xref: /openbsd-src/sys/dev/pci/drm/i915/i915_gem.c (revision 99fd087599a8791921855f21bd7e36130f39aadc)
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_gem_clflush.h"
33 #include "i915_vgpu.h"
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36 #include "intel_frontbuffer.h"
37 #include "intel_mocs.h"
38 #include "intel_workarounds.h"
39 #include "i915_gemfs.h"
40 #include <linux/dma-fence-array.h>
41 #include <linux/kthread.h>
42 #include <linux/reservation.h>
43 #include <linux/shmem_fs.h>
44 #include <linux/slab.h>
45 #include <linux/stop_machine.h>
46 #include <linux/swap.h>
47 #include <linux/pci.h>
48 #include <linux/dma-buf.h>
49 
50 static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
51 
52 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
53 {
54 	if (obj->cache_dirty)
55 		return false;
56 
57 	if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE))
58 		return true;
59 
60 	return obj->pin_global; /* currently in use by HW, keep flushed */
61 }
62 
63 static int
64 insert_mappable_node(struct i915_ggtt *ggtt,
65                      struct drm_mm_node *node, u32 size)
66 {
67 	memset(node, 0, sizeof(*node));
68 	return drm_mm_insert_node_in_range(&ggtt->vm.mm, node,
69 					   size, 0, I915_COLOR_UNEVICTABLE,
70 					   0, ggtt->mappable_end,
71 					   DRM_MM_INSERT_LOW);
72 }
73 
74 static void
75 remove_mappable_node(struct drm_mm_node *node)
76 {
77 	drm_mm_remove_node(node);
78 }
79 
80 /* some bookkeeping */
81 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
82 				  u64 size)
83 {
84 	spin_lock(&dev_priv->mm.object_stat_lock);
85 	dev_priv->mm.object_count++;
86 	dev_priv->mm.object_memory += size;
87 	spin_unlock(&dev_priv->mm.object_stat_lock);
88 }
89 
90 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
91 				     u64 size)
92 {
93 	spin_lock(&dev_priv->mm.object_stat_lock);
94 	dev_priv->mm.object_count--;
95 	dev_priv->mm.object_memory -= size;
96 	spin_unlock(&dev_priv->mm.object_stat_lock);
97 }
98 
99 static int
100 i915_gem_wait_for_error(struct i915_gpu_error *error)
101 {
102 	int ret;
103 
104 	might_sleep();
105 
106 	/*
107 	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
108 	 * userspace. If it takes that long something really bad is going on and
109 	 * we should simply try to bail out and fail as gracefully as possible.
110 	 */
111 	ret = wait_event_interruptible_timeout(error->reset_queue,
112 					       !i915_reset_backoff(error),
113 					       I915_RESET_TIMEOUT);
114 	if (ret == 0) {
115 		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
116 		return -EIO;
117 	} else if (ret < 0) {
118 		return ret;
119 	} else {
120 		return 0;
121 	}
122 }
123 
124 int i915_mutex_lock_interruptible(struct drm_device *dev)
125 {
126 	struct drm_i915_private *dev_priv = to_i915(dev);
127 	int ret;
128 
129 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
130 	if (ret)
131 		return ret;
132 
133 	ret = mutex_lock_interruptible(&dev->struct_mutex);
134 	if (ret)
135 		return ret;
136 
137 	return 0;
138 }
139 
140 static u32 __i915_gem_park(struct drm_i915_private *i915)
141 {
142 	GEM_TRACE("\n");
143 
144 	lockdep_assert_held(&i915->drm.struct_mutex);
145 	GEM_BUG_ON(i915->gt.active_requests);
146 	GEM_BUG_ON(!list_empty(&i915->gt.active_rings));
147 
148 	if (!i915->gt.awake)
149 		return I915_EPOCH_INVALID;
150 
151 	GEM_BUG_ON(i915->gt.epoch == I915_EPOCH_INVALID);
152 
153 	/*
154 	 * Be paranoid and flush a concurrent interrupt to make sure
155 	 * we don't reactivate any irq tasklets after parking.
156 	 *
157 	 * FIXME: Note that even though we have waited for execlists to be idle,
158 	 * there may still be an in-flight interrupt even though the CSB
159 	 * is now empty. synchronize_irq() makes sure that a residual interrupt
160 	 * is completed before we continue, but it doesn't prevent the HW from
161 	 * raising a spurious interrupt later. To complete the shield we should
162 	 * coordinate disabling the CS irq with flushing the interrupts.
163 	 */
164 	synchronize_irq(i915->drm.irq);
165 
166 	intel_engines_park(i915);
167 	i915_timelines_park(i915);
168 
169 	i915_pmu_gt_parked(i915);
170 	i915_vma_parked(i915);
171 
172 	i915->gt.awake = false;
173 
174 	if (INTEL_GEN(i915) >= 6)
175 		gen6_rps_idle(i915);
176 
177 	if (NEEDS_RC6_CTX_CORRUPTION_WA(i915)) {
178 		i915_rc6_ctx_wa_check(i915);
179 		intel_uncore_forcewake_put(i915, FORCEWAKE_ALL);
180 	}
181 
182 	intel_display_power_put(i915, POWER_DOMAIN_GT_IRQ);
183 
184 	intel_runtime_pm_put(i915);
185 
186 	return i915->gt.epoch;
187 }
188 
189 void i915_gem_park(struct drm_i915_private *i915)
190 {
191 	GEM_TRACE("\n");
192 
193 	lockdep_assert_held(&i915->drm.struct_mutex);
194 	GEM_BUG_ON(i915->gt.active_requests);
195 
196 	if (!i915->gt.awake)
197 		return;
198 
199 	/* Defer the actual call to __i915_gem_park() to prevent ping-pongs */
200 	mod_delayed_work(i915->wq, &i915->gt.idle_work, msecs_to_jiffies(100));
201 }
202 
203 void i915_gem_unpark(struct drm_i915_private *i915)
204 {
205 	GEM_TRACE("\n");
206 
207 	lockdep_assert_held(&i915->drm.struct_mutex);
208 	GEM_BUG_ON(!i915->gt.active_requests);
209 
210 	if (i915->gt.awake)
211 		return;
212 
213 	intel_runtime_pm_get_noresume(i915);
214 
215 	/*
216 	 * It seems that the DMC likes to transition between the DC states a lot
217 	 * when there are no connected displays (no active power domains) during
218 	 * command submission.
219 	 *
220 	 * This activity has negative impact on the performance of the chip with
221 	 * huge latencies observed in the interrupt handler and elsewhere.
222 	 *
223 	 * Work around it by grabbing a GT IRQ power domain whilst there is any
224 	 * GT activity, preventing any DC state transitions.
225 	 */
226 	intel_display_power_get(i915, POWER_DOMAIN_GT_IRQ);
227 
228 	if (NEEDS_RC6_CTX_CORRUPTION_WA(i915))
229 		intel_uncore_forcewake_get(i915, FORCEWAKE_ALL);
230 
231 	i915->gt.awake = true;
232 	if (unlikely(++i915->gt.epoch == 0)) /* keep 0 as invalid */
233 		i915->gt.epoch = 1;
234 
235 	intel_enable_gt_powersave(i915);
236 	i915_update_gfx_val(i915);
237 	if (INTEL_GEN(i915) >= 6)
238 		gen6_rps_busy(i915);
239 	i915_pmu_gt_unparked(i915);
240 
241 	intel_engines_unpark(i915);
242 
243 	i915_queue_hangcheck(i915);
244 
245 	queue_delayed_work(i915->wq,
246 			   &i915->gt.retire_work,
247 			   round_jiffies_up_relative(HZ));
248 }
249 
250 int
251 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
252 			    struct drm_file *file)
253 {
254 	struct drm_i915_private *dev_priv = to_i915(dev);
255 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
256 	struct drm_i915_gem_get_aperture *args = data;
257 	struct i915_vma *vma;
258 	u64 pinned;
259 
260 	pinned = ggtt->vm.reserved;
261 	mutex_lock(&dev->struct_mutex);
262 	list_for_each_entry(vma, &ggtt->vm.active_list, vm_link)
263 		if (i915_vma_is_pinned(vma))
264 			pinned += vma->node.size;
265 	list_for_each_entry(vma, &ggtt->vm.inactive_list, vm_link)
266 		if (i915_vma_is_pinned(vma))
267 			pinned += vma->node.size;
268 	mutex_unlock(&dev->struct_mutex);
269 
270 	args->aper_size = ggtt->vm.total;
271 	args->aper_available_size = args->aper_size - pinned;
272 
273 	return 0;
274 }
275 
276 static int i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
277 {
278 #ifdef __linux__
279 	struct address_space *mapping = obj->base.filp->f_mapping;
280 #endif
281 	drm_dma_handle_t *phys;
282 	struct sg_table *st;
283 	struct scatterlist *sg;
284 	char *vaddr;
285 	int i;
286 	int err;
287 
288 	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
289 		return -EINVAL;
290 
291 	/* Always aligning to the object size, allows a single allocation
292 	 * to handle all possible callers, and given typical object sizes,
293 	 * the alignment of the buddy allocation will naturally match.
294 	 */
295 	phys = drm_pci_alloc(obj->base.dev,
296 			     roundup_pow_of_two(obj->base.size),
297 			     roundup_pow_of_two(obj->base.size));
298 	if (!phys)
299 		return -ENOMEM;
300 
301 	vaddr = phys->vaddr;
302 	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
303 		struct vm_page *page;
304 		char *src;
305 
306 #ifdef __linux__
307 		page = shmem_read_mapping_page(mapping, i);
308 		if (IS_ERR(page)) {
309 			err = PTR_ERR(page);
310 			goto err_phys;
311 		}
312 #else
313 		struct pglist plist;
314 		TAILQ_INIT(&plist);
315 		if (uvm_objwire(obj->base.uao, i * PAGE_SIZE, (i + 1) * PAGE_SIZE, &plist)) {
316 			err = -ENOMEM;
317 			goto err_phys;
318 		}
319 		page = TAILQ_FIRST(&plist);
320 #endif
321 
322 		src = kmap_atomic(page);
323 		memcpy(vaddr, src, PAGE_SIZE);
324 		drm_clflush_virt_range(vaddr, PAGE_SIZE);
325 		kunmap_atomic(src);
326 
327 #ifdef __linux__
328 		put_page(page);
329 #else
330 		uvm_objunwire(obj->base.uao, i * PAGE_SIZE, (i + 1) * PAGE_SIZE);
331 #endif
332 		vaddr += PAGE_SIZE;
333 	}
334 
335 	i915_gem_chipset_flush(to_i915(obj->base.dev));
336 
337 	st = kmalloc(sizeof(*st), GFP_KERNEL);
338 	if (!st) {
339 		err = -ENOMEM;
340 		goto err_phys;
341 	}
342 
343 	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
344 		kfree(st);
345 		err = -ENOMEM;
346 		goto err_phys;
347 	}
348 
349 	sg = st->sgl;
350 	sg->offset = 0;
351 	sg->length = obj->base.size;
352 
353 	sg_dma_address(sg) = phys->busaddr;
354 	sg_dma_len(sg) = obj->base.size;
355 
356 	obj->phys_handle = phys;
357 
358 	__i915_gem_object_set_pages(obj, st, sg->length);
359 
360 	return 0;
361 
362 err_phys:
363 	drm_pci_free(obj->base.dev, phys);
364 
365 	return err;
366 }
367 
368 static void __start_cpu_write(struct drm_i915_gem_object *obj)
369 {
370 	obj->read_domains = I915_GEM_DOMAIN_CPU;
371 	obj->write_domain = I915_GEM_DOMAIN_CPU;
372 	if (cpu_write_needs_clflush(obj))
373 		obj->cache_dirty = true;
374 }
375 
376 static void
377 __i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
378 				struct sg_table *pages,
379 				bool needs_clflush)
380 {
381 	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
382 
383 	if (obj->mm.madv == I915_MADV_DONTNEED)
384 		obj->mm.dirty = false;
385 
386 	if (needs_clflush &&
387 	    (obj->read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
388 	    !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
389 		drm_clflush_sg(pages);
390 
391 	__start_cpu_write(obj);
392 }
393 
394 static void
395 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
396 			       struct sg_table *pages)
397 {
398 	__i915_gem_object_release_shmem(obj, pages, false);
399 
400 	if (obj->mm.dirty) {
401 #ifdef __linux__
402 		struct address_space *mapping = obj->base.filp->f_mapping;
403 #endif
404 		char *vaddr = obj->phys_handle->vaddr;
405 		int i;
406 
407 		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
408 			struct vm_page *page;
409 			char *dst;
410 
411 #ifdef __linux__
412 			page = shmem_read_mapping_page(mapping, i);
413 			if (IS_ERR(page))
414 				continue;
415 #else
416 			struct pglist plist;
417 			TAILQ_INIT(&plist);
418 			if (uvm_objwire(obj->base.uao, i * PAGE_SIZE, (i + 1) * PAGE_SIZE, &plist))
419 				continue;
420 			page = TAILQ_FIRST(&plist);
421 #endif
422 
423 			dst = kmap_atomic(page);
424 			drm_clflush_virt_range(vaddr, PAGE_SIZE);
425 			memcpy(dst, vaddr, PAGE_SIZE);
426 			kunmap_atomic(dst);
427 
428 			set_page_dirty(page);
429 #ifdef __linux__
430 			if (obj->mm.madv == I915_MADV_WILLNEED)
431 				mark_page_accessed(page);
432 			put_page(page);
433 #else
434 			uvm_objunwire(obj->base.uao, i * PAGE_SIZE, (i + 1) * PAGE_SIZE);
435 #endif
436 			vaddr += PAGE_SIZE;
437 		}
438 		obj->mm.dirty = false;
439 	}
440 
441 	sg_free_table(pages);
442 	kfree(pages);
443 
444 	drm_pci_free(obj->base.dev, obj->phys_handle);
445 }
446 
447 static void
448 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
449 {
450 	i915_gem_object_unpin_pages(obj);
451 }
452 
453 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
454 	.get_pages = i915_gem_object_get_pages_phys,
455 	.put_pages = i915_gem_object_put_pages_phys,
456 	.release = i915_gem_object_release_phys,
457 };
458 
459 static const struct drm_i915_gem_object_ops i915_gem_object_ops;
460 
461 int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
462 {
463 	struct i915_vma *vma;
464 	DRM_LIST_HEAD(still_in_list);
465 	int ret;
466 
467 	lockdep_assert_held(&obj->base.dev->struct_mutex);
468 
469 	/* Closed vma are removed from the obj->vma_list - but they may
470 	 * still have an active binding on the object. To remove those we
471 	 * must wait for all rendering to complete to the object (as unbinding
472 	 * must anyway), and retire the requests.
473 	 */
474 	ret = i915_gem_object_set_to_cpu_domain(obj, false);
475 	if (ret)
476 		return ret;
477 
478 	while ((vma = list_first_entry_or_null(&obj->vma_list,
479 					       struct i915_vma,
480 					       obj_link))) {
481 		list_move_tail(&vma->obj_link, &still_in_list);
482 		ret = i915_vma_unbind(vma);
483 		if (ret)
484 			break;
485 	}
486 	list_splice(&still_in_list, &obj->vma_list);
487 
488 	return ret;
489 }
490 
491 static long
492 i915_gem_object_wait_fence(struct dma_fence *fence,
493 			   unsigned int flags,
494 			   long timeout,
495 			   struct intel_rps_client *rps_client)
496 {
497 	struct i915_request *rq;
498 
499 	BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
500 
501 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
502 		return timeout;
503 
504 	if (!dma_fence_is_i915(fence))
505 		return dma_fence_wait_timeout(fence,
506 					      flags & I915_WAIT_INTERRUPTIBLE,
507 					      timeout);
508 
509 	rq = to_request(fence);
510 	if (i915_request_completed(rq))
511 		goto out;
512 
513 	/*
514 	 * This client is about to stall waiting for the GPU. In many cases
515 	 * this is undesirable and limits the throughput of the system, as
516 	 * many clients cannot continue processing user input/output whilst
517 	 * blocked. RPS autotuning may take tens of milliseconds to respond
518 	 * to the GPU load and thus incurs additional latency for the client.
519 	 * We can circumvent that by promoting the GPU frequency to maximum
520 	 * before we wait. This makes the GPU throttle up much more quickly
521 	 * (good for benchmarks and user experience, e.g. window animations),
522 	 * but at a cost of spending more power processing the workload
523 	 * (bad for battery). Not all clients even want their results
524 	 * immediately and for them we should just let the GPU select its own
525 	 * frequency to maximise efficiency. To prevent a single client from
526 	 * forcing the clocks too high for the whole system, we only allow
527 	 * each client to waitboost once in a busy period.
528 	 */
529 	if (rps_client && !i915_request_started(rq)) {
530 		if (INTEL_GEN(rq->i915) >= 6)
531 			gen6_rps_boost(rq, rps_client);
532 	}
533 
534 	timeout = i915_request_wait(rq, flags, timeout);
535 
536 out:
537 	if (flags & I915_WAIT_LOCKED && i915_request_completed(rq))
538 		i915_request_retire_upto(rq);
539 
540 	return timeout;
541 }
542 
543 static long
544 i915_gem_object_wait_reservation(struct reservation_object *resv,
545 				 unsigned int flags,
546 				 long timeout,
547 				 struct intel_rps_client *rps_client)
548 {
549 	unsigned int seq = __read_seqcount_begin(&resv->seq);
550 	struct dma_fence *excl;
551 	bool prune_fences = false;
552 
553 	if (flags & I915_WAIT_ALL) {
554 		struct dma_fence **shared;
555 		unsigned int count, i;
556 		int ret;
557 
558 		ret = reservation_object_get_fences_rcu(resv,
559 							&excl, &count, &shared);
560 		if (ret)
561 			return ret;
562 
563 		for (i = 0; i < count; i++) {
564 			timeout = i915_gem_object_wait_fence(shared[i],
565 							     flags, timeout,
566 							     rps_client);
567 			if (timeout < 0)
568 				break;
569 
570 			dma_fence_put(shared[i]);
571 		}
572 
573 		for (; i < count; i++)
574 			dma_fence_put(shared[i]);
575 		kfree(shared);
576 
577 		/*
578 		 * If both shared fences and an exclusive fence exist,
579 		 * then by construction the shared fences must be later
580 		 * than the exclusive fence. If we successfully wait for
581 		 * all the shared fences, we know that the exclusive fence
582 		 * must all be signaled. If all the shared fences are
583 		 * signaled, we can prune the array and recover the
584 		 * floating references on the fences/requests.
585 		 */
586 		prune_fences = count && timeout >= 0;
587 	} else {
588 		excl = reservation_object_get_excl_rcu(resv);
589 	}
590 
591 	if (excl && timeout >= 0)
592 		timeout = i915_gem_object_wait_fence(excl, flags, timeout,
593 						     rps_client);
594 
595 	dma_fence_put(excl);
596 
597 	/*
598 	 * Opportunistically prune the fences iff we know they have *all* been
599 	 * signaled and that the reservation object has not been changed (i.e.
600 	 * no new fences have been added).
601 	 */
602 	if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
603 		if (reservation_object_trylock(resv)) {
604 			if (!__read_seqcount_retry(&resv->seq, seq))
605 				reservation_object_add_excl_fence(resv, NULL);
606 			reservation_object_unlock(resv);
607 		}
608 	}
609 
610 	return timeout;
611 }
612 
613 static void __fence_set_priority(struct dma_fence *fence,
614 				 const struct i915_sched_attr *attr)
615 {
616 	struct i915_request *rq;
617 	struct intel_engine_cs *engine;
618 
619 	if (dma_fence_is_signaled(fence) || !dma_fence_is_i915(fence))
620 		return;
621 
622 	rq = to_request(fence);
623 	engine = rq->engine;
624 
625 	local_bh_disable();
626 	rcu_read_lock(); /* RCU serialisation for set-wedged protection */
627 	if (engine->schedule)
628 		engine->schedule(rq, attr);
629 	rcu_read_unlock();
630 	local_bh_enable(); /* kick the tasklets if queues were reprioritised */
631 }
632 
633 static void fence_set_priority(struct dma_fence *fence,
634 			       const struct i915_sched_attr *attr)
635 {
636 	/* Recurse once into a fence-array */
637 	if (dma_fence_is_array(fence)) {
638 		struct dma_fence_array *array = to_dma_fence_array(fence);
639 		int i;
640 
641 		for (i = 0; i < array->num_fences; i++)
642 			__fence_set_priority(array->fences[i], attr);
643 	} else {
644 		__fence_set_priority(fence, attr);
645 	}
646 }
647 
648 int
649 i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
650 			      unsigned int flags,
651 			      const struct i915_sched_attr *attr)
652 {
653 	struct dma_fence *excl;
654 
655 	if (flags & I915_WAIT_ALL) {
656 		struct dma_fence **shared;
657 		unsigned int count, i;
658 		int ret;
659 
660 		ret = reservation_object_get_fences_rcu(obj->resv,
661 							&excl, &count, &shared);
662 		if (ret)
663 			return ret;
664 
665 		for (i = 0; i < count; i++) {
666 			fence_set_priority(shared[i], attr);
667 			dma_fence_put(shared[i]);
668 		}
669 
670 		kfree(shared);
671 	} else {
672 		excl = reservation_object_get_excl_rcu(obj->resv);
673 	}
674 
675 	if (excl) {
676 		fence_set_priority(excl, attr);
677 		dma_fence_put(excl);
678 	}
679 	return 0;
680 }
681 
682 /**
683  * Waits for rendering to the object to be completed
684  * @obj: i915 gem object
685  * @flags: how to wait (under a lock, for all rendering or just for writes etc)
686  * @timeout: how long to wait
687  * @rps_client: client (user process) to charge for any waitboosting
688  */
689 int
690 i915_gem_object_wait(struct drm_i915_gem_object *obj,
691 		     unsigned int flags,
692 		     long timeout,
693 		     struct intel_rps_client *rps_client)
694 {
695 	might_sleep();
696 #if IS_ENABLED(CONFIG_LOCKDEP)
697 	GEM_BUG_ON(debug_locks &&
698 		   !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
699 		   !!(flags & I915_WAIT_LOCKED));
700 #endif
701 	GEM_BUG_ON(timeout < 0);
702 
703 	timeout = i915_gem_object_wait_reservation(obj->resv,
704 						   flags, timeout,
705 						   rps_client);
706 	return timeout < 0 ? timeout : 0;
707 }
708 
709 static struct intel_rps_client *to_rps_client(struct drm_file *file)
710 {
711 	struct drm_i915_file_private *fpriv = file->driver_priv;
712 
713 	return &fpriv->rps_client;
714 }
715 
716 static int
717 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
718 		     struct drm_i915_gem_pwrite *args,
719 		     struct drm_file *file)
720 {
721 	void *vaddr = obj->phys_handle->vaddr + args->offset;
722 	char __user *user_data = u64_to_user_ptr(args->data_ptr);
723 
724 	/* We manually control the domain here and pretend that it
725 	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
726 	 */
727 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
728 	if (copy_from_user(vaddr, user_data, args->size))
729 		return -EFAULT;
730 
731 	drm_clflush_virt_range(vaddr, args->size);
732 	i915_gem_chipset_flush(to_i915(obj->base.dev));
733 
734 	intel_fb_obj_flush(obj, ORIGIN_CPU);
735 	return 0;
736 }
737 
738 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
739 {
740 #ifdef __linux__
741 	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
742 #else
743 	return pool_get(&dev_priv->objects, PR_WAITOK | PR_ZERO);
744 #endif
745 }
746 
747 void i915_gem_object_free(struct drm_i915_gem_object *obj)
748 {
749 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
750 #ifdef __linux__
751 	kmem_cache_free(dev_priv->objects, obj);
752 #else
753 	pool_put(&dev_priv->objects, obj);
754 #endif
755 }
756 
757 static int
758 i915_gem_create(struct drm_file *file,
759 		struct drm_i915_private *dev_priv,
760 		uint64_t size,
761 		uint32_t *handle_p)
762 {
763 	struct drm_i915_gem_object *obj;
764 	int ret;
765 	u32 handle;
766 
767 	size = roundup(size, PAGE_SIZE);
768 	if (size == 0)
769 		return -EINVAL;
770 
771 	/* Allocate the new object */
772 	obj = i915_gem_object_create(dev_priv, size);
773 	if (IS_ERR(obj))
774 		return PTR_ERR(obj);
775 
776 	ret = drm_gem_handle_create(file, &obj->base, &handle);
777 	/* drop reference from allocate - handle holds it now */
778 	i915_gem_object_put(obj);
779 	if (ret)
780 		return ret;
781 
782 	*handle_p = handle;
783 	return 0;
784 }
785 
786 int
787 i915_gem_dumb_create(struct drm_file *file,
788 		     struct drm_device *dev,
789 		     struct drm_mode_create_dumb *args)
790 {
791 	/* have to work out size/pitch and return them */
792 	args->pitch = roundup2(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
793 	args->size = args->pitch * args->height;
794 	return i915_gem_create(file, to_i915(dev),
795 			       args->size, &args->handle);
796 }
797 
798 static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
799 {
800 	return !(obj->cache_level == I915_CACHE_NONE ||
801 		 obj->cache_level == I915_CACHE_WT);
802 }
803 
804 /**
805  * Creates a new mm object and returns a handle to it.
806  * @dev: drm device pointer
807  * @data: ioctl data blob
808  * @file: drm file pointer
809  */
810 int
811 i915_gem_create_ioctl(struct drm_device *dev, void *data,
812 		      struct drm_file *file)
813 {
814 	struct drm_i915_private *dev_priv = to_i915(dev);
815 	struct drm_i915_gem_create *args = data;
816 
817 	i915_gem_flush_free_objects(dev_priv);
818 
819 	return i915_gem_create(file, dev_priv,
820 			       args->size, &args->handle);
821 }
822 
823 static inline enum fb_op_origin
824 fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain)
825 {
826 	return (domain == I915_GEM_DOMAIN_GTT ?
827 		obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
828 }
829 
830 void i915_gem_flush_ggtt_writes(struct drm_i915_private *dev_priv)
831 {
832 	/*
833 	 * No actual flushing is required for the GTT write domain for reads
834 	 * from the GTT domain. Writes to it "immediately" go to main memory
835 	 * as far as we know, so there's no chipset flush. It also doesn't
836 	 * land in the GPU render cache.
837 	 *
838 	 * However, we do have to enforce the order so that all writes through
839 	 * the GTT land before any writes to the device, such as updates to
840 	 * the GATT itself.
841 	 *
842 	 * We also have to wait a bit for the writes to land from the GTT.
843 	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
844 	 * timing. This issue has only been observed when switching quickly
845 	 * between GTT writes and CPU reads from inside the kernel on recent hw,
846 	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
847 	 * system agents we cannot reproduce this behaviour, until Cannonlake
848 	 * that was!).
849 	 */
850 
851 	i915_gem_chipset_flush(dev_priv);
852 
853 	intel_runtime_pm_get(dev_priv);
854 	spin_lock_irq(&dev_priv->uncore.lock);
855 
856 	POSTING_READ_FW(RING_HEAD(RENDER_RING_BASE));
857 
858 	spin_unlock_irq(&dev_priv->uncore.lock);
859 	intel_runtime_pm_put(dev_priv);
860 }
861 
862 static void
863 flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
864 {
865 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
866 	struct i915_vma *vma;
867 
868 	if (!(obj->write_domain & flush_domains))
869 		return;
870 
871 	switch (obj->write_domain) {
872 	case I915_GEM_DOMAIN_GTT:
873 		i915_gem_flush_ggtt_writes(dev_priv);
874 
875 		intel_fb_obj_flush(obj,
876 				   fb_write_origin(obj, I915_GEM_DOMAIN_GTT));
877 
878 		for_each_ggtt_vma(vma, obj) {
879 			if (vma->iomap)
880 				continue;
881 
882 			i915_vma_unset_ggtt_write(vma);
883 		}
884 		break;
885 
886 	case I915_GEM_DOMAIN_WC:
887 		wmb();
888 		break;
889 
890 	case I915_GEM_DOMAIN_CPU:
891 		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
892 		break;
893 
894 	case I915_GEM_DOMAIN_RENDER:
895 		if (gpu_write_needs_clflush(obj))
896 			obj->cache_dirty = true;
897 		break;
898 	}
899 
900 	obj->write_domain = 0;
901 }
902 
903 static inline int
904 __copy_to_user_swizzled(char __user *cpu_vaddr,
905 			const char *gpu_vaddr, int gpu_offset,
906 			int length)
907 {
908 	int ret, cpu_offset = 0;
909 
910 	while (length > 0) {
911 		int cacheline_end = roundup2(gpu_offset + 1, 64);
912 		int this_length = min(cacheline_end - gpu_offset, length);
913 		int swizzled_gpu_offset = gpu_offset ^ 64;
914 
915 		ret = __copy_to_user(cpu_vaddr + cpu_offset,
916 				     gpu_vaddr + swizzled_gpu_offset,
917 				     this_length);
918 		if (ret)
919 			return ret + length;
920 
921 		cpu_offset += this_length;
922 		gpu_offset += this_length;
923 		length -= this_length;
924 	}
925 
926 	return 0;
927 }
928 
929 static inline int
930 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
931 			  const char __user *cpu_vaddr,
932 			  int length)
933 {
934 	int ret, cpu_offset = 0;
935 
936 	while (length > 0) {
937 		int cacheline_end = roundup2(gpu_offset + 1, 64);
938 		int this_length = min(cacheline_end - gpu_offset, length);
939 		int swizzled_gpu_offset = gpu_offset ^ 64;
940 
941 		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
942 				       cpu_vaddr + cpu_offset,
943 				       this_length);
944 		if (ret)
945 			return ret + length;
946 
947 		cpu_offset += this_length;
948 		gpu_offset += this_length;
949 		length -= this_length;
950 	}
951 
952 	return 0;
953 }
954 
955 /*
956  * Pins the specified object's pages and synchronizes the object with
957  * GPU accesses. Sets needs_clflush to non-zero if the caller should
958  * flush the object from the CPU cache.
959  */
960 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
961 				    unsigned int *needs_clflush)
962 {
963 	int ret;
964 
965 	lockdep_assert_held(&obj->base.dev->struct_mutex);
966 
967 	*needs_clflush = 0;
968 	if (!i915_gem_object_has_struct_page(obj))
969 		return -ENODEV;
970 
971 	ret = i915_gem_object_wait(obj,
972 				   I915_WAIT_INTERRUPTIBLE |
973 				   I915_WAIT_LOCKED,
974 				   MAX_SCHEDULE_TIMEOUT,
975 				   NULL);
976 	if (ret)
977 		return ret;
978 
979 	ret = i915_gem_object_pin_pages(obj);
980 	if (ret)
981 		return ret;
982 
983 	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ ||
984 	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
985 		ret = i915_gem_object_set_to_cpu_domain(obj, false);
986 		if (ret)
987 			goto err_unpin;
988 		else
989 			goto out;
990 	}
991 
992 	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
993 
994 	/* If we're not in the cpu read domain, set ourself into the gtt
995 	 * read domain and manually flush cachelines (if required). This
996 	 * optimizes for the case when the gpu will dirty the data
997 	 * anyway again before the next pread happens.
998 	 */
999 	if (!obj->cache_dirty &&
1000 	    !(obj->read_domains & I915_GEM_DOMAIN_CPU))
1001 		*needs_clflush = CLFLUSH_BEFORE;
1002 
1003 out:
1004 	/* return with the pages pinned */
1005 	return 0;
1006 
1007 err_unpin:
1008 	i915_gem_object_unpin_pages(obj);
1009 	return ret;
1010 }
1011 
1012 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
1013 				     unsigned int *needs_clflush)
1014 {
1015 	int ret;
1016 
1017 	lockdep_assert_held(&obj->base.dev->struct_mutex);
1018 
1019 	*needs_clflush = 0;
1020 	if (!i915_gem_object_has_struct_page(obj))
1021 		return -ENODEV;
1022 
1023 	ret = i915_gem_object_wait(obj,
1024 				   I915_WAIT_INTERRUPTIBLE |
1025 				   I915_WAIT_LOCKED |
1026 				   I915_WAIT_ALL,
1027 				   MAX_SCHEDULE_TIMEOUT,
1028 				   NULL);
1029 	if (ret)
1030 		return ret;
1031 
1032 	ret = i915_gem_object_pin_pages(obj);
1033 	if (ret)
1034 		return ret;
1035 
1036 	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE ||
1037 	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
1038 		ret = i915_gem_object_set_to_cpu_domain(obj, true);
1039 		if (ret)
1040 			goto err_unpin;
1041 		else
1042 			goto out;
1043 	}
1044 
1045 	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
1046 
1047 	/* If we're not in the cpu write domain, set ourself into the
1048 	 * gtt write domain and manually flush cachelines (as required).
1049 	 * This optimizes for the case when the gpu will use the data
1050 	 * right away and we therefore have to clflush anyway.
1051 	 */
1052 	if (!obj->cache_dirty) {
1053 		*needs_clflush |= CLFLUSH_AFTER;
1054 
1055 		/*
1056 		 * Same trick applies to invalidate partially written
1057 		 * cachelines read before writing.
1058 		 */
1059 		if (!(obj->read_domains & I915_GEM_DOMAIN_CPU))
1060 			*needs_clflush |= CLFLUSH_BEFORE;
1061 	}
1062 
1063 out:
1064 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1065 	obj->mm.dirty = true;
1066 	/* return with the pages pinned */
1067 	return 0;
1068 
1069 err_unpin:
1070 	i915_gem_object_unpin_pages(obj);
1071 	return ret;
1072 }
1073 
1074 static void
1075 shmem_clflush_swizzled_range(char *addr, unsigned long length,
1076 			     bool swizzled)
1077 {
1078 	if (unlikely(swizzled)) {
1079 		unsigned long start = (unsigned long) addr;
1080 		unsigned long end = (unsigned long) addr + length;
1081 
1082 		/* For swizzling simply ensure that we always flush both
1083 		 * channels. Lame, but simple and it works. Swizzled
1084 		 * pwrite/pread is far from a hotpath - current userspace
1085 		 * doesn't use it at all. */
1086 		start = round_down(start, 128);
1087 		end = round_up(end, 128);
1088 
1089 		drm_clflush_virt_range((void *)start, end - start);
1090 	} else {
1091 		drm_clflush_virt_range(addr, length);
1092 	}
1093 
1094 }
1095 
1096 /* Only difference to the fast-path function is that this can handle bit17
1097  * and uses non-atomic copy and kmap functions. */
1098 static int
1099 shmem_pread_slow(struct vm_page *page, int offset, int length,
1100 		 char __user *user_data,
1101 		 bool page_do_bit17_swizzling, bool needs_clflush)
1102 {
1103 	char *vaddr;
1104 	int ret;
1105 
1106 	vaddr = kmap(page);
1107 	if (needs_clflush)
1108 		shmem_clflush_swizzled_range(vaddr + offset, length,
1109 					     page_do_bit17_swizzling);
1110 
1111 	if (page_do_bit17_swizzling)
1112 		ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
1113 	else
1114 		ret = __copy_to_user(user_data, vaddr + offset, length);
1115 	kunmap(vaddr);
1116 
1117 	return ret ? - EFAULT : 0;
1118 }
1119 
1120 static int
1121 shmem_pread(struct vm_page *page, int offset, int length, char __user *user_data,
1122 	    bool page_do_bit17_swizzling, bool needs_clflush)
1123 {
1124 	int ret;
1125 
1126 	ret = -ENODEV;
1127 	if (!page_do_bit17_swizzling) {
1128 		char *vaddr = kmap_atomic(page);
1129 
1130 		if (needs_clflush)
1131 			drm_clflush_virt_range(vaddr + offset, length);
1132 		ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
1133 		kunmap_atomic(vaddr);
1134 	}
1135 	if (ret == 0)
1136 		return 0;
1137 
1138 	return shmem_pread_slow(page, offset, length, user_data,
1139 				page_do_bit17_swizzling, needs_clflush);
1140 }
1141 
1142 static int
1143 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
1144 		     struct drm_i915_gem_pread *args)
1145 {
1146 	char __user *user_data;
1147 	u64 remain;
1148 	unsigned int obj_do_bit17_swizzling;
1149 	unsigned int needs_clflush;
1150 	unsigned int idx, offset;
1151 	int ret;
1152 
1153 	obj_do_bit17_swizzling = 0;
1154 	if (i915_gem_object_needs_bit17_swizzle(obj))
1155 		obj_do_bit17_swizzling = BIT(17);
1156 
1157 	ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
1158 	if (ret)
1159 		return ret;
1160 
1161 	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
1162 	mutex_unlock(&obj->base.dev->struct_mutex);
1163 	if (ret)
1164 		return ret;
1165 
1166 	remain = args->size;
1167 	user_data = u64_to_user_ptr(args->data_ptr);
1168 	offset = offset_in_page(args->offset);
1169 	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1170 		struct vm_page *page = i915_gem_object_get_page(obj, idx);
1171 		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
1172 
1173 		ret = shmem_pread(page, offset, length, user_data,
1174 				  page_to_phys(page) & obj_do_bit17_swizzling,
1175 				  needs_clflush);
1176 		if (ret)
1177 			break;
1178 
1179 		remain -= length;
1180 		user_data += length;
1181 		offset = 0;
1182 	}
1183 
1184 	i915_gem_obj_finish_shmem_access(obj);
1185 	return ret;
1186 }
1187 
1188 #ifdef __linux__
1189 static inline bool
1190 gtt_user_read(struct io_mapping *mapping,
1191 	      loff_t base, int offset,
1192 	      char __user *user_data, int length)
1193 {
1194 	void __iomem *vaddr;
1195 	unsigned long unwritten;
1196 
1197 	/* We can use the cpu mem copy function because this is X86. */
1198 	vaddr = io_mapping_map_atomic_wc(mapping, base);
1199 	unwritten = __copy_to_user_inatomic(user_data,
1200 					    (void __force *)vaddr + offset,
1201 					    length);
1202 	io_mapping_unmap_atomic(vaddr);
1203 	if (unwritten) {
1204 		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
1205 		unwritten = copy_to_user(user_data,
1206 					 (void __force *)vaddr + offset,
1207 					 length);
1208 		io_mapping_unmap(vaddr);
1209 	}
1210 	return unwritten;
1211 }
1212 #else
1213 static inline bool
1214 gtt_user_read(struct drm_i915_private *dev_priv,
1215 	      loff_t base, int offset,
1216 	      char __user *user_data, int length)
1217 {
1218 	bus_space_handle_t bsh;
1219 	void __iomem *vaddr;
1220 	unsigned long unwritten;
1221 
1222 	/* We can use the cpu mem copy function because this is X86. */
1223 	agp_map_atomic(dev_priv->agph, base, &bsh);
1224 	vaddr = bus_space_vaddr(dev_priv->bst, bsh);
1225 	unwritten = __copy_to_user_inatomic(user_data,
1226 					    (void __force *)vaddr + offset,
1227 					    length);
1228 	agp_unmap_atomic(dev_priv->agph, bsh);
1229 	if (unwritten) {
1230 		agp_map_subregion(dev_priv->agph, base, PAGE_SIZE, &bsh);
1231 		vaddr = bus_space_vaddr(dev_priv->bst, bsh);
1232 		unwritten = copy_to_user(user_data,
1233 					 (void __force *)vaddr + offset,
1234 					 length);
1235 		agp_unmap_subregion(dev_priv->agph, bsh, PAGE_SIZE);
1236 	}
1237 	return unwritten;
1238 }
1239 #endif
1240 
1241 static int
1242 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
1243 		   const struct drm_i915_gem_pread *args)
1244 {
1245 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1246 	struct i915_ggtt *ggtt = &i915->ggtt;
1247 	struct drm_mm_node node;
1248 	struct i915_vma *vma;
1249 	void __user *user_data;
1250 	u64 remain, offset;
1251 	int ret;
1252 
1253 	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1254 	if (ret)
1255 		return ret;
1256 
1257 	intel_runtime_pm_get(i915);
1258 	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1259 				       PIN_MAPPABLE |
1260 				       PIN_NONFAULT |
1261 				       PIN_NONBLOCK);
1262 	if (!IS_ERR(vma)) {
1263 		node.start = i915_ggtt_offset(vma);
1264 		node.allocated = false;
1265 		ret = i915_vma_put_fence(vma);
1266 		if (ret) {
1267 			i915_vma_unpin(vma);
1268 			vma = ERR_PTR(ret);
1269 		}
1270 	}
1271 	if (IS_ERR(vma)) {
1272 		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1273 		if (ret)
1274 			goto out_unlock;
1275 		GEM_BUG_ON(!node.allocated);
1276 	}
1277 
1278 	ret = i915_gem_object_set_to_gtt_domain(obj, false);
1279 	if (ret)
1280 		goto out_unpin;
1281 
1282 	mutex_unlock(&i915->drm.struct_mutex);
1283 
1284 	user_data = u64_to_user_ptr(args->data_ptr);
1285 	remain = args->size;
1286 	offset = args->offset;
1287 
1288 	while (remain > 0) {
1289 		/* Operation in this page
1290 		 *
1291 		 * page_base = page offset within aperture
1292 		 * page_offset = offset within page
1293 		 * page_length = bytes to copy for this page
1294 		 */
1295 		u32 page_base = node.start;
1296 		unsigned page_offset = offset_in_page(offset);
1297 		unsigned page_length = PAGE_SIZE - page_offset;
1298 		page_length = remain < page_length ? remain : page_length;
1299 		if (node.allocated) {
1300 			wmb();
1301 			ggtt->vm.insert_page(&ggtt->vm,
1302 					     i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1303 					     node.start, I915_CACHE_NONE, 0);
1304 			wmb();
1305 		} else {
1306 			page_base += offset & ~PAGE_MASK;
1307 		}
1308 
1309 		if (gtt_user_read(i915, page_base, page_offset,
1310 				  user_data, page_length)) {
1311 			ret = -EFAULT;
1312 			break;
1313 		}
1314 
1315 		remain -= page_length;
1316 		user_data += page_length;
1317 		offset += page_length;
1318 	}
1319 
1320 	mutex_lock(&i915->drm.struct_mutex);
1321 out_unpin:
1322 	if (node.allocated) {
1323 		wmb();
1324 		ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
1325 		remove_mappable_node(&node);
1326 	} else {
1327 		i915_vma_unpin(vma);
1328 	}
1329 out_unlock:
1330 	intel_runtime_pm_put(i915);
1331 	mutex_unlock(&i915->drm.struct_mutex);
1332 
1333 	return ret;
1334 }
1335 
1336 /**
1337  * Reads data from the object referenced by handle.
1338  * @dev: drm device pointer
1339  * @data: ioctl data blob
1340  * @file: drm file pointer
1341  *
1342  * On error, the contents of *data are undefined.
1343  */
1344 int
1345 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1346 		     struct drm_file *file)
1347 {
1348 	struct drm_i915_gem_pread *args = data;
1349 	struct drm_i915_gem_object *obj;
1350 	int ret;
1351 
1352 	if (args->size == 0)
1353 		return 0;
1354 
1355 	if (!access_ok(VERIFY_WRITE,
1356 		       u64_to_user_ptr(args->data_ptr),
1357 		       args->size))
1358 		return -EFAULT;
1359 
1360 	obj = i915_gem_object_lookup(file, args->handle);
1361 	if (!obj)
1362 		return -ENOENT;
1363 
1364 	/* Bounds check source.  */
1365 	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1366 		ret = -EINVAL;
1367 		goto out;
1368 	}
1369 
1370 	trace_i915_gem_object_pread(obj, args->offset, args->size);
1371 
1372 	ret = i915_gem_object_wait(obj,
1373 				   I915_WAIT_INTERRUPTIBLE,
1374 				   MAX_SCHEDULE_TIMEOUT,
1375 				   to_rps_client(file));
1376 	if (ret)
1377 		goto out;
1378 
1379 	ret = i915_gem_object_pin_pages(obj);
1380 	if (ret)
1381 		goto out;
1382 
1383 	ret = i915_gem_shmem_pread(obj, args);
1384 	if (ret == -EFAULT || ret == -ENODEV)
1385 		ret = i915_gem_gtt_pread(obj, args);
1386 
1387 	i915_gem_object_unpin_pages(obj);
1388 out:
1389 	i915_gem_object_put(obj);
1390 	return ret;
1391 }
1392 
1393 /* This is the fast write path which cannot handle
1394  * page faults in the source data
1395  */
1396 #ifdef __linux__
1397 static inline bool
1398 ggtt_write(struct io_mapping *mapping,
1399 	   loff_t base, int offset,
1400 	   char __user *user_data, int length)
1401 {
1402 	void __iomem *vaddr;
1403 	unsigned long unwritten;
1404 
1405 	/* We can use the cpu mem copy function because this is X86. */
1406 	vaddr = io_mapping_map_atomic_wc(mapping, base);
1407 	unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
1408 						      user_data, length);
1409 	io_mapping_unmap_atomic(vaddr);
1410 	if (unwritten) {
1411 		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
1412 		unwritten = copy_from_user((void __force *)vaddr + offset,
1413 					   user_data, length);
1414 		io_mapping_unmap(vaddr);
1415 	}
1416 
1417 	return unwritten;
1418 }
1419 #else
1420 static inline bool
1421 ggtt_write(struct drm_i915_private *dev_priv,
1422 	   loff_t base, int offset,
1423 	   char __user *user_data, int length)
1424 {
1425 	bus_space_handle_t bsh;
1426 	void __iomem *vaddr;
1427 	unsigned long unwritten;
1428 
1429 	/* We can use the cpu mem copy function because this is X86. */
1430 	agp_map_atomic(dev_priv->agph, base, &bsh);
1431 	vaddr = bus_space_vaddr(dev_priv->bst, bsh);
1432 	unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
1433 						      user_data, length);
1434 	agp_unmap_atomic(dev_priv->agph, bsh);
1435 	if (unwritten) {
1436 		agp_map_subregion(dev_priv->agph, base, PAGE_SIZE, &bsh);
1437 		vaddr = bus_space_vaddr(dev_priv->bst, bsh);
1438 		unwritten = copy_from_user((void __force *)vaddr + offset,
1439 					   user_data, length);
1440 		agp_unmap_subregion(dev_priv->agph, bsh, PAGE_SIZE);
1441 	}
1442 
1443 	return unwritten;
1444 }
1445 #endif
1446 
1447 /**
1448  * This is the fast pwrite path, where we copy the data directly from the
1449  * user into the GTT, uncached.
1450  * @obj: i915 GEM object
1451  * @args: pwrite arguments structure
1452  */
1453 static int
1454 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
1455 			 const struct drm_i915_gem_pwrite *args)
1456 {
1457 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1458 	struct i915_ggtt *ggtt = &i915->ggtt;
1459 	struct drm_mm_node node;
1460 	struct i915_vma *vma;
1461 	u64 remain, offset;
1462 	void __user *user_data;
1463 	int ret;
1464 
1465 	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1466 	if (ret)
1467 		return ret;
1468 
1469 	if (i915_gem_object_has_struct_page(obj)) {
1470 		/*
1471 		 * Avoid waking the device up if we can fallback, as
1472 		 * waking/resuming is very slow (worst-case 10-100 ms
1473 		 * depending on PCI sleeps and our own resume time).
1474 		 * This easily dwarfs any performance advantage from
1475 		 * using the cache bypass of indirect GGTT access.
1476 		 */
1477 		if (!intel_runtime_pm_get_if_in_use(i915)) {
1478 			ret = -EFAULT;
1479 			goto out_unlock;
1480 		}
1481 	} else {
1482 		/* No backing pages, no fallback, we must force GGTT access */
1483 		intel_runtime_pm_get(i915);
1484 	}
1485 
1486 	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1487 				       PIN_MAPPABLE |
1488 				       PIN_NONFAULT |
1489 				       PIN_NONBLOCK);
1490 	if (!IS_ERR(vma)) {
1491 		node.start = i915_ggtt_offset(vma);
1492 		node.allocated = false;
1493 		ret = i915_vma_put_fence(vma);
1494 		if (ret) {
1495 			i915_vma_unpin(vma);
1496 			vma = ERR_PTR(ret);
1497 		}
1498 	}
1499 	if (IS_ERR(vma)) {
1500 		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1501 		if (ret)
1502 			goto out_rpm;
1503 		GEM_BUG_ON(!node.allocated);
1504 	}
1505 
1506 	ret = i915_gem_object_set_to_gtt_domain(obj, true);
1507 	if (ret)
1508 		goto out_unpin;
1509 
1510 	mutex_unlock(&i915->drm.struct_mutex);
1511 
1512 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1513 
1514 	user_data = u64_to_user_ptr(args->data_ptr);
1515 	offset = args->offset;
1516 	remain = args->size;
1517 	while (remain) {
1518 		/* Operation in this page
1519 		 *
1520 		 * page_base = page offset within aperture
1521 		 * page_offset = offset within page
1522 		 * page_length = bytes to copy for this page
1523 		 */
1524 		u32 page_base = node.start;
1525 		unsigned int page_offset = offset_in_page(offset);
1526 		unsigned int page_length = PAGE_SIZE - page_offset;
1527 		page_length = remain < page_length ? remain : page_length;
1528 		if (node.allocated) {
1529 			wmb(); /* flush the write before we modify the GGTT */
1530 			ggtt->vm.insert_page(&ggtt->vm,
1531 					     i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1532 					     node.start, I915_CACHE_NONE, 0);
1533 			wmb(); /* flush modifications to the GGTT (insert_page) */
1534 		} else {
1535 			page_base += offset & ~PAGE_MASK;
1536 		}
1537 		/* If we get a fault while copying data, then (presumably) our
1538 		 * source page isn't available.  Return the error and we'll
1539 		 * retry in the slow path.
1540 		 * If the object is non-shmem backed, we retry again with the
1541 		 * path that handles page fault.
1542 		 */
1543 		if (ggtt_write(i915, page_base, page_offset,
1544 			       user_data, page_length)) {
1545 			ret = -EFAULT;
1546 			break;
1547 		}
1548 
1549 		remain -= page_length;
1550 		user_data += page_length;
1551 		offset += page_length;
1552 	}
1553 	intel_fb_obj_flush(obj, ORIGIN_CPU);
1554 
1555 	mutex_lock(&i915->drm.struct_mutex);
1556 out_unpin:
1557 	if (node.allocated) {
1558 		wmb();
1559 		ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
1560 		remove_mappable_node(&node);
1561 	} else {
1562 		i915_vma_unpin(vma);
1563 	}
1564 out_rpm:
1565 	intel_runtime_pm_put(i915);
1566 out_unlock:
1567 	mutex_unlock(&i915->drm.struct_mutex);
1568 	return ret;
1569 }
1570 
1571 static int
1572 shmem_pwrite_slow(struct vm_page *page, int offset, int length,
1573 		  char __user *user_data,
1574 		  bool page_do_bit17_swizzling,
1575 		  bool needs_clflush_before,
1576 		  bool needs_clflush_after)
1577 {
1578 	char *vaddr;
1579 	int ret;
1580 
1581 	vaddr = kmap(page);
1582 	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1583 		shmem_clflush_swizzled_range(vaddr + offset, length,
1584 					     page_do_bit17_swizzling);
1585 	if (page_do_bit17_swizzling)
1586 		ret = __copy_from_user_swizzled(vaddr, offset, user_data,
1587 						length);
1588 	else
1589 		ret = __copy_from_user(vaddr + offset, user_data, length);
1590 	if (needs_clflush_after)
1591 		shmem_clflush_swizzled_range(vaddr + offset, length,
1592 					     page_do_bit17_swizzling);
1593 	kunmap(vaddr);
1594 
1595 	return ret ? -EFAULT : 0;
1596 }
1597 
1598 /* Per-page copy function for the shmem pwrite fastpath.
1599  * Flushes invalid cachelines before writing to the target if
1600  * needs_clflush_before is set and flushes out any written cachelines after
1601  * writing if needs_clflush is set.
1602  */
1603 static int
1604 shmem_pwrite(struct vm_page *page, int offset, int len, char __user *user_data,
1605 	     bool page_do_bit17_swizzling,
1606 	     bool needs_clflush_before,
1607 	     bool needs_clflush_after)
1608 {
1609 	int ret;
1610 
1611 	ret = -ENODEV;
1612 	if (!page_do_bit17_swizzling) {
1613 		char *vaddr = kmap_atomic(page);
1614 
1615 		if (needs_clflush_before)
1616 			drm_clflush_virt_range(vaddr + offset, len);
1617 		ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
1618 		if (needs_clflush_after)
1619 			drm_clflush_virt_range(vaddr + offset, len);
1620 
1621 		kunmap_atomic(vaddr);
1622 	}
1623 	if (ret == 0)
1624 		return ret;
1625 
1626 	return shmem_pwrite_slow(page, offset, len, user_data,
1627 				 page_do_bit17_swizzling,
1628 				 needs_clflush_before,
1629 				 needs_clflush_after);
1630 }
1631 
1632 static int
1633 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
1634 		      const struct drm_i915_gem_pwrite *args)
1635 {
1636 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1637 	void __user *user_data;
1638 	u64 remain;
1639 	unsigned int obj_do_bit17_swizzling;
1640 	unsigned int partial_cacheline_write;
1641 	unsigned int needs_clflush;
1642 	unsigned int offset, idx;
1643 	int ret;
1644 
1645 	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1646 	if (ret)
1647 		return ret;
1648 
1649 	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1650 	mutex_unlock(&i915->drm.struct_mutex);
1651 	if (ret)
1652 		return ret;
1653 
1654 	obj_do_bit17_swizzling = 0;
1655 	if (i915_gem_object_needs_bit17_swizzle(obj))
1656 		obj_do_bit17_swizzling = BIT(17);
1657 
1658 	/* If we don't overwrite a cacheline completely we need to be
1659 	 * careful to have up-to-date data by first clflushing. Don't
1660 	 * overcomplicate things and flush the entire patch.
1661 	 */
1662 	partial_cacheline_write = 0;
1663 	if (needs_clflush & CLFLUSH_BEFORE)
1664 		partial_cacheline_write = curcpu()->ci_cflushsz - 1;
1665 
1666 	user_data = u64_to_user_ptr(args->data_ptr);
1667 	remain = args->size;
1668 	offset = offset_in_page(args->offset);
1669 	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1670 		struct vm_page *page = i915_gem_object_get_page(obj, idx);
1671 		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
1672 
1673 		ret = shmem_pwrite(page, offset, length, user_data,
1674 				   page_to_phys(page) & obj_do_bit17_swizzling,
1675 				   (offset | length) & partial_cacheline_write,
1676 				   needs_clflush & CLFLUSH_AFTER);
1677 		if (ret)
1678 			break;
1679 
1680 		remain -= length;
1681 		user_data += length;
1682 		offset = 0;
1683 	}
1684 
1685 	intel_fb_obj_flush(obj, ORIGIN_CPU);
1686 	i915_gem_obj_finish_shmem_access(obj);
1687 	return ret;
1688 }
1689 
1690 /**
1691  * Writes data to the object referenced by handle.
1692  * @dev: drm device
1693  * @data: ioctl data blob
1694  * @file: drm file
1695  *
1696  * On error, the contents of the buffer that were to be modified are undefined.
1697  */
1698 int
1699 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1700 		      struct drm_file *file)
1701 {
1702 	struct drm_i915_gem_pwrite *args = data;
1703 	struct drm_i915_gem_object *obj;
1704 	int ret;
1705 
1706 	if (args->size == 0)
1707 		return 0;
1708 
1709 	if (!access_ok(VERIFY_READ,
1710 		       u64_to_user_ptr(args->data_ptr),
1711 		       args->size))
1712 		return -EFAULT;
1713 
1714 	obj = i915_gem_object_lookup(file, args->handle);
1715 	if (!obj)
1716 		return -ENOENT;
1717 
1718 	/* Bounds check destination. */
1719 	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1720 		ret = -EINVAL;
1721 		goto err;
1722 	}
1723 
1724 	/* Writes not allowed into this read-only object */
1725 	if (i915_gem_object_is_readonly(obj)) {
1726 		ret = -EINVAL;
1727 		goto err;
1728 	}
1729 
1730 	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1731 
1732 	ret = -ENODEV;
1733 	if (obj->ops->pwrite)
1734 		ret = obj->ops->pwrite(obj, args);
1735 	if (ret != -ENODEV)
1736 		goto err;
1737 
1738 	ret = i915_gem_object_wait(obj,
1739 				   I915_WAIT_INTERRUPTIBLE |
1740 				   I915_WAIT_ALL,
1741 				   MAX_SCHEDULE_TIMEOUT,
1742 				   to_rps_client(file));
1743 	if (ret)
1744 		goto err;
1745 
1746 	ret = i915_gem_object_pin_pages(obj);
1747 	if (ret)
1748 		goto err;
1749 
1750 	ret = -EFAULT;
1751 	/* We can only do the GTT pwrite on untiled buffers, as otherwise
1752 	 * it would end up going through the fenced access, and we'll get
1753 	 * different detiling behavior between reading and writing.
1754 	 * pread/pwrite currently are reading and writing from the CPU
1755 	 * perspective, requiring manual detiling by the client.
1756 	 */
1757 	if (!i915_gem_object_has_struct_page(obj) ||
1758 	    cpu_write_needs_clflush(obj))
1759 		/* Note that the gtt paths might fail with non-page-backed user
1760 		 * pointers (e.g. gtt mappings when moving data between
1761 		 * textures). Fallback to the shmem path in that case.
1762 		 */
1763 		ret = i915_gem_gtt_pwrite_fast(obj, args);
1764 
1765 	if (ret == -EFAULT || ret == -ENOSPC) {
1766 		if (obj->phys_handle)
1767 			ret = i915_gem_phys_pwrite(obj, args, file);
1768 		else
1769 			ret = i915_gem_shmem_pwrite(obj, args);
1770 	}
1771 
1772 	i915_gem_object_unpin_pages(obj);
1773 err:
1774 	i915_gem_object_put(obj);
1775 	return ret;
1776 }
1777 
1778 static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
1779 {
1780 	struct drm_i915_private *i915;
1781 	struct list_head *list;
1782 	struct i915_vma *vma;
1783 
1784 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
1785 
1786 	for_each_ggtt_vma(vma, obj) {
1787 		if (i915_vma_is_active(vma))
1788 			continue;
1789 
1790 		if (!drm_mm_node_allocated(&vma->node))
1791 			continue;
1792 
1793 		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
1794 	}
1795 
1796 	i915 = to_i915(obj->base.dev);
1797 	spin_lock(&i915->mm.obj_lock);
1798 	list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1799 	list_move_tail(&obj->mm.link, list);
1800 	spin_unlock(&i915->mm.obj_lock);
1801 }
1802 
1803 /**
1804  * Called when user space prepares to use an object with the CPU, either
1805  * through the mmap ioctl's mapping or a GTT mapping.
1806  * @dev: drm device
1807  * @data: ioctl data blob
1808  * @file: drm file
1809  */
1810 int
1811 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1812 			  struct drm_file *file)
1813 {
1814 	struct drm_i915_gem_set_domain *args = data;
1815 	struct drm_i915_gem_object *obj;
1816 	uint32_t read_domains = args->read_domains;
1817 	uint32_t write_domain = args->write_domain;
1818 	int err;
1819 
1820 	/* Only handle setting domains to types used by the CPU. */
1821 	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1822 		return -EINVAL;
1823 
1824 	/* Having something in the write domain implies it's in the read
1825 	 * domain, and only that read domain.  Enforce that in the request.
1826 	 */
1827 	if (write_domain != 0 && read_domains != write_domain)
1828 		return -EINVAL;
1829 
1830 	obj = i915_gem_object_lookup(file, args->handle);
1831 	if (!obj)
1832 		return -ENOENT;
1833 
1834 	/* Try to flush the object off the GPU without holding the lock.
1835 	 * We will repeat the flush holding the lock in the normal manner
1836 	 * to catch cases where we are gazumped.
1837 	 */
1838 	err = i915_gem_object_wait(obj,
1839 				   I915_WAIT_INTERRUPTIBLE |
1840 				   (write_domain ? I915_WAIT_ALL : 0),
1841 				   MAX_SCHEDULE_TIMEOUT,
1842 				   to_rps_client(file));
1843 	if (err)
1844 		goto out;
1845 
1846 	/*
1847 	 * Proxy objects do not control access to the backing storage, ergo
1848 	 * they cannot be used as a means to manipulate the cache domain
1849 	 * tracking for that backing storage. The proxy object is always
1850 	 * considered to be outside of any cache domain.
1851 	 */
1852 	if (i915_gem_object_is_proxy(obj)) {
1853 		err = -ENXIO;
1854 		goto out;
1855 	}
1856 
1857 	/*
1858 	 * Flush and acquire obj->pages so that we are coherent through
1859 	 * direct access in memory with previous cached writes through
1860 	 * shmemfs and that our cache domain tracking remains valid.
1861 	 * For example, if the obj->filp was moved to swap without us
1862 	 * being notified and releasing the pages, we would mistakenly
1863 	 * continue to assume that the obj remained out of the CPU cached
1864 	 * domain.
1865 	 */
1866 	err = i915_gem_object_pin_pages(obj);
1867 	if (err)
1868 		goto out;
1869 
1870 	err = i915_mutex_lock_interruptible(dev);
1871 	if (err)
1872 		goto out_unpin;
1873 
1874 	if (read_domains & I915_GEM_DOMAIN_WC)
1875 		err = i915_gem_object_set_to_wc_domain(obj, write_domain);
1876 	else if (read_domains & I915_GEM_DOMAIN_GTT)
1877 		err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
1878 	else
1879 		err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
1880 
1881 	/* And bump the LRU for this access */
1882 	i915_gem_object_bump_inactive_ggtt(obj);
1883 
1884 	mutex_unlock(&dev->struct_mutex);
1885 
1886 	if (write_domain != 0)
1887 		intel_fb_obj_invalidate(obj,
1888 					fb_write_origin(obj, write_domain));
1889 
1890 out_unpin:
1891 	i915_gem_object_unpin_pages(obj);
1892 out:
1893 	i915_gem_object_put(obj);
1894 	return err;
1895 }
1896 
1897 /**
1898  * Called when user space has done writes to this buffer
1899  * @dev: drm device
1900  * @data: ioctl data blob
1901  * @file: drm file
1902  */
1903 int
1904 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1905 			 struct drm_file *file)
1906 {
1907 	struct drm_i915_gem_sw_finish *args = data;
1908 	struct drm_i915_gem_object *obj;
1909 
1910 	obj = i915_gem_object_lookup(file, args->handle);
1911 	if (!obj)
1912 		return -ENOENT;
1913 
1914 	/*
1915 	 * Proxy objects are barred from CPU access, so there is no
1916 	 * need to ban sw_finish as it is a nop.
1917 	 */
1918 
1919 	/* Pinned buffers may be scanout, so flush the cache */
1920 	i915_gem_object_flush_if_display(obj);
1921 	i915_gem_object_put(obj);
1922 
1923 	return 0;
1924 }
1925 
1926 #ifdef __linux__
1927 static inline bool
1928 __vma_matches(struct vm_area_struct *vma, struct file *filp,
1929 	      unsigned long addr, unsigned long size)
1930 {
1931 	if (vma->vm_file != filp)
1932 		return false;
1933 
1934 	return vma->vm_start == addr &&
1935 	       (vma->vm_end - vma->vm_start) == PAGE_ALIGN(size);
1936 }
1937 #endif
1938 
1939 /**
1940  * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1941  *			 it is mapped to.
1942  * @dev: drm device
1943  * @data: ioctl data blob
1944  * @file: drm file
1945  *
1946  * While the mapping holds a reference on the contents of the object, it doesn't
1947  * imply a ref on the object itself.
1948  *
1949  * IMPORTANT:
1950  *
1951  * DRM driver writers who look a this function as an example for how to do GEM
1952  * mmap support, please don't implement mmap support like here. The modern way
1953  * to implement DRM mmap support is with an mmap offset ioctl (like
1954  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1955  * That way debug tooling like valgrind will understand what's going on, hiding
1956  * the mmap call in a driver private ioctl will break that. The i915 driver only
1957  * does cpu mmaps this way because we didn't know better.
1958  */
1959 int
1960 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1961 		    struct drm_file *file)
1962 {
1963 	struct drm_i915_gem_mmap *args = data;
1964 	struct drm_i915_gem_object *obj;
1965 	vaddr_t addr;
1966 	vsize_t size;
1967 	int ret;
1968 
1969 #ifdef __OpenBSD__
1970 	if (args->size == 0 || args->offset & PAGE_MASK)
1971 		return -EINVAL;
1972 	size = round_page(args->size);
1973 	if (args->offset + size < args->offset)
1974 		return -EINVAL;
1975 #endif
1976 
1977 	if (args->flags & ~(I915_MMAP_WC))
1978 		return -EINVAL;
1979 
1980 	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1981 		return -ENODEV;
1982 
1983 	obj = i915_gem_object_lookup(file, args->handle);
1984 	if (!obj)
1985 		return -ENOENT;
1986 
1987 	/* prime objects have no backing filp to GEM mmap
1988 	 * pages from.
1989 	 */
1990 	if (!obj->base.filp) {
1991 		addr = -ENXIO;
1992 		goto err;
1993 	}
1994 
1995 	if (range_overflows(args->offset, args->size, (u64)obj->base.size)) {
1996 		addr = -EINVAL;
1997 		goto err;
1998 	}
1999 
2000 #ifdef __linux__
2001 	addr = vm_mmap(obj->base.filp, 0, args->size,
2002 		       PROT_READ | PROT_WRITE, MAP_SHARED,
2003 		       args->offset);
2004 	if (IS_ERR_VALUE(addr))
2005 		goto err;
2006 
2007 	if (args->flags & I915_MMAP_WC) {
2008 		struct mm_struct *mm = current->mm;
2009 		struct vm_area_struct *vma;
2010 
2011 		if (down_write_killable(&mm->mmap_sem)) {
2012 			addr = -EINTR;
2013 			goto err;
2014 		}
2015 		vma = find_vma(mm, addr);
2016 		if (vma && __vma_matches(vma, obj->base.filp, addr, args->size))
2017 			vma->vm_page_prot =
2018 				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
2019 		else
2020 			addr = -ENOMEM;
2021 		up_write(&mm->mmap_sem);
2022 		if (IS_ERR_VALUE(addr))
2023 			goto err;
2024 
2025 		/* This may race, but that's ok, it only gets set */
2026 		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
2027 	}
2028 	i915_gem_object_put(obj);
2029 #else
2030 	addr = 0;
2031 	ret = -uvm_map(&curproc->p_vmspace->vm_map, &addr, size,
2032 	    obj->base.uao, args->offset, 0, UVM_MAPFLAG(PROT_READ | PROT_WRITE,
2033 	    PROT_READ | PROT_WRITE, MAP_INHERIT_SHARE, MADV_RANDOM,
2034 	    (args->flags & I915_MMAP_WC) ? UVM_FLAG_WC : 0));
2035 	if (args->flags & I915_MMAP_WC) {
2036 		/* This may race, but that's ok, it only gets set */
2037 		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
2038 	}
2039 	if (ret == 0)
2040 		uao_reference(obj->base.uao);
2041 	i915_gem_object_put(obj);
2042 	if (ret)
2043 		return ret;
2044 #endif
2045 
2046 	args->addr_ptr = (uint64_t) addr;
2047 	return 0;
2048 
2049 err:
2050 	i915_gem_object_put(obj);
2051 	return addr;
2052 }
2053 
2054 static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
2055 {
2056 	return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
2057 }
2058 
2059 /**
2060  * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
2061  *
2062  * A history of the GTT mmap interface:
2063  *
2064  * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
2065  *     aligned and suitable for fencing, and still fit into the available
2066  *     mappable space left by the pinned display objects. A classic problem
2067  *     we called the page-fault-of-doom where we would ping-pong between
2068  *     two objects that could not fit inside the GTT and so the memcpy
2069  *     would page one object in at the expense of the other between every
2070  *     single byte.
2071  *
2072  * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
2073  *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
2074  *     object is too large for the available space (or simply too large
2075  *     for the mappable aperture!), a view is created instead and faulted
2076  *     into userspace. (This view is aligned and sized appropriately for
2077  *     fenced access.)
2078  *
2079  * 2 - Recognise WC as a separate cache domain so that we can flush the
2080  *     delayed writes via GTT before performing direct access via WC.
2081  *
2082  * Restrictions:
2083  *
2084  *  * snoopable objects cannot be accessed via the GTT. It can cause machine
2085  *    hangs on some architectures, corruption on others. An attempt to service
2086  *    a GTT page fault from a snoopable object will generate a SIGBUS.
2087  *
2088  *  * the object must be able to fit into RAM (physical memory, though no
2089  *    limited to the mappable aperture).
2090  *
2091  *
2092  * Caveats:
2093  *
2094  *  * a new GTT page fault will synchronize rendering from the GPU and flush
2095  *    all data to system memory. Subsequent access will not be synchronized.
2096  *
2097  *  * all mappings are revoked on runtime device suspend.
2098  *
2099  *  * there are only 8, 16 or 32 fence registers to share between all users
2100  *    (older machines require fence register for display and blitter access
2101  *    as well). Contention of the fence registers will cause the previous users
2102  *    to be unmapped and any new access will generate new page faults.
2103  *
2104  *  * running out of memory while servicing a fault may generate a SIGBUS,
2105  *    rather than the expected SIGSEGV.
2106  */
2107 int i915_gem_mmap_gtt_version(void)
2108 {
2109 	return 2;
2110 }
2111 
2112 static inline struct i915_ggtt_view
2113 compute_partial_view(struct drm_i915_gem_object *obj,
2114 		     pgoff_t page_offset,
2115 		     unsigned int chunk)
2116 {
2117 	struct i915_ggtt_view view;
2118 
2119 	if (i915_gem_object_is_tiled(obj))
2120 		chunk = roundup(chunk, tile_row_pages(obj));
2121 
2122 	view.type = I915_GGTT_VIEW_PARTIAL;
2123 	view.partial.offset = rounddown(page_offset, chunk);
2124 	view.partial.size =
2125 		min_t(unsigned int, chunk,
2126 		      (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
2127 
2128 	/* If the partial covers the entire object, just create a normal VMA. */
2129 	if (chunk >= obj->base.size >> PAGE_SHIFT)
2130 		view.type = I915_GGTT_VIEW_NORMAL;
2131 
2132 	return view;
2133 }
2134 
2135 #ifdef __linux__
2136 
2137 /**
2138  * i915_gem_fault - fault a page into the GTT
2139  * @vmf: fault info
2140  *
2141  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
2142  * from userspace.  The fault handler takes care of binding the object to
2143  * the GTT (if needed), allocating and programming a fence register (again,
2144  * only if needed based on whether the old reg is still valid or the object
2145  * is tiled) and inserting a new PTE into the faulting process.
2146  *
2147  * Note that the faulting process may involve evicting existing objects
2148  * from the GTT and/or fence registers to make room.  So performance may
2149  * suffer if the GTT working set is large or there are few fence registers
2150  * left.
2151  *
2152  * The current feature set supported by i915_gem_fault() and thus GTT mmaps
2153  * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
2154  */
2155 vm_fault_t i915_gem_fault(struct vm_fault *vmf)
2156 {
2157 #define MIN_CHUNK_PAGES (SZ_1M >> PAGE_SHIFT)
2158 	struct vm_area_struct *area = vmf->vma;
2159 	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
2160 	struct drm_device *dev = obj->base.dev;
2161 	struct drm_i915_private *dev_priv = to_i915(dev);
2162 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2163 	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
2164 	struct i915_vma *vma;
2165 	pgoff_t page_offset;
2166 	int ret;
2167 
2168 	/* Sanity check that we allow writing into this object */
2169 	if (i915_gem_object_is_readonly(obj) && write)
2170 		return VM_FAULT_SIGBUS;
2171 
2172 	/* We don't use vmf->pgoff since that has the fake offset */
2173 	page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
2174 
2175 	trace_i915_gem_object_fault(obj, page_offset, true, write);
2176 
2177 	/* Try to flush the object off the GPU first without holding the lock.
2178 	 * Upon acquiring the lock, we will perform our sanity checks and then
2179 	 * repeat the flush holding the lock in the normal manner to catch cases
2180 	 * where we are gazumped.
2181 	 */
2182 	ret = i915_gem_object_wait(obj,
2183 				   I915_WAIT_INTERRUPTIBLE,
2184 				   MAX_SCHEDULE_TIMEOUT,
2185 				   NULL);
2186 	if (ret)
2187 		goto err;
2188 
2189 	ret = i915_gem_object_pin_pages(obj);
2190 	if (ret)
2191 		goto err;
2192 
2193 	intel_runtime_pm_get(dev_priv);
2194 
2195 	ret = i915_mutex_lock_interruptible(dev);
2196 	if (ret)
2197 		goto err_rpm;
2198 
2199 	/* Access to snoopable pages through the GTT is incoherent. */
2200 	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
2201 		ret = -EFAULT;
2202 		goto err_unlock;
2203 	}
2204 
2205 
2206 	/* Now pin it into the GTT as needed */
2207 	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
2208 				       PIN_MAPPABLE |
2209 				       PIN_NONBLOCK |
2210 				       PIN_NONFAULT);
2211 	if (IS_ERR(vma)) {
2212 		/* Use a partial view if it is bigger than available space */
2213 		struct i915_ggtt_view view =
2214 			compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
2215 		unsigned int flags;
2216 
2217 		flags = PIN_MAPPABLE;
2218 		if (view.type == I915_GGTT_VIEW_NORMAL)
2219 			flags |= PIN_NONBLOCK; /* avoid warnings for pinned */
2220 
2221 		/*
2222 		 * Userspace is now writing through an untracked VMA, abandon
2223 		 * all hope that the hardware is able to track future writes.
2224 		 */
2225 		obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
2226 
2227 		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, flags);
2228 		if (IS_ERR(vma) && !view.type) {
2229 			flags = PIN_MAPPABLE;
2230 			view.type = I915_GGTT_VIEW_PARTIAL;
2231 			vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, flags);
2232 		}
2233 	}
2234 	if (IS_ERR(vma)) {
2235 		ret = PTR_ERR(vma);
2236 		goto err_unlock;
2237 	}
2238 
2239 	ret = i915_gem_object_set_to_gtt_domain(obj, write);
2240 	if (ret)
2241 		goto err_unpin;
2242 
2243 	ret = i915_vma_pin_fence(vma);
2244 	if (ret)
2245 		goto err_unpin;
2246 
2247 	/* Finally, remap it using the new GTT offset */
2248 	ret = remap_io_mapping(area,
2249 			       area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
2250 			       (ggtt->gmadr.start + vma->node.start) >> PAGE_SHIFT,
2251 			       min_t(u64, vma->size, area->vm_end - area->vm_start),
2252 			       &ggtt->iomap);
2253 	if (ret)
2254 		goto err_fence;
2255 
2256 	/* Mark as being mmapped into userspace for later revocation */
2257 	assert_rpm_wakelock_held(dev_priv);
2258 	if (!i915_vma_set_userfault(vma) && !obj->userfault_count++)
2259 		list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
2260 	GEM_BUG_ON(!obj->userfault_count);
2261 
2262 	i915_vma_set_ggtt_write(vma);
2263 
2264 err_fence:
2265 	i915_vma_unpin_fence(vma);
2266 err_unpin:
2267 	__i915_vma_unpin(vma);
2268 err_unlock:
2269 	mutex_unlock(&dev->struct_mutex);
2270 err_rpm:
2271 	intel_runtime_pm_put(dev_priv);
2272 	i915_gem_object_unpin_pages(obj);
2273 err:
2274 	switch (ret) {
2275 	case -EIO:
2276 		/*
2277 		 * We eat errors when the gpu is terminally wedged to avoid
2278 		 * userspace unduly crashing (gl has no provisions for mmaps to
2279 		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
2280 		 * and so needs to be reported.
2281 		 */
2282 		if (!i915_terminally_wedged(&dev_priv->gpu_error))
2283 			return VM_FAULT_SIGBUS;
2284 		/* else: fall through */
2285 	case -EAGAIN:
2286 		/*
2287 		 * EAGAIN means the gpu is hung and we'll wait for the error
2288 		 * handler to reset everything when re-faulting in
2289 		 * i915_mutex_lock_interruptible.
2290 		 */
2291 	case 0:
2292 	case -ERESTARTSYS:
2293 	case -EINTR:
2294 	case -EBUSY:
2295 		/*
2296 		 * EBUSY is ok: this just means that another thread
2297 		 * already did the job.
2298 		 */
2299 		return VM_FAULT_NOPAGE;
2300 	case -ENOMEM:
2301 		return VM_FAULT_OOM;
2302 	case -ENOSPC:
2303 	case -EFAULT:
2304 		return VM_FAULT_SIGBUS;
2305 	default:
2306 		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
2307 		return VM_FAULT_SIGBUS;
2308 	}
2309 }
2310 
2311 #else
2312 
2313 int
2314 i915_gem_fault(struct drm_gem_object *gem_obj, struct uvm_faultinfo *ufi,
2315     off_t offset, vaddr_t vaddr, vm_page_t *pps, int npages, int centeridx,
2316     vm_prot_t access_type, int flags)
2317 {
2318 	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
2319 	struct drm_device *dev = obj->base.dev;
2320 	struct drm_i915_private *dev_priv = dev->dev_private;
2321 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2322 	paddr_t paddr;
2323 	int lcv, ret = 0;
2324 	int write = !!(access_type & PROT_WRITE);
2325 	struct i915_vma *vma;
2326 	vm_prot_t mapprot;
2327 	boolean_t locked = TRUE;
2328 
2329 	/* Sanity check that we allow writing into this object */
2330 	if (i915_gem_object_is_readonly(obj) && write) {
2331 		uvmfault_unlockall(ufi, ufi->entry->aref.ar_amap,
2332 		    &obj->base.uobj, NULL);
2333 		return VM_PAGER_BAD;
2334 	}
2335 
2336 	/*
2337 	 * If we already own the lock, we must be doing a copyin or
2338 	 * copyout in one of the fast paths.  Return failure such that
2339 	 * we fall back on the slow path.
2340 	 */
2341 	if (!drm_vma_node_has_offset(&obj->base.vma_node) ||
2342 	    RWLOCK_OWNER(&dev->struct_mutex) == curproc) {
2343 		uvmfault_unlockall(ufi, ufi->entry->aref.ar_amap,
2344 		    &obj->base.uobj, NULL);
2345 		return VM_PAGER_BAD;
2346 	}
2347 
2348 	offset -= drm_vma_node_offset_addr(&obj->base.vma_node);
2349 
2350 	if (!mutex_trylock(&dev->struct_mutex)) {
2351 		uvmfault_unlockall(ufi, NULL, &obj->base.uobj, NULL);
2352 		mutex_lock(&dev->struct_mutex);
2353 		locked = uvmfault_relock(ufi);
2354 	}
2355 	if (!locked) {
2356 		mutex_unlock(&dev->struct_mutex);
2357 		return VM_PAGER_REFAULT;
2358 	}
2359 
2360 	/* Try to flush the object off the GPU first without holding the lock.
2361 	 * Upon acquiring the lock, we will perform our sanity checks and then
2362 	 * repeat the flush holding the lock in the normal manner to catch cases
2363 	 * where we are gazumped.
2364 	 */
2365 	ret = i915_gem_object_wait(obj,
2366 				   I915_WAIT_INTERRUPTIBLE,
2367 				   MAX_SCHEDULE_TIMEOUT,
2368 				   NULL);
2369 	if (ret) {
2370 		uvmfault_unlockall(ufi, ufi->entry->aref.ar_amap, NULL, NULL);
2371 		mutex_unlock(&dev->struct_mutex);
2372 		goto err;
2373 	}
2374 
2375 	ret = i915_gem_object_pin_pages(obj);
2376 	if (ret) {
2377 		uvmfault_unlockall(ufi, ufi->entry->aref.ar_amap, NULL, NULL);
2378 		mutex_unlock(&dev->struct_mutex);
2379 		goto err;
2380 	}
2381 
2382 	intel_runtime_pm_get(dev_priv);
2383 
2384 	/* Access to snoopable pages through the GTT is incoherent. */
2385 	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
2386 		ret = -EINVAL;
2387 		goto err_unlock;
2388 	}
2389 
2390 	/* Now pin it into the GTT as needed */
2391 	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
2392 				       PIN_MAPPABLE |
2393 				       PIN_NONBLOCK |
2394 				       PIN_NONFAULT);
2395 	if (IS_ERR(vma)) {
2396 		/*
2397 		 * Userspace is now writing through an untracked VMA, abandon
2398 		 * all hope that the hardware is able to track future writes.
2399 		 */
2400 		obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
2401 
2402 		vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, PIN_MAPPABLE);
2403 	}
2404 	if (IS_ERR(vma)) {
2405 		ret = PTR_ERR(vma);
2406 		goto err_unlock;
2407 	}
2408 
2409 	ret = i915_gem_object_set_to_gtt_domain(obj, write);
2410 	if (ret)
2411 		goto err_unpin;
2412 
2413 	ret = i915_vma_pin_fence(vma);
2414 	if (ret)
2415 		goto err_unpin;
2416 
2417 	mapprot = ufi->entry->protection;
2418 	/*
2419 	 * if it's only a read fault, we only put ourselves into the gtt
2420 	 * read domain, so make sure we fault again and set ourselves to write.
2421 	 * this prevents us needing userland to do domain management and get
2422 	 * it wrong, and makes us fully coherent with the gpu re mmap.
2423 	 */
2424 	if (write == 0)
2425 		mapprot &= ~PROT_WRITE;
2426 	/* XXX try and  be more efficient when we do this */
2427 	for (lcv = 0 ; lcv < npages ; lcv++, offset += PAGE_SIZE,
2428 	    vaddr += PAGE_SIZE) {
2429 		if ((flags & PGO_ALLPAGES) == 0 && lcv != centeridx)
2430 			continue;
2431 
2432 		if (pps[lcv] == PGO_DONTCARE)
2433 			continue;
2434 
2435 		paddr = ggtt->gmadr.start + vma->node.start + offset;
2436 
2437 		if (pmap_enter(ufi->orig_map->pmap, vaddr, paddr,
2438 		    mapprot, PMAP_CANFAIL | mapprot) != 0) {
2439 			i915_vma_unpin_fence(vma);
2440 			__i915_vma_unpin(vma);
2441 			uvmfault_unlockall(ufi, ufi->entry->aref.ar_amap,
2442 			    NULL, NULL);
2443 			mutex_unlock(&dev->struct_mutex);
2444 			pmap_update(ufi->orig_map->pmap);
2445 			uvm_wait("intelflt");
2446 			ret = VM_PAGER_REFAULT;
2447 			intel_runtime_pm_put(dev_priv);
2448 			i915_gem_object_unpin_pages(obj);
2449 			return ret;
2450 		}
2451 	}
2452 
2453 	/* Mark as being mmapped into userspace for later revocation */
2454 	assert_rpm_wakelock_held(dev_priv);
2455 	if (!i915_vma_set_userfault(vma) && !obj->userfault_count++)
2456 		list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
2457 	GEM_BUG_ON(!obj->userfault_count);
2458 
2459 	i915_vma_set_ggtt_write(vma);
2460 
2461 #ifdef notyet
2462 err_fence:
2463 #endif
2464 	i915_vma_unpin_fence(vma);
2465 err_unpin:
2466 	__i915_vma_unpin(vma);
2467 err_unlock:
2468 	uvmfault_unlockall(ufi, ufi->entry->aref.ar_amap, NULL, NULL);
2469 	mutex_unlock(&dev->struct_mutex);
2470 	pmap_update(ufi->orig_map->pmap);
2471 #ifdef notyet
2472 err_rpm:
2473 #endif
2474 	intel_runtime_pm_put(dev_priv);
2475 	i915_gem_object_unpin_pages(obj);
2476 err:
2477 	switch (ret) {
2478 	case -EIO:
2479 		/*
2480 		 * We eat errors when the gpu is terminally wedged to avoid
2481 		 * userspace unduly crashing (gl has no provisions for mmaps to
2482 		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
2483 		 * and so needs to be reported.
2484 		 */
2485 		if (!i915_terminally_wedged(&dev_priv->gpu_error))
2486 			return VM_PAGER_ERROR;
2487 		/* else: fall through */
2488 	case -EAGAIN:
2489 		/*
2490 		 * EAGAIN means the gpu is hung and we'll wait for the error
2491 		 * handler to reset everything when re-faulting in
2492 		 * i915_mutex_lock_interruptible.
2493 		 */
2494 	case 0:
2495 	case -ERESTART:
2496 	case -EINTR:
2497 	case -EBUSY:
2498 		/*
2499 		 * EBUSY is ok: this just means that another thread
2500 		 * already did the job.
2501 		 */
2502 		return VM_PAGER_OK;
2503 	case -ENOMEM:
2504 		return VM_PAGER_ERROR;
2505 	case -ENOSPC:
2506 	case -EFAULT:
2507 		return VM_PAGER_ERROR;
2508 	default:
2509 		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
2510 		return VM_PAGER_ERROR;
2511 	}
2512 }
2513 
2514 #endif
2515 
2516 static void __i915_gem_object_release_mmap(struct drm_i915_gem_object *obj)
2517 {
2518 	struct i915_vma *vma;
2519 
2520 	GEM_BUG_ON(!obj->userfault_count);
2521 
2522 	obj->userfault_count = 0;
2523 	list_del(&obj->userfault_link);
2524 #ifdef __linux__
2525 	drm_vma_node_unmap(&obj->base.vma_node,
2526 			   obj->base.dev->anon_inode->i_mapping);
2527 #else
2528 	if (drm_vma_node_has_offset(&obj->base.vma_node)) {
2529 		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2530 		struct i915_vma *vma;
2531 		struct vm_page *pg;
2532 
2533 		for_each_ggtt_vma(vma, obj) {
2534 			for (pg = &dev_priv->pgs[atop(vma->node.start)];
2535 			     pg != &dev_priv->pgs[atop(vma->node.start + vma->size)];
2536 			     pg++)
2537 				pmap_page_protect(pg, PROT_NONE);
2538 		}
2539 	}
2540 #endif
2541 
2542 	for_each_ggtt_vma(vma, obj)
2543 		i915_vma_unset_userfault(vma);
2544 }
2545 
2546 /**
2547  * i915_gem_release_mmap - remove physical page mappings
2548  * @obj: obj in question
2549  *
2550  * Preserve the reservation of the mmapping with the DRM core code, but
2551  * relinquish ownership of the pages back to the system.
2552  *
2553  * It is vital that we remove the page mapping if we have mapped a tiled
2554  * object through the GTT and then lose the fence register due to
2555  * resource pressure. Similarly if the object has been moved out of the
2556  * aperture, than pages mapped into userspace must be revoked. Removing the
2557  * mapping will then trigger a page fault on the next user access, allowing
2558  * fixup by i915_gem_fault().
2559  */
2560 void
2561 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
2562 {
2563 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
2564 
2565 	/* Serialisation between user GTT access and our code depends upon
2566 	 * revoking the CPU's PTE whilst the mutex is held. The next user
2567 	 * pagefault then has to wait until we release the mutex.
2568 	 *
2569 	 * Note that RPM complicates somewhat by adding an additional
2570 	 * requirement that operations to the GGTT be made holding the RPM
2571 	 * wakeref.
2572 	 */
2573 	lockdep_assert_held(&i915->drm.struct_mutex);
2574 	intel_runtime_pm_get(i915);
2575 
2576 	if (!obj->userfault_count)
2577 		goto out;
2578 
2579 	__i915_gem_object_release_mmap(obj);
2580 
2581 	/* Ensure that the CPU's PTE are revoked and there are not outstanding
2582 	 * memory transactions from userspace before we return. The TLB
2583 	 * flushing implied above by changing the PTE above *should* be
2584 	 * sufficient, an extra barrier here just provides us with a bit
2585 	 * of paranoid documentation about our requirement to serialise
2586 	 * memory writes before touching registers / GSM.
2587 	 */
2588 	wmb();
2589 
2590 out:
2591 	intel_runtime_pm_put(i915);
2592 }
2593 
2594 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2595 {
2596 	struct drm_i915_gem_object *obj, *on;
2597 	int i;
2598 
2599 	/*
2600 	 * Only called during RPM suspend. All users of the userfault_list
2601 	 * must be holding an RPM wakeref to ensure that this can not
2602 	 * run concurrently with themselves (and use the struct_mutex for
2603 	 * protection between themselves).
2604 	 */
2605 
2606 	list_for_each_entry_safe(obj, on,
2607 				 &dev_priv->mm.userfault_list, userfault_link)
2608 		__i915_gem_object_release_mmap(obj);
2609 
2610 	/* The fence will be lost when the device powers down. If any were
2611 	 * in use by hardware (i.e. they are pinned), we should not be powering
2612 	 * down! All other fences will be reacquired by the user upon waking.
2613 	 */
2614 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
2615 		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2616 
2617 		/* Ideally we want to assert that the fence register is not
2618 		 * live at this point (i.e. that no piece of code will be
2619 		 * trying to write through fence + GTT, as that both violates
2620 		 * our tracking of activity and associated locking/barriers,
2621 		 * but also is illegal given that the hw is powered down).
2622 		 *
2623 		 * Previously we used reg->pin_count as a "liveness" indicator.
2624 		 * That is not sufficient, and we need a more fine-grained
2625 		 * tool if we want to have a sanity check here.
2626 		 */
2627 
2628 		if (!reg->vma)
2629 			continue;
2630 
2631 		GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
2632 		reg->dirty = true;
2633 	}
2634 }
2635 
2636 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2637 {
2638 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2639 	int err;
2640 
2641 	err = drm_gem_create_mmap_offset(&obj->base);
2642 	if (likely(!err))
2643 		return 0;
2644 
2645 	/* Attempt to reap some mmap space from dead objects */
2646 	do {
2647 		err = i915_gem_wait_for_idle(dev_priv,
2648 					     I915_WAIT_INTERRUPTIBLE,
2649 					     MAX_SCHEDULE_TIMEOUT);
2650 		if (err)
2651 			break;
2652 
2653 		i915_gem_drain_freed_objects(dev_priv);
2654 		err = drm_gem_create_mmap_offset(&obj->base);
2655 		if (!err)
2656 			break;
2657 
2658 	} while (flush_delayed_work(&dev_priv->gt.retire_work));
2659 
2660 	return err;
2661 }
2662 
2663 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2664 {
2665 	drm_gem_free_mmap_offset(&obj->base);
2666 }
2667 
2668 int
2669 i915_gem_mmap_gtt(struct drm_file *file,
2670 		  struct drm_device *dev,
2671 		  uint32_t handle,
2672 		  uint64_t *offset)
2673 {
2674 	struct drm_i915_gem_object *obj;
2675 	int ret;
2676 
2677 	obj = i915_gem_object_lookup(file, handle);
2678 	if (!obj)
2679 		return -ENOENT;
2680 
2681 	ret = i915_gem_object_create_mmap_offset(obj);
2682 	if (ret == 0)
2683 		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2684 
2685 	i915_gem_object_put(obj);
2686 	return ret;
2687 }
2688 
2689 /**
2690  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2691  * @dev: DRM device
2692  * @data: GTT mapping ioctl data
2693  * @file: GEM object info
2694  *
2695  * Simply returns the fake offset to userspace so it can mmap it.
2696  * The mmap call will end up in drm_gem_mmap(), which will set things
2697  * up so we can get faults in the handler above.
2698  *
2699  * The fault handler will take care of binding the object into the GTT
2700  * (since it may have been evicted to make room for something), allocating
2701  * a fence register, and mapping the appropriate aperture address into
2702  * userspace.
2703  */
2704 int
2705 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2706 			struct drm_file *file)
2707 {
2708 	struct drm_i915_gem_mmap_gtt *args = data;
2709 
2710 	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2711 }
2712 
2713 /* Immediately discard the backing storage */
2714 static void
2715 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2716 {
2717 	i915_gem_object_free_mmap_offset(obj);
2718 
2719 	if (obj->base.filp == NULL)
2720 		return;
2721 
2722 	/* Our goal here is to return as much of the memory as
2723 	 * is possible back to the system as we are called from OOM.
2724 	 * To do this we must instruct the shmfs to drop all of its
2725 	 * backing pages, *now*.
2726 	 */
2727 #ifdef __linux__
2728 	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2729 #else
2730 	obj->base.uao->pgops->pgo_flush(obj->base.uao, 0, obj->base.size,
2731 	    PGO_ALLPAGES | PGO_FREE);
2732 #endif
2733 	obj->mm.madv = __I915_MADV_PURGED;
2734 	obj->mm.pages = ERR_PTR(-EFAULT);
2735 }
2736 
2737 /* Try to discard unwanted pages */
2738 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2739 {
2740 #ifdef __linux__
2741 	struct address_space *mapping;
2742 #endif
2743 
2744 	lockdep_assert_held(&obj->mm.lock);
2745 	GEM_BUG_ON(i915_gem_object_has_pages(obj));
2746 
2747 	switch (obj->mm.madv) {
2748 	case I915_MADV_DONTNEED:
2749 		i915_gem_object_truncate(obj);
2750 	case __I915_MADV_PURGED:
2751 		return;
2752 	}
2753 
2754 	if (obj->base.filp == NULL)
2755 		return;
2756 
2757 #ifdef __linux__
2758 	mapping = obj->base.filp->f_mapping,
2759 	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2760 #endif
2761 }
2762 
2763 static void
2764 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
2765 			      struct sg_table *pages)
2766 {
2767 	struct sgt_iter sgt_iter;
2768 	struct vm_page *page;
2769 
2770 	__i915_gem_object_release_shmem(obj, pages, true);
2771 
2772 	i915_gem_gtt_finish_pages(obj, pages);
2773 
2774 	if (i915_gem_object_needs_bit17_swizzle(obj))
2775 		i915_gem_object_save_bit_17_swizzle(obj, pages);
2776 
2777 	for_each_sgt_page(page, sgt_iter, pages) {
2778 		if (obj->mm.dirty)
2779 			set_page_dirty(page);
2780 
2781 #ifdef __linux__
2782 		if (obj->mm.madv == I915_MADV_WILLNEED)
2783 			mark_page_accessed(page);
2784 
2785 		put_page(page);
2786 #endif
2787 	}
2788 #ifdef __OpenBSD__
2789 	uvm_objunwire(obj->base.uao, 0, obj->base.size);
2790 #endif
2791 	obj->mm.dirty = false;
2792 
2793 	sg_free_table(pages);
2794 	kfree(pages);
2795 }
2796 
2797 static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
2798 {
2799 	struct radix_tree_iter iter;
2800 	void __rcu **slot;
2801 
2802 	rcu_read_lock();
2803 	radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
2804 		radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2805 	rcu_read_unlock();
2806 }
2807 
2808 static struct sg_table *
2809 __i915_gem_object_unset_pages(struct drm_i915_gem_object *obj)
2810 {
2811 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
2812 	struct sg_table *pages;
2813 
2814 	pages = fetch_and_zero(&obj->mm.pages);
2815 	if (!pages)
2816 		return NULL;
2817 
2818 	spin_lock(&i915->mm.obj_lock);
2819 	list_del(&obj->mm.link);
2820 	spin_unlock(&i915->mm.obj_lock);
2821 
2822 	if (obj->mm.mapping) {
2823 		void *ptr;
2824 
2825 		ptr = page_mask_bits(obj->mm.mapping);
2826 		if (is_vmalloc_addr(ptr))
2827 			vunmap(ptr, obj->base.size);
2828 		else
2829 			kunmap(kmap_to_page(ptr));
2830 
2831 		obj->mm.mapping = NULL;
2832 	}
2833 
2834 	__i915_gem_object_reset_page_iter(obj);
2835 	obj->mm.page_sizes.phys = obj->mm.page_sizes.sg = 0;
2836 
2837 	return pages;
2838 }
2839 
2840 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2841 				 enum i915_mm_subclass subclass)
2842 {
2843 	struct sg_table *pages;
2844 
2845 	if (i915_gem_object_has_pinned_pages(obj))
2846 		return;
2847 
2848 	GEM_BUG_ON(obj->bind_count);
2849 	if (!i915_gem_object_has_pages(obj))
2850 		return;
2851 
2852 	/* May be called by shrinker from within get_pages() (on another bo) */
2853 	mutex_lock_nested(&obj->mm.lock, subclass);
2854 	if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
2855 		goto unlock;
2856 
2857 	/*
2858 	 * ->put_pages might need to allocate memory for the bit17 swizzle
2859 	 * array, hence protect them from being reaped by removing them from gtt
2860 	 * lists early.
2861 	 */
2862 	pages = __i915_gem_object_unset_pages(obj);
2863 	if (!IS_ERR(pages))
2864 		obj->ops->put_pages(obj, pages);
2865 
2866 unlock:
2867 	mutex_unlock(&obj->mm.lock);
2868 }
2869 
2870 static bool i915_sg_trim(struct sg_table *orig_st)
2871 {
2872 	struct sg_table new_st;
2873 	struct scatterlist *sg, *new_sg;
2874 	unsigned int i;
2875 
2876 	if (orig_st->nents == orig_st->orig_nents)
2877 		return false;
2878 
2879 	if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2880 		return false;
2881 
2882 	new_sg = new_st.sgl;
2883 	for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
2884 		sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2885 		/* called before being DMA mapped, no need to copy sg->dma_* */
2886 		new_sg = sg_next(new_sg);
2887 	}
2888 	GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2889 
2890 	sg_free_table(orig_st);
2891 
2892 	*orig_st = new_st;
2893 	return true;
2894 }
2895 
2896 static int i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2897 {
2898 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2899 	const unsigned long page_count = obj->base.size / PAGE_SIZE;
2900 	unsigned long i;
2901 	struct address_space *mapping;
2902 	struct sg_table *st;
2903 	struct scatterlist *sg;
2904 	struct sgt_iter sgt_iter;
2905 	struct pglist plist;
2906 	struct vm_page *page;
2907 	unsigned long last_pfn = 0;	/* suppress gcc warning */
2908 	unsigned int max_segment = i915_sg_segment_size();
2909 	unsigned int sg_page_sizes;
2910 	gfp_t noreclaim;
2911 	int ret;
2912 
2913 	/* Assert that the object is not currently in any GPU domain. As it
2914 	 * wasn't in the GTT, there shouldn't be any way it could have been in
2915 	 * a GPU cache
2916 	 */
2917 	GEM_BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2918 	GEM_BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2919 
2920 	st = kmalloc(sizeof(*st), GFP_KERNEL);
2921 	if (st == NULL)
2922 		return -ENOMEM;
2923 
2924 rebuild_st:
2925 	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2926 		kfree(st);
2927 		return -ENOMEM;
2928 	}
2929 
2930 #ifdef __linux__
2931 	/* Get the list of pages out of our struct file.  They'll be pinned
2932 	 * at this point until we release them.
2933 	 *
2934 	 * Fail silently without starting the shrinker
2935 	 */
2936 	mapping = obj->base.filp->f_mapping;
2937 	noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
2938 	noreclaim |= __GFP_NORETRY | __GFP_NOWARN;
2939 
2940 	sg = st->sgl;
2941 	st->nents = 0;
2942 	sg_page_sizes = 0;
2943 	for (i = 0; i < page_count; i++) {
2944 		const unsigned int shrink[] = {
2945 			I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE,
2946 			0,
2947 		}, *s = shrink;
2948 		gfp_t gfp = noreclaim;
2949 
2950 		do {
2951 			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2952 			if (likely(!IS_ERR(page)))
2953 				break;
2954 
2955 			if (!*s) {
2956 				ret = PTR_ERR(page);
2957 				goto err_sg;
2958 			}
2959 
2960 			i915_gem_shrink(dev_priv, 2 * page_count, NULL, *s++);
2961 			cond_resched();
2962 
2963 			/* We've tried hard to allocate the memory by reaping
2964 			 * our own buffer, now let the real VM do its job and
2965 			 * go down in flames if truly OOM.
2966 			 *
2967 			 * However, since graphics tend to be disposable,
2968 			 * defer the oom here by reporting the ENOMEM back
2969 			 * to userspace.
2970 			 */
2971 			if (!*s) {
2972 				/* reclaim and warn, but no oom */
2973 				gfp = mapping_gfp_mask(mapping);
2974 
2975 				/* Our bo are always dirty and so we require
2976 				 * kswapd to reclaim our pages (direct reclaim
2977 				 * does not effectively begin pageout of our
2978 				 * buffers on its own). However, direct reclaim
2979 				 * only waits for kswapd when under allocation
2980 				 * congestion. So as a result __GFP_RECLAIM is
2981 				 * unreliable and fails to actually reclaim our
2982 				 * dirty pages -- unless you try over and over
2983 				 * again with !__GFP_NORETRY. However, we still
2984 				 * want to fail this allocation rather than
2985 				 * trigger the out-of-memory killer and for
2986 				 * this we want __GFP_RETRY_MAYFAIL.
2987 				 */
2988 				gfp |= __GFP_RETRY_MAYFAIL;
2989 			}
2990 		} while (1);
2991 
2992 		if (!i ||
2993 		    sg->length >= max_segment ||
2994 		    page_to_pfn(page) != last_pfn + 1) {
2995 			if (i) {
2996 				sg_page_sizes |= sg->length;
2997 				sg = sg_next(sg);
2998 			}
2999 			st->nents++;
3000 			sg_set_page(sg, page, PAGE_SIZE, 0);
3001 		} else {
3002 			sg->length += PAGE_SIZE;
3003 		}
3004 		last_pfn = page_to_pfn(page);
3005 
3006 		/* Check that the i965g/gm workaround works. */
3007 		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
3008 	}
3009 #else
3010 	sg = st->sgl;
3011 	st->nents = 0;
3012 	sg_page_sizes = 0;
3013 
3014 	TAILQ_INIT(&plist);
3015 	if (uvm_objwire(obj->base.uao, 0, obj->base.size, &plist)) {
3016 		ret = -ENOMEM;
3017 		goto err_pages;
3018 	}
3019 
3020 	i = 0;
3021 	TAILQ_FOREACH(page, &plist, pageq) {
3022 		if (i) {
3023 			sg_page_sizes |= sg->length;
3024 			sg = sg_next(sg);
3025 		}
3026 		st->nents++;
3027 		sg_set_page(sg, page, PAGE_SIZE, 0);
3028 		i++;
3029 	}
3030 #endif
3031 	if (sg) { /* loop terminated early; short sg table */
3032 		sg_page_sizes |= sg->length;
3033 		sg_mark_end(sg);
3034 	}
3035 
3036 	/* Trim unused sg entries to avoid wasting memory. */
3037 	i915_sg_trim(st);
3038 
3039 	ret = i915_gem_gtt_prepare_pages(obj, st);
3040 	if (ret) {
3041 		/* DMA remapping failed? One possible cause is that
3042 		 * it could not reserve enough large entries, asking
3043 		 * for PAGE_SIZE chunks instead may be helpful.
3044 		 */
3045 		if (max_segment > PAGE_SIZE) {
3046 #ifdef __linux__
3047 			for_each_sgt_page(page, sgt_iter, st)
3048 				put_page(page);
3049 #else
3050 			uvm_objunwire(obj->base.uao, 0, obj->base.size);
3051 #endif
3052 			sg_free_table(st);
3053 
3054 			max_segment = PAGE_SIZE;
3055 			goto rebuild_st;
3056 		} else {
3057 			dev_warn(&dev_priv->drm.pdev->dev,
3058 				 "Failed to DMA remap %lu pages\n",
3059 				 page_count);
3060 			goto err_pages;
3061 		}
3062 	}
3063 
3064 	if (i915_gem_object_needs_bit17_swizzle(obj))
3065 		i915_gem_object_do_bit_17_swizzle(obj, st);
3066 
3067 	__i915_gem_object_set_pages(obj, st, sg_page_sizes);
3068 
3069 	return 0;
3070 
3071 #ifdef __linux__
3072 err_sg:
3073 #endif
3074 	sg_mark_end(sg);
3075 err_pages:
3076 #ifdef __linux__
3077 	for_each_sgt_page(page, sgt_iter, st)
3078 		put_page(page);
3079 #else
3080 	uvm_objunwire(obj->base.uao, 0, obj->base.size);
3081 #endif
3082 	sg_free_table(st);
3083 	kfree(st);
3084 
3085 	/* shmemfs first checks if there is enough memory to allocate the page
3086 	 * and reports ENOSPC should there be insufficient, along with the usual
3087 	 * ENOMEM for a genuine allocation failure.
3088 	 *
3089 	 * We use ENOSPC in our driver to mean that we have run out of aperture
3090 	 * space and so want to translate the error from shmemfs back to our
3091 	 * usual understanding of ENOMEM.
3092 	 */
3093 	if (ret == -ENOSPC)
3094 		ret = -ENOMEM;
3095 
3096 	return ret;
3097 }
3098 
3099 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
3100 				 struct sg_table *pages,
3101 				 unsigned int sg_page_sizes)
3102 {
3103 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
3104 	unsigned long supported = INTEL_INFO(i915)->page_sizes;
3105 	int i;
3106 
3107 	lockdep_assert_held(&obj->mm.lock);
3108 
3109 	obj->mm.get_page.sg_pos = pages->sgl;
3110 	obj->mm.get_page.sg_idx = 0;
3111 
3112 	obj->mm.pages = pages;
3113 
3114 	if (i915_gem_object_is_tiled(obj) &&
3115 	    i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
3116 		GEM_BUG_ON(obj->mm.quirked);
3117 		__i915_gem_object_pin_pages(obj);
3118 		obj->mm.quirked = true;
3119 	}
3120 
3121 	GEM_BUG_ON(!sg_page_sizes);
3122 	obj->mm.page_sizes.phys = sg_page_sizes;
3123 
3124 	/*
3125 	 * Calculate the supported page-sizes which fit into the given
3126 	 * sg_page_sizes. This will give us the page-sizes which we may be able
3127 	 * to use opportunistically when later inserting into the GTT. For
3128 	 * example if phys=2G, then in theory we should be able to use 1G, 2M,
3129 	 * 64K or 4K pages, although in practice this will depend on a number of
3130 	 * other factors.
3131 	 */
3132 	obj->mm.page_sizes.sg = 0;
3133 	for_each_set_bit(i, &supported, ilog2(I915_GTT_MAX_PAGE_SIZE) + 1) {
3134 		if (obj->mm.page_sizes.phys & ~0u << i)
3135 			obj->mm.page_sizes.sg |= BIT(i);
3136 	}
3137 	GEM_BUG_ON(!HAS_PAGE_SIZES(i915, obj->mm.page_sizes.sg));
3138 
3139 	spin_lock(&i915->mm.obj_lock);
3140 	list_add(&obj->mm.link, &i915->mm.unbound_list);
3141 	spin_unlock(&i915->mm.obj_lock);
3142 }
3143 
3144 static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
3145 {
3146 	int err;
3147 
3148 	if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
3149 		DRM_DEBUG("Attempting to obtain a purgeable object\n");
3150 		return -EFAULT;
3151 	}
3152 
3153 	err = obj->ops->get_pages(obj);
3154 	GEM_BUG_ON(!err && !i915_gem_object_has_pages(obj));
3155 
3156 	return err;
3157 }
3158 
3159 /* Ensure that the associated pages are gathered from the backing storage
3160  * and pinned into our object. i915_gem_object_pin_pages() may be called
3161  * multiple times before they are released by a single call to
3162  * i915_gem_object_unpin_pages() - once the pages are no longer referenced
3163  * either as a result of memory pressure (reaping pages under the shrinker)
3164  * or as the object is itself released.
3165  */
3166 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
3167 {
3168 	int err;
3169 
3170 	err = mutex_lock_interruptible(&obj->mm.lock);
3171 	if (err)
3172 		return err;
3173 
3174 	if (unlikely(!i915_gem_object_has_pages(obj))) {
3175 		GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
3176 
3177 		err = ____i915_gem_object_get_pages(obj);
3178 		if (err)
3179 			goto unlock;
3180 
3181 		smp_mb__before_atomic();
3182 	}
3183 	atomic_inc(&obj->mm.pages_pin_count);
3184 
3185 unlock:
3186 	mutex_unlock(&obj->mm.lock);
3187 	return err;
3188 }
3189 
3190 /* The 'mapping' part of i915_gem_object_pin_map() below */
3191 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
3192 				 enum i915_map_type type)
3193 {
3194 	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
3195 	struct sg_table *sgt = obj->mm.pages;
3196 	struct sgt_iter sgt_iter;
3197 	struct vm_page *page;
3198 	struct vm_page *stack_pages[32];
3199 	struct vm_page **pages = stack_pages;
3200 	unsigned long i = 0;
3201 	pgprot_t pgprot;
3202 	void *addr;
3203 
3204 #if 0
3205 	/* A single page can always be kmapped */
3206 	if (n_pages == 1 && type == I915_MAP_WB)
3207 		return kmap(sg_page(sgt->sgl));
3208 #endif
3209 
3210 	if (n_pages > ARRAY_SIZE(stack_pages)) {
3211 		/* Too big for stack -- allocate temporary array instead */
3212 		pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_KERNEL);
3213 		if (!pages)
3214 			return NULL;
3215 	}
3216 
3217 	for_each_sgt_page(page, sgt_iter, sgt)
3218 		pages[i++] = page;
3219 
3220 	/* Check that we have the expected number of pages */
3221 	GEM_BUG_ON(i != n_pages);
3222 
3223 	switch (type) {
3224 	default:
3225 		MISSING_CASE(type);
3226 		/* fallthrough to use PAGE_KERNEL anyway */
3227 	case I915_MAP_WB:
3228 		pgprot = PAGE_KERNEL;
3229 		break;
3230 	case I915_MAP_WC:
3231 		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
3232 		break;
3233 	}
3234 	addr = vmap(pages, n_pages, 0, pgprot);
3235 
3236 	if (pages != stack_pages)
3237 		kvfree(pages);
3238 
3239 	return addr;
3240 }
3241 
3242 /* get, pin, and map the pages of the object into kernel space */
3243 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
3244 			      enum i915_map_type type)
3245 {
3246 	enum i915_map_type has_type;
3247 	bool pinned;
3248 	void *ptr;
3249 	int ret;
3250 
3251 	if (unlikely(!i915_gem_object_has_struct_page(obj)))
3252 		return ERR_PTR(-ENXIO);
3253 
3254 	ret = mutex_lock_interruptible(&obj->mm.lock);
3255 	if (ret)
3256 		return ERR_PTR(ret);
3257 
3258 	pinned = !(type & I915_MAP_OVERRIDE);
3259 	type &= ~I915_MAP_OVERRIDE;
3260 
3261 	if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
3262 		if (unlikely(!i915_gem_object_has_pages(obj))) {
3263 			GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
3264 
3265 			ret = ____i915_gem_object_get_pages(obj);
3266 			if (ret)
3267 				goto err_unlock;
3268 
3269 			smp_mb__before_atomic();
3270 		}
3271 		atomic_inc(&obj->mm.pages_pin_count);
3272 		pinned = false;
3273 	}
3274 	GEM_BUG_ON(!i915_gem_object_has_pages(obj));
3275 
3276 	ptr = page_unpack_bits(obj->mm.mapping, &has_type);
3277 	if (ptr && has_type != type) {
3278 		if (pinned) {
3279 			ret = -EBUSY;
3280 			goto err_unpin;
3281 		}
3282 
3283 		if (is_vmalloc_addr(ptr))
3284 			vunmap(ptr, obj->base.size);
3285 		else
3286 			kunmap(kmap_to_page(ptr));
3287 
3288 		ptr = obj->mm.mapping = NULL;
3289 	}
3290 
3291 	if (!ptr) {
3292 		ptr = i915_gem_object_map(obj, type);
3293 		if (!ptr) {
3294 			ret = -ENOMEM;
3295 			goto err_unpin;
3296 		}
3297 
3298 		obj->mm.mapping = page_pack_bits(ptr, type);
3299 	}
3300 
3301 out_unlock:
3302 	mutex_unlock(&obj->mm.lock);
3303 	return ptr;
3304 
3305 err_unpin:
3306 	atomic_dec(&obj->mm.pages_pin_count);
3307 err_unlock:
3308 	ptr = ERR_PTR(ret);
3309 	goto out_unlock;
3310 }
3311 
3312 static int
3313 i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
3314 			   const struct drm_i915_gem_pwrite *arg)
3315 {
3316 #ifdef __linux__
3317 	struct address_space *mapping = obj->base.filp->f_mapping;
3318 #endif
3319 	char __user *user_data = u64_to_user_ptr(arg->data_ptr);
3320 	u64 remain, offset;
3321 	unsigned int pg;
3322 
3323 	/* Before we instantiate/pin the backing store for our use, we
3324 	 * can prepopulate the shmemfs filp efficiently using a write into
3325 	 * the pagecache. We avoid the penalty of instantiating all the
3326 	 * pages, important if the user is just writing to a few and never
3327 	 * uses the object on the GPU, and using a direct write into shmemfs
3328 	 * allows it to avoid the cost of retrieving a page (either swapin
3329 	 * or clearing-before-use) before it is overwritten.
3330 	 */
3331 	if (i915_gem_object_has_pages(obj))
3332 		return -ENODEV;
3333 
3334 	if (obj->mm.madv != I915_MADV_WILLNEED)
3335 		return -EFAULT;
3336 
3337 	/* Before the pages are instantiated the object is treated as being
3338 	 * in the CPU domain. The pages will be clflushed as required before
3339 	 * use, and we can freely write into the pages directly. If userspace
3340 	 * races pwrite with any other operation; corruption will ensue -
3341 	 * that is userspace's prerogative!
3342 	 */
3343 
3344 	remain = arg->size;
3345 	offset = arg->offset;
3346 	pg = offset_in_page(offset);
3347 
3348 	do {
3349 		unsigned int len, unwritten;
3350 		struct vm_page *page;
3351 		void *data, *vaddr;
3352 		int err;
3353 
3354 		len = PAGE_SIZE - pg;
3355 		if (len > remain)
3356 			len = remain;
3357 
3358 #ifdef __linux__
3359 		err = pagecache_write_begin(obj->base.filp, mapping,
3360 					    offset, len, 0,
3361 					    &page, &data);
3362 		if (err < 0)
3363 			return err;
3364 #else
3365 		struct pglist plist;
3366 		TAILQ_INIT(&plist);
3367 		if (uvm_objwire(obj->base.uao, trunc_page(offset),
3368 		    trunc_page(offset) + PAGE_SIZE, &plist)) {
3369 			err = -ENOMEM;
3370 			return err;
3371 		}
3372 		page = TAILQ_FIRST(&plist);
3373 #endif
3374 
3375 		vaddr = kmap(page);
3376 		unwritten = copy_from_user(vaddr + pg, user_data, len);
3377 		kunmap(vaddr);
3378 
3379 #ifdef __linux__
3380 		err = pagecache_write_end(obj->base.filp, mapping,
3381 					  offset, len, len - unwritten,
3382 					  page, data);
3383 		if (err < 0)
3384 			return err;
3385 #else
3386 		uvm_objunwire(obj->base.uao, trunc_page(offset),
3387 		    trunc_page(offset) + PAGE_SIZE);
3388 #endif
3389 
3390 		if (unwritten)
3391 			return -EFAULT;
3392 
3393 		remain -= len;
3394 		user_data += len;
3395 		offset += len;
3396 		pg = 0;
3397 	} while (remain);
3398 
3399 	return 0;
3400 }
3401 
3402 static void i915_gem_client_mark_guilty(struct drm_i915_file_private *file_priv,
3403 					const struct i915_gem_context *ctx)
3404 {
3405 	unsigned int score;
3406 	unsigned long prev_hang;
3407 
3408 	if (i915_gem_context_is_banned(ctx))
3409 		score = I915_CLIENT_SCORE_CONTEXT_BAN;
3410 	else
3411 		score = 0;
3412 
3413 	prev_hang = xchg(&file_priv->hang_timestamp, jiffies);
3414 	if (time_before(jiffies, prev_hang + I915_CLIENT_FAST_HANG_JIFFIES))
3415 		score += I915_CLIENT_SCORE_HANG_FAST;
3416 
3417 	if (score) {
3418 		atomic_add(score, &file_priv->ban_score);
3419 
3420 		DRM_DEBUG_DRIVER("client %s: gained %u ban score, now %u\n",
3421 				 ctx->name, score,
3422 				 atomic_read(&file_priv->ban_score));
3423 	}
3424 }
3425 
3426 static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
3427 {
3428 	unsigned int score;
3429 	bool banned, bannable;
3430 
3431 	atomic_inc(&ctx->guilty_count);
3432 
3433 	bannable = i915_gem_context_is_bannable(ctx);
3434 	score = atomic_add_return(CONTEXT_SCORE_GUILTY, &ctx->ban_score);
3435 	banned = score >= CONTEXT_SCORE_BAN_THRESHOLD;
3436 
3437 	/* Cool contexts don't accumulate client ban score */
3438 	if (!bannable)
3439 		return;
3440 
3441 	if (banned) {
3442 		DRM_DEBUG_DRIVER("context %s: guilty %d, score %u, banned\n",
3443 				 ctx->name, atomic_read(&ctx->guilty_count),
3444 				 score);
3445 		i915_gem_context_set_banned(ctx);
3446 	}
3447 
3448 	if (!IS_ERR_OR_NULL(ctx->file_priv))
3449 		i915_gem_client_mark_guilty(ctx->file_priv, ctx);
3450 }
3451 
3452 static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
3453 {
3454 	atomic_inc(&ctx->active_count);
3455 }
3456 
3457 struct i915_request *
3458 i915_gem_find_active_request(struct intel_engine_cs *engine)
3459 {
3460 	struct i915_request *request, *active = NULL;
3461 	unsigned long flags;
3462 
3463 	/*
3464 	 * We are called by the error capture, reset and to dump engine
3465 	 * state at random points in time. In particular, note that neither is
3466 	 * crucially ordered with an interrupt. After a hang, the GPU is dead
3467 	 * and we assume that no more writes can happen (we waited long enough
3468 	 * for all writes that were in transaction to be flushed) - adding an
3469 	 * extra delay for a recent interrupt is pointless. Hence, we do
3470 	 * not need an engine->irq_seqno_barrier() before the seqno reads.
3471 	 * At all other times, we must assume the GPU is still running, but
3472 	 * we only care about the snapshot of this moment.
3473 	 */
3474 	spin_lock_irqsave(&engine->timeline.lock, flags);
3475 	list_for_each_entry(request, &engine->timeline.requests, link) {
3476 		if (__i915_request_completed(request, request->global_seqno))
3477 			continue;
3478 
3479 		active = request;
3480 		break;
3481 	}
3482 	spin_unlock_irqrestore(&engine->timeline.lock, flags);
3483 
3484 	return active;
3485 }
3486 
3487 /*
3488  * Ensure irq handler finishes, and not run again.
3489  * Also return the active request so that we only search for it once.
3490  */
3491 struct i915_request *
3492 i915_gem_reset_prepare_engine(struct intel_engine_cs *engine)
3493 {
3494 	struct i915_request *request;
3495 
3496 	/*
3497 	 * During the reset sequence, we must prevent the engine from
3498 	 * entering RC6. As the context state is undefined until we restart
3499 	 * the engine, if it does enter RC6 during the reset, the state
3500 	 * written to the powercontext is undefined and so we may lose
3501 	 * GPU state upon resume, i.e. fail to restart after a reset.
3502 	 */
3503 	intel_uncore_forcewake_get(engine->i915, FORCEWAKE_ALL);
3504 
3505 	request = engine->reset.prepare(engine);
3506 	if (request && request->fence.error == -EIO)
3507 		request = ERR_PTR(-EIO); /* Previous reset failed! */
3508 
3509 	return request;
3510 }
3511 
3512 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
3513 {
3514 	struct intel_engine_cs *engine;
3515 	struct i915_request *request;
3516 	enum intel_engine_id id;
3517 	int err = 0;
3518 
3519 	for_each_engine(engine, dev_priv, id) {
3520 		request = i915_gem_reset_prepare_engine(engine);
3521 		if (IS_ERR(request)) {
3522 			err = PTR_ERR(request);
3523 			continue;
3524 		}
3525 
3526 		engine->hangcheck.active_request = request;
3527 	}
3528 
3529 	i915_gem_revoke_fences(dev_priv);
3530 	intel_uc_sanitize(dev_priv);
3531 
3532 	return err;
3533 }
3534 
3535 static void engine_skip_context(struct i915_request *request)
3536 {
3537 	struct intel_engine_cs *engine = request->engine;
3538 	struct i915_gem_context *hung_ctx = request->gem_context;
3539 	struct i915_timeline *timeline = request->timeline;
3540 	unsigned long flags;
3541 
3542 	GEM_BUG_ON(timeline == &engine->timeline);
3543 
3544 	spin_lock_irqsave(&engine->timeline.lock, flags);
3545 	spin_lock(&timeline->lock);
3546 
3547 	list_for_each_entry_continue(request, &engine->timeline.requests, link)
3548 		if (request->gem_context == hung_ctx)
3549 			i915_request_skip(request, -EIO);
3550 
3551 	list_for_each_entry(request, &timeline->requests, link)
3552 		i915_request_skip(request, -EIO);
3553 
3554 	spin_unlock(&timeline->lock);
3555 	spin_unlock_irqrestore(&engine->timeline.lock, flags);
3556 }
3557 
3558 /* Returns the request if it was guilty of the hang */
3559 static struct i915_request *
3560 i915_gem_reset_request(struct intel_engine_cs *engine,
3561 		       struct i915_request *request,
3562 		       bool stalled)
3563 {
3564 	/* The guilty request will get skipped on a hung engine.
3565 	 *
3566 	 * Users of client default contexts do not rely on logical
3567 	 * state preserved between batches so it is safe to execute
3568 	 * queued requests following the hang. Non default contexts
3569 	 * rely on preserved state, so skipping a batch loses the
3570 	 * evolution of the state and it needs to be considered corrupted.
3571 	 * Executing more queued batches on top of corrupted state is
3572 	 * risky. But we take the risk by trying to advance through
3573 	 * the queued requests in order to make the client behaviour
3574 	 * more predictable around resets, by not throwing away random
3575 	 * amount of batches it has prepared for execution. Sophisticated
3576 	 * clients can use gem_reset_stats_ioctl and dma fence status
3577 	 * (exported via sync_file info ioctl on explicit fences) to observe
3578 	 * when it loses the context state and should rebuild accordingly.
3579 	 *
3580 	 * The context ban, and ultimately the client ban, mechanism are safety
3581 	 * valves if client submission ends up resulting in nothing more than
3582 	 * subsequent hangs.
3583 	 */
3584 
3585 	if (i915_request_completed(request)) {
3586 		GEM_TRACE("%s pardoned global=%d (fence %llx:%d), current %d\n",
3587 			  engine->name, request->global_seqno,
3588 			  request->fence.context, request->fence.seqno,
3589 			  intel_engine_get_seqno(engine));
3590 		stalled = false;
3591 	}
3592 
3593 	if (stalled) {
3594 		i915_gem_context_mark_guilty(request->gem_context);
3595 		i915_request_skip(request, -EIO);
3596 
3597 		/* If this context is now banned, skip all pending requests. */
3598 		if (i915_gem_context_is_banned(request->gem_context))
3599 			engine_skip_context(request);
3600 	} else {
3601 		/*
3602 		 * Since this is not the hung engine, it may have advanced
3603 		 * since the hang declaration. Double check by refinding
3604 		 * the active request at the time of the reset.
3605 		 */
3606 		request = i915_gem_find_active_request(engine);
3607 		if (request) {
3608 			unsigned long flags;
3609 
3610 			i915_gem_context_mark_innocent(request->gem_context);
3611 			dma_fence_set_error(&request->fence, -EAGAIN);
3612 
3613 			/* Rewind the engine to replay the incomplete rq */
3614 			spin_lock_irqsave(&engine->timeline.lock, flags);
3615 			request = list_prev_entry(request, link);
3616 			if (&request->link == &engine->timeline.requests)
3617 				request = NULL;
3618 			spin_unlock_irqrestore(&engine->timeline.lock, flags);
3619 		}
3620 	}
3621 
3622 	return request;
3623 }
3624 
3625 void i915_gem_reset_engine(struct intel_engine_cs *engine,
3626 			   struct i915_request *request,
3627 			   bool stalled)
3628 {
3629 	/*
3630 	 * Make sure this write is visible before we re-enable the interrupt
3631 	 * handlers on another CPU, as tasklet_enable() resolves to just
3632 	 * a compiler barrier which is insufficient for our purpose here.
3633 	 */
3634 	smp_store_mb(engine->irq_posted, 0);
3635 
3636 	if (request)
3637 		request = i915_gem_reset_request(engine, request, stalled);
3638 
3639 	/* Setup the CS to resume from the breadcrumb of the hung request */
3640 	engine->reset.reset(engine, request);
3641 }
3642 
3643 void i915_gem_reset(struct drm_i915_private *dev_priv,
3644 		    unsigned int stalled_mask)
3645 {
3646 	struct intel_engine_cs *engine;
3647 	enum intel_engine_id id;
3648 
3649 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
3650 
3651 	i915_retire_requests(dev_priv);
3652 
3653 	for_each_engine(engine, dev_priv, id) {
3654 		struct intel_context *ce;
3655 
3656 		i915_gem_reset_engine(engine,
3657 				      engine->hangcheck.active_request,
3658 				      stalled_mask & ENGINE_MASK(id));
3659 		ce = fetch_and_zero(&engine->last_retired_context);
3660 		if (ce)
3661 			intel_context_unpin(ce);
3662 
3663 		/*
3664 		 * Ostensibily, we always want a context loaded for powersaving,
3665 		 * so if the engine is idle after the reset, send a request
3666 		 * to load our scratch kernel_context.
3667 		 *
3668 		 * More mysteriously, if we leave the engine idle after a reset,
3669 		 * the next userspace batch may hang, with what appears to be
3670 		 * an incoherent read by the CS (presumably stale TLB). An
3671 		 * empty request appears sufficient to paper over the glitch.
3672 		 */
3673 		if (intel_engine_is_idle(engine)) {
3674 			struct i915_request *rq;
3675 
3676 			rq = i915_request_alloc(engine,
3677 						dev_priv->kernel_context);
3678 			if (!IS_ERR(rq))
3679 				i915_request_add(rq);
3680 		}
3681 	}
3682 
3683 	i915_gem_restore_fences(dev_priv);
3684 }
3685 
3686 void i915_gem_reset_finish_engine(struct intel_engine_cs *engine)
3687 {
3688 	engine->reset.finish(engine);
3689 
3690 	intel_uncore_forcewake_put(engine->i915, FORCEWAKE_ALL);
3691 }
3692 
3693 void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
3694 {
3695 	struct intel_engine_cs *engine;
3696 	enum intel_engine_id id;
3697 
3698 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
3699 
3700 	for_each_engine(engine, dev_priv, id) {
3701 		engine->hangcheck.active_request = NULL;
3702 		i915_gem_reset_finish_engine(engine);
3703 	}
3704 }
3705 
3706 static void nop_submit_request(struct i915_request *request)
3707 {
3708 	GEM_TRACE("%s fence %llx:%d -> -EIO\n",
3709 		  request->engine->name,
3710 		  request->fence.context, request->fence.seqno);
3711 	dma_fence_set_error(&request->fence, -EIO);
3712 
3713 	i915_request_submit(request);
3714 }
3715 
3716 static void nop_complete_submit_request(struct i915_request *request)
3717 {
3718 	unsigned long flags;
3719 
3720 	GEM_TRACE("%s fence %llx:%d -> -EIO\n",
3721 		  request->engine->name,
3722 		  request->fence.context, request->fence.seqno);
3723 	dma_fence_set_error(&request->fence, -EIO);
3724 
3725 	spin_lock_irqsave(&request->engine->timeline.lock, flags);
3726 	__i915_request_submit(request);
3727 	intel_engine_init_global_seqno(request->engine, request->global_seqno);
3728 	spin_unlock_irqrestore(&request->engine->timeline.lock, flags);
3729 }
3730 
3731 void i915_gem_set_wedged(struct drm_i915_private *i915)
3732 {
3733 	struct intel_engine_cs *engine;
3734 	enum intel_engine_id id;
3735 
3736 	GEM_TRACE("start\n");
3737 
3738 	if (GEM_SHOW_DEBUG()) {
3739 		struct drm_printer p = drm_debug_printer(__func__);
3740 
3741 		for_each_engine(engine, i915, id)
3742 			intel_engine_dump(engine, &p, "%s\n", engine->name);
3743 	}
3744 
3745 	set_bit(I915_WEDGED, &i915->gpu_error.flags);
3746 	smp_mb__after_atomic();
3747 
3748 	/*
3749 	 * First, stop submission to hw, but do not yet complete requests by
3750 	 * rolling the global seqno forward (since this would complete requests
3751 	 * for which we haven't set the fence error to EIO yet).
3752 	 */
3753 	for_each_engine(engine, i915, id) {
3754 		i915_gem_reset_prepare_engine(engine);
3755 
3756 		engine->submit_request = nop_submit_request;
3757 		engine->schedule = NULL;
3758 	}
3759 	i915->caps.scheduler = 0;
3760 
3761 	/* Even if the GPU reset fails, it should still stop the engines */
3762 	intel_gpu_reset(i915, ALL_ENGINES);
3763 
3764 	/*
3765 	 * Make sure no one is running the old callback before we proceed with
3766 	 * cancelling requests and resetting the completion tracking. Otherwise
3767 	 * we might submit a request to the hardware which never completes.
3768 	 */
3769 	synchronize_rcu();
3770 
3771 	for_each_engine(engine, i915, id) {
3772 		/* Mark all executing requests as skipped */
3773 		engine->cancel_requests(engine);
3774 
3775 		/*
3776 		 * Only once we've force-cancelled all in-flight requests can we
3777 		 * start to complete all requests.
3778 		 */
3779 		engine->submit_request = nop_complete_submit_request;
3780 	}
3781 
3782 	/*
3783 	 * Make sure no request can slip through without getting completed by
3784 	 * either this call here to intel_engine_init_global_seqno, or the one
3785 	 * in nop_complete_submit_request.
3786 	 */
3787 	synchronize_rcu();
3788 
3789 	for_each_engine(engine, i915, id) {
3790 		unsigned long flags;
3791 
3792 		/*
3793 		 * Mark all pending requests as complete so that any concurrent
3794 		 * (lockless) lookup doesn't try and wait upon the request as we
3795 		 * reset it.
3796 		 */
3797 		spin_lock_irqsave(&engine->timeline.lock, flags);
3798 		intel_engine_init_global_seqno(engine,
3799 					       intel_engine_last_submit(engine));
3800 		spin_unlock_irqrestore(&engine->timeline.lock, flags);
3801 
3802 		i915_gem_reset_finish_engine(engine);
3803 	}
3804 
3805 	GEM_TRACE("end\n");
3806 
3807 	wake_up_all(&i915->gpu_error.reset_queue);
3808 }
3809 
3810 bool i915_gem_unset_wedged(struct drm_i915_private *i915)
3811 {
3812 	struct i915_timeline *tl;
3813 
3814 	lockdep_assert_held(&i915->drm.struct_mutex);
3815 	if (!test_bit(I915_WEDGED, &i915->gpu_error.flags))
3816 		return true;
3817 
3818 	GEM_TRACE("start\n");
3819 
3820 	/*
3821 	 * Before unwedging, make sure that all pending operations
3822 	 * are flushed and errored out - we may have requests waiting upon
3823 	 * third party fences. We marked all inflight requests as EIO, and
3824 	 * every execbuf since returned EIO, for consistency we want all
3825 	 * the currently pending requests to also be marked as EIO, which
3826 	 * is done inside our nop_submit_request - and so we must wait.
3827 	 *
3828 	 * No more can be submitted until we reset the wedged bit.
3829 	 */
3830 	list_for_each_entry(tl, &i915->gt.timelines, link) {
3831 		struct i915_request *rq;
3832 
3833 		rq = i915_gem_active_peek(&tl->last_request,
3834 					  &i915->drm.struct_mutex);
3835 		if (!rq)
3836 			continue;
3837 
3838 		/*
3839 		 * We can't use our normal waiter as we want to
3840 		 * avoid recursively trying to handle the current
3841 		 * reset. The basic dma_fence_default_wait() installs
3842 		 * a callback for dma_fence_signal(), which is
3843 		 * triggered by our nop handler (indirectly, the
3844 		 * callback enables the signaler thread which is
3845 		 * woken by the nop_submit_request() advancing the seqno
3846 		 * and when the seqno passes the fence, the signaler
3847 		 * then signals the fence waking us up).
3848 		 */
3849 		if (dma_fence_default_wait(&rq->fence, true,
3850 					   MAX_SCHEDULE_TIMEOUT) < 0)
3851 			return false;
3852 	}
3853 	i915_retire_requests(i915);
3854 	GEM_BUG_ON(i915->gt.active_requests);
3855 
3856 	/*
3857 	 * Undo nop_submit_request. We prevent all new i915 requests from
3858 	 * being queued (by disallowing execbuf whilst wedged) so having
3859 	 * waited for all active requests above, we know the system is idle
3860 	 * and do not have to worry about a thread being inside
3861 	 * engine->submit_request() as we swap over. So unlike installing
3862 	 * the nop_submit_request on reset, we can do this from normal
3863 	 * context and do not require stop_machine().
3864 	 */
3865 	intel_engines_reset_default_submission(i915);
3866 	i915_gem_contexts_lost(i915);
3867 
3868 	GEM_TRACE("end\n");
3869 
3870 	smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
3871 	clear_bit(I915_WEDGED, &i915->gpu_error.flags);
3872 
3873 	return true;
3874 }
3875 
3876 static void
3877 i915_gem_retire_work_handler(struct work_struct *work)
3878 {
3879 	struct drm_i915_private *dev_priv =
3880 		container_of(work, typeof(*dev_priv), gt.retire_work.work);
3881 	struct drm_device *dev = &dev_priv->drm;
3882 
3883 	/* Come back later if the device is busy... */
3884 	if (mutex_trylock(&dev->struct_mutex)) {
3885 		i915_retire_requests(dev_priv);
3886 		mutex_unlock(&dev->struct_mutex);
3887 	}
3888 
3889 	/*
3890 	 * Keep the retire handler running until we are finally idle.
3891 	 * We do not need to do this test under locking as in the worst-case
3892 	 * we queue the retire worker once too often.
3893 	 */
3894 	if (READ_ONCE(dev_priv->gt.awake))
3895 		queue_delayed_work(dev_priv->wq,
3896 				   &dev_priv->gt.retire_work,
3897 				   round_jiffies_up_relative(HZ));
3898 }
3899 
3900 static void shrink_caches(struct drm_i915_private *i915)
3901 {
3902 #ifdef __linux__
3903 	/*
3904 	 * kmem_cache_shrink() discards empty slabs and reorders partially
3905 	 * filled slabs to prioritise allocating from the mostly full slabs,
3906 	 * with the aim of reducing fragmentation.
3907 	 */
3908 	kmem_cache_shrink(i915->priorities);
3909 	kmem_cache_shrink(i915->dependencies);
3910 	kmem_cache_shrink(i915->requests);
3911 	kmem_cache_shrink(i915->luts);
3912 	kmem_cache_shrink(i915->vmas);
3913 	kmem_cache_shrink(i915->objects);
3914 #endif
3915 }
3916 
3917 struct sleep_rcu_work {
3918 	union {
3919 		struct rcu_head rcu;
3920 		struct work_struct work;
3921 	};
3922 	struct drm_i915_private *i915;
3923 	unsigned int epoch;
3924 };
3925 
3926 static inline bool
3927 same_epoch(struct drm_i915_private *i915, unsigned int epoch)
3928 {
3929 	/*
3930 	 * There is a small chance that the epoch wrapped since we started
3931 	 * sleeping. If we assume that epoch is at least a u32, then it will
3932 	 * take at least 2^32 * 100ms for it to wrap, or about 326 years.
3933 	 */
3934 	return epoch == READ_ONCE(i915->gt.epoch);
3935 }
3936 
3937 static void __sleep_work(struct work_struct *work)
3938 {
3939 	struct sleep_rcu_work *s = container_of(work, typeof(*s), work);
3940 	struct drm_i915_private *i915 = s->i915;
3941 	unsigned int epoch = s->epoch;
3942 
3943 	kfree(s);
3944 	if (same_epoch(i915, epoch))
3945 		shrink_caches(i915);
3946 }
3947 
3948 static void __sleep_rcu(struct rcu_head *rcu)
3949 {
3950 	struct sleep_rcu_work *s = container_of(rcu, typeof(*s), rcu);
3951 	struct drm_i915_private *i915 = s->i915;
3952 
3953 	if (same_epoch(i915, s->epoch)) {
3954 		INIT_WORK(&s->work, __sleep_work);
3955 		queue_work(i915->wq, &s->work);
3956 	} else {
3957 		kfree(s);
3958 	}
3959 }
3960 
3961 static inline bool
3962 new_requests_since_last_retire(const struct drm_i915_private *i915)
3963 {
3964 	return (READ_ONCE(i915->gt.active_requests) ||
3965 		work_pending(&i915->gt.idle_work.work));
3966 }
3967 
3968 static void assert_kernel_context_is_current(struct drm_i915_private *i915)
3969 {
3970 	struct intel_engine_cs *engine;
3971 	enum intel_engine_id id;
3972 
3973 	if (i915_terminally_wedged(&i915->gpu_error))
3974 		return;
3975 
3976 	GEM_BUG_ON(i915->gt.active_requests);
3977 	for_each_engine(engine, i915, id) {
3978 		GEM_BUG_ON(__i915_gem_active_peek(&engine->timeline.last_request));
3979 		GEM_BUG_ON(engine->last_retired_context !=
3980 			   to_intel_context(i915->kernel_context, engine));
3981 	}
3982 }
3983 
3984 static void
3985 i915_gem_idle_work_handler(struct work_struct *work)
3986 {
3987 	struct drm_i915_private *dev_priv =
3988 		container_of(work, typeof(*dev_priv), gt.idle_work.work);
3989 	unsigned int epoch = I915_EPOCH_INVALID;
3990 	bool rearm_hangcheck;
3991 
3992 	if (!READ_ONCE(dev_priv->gt.awake))
3993 		return;
3994 
3995 	if (READ_ONCE(dev_priv->gt.active_requests))
3996 		return;
3997 
3998 	/*
3999 	 * Flush out the last user context, leaving only the pinned
4000 	 * kernel context resident. When we are idling on the kernel_context,
4001 	 * no more new requests (with a context switch) are emitted and we
4002 	 * can finally rest. A consequence is that the idle work handler is
4003 	 * always called at least twice before idling (and if the system is
4004 	 * idle that implies a round trip through the retire worker).
4005 	 */
4006 	mutex_lock(&dev_priv->drm.struct_mutex);
4007 	i915_gem_switch_to_kernel_context(dev_priv);
4008 	mutex_unlock(&dev_priv->drm.struct_mutex);
4009 
4010 	GEM_TRACE("active_requests=%d (after switch-to-kernel-context)\n",
4011 		  READ_ONCE(dev_priv->gt.active_requests));
4012 
4013 	/*
4014 	 * Wait for last execlists context complete, but bail out in case a
4015 	 * new request is submitted. As we don't trust the hardware, we
4016 	 * continue on if the wait times out. This is necessary to allow
4017 	 * the machine to suspend even if the hardware dies, and we will
4018 	 * try to recover in resume (after depriving the hardware of power,
4019 	 * it may be in a better mmod).
4020 	 */
4021 	__wait_for(if (new_requests_since_last_retire(dev_priv)) return,
4022 		   intel_engines_are_idle(dev_priv),
4023 		   I915_IDLE_ENGINES_TIMEOUT * 1000,
4024 		   10, 500);
4025 
4026 	rearm_hangcheck =
4027 		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4028 
4029 	if (!mutex_trylock(&dev_priv->drm.struct_mutex)) {
4030 		/* Currently busy, come back later */
4031 		mod_delayed_work(dev_priv->wq,
4032 				 &dev_priv->gt.idle_work,
4033 				 msecs_to_jiffies(50));
4034 		goto out_rearm;
4035 	}
4036 
4037 	/*
4038 	 * New request retired after this work handler started, extend active
4039 	 * period until next instance of the work.
4040 	 */
4041 	if (new_requests_since_last_retire(dev_priv))
4042 		goto out_unlock;
4043 
4044 	epoch = __i915_gem_park(dev_priv);
4045 
4046 	assert_kernel_context_is_current(dev_priv);
4047 
4048 	rearm_hangcheck = false;
4049 out_unlock:
4050 	mutex_unlock(&dev_priv->drm.struct_mutex);
4051 
4052 out_rearm:
4053 	if (rearm_hangcheck) {
4054 		GEM_BUG_ON(!dev_priv->gt.awake);
4055 		i915_queue_hangcheck(dev_priv);
4056 	}
4057 
4058 	/*
4059 	 * When we are idle, it is an opportune time to reap our caches.
4060 	 * However, we have many objects that utilise RCU and the ordered
4061 	 * i915->wq that this work is executing on. To try and flush any
4062 	 * pending frees now we are idle, we first wait for an RCU grace
4063 	 * period, and then queue a task (that will run last on the wq) to
4064 	 * shrink and re-optimize the caches.
4065 	 */
4066 	if (same_epoch(dev_priv, epoch)) {
4067 		struct sleep_rcu_work *s = kmalloc(sizeof(*s), GFP_KERNEL);
4068 		if (s) {
4069 			s->i915 = dev_priv;
4070 			s->epoch = epoch;
4071 			call_rcu(&s->rcu, __sleep_rcu);
4072 		}
4073 	}
4074 }
4075 
4076 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
4077 {
4078 	struct drm_i915_private *i915 = to_i915(gem->dev);
4079 	struct drm_i915_gem_object *obj = to_intel_bo(gem);
4080 	struct drm_i915_file_private *fpriv = file->driver_priv;
4081 	struct i915_lut_handle *lut, *ln;
4082 
4083 	mutex_lock(&i915->drm.struct_mutex);
4084 
4085 	list_for_each_entry_safe(lut, ln, &obj->lut_list, obj_link) {
4086 		struct i915_gem_context *ctx = lut->ctx;
4087 		struct i915_vma *vma;
4088 
4089 		GEM_BUG_ON(ctx->file_priv == ERR_PTR(-EBADF));
4090 		if (ctx->file_priv != fpriv)
4091 			continue;
4092 
4093 		vma = radix_tree_delete(&ctx->handles_vma, lut->handle);
4094 		GEM_BUG_ON(vma->obj != obj);
4095 
4096 		/* We allow the process to have multiple handles to the same
4097 		 * vma, in the same fd namespace, by virtue of flink/open.
4098 		 */
4099 		GEM_BUG_ON(!vma->open_count);
4100 		if (!--vma->open_count && !i915_vma_is_ggtt(vma))
4101 			i915_vma_close(vma);
4102 
4103 		list_del(&lut->obj_link);
4104 		list_del(&lut->ctx_link);
4105 
4106 #ifdef __linux__
4107 		kmem_cache_free(i915->luts, lut);
4108 #else
4109 		pool_put(&i915->luts, lut);
4110 #endif
4111 		__i915_gem_object_release_unless_active(obj);
4112 	}
4113 
4114 	mutex_unlock(&i915->drm.struct_mutex);
4115 }
4116 
4117 static unsigned long to_wait_timeout(s64 timeout_ns)
4118 {
4119 	if (timeout_ns < 0)
4120 		return MAX_SCHEDULE_TIMEOUT;
4121 
4122 	if (timeout_ns == 0)
4123 		return 0;
4124 
4125 	return nsecs_to_jiffies_timeout(timeout_ns);
4126 }
4127 
4128 /**
4129  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
4130  * @dev: drm device pointer
4131  * @data: ioctl data blob
4132  * @file: drm file pointer
4133  *
4134  * Returns 0 if successful, else an error is returned with the remaining time in
4135  * the timeout parameter.
4136  *  -ETIME: object is still busy after timeout
4137  *  -ERESTARTSYS: signal interrupted the wait
4138  *  -ENONENT: object doesn't exist
4139  * Also possible, but rare:
4140  *  -EAGAIN: incomplete, restart syscall
4141  *  -ENOMEM: damn
4142  *  -ENODEV: Internal IRQ fail
4143  *  -E?: The add request failed
4144  *
4145  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
4146  * non-zero timeout parameter the wait ioctl will wait for the given number of
4147  * nanoseconds on an object becoming unbusy. Since the wait itself does so
4148  * without holding struct_mutex the object may become re-busied before this
4149  * function completes. A similar but shorter * race condition exists in the busy
4150  * ioctl
4151  */
4152 int
4153 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
4154 {
4155 	struct drm_i915_gem_wait *args = data;
4156 	struct drm_i915_gem_object *obj;
4157 	ktime_t start;
4158 	long ret;
4159 
4160 	if (args->flags != 0)
4161 		return -EINVAL;
4162 
4163 	obj = i915_gem_object_lookup(file, args->bo_handle);
4164 	if (!obj)
4165 		return -ENOENT;
4166 
4167 	start = ktime_get();
4168 
4169 	ret = i915_gem_object_wait(obj,
4170 				   I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
4171 				   to_wait_timeout(args->timeout_ns),
4172 				   to_rps_client(file));
4173 
4174 	if (args->timeout_ns > 0) {
4175 		args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
4176 		if (args->timeout_ns < 0)
4177 			args->timeout_ns = 0;
4178 
4179 		/*
4180 		 * Apparently ktime isn't accurate enough and occasionally has a
4181 		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
4182 		 * things up to make the test happy. We allow up to 1 jiffy.
4183 		 *
4184 		 * This is a regression from the timespec->ktime conversion.
4185 		 */
4186 		if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
4187 			args->timeout_ns = 0;
4188 
4189 		/* Asked to wait beyond the jiffie/scheduler precision? */
4190 		if (ret == -ETIME && args->timeout_ns)
4191 			ret = -EAGAIN;
4192 	}
4193 
4194 	i915_gem_object_put(obj);
4195 	return ret;
4196 }
4197 
4198 static long wait_for_timeline(struct i915_timeline *tl,
4199 			      unsigned int flags, long timeout)
4200 {
4201 	struct i915_request *rq;
4202 
4203 	rq = i915_gem_active_get_unlocked(&tl->last_request);
4204 	if (!rq)
4205 		return timeout;
4206 
4207 	/*
4208 	 * "Race-to-idle".
4209 	 *
4210 	 * Switching to the kernel context is often used a synchronous
4211 	 * step prior to idling, e.g. in suspend for flushing all
4212 	 * current operations to memory before sleeping. These we
4213 	 * want to complete as quickly as possible to avoid prolonged
4214 	 * stalls, so allow the gpu to boost to maximum clocks.
4215 	 */
4216 	if (flags & I915_WAIT_FOR_IDLE_BOOST)
4217 		gen6_rps_boost(rq, NULL);
4218 
4219 	timeout = i915_request_wait(rq, flags, timeout);
4220 	i915_request_put(rq);
4221 
4222 	return timeout;
4223 }
4224 
4225 static int wait_for_engines(struct drm_i915_private *i915)
4226 {
4227 	if (wait_for(intel_engines_are_idle(i915), I915_IDLE_ENGINES_TIMEOUT)) {
4228 		dev_err(i915->drm.dev,
4229 			"Failed to idle engines, declaring wedged!\n");
4230 		GEM_TRACE_DUMP();
4231 		i915_gem_set_wedged(i915);
4232 		return -EIO;
4233 	}
4234 
4235 	return 0;
4236 }
4237 
4238 int i915_gem_wait_for_idle(struct drm_i915_private *i915,
4239 			   unsigned int flags, long timeout)
4240 {
4241 	GEM_TRACE("flags=%x (%s), timeout=%ld%s\n",
4242 		  flags, flags & I915_WAIT_LOCKED ? "locked" : "unlocked",
4243 		  timeout, timeout == MAX_SCHEDULE_TIMEOUT ? " (forever)" : "");
4244 
4245 	/* If the device is asleep, we have no requests outstanding */
4246 	if (!READ_ONCE(i915->gt.awake))
4247 		return 0;
4248 
4249 	if (flags & I915_WAIT_LOCKED) {
4250 		struct i915_timeline *tl;
4251 		int err;
4252 
4253 		lockdep_assert_held(&i915->drm.struct_mutex);
4254 
4255 		list_for_each_entry(tl, &i915->gt.timelines, link) {
4256 			timeout = wait_for_timeline(tl, flags, timeout);
4257 			if (timeout < 0)
4258 				return timeout;
4259 		}
4260 
4261 		err = wait_for_engines(i915);
4262 		if (err)
4263 			return err;
4264 
4265 		i915_retire_requests(i915);
4266 		GEM_BUG_ON(i915->gt.active_requests);
4267 	} else {
4268 		struct intel_engine_cs *engine;
4269 		enum intel_engine_id id;
4270 
4271 		for_each_engine(engine, i915, id) {
4272 			struct i915_timeline *tl = &engine->timeline;
4273 
4274 			timeout = wait_for_timeline(tl, flags, timeout);
4275 			if (timeout < 0)
4276 				return timeout;
4277 		}
4278 	}
4279 
4280 	return 0;
4281 }
4282 
4283 static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
4284 {
4285 	/*
4286 	 * We manually flush the CPU domain so that we can override and
4287 	 * force the flush for the display, and perform it asyncrhonously.
4288 	 */
4289 	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
4290 	if (obj->cache_dirty)
4291 		i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
4292 	obj->write_domain = 0;
4293 }
4294 
4295 void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
4296 {
4297 	if (!READ_ONCE(obj->pin_global))
4298 		return;
4299 
4300 	mutex_lock(&obj->base.dev->struct_mutex);
4301 	__i915_gem_object_flush_for_display(obj);
4302 	mutex_unlock(&obj->base.dev->struct_mutex);
4303 }
4304 
4305 /**
4306  * Moves a single object to the WC read, and possibly write domain.
4307  * @obj: object to act on
4308  * @write: ask for write access or read only
4309  *
4310  * This function returns when the move is complete, including waiting on
4311  * flushes to occur.
4312  */
4313 int
4314 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
4315 {
4316 	int ret;
4317 
4318 	lockdep_assert_held(&obj->base.dev->struct_mutex);
4319 
4320 	ret = i915_gem_object_wait(obj,
4321 				   I915_WAIT_INTERRUPTIBLE |
4322 				   I915_WAIT_LOCKED |
4323 				   (write ? I915_WAIT_ALL : 0),
4324 				   MAX_SCHEDULE_TIMEOUT,
4325 				   NULL);
4326 	if (ret)
4327 		return ret;
4328 
4329 	if (obj->write_domain == I915_GEM_DOMAIN_WC)
4330 		return 0;
4331 
4332 	/* Flush and acquire obj->pages so that we are coherent through
4333 	 * direct access in memory with previous cached writes through
4334 	 * shmemfs and that our cache domain tracking remains valid.
4335 	 * For example, if the obj->filp was moved to swap without us
4336 	 * being notified and releasing the pages, we would mistakenly
4337 	 * continue to assume that the obj remained out of the CPU cached
4338 	 * domain.
4339 	 */
4340 	ret = i915_gem_object_pin_pages(obj);
4341 	if (ret)
4342 		return ret;
4343 
4344 	flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);
4345 
4346 	/* Serialise direct access to this object with the barriers for
4347 	 * coherent writes from the GPU, by effectively invalidating the
4348 	 * WC domain upon first access.
4349 	 */
4350 	if ((obj->read_domains & I915_GEM_DOMAIN_WC) == 0)
4351 		mb();
4352 
4353 	/* It should now be out of any other write domains, and we can update
4354 	 * the domain values for our changes.
4355 	 */
4356 	GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_WC) != 0);
4357 	obj->read_domains |= I915_GEM_DOMAIN_WC;
4358 	if (write) {
4359 		obj->read_domains = I915_GEM_DOMAIN_WC;
4360 		obj->write_domain = I915_GEM_DOMAIN_WC;
4361 		obj->mm.dirty = true;
4362 	}
4363 
4364 	i915_gem_object_unpin_pages(obj);
4365 	return 0;
4366 }
4367 
4368 /**
4369  * Moves a single object to the GTT read, and possibly write domain.
4370  * @obj: object to act on
4371  * @write: ask for write access or read only
4372  *
4373  * This function returns when the move is complete, including waiting on
4374  * flushes to occur.
4375  */
4376 int
4377 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
4378 {
4379 	int ret;
4380 
4381 	lockdep_assert_held(&obj->base.dev->struct_mutex);
4382 
4383 	ret = i915_gem_object_wait(obj,
4384 				   I915_WAIT_INTERRUPTIBLE |
4385 				   I915_WAIT_LOCKED |
4386 				   (write ? I915_WAIT_ALL : 0),
4387 				   MAX_SCHEDULE_TIMEOUT,
4388 				   NULL);
4389 	if (ret)
4390 		return ret;
4391 
4392 	if (obj->write_domain == I915_GEM_DOMAIN_GTT)
4393 		return 0;
4394 
4395 	/* Flush and acquire obj->pages so that we are coherent through
4396 	 * direct access in memory with previous cached writes through
4397 	 * shmemfs and that our cache domain tracking remains valid.
4398 	 * For example, if the obj->filp was moved to swap without us
4399 	 * being notified and releasing the pages, we would mistakenly
4400 	 * continue to assume that the obj remained out of the CPU cached
4401 	 * domain.
4402 	 */
4403 	ret = i915_gem_object_pin_pages(obj);
4404 	if (ret)
4405 		return ret;
4406 
4407 	flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
4408 
4409 	/* Serialise direct access to this object with the barriers for
4410 	 * coherent writes from the GPU, by effectively invalidating the
4411 	 * GTT domain upon first access.
4412 	 */
4413 	if ((obj->read_domains & I915_GEM_DOMAIN_GTT) == 0)
4414 		mb();
4415 
4416 	/* It should now be out of any other write domains, and we can update
4417 	 * the domain values for our changes.
4418 	 */
4419 	GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
4420 	obj->read_domains |= I915_GEM_DOMAIN_GTT;
4421 	if (write) {
4422 		obj->read_domains = I915_GEM_DOMAIN_GTT;
4423 		obj->write_domain = I915_GEM_DOMAIN_GTT;
4424 		obj->mm.dirty = true;
4425 	}
4426 
4427 	i915_gem_object_unpin_pages(obj);
4428 	return 0;
4429 }
4430 
4431 /**
4432  * Changes the cache-level of an object across all VMA.
4433  * @obj: object to act on
4434  * @cache_level: new cache level to set for the object
4435  *
4436  * After this function returns, the object will be in the new cache-level
4437  * across all GTT and the contents of the backing storage will be coherent,
4438  * with respect to the new cache-level. In order to keep the backing storage
4439  * coherent for all users, we only allow a single cache level to be set
4440  * globally on the object and prevent it from being changed whilst the
4441  * hardware is reading from the object. That is if the object is currently
4442  * on the scanout it will be set to uncached (or equivalent display
4443  * cache coherency) and all non-MOCS GPU access will also be uncached so
4444  * that all direct access to the scanout remains coherent.
4445  */
4446 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
4447 				    enum i915_cache_level cache_level)
4448 {
4449 	struct i915_vma *vma;
4450 	int ret;
4451 
4452 	lockdep_assert_held(&obj->base.dev->struct_mutex);
4453 
4454 	if (obj->cache_level == cache_level)
4455 		return 0;
4456 
4457 	/* Inspect the list of currently bound VMA and unbind any that would
4458 	 * be invalid given the new cache-level. This is principally to
4459 	 * catch the issue of the CS prefetch crossing page boundaries and
4460 	 * reading an invalid PTE on older architectures.
4461 	 */
4462 restart:
4463 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
4464 		if (!drm_mm_node_allocated(&vma->node))
4465 			continue;
4466 
4467 		if (i915_vma_is_pinned(vma)) {
4468 			DRM_DEBUG("can not change the cache level of pinned objects\n");
4469 			return -EBUSY;
4470 		}
4471 
4472 		if (!i915_vma_is_closed(vma) &&
4473 		    i915_gem_valid_gtt_space(vma, cache_level))
4474 			continue;
4475 
4476 		ret = i915_vma_unbind(vma);
4477 		if (ret)
4478 			return ret;
4479 
4480 		/* As unbinding may affect other elements in the
4481 		 * obj->vma_list (due to side-effects from retiring
4482 		 * an active vma), play safe and restart the iterator.
4483 		 */
4484 		goto restart;
4485 	}
4486 
4487 	/* We can reuse the existing drm_mm nodes but need to change the
4488 	 * cache-level on the PTE. We could simply unbind them all and
4489 	 * rebind with the correct cache-level on next use. However since
4490 	 * we already have a valid slot, dma mapping, pages etc, we may as
4491 	 * rewrite the PTE in the belief that doing so tramples upon less
4492 	 * state and so involves less work.
4493 	 */
4494 	if (obj->bind_count) {
4495 		/* Before we change the PTE, the GPU must not be accessing it.
4496 		 * If we wait upon the object, we know that all the bound
4497 		 * VMA are no longer active.
4498 		 */
4499 		ret = i915_gem_object_wait(obj,
4500 					   I915_WAIT_INTERRUPTIBLE |
4501 					   I915_WAIT_LOCKED |
4502 					   I915_WAIT_ALL,
4503 					   MAX_SCHEDULE_TIMEOUT,
4504 					   NULL);
4505 		if (ret)
4506 			return ret;
4507 
4508 		if (!HAS_LLC(to_i915(obj->base.dev)) &&
4509 		    cache_level != I915_CACHE_NONE) {
4510 			/* Access to snoopable pages through the GTT is
4511 			 * incoherent and on some machines causes a hard
4512 			 * lockup. Relinquish the CPU mmaping to force
4513 			 * userspace to refault in the pages and we can
4514 			 * then double check if the GTT mapping is still
4515 			 * valid for that pointer access.
4516 			 */
4517 			i915_gem_release_mmap(obj);
4518 
4519 			/* As we no longer need a fence for GTT access,
4520 			 * we can relinquish it now (and so prevent having
4521 			 * to steal a fence from someone else on the next
4522 			 * fence request). Note GPU activity would have
4523 			 * dropped the fence as all snoopable access is
4524 			 * supposed to be linear.
4525 			 */
4526 			for_each_ggtt_vma(vma, obj) {
4527 				ret = i915_vma_put_fence(vma);
4528 				if (ret)
4529 					return ret;
4530 			}
4531 		} else {
4532 			/* We either have incoherent backing store and
4533 			 * so no GTT access or the architecture is fully
4534 			 * coherent. In such cases, existing GTT mmaps
4535 			 * ignore the cache bit in the PTE and we can
4536 			 * rewrite it without confusing the GPU or having
4537 			 * to force userspace to fault back in its mmaps.
4538 			 */
4539 		}
4540 
4541 		list_for_each_entry(vma, &obj->vma_list, obj_link) {
4542 			if (!drm_mm_node_allocated(&vma->node))
4543 				continue;
4544 
4545 			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
4546 			if (ret)
4547 				return ret;
4548 		}
4549 	}
4550 
4551 	list_for_each_entry(vma, &obj->vma_list, obj_link)
4552 		vma->node.color = cache_level;
4553 	i915_gem_object_set_cache_coherency(obj, cache_level);
4554 	obj->cache_dirty = true; /* Always invalidate stale cachelines */
4555 
4556 	return 0;
4557 }
4558 
4559 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
4560 			       struct drm_file *file)
4561 {
4562 	struct drm_i915_gem_caching *args = data;
4563 	struct drm_i915_gem_object *obj;
4564 	int err = 0;
4565 
4566 	rcu_read_lock();
4567 	obj = i915_gem_object_lookup_rcu(file, args->handle);
4568 	if (!obj) {
4569 		err = -ENOENT;
4570 		goto out;
4571 	}
4572 
4573 	switch (obj->cache_level) {
4574 	case I915_CACHE_LLC:
4575 	case I915_CACHE_L3_LLC:
4576 		args->caching = I915_CACHING_CACHED;
4577 		break;
4578 
4579 	case I915_CACHE_WT:
4580 		args->caching = I915_CACHING_DISPLAY;
4581 		break;
4582 
4583 	default:
4584 		args->caching = I915_CACHING_NONE;
4585 		break;
4586 	}
4587 out:
4588 	rcu_read_unlock();
4589 	return err;
4590 }
4591 
4592 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
4593 			       struct drm_file *file)
4594 {
4595 	struct drm_i915_private *i915 = to_i915(dev);
4596 	struct drm_i915_gem_caching *args = data;
4597 	struct drm_i915_gem_object *obj;
4598 	enum i915_cache_level level;
4599 	int ret = 0;
4600 
4601 	switch (args->caching) {
4602 	case I915_CACHING_NONE:
4603 		level = I915_CACHE_NONE;
4604 		break;
4605 	case I915_CACHING_CACHED:
4606 		/*
4607 		 * Due to a HW issue on BXT A stepping, GPU stores via a
4608 		 * snooped mapping may leave stale data in a corresponding CPU
4609 		 * cacheline, whereas normally such cachelines would get
4610 		 * invalidated.
4611 		 */
4612 		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
4613 			return -ENODEV;
4614 
4615 		level = I915_CACHE_LLC;
4616 		break;
4617 	case I915_CACHING_DISPLAY:
4618 		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
4619 		break;
4620 	default:
4621 		return -EINVAL;
4622 	}
4623 
4624 	obj = i915_gem_object_lookup(file, args->handle);
4625 	if (!obj)
4626 		return -ENOENT;
4627 
4628 	/*
4629 	 * The caching mode of proxy object is handled by its generator, and
4630 	 * not allowed to be changed by userspace.
4631 	 */
4632 	if (i915_gem_object_is_proxy(obj)) {
4633 		ret = -ENXIO;
4634 		goto out;
4635 	}
4636 
4637 	if (obj->cache_level == level)
4638 		goto out;
4639 
4640 	ret = i915_gem_object_wait(obj,
4641 				   I915_WAIT_INTERRUPTIBLE,
4642 				   MAX_SCHEDULE_TIMEOUT,
4643 				   to_rps_client(file));
4644 	if (ret)
4645 		goto out;
4646 
4647 	ret = i915_mutex_lock_interruptible(dev);
4648 	if (ret)
4649 		goto out;
4650 
4651 	ret = i915_gem_object_set_cache_level(obj, level);
4652 	mutex_unlock(&dev->struct_mutex);
4653 
4654 out:
4655 	i915_gem_object_put(obj);
4656 	return ret;
4657 }
4658 
4659 /*
4660  * Prepare buffer for display plane (scanout, cursors, etc). Can be called from
4661  * an uninterruptible phase (modesetting) and allows any flushes to be pipelined
4662  * (for pageflips). We only flush the caches while preparing the buffer for
4663  * display, the callers are responsible for frontbuffer flush.
4664  */
4665 struct i915_vma *
4666 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
4667 				     u32 alignment,
4668 				     const struct i915_ggtt_view *view,
4669 				     unsigned int flags)
4670 {
4671 	struct i915_vma *vma;
4672 	int ret;
4673 
4674 	lockdep_assert_held(&obj->base.dev->struct_mutex);
4675 
4676 	/* Mark the global pin early so that we account for the
4677 	 * display coherency whilst setting up the cache domains.
4678 	 */
4679 	obj->pin_global++;
4680 
4681 	/* The display engine is not coherent with the LLC cache on gen6.  As
4682 	 * a result, we make sure that the pinning that is about to occur is
4683 	 * done with uncached PTEs. This is lowest common denominator for all
4684 	 * chipsets.
4685 	 *
4686 	 * However for gen6+, we could do better by using the GFDT bit instead
4687 	 * of uncaching, which would allow us to flush all the LLC-cached data
4688 	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4689 	 */
4690 	ret = i915_gem_object_set_cache_level(obj,
4691 					      HAS_WT(to_i915(obj->base.dev)) ?
4692 					      I915_CACHE_WT : I915_CACHE_NONE);
4693 	if (ret) {
4694 		vma = ERR_PTR(ret);
4695 		goto err_unpin_global;
4696 	}
4697 
4698 	/* As the user may map the buffer once pinned in the display plane
4699 	 * (e.g. libkms for the bootup splash), we have to ensure that we
4700 	 * always use map_and_fenceable for all scanout buffers. However,
4701 	 * it may simply be too big to fit into mappable, in which case
4702 	 * put it anyway and hope that userspace can cope (but always first
4703 	 * try to preserve the existing ABI).
4704 	 */
4705 	vma = ERR_PTR(-ENOSPC);
4706 	if ((flags & PIN_MAPPABLE) == 0 &&
4707 	    (!view || view->type == I915_GGTT_VIEW_NORMAL))
4708 		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
4709 					       flags |
4710 					       PIN_MAPPABLE |
4711 					       PIN_NONBLOCK);
4712 	if (IS_ERR(vma))
4713 		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
4714 	if (IS_ERR(vma))
4715 		goto err_unpin_global;
4716 
4717 	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
4718 
4719 	__i915_gem_object_flush_for_display(obj);
4720 
4721 	/* It should now be out of any other write domains, and we can update
4722 	 * the domain values for our changes.
4723 	 */
4724 	obj->read_domains |= I915_GEM_DOMAIN_GTT;
4725 
4726 	return vma;
4727 
4728 err_unpin_global:
4729 	obj->pin_global--;
4730 	return vma;
4731 }
4732 
4733 void
4734 i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
4735 {
4736 	lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
4737 
4738 	if (WARN_ON(vma->obj->pin_global == 0))
4739 		return;
4740 
4741 	if (--vma->obj->pin_global == 0)
4742 		vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
4743 
4744 	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
4745 	i915_gem_object_bump_inactive_ggtt(vma->obj);
4746 
4747 	i915_vma_unpin(vma);
4748 }
4749 
4750 /**
4751  * Moves a single object to the CPU read, and possibly write domain.
4752  * @obj: object to act on
4753  * @write: requesting write or read-only access
4754  *
4755  * This function returns when the move is complete, including waiting on
4756  * flushes to occur.
4757  */
4758 int
4759 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4760 {
4761 	int ret;
4762 
4763 	lockdep_assert_held(&obj->base.dev->struct_mutex);
4764 
4765 	ret = i915_gem_object_wait(obj,
4766 				   I915_WAIT_INTERRUPTIBLE |
4767 				   I915_WAIT_LOCKED |
4768 				   (write ? I915_WAIT_ALL : 0),
4769 				   MAX_SCHEDULE_TIMEOUT,
4770 				   NULL);
4771 	if (ret)
4772 		return ret;
4773 
4774 	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
4775 
4776 	/* Flush the CPU cache if it's still invalid. */
4777 	if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4778 		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
4779 		obj->read_domains |= I915_GEM_DOMAIN_CPU;
4780 	}
4781 
4782 	/* It should now be out of any other write domains, and we can update
4783 	 * the domain values for our changes.
4784 	 */
4785 	GEM_BUG_ON(obj->write_domain & ~I915_GEM_DOMAIN_CPU);
4786 
4787 	/* If we're writing through the CPU, then the GPU read domains will
4788 	 * need to be invalidated at next use.
4789 	 */
4790 	if (write)
4791 		__start_cpu_write(obj);
4792 
4793 	return 0;
4794 }
4795 
4796 /* Throttle our rendering by waiting until the ring has completed our requests
4797  * emitted over 20 msec ago.
4798  *
4799  * Note that if we were to use the current jiffies each time around the loop,
4800  * we wouldn't escape the function with any frames outstanding if the time to
4801  * render a frame was over 20ms.
4802  *
4803  * This should get us reasonable parallelism between CPU and GPU but also
4804  * relatively low latency when blocking on a particular request to finish.
4805  */
4806 static int
4807 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4808 {
4809 	struct drm_i915_private *dev_priv = to_i915(dev);
4810 	struct drm_i915_file_private *file_priv = file->driver_priv;
4811 	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4812 	struct i915_request *request, *target = NULL;
4813 	long ret;
4814 
4815 	/* ABI: return -EIO if already wedged */
4816 	if (i915_terminally_wedged(&dev_priv->gpu_error))
4817 		return -EIO;
4818 
4819 	spin_lock(&file_priv->mm.lock);
4820 	list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
4821 		if (time_after_eq(request->emitted_jiffies, recent_enough))
4822 			break;
4823 
4824 		if (target) {
4825 			list_del(&target->client_link);
4826 			target->file_priv = NULL;
4827 		}
4828 
4829 		target = request;
4830 	}
4831 	if (target)
4832 		i915_request_get(target);
4833 	spin_unlock(&file_priv->mm.lock);
4834 
4835 	if (target == NULL)
4836 		return 0;
4837 
4838 	ret = i915_request_wait(target,
4839 				I915_WAIT_INTERRUPTIBLE,
4840 				MAX_SCHEDULE_TIMEOUT);
4841 	i915_request_put(target);
4842 
4843 	return ret < 0 ? ret : 0;
4844 }
4845 
4846 struct i915_vma *
4847 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4848 			 const struct i915_ggtt_view *view,
4849 			 u64 size,
4850 			 u64 alignment,
4851 			 u64 flags)
4852 {
4853 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
4854 	struct i915_address_space *vm = &dev_priv->ggtt.vm;
4855 
4856 	return i915_gem_object_pin(obj, vm, view, size, alignment,
4857 				   flags | PIN_GLOBAL);
4858 }
4859 
4860 struct i915_vma *
4861 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4862 		    struct i915_address_space *vm,
4863 		    const struct i915_ggtt_view *view,
4864 		    u64 size,
4865 		    u64 alignment,
4866 		    u64 flags)
4867 {
4868 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
4869 	struct i915_vma *vma;
4870 	int ret;
4871 
4872 	lockdep_assert_held(&obj->base.dev->struct_mutex);
4873 
4874 	if (flags & PIN_MAPPABLE &&
4875 	    (!view || view->type == I915_GGTT_VIEW_NORMAL)) {
4876 		/* If the required space is larger than the available
4877 		 * aperture, we will not able to find a slot for the
4878 		 * object and unbinding the object now will be in
4879 		 * vain. Worse, doing so may cause us to ping-pong
4880 		 * the object in and out of the Global GTT and
4881 		 * waste a lot of cycles under the mutex.
4882 		 */
4883 		if (obj->base.size > dev_priv->ggtt.mappable_end)
4884 			return ERR_PTR(-E2BIG);
4885 
4886 		/* If NONBLOCK is set the caller is optimistically
4887 		 * trying to cache the full object within the mappable
4888 		 * aperture, and *must* have a fallback in place for
4889 		 * situations where we cannot bind the object. We
4890 		 * can be a little more lax here and use the fallback
4891 		 * more often to avoid costly migrations of ourselves
4892 		 * and other objects within the aperture.
4893 		 *
4894 		 * Half-the-aperture is used as a simple heuristic.
4895 		 * More interesting would to do search for a free
4896 		 * block prior to making the commitment to unbind.
4897 		 * That caters for the self-harm case, and with a
4898 		 * little more heuristics (e.g. NOFAULT, NOEVICT)
4899 		 * we could try to minimise harm to others.
4900 		 */
4901 		if (flags & PIN_NONBLOCK &&
4902 		    obj->base.size > dev_priv->ggtt.mappable_end / 2)
4903 			return ERR_PTR(-ENOSPC);
4904 	}
4905 
4906 	vma = i915_vma_instance(obj, vm, view);
4907 	if (unlikely(IS_ERR(vma)))
4908 		return vma;
4909 
4910 	if (i915_vma_misplaced(vma, size, alignment, flags)) {
4911 		if (flags & PIN_NONBLOCK) {
4912 			if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
4913 				return ERR_PTR(-ENOSPC);
4914 
4915 			if (flags & PIN_MAPPABLE &&
4916 			    vma->fence_size > dev_priv->ggtt.mappable_end / 2)
4917 				return ERR_PTR(-ENOSPC);
4918 		}
4919 
4920 		WARN(i915_vma_is_pinned(vma),
4921 		     "bo is already pinned in ggtt with incorrect alignment:"
4922 		     " offset=%08x, req.alignment=%llx,"
4923 		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
4924 		     i915_ggtt_offset(vma), alignment,
4925 		     !!(flags & PIN_MAPPABLE),
4926 		     i915_vma_is_map_and_fenceable(vma));
4927 		ret = i915_vma_unbind(vma);
4928 		if (ret)
4929 			return ERR_PTR(ret);
4930 	}
4931 
4932 	ret = i915_vma_pin(vma, size, alignment, flags);
4933 	if (ret)
4934 		return ERR_PTR(ret);
4935 
4936 	return vma;
4937 }
4938 
4939 static __always_inline unsigned int __busy_read_flag(unsigned int id)
4940 {
4941 	/* Note that we could alias engines in the execbuf API, but
4942 	 * that would be very unwise as it prevents userspace from
4943 	 * fine control over engine selection. Ahem.
4944 	 *
4945 	 * This should be something like EXEC_MAX_ENGINE instead of
4946 	 * I915_NUM_ENGINES.
4947 	 */
4948 	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
4949 	return 0x10000 << id;
4950 }
4951 
4952 static __always_inline unsigned int __busy_write_id(unsigned int id)
4953 {
4954 	/* The uABI guarantees an active writer is also amongst the read
4955 	 * engines. This would be true if we accessed the activity tracking
4956 	 * under the lock, but as we perform the lookup of the object and
4957 	 * its activity locklessly we can not guarantee that the last_write
4958 	 * being active implies that we have set the same engine flag from
4959 	 * last_read - hence we always set both read and write busy for
4960 	 * last_write.
4961 	 */
4962 	return id | __busy_read_flag(id);
4963 }
4964 
4965 static __always_inline unsigned int
4966 __busy_set_if_active(const struct dma_fence *fence,
4967 		     unsigned int (*flag)(unsigned int id))
4968 {
4969 	struct i915_request *rq;
4970 
4971 	/* We have to check the current hw status of the fence as the uABI
4972 	 * guarantees forward progress. We could rely on the idle worker
4973 	 * to eventually flush us, but to minimise latency just ask the
4974 	 * hardware.
4975 	 *
4976 	 * Note we only report on the status of native fences.
4977 	 */
4978 	if (!dma_fence_is_i915(fence))
4979 		return 0;
4980 
4981 	/* opencode to_request() in order to avoid const warnings */
4982 	rq = container_of(fence, struct i915_request, fence);
4983 	if (i915_request_completed(rq))
4984 		return 0;
4985 
4986 	return flag(rq->engine->uabi_id);
4987 }
4988 
4989 static __always_inline unsigned int
4990 busy_check_reader(const struct dma_fence *fence)
4991 {
4992 	return __busy_set_if_active(fence, __busy_read_flag);
4993 }
4994 
4995 static __always_inline unsigned int
4996 busy_check_writer(const struct dma_fence *fence)
4997 {
4998 	if (!fence)
4999 		return 0;
5000 
5001 	return __busy_set_if_active(fence, __busy_write_id);
5002 }
5003 
5004 int
5005 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
5006 		    struct drm_file *file)
5007 {
5008 	struct drm_i915_gem_busy *args = data;
5009 	struct drm_i915_gem_object *obj;
5010 	struct reservation_object_list *list;
5011 	unsigned int seq;
5012 	int err;
5013 
5014 	err = -ENOENT;
5015 	rcu_read_lock();
5016 	obj = i915_gem_object_lookup_rcu(file, args->handle);
5017 	if (!obj)
5018 		goto out;
5019 
5020 	/* A discrepancy here is that we do not report the status of
5021 	 * non-i915 fences, i.e. even though we may report the object as idle,
5022 	 * a call to set-domain may still stall waiting for foreign rendering.
5023 	 * This also means that wait-ioctl may report an object as busy,
5024 	 * where busy-ioctl considers it idle.
5025 	 *
5026 	 * We trade the ability to warn of foreign fences to report on which
5027 	 * i915 engines are active for the object.
5028 	 *
5029 	 * Alternatively, we can trade that extra information on read/write
5030 	 * activity with
5031 	 *	args->busy =
5032 	 *		!reservation_object_test_signaled_rcu(obj->resv, true);
5033 	 * to report the overall busyness. This is what the wait-ioctl does.
5034 	 *
5035 	 */
5036 retry:
5037 	seq = raw_read_seqcount(&obj->resv->seq);
5038 
5039 	/* Translate the exclusive fence to the READ *and* WRITE engine */
5040 	args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
5041 
5042 	/* Translate shared fences to READ set of engines */
5043 	list = rcu_dereference(obj->resv->fence);
5044 	if (list) {
5045 		unsigned int shared_count = list->shared_count, i;
5046 
5047 		for (i = 0; i < shared_count; ++i) {
5048 			struct dma_fence *fence =
5049 				rcu_dereference(list->shared[i]);
5050 
5051 			args->busy |= busy_check_reader(fence);
5052 		}
5053 	}
5054 
5055 	if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
5056 		goto retry;
5057 
5058 	err = 0;
5059 out:
5060 	rcu_read_unlock();
5061 	return err;
5062 }
5063 
5064 int
5065 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
5066 			struct drm_file *file_priv)
5067 {
5068 	return i915_gem_ring_throttle(dev, file_priv);
5069 }
5070 
5071 int
5072 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
5073 		       struct drm_file *file_priv)
5074 {
5075 	struct drm_i915_private *dev_priv = to_i915(dev);
5076 	struct drm_i915_gem_madvise *args = data;
5077 	struct drm_i915_gem_object *obj;
5078 	int err;
5079 
5080 	switch (args->madv) {
5081 	case I915_MADV_DONTNEED:
5082 	case I915_MADV_WILLNEED:
5083 	    break;
5084 	default:
5085 	    return -EINVAL;
5086 	}
5087 
5088 	obj = i915_gem_object_lookup(file_priv, args->handle);
5089 	if (!obj)
5090 		return -ENOENT;
5091 
5092 	err = mutex_lock_interruptible(&obj->mm.lock);
5093 	if (err)
5094 		goto out;
5095 
5096 	if (i915_gem_object_has_pages(obj) &&
5097 	    i915_gem_object_is_tiled(obj) &&
5098 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
5099 		if (obj->mm.madv == I915_MADV_WILLNEED) {
5100 			GEM_BUG_ON(!obj->mm.quirked);
5101 			__i915_gem_object_unpin_pages(obj);
5102 			obj->mm.quirked = false;
5103 		}
5104 		if (args->madv == I915_MADV_WILLNEED) {
5105 			GEM_BUG_ON(obj->mm.quirked);
5106 			__i915_gem_object_pin_pages(obj);
5107 			obj->mm.quirked = true;
5108 		}
5109 	}
5110 
5111 	if (obj->mm.madv != __I915_MADV_PURGED)
5112 		obj->mm.madv = args->madv;
5113 
5114 	/* if the object is no longer attached, discard its backing storage */
5115 	if (obj->mm.madv == I915_MADV_DONTNEED &&
5116 	    !i915_gem_object_has_pages(obj))
5117 		i915_gem_object_truncate(obj);
5118 
5119 	args->retained = obj->mm.madv != __I915_MADV_PURGED;
5120 	mutex_unlock(&obj->mm.lock);
5121 
5122 out:
5123 	i915_gem_object_put(obj);
5124 	return err;
5125 }
5126 
5127 static void
5128 frontbuffer_retire(struct i915_gem_active *active, struct i915_request *request)
5129 {
5130 	struct drm_i915_gem_object *obj =
5131 		container_of(active, typeof(*obj), frontbuffer_write);
5132 
5133 	intel_fb_obj_flush(obj, ORIGIN_CS);
5134 }
5135 
5136 void i915_gem_object_init(struct drm_i915_gem_object *obj,
5137 			  const struct drm_i915_gem_object_ops *ops)
5138 {
5139 	rw_init(&obj->mm.lock, "mmlk");
5140 
5141 	INIT_LIST_HEAD(&obj->vma_list);
5142 	INIT_LIST_HEAD(&obj->lut_list);
5143 	INIT_LIST_HEAD(&obj->batch_pool_link);
5144 
5145 	obj->ops = ops;
5146 
5147 	reservation_object_init(&obj->__builtin_resv);
5148 	obj->resv = &obj->__builtin_resv;
5149 
5150 	obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
5151 	init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
5152 
5153 	obj->mm.madv = I915_MADV_WILLNEED;
5154 	INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
5155 	rw_init(&obj->mm.get_page.lock, "mmget");
5156 
5157 	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
5158 }
5159 
5160 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
5161 	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
5162 		 I915_GEM_OBJECT_IS_SHRINKABLE,
5163 
5164 	.get_pages = i915_gem_object_get_pages_gtt,
5165 	.put_pages = i915_gem_object_put_pages_gtt,
5166 
5167 	.pwrite = i915_gem_object_pwrite_gtt,
5168 };
5169 
5170 static int i915_gem_object_create_shmem(struct drm_device *dev,
5171 					struct drm_gem_object *obj,
5172 					size_t size)
5173 {
5174 #ifdef __linux__
5175 	struct drm_i915_private *i915 = to_i915(dev);
5176 	unsigned long flags = VM_NORESERVE;
5177 	struct file *filp;
5178 
5179 	drm_gem_private_object_init(dev, obj, size);
5180 
5181 	if (i915->mm.gemfs)
5182 		filp = shmem_file_setup_with_mnt(i915->mm.gemfs, "i915", size,
5183 						 flags);
5184 	else
5185 		filp = shmem_file_setup("i915", size, flags);
5186 
5187 	if (IS_ERR(filp))
5188 		return PTR_ERR(filp);
5189 
5190 	obj->filp = filp;
5191 
5192 	return 0;
5193 #else
5194 	drm_gem_private_object_init(dev, obj, size);
5195 
5196 	return 0;
5197 #endif
5198 }
5199 
5200 struct drm_i915_gem_object *
5201 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
5202 {
5203 	struct drm_i915_gem_object *obj;
5204 	struct address_space *mapping;
5205 	unsigned int cache_level;
5206 	gfp_t mask;
5207 	int ret;
5208 
5209 	/* There is a prevalence of the assumption that we fit the object's
5210 	 * page count inside a 32bit _signed_ variable. Let's document this and
5211 	 * catch if we ever need to fix it. In the meantime, if you do spot
5212 	 * such a local variable, please consider fixing!
5213 	 */
5214 	if (size >> PAGE_SHIFT > INT_MAX)
5215 		return ERR_PTR(-E2BIG);
5216 
5217 	if (overflows_type(size, obj->base.size))
5218 		return ERR_PTR(-E2BIG);
5219 
5220 	obj = i915_gem_object_alloc(dev_priv);
5221 	if (obj == NULL)
5222 		return ERR_PTR(-ENOMEM);
5223 
5224 #ifdef __linux__
5225 	ret = i915_gem_object_create_shmem(&dev_priv->drm, &obj->base, size);
5226 #else
5227 	ret = drm_gem_object_init(&dev_priv->drm, &obj->base, size);
5228 #endif
5229 	if (ret)
5230 		goto fail;
5231 
5232 	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
5233 	if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
5234 		/* 965gm cannot relocate objects above 4GiB. */
5235 		mask &= ~__GFP_HIGHMEM;
5236 		mask |= __GFP_DMA32;
5237 	}
5238 
5239 #ifdef __linux__
5240 	mapping = obj->base.filp->f_mapping;
5241 	mapping_set_gfp_mask(mapping, mask);
5242 	GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
5243 #endif
5244 
5245 	i915_gem_object_init(obj, &i915_gem_object_ops);
5246 
5247 	obj->write_domain = I915_GEM_DOMAIN_CPU;
5248 	obj->read_domains = I915_GEM_DOMAIN_CPU;
5249 
5250 	if (HAS_LLC(dev_priv))
5251 		/* On some devices, we can have the GPU use the LLC (the CPU
5252 		 * cache) for about a 10% performance improvement
5253 		 * compared to uncached.  Graphics requests other than
5254 		 * display scanout are coherent with the CPU in
5255 		 * accessing this cache.  This means in this mode we
5256 		 * don't need to clflush on the CPU side, and on the
5257 		 * GPU side we only need to flush internal caches to
5258 		 * get data visible to the CPU.
5259 		 *
5260 		 * However, we maintain the display planes as UC, and so
5261 		 * need to rebind when first used as such.
5262 		 */
5263 		cache_level = I915_CACHE_LLC;
5264 	else
5265 		cache_level = I915_CACHE_NONE;
5266 
5267 	i915_gem_object_set_cache_coherency(obj, cache_level);
5268 
5269 	trace_i915_gem_object_create(obj);
5270 
5271 	return obj;
5272 
5273 fail:
5274 	i915_gem_object_free(obj);
5275 	return ERR_PTR(ret);
5276 }
5277 
5278 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
5279 {
5280 	/* If we are the last user of the backing storage (be it shmemfs
5281 	 * pages or stolen etc), we know that the pages are going to be
5282 	 * immediately released. In this case, we can then skip copying
5283 	 * back the contents from the GPU.
5284 	 */
5285 
5286 	if (obj->mm.madv != I915_MADV_WILLNEED)
5287 		return false;
5288 
5289 	if (obj->base.filp == NULL)
5290 		return true;
5291 
5292 	/* At first glance, this looks racy, but then again so would be
5293 	 * userspace racing mmap against close. However, the first external
5294 	 * reference to the filp can only be obtained through the
5295 	 * i915_gem_mmap_ioctl() which safeguards us against the user
5296 	 * acquiring such a reference whilst we are in the middle of
5297 	 * freeing the object.
5298 	 */
5299 	return atomic_long_read(&obj->base.filp->f_count) == 1;
5300 }
5301 
5302 static void __i915_gem_free_objects(struct drm_i915_private *i915,
5303 				    struct llist_node *freed)
5304 {
5305 	struct drm_i915_gem_object *obj, *on;
5306 
5307 	intel_runtime_pm_get(i915);
5308 	llist_for_each_entry_safe(obj, on, freed, freed) {
5309 		struct i915_vma *vma, *vn;
5310 
5311 		trace_i915_gem_object_destroy(obj);
5312 
5313 		mutex_lock(&i915->drm.struct_mutex);
5314 
5315 		GEM_BUG_ON(i915_gem_object_is_active(obj));
5316 		list_for_each_entry_safe(vma, vn,
5317 					 &obj->vma_list, obj_link) {
5318 			GEM_BUG_ON(i915_vma_is_active(vma));
5319 			vma->flags &= ~I915_VMA_PIN_MASK;
5320 			i915_vma_destroy(vma);
5321 		}
5322 		GEM_BUG_ON(!list_empty(&obj->vma_list));
5323 		GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
5324 
5325 		/* This serializes freeing with the shrinker. Since the free
5326 		 * is delayed, first by RCU then by the workqueue, we want the
5327 		 * shrinker to be able to free pages of unreferenced objects,
5328 		 * or else we may oom whilst there are plenty of deferred
5329 		 * freed objects.
5330 		 */
5331 		if (i915_gem_object_has_pages(obj)) {
5332 			spin_lock(&i915->mm.obj_lock);
5333 			list_del_init(&obj->mm.link);
5334 			spin_unlock(&i915->mm.obj_lock);
5335 		}
5336 
5337 		mutex_unlock(&i915->drm.struct_mutex);
5338 
5339 		GEM_BUG_ON(obj->bind_count);
5340 		GEM_BUG_ON(obj->userfault_count);
5341 		GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
5342 		GEM_BUG_ON(!list_empty(&obj->lut_list));
5343 
5344 		if (obj->ops->release)
5345 			obj->ops->release(obj);
5346 
5347 		if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
5348 			atomic_set(&obj->mm.pages_pin_count, 0);
5349 		__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
5350 		GEM_BUG_ON(i915_gem_object_has_pages(obj));
5351 
5352 #ifdef notyet
5353 		if (obj->base.import_attach)
5354 			drm_prime_gem_destroy(&obj->base, NULL);
5355 #endif
5356 
5357 		reservation_object_fini(&obj->__builtin_resv);
5358 		drm_gem_object_release(&obj->base);
5359 		i915_gem_info_remove_obj(i915, obj->base.size);
5360 
5361 		kfree(obj->bit_17);
5362 		i915_gem_object_free(obj);
5363 
5364 		GEM_BUG_ON(!atomic_read(&i915->mm.free_count));
5365 		atomic_dec(&i915->mm.free_count);
5366 
5367 		if (on)
5368 			cond_resched();
5369 	}
5370 	intel_runtime_pm_put(i915);
5371 }
5372 
5373 static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
5374 {
5375 	struct llist_node *freed;
5376 
5377 	/* Free the oldest, most stale object to keep the free_list short */
5378 	freed = NULL;
5379 	if (!llist_empty(&i915->mm.free_list)) { /* quick test for hotpath */
5380 		/* Only one consumer of llist_del_first() allowed */
5381 		spin_lock(&i915->mm.free_lock);
5382 		freed = llist_del_first(&i915->mm.free_list);
5383 		spin_unlock(&i915->mm.free_lock);
5384 	}
5385 	if (unlikely(freed)) {
5386 		freed->next = NULL;
5387 		__i915_gem_free_objects(i915, freed);
5388 	}
5389 }
5390 
5391 static void __i915_gem_free_work(struct work_struct *work)
5392 {
5393 	struct drm_i915_private *i915 =
5394 		container_of(work, struct drm_i915_private, mm.free_work);
5395 	struct llist_node *freed;
5396 
5397 	/*
5398 	 * All file-owned VMA should have been released by this point through
5399 	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
5400 	 * However, the object may also be bound into the global GTT (e.g.
5401 	 * older GPUs without per-process support, or for direct access through
5402 	 * the GTT either for the user or for scanout). Those VMA still need to
5403 	 * unbound now.
5404 	 */
5405 
5406 	spin_lock(&i915->mm.free_lock);
5407 	while ((freed = llist_del_all(&i915->mm.free_list))) {
5408 		spin_unlock(&i915->mm.free_lock);
5409 
5410 		__i915_gem_free_objects(i915, freed);
5411 		if (drm_need_resched())
5412 			return;
5413 
5414 		spin_lock(&i915->mm.free_lock);
5415 	}
5416 	spin_unlock(&i915->mm.free_lock);
5417 }
5418 
5419 static void __i915_gem_free_object_rcu(struct rcu_head *head)
5420 {
5421 	struct drm_i915_gem_object *obj =
5422 		container_of(head, typeof(*obj), rcu);
5423 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
5424 
5425 	/*
5426 	 * Since we require blocking on struct_mutex to unbind the freed
5427 	 * object from the GPU before releasing resources back to the
5428 	 * system, we can not do that directly from the RCU callback (which may
5429 	 * be a softirq context), but must instead then defer that work onto a
5430 	 * kthread. We use the RCU callback rather than move the freed object
5431 	 * directly onto the work queue so that we can mix between using the
5432 	 * worker and performing frees directly from subsequent allocations for
5433 	 * crude but effective memory throttling.
5434 	 */
5435 	if (llist_add(&obj->freed, &i915->mm.free_list))
5436 		queue_work(i915->wq, &i915->mm.free_work);
5437 }
5438 
5439 void i915_gem_free_object(struct drm_gem_object *gem_obj)
5440 {
5441 	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
5442 
5443 	if (obj->mm.quirked)
5444 		__i915_gem_object_unpin_pages(obj);
5445 
5446 	if (discard_backing_storage(obj))
5447 		obj->mm.madv = I915_MADV_DONTNEED;
5448 
5449 	/*
5450 	 * Before we free the object, make sure any pure RCU-only
5451 	 * read-side critical sections are complete, e.g.
5452 	 * i915_gem_busy_ioctl(). For the corresponding synchronized
5453 	 * lookup see i915_gem_object_lookup_rcu().
5454 	 */
5455 	atomic_inc(&to_i915(obj->base.dev)->mm.free_count);
5456 	call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
5457 }
5458 
5459 void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
5460 {
5461 	lockdep_assert_held(&obj->base.dev->struct_mutex);
5462 
5463 	if (!i915_gem_object_has_active_reference(obj) &&
5464 	    i915_gem_object_is_active(obj))
5465 		i915_gem_object_set_active_reference(obj);
5466 	else
5467 		i915_gem_object_put(obj);
5468 }
5469 
5470 void i915_gem_sanitize(struct drm_i915_private *i915)
5471 {
5472 	int err;
5473 
5474 	GEM_TRACE("\n");
5475 
5476 	mutex_lock(&i915->drm.struct_mutex);
5477 
5478 	intel_runtime_pm_get(i915);
5479 	intel_uncore_forcewake_get(i915, FORCEWAKE_ALL);
5480 
5481 	/*
5482 	 * As we have just resumed the machine and woken the device up from
5483 	 * deep PCI sleep (presumably D3_cold), assume the HW has been reset
5484 	 * back to defaults, recovering from whatever wedged state we left it
5485 	 * in and so worth trying to use the device once more.
5486 	 */
5487 	if (i915_terminally_wedged(&i915->gpu_error))
5488 		i915_gem_unset_wedged(i915);
5489 
5490 	/*
5491 	 * If we inherit context state from the BIOS or earlier occupants
5492 	 * of the GPU, the GPU may be in an inconsistent state when we
5493 	 * try to take over. The only way to remove the earlier state
5494 	 * is by resetting. However, resetting on earlier gen is tricky as
5495 	 * it may impact the display and we are uncertain about the stability
5496 	 * of the reset, so this could be applied to even earlier gen.
5497 	 */
5498 	err = -ENODEV;
5499 	if (INTEL_GEN(i915) >= 5 && intel_has_gpu_reset(i915))
5500 		err = WARN_ON(intel_gpu_reset(i915, ALL_ENGINES));
5501 	if (!err)
5502 		intel_engines_sanitize(i915);
5503 
5504 	intel_uncore_forcewake_put(i915, FORCEWAKE_ALL);
5505 	intel_runtime_pm_put(i915);
5506 
5507 	i915_gem_contexts_lost(i915);
5508 	mutex_unlock(&i915->drm.struct_mutex);
5509 }
5510 
5511 int i915_gem_suspend(struct drm_i915_private *i915)
5512 {
5513 	int ret;
5514 
5515 	GEM_TRACE("\n");
5516 
5517 	intel_runtime_pm_get(i915);
5518 	intel_suspend_gt_powersave(i915);
5519 
5520 	mutex_lock(&i915->drm.struct_mutex);
5521 
5522 	/*
5523 	 * We have to flush all the executing contexts to main memory so
5524 	 * that they can saved in the hibernation image. To ensure the last
5525 	 * context image is coherent, we have to switch away from it. That
5526 	 * leaves the i915->kernel_context still active when
5527 	 * we actually suspend, and its image in memory may not match the GPU
5528 	 * state. Fortunately, the kernel_context is disposable and we do
5529 	 * not rely on its state.
5530 	 */
5531 	if (!i915_terminally_wedged(&i915->gpu_error)) {
5532 		ret = i915_gem_switch_to_kernel_context(i915);
5533 		if (ret)
5534 			goto err_unlock;
5535 
5536 		ret = i915_gem_wait_for_idle(i915,
5537 					     I915_WAIT_INTERRUPTIBLE |
5538 					     I915_WAIT_LOCKED |
5539 					     I915_WAIT_FOR_IDLE_BOOST,
5540 					     MAX_SCHEDULE_TIMEOUT);
5541 		if (ret && ret != -EIO)
5542 			goto err_unlock;
5543 
5544 		assert_kernel_context_is_current(i915);
5545 	}
5546 	i915_retire_requests(i915); /* ensure we flush after wedging */
5547 
5548 	mutex_unlock(&i915->drm.struct_mutex);
5549 
5550 	intel_uc_suspend(i915);
5551 
5552 	cancel_delayed_work_sync(&i915->gpu_error.hangcheck_work);
5553 	cancel_delayed_work_sync(&i915->gt.retire_work);
5554 
5555 	/*
5556 	 * As the idle_work is rearming if it detects a race, play safe and
5557 	 * repeat the flush until it is definitely idle.
5558 	 */
5559 	drain_delayed_work(&i915->gt.idle_work);
5560 
5561 	/*
5562 	 * Assert that we successfully flushed all the work and
5563 	 * reset the GPU back to its idle, low power state.
5564 	 */
5565 	WARN_ON(i915->gt.awake);
5566 	if (WARN_ON(!intel_engines_are_idle(i915)))
5567 		i915_gem_set_wedged(i915); /* no hope, discard everything */
5568 
5569 	intel_runtime_pm_put(i915);
5570 	return 0;
5571 
5572 err_unlock:
5573 	mutex_unlock(&i915->drm.struct_mutex);
5574 	intel_runtime_pm_put(i915);
5575 	return ret;
5576 }
5577 
5578 void i915_gem_suspend_late(struct drm_i915_private *i915)
5579 {
5580 	struct drm_i915_gem_object *obj;
5581 	struct list_head *phases[] = {
5582 		&i915->mm.unbound_list,
5583 		&i915->mm.bound_list,
5584 		NULL
5585 	}, **phase;
5586 
5587 	/*
5588 	 * Neither the BIOS, ourselves or any other kernel
5589 	 * expects the system to be in execlists mode on startup,
5590 	 * so we need to reset the GPU back to legacy mode. And the only
5591 	 * known way to disable logical contexts is through a GPU reset.
5592 	 *
5593 	 * So in order to leave the system in a known default configuration,
5594 	 * always reset the GPU upon unload and suspend. Afterwards we then
5595 	 * clean up the GEM state tracking, flushing off the requests and
5596 	 * leaving the system in a known idle state.
5597 	 *
5598 	 * Note that is of the upmost importance that the GPU is idle and
5599 	 * all stray writes are flushed *before* we dismantle the backing
5600 	 * storage for the pinned objects.
5601 	 *
5602 	 * However, since we are uncertain that resetting the GPU on older
5603 	 * machines is a good idea, we don't - just in case it leaves the
5604 	 * machine in an unusable condition.
5605 	 */
5606 
5607 	mutex_lock(&i915->drm.struct_mutex);
5608 	for (phase = phases; *phase; phase++) {
5609 		list_for_each_entry(obj, *phase, mm.link)
5610 			WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
5611 	}
5612 	mutex_unlock(&i915->drm.struct_mutex);
5613 
5614 	intel_uc_sanitize(i915);
5615 	i915_gem_sanitize(i915);
5616 }
5617 
5618 void i915_gem_resume(struct drm_i915_private *i915)
5619 {
5620 	GEM_TRACE("\n");
5621 
5622 	WARN_ON(i915->gt.awake);
5623 
5624 	mutex_lock(&i915->drm.struct_mutex);
5625 	intel_uncore_forcewake_get(i915, FORCEWAKE_ALL);
5626 
5627 	i915_gem_restore_gtt_mappings(i915);
5628 	i915_gem_restore_fences(i915);
5629 
5630 	/*
5631 	 * As we didn't flush the kernel context before suspend, we cannot
5632 	 * guarantee that the context image is complete. So let's just reset
5633 	 * it and start again.
5634 	 */
5635 	i915->gt.resume(i915);
5636 
5637 	if (i915_gem_init_hw(i915))
5638 		goto err_wedged;
5639 
5640 	intel_uc_resume(i915);
5641 
5642 	/* Always reload a context for powersaving. */
5643 	if (i915_gem_switch_to_kernel_context(i915))
5644 		goto err_wedged;
5645 
5646 out_unlock:
5647 	intel_uncore_forcewake_put(i915, FORCEWAKE_ALL);
5648 	mutex_unlock(&i915->drm.struct_mutex);
5649 	return;
5650 
5651 err_wedged:
5652 	if (!i915_terminally_wedged(&i915->gpu_error)) {
5653 		DRM_ERROR("failed to re-initialize GPU, declaring wedged!\n");
5654 		i915_gem_set_wedged(i915);
5655 	}
5656 	goto out_unlock;
5657 }
5658 
5659 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
5660 {
5661 	if (INTEL_GEN(dev_priv) < 5 ||
5662 	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
5663 		return;
5664 
5665 	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
5666 				 DISP_TILE_SURFACE_SWIZZLING);
5667 
5668 	if (IS_GEN5(dev_priv))
5669 		return;
5670 
5671 	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
5672 	if (IS_GEN6(dev_priv))
5673 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
5674 	else if (IS_GEN7(dev_priv))
5675 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
5676 	else if (IS_GEN8(dev_priv))
5677 		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
5678 	else
5679 		BUG();
5680 }
5681 
5682 static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
5683 {
5684 	I915_WRITE(RING_CTL(base), 0);
5685 	I915_WRITE(RING_HEAD(base), 0);
5686 	I915_WRITE(RING_TAIL(base), 0);
5687 	I915_WRITE(RING_START(base), 0);
5688 }
5689 
5690 static void init_unused_rings(struct drm_i915_private *dev_priv)
5691 {
5692 	if (IS_I830(dev_priv)) {
5693 		init_unused_ring(dev_priv, PRB1_BASE);
5694 		init_unused_ring(dev_priv, SRB0_BASE);
5695 		init_unused_ring(dev_priv, SRB1_BASE);
5696 		init_unused_ring(dev_priv, SRB2_BASE);
5697 		init_unused_ring(dev_priv, SRB3_BASE);
5698 	} else if (IS_GEN2(dev_priv)) {
5699 		init_unused_ring(dev_priv, SRB0_BASE);
5700 		init_unused_ring(dev_priv, SRB1_BASE);
5701 	} else if (IS_GEN3(dev_priv)) {
5702 		init_unused_ring(dev_priv, PRB1_BASE);
5703 		init_unused_ring(dev_priv, PRB2_BASE);
5704 	}
5705 }
5706 
5707 static int __i915_gem_restart_engines(void *data)
5708 {
5709 	struct drm_i915_private *i915 = data;
5710 	struct intel_engine_cs *engine;
5711 	enum intel_engine_id id;
5712 	int err;
5713 
5714 	for_each_engine(engine, i915, id) {
5715 		err = engine->init_hw(engine);
5716 		if (err) {
5717 			DRM_ERROR("Failed to restart %s (%d)\n",
5718 				  engine->name, err);
5719 			return err;
5720 		}
5721 	}
5722 
5723 	return 0;
5724 }
5725 
5726 int i915_gem_init_hw(struct drm_i915_private *dev_priv)
5727 {
5728 	int ret;
5729 
5730 	dev_priv->gt.last_init_time = ktime_get();
5731 
5732 	/* Double layer security blanket, see i915_gem_init() */
5733 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5734 
5735 	if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
5736 		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
5737 
5738 	if (IS_HASWELL(dev_priv))
5739 		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
5740 			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
5741 
5742 	if (HAS_PCH_NOP(dev_priv)) {
5743 		if (IS_IVYBRIDGE(dev_priv)) {
5744 			u32 temp = I915_READ(GEN7_MSG_CTL);
5745 			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
5746 			I915_WRITE(GEN7_MSG_CTL, temp);
5747 		} else if (INTEL_GEN(dev_priv) >= 7) {
5748 			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
5749 			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
5750 			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
5751 		}
5752 	}
5753 
5754 	intel_gt_workarounds_apply(dev_priv);
5755 
5756 	i915_gem_init_swizzling(dev_priv);
5757 
5758 	/*
5759 	 * At least 830 can leave some of the unused rings
5760 	 * "active" (ie. head != tail) after resume which
5761 	 * will prevent c3 entry. Makes sure all unused rings
5762 	 * are totally idle.
5763 	 */
5764 	init_unused_rings(dev_priv);
5765 
5766 	BUG_ON(!dev_priv->kernel_context);
5767 	if (i915_terminally_wedged(&dev_priv->gpu_error)) {
5768 		ret = -EIO;
5769 		goto out;
5770 	}
5771 
5772 	ret = i915_ppgtt_init_hw(dev_priv);
5773 	if (ret) {
5774 		DRM_ERROR("Enabling PPGTT failed (%d)\n", ret);
5775 		goto out;
5776 	}
5777 
5778 	ret = intel_wopcm_init_hw(&dev_priv->wopcm);
5779 	if (ret) {
5780 		DRM_ERROR("Enabling WOPCM failed (%d)\n", ret);
5781 		goto out;
5782 	}
5783 
5784 	/* We can't enable contexts until all firmware is loaded */
5785 	ret = intel_uc_init_hw(dev_priv);
5786 	if (ret) {
5787 		DRM_ERROR("Enabling uc failed (%d)\n", ret);
5788 		goto out;
5789 	}
5790 
5791 	intel_mocs_init_l3cc_table(dev_priv);
5792 
5793 	/* Only when the HW is re-initialised, can we replay the requests */
5794 	ret = __i915_gem_restart_engines(dev_priv);
5795 	if (ret)
5796 		goto cleanup_uc;
5797 
5798 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5799 
5800 	return 0;
5801 
5802 cleanup_uc:
5803 	intel_uc_fini_hw(dev_priv);
5804 out:
5805 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5806 
5807 	return ret;
5808 }
5809 
5810 static int __intel_engines_record_defaults(struct drm_i915_private *i915)
5811 {
5812 	struct i915_gem_context *ctx;
5813 	struct intel_engine_cs *engine;
5814 	enum intel_engine_id id;
5815 	int err;
5816 
5817 	/*
5818 	 * As we reset the gpu during very early sanitisation, the current
5819 	 * register state on the GPU should reflect its defaults values.
5820 	 * We load a context onto the hw (with restore-inhibit), then switch
5821 	 * over to a second context to save that default register state. We
5822 	 * can then prime every new context with that state so they all start
5823 	 * from the same default HW values.
5824 	 */
5825 
5826 	ctx = i915_gem_context_create_kernel(i915, 0);
5827 	if (IS_ERR(ctx))
5828 		return PTR_ERR(ctx);
5829 
5830 	for_each_engine(engine, i915, id) {
5831 		struct i915_request *rq;
5832 
5833 		rq = i915_request_alloc(engine, ctx);
5834 		if (IS_ERR(rq)) {
5835 			err = PTR_ERR(rq);
5836 			goto out_ctx;
5837 		}
5838 
5839 		err = 0;
5840 		if (engine->init_context)
5841 			err = engine->init_context(rq);
5842 
5843 		i915_request_add(rq);
5844 		if (err)
5845 			goto err_active;
5846 	}
5847 
5848 	err = i915_gem_switch_to_kernel_context(i915);
5849 	if (err)
5850 		goto err_active;
5851 
5852 	if (i915_gem_wait_for_idle(i915, I915_WAIT_LOCKED, HZ / 5)) {
5853 		i915_gem_set_wedged(i915);
5854 		err = -EIO; /* Caller will declare us wedged */
5855 		goto err_active;
5856 	}
5857 
5858 	assert_kernel_context_is_current(i915);
5859 
5860 	for_each_engine(engine, i915, id) {
5861 		struct i915_vma *state;
5862 
5863 		state = to_intel_context(ctx, engine)->state;
5864 		if (!state)
5865 			continue;
5866 
5867 		/*
5868 		 * As we will hold a reference to the logical state, it will
5869 		 * not be torn down with the context, and importantly the
5870 		 * object will hold onto its vma (making it possible for a
5871 		 * stray GTT write to corrupt our defaults). Unmap the vma
5872 		 * from the GTT to prevent such accidents and reclaim the
5873 		 * space.
5874 		 */
5875 		err = i915_vma_unbind(state);
5876 		if (err)
5877 			goto err_active;
5878 
5879 		err = i915_gem_object_set_to_cpu_domain(state->obj, false);
5880 		if (err)
5881 			goto err_active;
5882 
5883 		engine->default_state = i915_gem_object_get(state->obj);
5884 	}
5885 
5886 	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) {
5887 		unsigned int found = intel_engines_has_context_isolation(i915);
5888 
5889 		/*
5890 		 * Make sure that classes with multiple engine instances all
5891 		 * share the same basic configuration.
5892 		 */
5893 		for_each_engine(engine, i915, id) {
5894 			unsigned int bit = BIT(engine->uabi_class);
5895 			unsigned int expected = engine->default_state ? bit : 0;
5896 
5897 			if ((found & bit) != expected) {
5898 				DRM_ERROR("mismatching default context state for class %d on engine %s\n",
5899 					  engine->uabi_class, engine->name);
5900 			}
5901 		}
5902 	}
5903 
5904 out_ctx:
5905 	i915_gem_context_set_closed(ctx);
5906 	i915_gem_context_put(ctx);
5907 	return err;
5908 
5909 err_active:
5910 	/*
5911 	 * If we have to abandon now, we expect the engines to be idle
5912 	 * and ready to be torn-down. First try to flush any remaining
5913 	 * request, ensure we are pointing at the kernel context and
5914 	 * then remove it.
5915 	 */
5916 	if (WARN_ON(i915_gem_switch_to_kernel_context(i915)))
5917 		goto out_ctx;
5918 
5919 	if (WARN_ON(i915_gem_wait_for_idle(i915,
5920 					   I915_WAIT_LOCKED,
5921 					   MAX_SCHEDULE_TIMEOUT)))
5922 		goto out_ctx;
5923 
5924 	i915_gem_contexts_lost(i915);
5925 	goto out_ctx;
5926 }
5927 
5928 int i915_gem_init(struct drm_i915_private *dev_priv)
5929 {
5930 	int ret;
5931 
5932 	/* We need to fallback to 4K pages if host doesn't support huge gtt. */
5933 	if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv))
5934 		mkwrite_device_info(dev_priv)->page_sizes =
5935 			I915_GTT_PAGE_SIZE_4K;
5936 
5937 	dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
5938 
5939 	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) {
5940 		dev_priv->gt.resume = intel_lr_context_resume;
5941 		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
5942 	} else {
5943 		dev_priv->gt.resume = intel_legacy_submission_resume;
5944 		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
5945 	}
5946 
5947 	ret = i915_gem_init_userptr(dev_priv);
5948 	if (ret)
5949 		return ret;
5950 
5951 	ret = intel_uc_init_misc(dev_priv);
5952 	if (ret)
5953 		return ret;
5954 
5955 	ret = intel_wopcm_init(&dev_priv->wopcm);
5956 	if (ret)
5957 		goto err_uc_misc;
5958 
5959 	/* This is just a security blanket to placate dragons.
5960 	 * On some systems, we very sporadically observe that the first TLBs
5961 	 * used by the CS may be stale, despite us poking the TLB reset. If
5962 	 * we hold the forcewake during initialisation these problems
5963 	 * just magically go away.
5964 	 */
5965 	mutex_lock(&dev_priv->drm.struct_mutex);
5966 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5967 
5968 	ret = i915_gem_init_ggtt(dev_priv);
5969 	if (ret) {
5970 		GEM_BUG_ON(ret == -EIO);
5971 		goto err_unlock;
5972 	}
5973 
5974 	ret = i915_gem_contexts_init(dev_priv);
5975 	if (ret) {
5976 		GEM_BUG_ON(ret == -EIO);
5977 		goto err_ggtt;
5978 	}
5979 
5980 	ret = intel_engines_init(dev_priv);
5981 	if (ret) {
5982 		GEM_BUG_ON(ret == -EIO);
5983 		goto err_context;
5984 	}
5985 
5986 	intel_init_gt_powersave(dev_priv);
5987 
5988 	ret = intel_uc_init(dev_priv);
5989 	if (ret)
5990 		goto err_pm;
5991 
5992 	ret = i915_gem_init_hw(dev_priv);
5993 	if (ret)
5994 		goto err_uc_init;
5995 
5996 	/*
5997 	 * Despite its name intel_init_clock_gating applies both display
5998 	 * clock gating workarounds; GT mmio workarounds and the occasional
5999 	 * GT power context workaround. Worse, sometimes it includes a context
6000 	 * register workaround which we need to apply before we record the
6001 	 * default HW state for all contexts.
6002 	 *
6003 	 * FIXME: break up the workarounds and apply them at the right time!
6004 	 */
6005 	intel_init_clock_gating(dev_priv);
6006 
6007 	ret = __intel_engines_record_defaults(dev_priv);
6008 	if (ret)
6009 		goto err_init_hw;
6010 
6011 	if (i915_inject_load_failure()) {
6012 		ret = -ENODEV;
6013 		goto err_init_hw;
6014 	}
6015 
6016 	if (i915_inject_load_failure()) {
6017 		ret = -EIO;
6018 		goto err_init_hw;
6019 	}
6020 
6021 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6022 	mutex_unlock(&dev_priv->drm.struct_mutex);
6023 
6024 	return 0;
6025 
6026 	/*
6027 	 * Unwinding is complicated by that we want to handle -EIO to mean
6028 	 * disable GPU submission but keep KMS alive. We want to mark the
6029 	 * HW as irrevisibly wedged, but keep enough state around that the
6030 	 * driver doesn't explode during runtime.
6031 	 */
6032 err_init_hw:
6033 	mutex_unlock(&dev_priv->drm.struct_mutex);
6034 
6035 	WARN_ON(i915_gem_suspend(dev_priv));
6036 	i915_gem_suspend_late(dev_priv);
6037 
6038 	i915_gem_drain_workqueue(dev_priv);
6039 
6040 	mutex_lock(&dev_priv->drm.struct_mutex);
6041 	intel_uc_fini_hw(dev_priv);
6042 err_uc_init:
6043 	intel_uc_fini(dev_priv);
6044 err_pm:
6045 	if (ret != -EIO) {
6046 		intel_cleanup_gt_powersave(dev_priv);
6047 		i915_gem_cleanup_engines(dev_priv);
6048 	}
6049 err_context:
6050 	if (ret != -EIO)
6051 		i915_gem_contexts_fini(dev_priv);
6052 err_ggtt:
6053 err_unlock:
6054 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6055 	mutex_unlock(&dev_priv->drm.struct_mutex);
6056 
6057 err_uc_misc:
6058 	intel_uc_fini_misc(dev_priv);
6059 
6060 	if (ret != -EIO)
6061 		i915_gem_cleanup_userptr(dev_priv);
6062 
6063 	if (ret == -EIO) {
6064 		mutex_lock(&dev_priv->drm.struct_mutex);
6065 
6066 		/*
6067 		 * Allow engine initialisation to fail by marking the GPU as
6068 		 * wedged. But we only want to do this where the GPU is angry,
6069 		 * for all other failure, such as an allocation failure, bail.
6070 		 */
6071 		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
6072 			i915_load_error(dev_priv,
6073 					"Failed to initialize GPU, declaring it wedged!\n");
6074 			i915_gem_set_wedged(dev_priv);
6075 		}
6076 
6077 		/* Minimal basic recovery for KMS */
6078 		ret = i915_ggtt_enable_hw(dev_priv);
6079 		i915_gem_restore_gtt_mappings(dev_priv);
6080 		i915_gem_restore_fences(dev_priv);
6081 		intel_init_clock_gating(dev_priv);
6082 
6083 		mutex_unlock(&dev_priv->drm.struct_mutex);
6084 	}
6085 
6086 	i915_gem_drain_freed_objects(dev_priv);
6087 	return ret;
6088 }
6089 
6090 void i915_gem_fini(struct drm_i915_private *dev_priv)
6091 {
6092 	i915_gem_suspend_late(dev_priv);
6093 	intel_disable_gt_powersave(dev_priv);
6094 
6095 	/* Flush any outstanding unpin_work. */
6096 	i915_gem_drain_workqueue(dev_priv);
6097 
6098 	mutex_lock(&dev_priv->drm.struct_mutex);
6099 	intel_uc_fini_hw(dev_priv);
6100 	intel_uc_fini(dev_priv);
6101 	i915_gem_cleanup_engines(dev_priv);
6102 	i915_gem_contexts_fini(dev_priv);
6103 	mutex_unlock(&dev_priv->drm.struct_mutex);
6104 
6105 	intel_cleanup_gt_powersave(dev_priv);
6106 
6107 	intel_uc_fini_misc(dev_priv);
6108 	i915_gem_cleanup_userptr(dev_priv);
6109 
6110 	i915_gem_drain_freed_objects(dev_priv);
6111 
6112 	WARN_ON(!list_empty(&dev_priv->contexts.list));
6113 }
6114 
6115 void i915_gem_init_mmio(struct drm_i915_private *i915)
6116 {
6117 	i915_gem_sanitize(i915);
6118 }
6119 
6120 void
6121 i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
6122 {
6123 	struct intel_engine_cs *engine;
6124 	enum intel_engine_id id;
6125 
6126 	for_each_engine(engine, dev_priv, id)
6127 		dev_priv->gt.cleanup_engine(engine);
6128 }
6129 
6130 void
6131 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
6132 {
6133 	int i;
6134 
6135 	if (INTEL_GEN(dev_priv) >= 7 && !IS_VALLEYVIEW(dev_priv) &&
6136 	    !IS_CHERRYVIEW(dev_priv))
6137 		dev_priv->num_fence_regs = 32;
6138 	else if (INTEL_GEN(dev_priv) >= 4 ||
6139 		 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
6140 		 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
6141 		dev_priv->num_fence_regs = 16;
6142 	else
6143 		dev_priv->num_fence_regs = 8;
6144 
6145 	if (intel_vgpu_active(dev_priv))
6146 		dev_priv->num_fence_regs =
6147 				I915_READ(vgtif_reg(avail_rs.fence_num));
6148 
6149 	/* Initialize fence registers to zero */
6150 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
6151 		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
6152 
6153 		fence->i915 = dev_priv;
6154 		fence->id = i;
6155 		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
6156 	}
6157 	i915_gem_restore_fences(dev_priv);
6158 
6159 	i915_gem_detect_bit_6_swizzle(dev_priv);
6160 }
6161 
6162 static void i915_gem_init__mm(struct drm_i915_private *i915)
6163 {
6164 	mtx_init(&i915->mm.object_stat_lock, IPL_NONE);
6165 	mtx_init(&i915->mm.obj_lock, IPL_NONE);
6166 	mtx_init(&i915->mm.free_lock, IPL_NONE);
6167 
6168 	init_llist_head(&i915->mm.free_list);
6169 
6170 	INIT_LIST_HEAD(&i915->mm.unbound_list);
6171 	INIT_LIST_HEAD(&i915->mm.bound_list);
6172 	INIT_LIST_HEAD(&i915->mm.fence_list);
6173 	INIT_LIST_HEAD(&i915->mm.userfault_list);
6174 
6175 	INIT_WORK(&i915->mm.free_work, __i915_gem_free_work);
6176 }
6177 
6178 int i915_gem_init_early(struct drm_i915_private *dev_priv)
6179 {
6180 	int err = -ENOMEM;
6181 
6182 #ifdef __linux__
6183 	dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
6184 	if (!dev_priv->objects)
6185 		goto err_out;
6186 
6187 	dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
6188 	if (!dev_priv->vmas)
6189 		goto err_objects;
6190 
6191 	dev_priv->luts = KMEM_CACHE(i915_lut_handle, 0);
6192 	if (!dev_priv->luts)
6193 		goto err_vmas;
6194 
6195 	dev_priv->requests = KMEM_CACHE(i915_request,
6196 					SLAB_HWCACHE_ALIGN |
6197 					SLAB_RECLAIM_ACCOUNT |
6198 					SLAB_TYPESAFE_BY_RCU);
6199 	if (!dev_priv->requests)
6200 		goto err_luts;
6201 
6202 	dev_priv->dependencies = KMEM_CACHE(i915_dependency,
6203 					    SLAB_HWCACHE_ALIGN |
6204 					    SLAB_RECLAIM_ACCOUNT);
6205 	if (!dev_priv->dependencies)
6206 		goto err_requests;
6207 
6208 	dev_priv->priorities = KMEM_CACHE(i915_priolist, SLAB_HWCACHE_ALIGN);
6209 	if (!dev_priv->priorities)
6210 		goto err_dependencies;
6211 #else
6212 	pool_init(&dev_priv->objects,  sizeof(struct drm_i915_gem_object),
6213 	    0, IPL_NONE, 0, "drmobj", NULL);
6214 	pool_init(&dev_priv->vmas,  sizeof(struct i915_vma),
6215 	    0, IPL_NONE, 0, "drmvma", NULL);
6216 	pool_init(&dev_priv->luts, sizeof(struct i915_lut_handle),
6217 	    0, IPL_NONE, 0, "drmlut", NULL);
6218 	pool_init(&dev_priv->requests, sizeof(struct i915_request),
6219 	    0, IPL_TTY, 0, "drmreq", NULL);
6220 	pool_init(&dev_priv->dependencies, sizeof(struct i915_dependency),
6221 	    0, IPL_TTY, 0, "drmdep", NULL);
6222 	pool_init(&dev_priv->priorities, sizeof(struct i915_priolist),
6223 	    0, IPL_TTY, 0, "drmpri", NULL);
6224 #endif
6225 
6226 	INIT_LIST_HEAD(&dev_priv->gt.timelines);
6227 	INIT_LIST_HEAD(&dev_priv->gt.active_rings);
6228 	INIT_LIST_HEAD(&dev_priv->gt.closed_vma);
6229 
6230 	i915_gem_init__mm(dev_priv);
6231 
6232 	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
6233 			  i915_gem_retire_work_handler);
6234 	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
6235 			  i915_gem_idle_work_handler);
6236 	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
6237 	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
6238 
6239 	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
6240 
6241 	mtx_init(&dev_priv->fb_tracking.lock, IPL_TTY);
6242 
6243 	err = i915_gemfs_init(dev_priv);
6244 	if (err)
6245 		DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n", err);
6246 
6247 	return 0;
6248 
6249 #ifdef __linux__
6250 err_dependencies:
6251 	kmem_cache_destroy(dev_priv->dependencies);
6252 err_requests:
6253 	kmem_cache_destroy(dev_priv->requests);
6254 err_luts:
6255 	kmem_cache_destroy(dev_priv->luts);
6256 err_vmas:
6257 	kmem_cache_destroy(dev_priv->vmas);
6258 err_objects:
6259 	kmem_cache_destroy(dev_priv->objects);
6260 err_out:
6261 	return err;
6262 #endif
6263 }
6264 
6265 void i915_gem_cleanup_early(struct drm_i915_private *dev_priv)
6266 {
6267 	i915_gem_drain_freed_objects(dev_priv);
6268 	GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
6269 	GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
6270 	WARN_ON(dev_priv->mm.object_count);
6271 	WARN_ON(!list_empty(&dev_priv->gt.timelines));
6272 
6273 #ifdef __linux__
6274 	kmem_cache_destroy(dev_priv->priorities);
6275 	kmem_cache_destroy(dev_priv->dependencies);
6276 	kmem_cache_destroy(dev_priv->requests);
6277 	kmem_cache_destroy(dev_priv->luts);
6278 	kmem_cache_destroy(dev_priv->vmas);
6279 	kmem_cache_destroy(dev_priv->objects);
6280 #endif
6281 
6282 	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
6283 	rcu_barrier();
6284 
6285 	i915_gemfs_fini(dev_priv);
6286 }
6287 
6288 int i915_gem_freeze(struct drm_i915_private *dev_priv)
6289 {
6290 	/* Discard all purgeable objects, let userspace recover those as
6291 	 * required after resuming.
6292 	 */
6293 	i915_gem_shrink_all(dev_priv);
6294 
6295 	return 0;
6296 }
6297 
6298 int i915_gem_freeze_late(struct drm_i915_private *i915)
6299 {
6300 	struct drm_i915_gem_object *obj;
6301 	struct list_head *phases[] = {
6302 		&i915->mm.unbound_list,
6303 		&i915->mm.bound_list,
6304 		NULL
6305 	}, **phase;
6306 
6307 	/*
6308 	 * Called just before we write the hibernation image.
6309 	 *
6310 	 * We need to update the domain tracking to reflect that the CPU
6311 	 * will be accessing all the pages to create and restore from the
6312 	 * hibernation, and so upon restoration those pages will be in the
6313 	 * CPU domain.
6314 	 *
6315 	 * To make sure the hibernation image contains the latest state,
6316 	 * we update that state just before writing out the image.
6317 	 *
6318 	 * To try and reduce the hibernation image, we manually shrink
6319 	 * the objects as well, see i915_gem_freeze()
6320 	 */
6321 
6322 	i915_gem_shrink(i915, -1UL, NULL, I915_SHRINK_UNBOUND);
6323 	i915_gem_drain_freed_objects(i915);
6324 
6325 	mutex_lock(&i915->drm.struct_mutex);
6326 	for (phase = phases; *phase; phase++) {
6327 		list_for_each_entry(obj, *phase, mm.link)
6328 			WARN_ON(i915_gem_object_set_to_cpu_domain(obj, true));
6329 	}
6330 	mutex_unlock(&i915->drm.struct_mutex);
6331 
6332 	return 0;
6333 }
6334 
6335 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
6336 {
6337 	struct drm_i915_file_private *file_priv = file->driver_priv;
6338 	struct i915_request *request;
6339 
6340 	/* Clean up our request list when the client is going away, so that
6341 	 * later retire_requests won't dereference our soon-to-be-gone
6342 	 * file_priv.
6343 	 */
6344 	spin_lock(&file_priv->mm.lock);
6345 	list_for_each_entry(request, &file_priv->mm.request_list, client_link)
6346 		request->file_priv = NULL;
6347 	spin_unlock(&file_priv->mm.lock);
6348 }
6349 
6350 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
6351 {
6352 	struct drm_i915_file_private *file_priv;
6353 	int ret;
6354 
6355 	DRM_DEBUG("\n");
6356 
6357 	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
6358 	if (!file_priv)
6359 		return -ENOMEM;
6360 
6361 	file->driver_priv = file_priv;
6362 	file_priv->dev_priv = i915;
6363 	file_priv->file = file;
6364 
6365 	mtx_init(&file_priv->mm.lock, IPL_NONE);
6366 	INIT_LIST_HEAD(&file_priv->mm.request_list);
6367 
6368 	file_priv->bsd_engine = -1;
6369 	file_priv->hang_timestamp = jiffies;
6370 
6371 	ret = i915_gem_context_open(i915, file);
6372 	if (ret)
6373 		kfree(file_priv);
6374 
6375 	return ret;
6376 }
6377 
6378 /**
6379  * i915_gem_track_fb - update frontbuffer tracking
6380  * @old: current GEM buffer for the frontbuffer slots
6381  * @new: new GEM buffer for the frontbuffer slots
6382  * @frontbuffer_bits: bitmask of frontbuffer slots
6383  *
6384  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
6385  * from @old and setting them in @new. Both @old and @new can be NULL.
6386  */
6387 void i915_gem_track_fb(struct drm_i915_gem_object *old,
6388 		       struct drm_i915_gem_object *new,
6389 		       unsigned frontbuffer_bits)
6390 {
6391 	/* Control of individual bits within the mask are guarded by
6392 	 * the owning plane->mutex, i.e. we can never see concurrent
6393 	 * manipulation of individual bits. But since the bitfield as a whole
6394 	 * is updated using RMW, we need to use atomics in order to update
6395 	 * the bits.
6396 	 */
6397 	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
6398 		     sizeof(atomic_t) * BITS_PER_BYTE);
6399 
6400 	if (old) {
6401 		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
6402 		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
6403 	}
6404 
6405 	if (new) {
6406 		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
6407 		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
6408 	}
6409 }
6410 
6411 /* Allocate a new GEM object and fill it with the supplied data */
6412 struct drm_i915_gem_object *
6413 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
6414 			         const void *data, size_t size)
6415 {
6416 	STUB();
6417 	return NULL;
6418 #ifdef notyet
6419 	struct drm_i915_gem_object *obj;
6420 	struct file *file;
6421 	size_t offset;
6422 	int err;
6423 
6424 	obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
6425 	if (IS_ERR(obj))
6426 		return obj;
6427 
6428 	GEM_BUG_ON(obj->write_domain != I915_GEM_DOMAIN_CPU);
6429 
6430 	file = obj->base.filp;
6431 	offset = 0;
6432 	do {
6433 		unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
6434 		struct vm_page *page;
6435 		void *pgdata, *vaddr;
6436 
6437 		err = pagecache_write_begin(file, file->f_mapping,
6438 					    offset, len, 0,
6439 					    &page, &pgdata);
6440 		if (err < 0)
6441 			goto fail;
6442 
6443 		vaddr = kmap(page);
6444 		memcpy(vaddr, data, len);
6445 		kunmap(vaddr);
6446 
6447 		err = pagecache_write_end(file, file->f_mapping,
6448 					  offset, len, len,
6449 					  page, pgdata);
6450 		if (err < 0)
6451 			goto fail;
6452 
6453 		size -= len;
6454 		data += len;
6455 		offset += len;
6456 	} while (size);
6457 
6458 	return obj;
6459 
6460 fail:
6461 	i915_gem_object_put(obj);
6462 	return ERR_PTR(err);
6463 #endif
6464 }
6465 
6466 struct scatterlist *
6467 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
6468 		       unsigned int n,
6469 		       unsigned int *offset)
6470 {
6471 	struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
6472 	struct scatterlist *sg;
6473 	unsigned int idx, count;
6474 
6475 	might_sleep();
6476 	GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
6477 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
6478 
6479 	/* As we iterate forward through the sg, we record each entry in a
6480 	 * radixtree for quick repeated (backwards) lookups. If we have seen
6481 	 * this index previously, we will have an entry for it.
6482 	 *
6483 	 * Initial lookup is O(N), but this is amortized to O(1) for
6484 	 * sequential page access (where each new request is consecutive
6485 	 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
6486 	 * i.e. O(1) with a large constant!
6487 	 */
6488 	if (n < READ_ONCE(iter->sg_idx))
6489 		goto lookup;
6490 
6491 	mutex_lock(&iter->lock);
6492 
6493 	/* We prefer to reuse the last sg so that repeated lookup of this
6494 	 * (or the subsequent) sg are fast - comparing against the last
6495 	 * sg is faster than going through the radixtree.
6496 	 */
6497 
6498 	sg = iter->sg_pos;
6499 	idx = iter->sg_idx;
6500 	count = __sg_page_count(sg);
6501 
6502 	while (idx + count <= n) {
6503 		unsigned long exception, i;
6504 		int ret;
6505 
6506 		/* If we cannot allocate and insert this entry, or the
6507 		 * individual pages from this range, cancel updating the
6508 		 * sg_idx so that on this lookup we are forced to linearly
6509 		 * scan onwards, but on future lookups we will try the
6510 		 * insertion again (in which case we need to be careful of
6511 		 * the error return reporting that we have already inserted
6512 		 * this index).
6513 		 */
6514 		ret = radix_tree_insert(&iter->radix, idx, sg);
6515 		if (ret && ret != -EEXIST)
6516 			goto scan;
6517 
6518 		exception =
6519 			RADIX_TREE_EXCEPTIONAL_ENTRY |
6520 			idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
6521 		for (i = 1; i < count; i++) {
6522 			ret = radix_tree_insert(&iter->radix, idx + i,
6523 						(void *)exception);
6524 			if (ret && ret != -EEXIST)
6525 				goto scan;
6526 		}
6527 
6528 		idx += count;
6529 		sg = ____sg_next(sg);
6530 		count = __sg_page_count(sg);
6531 	}
6532 
6533 scan:
6534 	iter->sg_pos = sg;
6535 	iter->sg_idx = idx;
6536 
6537 	mutex_unlock(&iter->lock);
6538 
6539 	if (unlikely(n < idx)) /* insertion completed by another thread */
6540 		goto lookup;
6541 
6542 	/* In case we failed to insert the entry into the radixtree, we need
6543 	 * to look beyond the current sg.
6544 	 */
6545 	while (idx + count <= n) {
6546 		idx += count;
6547 		sg = ____sg_next(sg);
6548 		count = __sg_page_count(sg);
6549 	}
6550 
6551 	*offset = n - idx;
6552 	return sg;
6553 
6554 lookup:
6555 	rcu_read_lock();
6556 
6557 	sg = radix_tree_lookup(&iter->radix, n);
6558 	GEM_BUG_ON(!sg);
6559 
6560 	/* If this index is in the middle of multi-page sg entry,
6561 	 * the radixtree will contain an exceptional entry that points
6562 	 * to the start of that range. We will return the pointer to
6563 	 * the base page and the offset of this page within the
6564 	 * sg entry's range.
6565 	 */
6566 	*offset = 0;
6567 	if (unlikely(radix_tree_exception(sg))) {
6568 		unsigned long base =
6569 			(unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;
6570 
6571 		sg = radix_tree_lookup(&iter->radix, base);
6572 		GEM_BUG_ON(!sg);
6573 
6574 		*offset = n - base;
6575 	}
6576 
6577 	rcu_read_unlock();
6578 
6579 	return sg;
6580 }
6581 
6582 struct vm_page *
6583 i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
6584 {
6585 	struct scatterlist *sg;
6586 	unsigned int offset;
6587 
6588 	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
6589 
6590 	sg = i915_gem_object_get_sg(obj, n, &offset);
6591 	return nth_page(sg_page(sg), offset);
6592 }
6593 
6594 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
6595 struct vm_page *
6596 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
6597 			       unsigned int n)
6598 {
6599 	struct vm_page *page;
6600 
6601 	page = i915_gem_object_get_page(obj, n);
6602 	if (!obj->mm.dirty)
6603 		set_page_dirty(page);
6604 
6605 	return page;
6606 }
6607 
6608 dma_addr_t
6609 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
6610 				unsigned long n)
6611 {
6612 	struct scatterlist *sg;
6613 	unsigned int offset;
6614 
6615 	sg = i915_gem_object_get_sg(obj, n, &offset);
6616 	return sg_dma_address(sg) + (offset << PAGE_SHIFT);
6617 }
6618 
6619 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, int align)
6620 {
6621 	struct sg_table *pages;
6622 	int err;
6623 
6624 	if (align > obj->base.size)
6625 		return -EINVAL;
6626 
6627 	if (obj->ops == &i915_gem_phys_ops)
6628 		return 0;
6629 
6630 	if (obj->ops != &i915_gem_object_ops)
6631 		return -EINVAL;
6632 
6633 	err = i915_gem_object_unbind(obj);
6634 	if (err)
6635 		return err;
6636 
6637 	mutex_lock(&obj->mm.lock);
6638 
6639 	if (obj->mm.madv != I915_MADV_WILLNEED) {
6640 		err = -EFAULT;
6641 		goto err_unlock;
6642 	}
6643 
6644 	if (obj->mm.quirked) {
6645 		err = -EFAULT;
6646 		goto err_unlock;
6647 	}
6648 
6649 	if (obj->mm.mapping) {
6650 		err = -EBUSY;
6651 		goto err_unlock;
6652 	}
6653 
6654 	pages = __i915_gem_object_unset_pages(obj);
6655 
6656 	obj->ops = &i915_gem_phys_ops;
6657 
6658 	err = ____i915_gem_object_get_pages(obj);
6659 	if (err)
6660 		goto err_xfer;
6661 
6662 	/* Perma-pin (until release) the physical set of pages */
6663 	__i915_gem_object_pin_pages(obj);
6664 
6665 	if (!IS_ERR_OR_NULL(pages))
6666 		i915_gem_object_ops.put_pages(obj, pages);
6667 	mutex_unlock(&obj->mm.lock);
6668 	return 0;
6669 
6670 err_xfer:
6671 	obj->ops = &i915_gem_object_ops;
6672 	if (!IS_ERR_OR_NULL(pages)) {
6673 		unsigned int sg_page_sizes = i915_sg_page_sizes(pages->sgl);
6674 
6675 		__i915_gem_object_set_pages(obj, pages, sg_page_sizes);
6676 	}
6677 err_unlock:
6678 	mutex_unlock(&obj->mm.lock);
6679 	return err;
6680 }
6681 
6682 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
6683 #include "selftests/scatterlist.c"
6684 #include "selftests/mock_gem_device.c"
6685 #include "selftests/huge_gem_object.c"
6686 #include "selftests/huge_pages.c"
6687 #include "selftests/i915_gem_object.c"
6688 #include "selftests/i915_gem_coherency.c"
6689 #endif
6690