1 /* 2 * GTT virtualization 3 * 4 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice (including the next 14 * paragraph) shall be included in all copies or substantial portions of the 15 * Software. 16 * 17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 23 * SOFTWARE. 24 * 25 * Authors: 26 * Zhi Wang <zhi.a.wang@intel.com> 27 * Zhenyu Wang <zhenyuw@linux.intel.com> 28 * Xiao Zheng <xiao.zheng@intel.com> 29 * 30 * Contributors: 31 * Min He <min.he@intel.com> 32 * Bing Niu <bing.niu@intel.com> 33 * 34 */ 35 36 #include "i915_drv.h" 37 #include "gvt.h" 38 #include "i915_pvinfo.h" 39 #include "trace.h" 40 41 #include "gt/intel_gt_regs.h" 42 43 #if defined(VERBOSE_DEBUG) 44 #define gvt_vdbg_mm(fmt, args...) gvt_dbg_mm(fmt, ##args) 45 #else 46 #define gvt_vdbg_mm(fmt, args...) 47 #endif 48 49 static bool enable_out_of_sync = false; 50 static int preallocated_oos_pages = 8192; 51 52 static bool intel_gvt_is_valid_gfn(struct intel_vgpu *vgpu, unsigned long gfn) 53 { 54 struct kvm *kvm = vgpu->vfio_device.kvm; 55 int idx; 56 bool ret; 57 58 if (!vgpu->attached) 59 return false; 60 61 idx = srcu_read_lock(&kvm->srcu); 62 ret = kvm_is_visible_gfn(kvm, gfn); 63 srcu_read_unlock(&kvm->srcu, idx); 64 65 return ret; 66 } 67 68 /* 69 * validate a gm address and related range size, 70 * translate it to host gm address 71 */ 72 bool intel_gvt_ggtt_validate_range(struct intel_vgpu *vgpu, u64 addr, u32 size) 73 { 74 if (size == 0) 75 return vgpu_gmadr_is_valid(vgpu, addr); 76 77 if (vgpu_gmadr_is_aperture(vgpu, addr) && 78 vgpu_gmadr_is_aperture(vgpu, addr + size - 1)) 79 return true; 80 else if (vgpu_gmadr_is_hidden(vgpu, addr) && 81 vgpu_gmadr_is_hidden(vgpu, addr + size - 1)) 82 return true; 83 84 gvt_dbg_mm("Invalid ggtt range at 0x%llx, size: 0x%x\n", 85 addr, size); 86 return false; 87 } 88 89 /* translate a guest gmadr to host gmadr */ 90 int intel_gvt_ggtt_gmadr_g2h(struct intel_vgpu *vgpu, u64 g_addr, u64 *h_addr) 91 { 92 struct drm_i915_private *i915 = vgpu->gvt->gt->i915; 93 94 if (drm_WARN(&i915->drm, !vgpu_gmadr_is_valid(vgpu, g_addr), 95 "invalid guest gmadr %llx\n", g_addr)) 96 return -EACCES; 97 98 if (vgpu_gmadr_is_aperture(vgpu, g_addr)) 99 *h_addr = vgpu_aperture_gmadr_base(vgpu) 100 + (g_addr - vgpu_aperture_offset(vgpu)); 101 else 102 *h_addr = vgpu_hidden_gmadr_base(vgpu) 103 + (g_addr - vgpu_hidden_offset(vgpu)); 104 return 0; 105 } 106 107 /* translate a host gmadr to guest gmadr */ 108 int intel_gvt_ggtt_gmadr_h2g(struct intel_vgpu *vgpu, u64 h_addr, u64 *g_addr) 109 { 110 struct drm_i915_private *i915 = vgpu->gvt->gt->i915; 111 112 if (drm_WARN(&i915->drm, !gvt_gmadr_is_valid(vgpu->gvt, h_addr), 113 "invalid host gmadr %llx\n", h_addr)) 114 return -EACCES; 115 116 if (gvt_gmadr_is_aperture(vgpu->gvt, h_addr)) 117 *g_addr = vgpu_aperture_gmadr_base(vgpu) 118 + (h_addr - gvt_aperture_gmadr_base(vgpu->gvt)); 119 else 120 *g_addr = vgpu_hidden_gmadr_base(vgpu) 121 + (h_addr - gvt_hidden_gmadr_base(vgpu->gvt)); 122 return 0; 123 } 124 125 int intel_gvt_ggtt_index_g2h(struct intel_vgpu *vgpu, unsigned long g_index, 126 unsigned long *h_index) 127 { 128 u64 h_addr; 129 int ret; 130 131 ret = intel_gvt_ggtt_gmadr_g2h(vgpu, g_index << I915_GTT_PAGE_SHIFT, 132 &h_addr); 133 if (ret) 134 return ret; 135 136 *h_index = h_addr >> I915_GTT_PAGE_SHIFT; 137 return 0; 138 } 139 140 int intel_gvt_ggtt_h2g_index(struct intel_vgpu *vgpu, unsigned long h_index, 141 unsigned long *g_index) 142 { 143 u64 g_addr; 144 int ret; 145 146 ret = intel_gvt_ggtt_gmadr_h2g(vgpu, h_index << I915_GTT_PAGE_SHIFT, 147 &g_addr); 148 if (ret) 149 return ret; 150 151 *g_index = g_addr >> I915_GTT_PAGE_SHIFT; 152 return 0; 153 } 154 155 #define gtt_type_is_entry(type) \ 156 (type > GTT_TYPE_INVALID && type < GTT_TYPE_PPGTT_ENTRY \ 157 && type != GTT_TYPE_PPGTT_PTE_ENTRY \ 158 && type != GTT_TYPE_PPGTT_ROOT_ENTRY) 159 160 #define gtt_type_is_pt(type) \ 161 (type >= GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX) 162 163 #define gtt_type_is_pte_pt(type) \ 164 (type == GTT_TYPE_PPGTT_PTE_PT) 165 166 #define gtt_type_is_root_pointer(type) \ 167 (gtt_type_is_entry(type) && type > GTT_TYPE_PPGTT_ROOT_ENTRY) 168 169 #define gtt_init_entry(e, t, p, v) do { \ 170 (e)->type = t; \ 171 (e)->pdev = p; \ 172 memcpy(&(e)->val64, &v, sizeof(v)); \ 173 } while (0) 174 175 /* 176 * Mappings between GTT_TYPE* enumerations. 177 * Following information can be found according to the given type: 178 * - type of next level page table 179 * - type of entry inside this level page table 180 * - type of entry with PSE set 181 * 182 * If the given type doesn't have such a kind of information, 183 * e.g. give a l4 root entry type, then request to get its PSE type, 184 * give a PTE page table type, then request to get its next level page 185 * table type, as we know l4 root entry doesn't have a PSE bit, 186 * and a PTE page table doesn't have a next level page table type, 187 * GTT_TYPE_INVALID will be returned. This is useful when traversing a 188 * page table. 189 */ 190 191 struct gtt_type_table_entry { 192 int entry_type; 193 int pt_type; 194 int next_pt_type; 195 int pse_entry_type; 196 }; 197 198 #define GTT_TYPE_TABLE_ENTRY(type, e_type, cpt_type, npt_type, pse_type) \ 199 [type] = { \ 200 .entry_type = e_type, \ 201 .pt_type = cpt_type, \ 202 .next_pt_type = npt_type, \ 203 .pse_entry_type = pse_type, \ 204 } 205 206 static const struct gtt_type_table_entry gtt_type_table[] = { 207 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L4_ENTRY, 208 GTT_TYPE_PPGTT_ROOT_L4_ENTRY, 209 GTT_TYPE_INVALID, 210 GTT_TYPE_PPGTT_PML4_PT, 211 GTT_TYPE_INVALID), 212 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_PT, 213 GTT_TYPE_PPGTT_PML4_ENTRY, 214 GTT_TYPE_PPGTT_PML4_PT, 215 GTT_TYPE_PPGTT_PDP_PT, 216 GTT_TYPE_INVALID), 217 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_ENTRY, 218 GTT_TYPE_PPGTT_PML4_ENTRY, 219 GTT_TYPE_PPGTT_PML4_PT, 220 GTT_TYPE_PPGTT_PDP_PT, 221 GTT_TYPE_INVALID), 222 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_PT, 223 GTT_TYPE_PPGTT_PDP_ENTRY, 224 GTT_TYPE_PPGTT_PDP_PT, 225 GTT_TYPE_PPGTT_PDE_PT, 226 GTT_TYPE_PPGTT_PTE_1G_ENTRY), 227 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L3_ENTRY, 228 GTT_TYPE_PPGTT_ROOT_L3_ENTRY, 229 GTT_TYPE_INVALID, 230 GTT_TYPE_PPGTT_PDE_PT, 231 GTT_TYPE_PPGTT_PTE_1G_ENTRY), 232 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_ENTRY, 233 GTT_TYPE_PPGTT_PDP_ENTRY, 234 GTT_TYPE_PPGTT_PDP_PT, 235 GTT_TYPE_PPGTT_PDE_PT, 236 GTT_TYPE_PPGTT_PTE_1G_ENTRY), 237 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_PT, 238 GTT_TYPE_PPGTT_PDE_ENTRY, 239 GTT_TYPE_PPGTT_PDE_PT, 240 GTT_TYPE_PPGTT_PTE_PT, 241 GTT_TYPE_PPGTT_PTE_2M_ENTRY), 242 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_ENTRY, 243 GTT_TYPE_PPGTT_PDE_ENTRY, 244 GTT_TYPE_PPGTT_PDE_PT, 245 GTT_TYPE_PPGTT_PTE_PT, 246 GTT_TYPE_PPGTT_PTE_2M_ENTRY), 247 /* We take IPS bit as 'PSE' for PTE level. */ 248 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_PT, 249 GTT_TYPE_PPGTT_PTE_4K_ENTRY, 250 GTT_TYPE_PPGTT_PTE_PT, 251 GTT_TYPE_INVALID, 252 GTT_TYPE_PPGTT_PTE_64K_ENTRY), 253 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_4K_ENTRY, 254 GTT_TYPE_PPGTT_PTE_4K_ENTRY, 255 GTT_TYPE_PPGTT_PTE_PT, 256 GTT_TYPE_INVALID, 257 GTT_TYPE_PPGTT_PTE_64K_ENTRY), 258 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_64K_ENTRY, 259 GTT_TYPE_PPGTT_PTE_4K_ENTRY, 260 GTT_TYPE_PPGTT_PTE_PT, 261 GTT_TYPE_INVALID, 262 GTT_TYPE_PPGTT_PTE_64K_ENTRY), 263 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_2M_ENTRY, 264 GTT_TYPE_PPGTT_PDE_ENTRY, 265 GTT_TYPE_PPGTT_PDE_PT, 266 GTT_TYPE_INVALID, 267 GTT_TYPE_PPGTT_PTE_2M_ENTRY), 268 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_1G_ENTRY, 269 GTT_TYPE_PPGTT_PDP_ENTRY, 270 GTT_TYPE_PPGTT_PDP_PT, 271 GTT_TYPE_INVALID, 272 GTT_TYPE_PPGTT_PTE_1G_ENTRY), 273 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_GGTT_PTE, 274 GTT_TYPE_GGTT_PTE, 275 GTT_TYPE_INVALID, 276 GTT_TYPE_INVALID, 277 GTT_TYPE_INVALID), 278 }; 279 280 static inline int get_next_pt_type(int type) 281 { 282 return gtt_type_table[type].next_pt_type; 283 } 284 285 static inline int get_pt_type(int type) 286 { 287 return gtt_type_table[type].pt_type; 288 } 289 290 static inline int get_entry_type(int type) 291 { 292 return gtt_type_table[type].entry_type; 293 } 294 295 static inline int get_pse_type(int type) 296 { 297 return gtt_type_table[type].pse_entry_type; 298 } 299 300 static u64 read_pte64(struct i915_ggtt *ggtt, unsigned long index) 301 { 302 void __iomem *addr = (gen8_pte_t __iomem *)ggtt->gsm + index; 303 304 return readq(addr); 305 } 306 307 static void ggtt_invalidate(struct intel_gt *gt) 308 { 309 mmio_hw_access_pre(gt); 310 intel_uncore_write(gt->uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN); 311 mmio_hw_access_post(gt); 312 } 313 314 static void write_pte64(struct i915_ggtt *ggtt, unsigned long index, u64 pte) 315 { 316 void __iomem *addr = (gen8_pte_t __iomem *)ggtt->gsm + index; 317 318 writeq(pte, addr); 319 } 320 321 static inline int gtt_get_entry64(void *pt, 322 struct intel_gvt_gtt_entry *e, 323 unsigned long index, bool hypervisor_access, unsigned long gpa, 324 struct intel_vgpu *vgpu) 325 { 326 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; 327 int ret; 328 329 if (WARN_ON(info->gtt_entry_size != 8)) 330 return -EINVAL; 331 332 if (hypervisor_access) { 333 ret = intel_gvt_read_gpa(vgpu, gpa + 334 (index << info->gtt_entry_size_shift), 335 &e->val64, 8); 336 if (WARN_ON(ret)) 337 return ret; 338 } else if (!pt) { 339 e->val64 = read_pte64(vgpu->gvt->gt->ggtt, index); 340 } else { 341 e->val64 = *((u64 *)pt + index); 342 } 343 return 0; 344 } 345 346 static inline int gtt_set_entry64(void *pt, 347 struct intel_gvt_gtt_entry *e, 348 unsigned long index, bool hypervisor_access, unsigned long gpa, 349 struct intel_vgpu *vgpu) 350 { 351 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; 352 int ret; 353 354 if (WARN_ON(info->gtt_entry_size != 8)) 355 return -EINVAL; 356 357 if (hypervisor_access) { 358 ret = intel_gvt_write_gpa(vgpu, gpa + 359 (index << info->gtt_entry_size_shift), 360 &e->val64, 8); 361 if (WARN_ON(ret)) 362 return ret; 363 } else if (!pt) { 364 write_pte64(vgpu->gvt->gt->ggtt, index, e->val64); 365 } else { 366 *((u64 *)pt + index) = e->val64; 367 } 368 return 0; 369 } 370 371 #define GTT_HAW 46 372 373 #define ADDR_1G_MASK GENMASK_ULL(GTT_HAW - 1, 30) 374 #define ADDR_2M_MASK GENMASK_ULL(GTT_HAW - 1, 21) 375 #define ADDR_64K_MASK GENMASK_ULL(GTT_HAW - 1, 16) 376 #define ADDR_4K_MASK GENMASK_ULL(GTT_HAW - 1, 12) 377 378 #define GTT_SPTE_FLAG_MASK GENMASK_ULL(62, 52) 379 #define GTT_SPTE_FLAG_64K_SPLITED BIT(52) /* splited 64K gtt entry */ 380 381 #define GTT_64K_PTE_STRIDE 16 382 383 static unsigned long gen8_gtt_get_pfn(struct intel_gvt_gtt_entry *e) 384 { 385 unsigned long pfn; 386 387 if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) 388 pfn = (e->val64 & ADDR_1G_MASK) >> PAGE_SHIFT; 389 else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY) 390 pfn = (e->val64 & ADDR_2M_MASK) >> PAGE_SHIFT; 391 else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY) 392 pfn = (e->val64 & ADDR_64K_MASK) >> PAGE_SHIFT; 393 else 394 pfn = (e->val64 & ADDR_4K_MASK) >> PAGE_SHIFT; 395 return pfn; 396 } 397 398 static void gen8_gtt_set_pfn(struct intel_gvt_gtt_entry *e, unsigned long pfn) 399 { 400 if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) { 401 e->val64 &= ~ADDR_1G_MASK; 402 pfn &= (ADDR_1G_MASK >> PAGE_SHIFT); 403 } else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY) { 404 e->val64 &= ~ADDR_2M_MASK; 405 pfn &= (ADDR_2M_MASK >> PAGE_SHIFT); 406 } else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY) { 407 e->val64 &= ~ADDR_64K_MASK; 408 pfn &= (ADDR_64K_MASK >> PAGE_SHIFT); 409 } else { 410 e->val64 &= ~ADDR_4K_MASK; 411 pfn &= (ADDR_4K_MASK >> PAGE_SHIFT); 412 } 413 414 e->val64 |= (pfn << PAGE_SHIFT); 415 } 416 417 static bool gen8_gtt_test_pse(struct intel_gvt_gtt_entry *e) 418 { 419 return !!(e->val64 & _PAGE_PSE); 420 } 421 422 static void gen8_gtt_clear_pse(struct intel_gvt_gtt_entry *e) 423 { 424 if (gen8_gtt_test_pse(e)) { 425 switch (e->type) { 426 case GTT_TYPE_PPGTT_PTE_2M_ENTRY: 427 e->val64 &= ~_PAGE_PSE; 428 e->type = GTT_TYPE_PPGTT_PDE_ENTRY; 429 break; 430 case GTT_TYPE_PPGTT_PTE_1G_ENTRY: 431 e->type = GTT_TYPE_PPGTT_PDP_ENTRY; 432 e->val64 &= ~_PAGE_PSE; 433 break; 434 default: 435 WARN_ON(1); 436 } 437 } 438 } 439 440 static bool gen8_gtt_test_ips(struct intel_gvt_gtt_entry *e) 441 { 442 if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY)) 443 return false; 444 445 return !!(e->val64 & GEN8_PDE_IPS_64K); 446 } 447 448 static void gen8_gtt_clear_ips(struct intel_gvt_gtt_entry *e) 449 { 450 if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY)) 451 return; 452 453 e->val64 &= ~GEN8_PDE_IPS_64K; 454 } 455 456 static bool gen8_gtt_test_present(struct intel_gvt_gtt_entry *e) 457 { 458 /* 459 * i915 writes PDP root pointer registers without present bit, 460 * it also works, so we need to treat root pointer entry 461 * specifically. 462 */ 463 if (e->type == GTT_TYPE_PPGTT_ROOT_L3_ENTRY 464 || e->type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) 465 return (e->val64 != 0); 466 else 467 return (e->val64 & GEN8_PAGE_PRESENT); 468 } 469 470 static void gtt_entry_clear_present(struct intel_gvt_gtt_entry *e) 471 { 472 e->val64 &= ~GEN8_PAGE_PRESENT; 473 } 474 475 static void gtt_entry_set_present(struct intel_gvt_gtt_entry *e) 476 { 477 e->val64 |= GEN8_PAGE_PRESENT; 478 } 479 480 static bool gen8_gtt_test_64k_splited(struct intel_gvt_gtt_entry *e) 481 { 482 return !!(e->val64 & GTT_SPTE_FLAG_64K_SPLITED); 483 } 484 485 static void gen8_gtt_set_64k_splited(struct intel_gvt_gtt_entry *e) 486 { 487 e->val64 |= GTT_SPTE_FLAG_64K_SPLITED; 488 } 489 490 static void gen8_gtt_clear_64k_splited(struct intel_gvt_gtt_entry *e) 491 { 492 e->val64 &= ~GTT_SPTE_FLAG_64K_SPLITED; 493 } 494 495 /* 496 * Per-platform GMA routines. 497 */ 498 static unsigned long gma_to_ggtt_pte_index(unsigned long gma) 499 { 500 unsigned long x = (gma >> I915_GTT_PAGE_SHIFT); 501 502 trace_gma_index(__func__, gma, x); 503 return x; 504 } 505 506 #define DEFINE_PPGTT_GMA_TO_INDEX(prefix, ename, exp) \ 507 static unsigned long prefix##_gma_to_##ename##_index(unsigned long gma) \ 508 { \ 509 unsigned long x = (exp); \ 510 trace_gma_index(__func__, gma, x); \ 511 return x; \ 512 } 513 514 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pte, (gma >> 12 & 0x1ff)); 515 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pde, (gma >> 21 & 0x1ff)); 516 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l3_pdp, (gma >> 30 & 0x3)); 517 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l4_pdp, (gma >> 30 & 0x1ff)); 518 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pml4, (gma >> 39 & 0x1ff)); 519 520 static const struct intel_gvt_gtt_pte_ops gen8_gtt_pte_ops = { 521 .get_entry = gtt_get_entry64, 522 .set_entry = gtt_set_entry64, 523 .clear_present = gtt_entry_clear_present, 524 .set_present = gtt_entry_set_present, 525 .test_present = gen8_gtt_test_present, 526 .test_pse = gen8_gtt_test_pse, 527 .clear_pse = gen8_gtt_clear_pse, 528 .clear_ips = gen8_gtt_clear_ips, 529 .test_ips = gen8_gtt_test_ips, 530 .clear_64k_splited = gen8_gtt_clear_64k_splited, 531 .set_64k_splited = gen8_gtt_set_64k_splited, 532 .test_64k_splited = gen8_gtt_test_64k_splited, 533 .get_pfn = gen8_gtt_get_pfn, 534 .set_pfn = gen8_gtt_set_pfn, 535 }; 536 537 static const struct intel_gvt_gtt_gma_ops gen8_gtt_gma_ops = { 538 .gma_to_ggtt_pte_index = gma_to_ggtt_pte_index, 539 .gma_to_pte_index = gen8_gma_to_pte_index, 540 .gma_to_pde_index = gen8_gma_to_pde_index, 541 .gma_to_l3_pdp_index = gen8_gma_to_l3_pdp_index, 542 .gma_to_l4_pdp_index = gen8_gma_to_l4_pdp_index, 543 .gma_to_pml4_index = gen8_gma_to_pml4_index, 544 }; 545 546 /* Update entry type per pse and ips bit. */ 547 static void update_entry_type_for_real(const struct intel_gvt_gtt_pte_ops *pte_ops, 548 struct intel_gvt_gtt_entry *entry, bool ips) 549 { 550 switch (entry->type) { 551 case GTT_TYPE_PPGTT_PDE_ENTRY: 552 case GTT_TYPE_PPGTT_PDP_ENTRY: 553 if (pte_ops->test_pse(entry)) 554 entry->type = get_pse_type(entry->type); 555 break; 556 case GTT_TYPE_PPGTT_PTE_4K_ENTRY: 557 if (ips) 558 entry->type = get_pse_type(entry->type); 559 break; 560 default: 561 GEM_BUG_ON(!gtt_type_is_entry(entry->type)); 562 } 563 564 GEM_BUG_ON(entry->type == GTT_TYPE_INVALID); 565 } 566 567 /* 568 * MM helpers. 569 */ 570 static void _ppgtt_get_root_entry(struct intel_vgpu_mm *mm, 571 struct intel_gvt_gtt_entry *entry, unsigned long index, 572 bool guest) 573 { 574 const struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops; 575 576 GEM_BUG_ON(mm->type != INTEL_GVT_MM_PPGTT); 577 578 entry->type = mm->ppgtt_mm.root_entry_type; 579 pte_ops->get_entry(guest ? mm->ppgtt_mm.guest_pdps : 580 mm->ppgtt_mm.shadow_pdps, 581 entry, index, false, 0, mm->vgpu); 582 update_entry_type_for_real(pte_ops, entry, false); 583 } 584 585 static inline void ppgtt_get_guest_root_entry(struct intel_vgpu_mm *mm, 586 struct intel_gvt_gtt_entry *entry, unsigned long index) 587 { 588 _ppgtt_get_root_entry(mm, entry, index, true); 589 } 590 591 static inline void ppgtt_get_shadow_root_entry(struct intel_vgpu_mm *mm, 592 struct intel_gvt_gtt_entry *entry, unsigned long index) 593 { 594 _ppgtt_get_root_entry(mm, entry, index, false); 595 } 596 597 static void _ppgtt_set_root_entry(struct intel_vgpu_mm *mm, 598 struct intel_gvt_gtt_entry *entry, unsigned long index, 599 bool guest) 600 { 601 const struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops; 602 603 pte_ops->set_entry(guest ? mm->ppgtt_mm.guest_pdps : 604 mm->ppgtt_mm.shadow_pdps, 605 entry, index, false, 0, mm->vgpu); 606 } 607 608 static inline void ppgtt_set_shadow_root_entry(struct intel_vgpu_mm *mm, 609 struct intel_gvt_gtt_entry *entry, unsigned long index) 610 { 611 _ppgtt_set_root_entry(mm, entry, index, false); 612 } 613 614 static void ggtt_get_guest_entry(struct intel_vgpu_mm *mm, 615 struct intel_gvt_gtt_entry *entry, unsigned long index) 616 { 617 const struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops; 618 619 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT); 620 621 entry->type = GTT_TYPE_GGTT_PTE; 622 pte_ops->get_entry(mm->ggtt_mm.virtual_ggtt, entry, index, 623 false, 0, mm->vgpu); 624 } 625 626 static void ggtt_set_guest_entry(struct intel_vgpu_mm *mm, 627 struct intel_gvt_gtt_entry *entry, unsigned long index) 628 { 629 const struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops; 630 631 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT); 632 633 pte_ops->set_entry(mm->ggtt_mm.virtual_ggtt, entry, index, 634 false, 0, mm->vgpu); 635 } 636 637 static void ggtt_get_host_entry(struct intel_vgpu_mm *mm, 638 struct intel_gvt_gtt_entry *entry, unsigned long index) 639 { 640 const struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops; 641 642 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT); 643 644 pte_ops->get_entry(NULL, entry, index, false, 0, mm->vgpu); 645 } 646 647 static void ggtt_set_host_entry(struct intel_vgpu_mm *mm, 648 struct intel_gvt_gtt_entry *entry, unsigned long index) 649 { 650 const struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops; 651 unsigned long offset = index; 652 653 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT); 654 655 if (vgpu_gmadr_is_aperture(mm->vgpu, index << I915_GTT_PAGE_SHIFT)) { 656 offset -= (vgpu_aperture_gmadr_base(mm->vgpu) >> PAGE_SHIFT); 657 mm->ggtt_mm.host_ggtt_aperture[offset] = entry->val64; 658 } else if (vgpu_gmadr_is_hidden(mm->vgpu, index << I915_GTT_PAGE_SHIFT)) { 659 offset -= (vgpu_hidden_gmadr_base(mm->vgpu) >> PAGE_SHIFT); 660 mm->ggtt_mm.host_ggtt_hidden[offset] = entry->val64; 661 } 662 663 pte_ops->set_entry(NULL, entry, index, false, 0, mm->vgpu); 664 } 665 666 /* 667 * PPGTT shadow page table helpers. 668 */ 669 static inline int ppgtt_spt_get_entry( 670 struct intel_vgpu_ppgtt_spt *spt, 671 void *page_table, int type, 672 struct intel_gvt_gtt_entry *e, unsigned long index, 673 bool guest) 674 { 675 struct intel_gvt *gvt = spt->vgpu->gvt; 676 const struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops; 677 int ret; 678 679 e->type = get_entry_type(type); 680 681 if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n")) 682 return -EINVAL; 683 684 ret = ops->get_entry(page_table, e, index, guest, 685 spt->guest_page.gfn << I915_GTT_PAGE_SHIFT, 686 spt->vgpu); 687 if (ret) 688 return ret; 689 690 update_entry_type_for_real(ops, e, guest ? 691 spt->guest_page.pde_ips : false); 692 693 gvt_vdbg_mm("read ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n", 694 type, e->type, index, e->val64); 695 return 0; 696 } 697 698 static inline int ppgtt_spt_set_entry( 699 struct intel_vgpu_ppgtt_spt *spt, 700 void *page_table, int type, 701 struct intel_gvt_gtt_entry *e, unsigned long index, 702 bool guest) 703 { 704 struct intel_gvt *gvt = spt->vgpu->gvt; 705 const struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops; 706 707 if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n")) 708 return -EINVAL; 709 710 gvt_vdbg_mm("set ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n", 711 type, e->type, index, e->val64); 712 713 return ops->set_entry(page_table, e, index, guest, 714 spt->guest_page.gfn << I915_GTT_PAGE_SHIFT, 715 spt->vgpu); 716 } 717 718 #define ppgtt_get_guest_entry(spt, e, index) \ 719 ppgtt_spt_get_entry(spt, NULL, \ 720 spt->guest_page.type, e, index, true) 721 722 #define ppgtt_set_guest_entry(spt, e, index) \ 723 ppgtt_spt_set_entry(spt, NULL, \ 724 spt->guest_page.type, e, index, true) 725 726 #define ppgtt_get_shadow_entry(spt, e, index) \ 727 ppgtt_spt_get_entry(spt, spt->shadow_page.vaddr, \ 728 spt->shadow_page.type, e, index, false) 729 730 #define ppgtt_set_shadow_entry(spt, e, index) \ 731 ppgtt_spt_set_entry(spt, spt->shadow_page.vaddr, \ 732 spt->shadow_page.type, e, index, false) 733 734 static void *alloc_spt(gfp_t gfp_mask) 735 { 736 struct intel_vgpu_ppgtt_spt *spt; 737 738 spt = kzalloc(sizeof(*spt), gfp_mask); 739 if (!spt) 740 return NULL; 741 742 spt->shadow_page.page = alloc_page(gfp_mask); 743 if (!spt->shadow_page.page) { 744 kfree(spt); 745 return NULL; 746 } 747 return spt; 748 } 749 750 static void free_spt(struct intel_vgpu_ppgtt_spt *spt) 751 { 752 __free_page(spt->shadow_page.page); 753 kfree(spt); 754 } 755 756 static int detach_oos_page(struct intel_vgpu *vgpu, 757 struct intel_vgpu_oos_page *oos_page); 758 759 static void ppgtt_free_spt(struct intel_vgpu_ppgtt_spt *spt) 760 { 761 struct device *kdev = spt->vgpu->gvt->gt->i915->drm.dev; 762 763 trace_spt_free(spt->vgpu->id, spt, spt->guest_page.type); 764 765 dma_unmap_page(kdev, spt->shadow_page.mfn << I915_GTT_PAGE_SHIFT, 4096, 766 DMA_BIDIRECTIONAL); 767 768 radix_tree_delete(&spt->vgpu->gtt.spt_tree, spt->shadow_page.mfn); 769 770 if (spt->guest_page.gfn) { 771 if (spt->guest_page.oos_page) 772 detach_oos_page(spt->vgpu, spt->guest_page.oos_page); 773 774 intel_vgpu_unregister_page_track(spt->vgpu, spt->guest_page.gfn); 775 } 776 777 list_del_init(&spt->post_shadow_list); 778 free_spt(spt); 779 } 780 781 static void ppgtt_free_all_spt(struct intel_vgpu *vgpu) 782 { 783 struct intel_vgpu_ppgtt_spt *spt, *spn; 784 struct radix_tree_iter iter; 785 DRM_LIST_HEAD(all_spt); 786 void __rcu **slot; 787 788 rcu_read_lock(); 789 radix_tree_for_each_slot(slot, &vgpu->gtt.spt_tree, &iter, 0) { 790 spt = radix_tree_deref_slot(slot); 791 list_move(&spt->post_shadow_list, &all_spt); 792 } 793 rcu_read_unlock(); 794 795 list_for_each_entry_safe(spt, spn, &all_spt, post_shadow_list) 796 ppgtt_free_spt(spt); 797 } 798 799 static int ppgtt_handle_guest_write_page_table_bytes( 800 struct intel_vgpu_ppgtt_spt *spt, 801 u64 pa, void *p_data, int bytes); 802 803 static int ppgtt_write_protection_handler( 804 struct intel_vgpu_page_track *page_track, 805 u64 gpa, void *data, int bytes) 806 { 807 struct intel_vgpu_ppgtt_spt *spt = page_track->priv_data; 808 809 int ret; 810 811 if (bytes != 4 && bytes != 8) 812 return -EINVAL; 813 814 ret = ppgtt_handle_guest_write_page_table_bytes(spt, gpa, data, bytes); 815 if (ret) 816 return ret; 817 return ret; 818 } 819 820 /* Find a spt by guest gfn. */ 821 static struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_gfn( 822 struct intel_vgpu *vgpu, unsigned long gfn) 823 { 824 struct intel_vgpu_page_track *track; 825 826 track = intel_vgpu_find_page_track(vgpu, gfn); 827 if (track && track->handler == ppgtt_write_protection_handler) 828 return track->priv_data; 829 830 return NULL; 831 } 832 833 /* Find the spt by shadow page mfn. */ 834 static inline struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_mfn( 835 struct intel_vgpu *vgpu, unsigned long mfn) 836 { 837 return radix_tree_lookup(&vgpu->gtt.spt_tree, mfn); 838 } 839 840 static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt); 841 842 /* Allocate shadow page table without guest page. */ 843 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt( 844 struct intel_vgpu *vgpu, enum intel_gvt_gtt_type type) 845 { 846 struct device *kdev = vgpu->gvt->gt->i915->drm.dev; 847 struct intel_vgpu_ppgtt_spt *spt = NULL; 848 dma_addr_t daddr; 849 int ret; 850 851 retry: 852 spt = alloc_spt(GFP_KERNEL | __GFP_ZERO); 853 if (!spt) { 854 if (reclaim_one_ppgtt_mm(vgpu->gvt)) 855 goto retry; 856 857 gvt_vgpu_err("fail to allocate ppgtt shadow page\n"); 858 return ERR_PTR(-ENOMEM); 859 } 860 861 spt->vgpu = vgpu; 862 atomic_set(&spt->refcount, 1); 863 INIT_LIST_HEAD(&spt->post_shadow_list); 864 865 /* 866 * Init shadow_page. 867 */ 868 spt->shadow_page.type = type; 869 daddr = dma_map_page(kdev, spt->shadow_page.page, 870 0, 4096, DMA_BIDIRECTIONAL); 871 if (dma_mapping_error(kdev, daddr)) { 872 gvt_vgpu_err("fail to map dma addr\n"); 873 ret = -EINVAL; 874 goto err_free_spt; 875 } 876 spt->shadow_page.vaddr = page_address(spt->shadow_page.page); 877 spt->shadow_page.mfn = daddr >> I915_GTT_PAGE_SHIFT; 878 879 ret = radix_tree_insert(&vgpu->gtt.spt_tree, spt->shadow_page.mfn, spt); 880 if (ret) 881 goto err_unmap_dma; 882 883 return spt; 884 885 err_unmap_dma: 886 dma_unmap_page(kdev, daddr, PAGE_SIZE, DMA_BIDIRECTIONAL); 887 err_free_spt: 888 free_spt(spt); 889 return ERR_PTR(ret); 890 } 891 892 /* Allocate shadow page table associated with specific gfn. */ 893 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt_gfn( 894 struct intel_vgpu *vgpu, enum intel_gvt_gtt_type type, 895 unsigned long gfn, bool guest_pde_ips) 896 { 897 struct intel_vgpu_ppgtt_spt *spt; 898 int ret; 899 900 spt = ppgtt_alloc_spt(vgpu, type); 901 if (IS_ERR(spt)) 902 return spt; 903 904 /* 905 * Init guest_page. 906 */ 907 ret = intel_vgpu_register_page_track(vgpu, gfn, 908 ppgtt_write_protection_handler, spt); 909 if (ret) { 910 ppgtt_free_spt(spt); 911 return ERR_PTR(ret); 912 } 913 914 spt->guest_page.type = type; 915 spt->guest_page.gfn = gfn; 916 spt->guest_page.pde_ips = guest_pde_ips; 917 918 trace_spt_alloc(vgpu->id, spt, type, spt->shadow_page.mfn, gfn); 919 920 return spt; 921 } 922 923 #define pt_entry_size_shift(spt) \ 924 ((spt)->vgpu->gvt->device_info.gtt_entry_size_shift) 925 926 #define pt_entries(spt) \ 927 (I915_GTT_PAGE_SIZE >> pt_entry_size_shift(spt)) 928 929 #define for_each_present_guest_entry(spt, e, i) \ 930 for (i = 0; i < pt_entries(spt); \ 931 i += spt->guest_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \ 932 if (!ppgtt_get_guest_entry(spt, e, i) && \ 933 spt->vgpu->gvt->gtt.pte_ops->test_present(e)) 934 935 #define for_each_present_shadow_entry(spt, e, i) \ 936 for (i = 0; i < pt_entries(spt); \ 937 i += spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \ 938 if (!ppgtt_get_shadow_entry(spt, e, i) && \ 939 spt->vgpu->gvt->gtt.pte_ops->test_present(e)) 940 941 #define for_each_shadow_entry(spt, e, i) \ 942 for (i = 0; i < pt_entries(spt); \ 943 i += (spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1)) \ 944 if (!ppgtt_get_shadow_entry(spt, e, i)) 945 946 static inline void ppgtt_get_spt(struct intel_vgpu_ppgtt_spt *spt) 947 { 948 int v = atomic_read(&spt->refcount); 949 950 trace_spt_refcount(spt->vgpu->id, "inc", spt, v, (v + 1)); 951 atomic_inc(&spt->refcount); 952 } 953 954 static inline int ppgtt_put_spt(struct intel_vgpu_ppgtt_spt *spt) 955 { 956 int v = atomic_read(&spt->refcount); 957 958 trace_spt_refcount(spt->vgpu->id, "dec", spt, v, (v - 1)); 959 return atomic_dec_return(&spt->refcount); 960 } 961 962 static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt); 963 964 static int ppgtt_invalidate_spt_by_shadow_entry(struct intel_vgpu *vgpu, 965 struct intel_gvt_gtt_entry *e) 966 { 967 struct drm_i915_private *i915 = vgpu->gvt->gt->i915; 968 const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 969 struct intel_vgpu_ppgtt_spt *s; 970 enum intel_gvt_gtt_type cur_pt_type; 971 972 GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(e->type))); 973 974 if (e->type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY 975 && e->type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY) { 976 cur_pt_type = get_next_pt_type(e->type); 977 978 if (!gtt_type_is_pt(cur_pt_type) || 979 !gtt_type_is_pt(cur_pt_type + 1)) { 980 drm_WARN(&i915->drm, 1, 981 "Invalid page table type, cur_pt_type is: %d\n", 982 cur_pt_type); 983 return -EINVAL; 984 } 985 986 cur_pt_type += 1; 987 988 if (ops->get_pfn(e) == 989 vgpu->gtt.scratch_pt[cur_pt_type].page_mfn) 990 return 0; 991 } 992 s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e)); 993 if (!s) { 994 gvt_vgpu_err("fail to find shadow page: mfn: 0x%lx\n", 995 ops->get_pfn(e)); 996 return -ENXIO; 997 } 998 return ppgtt_invalidate_spt(s); 999 } 1000 1001 static inline void ppgtt_invalidate_pte(struct intel_vgpu_ppgtt_spt *spt, 1002 struct intel_gvt_gtt_entry *entry) 1003 { 1004 struct intel_vgpu *vgpu = spt->vgpu; 1005 const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 1006 unsigned long pfn; 1007 int type; 1008 1009 pfn = ops->get_pfn(entry); 1010 type = spt->shadow_page.type; 1011 1012 /* Uninitialized spte or unshadowed spte. */ 1013 if (!pfn || pfn == vgpu->gtt.scratch_pt[type].page_mfn) 1014 return; 1015 1016 intel_gvt_dma_unmap_guest_page(vgpu, pfn << PAGE_SHIFT); 1017 } 1018 1019 static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt) 1020 { 1021 struct intel_vgpu *vgpu = spt->vgpu; 1022 struct intel_gvt_gtt_entry e; 1023 unsigned long index; 1024 int ret; 1025 1026 trace_spt_change(spt->vgpu->id, "die", spt, 1027 spt->guest_page.gfn, spt->shadow_page.type); 1028 1029 if (ppgtt_put_spt(spt) > 0) 1030 return 0; 1031 1032 for_each_present_shadow_entry(spt, &e, index) { 1033 switch (e.type) { 1034 case GTT_TYPE_PPGTT_PTE_4K_ENTRY: 1035 gvt_vdbg_mm("invalidate 4K entry\n"); 1036 ppgtt_invalidate_pte(spt, &e); 1037 break; 1038 case GTT_TYPE_PPGTT_PTE_64K_ENTRY: 1039 /* We don't setup 64K shadow entry so far. */ 1040 WARN(1, "suspicious 64K gtt entry\n"); 1041 continue; 1042 case GTT_TYPE_PPGTT_PTE_2M_ENTRY: 1043 gvt_vdbg_mm("invalidate 2M entry\n"); 1044 continue; 1045 case GTT_TYPE_PPGTT_PTE_1G_ENTRY: 1046 WARN(1, "GVT doesn't support 1GB page\n"); 1047 continue; 1048 case GTT_TYPE_PPGTT_PML4_ENTRY: 1049 case GTT_TYPE_PPGTT_PDP_ENTRY: 1050 case GTT_TYPE_PPGTT_PDE_ENTRY: 1051 gvt_vdbg_mm("invalidate PMUL4/PDP/PDE entry\n"); 1052 ret = ppgtt_invalidate_spt_by_shadow_entry( 1053 spt->vgpu, &e); 1054 if (ret) 1055 goto fail; 1056 break; 1057 default: 1058 GEM_BUG_ON(1); 1059 } 1060 } 1061 1062 trace_spt_change(spt->vgpu->id, "release", spt, 1063 spt->guest_page.gfn, spt->shadow_page.type); 1064 ppgtt_free_spt(spt); 1065 return 0; 1066 fail: 1067 gvt_vgpu_err("fail: shadow page %p shadow entry 0x%llx type %d\n", 1068 spt, e.val64, e.type); 1069 return ret; 1070 } 1071 1072 static bool vgpu_ips_enabled(struct intel_vgpu *vgpu) 1073 { 1074 struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915; 1075 1076 if (GRAPHICS_VER(dev_priv) == 9) { 1077 u32 ips = vgpu_vreg_t(vgpu, GEN8_GAMW_ECO_DEV_RW_IA) & 1078 GAMW_ECO_ENABLE_64K_IPS_FIELD; 1079 1080 return ips == GAMW_ECO_ENABLE_64K_IPS_FIELD; 1081 } else if (GRAPHICS_VER(dev_priv) >= 11) { 1082 /* 64K paging only controlled by IPS bit in PTE now. */ 1083 return true; 1084 } else 1085 return false; 1086 } 1087 1088 static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt); 1089 1090 static struct intel_vgpu_ppgtt_spt *ppgtt_populate_spt_by_guest_entry( 1091 struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *we) 1092 { 1093 const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 1094 struct intel_vgpu_ppgtt_spt *spt = NULL; 1095 bool ips = false; 1096 int ret; 1097 1098 GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(we->type))); 1099 1100 if (we->type == GTT_TYPE_PPGTT_PDE_ENTRY) 1101 ips = vgpu_ips_enabled(vgpu) && ops->test_ips(we); 1102 1103 spt = intel_vgpu_find_spt_by_gfn(vgpu, ops->get_pfn(we)); 1104 if (spt) { 1105 ppgtt_get_spt(spt); 1106 1107 if (ips != spt->guest_page.pde_ips) { 1108 spt->guest_page.pde_ips = ips; 1109 1110 gvt_dbg_mm("reshadow PDE since ips changed\n"); 1111 clear_page(spt->shadow_page.vaddr); 1112 ret = ppgtt_populate_spt(spt); 1113 if (ret) { 1114 ppgtt_put_spt(spt); 1115 goto err; 1116 } 1117 } 1118 } else { 1119 int type = get_next_pt_type(we->type); 1120 1121 if (!gtt_type_is_pt(type)) { 1122 ret = -EINVAL; 1123 goto err; 1124 } 1125 1126 spt = ppgtt_alloc_spt_gfn(vgpu, type, ops->get_pfn(we), ips); 1127 if (IS_ERR(spt)) { 1128 ret = PTR_ERR(spt); 1129 goto err; 1130 } 1131 1132 ret = intel_vgpu_enable_page_track(vgpu, spt->guest_page.gfn); 1133 if (ret) 1134 goto err_free_spt; 1135 1136 ret = ppgtt_populate_spt(spt); 1137 if (ret) 1138 goto err_free_spt; 1139 1140 trace_spt_change(vgpu->id, "new", spt, spt->guest_page.gfn, 1141 spt->shadow_page.type); 1142 } 1143 return spt; 1144 1145 err_free_spt: 1146 ppgtt_free_spt(spt); 1147 spt = NULL; 1148 err: 1149 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n", 1150 spt, we->val64, we->type); 1151 return ERR_PTR(ret); 1152 } 1153 1154 static inline void ppgtt_generate_shadow_entry(struct intel_gvt_gtt_entry *se, 1155 struct intel_vgpu_ppgtt_spt *s, struct intel_gvt_gtt_entry *ge) 1156 { 1157 const struct intel_gvt_gtt_pte_ops *ops = s->vgpu->gvt->gtt.pte_ops; 1158 1159 se->type = ge->type; 1160 se->val64 = ge->val64; 1161 1162 /* Because we always split 64KB pages, so clear IPS in shadow PDE. */ 1163 if (se->type == GTT_TYPE_PPGTT_PDE_ENTRY) 1164 ops->clear_ips(se); 1165 1166 ops->set_pfn(se, s->shadow_page.mfn); 1167 } 1168 1169 /* 1170 * Check if can do 2M page 1171 * @vgpu: target vgpu 1172 * @entry: target pfn's gtt entry 1173 * 1174 * Return 1 if 2MB huge gtt shadowing is possible, 0 if miscondition, 1175 * negative if found err. 1176 */ 1177 static int is_2MB_gtt_possible(struct intel_vgpu *vgpu, 1178 struct intel_gvt_gtt_entry *entry) 1179 { 1180 const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 1181 kvm_pfn_t pfn; 1182 int ret; 1183 1184 if (!HAS_PAGE_SIZES(vgpu->gvt->gt->i915, I915_GTT_PAGE_SIZE_2M)) 1185 return 0; 1186 1187 if (!vgpu->attached) 1188 return -EINVAL; 1189 pfn = gfn_to_pfn(vgpu->vfio_device.kvm, ops->get_pfn(entry)); 1190 if (is_error_noslot_pfn(pfn)) 1191 return -EINVAL; 1192 1193 if (!pfn_valid(pfn)) 1194 return -EINVAL; 1195 1196 ret = PageTransHuge(pfn_to_page(pfn)); 1197 kvm_release_pfn_clean(pfn); 1198 return ret; 1199 } 1200 1201 static int split_2MB_gtt_entry(struct intel_vgpu *vgpu, 1202 struct intel_vgpu_ppgtt_spt *spt, unsigned long index, 1203 struct intel_gvt_gtt_entry *se) 1204 { 1205 const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 1206 struct intel_vgpu_ppgtt_spt *sub_spt; 1207 struct intel_gvt_gtt_entry sub_se; 1208 unsigned long start_gfn; 1209 dma_addr_t dma_addr; 1210 unsigned long sub_index; 1211 int ret; 1212 1213 gvt_dbg_mm("Split 2M gtt entry, index %lu\n", index); 1214 1215 start_gfn = ops->get_pfn(se); 1216 1217 sub_spt = ppgtt_alloc_spt(vgpu, GTT_TYPE_PPGTT_PTE_PT); 1218 if (IS_ERR(sub_spt)) 1219 return PTR_ERR(sub_spt); 1220 1221 for_each_shadow_entry(sub_spt, &sub_se, sub_index) { 1222 ret = intel_gvt_dma_map_guest_page(vgpu, start_gfn + sub_index, 1223 PAGE_SIZE, &dma_addr); 1224 if (ret) 1225 goto err; 1226 sub_se.val64 = se->val64; 1227 1228 /* Copy the PAT field from PDE. */ 1229 sub_se.val64 &= ~_PAGE_PAT; 1230 sub_se.val64 |= (se->val64 & _PAGE_PAT_LARGE) >> 5; 1231 1232 ops->set_pfn(&sub_se, dma_addr >> PAGE_SHIFT); 1233 ppgtt_set_shadow_entry(sub_spt, &sub_se, sub_index); 1234 } 1235 1236 /* Clear dirty field. */ 1237 se->val64 &= ~_PAGE_DIRTY; 1238 1239 ops->clear_pse(se); 1240 ops->clear_ips(se); 1241 ops->set_pfn(se, sub_spt->shadow_page.mfn); 1242 ppgtt_set_shadow_entry(spt, se, index); 1243 return 0; 1244 err: 1245 /* Cancel the existing addess mappings of DMA addr. */ 1246 for_each_present_shadow_entry(sub_spt, &sub_se, sub_index) { 1247 gvt_vdbg_mm("invalidate 4K entry\n"); 1248 ppgtt_invalidate_pte(sub_spt, &sub_se); 1249 } 1250 /* Release the new allocated spt. */ 1251 trace_spt_change(sub_spt->vgpu->id, "release", sub_spt, 1252 sub_spt->guest_page.gfn, sub_spt->shadow_page.type); 1253 ppgtt_free_spt(sub_spt); 1254 return ret; 1255 } 1256 1257 static int split_64KB_gtt_entry(struct intel_vgpu *vgpu, 1258 struct intel_vgpu_ppgtt_spt *spt, unsigned long index, 1259 struct intel_gvt_gtt_entry *se) 1260 { 1261 const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 1262 struct intel_gvt_gtt_entry entry = *se; 1263 unsigned long start_gfn; 1264 dma_addr_t dma_addr; 1265 int i, ret; 1266 1267 gvt_vdbg_mm("Split 64K gtt entry, index %lu\n", index); 1268 1269 GEM_BUG_ON(index % GTT_64K_PTE_STRIDE); 1270 1271 start_gfn = ops->get_pfn(se); 1272 1273 entry.type = GTT_TYPE_PPGTT_PTE_4K_ENTRY; 1274 ops->set_64k_splited(&entry); 1275 1276 for (i = 0; i < GTT_64K_PTE_STRIDE; i++) { 1277 ret = intel_gvt_dma_map_guest_page(vgpu, start_gfn + i, 1278 PAGE_SIZE, &dma_addr); 1279 if (ret) 1280 return ret; 1281 1282 ops->set_pfn(&entry, dma_addr >> PAGE_SHIFT); 1283 ppgtt_set_shadow_entry(spt, &entry, index + i); 1284 } 1285 return 0; 1286 } 1287 1288 static int ppgtt_populate_shadow_entry(struct intel_vgpu *vgpu, 1289 struct intel_vgpu_ppgtt_spt *spt, unsigned long index, 1290 struct intel_gvt_gtt_entry *ge) 1291 { 1292 const struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops; 1293 struct intel_gvt_gtt_entry se = *ge; 1294 unsigned long gfn, page_size = PAGE_SIZE; 1295 dma_addr_t dma_addr; 1296 int ret; 1297 1298 if (!pte_ops->test_present(ge)) 1299 return 0; 1300 1301 gfn = pte_ops->get_pfn(ge); 1302 1303 switch (ge->type) { 1304 case GTT_TYPE_PPGTT_PTE_4K_ENTRY: 1305 gvt_vdbg_mm("shadow 4K gtt entry\n"); 1306 break; 1307 case GTT_TYPE_PPGTT_PTE_64K_ENTRY: 1308 gvt_vdbg_mm("shadow 64K gtt entry\n"); 1309 /* 1310 * The layout of 64K page is special, the page size is 1311 * controlled by uper PDE. To be simple, we always split 1312 * 64K page to smaller 4K pages in shadow PT. 1313 */ 1314 return split_64KB_gtt_entry(vgpu, spt, index, &se); 1315 case GTT_TYPE_PPGTT_PTE_2M_ENTRY: 1316 gvt_vdbg_mm("shadow 2M gtt entry\n"); 1317 ret = is_2MB_gtt_possible(vgpu, ge); 1318 if (ret == 0) 1319 return split_2MB_gtt_entry(vgpu, spt, index, &se); 1320 else if (ret < 0) 1321 return ret; 1322 page_size = I915_GTT_PAGE_SIZE_2M; 1323 break; 1324 case GTT_TYPE_PPGTT_PTE_1G_ENTRY: 1325 gvt_vgpu_err("GVT doesn't support 1GB entry\n"); 1326 return -EINVAL; 1327 default: 1328 GEM_BUG_ON(1); 1329 } 1330 1331 /* direct shadow */ 1332 ret = intel_gvt_dma_map_guest_page(vgpu, gfn, page_size, &dma_addr); 1333 if (ret) 1334 return -ENXIO; 1335 1336 pte_ops->set_pfn(&se, dma_addr >> PAGE_SHIFT); 1337 ppgtt_set_shadow_entry(spt, &se, index); 1338 return 0; 1339 } 1340 1341 static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt) 1342 { 1343 struct intel_vgpu *vgpu = spt->vgpu; 1344 struct intel_gvt *gvt = vgpu->gvt; 1345 const struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops; 1346 struct intel_vgpu_ppgtt_spt *s; 1347 struct intel_gvt_gtt_entry se, ge; 1348 unsigned long gfn, i; 1349 int ret; 1350 1351 trace_spt_change(spt->vgpu->id, "born", spt, 1352 spt->guest_page.gfn, spt->shadow_page.type); 1353 1354 for_each_present_guest_entry(spt, &ge, i) { 1355 if (gtt_type_is_pt(get_next_pt_type(ge.type))) { 1356 s = ppgtt_populate_spt_by_guest_entry(vgpu, &ge); 1357 if (IS_ERR(s)) { 1358 ret = PTR_ERR(s); 1359 goto fail; 1360 } 1361 ppgtt_get_shadow_entry(spt, &se, i); 1362 ppgtt_generate_shadow_entry(&se, s, &ge); 1363 ppgtt_set_shadow_entry(spt, &se, i); 1364 } else { 1365 gfn = ops->get_pfn(&ge); 1366 if (!intel_gvt_is_valid_gfn(vgpu, gfn)) { 1367 ops->set_pfn(&se, gvt->gtt.scratch_mfn); 1368 ppgtt_set_shadow_entry(spt, &se, i); 1369 continue; 1370 } 1371 1372 ret = ppgtt_populate_shadow_entry(vgpu, spt, i, &ge); 1373 if (ret) 1374 goto fail; 1375 } 1376 } 1377 return 0; 1378 fail: 1379 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n", 1380 spt, ge.val64, ge.type); 1381 return ret; 1382 } 1383 1384 static int ppgtt_handle_guest_entry_removal(struct intel_vgpu_ppgtt_spt *spt, 1385 struct intel_gvt_gtt_entry *se, unsigned long index) 1386 { 1387 struct intel_vgpu *vgpu = spt->vgpu; 1388 const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 1389 int ret; 1390 1391 trace_spt_guest_change(spt->vgpu->id, "remove", spt, 1392 spt->shadow_page.type, se->val64, index); 1393 1394 gvt_vdbg_mm("destroy old shadow entry, type %d, index %lu, value %llx\n", 1395 se->type, index, se->val64); 1396 1397 if (!ops->test_present(se)) 1398 return 0; 1399 1400 if (ops->get_pfn(se) == 1401 vgpu->gtt.scratch_pt[spt->shadow_page.type].page_mfn) 1402 return 0; 1403 1404 if (gtt_type_is_pt(get_next_pt_type(se->type))) { 1405 struct intel_vgpu_ppgtt_spt *s = 1406 intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(se)); 1407 if (!s) { 1408 gvt_vgpu_err("fail to find guest page\n"); 1409 ret = -ENXIO; 1410 goto fail; 1411 } 1412 ret = ppgtt_invalidate_spt(s); 1413 if (ret) 1414 goto fail; 1415 } else { 1416 /* We don't setup 64K shadow entry so far. */ 1417 WARN(se->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY, 1418 "suspicious 64K entry\n"); 1419 ppgtt_invalidate_pte(spt, se); 1420 } 1421 1422 return 0; 1423 fail: 1424 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n", 1425 spt, se->val64, se->type); 1426 return ret; 1427 } 1428 1429 static int ppgtt_handle_guest_entry_add(struct intel_vgpu_ppgtt_spt *spt, 1430 struct intel_gvt_gtt_entry *we, unsigned long index) 1431 { 1432 struct intel_vgpu *vgpu = spt->vgpu; 1433 struct intel_gvt_gtt_entry m; 1434 struct intel_vgpu_ppgtt_spt *s; 1435 int ret; 1436 1437 trace_spt_guest_change(spt->vgpu->id, "add", spt, spt->shadow_page.type, 1438 we->val64, index); 1439 1440 gvt_vdbg_mm("add shadow entry: type %d, index %lu, value %llx\n", 1441 we->type, index, we->val64); 1442 1443 if (gtt_type_is_pt(get_next_pt_type(we->type))) { 1444 s = ppgtt_populate_spt_by_guest_entry(vgpu, we); 1445 if (IS_ERR(s)) { 1446 ret = PTR_ERR(s); 1447 goto fail; 1448 } 1449 ppgtt_get_shadow_entry(spt, &m, index); 1450 ppgtt_generate_shadow_entry(&m, s, we); 1451 ppgtt_set_shadow_entry(spt, &m, index); 1452 } else { 1453 ret = ppgtt_populate_shadow_entry(vgpu, spt, index, we); 1454 if (ret) 1455 goto fail; 1456 } 1457 return 0; 1458 fail: 1459 gvt_vgpu_err("fail: spt %p guest entry 0x%llx type %d\n", 1460 spt, we->val64, we->type); 1461 return ret; 1462 } 1463 1464 static int sync_oos_page(struct intel_vgpu *vgpu, 1465 struct intel_vgpu_oos_page *oos_page) 1466 { 1467 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; 1468 struct intel_gvt *gvt = vgpu->gvt; 1469 const struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops; 1470 struct intel_vgpu_ppgtt_spt *spt = oos_page->spt; 1471 struct intel_gvt_gtt_entry old, new; 1472 int index; 1473 int ret; 1474 1475 trace_oos_change(vgpu->id, "sync", oos_page->id, 1476 spt, spt->guest_page.type); 1477 1478 old.type = new.type = get_entry_type(spt->guest_page.type); 1479 old.val64 = new.val64 = 0; 1480 1481 for (index = 0; index < (I915_GTT_PAGE_SIZE >> 1482 info->gtt_entry_size_shift); index++) { 1483 ops->get_entry(oos_page->mem, &old, index, false, 0, vgpu); 1484 ops->get_entry(NULL, &new, index, true, 1485 spt->guest_page.gfn << PAGE_SHIFT, vgpu); 1486 1487 if (old.val64 == new.val64 1488 && !test_and_clear_bit(index, spt->post_shadow_bitmap)) 1489 continue; 1490 1491 trace_oos_sync(vgpu->id, oos_page->id, 1492 spt, spt->guest_page.type, 1493 new.val64, index); 1494 1495 ret = ppgtt_populate_shadow_entry(vgpu, spt, index, &new); 1496 if (ret) 1497 return ret; 1498 1499 ops->set_entry(oos_page->mem, &new, index, false, 0, vgpu); 1500 } 1501 1502 spt->guest_page.write_cnt = 0; 1503 list_del_init(&spt->post_shadow_list); 1504 return 0; 1505 } 1506 1507 static int detach_oos_page(struct intel_vgpu *vgpu, 1508 struct intel_vgpu_oos_page *oos_page) 1509 { 1510 struct intel_gvt *gvt = vgpu->gvt; 1511 struct intel_vgpu_ppgtt_spt *spt = oos_page->spt; 1512 1513 trace_oos_change(vgpu->id, "detach", oos_page->id, 1514 spt, spt->guest_page.type); 1515 1516 spt->guest_page.write_cnt = 0; 1517 spt->guest_page.oos_page = NULL; 1518 oos_page->spt = NULL; 1519 1520 list_del_init(&oos_page->vm_list); 1521 list_move_tail(&oos_page->list, &gvt->gtt.oos_page_free_list_head); 1522 1523 return 0; 1524 } 1525 1526 static int attach_oos_page(struct intel_vgpu_oos_page *oos_page, 1527 struct intel_vgpu_ppgtt_spt *spt) 1528 { 1529 struct intel_gvt *gvt = spt->vgpu->gvt; 1530 int ret; 1531 1532 ret = intel_gvt_read_gpa(spt->vgpu, 1533 spt->guest_page.gfn << I915_GTT_PAGE_SHIFT, 1534 oos_page->mem, I915_GTT_PAGE_SIZE); 1535 if (ret) 1536 return ret; 1537 1538 oos_page->spt = spt; 1539 spt->guest_page.oos_page = oos_page; 1540 1541 list_move_tail(&oos_page->list, &gvt->gtt.oos_page_use_list_head); 1542 1543 trace_oos_change(spt->vgpu->id, "attach", oos_page->id, 1544 spt, spt->guest_page.type); 1545 return 0; 1546 } 1547 1548 static int ppgtt_set_guest_page_sync(struct intel_vgpu_ppgtt_spt *spt) 1549 { 1550 struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page; 1551 int ret; 1552 1553 ret = intel_vgpu_enable_page_track(spt->vgpu, spt->guest_page.gfn); 1554 if (ret) 1555 return ret; 1556 1557 trace_oos_change(spt->vgpu->id, "set page sync", oos_page->id, 1558 spt, spt->guest_page.type); 1559 1560 list_del_init(&oos_page->vm_list); 1561 return sync_oos_page(spt->vgpu, oos_page); 1562 } 1563 1564 static int ppgtt_allocate_oos_page(struct intel_vgpu_ppgtt_spt *spt) 1565 { 1566 struct intel_gvt *gvt = spt->vgpu->gvt; 1567 struct intel_gvt_gtt *gtt = &gvt->gtt; 1568 struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page; 1569 int ret; 1570 1571 WARN(oos_page, "shadow PPGTT page has already has a oos page\n"); 1572 1573 if (list_empty(>t->oos_page_free_list_head)) { 1574 oos_page = container_of(gtt->oos_page_use_list_head.next, 1575 struct intel_vgpu_oos_page, list); 1576 ret = ppgtt_set_guest_page_sync(oos_page->spt); 1577 if (ret) 1578 return ret; 1579 ret = detach_oos_page(spt->vgpu, oos_page); 1580 if (ret) 1581 return ret; 1582 } else 1583 oos_page = container_of(gtt->oos_page_free_list_head.next, 1584 struct intel_vgpu_oos_page, list); 1585 return attach_oos_page(oos_page, spt); 1586 } 1587 1588 static int ppgtt_set_guest_page_oos(struct intel_vgpu_ppgtt_spt *spt) 1589 { 1590 struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page; 1591 1592 if (WARN(!oos_page, "shadow PPGTT page should have a oos page\n")) 1593 return -EINVAL; 1594 1595 trace_oos_change(spt->vgpu->id, "set page out of sync", oos_page->id, 1596 spt, spt->guest_page.type); 1597 1598 list_add_tail(&oos_page->vm_list, &spt->vgpu->gtt.oos_page_list_head); 1599 return intel_vgpu_disable_page_track(spt->vgpu, spt->guest_page.gfn); 1600 } 1601 1602 /** 1603 * intel_vgpu_sync_oos_pages - sync all the out-of-synced shadow for vGPU 1604 * @vgpu: a vGPU 1605 * 1606 * This function is called before submitting a guest workload to host, 1607 * to sync all the out-of-synced shadow for vGPU 1608 * 1609 * Returns: 1610 * Zero on success, negative error code if failed. 1611 */ 1612 int intel_vgpu_sync_oos_pages(struct intel_vgpu *vgpu) 1613 { 1614 struct list_head *pos, *n; 1615 struct intel_vgpu_oos_page *oos_page; 1616 int ret; 1617 1618 if (!enable_out_of_sync) 1619 return 0; 1620 1621 list_for_each_safe(pos, n, &vgpu->gtt.oos_page_list_head) { 1622 oos_page = container_of(pos, 1623 struct intel_vgpu_oos_page, vm_list); 1624 ret = ppgtt_set_guest_page_sync(oos_page->spt); 1625 if (ret) 1626 return ret; 1627 } 1628 return 0; 1629 } 1630 1631 /* 1632 * The heart of PPGTT shadow page table. 1633 */ 1634 static int ppgtt_handle_guest_write_page_table( 1635 struct intel_vgpu_ppgtt_spt *spt, 1636 struct intel_gvt_gtt_entry *we, unsigned long index) 1637 { 1638 struct intel_vgpu *vgpu = spt->vgpu; 1639 int type = spt->shadow_page.type; 1640 const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 1641 struct intel_gvt_gtt_entry old_se; 1642 int new_present; 1643 int i, ret; 1644 1645 new_present = ops->test_present(we); 1646 1647 /* 1648 * Adding the new entry first and then removing the old one, that can 1649 * guarantee the ppgtt table is validated during the window between 1650 * adding and removal. 1651 */ 1652 ppgtt_get_shadow_entry(spt, &old_se, index); 1653 1654 if (new_present) { 1655 ret = ppgtt_handle_guest_entry_add(spt, we, index); 1656 if (ret) 1657 goto fail; 1658 } 1659 1660 ret = ppgtt_handle_guest_entry_removal(spt, &old_se, index); 1661 if (ret) 1662 goto fail; 1663 1664 if (!new_present) { 1665 /* For 64KB splited entries, we need clear them all. */ 1666 if (ops->test_64k_splited(&old_se) && 1667 !(index % GTT_64K_PTE_STRIDE)) { 1668 gvt_vdbg_mm("remove splited 64K shadow entries\n"); 1669 for (i = 0; i < GTT_64K_PTE_STRIDE; i++) { 1670 ops->clear_64k_splited(&old_se); 1671 ops->set_pfn(&old_se, 1672 vgpu->gtt.scratch_pt[type].page_mfn); 1673 ppgtt_set_shadow_entry(spt, &old_se, index + i); 1674 } 1675 } else if (old_se.type == GTT_TYPE_PPGTT_PTE_2M_ENTRY || 1676 old_se.type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) { 1677 ops->clear_pse(&old_se); 1678 ops->set_pfn(&old_se, 1679 vgpu->gtt.scratch_pt[type].page_mfn); 1680 ppgtt_set_shadow_entry(spt, &old_se, index); 1681 } else { 1682 ops->set_pfn(&old_se, 1683 vgpu->gtt.scratch_pt[type].page_mfn); 1684 ppgtt_set_shadow_entry(spt, &old_se, index); 1685 } 1686 } 1687 1688 return 0; 1689 fail: 1690 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d.\n", 1691 spt, we->val64, we->type); 1692 return ret; 1693 } 1694 1695 1696 1697 static inline bool can_do_out_of_sync(struct intel_vgpu_ppgtt_spt *spt) 1698 { 1699 return enable_out_of_sync 1700 && gtt_type_is_pte_pt(spt->guest_page.type) 1701 && spt->guest_page.write_cnt >= 2; 1702 } 1703 1704 static void ppgtt_set_post_shadow(struct intel_vgpu_ppgtt_spt *spt, 1705 unsigned long index) 1706 { 1707 set_bit(index, spt->post_shadow_bitmap); 1708 if (!list_empty(&spt->post_shadow_list)) 1709 return; 1710 1711 list_add_tail(&spt->post_shadow_list, 1712 &spt->vgpu->gtt.post_shadow_list_head); 1713 } 1714 1715 /** 1716 * intel_vgpu_flush_post_shadow - flush the post shadow transactions 1717 * @vgpu: a vGPU 1718 * 1719 * This function is called before submitting a guest workload to host, 1720 * to flush all the post shadows for a vGPU. 1721 * 1722 * Returns: 1723 * Zero on success, negative error code if failed. 1724 */ 1725 int intel_vgpu_flush_post_shadow(struct intel_vgpu *vgpu) 1726 { 1727 struct list_head *pos, *n; 1728 struct intel_vgpu_ppgtt_spt *spt; 1729 struct intel_gvt_gtt_entry ge; 1730 unsigned long index; 1731 int ret; 1732 1733 list_for_each_safe(pos, n, &vgpu->gtt.post_shadow_list_head) { 1734 spt = container_of(pos, struct intel_vgpu_ppgtt_spt, 1735 post_shadow_list); 1736 1737 for_each_set_bit(index, spt->post_shadow_bitmap, 1738 GTT_ENTRY_NUM_IN_ONE_PAGE) { 1739 ppgtt_get_guest_entry(spt, &ge, index); 1740 1741 ret = ppgtt_handle_guest_write_page_table(spt, 1742 &ge, index); 1743 if (ret) 1744 return ret; 1745 clear_bit(index, spt->post_shadow_bitmap); 1746 } 1747 list_del_init(&spt->post_shadow_list); 1748 } 1749 return 0; 1750 } 1751 1752 static int ppgtt_handle_guest_write_page_table_bytes( 1753 struct intel_vgpu_ppgtt_spt *spt, 1754 u64 pa, void *p_data, int bytes) 1755 { 1756 struct intel_vgpu *vgpu = spt->vgpu; 1757 const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 1758 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; 1759 struct intel_gvt_gtt_entry we, se; 1760 unsigned long index; 1761 int ret; 1762 1763 index = (pa & (PAGE_SIZE - 1)) >> info->gtt_entry_size_shift; 1764 1765 ppgtt_get_guest_entry(spt, &we, index); 1766 1767 /* 1768 * For page table which has 64K gtt entry, only PTE#0, PTE#16, 1769 * PTE#32, ... PTE#496 are used. Unused PTEs update should be 1770 * ignored. 1771 */ 1772 if (we.type == GTT_TYPE_PPGTT_PTE_64K_ENTRY && 1773 (index % GTT_64K_PTE_STRIDE)) { 1774 gvt_vdbg_mm("Ignore write to unused PTE entry, index %lu\n", 1775 index); 1776 return 0; 1777 } 1778 1779 if (bytes == info->gtt_entry_size) { 1780 ret = ppgtt_handle_guest_write_page_table(spt, &we, index); 1781 if (ret) 1782 return ret; 1783 } else { 1784 if (!test_bit(index, spt->post_shadow_bitmap)) { 1785 int type = spt->shadow_page.type; 1786 1787 ppgtt_get_shadow_entry(spt, &se, index); 1788 ret = ppgtt_handle_guest_entry_removal(spt, &se, index); 1789 if (ret) 1790 return ret; 1791 ops->set_pfn(&se, vgpu->gtt.scratch_pt[type].page_mfn); 1792 ppgtt_set_shadow_entry(spt, &se, index); 1793 } 1794 ppgtt_set_post_shadow(spt, index); 1795 } 1796 1797 if (!enable_out_of_sync) 1798 return 0; 1799 1800 spt->guest_page.write_cnt++; 1801 1802 if (spt->guest_page.oos_page) 1803 ops->set_entry(spt->guest_page.oos_page->mem, &we, index, 1804 false, 0, vgpu); 1805 1806 if (can_do_out_of_sync(spt)) { 1807 if (!spt->guest_page.oos_page) 1808 ppgtt_allocate_oos_page(spt); 1809 1810 ret = ppgtt_set_guest_page_oos(spt); 1811 if (ret < 0) 1812 return ret; 1813 } 1814 return 0; 1815 } 1816 1817 static void invalidate_ppgtt_mm(struct intel_vgpu_mm *mm) 1818 { 1819 struct intel_vgpu *vgpu = mm->vgpu; 1820 struct intel_gvt *gvt = vgpu->gvt; 1821 struct intel_gvt_gtt *gtt = &gvt->gtt; 1822 const struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops; 1823 struct intel_gvt_gtt_entry se; 1824 int index; 1825 1826 if (!mm->ppgtt_mm.shadowed) 1827 return; 1828 1829 for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.shadow_pdps); index++) { 1830 ppgtt_get_shadow_root_entry(mm, &se, index); 1831 1832 if (!ops->test_present(&se)) 1833 continue; 1834 1835 ppgtt_invalidate_spt_by_shadow_entry(vgpu, &se); 1836 se.val64 = 0; 1837 ppgtt_set_shadow_root_entry(mm, &se, index); 1838 1839 trace_spt_guest_change(vgpu->id, "destroy root pointer", 1840 NULL, se.type, se.val64, index); 1841 } 1842 1843 mm->ppgtt_mm.shadowed = false; 1844 } 1845 1846 1847 static int shadow_ppgtt_mm(struct intel_vgpu_mm *mm) 1848 { 1849 struct intel_vgpu *vgpu = mm->vgpu; 1850 struct intel_gvt *gvt = vgpu->gvt; 1851 struct intel_gvt_gtt *gtt = &gvt->gtt; 1852 const struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops; 1853 struct intel_vgpu_ppgtt_spt *spt; 1854 struct intel_gvt_gtt_entry ge, se; 1855 int index, ret; 1856 1857 if (mm->ppgtt_mm.shadowed) 1858 return 0; 1859 1860 mm->ppgtt_mm.shadowed = true; 1861 1862 for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.guest_pdps); index++) { 1863 ppgtt_get_guest_root_entry(mm, &ge, index); 1864 1865 if (!ops->test_present(&ge)) 1866 continue; 1867 1868 trace_spt_guest_change(vgpu->id, __func__, NULL, 1869 ge.type, ge.val64, index); 1870 1871 spt = ppgtt_populate_spt_by_guest_entry(vgpu, &ge); 1872 if (IS_ERR(spt)) { 1873 gvt_vgpu_err("fail to populate guest root pointer\n"); 1874 ret = PTR_ERR(spt); 1875 goto fail; 1876 } 1877 ppgtt_generate_shadow_entry(&se, spt, &ge); 1878 ppgtt_set_shadow_root_entry(mm, &se, index); 1879 1880 trace_spt_guest_change(vgpu->id, "populate root pointer", 1881 NULL, se.type, se.val64, index); 1882 } 1883 1884 return 0; 1885 fail: 1886 invalidate_ppgtt_mm(mm); 1887 return ret; 1888 } 1889 1890 static struct intel_vgpu_mm *vgpu_alloc_mm(struct intel_vgpu *vgpu) 1891 { 1892 struct intel_vgpu_mm *mm; 1893 1894 mm = kzalloc(sizeof(*mm), GFP_KERNEL); 1895 if (!mm) 1896 return NULL; 1897 1898 mm->vgpu = vgpu; 1899 kref_init(&mm->ref); 1900 atomic_set(&mm->pincount, 0); 1901 1902 return mm; 1903 } 1904 1905 static void vgpu_free_mm(struct intel_vgpu_mm *mm) 1906 { 1907 kfree(mm); 1908 } 1909 1910 /** 1911 * intel_vgpu_create_ppgtt_mm - create a ppgtt mm object for a vGPU 1912 * @vgpu: a vGPU 1913 * @root_entry_type: ppgtt root entry type 1914 * @pdps: guest pdps. 1915 * 1916 * This function is used to create a ppgtt mm object for a vGPU. 1917 * 1918 * Returns: 1919 * Zero on success, negative error code in pointer if failed. 1920 */ 1921 struct intel_vgpu_mm *intel_vgpu_create_ppgtt_mm(struct intel_vgpu *vgpu, 1922 enum intel_gvt_gtt_type root_entry_type, u64 pdps[]) 1923 { 1924 struct intel_gvt *gvt = vgpu->gvt; 1925 struct intel_vgpu_mm *mm; 1926 int ret; 1927 1928 mm = vgpu_alloc_mm(vgpu); 1929 if (!mm) 1930 return ERR_PTR(-ENOMEM); 1931 1932 mm->type = INTEL_GVT_MM_PPGTT; 1933 1934 GEM_BUG_ON(root_entry_type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY && 1935 root_entry_type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY); 1936 mm->ppgtt_mm.root_entry_type = root_entry_type; 1937 1938 INIT_LIST_HEAD(&mm->ppgtt_mm.list); 1939 INIT_LIST_HEAD(&mm->ppgtt_mm.lru_list); 1940 INIT_LIST_HEAD(&mm->ppgtt_mm.link); 1941 1942 if (root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) 1943 mm->ppgtt_mm.guest_pdps[0] = pdps[0]; 1944 else 1945 memcpy(mm->ppgtt_mm.guest_pdps, pdps, 1946 sizeof(mm->ppgtt_mm.guest_pdps)); 1947 1948 ret = shadow_ppgtt_mm(mm); 1949 if (ret) { 1950 gvt_vgpu_err("failed to shadow ppgtt mm\n"); 1951 vgpu_free_mm(mm); 1952 return ERR_PTR(ret); 1953 } 1954 1955 list_add_tail(&mm->ppgtt_mm.list, &vgpu->gtt.ppgtt_mm_list_head); 1956 1957 mutex_lock(&gvt->gtt.ppgtt_mm_lock); 1958 list_add_tail(&mm->ppgtt_mm.lru_list, &gvt->gtt.ppgtt_mm_lru_list_head); 1959 mutex_unlock(&gvt->gtt.ppgtt_mm_lock); 1960 1961 return mm; 1962 } 1963 1964 static struct intel_vgpu_mm *intel_vgpu_create_ggtt_mm(struct intel_vgpu *vgpu) 1965 { 1966 struct intel_vgpu_mm *mm; 1967 unsigned long nr_entries; 1968 1969 mm = vgpu_alloc_mm(vgpu); 1970 if (!mm) 1971 return ERR_PTR(-ENOMEM); 1972 1973 mm->type = INTEL_GVT_MM_GGTT; 1974 1975 nr_entries = gvt_ggtt_gm_sz(vgpu->gvt) >> I915_GTT_PAGE_SHIFT; 1976 mm->ggtt_mm.virtual_ggtt = 1977 vzalloc(array_size(nr_entries, 1978 vgpu->gvt->device_info.gtt_entry_size)); 1979 if (!mm->ggtt_mm.virtual_ggtt) { 1980 vgpu_free_mm(mm); 1981 return ERR_PTR(-ENOMEM); 1982 } 1983 1984 mm->ggtt_mm.host_ggtt_aperture = vzalloc((vgpu_aperture_sz(vgpu) >> PAGE_SHIFT) * sizeof(u64)); 1985 if (!mm->ggtt_mm.host_ggtt_aperture) { 1986 vfree(mm->ggtt_mm.virtual_ggtt); 1987 vgpu_free_mm(mm); 1988 return ERR_PTR(-ENOMEM); 1989 } 1990 1991 mm->ggtt_mm.host_ggtt_hidden = vzalloc((vgpu_hidden_sz(vgpu) >> PAGE_SHIFT) * sizeof(u64)); 1992 if (!mm->ggtt_mm.host_ggtt_hidden) { 1993 vfree(mm->ggtt_mm.host_ggtt_aperture); 1994 vfree(mm->ggtt_mm.virtual_ggtt); 1995 vgpu_free_mm(mm); 1996 return ERR_PTR(-ENOMEM); 1997 } 1998 1999 return mm; 2000 } 2001 2002 /** 2003 * _intel_vgpu_mm_release - destroy a mm object 2004 * @mm_ref: a kref object 2005 * 2006 * This function is used to destroy a mm object for vGPU 2007 * 2008 */ 2009 void _intel_vgpu_mm_release(struct kref *mm_ref) 2010 { 2011 struct intel_vgpu_mm *mm = container_of(mm_ref, typeof(*mm), ref); 2012 2013 if (GEM_WARN_ON(atomic_read(&mm->pincount))) 2014 gvt_err("vgpu mm pin count bug detected\n"); 2015 2016 if (mm->type == INTEL_GVT_MM_PPGTT) { 2017 list_del(&mm->ppgtt_mm.list); 2018 2019 mutex_lock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock); 2020 list_del(&mm->ppgtt_mm.lru_list); 2021 mutex_unlock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock); 2022 2023 invalidate_ppgtt_mm(mm); 2024 } else { 2025 vfree(mm->ggtt_mm.virtual_ggtt); 2026 vfree(mm->ggtt_mm.host_ggtt_aperture); 2027 vfree(mm->ggtt_mm.host_ggtt_hidden); 2028 } 2029 2030 vgpu_free_mm(mm); 2031 } 2032 2033 /** 2034 * intel_vgpu_unpin_mm - decrease the pin count of a vGPU mm object 2035 * @mm: a vGPU mm object 2036 * 2037 * This function is called when user doesn't want to use a vGPU mm object 2038 */ 2039 void intel_vgpu_unpin_mm(struct intel_vgpu_mm *mm) 2040 { 2041 atomic_dec_if_positive(&mm->pincount); 2042 } 2043 2044 /** 2045 * intel_vgpu_pin_mm - increase the pin count of a vGPU mm object 2046 * @mm: target vgpu mm 2047 * 2048 * This function is called when user wants to use a vGPU mm object. If this 2049 * mm object hasn't been shadowed yet, the shadow will be populated at this 2050 * time. 2051 * 2052 * Returns: 2053 * Zero on success, negative error code if failed. 2054 */ 2055 int intel_vgpu_pin_mm(struct intel_vgpu_mm *mm) 2056 { 2057 int ret; 2058 2059 atomic_inc(&mm->pincount); 2060 2061 if (mm->type == INTEL_GVT_MM_PPGTT) { 2062 ret = shadow_ppgtt_mm(mm); 2063 if (ret) 2064 return ret; 2065 2066 mutex_lock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock); 2067 list_move_tail(&mm->ppgtt_mm.lru_list, 2068 &mm->vgpu->gvt->gtt.ppgtt_mm_lru_list_head); 2069 mutex_unlock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock); 2070 } 2071 2072 return 0; 2073 } 2074 2075 static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt) 2076 { 2077 struct intel_vgpu_mm *mm; 2078 struct list_head *pos, *n; 2079 2080 mutex_lock(&gvt->gtt.ppgtt_mm_lock); 2081 2082 list_for_each_safe(pos, n, &gvt->gtt.ppgtt_mm_lru_list_head) { 2083 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.lru_list); 2084 2085 if (atomic_read(&mm->pincount)) 2086 continue; 2087 2088 list_del_init(&mm->ppgtt_mm.lru_list); 2089 mutex_unlock(&gvt->gtt.ppgtt_mm_lock); 2090 invalidate_ppgtt_mm(mm); 2091 return 1; 2092 } 2093 mutex_unlock(&gvt->gtt.ppgtt_mm_lock); 2094 return 0; 2095 } 2096 2097 /* 2098 * GMA translation APIs. 2099 */ 2100 static inline int ppgtt_get_next_level_entry(struct intel_vgpu_mm *mm, 2101 struct intel_gvt_gtt_entry *e, unsigned long index, bool guest) 2102 { 2103 struct intel_vgpu *vgpu = mm->vgpu; 2104 const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 2105 struct intel_vgpu_ppgtt_spt *s; 2106 2107 s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e)); 2108 if (!s) 2109 return -ENXIO; 2110 2111 if (!guest) 2112 ppgtt_get_shadow_entry(s, e, index); 2113 else 2114 ppgtt_get_guest_entry(s, e, index); 2115 return 0; 2116 } 2117 2118 /** 2119 * intel_vgpu_gma_to_gpa - translate a gma to GPA 2120 * @mm: mm object. could be a PPGTT or GGTT mm object 2121 * @gma: graphics memory address in this mm object 2122 * 2123 * This function is used to translate a graphics memory address in specific 2124 * graphics memory space to guest physical address. 2125 * 2126 * Returns: 2127 * Guest physical address on success, INTEL_GVT_INVALID_ADDR if failed. 2128 */ 2129 unsigned long intel_vgpu_gma_to_gpa(struct intel_vgpu_mm *mm, unsigned long gma) 2130 { 2131 struct intel_vgpu *vgpu = mm->vgpu; 2132 struct intel_gvt *gvt = vgpu->gvt; 2133 const struct intel_gvt_gtt_pte_ops *pte_ops = gvt->gtt.pte_ops; 2134 const struct intel_gvt_gtt_gma_ops *gma_ops = gvt->gtt.gma_ops; 2135 unsigned long gpa = INTEL_GVT_INVALID_ADDR; 2136 unsigned long gma_index[4]; 2137 struct intel_gvt_gtt_entry e; 2138 int i, levels = 0; 2139 int ret; 2140 2141 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT && 2142 mm->type != INTEL_GVT_MM_PPGTT); 2143 2144 if (mm->type == INTEL_GVT_MM_GGTT) { 2145 if (!vgpu_gmadr_is_valid(vgpu, gma)) 2146 goto err; 2147 2148 ggtt_get_guest_entry(mm, &e, 2149 gma_ops->gma_to_ggtt_pte_index(gma)); 2150 2151 gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT) 2152 + (gma & ~I915_GTT_PAGE_MASK); 2153 2154 trace_gma_translate(vgpu->id, "ggtt", 0, 0, gma, gpa); 2155 } else { 2156 switch (mm->ppgtt_mm.root_entry_type) { 2157 case GTT_TYPE_PPGTT_ROOT_L4_ENTRY: 2158 ppgtt_get_shadow_root_entry(mm, &e, 0); 2159 2160 gma_index[0] = gma_ops->gma_to_pml4_index(gma); 2161 gma_index[1] = gma_ops->gma_to_l4_pdp_index(gma); 2162 gma_index[2] = gma_ops->gma_to_pde_index(gma); 2163 gma_index[3] = gma_ops->gma_to_pte_index(gma); 2164 levels = 4; 2165 break; 2166 case GTT_TYPE_PPGTT_ROOT_L3_ENTRY: 2167 ppgtt_get_shadow_root_entry(mm, &e, 2168 gma_ops->gma_to_l3_pdp_index(gma)); 2169 2170 gma_index[0] = gma_ops->gma_to_pde_index(gma); 2171 gma_index[1] = gma_ops->gma_to_pte_index(gma); 2172 levels = 2; 2173 break; 2174 default: 2175 GEM_BUG_ON(1); 2176 } 2177 2178 /* walk the shadow page table and get gpa from guest entry */ 2179 for (i = 0; i < levels; i++) { 2180 ret = ppgtt_get_next_level_entry(mm, &e, gma_index[i], 2181 (i == levels - 1)); 2182 if (ret) 2183 goto err; 2184 2185 if (!pte_ops->test_present(&e)) { 2186 gvt_dbg_core("GMA 0x%lx is not present\n", gma); 2187 goto err; 2188 } 2189 } 2190 2191 gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT) + 2192 (gma & ~I915_GTT_PAGE_MASK); 2193 trace_gma_translate(vgpu->id, "ppgtt", 0, 2194 mm->ppgtt_mm.root_entry_type, gma, gpa); 2195 } 2196 2197 return gpa; 2198 err: 2199 gvt_vgpu_err("invalid mm type: %d gma %lx\n", mm->type, gma); 2200 return INTEL_GVT_INVALID_ADDR; 2201 } 2202 2203 static int emulate_ggtt_mmio_read(struct intel_vgpu *vgpu, 2204 unsigned int off, void *p_data, unsigned int bytes) 2205 { 2206 struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm; 2207 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; 2208 unsigned long index = off >> info->gtt_entry_size_shift; 2209 unsigned long gma; 2210 struct intel_gvt_gtt_entry e; 2211 2212 if (bytes != 4 && bytes != 8) 2213 return -EINVAL; 2214 2215 gma = index << I915_GTT_PAGE_SHIFT; 2216 if (!intel_gvt_ggtt_validate_range(vgpu, 2217 gma, 1 << I915_GTT_PAGE_SHIFT)) { 2218 gvt_dbg_mm("read invalid ggtt at 0x%lx\n", gma); 2219 memset(p_data, 0, bytes); 2220 return 0; 2221 } 2222 2223 ggtt_get_guest_entry(ggtt_mm, &e, index); 2224 memcpy(p_data, (void *)&e.val64 + (off & (info->gtt_entry_size - 1)), 2225 bytes); 2226 return 0; 2227 } 2228 2229 /** 2230 * intel_vgpu_emulate_ggtt_mmio_read - emulate GTT MMIO register read 2231 * @vgpu: a vGPU 2232 * @off: register offset 2233 * @p_data: data will be returned to guest 2234 * @bytes: data length 2235 * 2236 * This function is used to emulate the GTT MMIO register read 2237 * 2238 * Returns: 2239 * Zero on success, error code if failed. 2240 */ 2241 int intel_vgpu_emulate_ggtt_mmio_read(struct intel_vgpu *vgpu, unsigned int off, 2242 void *p_data, unsigned int bytes) 2243 { 2244 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; 2245 int ret; 2246 2247 if (bytes != 4 && bytes != 8) 2248 return -EINVAL; 2249 2250 off -= info->gtt_start_offset; 2251 ret = emulate_ggtt_mmio_read(vgpu, off, p_data, bytes); 2252 return ret; 2253 } 2254 2255 static void ggtt_invalidate_pte(struct intel_vgpu *vgpu, 2256 struct intel_gvt_gtt_entry *entry) 2257 { 2258 const struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops; 2259 unsigned long pfn; 2260 2261 pfn = pte_ops->get_pfn(entry); 2262 if (pfn != vgpu->gvt->gtt.scratch_mfn) 2263 intel_gvt_dma_unmap_guest_page(vgpu, pfn << PAGE_SHIFT); 2264 } 2265 2266 static int emulate_ggtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off, 2267 void *p_data, unsigned int bytes) 2268 { 2269 struct intel_gvt *gvt = vgpu->gvt; 2270 const struct intel_gvt_device_info *info = &gvt->device_info; 2271 struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm; 2272 const struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops; 2273 unsigned long g_gtt_index = off >> info->gtt_entry_size_shift; 2274 unsigned long gma, gfn; 2275 struct intel_gvt_gtt_entry e = {.val64 = 0, .type = GTT_TYPE_GGTT_PTE}; 2276 struct intel_gvt_gtt_entry m = {.val64 = 0, .type = GTT_TYPE_GGTT_PTE}; 2277 dma_addr_t dma_addr; 2278 int ret; 2279 struct intel_gvt_partial_pte *partial_pte, *pos, *n; 2280 bool partial_update = false; 2281 2282 if (bytes != 4 && bytes != 8) 2283 return -EINVAL; 2284 2285 gma = g_gtt_index << I915_GTT_PAGE_SHIFT; 2286 2287 /* the VM may configure the whole GM space when ballooning is used */ 2288 if (!vgpu_gmadr_is_valid(vgpu, gma)) 2289 return 0; 2290 2291 e.type = GTT_TYPE_GGTT_PTE; 2292 memcpy((void *)&e.val64 + (off & (info->gtt_entry_size - 1)), p_data, 2293 bytes); 2294 2295 /* If ggtt entry size is 8 bytes, and it's split into two 4 bytes 2296 * write, save the first 4 bytes in a list and update virtual 2297 * PTE. Only update shadow PTE when the second 4 bytes comes. 2298 */ 2299 if (bytes < info->gtt_entry_size) { 2300 bool found = false; 2301 2302 list_for_each_entry_safe(pos, n, 2303 &ggtt_mm->ggtt_mm.partial_pte_list, list) { 2304 if (g_gtt_index == pos->offset >> 2305 info->gtt_entry_size_shift) { 2306 if (off != pos->offset) { 2307 /* the second partial part*/ 2308 int last_off = pos->offset & 2309 (info->gtt_entry_size - 1); 2310 2311 memcpy((void *)&e.val64 + last_off, 2312 (void *)&pos->data + last_off, 2313 bytes); 2314 2315 list_del(&pos->list); 2316 kfree(pos); 2317 found = true; 2318 break; 2319 } 2320 2321 /* update of the first partial part */ 2322 pos->data = e.val64; 2323 ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index); 2324 return 0; 2325 } 2326 } 2327 2328 if (!found) { 2329 /* the first partial part */ 2330 partial_pte = kzalloc(sizeof(*partial_pte), GFP_KERNEL); 2331 if (!partial_pte) 2332 return -ENOMEM; 2333 partial_pte->offset = off; 2334 partial_pte->data = e.val64; 2335 list_add_tail(&partial_pte->list, 2336 &ggtt_mm->ggtt_mm.partial_pte_list); 2337 partial_update = true; 2338 } 2339 } 2340 2341 if (!partial_update && (ops->test_present(&e))) { 2342 gfn = ops->get_pfn(&e); 2343 m.val64 = e.val64; 2344 m.type = e.type; 2345 2346 /* one PTE update may be issued in multiple writes and the 2347 * first write may not construct a valid gfn 2348 */ 2349 if (!intel_gvt_is_valid_gfn(vgpu, gfn)) { 2350 ops->set_pfn(&m, gvt->gtt.scratch_mfn); 2351 goto out; 2352 } 2353 2354 ret = intel_gvt_dma_map_guest_page(vgpu, gfn, PAGE_SIZE, 2355 &dma_addr); 2356 if (ret) { 2357 gvt_vgpu_err("fail to populate guest ggtt entry\n"); 2358 /* guest driver may read/write the entry when partial 2359 * update the entry in this situation p2m will fail 2360 * setting the shadow entry to point to a scratch page 2361 */ 2362 ops->set_pfn(&m, gvt->gtt.scratch_mfn); 2363 } else 2364 ops->set_pfn(&m, dma_addr >> PAGE_SHIFT); 2365 } else { 2366 ops->set_pfn(&m, gvt->gtt.scratch_mfn); 2367 ops->clear_present(&m); 2368 } 2369 2370 out: 2371 ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index); 2372 2373 ggtt_get_host_entry(ggtt_mm, &e, g_gtt_index); 2374 ggtt_invalidate_pte(vgpu, &e); 2375 2376 ggtt_set_host_entry(ggtt_mm, &m, g_gtt_index); 2377 ggtt_invalidate(gvt->gt); 2378 return 0; 2379 } 2380 2381 /* 2382 * intel_vgpu_emulate_ggtt_mmio_write - emulate GTT MMIO register write 2383 * @vgpu: a vGPU 2384 * @off: register offset 2385 * @p_data: data from guest write 2386 * @bytes: data length 2387 * 2388 * This function is used to emulate the GTT MMIO register write 2389 * 2390 * Returns: 2391 * Zero on success, error code if failed. 2392 */ 2393 int intel_vgpu_emulate_ggtt_mmio_write(struct intel_vgpu *vgpu, 2394 unsigned int off, void *p_data, unsigned int bytes) 2395 { 2396 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; 2397 int ret; 2398 struct intel_vgpu_submission *s = &vgpu->submission; 2399 struct intel_engine_cs *engine; 2400 int i; 2401 2402 if (bytes != 4 && bytes != 8) 2403 return -EINVAL; 2404 2405 off -= info->gtt_start_offset; 2406 ret = emulate_ggtt_mmio_write(vgpu, off, p_data, bytes); 2407 2408 /* if ggtt of last submitted context is written, 2409 * that context is probably got unpinned. 2410 * Set last shadowed ctx to invalid. 2411 */ 2412 for_each_engine(engine, vgpu->gvt->gt, i) { 2413 if (!s->last_ctx[i].valid) 2414 continue; 2415 2416 if (s->last_ctx[i].lrca == (off >> info->gtt_entry_size_shift)) 2417 s->last_ctx[i].valid = false; 2418 } 2419 return ret; 2420 } 2421 2422 static int alloc_scratch_pages(struct intel_vgpu *vgpu, 2423 enum intel_gvt_gtt_type type) 2424 { 2425 struct drm_i915_private *i915 = vgpu->gvt->gt->i915; 2426 struct intel_vgpu_gtt *gtt = &vgpu->gtt; 2427 const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 2428 int page_entry_num = I915_GTT_PAGE_SIZE >> 2429 vgpu->gvt->device_info.gtt_entry_size_shift; 2430 void *scratch_pt; 2431 int i; 2432 struct device *dev = vgpu->gvt->gt->i915->drm.dev; 2433 dma_addr_t daddr; 2434 2435 if (drm_WARN_ON(&i915->drm, 2436 type < GTT_TYPE_PPGTT_PTE_PT || type >= GTT_TYPE_MAX)) 2437 return -EINVAL; 2438 2439 scratch_pt = (void *)get_zeroed_page(GFP_KERNEL); 2440 if (!scratch_pt) { 2441 gvt_vgpu_err("fail to allocate scratch page\n"); 2442 return -ENOMEM; 2443 } 2444 2445 daddr = dma_map_page(dev, virt_to_page(scratch_pt), 0, 4096, DMA_BIDIRECTIONAL); 2446 if (dma_mapping_error(dev, daddr)) { 2447 gvt_vgpu_err("fail to dmamap scratch_pt\n"); 2448 __free_page(virt_to_page(scratch_pt)); 2449 return -ENOMEM; 2450 } 2451 gtt->scratch_pt[type].page_mfn = 2452 (unsigned long)(daddr >> I915_GTT_PAGE_SHIFT); 2453 gtt->scratch_pt[type].page = virt_to_page(scratch_pt); 2454 gvt_dbg_mm("vgpu%d create scratch_pt: type %d mfn=0x%lx\n", 2455 vgpu->id, type, gtt->scratch_pt[type].page_mfn); 2456 2457 /* Build the tree by full filled the scratch pt with the entries which 2458 * point to the next level scratch pt or scratch page. The 2459 * scratch_pt[type] indicate the scratch pt/scratch page used by the 2460 * 'type' pt. 2461 * e.g. scratch_pt[GTT_TYPE_PPGTT_PDE_PT] is used by 2462 * GTT_TYPE_PPGTT_PDE_PT level pt, that means this scratch_pt it self 2463 * is GTT_TYPE_PPGTT_PTE_PT, and full filled by scratch page mfn. 2464 */ 2465 if (type > GTT_TYPE_PPGTT_PTE_PT) { 2466 struct intel_gvt_gtt_entry se; 2467 2468 memset(&se, 0, sizeof(struct intel_gvt_gtt_entry)); 2469 se.type = get_entry_type(type - 1); 2470 ops->set_pfn(&se, gtt->scratch_pt[type - 1].page_mfn); 2471 2472 /* The entry parameters like present/writeable/cache type 2473 * set to the same as i915's scratch page tree. 2474 */ 2475 se.val64 |= GEN8_PAGE_PRESENT | GEN8_PAGE_RW; 2476 if (type == GTT_TYPE_PPGTT_PDE_PT) 2477 se.val64 |= PPAT_CACHED; 2478 2479 for (i = 0; i < page_entry_num; i++) 2480 ops->set_entry(scratch_pt, &se, i, false, 0, vgpu); 2481 } 2482 2483 return 0; 2484 } 2485 2486 static int release_scratch_page_tree(struct intel_vgpu *vgpu) 2487 { 2488 int i; 2489 struct device *dev = vgpu->gvt->gt->i915->drm.dev; 2490 dma_addr_t daddr; 2491 2492 for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) { 2493 if (vgpu->gtt.scratch_pt[i].page != NULL) { 2494 daddr = (dma_addr_t)(vgpu->gtt.scratch_pt[i].page_mfn << 2495 I915_GTT_PAGE_SHIFT); 2496 dma_unmap_page(dev, daddr, 4096, DMA_BIDIRECTIONAL); 2497 __free_page(vgpu->gtt.scratch_pt[i].page); 2498 vgpu->gtt.scratch_pt[i].page = NULL; 2499 vgpu->gtt.scratch_pt[i].page_mfn = 0; 2500 } 2501 } 2502 2503 return 0; 2504 } 2505 2506 static int create_scratch_page_tree(struct intel_vgpu *vgpu) 2507 { 2508 int i, ret; 2509 2510 for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) { 2511 ret = alloc_scratch_pages(vgpu, i); 2512 if (ret) 2513 goto err; 2514 } 2515 2516 return 0; 2517 2518 err: 2519 release_scratch_page_tree(vgpu); 2520 return ret; 2521 } 2522 2523 /** 2524 * intel_vgpu_init_gtt - initialize per-vGPU graphics memory virulization 2525 * @vgpu: a vGPU 2526 * 2527 * This function is used to initialize per-vGPU graphics memory virtualization 2528 * components. 2529 * 2530 * Returns: 2531 * Zero on success, error code if failed. 2532 */ 2533 int intel_vgpu_init_gtt(struct intel_vgpu *vgpu) 2534 { 2535 struct intel_vgpu_gtt *gtt = &vgpu->gtt; 2536 2537 INIT_RADIX_TREE(>t->spt_tree, GFP_KERNEL); 2538 2539 INIT_LIST_HEAD(>t->ppgtt_mm_list_head); 2540 INIT_LIST_HEAD(>t->oos_page_list_head); 2541 INIT_LIST_HEAD(>t->post_shadow_list_head); 2542 2543 gtt->ggtt_mm = intel_vgpu_create_ggtt_mm(vgpu); 2544 if (IS_ERR(gtt->ggtt_mm)) { 2545 gvt_vgpu_err("fail to create mm for ggtt.\n"); 2546 return PTR_ERR(gtt->ggtt_mm); 2547 } 2548 2549 intel_vgpu_reset_ggtt(vgpu, false); 2550 2551 INIT_LIST_HEAD(>t->ggtt_mm->ggtt_mm.partial_pte_list); 2552 2553 return create_scratch_page_tree(vgpu); 2554 } 2555 2556 void intel_vgpu_destroy_all_ppgtt_mm(struct intel_vgpu *vgpu) 2557 { 2558 struct list_head *pos, *n; 2559 struct intel_vgpu_mm *mm; 2560 2561 list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) { 2562 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list); 2563 intel_vgpu_destroy_mm(mm); 2564 } 2565 2566 if (GEM_WARN_ON(!list_empty(&vgpu->gtt.ppgtt_mm_list_head))) 2567 gvt_err("vgpu ppgtt mm is not fully destroyed\n"); 2568 2569 if (GEM_WARN_ON(!radix_tree_empty(&vgpu->gtt.spt_tree))) { 2570 gvt_err("Why we still has spt not freed?\n"); 2571 ppgtt_free_all_spt(vgpu); 2572 } 2573 } 2574 2575 static void intel_vgpu_destroy_ggtt_mm(struct intel_vgpu *vgpu) 2576 { 2577 struct intel_gvt_partial_pte *pos, *next; 2578 2579 list_for_each_entry_safe(pos, next, 2580 &vgpu->gtt.ggtt_mm->ggtt_mm.partial_pte_list, 2581 list) { 2582 gvt_dbg_mm("partial PTE update on hold 0x%lx : 0x%llx\n", 2583 pos->offset, pos->data); 2584 kfree(pos); 2585 } 2586 intel_vgpu_destroy_mm(vgpu->gtt.ggtt_mm); 2587 vgpu->gtt.ggtt_mm = NULL; 2588 } 2589 2590 /** 2591 * intel_vgpu_clean_gtt - clean up per-vGPU graphics memory virulization 2592 * @vgpu: a vGPU 2593 * 2594 * This function is used to clean up per-vGPU graphics memory virtualization 2595 * components. 2596 * 2597 * Returns: 2598 * Zero on success, error code if failed. 2599 */ 2600 void intel_vgpu_clean_gtt(struct intel_vgpu *vgpu) 2601 { 2602 intel_vgpu_destroy_all_ppgtt_mm(vgpu); 2603 intel_vgpu_destroy_ggtt_mm(vgpu); 2604 release_scratch_page_tree(vgpu); 2605 } 2606 2607 static void clean_spt_oos(struct intel_gvt *gvt) 2608 { 2609 struct intel_gvt_gtt *gtt = &gvt->gtt; 2610 struct list_head *pos, *n; 2611 struct intel_vgpu_oos_page *oos_page; 2612 2613 WARN(!list_empty(>t->oos_page_use_list_head), 2614 "someone is still using oos page\n"); 2615 2616 list_for_each_safe(pos, n, >t->oos_page_free_list_head) { 2617 oos_page = container_of(pos, struct intel_vgpu_oos_page, list); 2618 list_del(&oos_page->list); 2619 free_page((unsigned long)oos_page->mem); 2620 kfree(oos_page); 2621 } 2622 } 2623 2624 static int setup_spt_oos(struct intel_gvt *gvt) 2625 { 2626 struct intel_gvt_gtt *gtt = &gvt->gtt; 2627 struct intel_vgpu_oos_page *oos_page; 2628 int i; 2629 int ret; 2630 2631 INIT_LIST_HEAD(>t->oos_page_free_list_head); 2632 INIT_LIST_HEAD(>t->oos_page_use_list_head); 2633 2634 for (i = 0; i < preallocated_oos_pages; i++) { 2635 oos_page = kzalloc(sizeof(*oos_page), GFP_KERNEL); 2636 if (!oos_page) { 2637 ret = -ENOMEM; 2638 goto fail; 2639 } 2640 oos_page->mem = (void *)__get_free_pages(GFP_KERNEL, 0); 2641 if (!oos_page->mem) { 2642 ret = -ENOMEM; 2643 kfree(oos_page); 2644 goto fail; 2645 } 2646 2647 INIT_LIST_HEAD(&oos_page->list); 2648 INIT_LIST_HEAD(&oos_page->vm_list); 2649 oos_page->id = i; 2650 list_add_tail(&oos_page->list, >t->oos_page_free_list_head); 2651 } 2652 2653 gvt_dbg_mm("%d oos pages preallocated\n", i); 2654 2655 return 0; 2656 fail: 2657 clean_spt_oos(gvt); 2658 return ret; 2659 } 2660 2661 /** 2662 * intel_vgpu_find_ppgtt_mm - find a PPGTT mm object 2663 * @vgpu: a vGPU 2664 * @pdps: pdp root array 2665 * 2666 * This function is used to find a PPGTT mm object from mm object pool 2667 * 2668 * Returns: 2669 * pointer to mm object on success, NULL if failed. 2670 */ 2671 struct intel_vgpu_mm *intel_vgpu_find_ppgtt_mm(struct intel_vgpu *vgpu, 2672 u64 pdps[]) 2673 { 2674 struct intel_vgpu_mm *mm; 2675 struct list_head *pos; 2676 2677 list_for_each(pos, &vgpu->gtt.ppgtt_mm_list_head) { 2678 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list); 2679 2680 switch (mm->ppgtt_mm.root_entry_type) { 2681 case GTT_TYPE_PPGTT_ROOT_L4_ENTRY: 2682 if (pdps[0] == mm->ppgtt_mm.guest_pdps[0]) 2683 return mm; 2684 break; 2685 case GTT_TYPE_PPGTT_ROOT_L3_ENTRY: 2686 if (!memcmp(pdps, mm->ppgtt_mm.guest_pdps, 2687 sizeof(mm->ppgtt_mm.guest_pdps))) 2688 return mm; 2689 break; 2690 default: 2691 GEM_BUG_ON(1); 2692 } 2693 } 2694 return NULL; 2695 } 2696 2697 /** 2698 * intel_vgpu_get_ppgtt_mm - get or create a PPGTT mm object. 2699 * @vgpu: a vGPU 2700 * @root_entry_type: ppgtt root entry type 2701 * @pdps: guest pdps 2702 * 2703 * This function is used to find or create a PPGTT mm object from a guest. 2704 * 2705 * Returns: 2706 * Zero on success, negative error code if failed. 2707 */ 2708 struct intel_vgpu_mm *intel_vgpu_get_ppgtt_mm(struct intel_vgpu *vgpu, 2709 enum intel_gvt_gtt_type root_entry_type, u64 pdps[]) 2710 { 2711 struct intel_vgpu_mm *mm; 2712 2713 mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps); 2714 if (mm) { 2715 intel_vgpu_mm_get(mm); 2716 } else { 2717 mm = intel_vgpu_create_ppgtt_mm(vgpu, root_entry_type, pdps); 2718 if (IS_ERR(mm)) 2719 gvt_vgpu_err("fail to create mm\n"); 2720 } 2721 return mm; 2722 } 2723 2724 /** 2725 * intel_vgpu_put_ppgtt_mm - find and put a PPGTT mm object. 2726 * @vgpu: a vGPU 2727 * @pdps: guest pdps 2728 * 2729 * This function is used to find a PPGTT mm object from a guest and destroy it. 2730 * 2731 * Returns: 2732 * Zero on success, negative error code if failed. 2733 */ 2734 int intel_vgpu_put_ppgtt_mm(struct intel_vgpu *vgpu, u64 pdps[]) 2735 { 2736 struct intel_vgpu_mm *mm; 2737 2738 mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps); 2739 if (!mm) { 2740 gvt_vgpu_err("fail to find ppgtt instance.\n"); 2741 return -EINVAL; 2742 } 2743 intel_vgpu_mm_put(mm); 2744 return 0; 2745 } 2746 2747 /** 2748 * intel_gvt_init_gtt - initialize mm components of a GVT device 2749 * @gvt: GVT device 2750 * 2751 * This function is called at the initialization stage, to initialize 2752 * the mm components of a GVT device. 2753 * 2754 * Returns: 2755 * zero on success, negative error code if failed. 2756 */ 2757 int intel_gvt_init_gtt(struct intel_gvt *gvt) 2758 { 2759 int ret; 2760 void *page; 2761 struct device *dev = gvt->gt->i915->drm.dev; 2762 dma_addr_t daddr; 2763 2764 gvt_dbg_core("init gtt\n"); 2765 2766 gvt->gtt.pte_ops = &gen8_gtt_pte_ops; 2767 gvt->gtt.gma_ops = &gen8_gtt_gma_ops; 2768 2769 page = (void *)get_zeroed_page(GFP_KERNEL); 2770 if (!page) { 2771 gvt_err("fail to allocate scratch ggtt page\n"); 2772 return -ENOMEM; 2773 } 2774 2775 daddr = dma_map_page(dev, virt_to_page(page), 0, 2776 4096, DMA_BIDIRECTIONAL); 2777 if (dma_mapping_error(dev, daddr)) { 2778 gvt_err("fail to dmamap scratch ggtt page\n"); 2779 __free_page(virt_to_page(page)); 2780 return -ENOMEM; 2781 } 2782 2783 gvt->gtt.scratch_page = virt_to_page(page); 2784 gvt->gtt.scratch_mfn = (unsigned long)(daddr >> I915_GTT_PAGE_SHIFT); 2785 2786 if (enable_out_of_sync) { 2787 ret = setup_spt_oos(gvt); 2788 if (ret) { 2789 gvt_err("fail to initialize SPT oos\n"); 2790 dma_unmap_page(dev, daddr, 4096, DMA_BIDIRECTIONAL); 2791 __free_page(gvt->gtt.scratch_page); 2792 return ret; 2793 } 2794 } 2795 INIT_LIST_HEAD(&gvt->gtt.ppgtt_mm_lru_list_head); 2796 rw_init(&gvt->gtt.ppgtt_mm_lock, "gvtmm"); 2797 return 0; 2798 } 2799 2800 /** 2801 * intel_gvt_clean_gtt - clean up mm components of a GVT device 2802 * @gvt: GVT device 2803 * 2804 * This function is called at the driver unloading stage, to clean up the 2805 * the mm components of a GVT device. 2806 * 2807 */ 2808 void intel_gvt_clean_gtt(struct intel_gvt *gvt) 2809 { 2810 struct device *dev = gvt->gt->i915->drm.dev; 2811 dma_addr_t daddr = (dma_addr_t)(gvt->gtt.scratch_mfn << 2812 I915_GTT_PAGE_SHIFT); 2813 2814 dma_unmap_page(dev, daddr, 4096, DMA_BIDIRECTIONAL); 2815 2816 __free_page(gvt->gtt.scratch_page); 2817 2818 if (enable_out_of_sync) 2819 clean_spt_oos(gvt); 2820 } 2821 2822 /** 2823 * intel_vgpu_invalidate_ppgtt - invalidate PPGTT instances 2824 * @vgpu: a vGPU 2825 * 2826 * This function is called when invalidate all PPGTT instances of a vGPU. 2827 * 2828 */ 2829 void intel_vgpu_invalidate_ppgtt(struct intel_vgpu *vgpu) 2830 { 2831 struct list_head *pos, *n; 2832 struct intel_vgpu_mm *mm; 2833 2834 list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) { 2835 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list); 2836 if (mm->type == INTEL_GVT_MM_PPGTT) { 2837 mutex_lock(&vgpu->gvt->gtt.ppgtt_mm_lock); 2838 list_del_init(&mm->ppgtt_mm.lru_list); 2839 mutex_unlock(&vgpu->gvt->gtt.ppgtt_mm_lock); 2840 if (mm->ppgtt_mm.shadowed) 2841 invalidate_ppgtt_mm(mm); 2842 } 2843 } 2844 } 2845 2846 /** 2847 * intel_vgpu_reset_ggtt - reset the GGTT entry 2848 * @vgpu: a vGPU 2849 * @invalidate_old: invalidate old entries 2850 * 2851 * This function is called at the vGPU create stage 2852 * to reset all the GGTT entries. 2853 * 2854 */ 2855 void intel_vgpu_reset_ggtt(struct intel_vgpu *vgpu, bool invalidate_old) 2856 { 2857 struct intel_gvt *gvt = vgpu->gvt; 2858 const struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops; 2859 struct intel_gvt_gtt_entry entry = {.type = GTT_TYPE_GGTT_PTE}; 2860 struct intel_gvt_gtt_entry old_entry; 2861 u32 index; 2862 u32 num_entries; 2863 2864 pte_ops->set_pfn(&entry, gvt->gtt.scratch_mfn); 2865 pte_ops->set_present(&entry); 2866 2867 index = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT; 2868 num_entries = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT; 2869 while (num_entries--) { 2870 if (invalidate_old) { 2871 ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index); 2872 ggtt_invalidate_pte(vgpu, &old_entry); 2873 } 2874 ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++); 2875 } 2876 2877 index = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT; 2878 num_entries = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT; 2879 while (num_entries--) { 2880 if (invalidate_old) { 2881 ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index); 2882 ggtt_invalidate_pte(vgpu, &old_entry); 2883 } 2884 ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++); 2885 } 2886 2887 ggtt_invalidate(gvt->gt); 2888 } 2889 2890 /** 2891 * intel_gvt_restore_ggtt - restore all vGPU's ggtt entries 2892 * @gvt: intel gvt device 2893 * 2894 * This function is called at driver resume stage to restore 2895 * GGTT entries of every vGPU. 2896 * 2897 */ 2898 void intel_gvt_restore_ggtt(struct intel_gvt *gvt) 2899 { 2900 struct intel_vgpu *vgpu; 2901 struct intel_vgpu_mm *mm; 2902 int id; 2903 gen8_pte_t pte; 2904 u32 idx, num_low, num_hi, offset; 2905 2906 /* Restore dirty host ggtt for all vGPUs */ 2907 idr_for_each_entry(&(gvt)->vgpu_idr, vgpu, id) { 2908 mm = vgpu->gtt.ggtt_mm; 2909 2910 num_low = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT; 2911 offset = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT; 2912 for (idx = 0; idx < num_low; idx++) { 2913 pte = mm->ggtt_mm.host_ggtt_aperture[idx]; 2914 if (pte & GEN8_PAGE_PRESENT) 2915 write_pte64(vgpu->gvt->gt->ggtt, offset + idx, pte); 2916 } 2917 2918 num_hi = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT; 2919 offset = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT; 2920 for (idx = 0; idx < num_hi; idx++) { 2921 pte = mm->ggtt_mm.host_ggtt_hidden[idx]; 2922 if (pte & GEN8_PAGE_PRESENT) 2923 write_pte64(vgpu->gvt->gt->ggtt, offset + idx, pte); 2924 } 2925 } 2926 } 2927