ_HANDLED;
4474 
4475 		/* Call regardless, as some status bits might not be
4476 		 * signalled in iir */
4477 		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
4478 
4479 		if (iir & I915_MASTER_ERROR_INTERRUPT)
4480 			i8xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
4481 
4482 		I915_WRITE16(IIR, iir);
4483 
4484 		if (iir & I915_USER_INTERRUPT)
4485 			notify_ring(dev_priv->engine[RCS]);
4486 
4487 		if (iir & I915_MASTER_ERROR_INTERRUPT)
4488 			i8xx_error_irq_handler(dev_priv, eir, eir_stuck);
4489 
4490 		i8xx_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4491 	} while (0);
4492 
4493 	enable_rpm_wakeref_asserts(dev_priv);
4494 
4495 	return ret;
4496 }
4497 
4498 static void i915_irq_reset(struct drm_device *dev)
4499 {
4500 	struct drm_i915_private *dev_priv = to_i915(dev);
4501 
4502 	if (I915_HAS_HOTPLUG(dev_priv)) {
4503 		i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4504 		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4505 	}
4506 
4507 	i9xx_pipestat_irq_reset(dev_priv);
4508 
4509 	I915_WRITE(HWSTAM, 0xffffffff);
4510 
4511 	GEN3_IRQ_RESET();
4512 }
4513 
4514 static int i915_irq_postinstall(struct drm_device *dev)
4515 {
4516 	struct drm_i915_private *dev_priv = to_i915(dev);
4517 	u32 enable_mask;
4518 
4519 	I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE |
4520 			  I915_ERROR_MEMORY_REFRESH));
4521 
4522 	/* Unmask the interrupts that we always want on. */
4523 	dev_priv->irq_mask =
4524 		~(I915_ASLE_INTERRUPT |
4525 		  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4526 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4527 		  I915_MASTER_ERROR_INTERRUPT);
4528 
4529 	enable_mask =
4530 		I915_ASLE_INTERRUPT |
4531 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4532 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4533 		I915_MASTER_ERROR_INTERRUPT |
4534 		I915_USER_INTERRUPT;
4535 
4536 	if (I915_HAS_HOTPLUG(dev_priv)) {
4537 		/* Enable in IER... */
4538 		enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
4539 		/* and unmask in IMR */
4540 		dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
4541 	}
4542 
4543 	GEN3_IRQ_INIT(, dev_priv->irq_mask, enable_mask);
4544 
4545 	/* Interrupt setup is already guaranteed to be single-threaded, this is
4546 	 * just to make the assert_spin_locked check happy. */
4547 	spin_lock_irq(&dev_priv->irq_lock);
4548 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4549 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4550 	spin_unlock_irq(&dev_priv->irq_lock);
4551 
4552 	i915_enable_asle_pipestat(dev_priv);
4553 
4554 	return 0;
4555 }
4556 
4557 static irqreturn_t i915_irq_handler(int irq, void *arg)
4558 {
4559 	struct drm_device *dev = arg;
4560 	struct drm_i915_private *dev_priv = to_i915(dev);
4561 	irqreturn_t ret = IRQ_NONE;
4562 
4563 	if (!intel_irqs_enabled(dev_priv))
4564 		return IRQ_NONE;
4565 
4566 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
4567 	disable_rpm_wakeref_asserts(dev_priv);
4568 
4569 	do {
4570 		u32 pipe_stats[I915_MAX_PIPES] = {};
4571 		u32 eir = 0, eir_stuck = 0;
4572 		u32 hotplug_status = 0;
4573 		u32 iir;
4574 
4575 		iir = I915_READ(IIR);
4576 		if (iir == 0)
4577 			break;
4578 
4579 		ret = IRQ_HANDLED;
4580 
4581 		if (I915_HAS_HOTPLUG(dev_priv) &&
4582 		    iir & I915_DISPLAY_PORT_INTERRUPT)
4583 			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4584 
4585 		/* Call regardless, as some status bits might not be
4586 		 * signalled in iir */
4587 		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
4588 
4589 		if (iir & I915_MASTER_ERROR_INTERRUPT)
4590 			i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
4591 
4592 		I915_WRITE(IIR, iir);
4593 
4594 		if (iir & I915_USER_INTERRUPT)
4595 			notify_ring(dev_priv->engine[RCS]);
4596 
4597 		if (iir & I915_MASTER_ERROR_INTERRUPT)
4598 			i9xx_error_irq_handler(dev_priv, eir, eir_stuck);
4599 
4600 		if (hotplug_status)
4601 			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4602 
4603 		i915_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4604 	} while (0);
4605 
4606 	enable_rpm_wakeref_asserts(dev_priv);
4607 
4608 	return ret;
4609 }
4610 
4611 static void i965_irq_reset(struct drm_device *dev)
4612 {
4613 	struct drm_i915_private *dev_priv = to_i915(dev);
4614 
4615 	i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4616 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4617 
4618 	i9xx_pipestat_irq_reset(dev_priv);
4619 
4620 	I915_WRITE(HWSTAM, 0xffffffff);
4621 
4622 	GEN3_IRQ_RESET();
4623 }
4624 
4625 static int i965_irq_postinstall(struct drm_device *dev)
4626 {
4627 	struct drm_i915_private *dev_priv = to_i915(dev);
4628 	u32 enable_mask;
4629 	u32 error_mask;
4630 
4631 	/*
4632 	 * Enable some error detection, note the instruction error mask
4633 	 * bit is reserved, so we leave it masked.
4634 	 */
4635 	if (IS_G4X(dev_priv)) {
4636 		error_mask = ~(GM45_ERROR_PAGE_TABLE |
4637 			       GM45_ERROR_MEM_PRIV |
4638 			       GM45_ERROR_CP_PRIV |
4639 			       I915_ERROR_MEMORY_REFRESH);
4640 	} else {
4641 		error_mask = ~(I915_ERROR_PAGE_TABLE |
4642 			       I915_ERROR_MEMORY_REFRESH);
4643 	}
4644 	I915_WRITE(EMR, error_mask);
4645 
4646 	/* Unmask the interrupts that we always want on. */
4647 	dev_priv->irq_mask =
4648 		~(I915_ASLE_INTERRUPT |
4649 		  I915_DISPLAY_PORT_INTERRUPT |
4650 		  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4651 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4652 		  I915_MASTER_ERROR_INTERRUPT);
4653 
4654 	enable_mask =
4655 		I915_ASLE_INTERRUPT |
4656 		I915_DISPLAY_PORT_INTERRUPT |
4657 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4658 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4659 		I915_MASTER_ERROR_INTERRUPT |
4660 		I915_USER_INTERRUPT;
4661 
4662 	if (IS_G4X(dev_priv))
4663 		enable_mask |= I915_BSD_USER_INTERRUPT;
4664 
4665 	GEN3_IRQ_INIT(, dev_priv->irq_mask, enable_mask);
4666 
4667 	/* Interrupt setup is already guaranteed to be single-threaded, this is
4668 	 * just to make the assert_spin_locked check happy. */
4669 	spin_lock_irq(&dev_priv->irq_lock);
4670 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4671 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4672 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4673 	spin_unlock_irq(&dev_priv->irq_lock);
4674 
4675 	i915_enable_asle_pipestat(dev_priv);
4676 
4677 	return 0;
4678 }
4679 
4680 static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv)
4681 {
4682 	u32 hotplug_en;
4683 
4684 	lockdep_assert_held(&dev_priv->irq_lock);
4685 
4686 	/* Note HDMI and DP share hotplug bits */
4687 	/* enable bits are the same for all generations */
4688 	hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915);
4689 	/* Programming the CRT detection parameters tends
4690 	   to generate a spurious hotplug event about three
4691 	   seconds later.  So just do it once.
4692 	*/
4693 	if (IS_G4X(dev_priv))
4694 		hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4695 	hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4696 
4697 	/* Ignore TV since it's buggy */
4698 	i915_hotplug_interrupt_update_locked(dev_priv,
4699 					     HOTPLUG_INT_EN_MASK |
4700 					     CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
4701 					     CRT_HOTPLUG_ACTIVATION_PERIOD_64,
4702 					     hotplug_en);
4703 }
4704 
4705 static irqreturn_t i965_irq_handler(int irq, void *arg)
4706 {
4707 	struct drm_device *dev = arg;
4708 	struct drm_i915_private *dev_priv = to_i915(dev);
4709 	irqreturn_t ret = IRQ_NONE;
4710 
4711 	if (!intel_irqs_enabled(dev_priv))
4712 		return IRQ_NONE;
4713 
4714 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
4715 	disable_rpm_wakeref_asserts(dev_priv);
4716 
4717 	do {
4718 		u32 pipe_stats[I915_MAX_PIPES] = {};
4719 		u32 eir = 0, eir_stuck = 0;
4720 		u32 hotplug_status = 0;
4721 		u32 iir;
4722 
4723 		iir = I915_READ(IIR);
4724 		if (iir == 0)
4725 			break;
4726 
4727 		ret = IRQ_HANDLED;
4728 
4729 		if (iir & I915_DISPLAY_PORT_INTERRUPT)
4730 			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4731 
4732 		/* Call regardless, as some status bits might not be
4733 		 * signalled in iir */
4734 		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
4735 
4736 		if (iir & I915_MASTER_ERROR_INTERRUPT)
4737 			i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
4738 
4739 		I915_WRITE(IIR, iir);
4740 
4741 		if (iir & I915_USER_INTERRUPT)
4742 			notify_ring(dev_priv->engine[RCS]);
4743 
4744 		if (iir & I915_BSD_USER_INTERRUPT)
4745 			notify_ring(dev_priv->engine[VCS]);
4746 
4747 		if (iir & I915_MASTER_ERROR_INTERRUPT)
4748 			i9xx_error_irq_handler(dev_priv, eir, eir_stuck);
4749 
4750 		if (hotplug_status)
4751 			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4752 
4753 		i965_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4754 	} while (0);
4755 
4756 	enable_rpm_wakeref_asserts(dev_priv);
4757 
4758 	return ret;
4759 }
4760 
4761 /**
4762  * intel_irq_init - initializes irq support
4763  * @dev_priv: i915 device instance
4764  *
4765  * This function initializes all the irq support including work items, timers
4766  * and all the vtables. It does not setup the interrupt itself though.
4767  */
4768 void intel_irq_init(struct drm_i915_private *dev_priv)
4769 {
4770 	struct drm_device *dev = &dev_priv->drm;
4771 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
4772 	int i;
4773 
4774 	intel_hpd_init_work(dev_priv);
4775 
4776 	INIT_WORK(&rps->work, gen6_pm_rps_work);
4777 
4778 	INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4779 	for (i = 0; i < MAX_L3_SLICES; ++i)
4780 		dev_priv->l3_parity.remap_info[i] = NULL;
4781 
4782 	if (HAS_GUC_SCHED(dev_priv))
4783 		dev_priv->pm_guc_events = GEN9_GUC_TO_HOST_INT_EVENT;
4784 
4785 	/* Let's track the enabled rps events */
4786 	if (IS_VALLEYVIEW(dev_priv))
4787 		/* WaGsvRC0ResidencyMethod:vlv */
4788 		dev_priv->pm_rps_events = GEN6_PM_RP_UP_EI_EXPIRED;
4789 	else
4790 		dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4791 
4792 	rps->pm_intrmsk_mbz = 0;
4793 
4794 	/*
4795 	 * SNB,IVB,HSW can while VLV,CHV may hard hang on looping batchbuffer
4796 	 * if GEN6_PM_UP_EI_EXPIRED is masked.
4797 	 *
4798 	 * TODO: verify if this can be reproduced on VLV,CHV.
4799 	 */
4800 	if (INTEL_GEN(dev_priv) <= 7)
4801 		rps->pm_intrmsk_mbz |= GEN6_PM_RP_UP_EI_EXPIRED;
4802 
4803 	if (INTEL_GEN(dev_priv) >= 8)
4804 		rps->pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
4805 
4806 	if (IS_GEN2(dev_priv)) {
4807 		/* Gen2 doesn't have a hardware frame counter */
4808 		dev->max_vblank_count = 0;
4809 	} else if (IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
4810 		dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4811 		dev->driver->get_vblank_counter = g4x_get_vblank_counter;
4812 	} else {
4813 		dev->driver->get_vblank_counter = i915_get_vblank_counter;
4814 		dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4815 	}
4816 
4817 	/*
4818 	 * Opt out of the vblank disable timer on everything except gen2.
4819 	 * Gen2 doesn't have a hardware frame counter and so depends on
4820 	 * vblank interrupts to produce sane vblank seuquence numbers.
4821 	 */
4822 	if (!IS_GEN2(dev_priv))
4823 		dev->vblank_disable_immediate = true;
4824 
4825 	/* Most platforms treat the display irq block as an always-on
4826 	 * power domain. vlv/chv can disable it at runtime and need
4827 	 * special care to avoid writing any of the display block registers
4828 	 * outside of the power domain. We defer setting up the display irqs
4829 	 * in this case to the runtime pm.
4830 	 */
4831 	dev_priv->display_irqs_enabled = true;
4832 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4833 		dev_priv->display_irqs_enabled = false;
4834 
4835 	dev_priv->hotplug.hpd_storm_threshold = HPD_STORM_DEFAULT_THRESHOLD;
4836 
4837 	dev->driver->get_vblank_timestamp = drm_calc_vbltimestamp_from_scanoutpos;
4838 	dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4839 
4840 	if (IS_CHERRYVIEW(dev_priv)) {
4841 		dev->driver->irq_handler = cherryview_irq_handler;
4842 		dev->driver->irq_preinstall = cherryview_irq_reset;
4843 		dev->driver->irq_postinstall = cherryview_irq_postinstall;
4844 		dev->driver->irq_uninstall = cherryview_irq_reset;
4845 		dev->driver->enable_vblank = i965_enable_vblank;
4846 		dev->driver->disable_vblank = i965_disable_vblank;
4847 		dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4848 	} else if (IS_VALLEYVIEW(dev_priv)) {
4849 		dev->driver->irq_handler = valleyview_irq_handler;
4850 		dev->driver->irq_preinstall = valleyview_irq_reset;
4851 		dev->driver->irq_postinstall = valleyview_irq_postinstall;
4852 		dev->driver->irq_uninstall = valleyview_irq_reset;
4853 		dev->driver->enable_vblank = i965_enable_vblank;
4854 		dev->driver->disable_vblank = i965_disable_vblank;
4855 		dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4856 	} else if (INTEL_GEN(dev_priv) >= 11) {
4857 		dev->driver->irq_handler = gen11_irq_handler;
4858 		dev->driver->irq_preinstall = gen11_irq_reset;
4859 		dev->driver->irq_postinstall = gen11_irq_postinstall;
4860 		dev->driver->irq_uninstall = gen11_irq_reset;
4861 		dev->driver->enable_vblank = gen8_enable_vblank;
4862 		dev->driver->disable_vblank = gen8_disable_vblank;
4863 		dev_priv->display.hpd_irq_setup = gen11_hpd_irq_setup;
4864 	} else if (INTEL_GEN(dev_priv) >= 8) {
4865 		dev->driver->irq_handler = gen8_irq_handler;
4866 		dev->driver->irq_preinstall = gen8_irq_reset;
4867 		dev->driver->irq_postinstall = gen8_irq_postinstall;
4868 		dev->driver->irq_uninstall = gen8_irq_reset;
4869 		dev->driver->enable_vblank = gen8_enable_vblank;
4870 		dev->driver->disable_vblank = gen8_disable_vblank;
4871 		if (IS_GEN9_LP(dev_priv))
4872 			dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4873 		else if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv) ||
4874 			 HAS_PCH_CNP(dev_priv))
4875 			dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4876 		else
4877 			dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4878 	} else if (HAS_PCH_SPLIT(dev_priv)) {
4879 		dev->driver->irq_handler = ironlake_irq_handler;
4880 		dev->driver->irq_preinstall = ironlake_irq_reset;
4881 		dev->driver->irq_postinstall = ironlake_irq_postinstall;
4882 		dev->driver->irq_uninstall = ironlake_irq_reset;
4883 		dev->driver->enable_vblank = ironlake_enable_vblank;
4884 		dev->driver->disable_vblank = ironlake_disable_vblank;
4885 		dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4886 	} else {
4887 		if (IS_GEN2(dev_priv)) {
4888 			dev->driver->irq_preinstall = i8xx_irq_reset;
4889 			dev->driver->irq_postinstall = i8xx_irq_postinstall;
4890 			dev->driver->irq_handler = i8xx_irq_handler;
4891 			dev->driver->irq_uninstall = i8xx_irq_reset;
4892 			dev->driver->enable_vblank = i8xx_enable_vblank;
4893 			dev->driver->disable_vblank = i8xx_disable_vblank;
4894 		} else if (IS_GEN3(dev_priv)) {
4895 			dev->driver->irq_preinstall = i915_irq_reset;
4896 			dev->driver->irq_postinstall = i915_irq_postinstall;
4897 			dev->driver->irq_uninstall = i915_irq_reset;
4898 			dev->driver->irq_handler = i915_irq_handler;
4899 			dev->driver->enable_vblank = i8xx_enable_vblank;
4900 			dev->driver->disable_vblank = i8xx_disable_vblank;
4901 		} else {
4902 			dev->driver->irq_preinstall = i965_irq_reset;
4903 			dev->driver->irq_postinstall = i965_irq_postinstall;
4904 			dev->driver->irq_uninstall = i965_irq_reset;
4905 			dev->driver->irq_handler = i965_irq_handler;
4906 			dev->driver->enable_vblank = i965_enable_vblank;
4907 			dev->driver->disable_vblank = i965_disable_vblank;
4908 		}
4909 		if (I915_HAS_HOTPLUG(dev_priv))
4910 			dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4911 	}
4912 }
4913 
4914 /**
4915  * intel_irq_fini - deinitializes IRQ support
4916  * @i915: i915 device instance
4917  *
4918  * This function deinitializes all the IRQ support.
4919  */
4920 void intel_irq_fini(struct drm_i915_private *i915)
4921 {
4922 	int i;
4923 
4924 	for (i = 0; i < MAX_L3_SLICES; ++i)
4925 		kfree(i915->l3_parity.remap_info[i]);
4926 }
4927 
4928 /**
4929  * intel_irq_install - enables the hardware interrupt
4930  * @dev_priv: i915 device instance
4931  *
4932  * This function enables the hardware interrupt handling, but leaves the hotplug
4933  * handling still disabled. It is called after intel_irq_init().
4934  *
4935  * In the driver load and resume code we need working interrupts in a few places
4936  * but don't want to deal with the hassle of concurrent probe and hotplug
4937  * workers. Hence the split into this two-stage approach.
4938  */
4939 int intel_irq_install(struct drm_i915_private *dev_priv)
4940 {
4941 	/*
4942 	 * We enable some interrupt sources in our postinstall hooks, so mark
4943 	 * interrupts as enabled _before_ actually enabling them to avoid
4944 	 * special cases in our ordering checks.
4945 	 */
4946 	dev_priv->runtime_pm.irqs_enabled = true;
4947 
4948 	return drm_irq_install(&dev_priv->drm, dev_priv->drm.pdev->irq);
4949 }
4950 
4951 /**
4952  * intel_irq_uninstall - finilizes all irq handling
4953  * @dev_priv: i915 device instance
4954  *
4955  * This stops interrupt and hotplug handling and unregisters and frees all
4956  * resources acquired in the init functions.
4957  */
4958 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4959 {
4960 	drm_irq_uninstall(&dev_priv->drm);
4961 	intel_hpd_cancel_work(dev_priv);
4962 	dev_priv->runtime_pm.irqs_enabled = false;
4963 }
4964 
4965 /**
4966  * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4967  * @dev_priv: i915 device instance
4968  *
4969  * This function is used to disable interrupts at runtime, both in the runtime
4970  * pm and the system suspend/resume code.
4971  */
4972 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4973 {
4974 	dev_priv->drm.driver->irq_uninstall(&dev_priv->drm);
4975 	dev_priv->runtime_pm.irqs_enabled = false;
4976 	synchronize_irq(dev_priv->drm.irq);
4977 }
4978 
4979 /**
4980  * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4981  * @dev_priv: i915 device instance
4982  *
4983  * This function is used to enable interrupts at runtime, both in the runtime
4984  * pm and the system suspend/resume code.
4985  */
4986 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4987 {
4988 	dev_priv->runtime_pm.irqs_enabled = true;
4989 	dev_priv->drm.driver->irq_preinstall(&dev_priv->drm);
4990 	dev_priv->drm.driver->irq_postinstall(&dev_priv->drm);
4991 }
4992