xref: /openbsd-src/sys/dev/pci/drm/i915/i915_gem_gtt.c (revision f2da64fbbbf1b03f09f390ab01267c93dfd77c4c)
1 /*	$OpenBSD: i915_gem_gtt.c,v 1.14 2015/10/18 18:00:45 kettenis Exp $	*/
2 /*
3  * Copyright © 2010 Daniel Vetter
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22  * IN THE SOFTWARE.
23  *
24  */
25 
26 #include <dev/pci/drm/drmP.h>
27 #include <dev/pci/drm/i915_drm.h>
28 #include "i915_drv.h"
29 #include "i915_trace.h"
30 #include "intel_drv.h"
31 
32 /* XXX */
33 #define _PAGE_PRESENT	PG_V
34 #define _PAGE_RW	PG_RW
35 #define _PAGE_PAT	PG_PAT
36 #define _PAGE_PWT	PG_WT
37 #define _PAGE_PCD	PG_N
38 
39 static void gen8_setup_private_ppat(struct drm_i915_private *dev_priv);
40 
41 #define GEN6_PPGTT_PD_ENTRIES 512
42 #define I915_PPGTT_PT_ENTRIES (PAGE_SIZE / sizeof(gen6_gtt_pte_t))
43 typedef uint64_t gen8_gtt_pte_t;
44 typedef gen8_gtt_pte_t gen8_ppgtt_pde_t;
45 
46 /* PPGTT stuff */
47 #define GEN6_GTT_ADDR_ENCODE(addr)	((addr) | (((addr) >> 28) & 0xff0))
48 #define HSW_GTT_ADDR_ENCODE(addr)	((addr) | (((addr) >> 28) & 0x7f0))
49 
50 #define GEN6_PDE_VALID			(1 << 0)
51 /* gen6+ has bit 11-4 for physical addr bit 39-32 */
52 #define GEN6_PDE_ADDR_ENCODE(addr)	GEN6_GTT_ADDR_ENCODE(addr)
53 
54 #define GEN6_PTE_VALID			(1 << 0)
55 #define GEN6_PTE_UNCACHED		(1 << 1)
56 #define HSW_PTE_UNCACHED		(0)
57 #define GEN6_PTE_CACHE_LLC		(2 << 1)
58 #define GEN7_PTE_CACHE_L3_LLC		(3 << 1)
59 #define GEN6_PTE_ADDR_ENCODE(addr)	GEN6_GTT_ADDR_ENCODE(addr)
60 #define HSW_PTE_ADDR_ENCODE(addr)	HSW_GTT_ADDR_ENCODE(addr)
61 
62 /* Cacheability Control is a 4-bit value. The low three bits are stored in *
63  * bits 3:1 of the PTE, while the fourth bit is stored in bit 11 of the PTE.
64  */
65 #define HSW_CACHEABILITY_CONTROL(bits)	((((bits) & 0x7) << 1) | \
66 					 (((bits) & 0x8) << (11 - 3)))
67 #define HSW_WB_LLC_AGE3			HSW_CACHEABILITY_CONTROL(0x2)
68 #define HSW_WB_LLC_AGE0			HSW_CACHEABILITY_CONTROL(0x3)
69 #define HSW_WB_ELLC_LLC_AGE0		HSW_CACHEABILITY_CONTROL(0xb)
70 #define HSW_WB_ELLC_LLC_AGE3		HSW_CACHEABILITY_CONTROL(0x8)
71 #define HSW_WT_ELLC_LLC_AGE0		HSW_CACHEABILITY_CONTROL(0x6)
72 #define HSW_WT_ELLC_LLC_AGE3		HSW_CACHEABILITY_CONTROL(0x7)
73 
74 #define GEN8_PTES_PER_PAGE		(PAGE_SIZE / sizeof(gen8_gtt_pte_t))
75 #define GEN8_PDES_PER_PAGE		(PAGE_SIZE / sizeof(gen8_ppgtt_pde_t))
76 #define GEN8_LEGACY_PDPS		4
77 
78 #define PPAT_UNCACHED_INDEX		(_PAGE_PWT | _PAGE_PCD)
79 #define PPAT_CACHED_PDE_INDEX		0 /* WB LLC */
80 #define PPAT_CACHED_INDEX		_PAGE_PAT /* WB LLCeLLC */
81 #define PPAT_DISPLAY_ELLC_INDEX		_PAGE_PCD /* WT eLLC */
82 
83 static inline gen8_gtt_pte_t gen8_pte_encode(dma_addr_t addr,
84 					     enum i915_cache_level level,
85 					     bool valid)
86 {
87 	gen8_gtt_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0;
88 	pte |= addr;
89 	if (level != I915_CACHE_NONE)
90 		pte |= PPAT_CACHED_INDEX;
91 	else
92 		pte |= PPAT_UNCACHED_INDEX;
93 	return pte;
94 }
95 
96 static inline gen8_ppgtt_pde_t gen8_pde_encode(struct drm_device *dev,
97 					     dma_addr_t addr,
98 					     enum i915_cache_level level)
99 {
100 	gen8_ppgtt_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
101 	pde |= addr;
102 	if (level != I915_CACHE_NONE)
103 		pde |= PPAT_CACHED_PDE_INDEX;
104 	else
105 		pde |= PPAT_UNCACHED_INDEX;
106 	return pde;
107 }
108 
109 static gen6_gtt_pte_t snb_pte_encode(dma_addr_t addr,
110 				     enum i915_cache_level level,
111 				     bool valid)
112 {
113 	gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
114 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
115 
116 	switch (level) {
117 	case I915_CACHE_L3_LLC:
118 	case I915_CACHE_LLC:
119 		pte |= GEN6_PTE_CACHE_LLC;
120 		break;
121 	case I915_CACHE_NONE:
122 		pte |= GEN6_PTE_UNCACHED;
123 		break;
124 	default:
125 		WARN_ON(1);
126 	}
127 
128 	return pte;
129 }
130 
131 static gen6_gtt_pte_t ivb_pte_encode(dma_addr_t addr,
132 				     enum i915_cache_level level,
133 				     bool valid)
134 {
135 	gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
136 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
137 
138 	switch (level) {
139 	case I915_CACHE_L3_LLC:
140 		pte |= GEN7_PTE_CACHE_L3_LLC;
141 		break;
142 	case I915_CACHE_LLC:
143 		pte |= GEN6_PTE_CACHE_LLC;
144 		break;
145 	case I915_CACHE_NONE:
146 		pte |= GEN6_PTE_UNCACHED;
147 		break;
148 	default:
149 		WARN_ON(1);
150 	}
151 
152 	return pte;
153 }
154 
155 #define BYT_PTE_WRITEABLE		(1 << 1)
156 #define BYT_PTE_SNOOPED_BY_CPU_CACHES	(1 << 2)
157 
158 static gen6_gtt_pte_t byt_pte_encode(dma_addr_t addr,
159 				     enum i915_cache_level level,
160 				     bool valid)
161 {
162 	gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
163 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
164 
165 	/* Mark the page as writeable.  Other platforms don't have a
166 	 * setting for read-only/writable, so this matches that behavior.
167 	 */
168 	pte |= BYT_PTE_WRITEABLE;
169 
170 	if (level != I915_CACHE_NONE)
171 		pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
172 
173 	return pte;
174 }
175 
176 static gen6_gtt_pte_t hsw_pte_encode(dma_addr_t addr,
177 				     enum i915_cache_level level,
178 				     bool valid)
179 {
180 	gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
181 	pte |= HSW_PTE_ADDR_ENCODE(addr);
182 
183 	if (level != I915_CACHE_NONE)
184 		pte |= HSW_WB_LLC_AGE3;
185 
186 	return pte;
187 }
188 
189 static gen6_gtt_pte_t iris_pte_encode(dma_addr_t addr,
190 				      enum i915_cache_level level,
191 				      bool valid)
192 {
193 	gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
194 	pte |= HSW_PTE_ADDR_ENCODE(addr);
195 
196 	switch (level) {
197 	case I915_CACHE_NONE:
198 		break;
199 	case I915_CACHE_WT:
200 		pte |= HSW_WT_ELLC_LLC_AGE3;
201 		break;
202 	default:
203 		pte |= HSW_WB_ELLC_LLC_AGE3;
204 		break;
205 	}
206 
207 	return pte;
208 }
209 
210 /* Broadwell Page Directory Pointer Descriptors */
211 static int gen8_write_pdp(struct intel_ring_buffer *ring, unsigned entry,
212 			   uint64_t val, bool synchronous)
213 {
214 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
215 	int ret;
216 
217 	BUG_ON(entry >= 4);
218 
219 	if (synchronous) {
220 		I915_WRITE(GEN8_RING_PDP_UDW(ring, entry), val >> 32);
221 		I915_WRITE(GEN8_RING_PDP_LDW(ring, entry), (u32)val);
222 		return 0;
223 	}
224 
225 	ret = intel_ring_begin(ring, 6);
226 	if (ret)
227 		return ret;
228 
229 	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
230 	intel_ring_emit(ring, GEN8_RING_PDP_UDW(ring, entry));
231 	intel_ring_emit(ring, (u32)(val >> 32));
232 	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
233 	intel_ring_emit(ring, GEN8_RING_PDP_LDW(ring, entry));
234 	intel_ring_emit(ring, (u32)(val));
235 	intel_ring_advance(ring);
236 
237 	return 0;
238 }
239 
240 static int gen8_ppgtt_enable(struct drm_device *dev)
241 {
242 	struct drm_i915_private *dev_priv = dev->dev_private;
243 	struct intel_ring_buffer *ring;
244 	struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
245 	int i, j, ret;
246 
247 	/* bit of a hack to find the actual last used pd */
248 	int used_pd = ppgtt->num_pd_entries / GEN8_PDES_PER_PAGE;
249 
250 	for_each_ring(ring, dev_priv, j) {
251 		I915_WRITE(RING_MODE_GEN7(ring),
252 			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
253 	}
254 
255 	for (i = used_pd - 1; i >= 0; i--) {
256 		dma_addr_t addr = ppgtt->pd_dma_addr[i];
257 		for_each_ring(ring, dev_priv, j) {
258 			ret = gen8_write_pdp(ring, i, addr,
259 					     i915_reset_in_progress(&dev_priv->gpu_error));
260 			if (ret)
261 				goto err_out;
262 		}
263 	}
264 	return 0;
265 
266 err_out:
267 	for_each_ring(ring, dev_priv, j)
268 		I915_WRITE(RING_MODE_GEN7(ring),
269 			   _MASKED_BIT_DISABLE(GFX_PPGTT_ENABLE));
270 	return ret;
271 }
272 
273 static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
274 				   unsigned first_entry,
275 				   unsigned num_entries,
276 				   bool use_scratch)
277 {
278 	struct i915_hw_ppgtt *ppgtt =
279 		container_of(vm, struct i915_hw_ppgtt, base);
280 	gen8_gtt_pte_t *pt_vaddr, scratch_pte;
281 	unsigned act_pt = first_entry / GEN8_PTES_PER_PAGE;
282 	unsigned first_pte = first_entry % GEN8_PTES_PER_PAGE;
283 	unsigned last_pte, i;
284 
285 	scratch_pte = gen8_pte_encode(ppgtt->base.scratch.addr,
286 				      I915_CACHE_LLC, use_scratch);
287 
288 	while (num_entries) {
289 		struct vm_page *page_table = &ppgtt->gen8_pt_pages[act_pt];
290 
291 		last_pte = first_pte + num_entries;
292 		if (last_pte > GEN8_PTES_PER_PAGE)
293 			last_pte = GEN8_PTES_PER_PAGE;
294 
295 		pt_vaddr = kmap_atomic(page_table);
296 
297 		for (i = first_pte; i < last_pte; i++)
298 			pt_vaddr[i] = scratch_pte;
299 
300 		kunmap_atomic(pt_vaddr);
301 
302 		num_entries -= last_pte - first_pte;
303 		first_pte = 0;
304 		act_pt++;
305 	}
306 }
307 
308 #ifdef __linux__
309 static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
310 				      struct sg_table *pages,
311 				      unsigned first_entry,
312 				      enum i915_cache_level cache_level)
313 {
314 	struct i915_hw_ppgtt *ppgtt =
315 		container_of(vm, struct i915_hw_ppgtt, base);
316 	gen8_gtt_pte_t *pt_vaddr;
317 	unsigned act_pt = first_entry / GEN8_PTES_PER_PAGE;
318 	unsigned act_pte = first_entry % GEN8_PTES_PER_PAGE;
319 	struct sg_page_iter sg_iter;
320 
321 	pt_vaddr = NULL;
322 	for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
323 		if (pt_vaddr == NULL)
324 			pt_vaddr = kmap_atomic(&ppgtt->gen8_pt_pages[act_pt]);
325 
326 		pt_vaddr[act_pte] =
327 			gen8_pte_encode(sg_page_iter_dma_address(&sg_iter),
328 					cache_level, true);
329 		if (++act_pte == GEN8_PTES_PER_PAGE) {
330 			kunmap_atomic(pt_vaddr);
331 			pt_vaddr = NULL;
332 			act_pt++;
333 			act_pte = 0;
334 		}
335 	}
336 	if (pt_vaddr)
337 		kunmap_atomic(pt_vaddr);
338 }
339 #else
340 static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
341 				      struct vm_page **pages,
342 				      unsigned int num_entries,
343 				      unsigned first_entry,
344 				      enum i915_cache_level cache_level)
345 {
346 	struct i915_hw_ppgtt *ppgtt =
347 		container_of(vm, struct i915_hw_ppgtt, base);
348 	gen8_gtt_pte_t *pt_vaddr;
349 	unsigned act_pt = first_entry / GEN8_PTES_PER_PAGE;
350 	unsigned act_pte = first_entry % GEN8_PTES_PER_PAGE;
351 	int i;
352 
353 	pt_vaddr = NULL;
354 	for (i = 0; i < num_entries; i++) {
355 		if (pt_vaddr == NULL)
356 			pt_vaddr = kmap_atomic(&ppgtt->gen8_pt_pages[act_pt]);
357 
358 		pt_vaddr[act_pte] =
359 			gen8_pte_encode(VM_PAGE_TO_PHYS(pages[i]),
360 					cache_level, true);
361 		if (++act_pte == GEN8_PTES_PER_PAGE) {
362 			kunmap_atomic(pt_vaddr);
363 			pt_vaddr = NULL;
364 			act_pt++;
365 			act_pte = 0;
366 		}
367 	}
368 	if (pt_vaddr)
369 		kunmap_atomic(pt_vaddr);
370 }
371 #endif
372 
373 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
374 {
375 	struct i915_hw_ppgtt *ppgtt =
376 		container_of(vm, struct i915_hw_ppgtt, base);
377 	int i, j;
378 
379 	drm_mm_takedown(&vm->mm);
380 
381 	for (i = 0; i < ppgtt->num_pd_pages ; i++) {
382 		if (ppgtt->pd_dma_addr[i]) {
383 			pci_unmap_page(ppgtt->base.dev->pdev,
384 				       ppgtt->pd_dma_addr[i],
385 				       PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
386 
387 			for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
388 				dma_addr_t addr = ppgtt->gen8_pt_dma_addr[i][j];
389 				if (addr)
390 					pci_unmap_page(ppgtt->base.dev->pdev,
391 						       addr,
392 						       PAGE_SIZE,
393 						       PCI_DMA_BIDIRECTIONAL);
394 
395 			}
396 		}
397 		kfree(ppgtt->gen8_pt_dma_addr[i]);
398 	}
399 
400 	__free_pages(ppgtt->gen8_pt_pages, get_order(ppgtt->num_pt_pages << PAGE_SHIFT));
401 	__free_pages(ppgtt->pd_pages, get_order(ppgtt->num_pd_pages << PAGE_SHIFT));
402 }
403 
404 /**
405  * GEN8 legacy ppgtt programming is accomplished through 4 PDP registers with a
406  * net effect resembling a 2-level page table in normal x86 terms. Each PDP
407  * represents 1GB of memory
408  * 4 * 512 * 512 * 4096 = 4GB legacy 32b address space.
409  *
410  * TODO: Do something with the size parameter
411  **/
412 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt, uint64_t size)
413 {
414 	struct drm_i915_private *dev_priv = ppgtt->base.dev->dev_private;
415 	struct vm_page *pt_pages;
416 	int i, j, ret = -ENOMEM;
417 	const int max_pdp = DIV_ROUND_UP(size, 1 << 30);
418 	const int num_pt_pages = GEN8_PDES_PER_PAGE * max_pdp;
419 
420 	if (size % (1<<30))
421 		DRM_INFO("Pages will be wasted unless GTT size (%llu) is divisible by 1GB\n", size);
422 
423 	/* FIXME: split allocation into smaller pieces. For now we only ever do
424 	 * this once, but with full PPGTT, the multiple contiguous allocations
425 	 * will be bad.
426 	 */
427 	ppgtt->pd_pages = alloc_pages(GFP_KERNEL, get_order(max_pdp << PAGE_SHIFT));
428 	if (!ppgtt->pd_pages)
429 		return -ENOMEM;
430 
431 	pt_pages = alloc_pages(GFP_KERNEL, get_order(num_pt_pages << PAGE_SHIFT));
432 	if (!pt_pages) {
433 		__free_pages(ppgtt->pd_pages, get_order(max_pdp << PAGE_SHIFT));
434 		return -ENOMEM;
435 	}
436 
437 	ppgtt->gen8_pt_pages = pt_pages;
438 	ppgtt->num_pd_pages = 1 << get_order(max_pdp << PAGE_SHIFT);
439 	ppgtt->num_pt_pages = 1 << get_order(num_pt_pages << PAGE_SHIFT);
440 	ppgtt->num_pd_entries = max_pdp * GEN8_PDES_PER_PAGE;
441 	ppgtt->enable = gen8_ppgtt_enable;
442 	ppgtt->base.clear_range = gen8_ppgtt_clear_range;
443 	ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
444 	ppgtt->base.cleanup = gen8_ppgtt_cleanup;
445 	ppgtt->base.scratch = dev_priv->gtt.base.scratch;
446 	ppgtt->base.start = 0;
447 	ppgtt->base.total = ppgtt->num_pt_pages * GEN8_PTES_PER_PAGE * PAGE_SIZE;
448 
449 	BUG_ON(ppgtt->num_pd_pages > GEN8_LEGACY_PDPS);
450 
451 	/*
452 	 * - Create a mapping for the page directories.
453 	 * - For each page directory:
454 	 *      allocate space for page table mappings.
455 	 *      map each page table
456 	 */
457 	for (i = 0; i < max_pdp; i++) {
458 		dma_addr_t temp;
459 		temp = pci_map_page(ppgtt->base.dev->pdev,
460 				    &ppgtt->pd_pages[i], 0,
461 				    PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
462 		if (pci_dma_mapping_error(ppgtt->base.dev->pdev, temp))
463 			goto err_out;
464 
465 		ppgtt->pd_dma_addr[i] = temp;
466 
467 		ppgtt->gen8_pt_dma_addr[i] = kmalloc(sizeof(dma_addr_t) * GEN8_PDES_PER_PAGE, GFP_KERNEL);
468 		if (!ppgtt->gen8_pt_dma_addr[i])
469 			goto err_out;
470 
471 		for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
472 			struct vm_page *p = &pt_pages[i * GEN8_PDES_PER_PAGE + j];
473 			temp = pci_map_page(ppgtt->base.dev->pdev,
474 					    p, 0, PAGE_SIZE,
475 					    PCI_DMA_BIDIRECTIONAL);
476 
477 			if (pci_dma_mapping_error(ppgtt->base.dev->pdev, temp))
478 				goto err_out;
479 
480 			ppgtt->gen8_pt_dma_addr[i][j] = temp;
481 		}
482 	}
483 
484 	/* For now, the PPGTT helper functions all require that the PDEs are
485 	 * plugged in correctly. So we do that now/here. For aliasing PPGTT, we
486 	 * will never need to touch the PDEs again */
487 	for (i = 0; i < max_pdp; i++) {
488 		gen8_ppgtt_pde_t *pd_vaddr;
489 		pd_vaddr = kmap_atomic(&ppgtt->pd_pages[i]);
490 		for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
491 			dma_addr_t addr = ppgtt->gen8_pt_dma_addr[i][j];
492 			pd_vaddr[j] = gen8_pde_encode(ppgtt->base.dev, addr,
493 						      I915_CACHE_LLC);
494 		}
495 		kunmap_atomic(pd_vaddr);
496 	}
497 
498 	ppgtt->base.clear_range(&ppgtt->base, 0,
499 				ppgtt->num_pd_entries * GEN8_PTES_PER_PAGE,
500 				true);
501 
502 	DRM_DEBUG_DRIVER("Allocated %d pages for page directories (%d wasted)\n",
503 			 ppgtt->num_pd_pages, ppgtt->num_pd_pages - max_pdp);
504 	DRM_DEBUG_DRIVER("Allocated %d pages for page tables (%lld wasted)\n",
505 			 ppgtt->num_pt_pages,
506 			 (ppgtt->num_pt_pages - num_pt_pages) +
507 			 size % (1<<30));
508 	return 0;
509 
510 err_out:
511 	ppgtt->base.cleanup(&ppgtt->base);
512 	return ret;
513 }
514 
515 static void gen6_write_pdes(struct i915_hw_ppgtt *ppgtt)
516 {
517 	struct drm_i915_private *dev_priv = ppgtt->base.dev->dev_private;
518 	gen6_gtt_pte_t __iomem *pd_addr;
519 	uint32_t pd_entry;
520 	int i;
521 
522 	WARN_ON(ppgtt->pd_offset & 0x3f);
523 	pd_addr = (gen6_gtt_pte_t __iomem*)dev_priv->gtt.gsm +
524 		ppgtt->pd_offset / sizeof(gen6_gtt_pte_t);
525 	for (i = 0; i < ppgtt->num_pd_entries; i++) {
526 		dma_addr_t pt_addr;
527 
528 		pt_addr = ppgtt->pt_dma_addr[i];
529 		pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
530 		pd_entry |= GEN6_PDE_VALID;
531 
532 		writel(pd_entry, pd_addr + i);
533 	}
534 	readl(pd_addr);
535 }
536 
537 static int gen6_ppgtt_enable(struct drm_device *dev)
538 {
539 	drm_i915_private_t *dev_priv = dev->dev_private;
540 	uint32_t pd_offset;
541 	struct intel_ring_buffer *ring;
542 	struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
543 	int i;
544 
545 	BUG_ON(ppgtt->pd_offset & 0x3f);
546 
547 	gen6_write_pdes(ppgtt);
548 
549 	pd_offset = ppgtt->pd_offset;
550 	pd_offset /= 64; /* in cachelines, */
551 	pd_offset <<= 16;
552 
553 	if (INTEL_INFO(dev)->gen == 6) {
554 		uint32_t ecochk, gab_ctl, ecobits;
555 
556 		ecobits = I915_READ(GAC_ECO_BITS);
557 		I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
558 					 ECOBITS_PPGTT_CACHE64B);
559 
560 		gab_ctl = I915_READ(GAB_CTL);
561 		I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
562 
563 		ecochk = I915_READ(GAM_ECOCHK);
564 		I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
565 				       ECOCHK_PPGTT_CACHE64B);
566 		I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
567 	} else if (INTEL_INFO(dev)->gen >= 7) {
568 		uint32_t ecochk, ecobits;
569 
570 		ecobits = I915_READ(GAC_ECO_BITS);
571 		I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
572 
573 		ecochk = I915_READ(GAM_ECOCHK);
574 		if (IS_HASWELL(dev)) {
575 			ecochk |= ECOCHK_PPGTT_WB_HSW;
576 		} else {
577 			ecochk |= ECOCHK_PPGTT_LLC_IVB;
578 			ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
579 		}
580 		I915_WRITE(GAM_ECOCHK, ecochk);
581 		/* GFX_MODE is per-ring on gen7+ */
582 	}
583 
584 	for_each_ring(ring, dev_priv, i) {
585 		if (INTEL_INFO(dev)->gen >= 7)
586 			I915_WRITE(RING_MODE_GEN7(ring),
587 				   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
588 
589 		I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
590 		I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
591 	}
592 	return 0;
593 }
594 
595 /* PPGTT support for Sandybdrige/Gen6 and later */
596 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
597 				   unsigned first_entry,
598 				   unsigned num_entries,
599 				   bool use_scratch)
600 {
601 	struct i915_hw_ppgtt *ppgtt =
602 		container_of(vm, struct i915_hw_ppgtt, base);
603 	gen6_gtt_pte_t *pt_vaddr, scratch_pte;
604 	unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES;
605 	unsigned first_pte = first_entry % I915_PPGTT_PT_ENTRIES;
606 	unsigned last_pte, i;
607 
608 	scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true);
609 
610 	while (num_entries) {
611 		last_pte = first_pte + num_entries;
612 		if (last_pte > I915_PPGTT_PT_ENTRIES)
613 			last_pte = I915_PPGTT_PT_ENTRIES;
614 
615 		pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
616 
617 		for (i = first_pte; i < last_pte; i++)
618 			pt_vaddr[i] = scratch_pte;
619 
620 		kunmap_atomic(pt_vaddr);
621 
622 		num_entries -= last_pte - first_pte;
623 		first_pte = 0;
624 		act_pt++;
625 	}
626 }
627 
628 #ifdef __linux__
629 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
630 				      struct sg_table *pages,
631 				      unsigned first_entry,
632 				      enum i915_cache_level cache_level)
633 {
634 	struct i915_hw_ppgtt *ppgtt =
635 		container_of(vm, struct i915_hw_ppgtt, base);
636 	gen6_gtt_pte_t *pt_vaddr;
637 	unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES;
638 	unsigned act_pte = first_entry % I915_PPGTT_PT_ENTRIES;
639 	struct sg_page_iter sg_iter;
640 
641 	pt_vaddr = NULL;
642 	for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
643 		if (pt_vaddr == NULL)
644 			pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
645 
646 		pt_vaddr[act_pte] =
647 			vm->pte_encode(sg_page_iter_dma_address(&sg_iter),
648 				       cache_level, true);
649 		if (++act_pte == I915_PPGTT_PT_ENTRIES) {
650 			kunmap_atomic(pt_vaddr);
651 			pt_vaddr = NULL;
652 			act_pt++;
653 			act_pte = 0;
654 		}
655 	}
656 	if (pt_vaddr)
657 		kunmap_atomic(pt_vaddr);
658 }
659 #else
660 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
661 				      struct vm_page **pages,
662 				      unsigned int num_entries,
663 				      unsigned first_entry,
664 				      enum i915_cache_level cache_level)
665 {
666 	struct i915_hw_ppgtt *ppgtt =
667 		container_of(vm, struct i915_hw_ppgtt, base);
668 	gen6_gtt_pte_t *pt_vaddr;
669 	unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES;
670 	unsigned act_pte = first_entry % I915_PPGTT_PT_ENTRIES;
671 	int i;
672 
673 	pt_vaddr = NULL;
674 	for (i = 0; i < num_entries; i++) {
675 		if (pt_vaddr == NULL)
676 			pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
677 
678 		pt_vaddr[act_pte] =
679 			vm->pte_encode(VM_PAGE_TO_PHYS(pages[i]),
680 				       cache_level, true);
681 		if (++act_pte == I915_PPGTT_PT_ENTRIES) {
682 			kunmap_atomic(pt_vaddr);
683 			pt_vaddr = NULL;
684 			act_pt++;
685 			act_pte = 0;
686 		}
687 	}
688 	if (pt_vaddr)
689 		kunmap_atomic(pt_vaddr);
690 }
691 #endif
692 
693 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
694 {
695 	struct i915_hw_ppgtt *ppgtt =
696 		container_of(vm, struct i915_hw_ppgtt, base);
697 	int i;
698 
699 	drm_mm_takedown(&ppgtt->base.mm);
700 
701 	if (ppgtt->pt_dma_addr) {
702 		for (i = 0; i < ppgtt->num_pd_entries; i++)
703 			pci_unmap_page(ppgtt->base.dev->pdev,
704 				       ppgtt->pt_dma_addr[i],
705 				       4096, PCI_DMA_BIDIRECTIONAL);
706 	}
707 
708 	kfree(ppgtt->pt_dma_addr);
709 	for (i = 0; i < ppgtt->num_pd_entries; i++)
710 		__free_page(ppgtt->pt_pages[i]);
711 	kfree(ppgtt->pt_pages);
712 	kfree(ppgtt);
713 }
714 
715 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
716 {
717 	struct drm_device *dev = ppgtt->base.dev;
718 	struct drm_i915_private *dev_priv = dev->dev_private;
719 	unsigned first_pd_entry_in_global_pt;
720 	int i;
721 	int ret = -ENOMEM;
722 
723 	/* ppgtt PDEs reside in the global gtt pagetable, which has 512*1024
724 	 * entries. For aliasing ppgtt support we just steal them at the end for
725 	 * now. */
726 	first_pd_entry_in_global_pt = gtt_total_entries(dev_priv->gtt);
727 
728 	ppgtt->base.pte_encode = dev_priv->gtt.base.pte_encode;
729 	ppgtt->num_pd_entries = GEN6_PPGTT_PD_ENTRIES;
730 	ppgtt->enable = gen6_ppgtt_enable;
731 	ppgtt->base.clear_range = gen6_ppgtt_clear_range;
732 	ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
733 	ppgtt->base.cleanup = gen6_ppgtt_cleanup;
734 	ppgtt->base.scratch = dev_priv->gtt.base.scratch;
735 	ppgtt->base.start = 0;
736 	ppgtt->base.total = GEN6_PPGTT_PD_ENTRIES * I915_PPGTT_PT_ENTRIES * PAGE_SIZE;
737 	ppgtt->pt_pages = kcalloc(ppgtt->num_pd_entries, sizeof(struct page *),
738 				  GFP_KERNEL);
739 	if (!ppgtt->pt_pages)
740 		return -ENOMEM;
741 
742 	for (i = 0; i < ppgtt->num_pd_entries; i++) {
743 		ppgtt->pt_pages[i] = alloc_page(GFP_KERNEL);
744 		if (!ppgtt->pt_pages[i])
745 			goto err_pt_alloc;
746 	}
747 
748 	ppgtt->pt_dma_addr = kcalloc(ppgtt->num_pd_entries, sizeof(dma_addr_t),
749 				     GFP_KERNEL);
750 	if (!ppgtt->pt_dma_addr)
751 		goto err_pt_alloc;
752 
753 	for (i = 0; i < ppgtt->num_pd_entries; i++) {
754 		dma_addr_t pt_addr;
755 
756 		pt_addr = pci_map_page(dev->pdev, ppgtt->pt_pages[i], 0, 4096,
757 				       PCI_DMA_BIDIRECTIONAL);
758 
759 		if (pci_dma_mapping_error(dev->pdev, pt_addr)) {
760 			ret = -EIO;
761 			goto err_pd_pin;
762 
763 		}
764 		ppgtt->pt_dma_addr[i] = pt_addr;
765 	}
766 
767 	ppgtt->base.clear_range(&ppgtt->base, 0,
768 				ppgtt->num_pd_entries * I915_PPGTT_PT_ENTRIES, true);
769 
770 	ppgtt->pd_offset = first_pd_entry_in_global_pt * sizeof(gen6_gtt_pte_t);
771 
772 	return 0;
773 
774 err_pd_pin:
775 	if (ppgtt->pt_dma_addr) {
776 		for (i--; i >= 0; i--)
777 			pci_unmap_page(dev->pdev, ppgtt->pt_dma_addr[i],
778 				       4096, PCI_DMA_BIDIRECTIONAL);
779 	}
780 err_pt_alloc:
781 	kfree(ppgtt->pt_dma_addr);
782 	for (i = 0; i < ppgtt->num_pd_entries; i++) {
783 		if (ppgtt->pt_pages[i])
784 			__free_page(ppgtt->pt_pages[i]);
785 	}
786 	kfree(ppgtt->pt_pages);
787 
788 	return ret;
789 }
790 
791 static int i915_gem_init_aliasing_ppgtt(struct drm_device *dev)
792 {
793 	struct drm_i915_private *dev_priv = dev->dev_private;
794 	struct i915_hw_ppgtt *ppgtt;
795 	int ret;
796 
797 	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
798 	if (!ppgtt)
799 		return -ENOMEM;
800 
801 	ppgtt->base.dev = dev;
802 
803 	if (INTEL_INFO(dev)->gen < 8)
804 		ret = gen6_ppgtt_init(ppgtt);
805 	else if (IS_GEN8(dev))
806 		ret = gen8_ppgtt_init(ppgtt, dev_priv->gtt.base.total);
807 	else
808 		BUG();
809 
810 	if (ret)
811 		kfree(ppgtt);
812 	else {
813 		dev_priv->mm.aliasing_ppgtt = ppgtt;
814 		drm_mm_init(&ppgtt->base.mm, ppgtt->base.start,
815 			    ppgtt->base.total);
816 	}
817 
818 	return ret;
819 }
820 
821 void i915_gem_cleanup_aliasing_ppgtt(struct drm_device *dev)
822 {
823 	struct drm_i915_private *dev_priv = dev->dev_private;
824 	struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
825 
826 	if (!ppgtt)
827 		return;
828 
829 	ppgtt->base.cleanup(&ppgtt->base);
830 	dev_priv->mm.aliasing_ppgtt = NULL;
831 }
832 
833 void i915_ppgtt_bind_object(struct i915_hw_ppgtt *ppgtt,
834 			    struct drm_i915_gem_object *obj,
835 			    enum i915_cache_level cache_level)
836 {
837 	ppgtt->base.insert_entries(&ppgtt->base, obj->pages,
838 				   obj->base.size >> PAGE_SHIFT,
839 				   i915_gem_obj_ggtt_offset(obj) >> PAGE_SHIFT,
840 				   cache_level);
841 }
842 
843 void i915_ppgtt_unbind_object(struct i915_hw_ppgtt *ppgtt,
844 			      struct drm_i915_gem_object *obj)
845 {
846 	ppgtt->base.clear_range(&ppgtt->base,
847 				i915_gem_obj_ggtt_offset(obj) >> PAGE_SHIFT,
848 				obj->base.size >> PAGE_SHIFT,
849 				true);
850 }
851 
852 extern int intel_iommu_gfx_mapped;
853 /* Certain Gen5 chipsets require require idling the GPU before
854  * unmapping anything from the GTT when VT-d is enabled.
855  */
856 static inline bool needs_idle_maps(struct drm_device *dev)
857 {
858 #ifdef CONFIG_INTEL_IOMMU
859 	/* Query intel_iommu to see if we need the workaround. Presumably that
860 	 * was loaded first.
861 	 */
862 	if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped)
863 		return true;
864 #endif
865 	return false;
866 }
867 
868 static bool do_idling(struct drm_i915_private *dev_priv)
869 {
870 	bool ret = dev_priv->mm.interruptible;
871 
872 	if (unlikely(dev_priv->gtt.do_idle_maps)) {
873 		dev_priv->mm.interruptible = false;
874 		if (i915_gpu_idle(dev_priv->dev)) {
875 			DRM_ERROR("Couldn't idle GPU\n");
876 			/* Wait a bit, in hopes it avoids the hang */
877 			udelay(10);
878 		}
879 	}
880 
881 	return ret;
882 }
883 
884 static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
885 {
886 	if (unlikely(dev_priv->gtt.do_idle_maps))
887 		dev_priv->mm.interruptible = interruptible;
888 }
889 
890 void i915_check_and_clear_faults(struct drm_device *dev)
891 {
892 	struct drm_i915_private *dev_priv = dev->dev_private;
893 	struct intel_ring_buffer *ring;
894 	int i;
895 
896 	if (INTEL_INFO(dev)->gen < 6)
897 		return;
898 
899 	for_each_ring(ring, dev_priv, i) {
900 		u32 fault_reg;
901 		fault_reg = I915_READ(RING_FAULT_REG(ring));
902 		if (fault_reg & RING_FAULT_VALID) {
903 			DRM_DEBUG_DRIVER("Unexpected fault\n"
904 					 "\tAddr: 0x%08x\\n"
905 					 "\tAddress space: %s\n"
906 					 "\tSource ID: %d\n"
907 					 "\tType: %d\n",
908 					 fault_reg & ~PAGE_MASK,
909 					 fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
910 					 RING_FAULT_SRCID(fault_reg),
911 					 RING_FAULT_FAULT_TYPE(fault_reg));
912 			I915_WRITE(RING_FAULT_REG(ring),
913 				   fault_reg & ~RING_FAULT_VALID);
914 		}
915 	}
916 	POSTING_READ(RING_FAULT_REG(&dev_priv->ring[RCS]));
917 }
918 
919 static void i915_ggtt_flush(struct drm_i915_private *dev_priv)
920 {
921 	if (INTEL_INFO(dev_priv->dev)->gen < 6) {
922 		intel_gtt_chipset_flush();
923 	} else {
924 		I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
925 		POSTING_READ(GFX_FLSH_CNTL_GEN6);
926 	}
927 }
928 
929 void i915_gem_suspend_gtt_mappings(struct drm_device *dev)
930 {
931 	struct drm_i915_private *dev_priv = dev->dev_private;
932 
933 	/* Don't bother messing with faults pre GEN6 as we have little
934 	 * documentation supporting that it's a good idea.
935 	 */
936 	if (INTEL_INFO(dev)->gen < 6)
937 		return;
938 
939 	i915_check_and_clear_faults(dev);
940 
941 	dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
942 				       dev_priv->gtt.base.start / PAGE_SIZE,
943 				       dev_priv->gtt.base.total / PAGE_SIZE,
944 				       true);
945 
946 	i915_ggtt_flush(dev_priv);
947 }
948 
949 void i915_gem_restore_gtt_mappings(struct drm_device *dev)
950 {
951 	struct drm_i915_private *dev_priv = dev->dev_private;
952 	struct drm_i915_gem_object *obj;
953 
954 	i915_check_and_clear_faults(dev);
955 
956 	/* First fill our portion of the GTT with scratch pages */
957 	dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
958 				       dev_priv->gtt.base.start / PAGE_SIZE,
959 				       dev_priv->gtt.base.total / PAGE_SIZE,
960 				       true);
961 
962 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
963 		i915_gem_clflush_object(obj, obj->pin_display);
964 		i915_gem_gtt_bind_object(obj, obj->cache_level);
965 	}
966 
967 	if (INTEL_INFO(dev)->gen >= 8)
968 		gen8_setup_private_ppat(dev_priv);
969 
970 	i915_ggtt_flush(dev_priv);
971 }
972 
973 int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
974 {
975 	if (obj->has_dma_mapping)
976 		return 0;
977 
978 #ifdef __linux__
979 	if (!dma_map_sg(&obj->base.dev->pdev->dev,
980 			obj->pages->sgl, obj->pages->nents,
981 			PCI_DMA_BIDIRECTIONAL))
982 		return -ENOSPC;
983 #endif
984 
985 	return 0;
986 }
987 
988 static inline void gen8_set_pte(void __iomem *addr, gen8_gtt_pte_t pte)
989 {
990 #ifdef writeq
991 	writeq(pte, addr);
992 #else
993 	iowrite32((u32)pte, addr);
994 	iowrite32(pte >> 32, addr + 4);
995 #endif
996 }
997 
998 #ifdef __linux__
999 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
1000 				     struct sg_table *st,
1001 				     unsigned int first_entry,
1002 				     enum i915_cache_level level)
1003 {
1004 	struct drm_i915_private *dev_priv = vm->dev->dev_private;
1005 	gen8_gtt_pte_t __iomem *gtt_entries =
1006 		(gen8_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
1007 	int i = 0;
1008 	struct sg_page_iter sg_iter;
1009 	dma_addr_t addr;
1010 
1011 	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
1012 		addr = sg_dma_address(sg_iter.sg) +
1013 			(sg_iter.sg_pgoffset << PAGE_SHIFT);
1014 		gen8_set_pte(&gtt_entries[i],
1015 			     gen8_pte_encode(addr, level, true));
1016 		i++;
1017 	}
1018 
1019 	/*
1020 	 * XXX: This serves as a posting read to make sure that the PTE has
1021 	 * actually been updated. There is some concern that even though
1022 	 * registers and PTEs are within the same BAR that they are potentially
1023 	 * of NUMA access patterns. Therefore, even with the way we assume
1024 	 * hardware should work, we must keep this posting read for paranoia.
1025 	 */
1026 	if (i != 0)
1027 		WARN_ON(readq(&gtt_entries[i-1])
1028 			!= gen8_pte_encode(addr, level, true));
1029 
1030 	/* This next bit makes the above posting read even more important. We
1031 	 * want to flush the TLBs only after we're certain all the PTE updates
1032 	 * have finished.
1033 	 */
1034 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
1035 	POSTING_READ(GFX_FLSH_CNTL_GEN6);
1036 }
1037 #else
1038 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
1039 				     struct vm_page **pages,
1040 				     unsigned int num_entries,
1041 				     unsigned int first_entry,
1042 				     enum i915_cache_level level)
1043 {
1044 	struct drm_i915_private *dev_priv = vm->dev->dev_private;
1045 	gen8_gtt_pte_t __iomem *gtt_entries =
1046 		(gen8_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
1047 	int i = 0;
1048 	dma_addr_t addr;
1049 
1050 	while (i < num_entries) {
1051 		addr = VM_PAGE_TO_PHYS(pages[i]);
1052 		gen8_set_pte(&gtt_entries[i],
1053 			     gen8_pte_encode(addr, level, true));
1054 		i++;
1055 	}
1056 
1057 	/*
1058 	 * XXX: This serves as a posting read to make sure that the PTE has
1059 	 * actually been updated. There is some concern that even though
1060 	 * registers and PTEs are within the same BAR that they are potentially
1061 	 * of NUMA access patterns. Therefore, even with the way we assume
1062 	 * hardware should work, we must keep this posting read for paranoia.
1063 	 */
1064 	if (i != 0)
1065 		WARN_ON(readq(&gtt_entries[i-1])
1066 			!= gen8_pte_encode(addr, level, true));
1067 
1068 	/* This next bit makes the above posting read even more important. We
1069 	 * want to flush the TLBs only after we're certain all the PTE updates
1070 	 * have finished.
1071 	 */
1072 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
1073 	POSTING_READ(GFX_FLSH_CNTL_GEN6);
1074 }
1075 #endif
1076 
1077 /*
1078  * Binds an object into the global gtt with the specified cache level. The object
1079  * will be accessible to the GPU via commands whose operands reference offsets
1080  * within the global GTT as well as accessible by the GPU through the GMADR
1081  * mapped BAR (dev_priv->mm.gtt->gtt).
1082  */
1083 #ifdef __linux__
1084 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
1085 				     struct sg_table *st,
1086 				     unsigned int first_entry,
1087 				     enum i915_cache_level level)
1088 {
1089 	struct drm_i915_private *dev_priv = vm->dev->dev_private;
1090 	gen6_gtt_pte_t __iomem *gtt_entries =
1091 		(gen6_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
1092 	int i = 0;
1093 	struct sg_page_iter sg_iter;
1094 	dma_addr_t addr;
1095 
1096 	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
1097 		addr = sg_page_iter_dma_address(&sg_iter);
1098 		iowrite32(vm->pte_encode(addr, level, true), &gtt_entries[i]);
1099 		i++;
1100 	}
1101 
1102 	/* XXX: This serves as a posting read to make sure that the PTE has
1103 	 * actually been updated. There is some concern that even though
1104 	 * registers and PTEs are within the same BAR that they are potentially
1105 	 * of NUMA access patterns. Therefore, even with the way we assume
1106 	 * hardware should work, we must keep this posting read for paranoia.
1107 	 */
1108 	if (i != 0)
1109 		WARN_ON(readl(&gtt_entries[i-1]) !=
1110 			vm->pte_encode(addr, level, true));
1111 
1112 	/* This next bit makes the above posting read even more important. We
1113 	 * want to flush the TLBs only after we're certain all the PTE updates
1114 	 * have finished.
1115 	 */
1116 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
1117 	POSTING_READ(GFX_FLSH_CNTL_GEN6);
1118 }
1119 #else
1120 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
1121 				     struct vm_page **pages,
1122 				     unsigned int num_entries,
1123 				     unsigned int first_entry,
1124 				     enum i915_cache_level level)
1125 {
1126 	struct drm_i915_private *dev_priv = vm->dev->dev_private;
1127 	gen6_gtt_pte_t __iomem *gtt_entries =
1128 		(gen6_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
1129 	int i = 0;
1130 	dma_addr_t addr;
1131 
1132 	while (i < num_entries) {
1133 		addr = VM_PAGE_TO_PHYS(pages[i]);
1134 		iowrite32(vm->pte_encode(addr, level, true), &gtt_entries[i]);
1135 		i++;
1136 	}
1137 
1138 	/* XXX: This serves as a posting read to make sure that the PTE has
1139 	 * actually been updated. There is some concern that even though
1140 	 * registers and PTEs are within the same BAR that they are potentially
1141 	 * of NUMA access patterns. Therefore, even with the way we assume
1142 	 * hardware should work, we must keep this posting read for paranoia.
1143 	 */
1144 	if (i != 0)
1145 		WARN_ON(readl(&gtt_entries[i-1]) !=
1146 			vm->pte_encode(addr, level, true));
1147 
1148 	/* This next bit makes the above posting read even more important. We
1149 	 * want to flush the TLBs only after we're certain all the PTE updates
1150 	 * have finished.
1151 	 */
1152 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
1153 	POSTING_READ(GFX_FLSH_CNTL_GEN6);
1154 }
1155 #endif
1156 
1157 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
1158 				  unsigned int first_entry,
1159 				  unsigned int num_entries,
1160 				  bool use_scratch)
1161 {
1162 	struct drm_i915_private *dev_priv = vm->dev->dev_private;
1163 	gen8_gtt_pte_t scratch_pte, __iomem *gtt_base =
1164 		(gen8_gtt_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
1165 	const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
1166 	int i;
1167 
1168 	if (WARN(num_entries > max_entries,
1169 		 "First entry = %d; Num entries = %d (max=%d)\n",
1170 		 first_entry, num_entries, max_entries))
1171 		num_entries = max_entries;
1172 
1173 	scratch_pte = gen8_pte_encode(vm->scratch.addr,
1174 				      I915_CACHE_LLC,
1175 				      use_scratch);
1176 	for (i = 0; i < num_entries; i++)
1177 		gen8_set_pte(&gtt_base[i], scratch_pte);
1178 	readl(gtt_base);
1179 }
1180 
1181 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
1182 				  unsigned int first_entry,
1183 				  unsigned int num_entries,
1184 				  bool use_scratch)
1185 {
1186 	struct drm_i915_private *dev_priv = vm->dev->dev_private;
1187 	gen6_gtt_pte_t scratch_pte, __iomem *gtt_base =
1188 		(gen6_gtt_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
1189 	const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
1190 	int i;
1191 
1192 	if (WARN(num_entries > max_entries,
1193 		 "First entry = %d; Num entries = %d (max=%d)\n",
1194 		 first_entry, num_entries, max_entries))
1195 		num_entries = max_entries;
1196 
1197 	scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, use_scratch);
1198 
1199 	for (i = 0; i < num_entries; i++)
1200 		iowrite32(scratch_pte, &gtt_base[i]);
1201 	readl(gtt_base);
1202 }
1203 
1204 #ifdef __linux__
1205 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
1206 				     struct sg_table *st,
1207 				     unsigned int pg_start,
1208 				     enum i915_cache_level cache_level)
1209 {
1210 	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
1211 		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
1212 
1213 	intel_gtt_insert_sg_entries(st, pg_start, flags);
1214 
1215 }
1216 #else
1217 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
1218 				     struct vm_page **pages,
1219 				     unsigned int num_entries,
1220 				     unsigned int pg_start,
1221 				     enum i915_cache_level cache_level)
1222 {
1223 	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
1224 		0 : BUS_DMA_COHERENT;
1225 	struct agp_softc *sc = vm->dev->agp->agpdev;
1226 	bus_addr_t addr = sc->sc_apaddr + (pg_start << PAGE_SHIFT);
1227 	int i;
1228 
1229 	for (i = 0; i < num_entries; i++) {
1230 		sc->sc_methods->bind_page(sc->sc_chipc, addr,
1231 		    VM_PAGE_TO_PHYS(pages[i]), flags);
1232 		addr += PAGE_SIZE;
1233 	}
1234 }
1235 #endif
1236 
1237 #ifdef __linux__
1238 static void i915_ggtt_clear_range(struct i915_address_space *vm,
1239 				  unsigned int first_entry,
1240 				  unsigned int num_entries,
1241 				  bool unused)
1242 {
1243 	intel_gtt_clear_range(first_entry, num_entries);
1244 }
1245 #else
1246 static void i915_ggtt_clear_range(struct i915_address_space *vm,
1247 				  unsigned int first_entry,
1248 				  unsigned int num_entries,
1249 				  bool unused)
1250 {
1251 	struct agp_softc *sc = vm->dev->agp->agpdev;
1252 	bus_addr_t addr = sc->sc_apaddr + (first_entry << PAGE_SHIFT);
1253 	int i;
1254 
1255 	for (i = 0; i < num_entries; i++) {
1256 		sc->sc_methods->unbind_page(sc->sc_chipc, addr);
1257 		addr += PAGE_SIZE;
1258 	}
1259 }
1260 #endif
1261 
1262 void i915_gem_gtt_bind_object(struct drm_i915_gem_object *obj,
1263 			      enum i915_cache_level cache_level)
1264 {
1265 	struct drm_device *dev = obj->base.dev;
1266 	struct drm_i915_private *dev_priv = dev->dev_private;
1267 	const unsigned long entry = i915_gem_obj_ggtt_offset(obj) >> PAGE_SHIFT;
1268 
1269 	dev_priv->gtt.base.insert_entries(&dev_priv->gtt.base, obj->pages,
1270 					  obj->base.size >> PAGE_SHIFT,
1271 					  entry,
1272 					  cache_level);
1273 
1274 	obj->has_global_gtt_mapping = 1;
1275 }
1276 
1277 void i915_gem_gtt_unbind_object(struct drm_i915_gem_object *obj)
1278 {
1279 	struct drm_device *dev = obj->base.dev;
1280 	struct drm_i915_private *dev_priv = dev->dev_private;
1281 	const unsigned long entry = i915_gem_obj_ggtt_offset(obj) >> PAGE_SHIFT;
1282 
1283 	dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
1284 				       entry,
1285 				       obj->base.size >> PAGE_SHIFT,
1286 				       true);
1287 
1288 	obj->has_global_gtt_mapping = 0;
1289 }
1290 
1291 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
1292 {
1293 	struct drm_device *dev = obj->base.dev;
1294 	struct drm_i915_private *dev_priv = dev->dev_private;
1295 	bool interruptible;
1296 
1297 	interruptible = do_idling(dev_priv);
1298 
1299 #ifdef __linux__
1300 	if (!obj->has_dma_mapping)
1301 		dma_unmap_sg(&dev->pdev->dev,
1302 			     obj->pages->sgl, obj->pages->nents,
1303 			     PCI_DMA_BIDIRECTIONAL);
1304 #endif
1305 
1306 	undo_idling(dev_priv, interruptible);
1307 }
1308 
1309 static void i915_gtt_color_adjust(struct drm_mm_node *node,
1310 				  unsigned long color,
1311 				  unsigned long *start,
1312 				  unsigned long *end)
1313 {
1314 	if (node->color != color)
1315 		*start += 4096;
1316 
1317 	if (!list_empty(&node->node_list)) {
1318 		node = list_entry(node->node_list.next,
1319 				  struct drm_mm_node,
1320 				  node_list);
1321 		if (node->allocated && node->color != color)
1322 			*end -= 4096;
1323 	}
1324 }
1325 
1326 void i915_gem_setup_global_gtt(struct drm_device *dev,
1327 			       unsigned long start,
1328 			       unsigned long mappable_end,
1329 			       unsigned long end)
1330 {
1331 	/* Let GEM Manage all of the aperture.
1332 	 *
1333 	 * However, leave one page at the end still bound to the scratch page.
1334 	 * There are a number of places where the hardware apparently prefetches
1335 	 * past the end of the object, and we've seen multiple hangs with the
1336 	 * GPU head pointer stuck in a batchbuffer bound at the last page of the
1337 	 * aperture.  One page should be enough to keep any prefetching inside
1338 	 * of the aperture.
1339 	 */
1340 	struct drm_i915_private *dev_priv = dev->dev_private;
1341 	struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
1342 	struct drm_mm_node *entry;
1343 	struct drm_i915_gem_object *obj;
1344 	unsigned long hole_start, hole_end;
1345 
1346 	BUG_ON(mappable_end > end);
1347 
1348 	/* Subtract the guard page ... */
1349 	drm_mm_init(&ggtt_vm->mm, start, end - start - PAGE_SIZE);
1350 	if (!HAS_LLC(dev))
1351 		dev_priv->gtt.base.mm.color_adjust = i915_gtt_color_adjust;
1352 
1353 	/* Mark any preallocated objects as occupied */
1354 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
1355 		struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
1356 		int ret;
1357 		DRM_DEBUG_KMS("reserving preallocated space: %lx + %zx\n",
1358 			      i915_gem_obj_ggtt_offset(obj), obj->base.size);
1359 
1360 		WARN_ON(i915_gem_obj_ggtt_bound(obj));
1361 		ret = drm_mm_reserve_node(&ggtt_vm->mm, &vma->node);
1362 		if (ret)
1363 			DRM_DEBUG_KMS("Reservation failed\n");
1364 		obj->has_global_gtt_mapping = 1;
1365 	}
1366 
1367 	dev_priv->gtt.base.start = start;
1368 	dev_priv->gtt.base.total = end - start;
1369 
1370 	/* Clear any non-preallocated blocks */
1371 	drm_mm_for_each_hole(entry, &ggtt_vm->mm, hole_start, hole_end) {
1372 		const unsigned long count = (hole_end - hole_start) / PAGE_SIZE;
1373 		DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
1374 			      hole_start, hole_end);
1375 		ggtt_vm->clear_range(ggtt_vm, hole_start / PAGE_SIZE, count, true);
1376 	}
1377 
1378 	/* And finally clear the reserved guard page */
1379 	ggtt_vm->clear_range(ggtt_vm, end / PAGE_SIZE - 1, 1, true);
1380 }
1381 
1382 static bool
1383 intel_enable_ppgtt(struct drm_device *dev)
1384 {
1385 	if (i915_enable_ppgtt >= 0)
1386 		return i915_enable_ppgtt;
1387 
1388 #ifdef CONFIG_INTEL_IOMMU
1389 	/* Disable ppgtt on SNB if VT-d is on. */
1390 	if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
1391 		return false;
1392 #endif
1393 
1394 	return true;
1395 }
1396 
1397 void i915_gem_init_global_gtt(struct drm_device *dev)
1398 {
1399 	struct drm_i915_private *dev_priv = dev->dev_private;
1400 	unsigned long gtt_size, mappable_size;
1401 
1402 	gtt_size = dev_priv->gtt.base.total;
1403 	mappable_size = dev_priv->gtt.mappable_end;
1404 
1405 	if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
1406 		int ret;
1407 
1408 		if (INTEL_INFO(dev)->gen <= 7) {
1409 			/* PPGTT pdes are stolen from global gtt ptes, so shrink the
1410 			 * aperture accordingly when using aliasing ppgtt. */
1411 			gtt_size -= GEN6_PPGTT_PD_ENTRIES * PAGE_SIZE;
1412 		}
1413 
1414 		i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
1415 
1416 		ret = i915_gem_init_aliasing_ppgtt(dev);
1417 		if (!ret)
1418 			return;
1419 
1420 		DRM_ERROR("Aliased PPGTT setup failed %d\n", ret);
1421 		drm_mm_takedown(&dev_priv->gtt.base.mm);
1422 		if (INTEL_INFO(dev)->gen < 8)
1423 			gtt_size += GEN6_PPGTT_PD_ENTRIES*PAGE_SIZE;
1424 	}
1425 	i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
1426 }
1427 
1428 #ifdef __linux__
1429 
1430 static int setup_scratch_page(struct drm_device *dev)
1431 {
1432 	struct drm_i915_private *dev_priv = dev->dev_private;
1433 	struct page *page;
1434 	dma_addr_t dma_addr;
1435 
1436 	page = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
1437 	if (page == NULL)
1438 		return -ENOMEM;
1439 	get_page(page);
1440 	set_pages_uc(page, 1);
1441 
1442 #ifdef CONFIG_INTEL_IOMMU
1443 	dma_addr = pci_map_page(dev->pdev, page, 0, PAGE_SIZE,
1444 				PCI_DMA_BIDIRECTIONAL);
1445 	if (pci_dma_mapping_error(dev->pdev, dma_addr))
1446 		return -EINVAL;
1447 #else
1448 	dma_addr = page_to_phys(page);
1449 #endif
1450 	dev_priv->gtt.base.scratch.page = page;
1451 	dev_priv->gtt.base.scratch.addr = dma_addr;
1452 
1453 	return 0;
1454 }
1455 
1456 static void teardown_scratch_page(struct drm_device *dev)
1457 {
1458 	struct drm_i915_private *dev_priv = dev->dev_private;
1459 	struct page *page = dev_priv->gtt.base.scratch.page;
1460 
1461 	set_pages_wb(page, 1);
1462 	pci_unmap_page(dev->pdev, dev_priv->gtt.base.scratch.addr,
1463 		       PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
1464 	put_page(page);
1465 	__free_page(page);
1466 }
1467 
1468 #else
1469 
1470 static int setup_scratch_page(struct drm_device *dev)
1471 {
1472 	struct drm_i915_private *dev_priv = dev->dev_private;
1473 	struct drm_dmamem *page;
1474 
1475 	page = drm_dmamem_alloc(dev_priv->dmat, PAGE_SIZE, 0, 1, PAGE_SIZE,
1476 	    BUS_DMA_NOCACHE, 0);
1477 	if (page == NULL)
1478 		return -ENOMEM;
1479 
1480 	dev_priv->gtt.base.scratch.page = page;
1481 	dev_priv->gtt.base.scratch.addr = page->segs[0].ds_addr;
1482 
1483 	return 0;
1484 }
1485 
1486 static void teardown_scratch_page(struct drm_device *dev)
1487 {
1488 	struct drm_i915_private *dev_priv = dev->dev_private;
1489 
1490 	drm_dmamem_free(dev_priv->dmat, dev_priv->gtt.base.scratch.page);
1491 }
1492 
1493 #endif
1494 
1495 static inline unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
1496 {
1497 	snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
1498 	snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
1499 	return snb_gmch_ctl << 20;
1500 }
1501 
1502 static inline unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
1503 {
1504 	bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
1505 	bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
1506 	if (bdw_gmch_ctl)
1507 		bdw_gmch_ctl = 1 << bdw_gmch_ctl;
1508 	if (bdw_gmch_ctl > 4) {
1509 		WARN_ON(!i915_preliminary_hw_support);
1510 		return 4<<20;
1511 	}
1512 
1513 	return bdw_gmch_ctl << 20;
1514 }
1515 
1516 static inline size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
1517 {
1518 	snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
1519 	snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
1520 	return snb_gmch_ctl << 25; /* 32 MB units */
1521 }
1522 
1523 static inline size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
1524 {
1525 	bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
1526 	bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
1527 	return bdw_gmch_ctl << 25; /* 32 MB units */
1528 }
1529 
1530 #ifdef __linux__
1531 
1532 static int ggtt_probe_common(struct drm_device *dev,
1533 			     size_t gtt_size)
1534 {
1535 	struct drm_i915_private *dev_priv = dev->dev_private;
1536 	phys_addr_t gtt_phys_addr;
1537 	int ret;
1538 
1539 	/* For Modern GENs the PTEs and register space are split in the BAR */
1540 	gtt_phys_addr = pci_resource_start(dev->pdev, 0) +
1541 		(pci_resource_len(dev->pdev, 0) / 2);
1542 
1543 	dev_priv->gtt.gsm = ioremap_wc(gtt_phys_addr, gtt_size);
1544 	if (!dev_priv->gtt.gsm) {
1545 		DRM_ERROR("Failed to map the gtt page table\n");
1546 		return -ENOMEM;
1547 	}
1548 
1549 	ret = setup_scratch_page(dev);
1550 	if (ret) {
1551 		DRM_ERROR("Scratch setup failed\n");
1552 		/* iounmap will also get called at remove, but meh */
1553 		iounmap(dev_priv->gtt.gsm);
1554 	}
1555 
1556 	return ret;
1557 }
1558 
1559 #else
1560 
1561 static int ggtt_probe_common(struct drm_device *dev,
1562 			     size_t gtt_size)
1563 {
1564 	struct drm_i915_private *dev_priv = dev->dev_private;
1565 	bus_space_handle_t gsm;
1566 	bus_addr_t addr;
1567 	bus_size_t size;
1568 	pcireg_t type;
1569 	int ret;
1570 
1571 	type = pci_mapreg_type(dev_priv->pc, dev_priv->tag, 0x10);
1572 	ret = -pci_mapreg_info(dev_priv->pc, dev_priv->tag, 0x10, type,
1573 	    &addr, &size, NULL);
1574 	if (ret)
1575 		return ret;
1576 
1577 	/* For Modern GENs the PTEs and register space are split in the BAR */
1578 	ret = -bus_space_map(dev_priv->bst, addr + size / 2, gtt_size,
1579 	    BUS_SPACE_MAP_PREFETCHABLE | BUS_SPACE_MAP_LINEAR, &gsm);
1580 	if (ret) {
1581 		DRM_ERROR("Failed to map the gtt page table\n");
1582 		return ret;
1583 	}
1584 	dev_priv->gtt.gsm = bus_space_vaddr(dev_priv->bst, gsm);
1585 
1586 	ret = setup_scratch_page(dev);
1587 	if (ret)
1588 		DRM_ERROR("Scratch setup failed\n");
1589 
1590 	return ret;
1591 }
1592 
1593 #endif
1594 
1595 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
1596  * bits. When using advanced contexts each context stores its own PAT, but
1597  * writing this data shouldn't be harmful even in those cases. */
1598 static void gen8_setup_private_ppat(struct drm_i915_private *dev_priv)
1599 {
1600 #define GEN8_PPAT_UC		(0<<0)
1601 #define GEN8_PPAT_WC		(1<<0)
1602 #define GEN8_PPAT_WT		(2<<0)
1603 #define GEN8_PPAT_WB		(3<<0)
1604 #define GEN8_PPAT_ELLC_OVERRIDE	(0<<2)
1605 /* FIXME(BDW): Bspec is completely confused about cache control bits. */
1606 #define GEN8_PPAT_LLC		(1<<2)
1607 #define GEN8_PPAT_LLCELLC	(2<<2)
1608 #define GEN8_PPAT_LLCeLLC	(3<<2)
1609 #define GEN8_PPAT_AGE(x)	(x<<4)
1610 #define GEN8_PPAT(i, x) ((uint64_t) (x) << ((i) * 8))
1611 	uint64_t pat;
1612 
1613 	pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC)     | /* for normal objects, no eLLC */
1614 	      GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
1615 	      GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
1616 	      GEN8_PPAT(3, GEN8_PPAT_UC)                     | /* Uncached objects, mostly for scanout */
1617 	      GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
1618 	      GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
1619 	      GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
1620 	      GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
1621 
1622 	/* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
1623 	 * write would work. */
1624 	I915_WRITE(GEN8_PRIVATE_PAT, pat);
1625 	I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32);
1626 }
1627 
1628 static int gen8_gmch_probe(struct drm_device *dev,
1629 			   size_t *gtt_total,
1630 			   size_t *stolen,
1631 			   phys_addr_t *mappable_base,
1632 			   unsigned long *mappable_end)
1633 {
1634 	struct drm_i915_private *dev_priv = dev->dev_private;
1635 	unsigned int gtt_size;
1636 	u16 snb_gmch_ctl;
1637 	int ret;
1638 
1639 #ifdef __linux__
1640 	/* TODO: We're not aware of mappable constraints on gen8 yet */
1641 	*mappable_base = pci_resource_start(dev->pdev, 2);
1642 	*mappable_end = pci_resource_len(dev->pdev, 2);
1643 
1644 	if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(39)))
1645 		pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(39));
1646 #else
1647 	pcireg_t type = pci_mapreg_type(dev_priv->pc, dev_priv->tag, 0x18);
1648 	ret = -pci_mapreg_info(dev_priv->pc, dev_priv->tag, 0x18, type,
1649 	    mappable_base, mappable_end, NULL);
1650 	if (ret)
1651 		return ret;
1652 #endif
1653 
1654 	pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
1655 
1656 	*stolen = gen8_get_stolen_size(snb_gmch_ctl);
1657 
1658 	gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
1659 	*gtt_total = (gtt_size / sizeof(gen8_gtt_pte_t)) << PAGE_SHIFT;
1660 
1661 	gen8_setup_private_ppat(dev_priv);
1662 
1663 	ret = ggtt_probe_common(dev, gtt_size);
1664 
1665 	dev_priv->gtt.base.clear_range = gen8_ggtt_clear_range;
1666 	dev_priv->gtt.base.insert_entries = gen8_ggtt_insert_entries;
1667 
1668 	return ret;
1669 }
1670 
1671 static int gen6_gmch_probe(struct drm_device *dev,
1672 			   size_t *gtt_total,
1673 			   size_t *stolen,
1674 			   phys_addr_t *mappable_base,
1675 			   unsigned long *mappable_end)
1676 {
1677 	struct drm_i915_private *dev_priv = dev->dev_private;
1678 	unsigned int gtt_size;
1679 	u16 snb_gmch_ctl;
1680 	int ret;
1681 
1682 #ifdef __linux__
1683 	*mappable_base = pci_resource_start(dev->pdev, 2);
1684 	*mappable_end = pci_resource_len(dev->pdev, 2);
1685 #else
1686 	pcireg_t type = pci_mapreg_type(dev_priv->pc, dev_priv->tag, 0x18);
1687 	ret = -pci_mapreg_info(dev_priv->pc, dev_priv->tag, 0x18, type,
1688 	    mappable_base, mappable_end, NULL);
1689 	if (ret)
1690 		return ret;
1691 #endif
1692 
1693 	/* 64/512MB is the current min/max we actually know of, but this is just
1694 	 * a coarse sanity check.
1695 	 */
1696 	if ((*mappable_end < (64<<20) || (*mappable_end > (512<<20)))) {
1697 		DRM_ERROR("Unknown GMADR size (%lx)\n",
1698 			  dev_priv->gtt.mappable_end);
1699 		return -ENXIO;
1700 	}
1701 
1702 #ifdef __linux__
1703 	if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40)))
1704 		pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40));
1705 #endif
1706 	pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
1707 
1708 	*stolen = gen6_get_stolen_size(snb_gmch_ctl);
1709 
1710 	gtt_size = gen6_get_total_gtt_size(snb_gmch_ctl);
1711 	*gtt_total = (gtt_size / sizeof(gen6_gtt_pte_t)) << PAGE_SHIFT;
1712 
1713 	ret = ggtt_probe_common(dev, gtt_size);
1714 
1715 	dev_priv->gtt.base.clear_range = gen6_ggtt_clear_range;
1716 	dev_priv->gtt.base.insert_entries = gen6_ggtt_insert_entries;
1717 
1718 	return ret;
1719 }
1720 
1721 static void gen6_gmch_remove(struct i915_address_space *vm)
1722 {
1723 
1724 #ifdef __linux__
1725 	struct i915_gtt *gtt = container_of(vm, struct i915_gtt, base);
1726 #endif
1727 
1728 	drm_mm_takedown(&vm->mm);
1729 #ifdef __linux__
1730 	iounmap(gtt->gsm);
1731 #endif
1732 	teardown_scratch_page(vm->dev);
1733 }
1734 
1735 static int i915_gmch_probe(struct drm_device *dev,
1736 			   size_t *gtt_total,
1737 			   size_t *stolen,
1738 			   phys_addr_t *mappable_base,
1739 			   unsigned long *mappable_end)
1740 {
1741 	struct drm_i915_private *dev_priv = dev->dev_private;
1742 	int ret;
1743 
1744 	ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->dev->pdev, NULL);
1745 	if (!ret) {
1746 		DRM_ERROR("failed to set up gmch\n");
1747 		return -EIO;
1748 	}
1749 
1750 	intel_gtt_get(gtt_total, stolen, mappable_base, mappable_end);
1751 
1752 	dev_priv->gtt.do_idle_maps = needs_idle_maps(dev_priv->dev);
1753 	dev_priv->gtt.base.clear_range = i915_ggtt_clear_range;
1754 	dev_priv->gtt.base.insert_entries = i915_ggtt_insert_entries;
1755 
1756 	if (unlikely(dev_priv->gtt.do_idle_maps))
1757 		DRM_INFO("applying Ironlake quirks for intel_iommu\n");
1758 
1759 	return 0;
1760 }
1761 
1762 static void i915_gmch_remove(struct i915_address_space *vm)
1763 {
1764 	intel_gmch_remove();
1765 }
1766 
1767 int i915_gem_gtt_init(struct drm_device *dev)
1768 {
1769 	struct drm_i915_private *dev_priv = dev->dev_private;
1770 	struct i915_gtt *gtt = &dev_priv->gtt;
1771 	int ret;
1772 
1773 	if (INTEL_INFO(dev)->gen <= 5) {
1774 		gtt->gtt_probe = i915_gmch_probe;
1775 		gtt->base.cleanup = i915_gmch_remove;
1776 	} else if (INTEL_INFO(dev)->gen < 8) {
1777 		gtt->gtt_probe = gen6_gmch_probe;
1778 		gtt->base.cleanup = gen6_gmch_remove;
1779 		if (IS_HASWELL(dev) && dev_priv->ellc_size)
1780 			gtt->base.pte_encode = iris_pte_encode;
1781 		else if (IS_HASWELL(dev))
1782 			gtt->base.pte_encode = hsw_pte_encode;
1783 		else if (IS_VALLEYVIEW(dev))
1784 			gtt->base.pte_encode = byt_pte_encode;
1785 		else if (INTEL_INFO(dev)->gen >= 7)
1786 			gtt->base.pte_encode = ivb_pte_encode;
1787 		else
1788 			gtt->base.pte_encode = snb_pte_encode;
1789 	} else {
1790 		dev_priv->gtt.gtt_probe = gen8_gmch_probe;
1791 		dev_priv->gtt.base.cleanup = gen6_gmch_remove;
1792 	}
1793 
1794 	ret = gtt->gtt_probe(dev, &gtt->base.total, &gtt->stolen_size,
1795 			     &gtt->mappable_base, &gtt->mappable_end);
1796 	if (ret)
1797 		return ret;
1798 
1799 	gtt->base.dev = dev;
1800 
1801 	/* GMADR is the PCI mmio aperture into the global GTT. */
1802 	DRM_INFO("Memory usable by graphics device = %zdM\n",
1803 		 gtt->base.total >> 20);
1804 	DRM_DEBUG_DRIVER("GMADR size = %ldM\n", gtt->mappable_end >> 20);
1805 	DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", gtt->stolen_size >> 20);
1806 
1807 	return 0;
1808 }
1809