1 /* 2 * SPDX-License-Identifier: MIT 3 * 4 * Copyright © 2016-2018 Intel Corporation 5 */ 6 7 #include "i915_drv.h" 8 9 #include "i915_active.h" 10 #include "i915_syncmap.h" 11 #include "intel_gt.h" 12 #include "intel_ring.h" 13 #include "intel_timeline.h" 14 15 #define ptr_set_bit(ptr, bit) ((typeof(ptr))((unsigned long)(ptr) | BIT(bit))) 16 #define ptr_test_bit(ptr, bit) ((unsigned long)(ptr) & BIT(bit)) 17 18 #define CACHELINE_BITS 6 19 #define CACHELINE_FREE CACHELINE_BITS 20 21 struct intel_timeline_hwsp { 22 struct intel_gt *gt; 23 struct intel_gt_timelines *gt_timelines; 24 struct list_head free_link; 25 struct i915_vma *vma; 26 u64 free_bitmap; 27 }; 28 29 static struct i915_vma *__hwsp_alloc(struct intel_gt *gt) 30 { 31 struct drm_i915_private *i915 = gt->i915; 32 struct drm_i915_gem_object *obj; 33 struct i915_vma *vma; 34 35 obj = i915_gem_object_create_internal(i915, PAGE_SIZE); 36 if (IS_ERR(obj)) 37 return ERR_CAST(obj); 38 39 i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC); 40 41 vma = i915_vma_instance(obj, >->ggtt->vm, NULL); 42 if (IS_ERR(vma)) 43 i915_gem_object_put(obj); 44 45 return vma; 46 } 47 48 static struct i915_vma * 49 hwsp_alloc(struct intel_timeline *timeline, unsigned int *cacheline) 50 { 51 struct intel_gt_timelines *gt = &timeline->gt->timelines; 52 struct intel_timeline_hwsp *hwsp; 53 54 BUILD_BUG_ON(BITS_PER_TYPE(u64) * CACHELINE_BYTES > PAGE_SIZE); 55 56 spin_lock_irq(>->hwsp_lock); 57 58 /* hwsp_free_list only contains HWSP that have available cachelines */ 59 hwsp = list_first_entry_or_null(>->hwsp_free_list, 60 typeof(*hwsp), free_link); 61 if (!hwsp) { 62 struct i915_vma *vma; 63 64 spin_unlock_irq(>->hwsp_lock); 65 66 hwsp = kmalloc(sizeof(*hwsp), GFP_KERNEL); 67 if (!hwsp) 68 return ERR_PTR(-ENOMEM); 69 70 vma = __hwsp_alloc(timeline->gt); 71 if (IS_ERR(vma)) { 72 kfree(hwsp); 73 return vma; 74 } 75 76 vma->private = hwsp; 77 hwsp->gt = timeline->gt; 78 hwsp->vma = vma; 79 hwsp->free_bitmap = ~0ull; 80 hwsp->gt_timelines = gt; 81 82 spin_lock_irq(>->hwsp_lock); 83 list_add(&hwsp->free_link, >->hwsp_free_list); 84 } 85 86 GEM_BUG_ON(!hwsp->free_bitmap); 87 *cacheline = __ffs64(hwsp->free_bitmap); 88 hwsp->free_bitmap &= ~BIT_ULL(*cacheline); 89 if (!hwsp->free_bitmap) 90 list_del(&hwsp->free_link); 91 92 spin_unlock_irq(>->hwsp_lock); 93 94 GEM_BUG_ON(hwsp->vma->private != hwsp); 95 return hwsp->vma; 96 } 97 98 static void __idle_hwsp_free(struct intel_timeline_hwsp *hwsp, int cacheline) 99 { 100 struct intel_gt_timelines *gt = hwsp->gt_timelines; 101 unsigned long flags; 102 103 spin_lock_irqsave(>->hwsp_lock, flags); 104 105 /* As a cacheline becomes available, publish the HWSP on the freelist */ 106 if (!hwsp->free_bitmap) 107 list_add_tail(&hwsp->free_link, >->hwsp_free_list); 108 109 GEM_BUG_ON(cacheline >= BITS_PER_TYPE(hwsp->free_bitmap)); 110 hwsp->free_bitmap |= BIT_ULL(cacheline); 111 112 /* And if no one is left using it, give the page back to the system */ 113 if (hwsp->free_bitmap == ~0ull) { 114 i915_vma_put(hwsp->vma); 115 list_del(&hwsp->free_link); 116 kfree(hwsp); 117 } 118 119 spin_unlock_irqrestore(>->hwsp_lock, flags); 120 } 121 122 static void __rcu_cacheline_free(struct rcu_head *rcu) 123 { 124 struct intel_timeline_cacheline *cl = 125 container_of(rcu, typeof(*cl), rcu); 126 127 i915_active_fini(&cl->active); 128 kfree(cl); 129 } 130 131 static void __idle_cacheline_free(struct intel_timeline_cacheline *cl) 132 { 133 GEM_BUG_ON(!i915_active_is_idle(&cl->active)); 134 135 i915_gem_object_unpin_map(cl->hwsp->vma->obj); 136 i915_vma_put(cl->hwsp->vma); 137 __idle_hwsp_free(cl->hwsp, ptr_unmask_bits(cl->vaddr, CACHELINE_BITS)); 138 139 call_rcu(&cl->rcu, __rcu_cacheline_free); 140 } 141 142 __i915_active_call 143 static void __cacheline_retire(struct i915_active *active) 144 { 145 struct intel_timeline_cacheline *cl = 146 container_of(active, typeof(*cl), active); 147 148 i915_vma_unpin(cl->hwsp->vma); 149 if (ptr_test_bit(cl->vaddr, CACHELINE_FREE)) 150 __idle_cacheline_free(cl); 151 } 152 153 static int __cacheline_active(struct i915_active *active) 154 { 155 struct intel_timeline_cacheline *cl = 156 container_of(active, typeof(*cl), active); 157 158 __i915_vma_pin(cl->hwsp->vma); 159 return 0; 160 } 161 162 static struct intel_timeline_cacheline * 163 cacheline_alloc(struct intel_timeline_hwsp *hwsp, unsigned int cacheline) 164 { 165 struct intel_timeline_cacheline *cl; 166 void *vaddr; 167 168 GEM_BUG_ON(cacheline >= BIT(CACHELINE_BITS)); 169 170 cl = kmalloc(sizeof(*cl), GFP_KERNEL); 171 if (!cl) 172 return ERR_PTR(-ENOMEM); 173 174 vaddr = i915_gem_object_pin_map(hwsp->vma->obj, I915_MAP_WB); 175 if (IS_ERR(vaddr)) { 176 kfree(cl); 177 return ERR_CAST(vaddr); 178 } 179 180 i915_vma_get(hwsp->vma); 181 cl->hwsp = hwsp; 182 cl->vaddr = page_pack_bits(vaddr, cacheline); 183 184 i915_active_init(&cl->active, __cacheline_active, __cacheline_retire); 185 186 return cl; 187 } 188 189 static void cacheline_acquire(struct intel_timeline_cacheline *cl) 190 { 191 if (cl) 192 i915_active_acquire(&cl->active); 193 } 194 195 static void cacheline_release(struct intel_timeline_cacheline *cl) 196 { 197 if (cl) 198 i915_active_release(&cl->active); 199 } 200 201 static void cacheline_free(struct intel_timeline_cacheline *cl) 202 { 203 if (!i915_active_acquire_if_busy(&cl->active)) { 204 __idle_cacheline_free(cl); 205 return; 206 } 207 208 GEM_BUG_ON(ptr_test_bit(cl->vaddr, CACHELINE_FREE)); 209 cl->vaddr = ptr_set_bit(cl->vaddr, CACHELINE_FREE); 210 211 i915_active_release(&cl->active); 212 } 213 214 int intel_timeline_init(struct intel_timeline *timeline, 215 struct intel_gt *gt, 216 struct i915_vma *hwsp) 217 { 218 void *vaddr; 219 220 kref_init(&timeline->kref); 221 atomic_set(&timeline->pin_count, 0); 222 223 timeline->gt = gt; 224 225 timeline->has_initial_breadcrumb = !hwsp; 226 timeline->hwsp_cacheline = NULL; 227 228 if (!hwsp) { 229 struct intel_timeline_cacheline *cl; 230 unsigned int cacheline; 231 232 hwsp = hwsp_alloc(timeline, &cacheline); 233 if (IS_ERR(hwsp)) 234 return PTR_ERR(hwsp); 235 236 cl = cacheline_alloc(hwsp->private, cacheline); 237 if (IS_ERR(cl)) { 238 __idle_hwsp_free(hwsp->private, cacheline); 239 return PTR_ERR(cl); 240 } 241 242 timeline->hwsp_cacheline = cl; 243 timeline->hwsp_offset = cacheline * CACHELINE_BYTES; 244 245 vaddr = page_mask_bits(cl->vaddr); 246 } else { 247 timeline->hwsp_offset = I915_GEM_HWS_SEQNO_ADDR; 248 249 vaddr = i915_gem_object_pin_map(hwsp->obj, I915_MAP_WB); 250 if (IS_ERR(vaddr)) 251 return PTR_ERR(vaddr); 252 } 253 254 timeline->hwsp_seqno = 255 memset(vaddr + timeline->hwsp_offset, 0, CACHELINE_BYTES); 256 257 timeline->hwsp_ggtt = i915_vma_get(hwsp); 258 GEM_BUG_ON(timeline->hwsp_offset >= hwsp->size); 259 260 timeline->fence_context = dma_fence_context_alloc(1); 261 262 rw_init(&timeline->mutex, "itmln"); 263 264 INIT_ACTIVE_FENCE(&timeline->last_request); 265 INIT_LIST_HEAD(&timeline->requests); 266 267 i915_syncmap_init(&timeline->sync); 268 269 return 0; 270 } 271 272 void intel_gt_init_timelines(struct intel_gt *gt) 273 { 274 struct intel_gt_timelines *timelines = >->timelines; 275 276 mtx_init(&timelines->lock, IPL_NONE); 277 INIT_LIST_HEAD(&timelines->active_list); 278 279 mtx_init(&timelines->hwsp_lock, IPL_TTY); 280 INIT_LIST_HEAD(&timelines->hwsp_free_list); 281 } 282 283 void intel_timeline_fini(struct intel_timeline *timeline) 284 { 285 GEM_BUG_ON(atomic_read(&timeline->pin_count)); 286 GEM_BUG_ON(!list_empty(&timeline->requests)); 287 GEM_BUG_ON(timeline->retire); 288 289 if (timeline->hwsp_cacheline) 290 cacheline_free(timeline->hwsp_cacheline); 291 else 292 i915_gem_object_unpin_map(timeline->hwsp_ggtt->obj); 293 294 i915_vma_put(timeline->hwsp_ggtt); 295 } 296 297 struct intel_timeline * 298 intel_timeline_create(struct intel_gt *gt, struct i915_vma *global_hwsp) 299 { 300 struct intel_timeline *timeline; 301 int err; 302 303 timeline = kzalloc(sizeof(*timeline), GFP_KERNEL); 304 if (!timeline) 305 return ERR_PTR(-ENOMEM); 306 307 err = intel_timeline_init(timeline, gt, global_hwsp); 308 if (err) { 309 kfree(timeline); 310 return ERR_PTR(err); 311 } 312 313 return timeline; 314 } 315 316 int intel_timeline_pin(struct intel_timeline *tl) 317 { 318 int err; 319 320 if (atomic_add_unless(&tl->pin_count, 1, 0)) 321 return 0; 322 323 err = i915_ggtt_pin(tl->hwsp_ggtt, 0, PIN_HIGH); 324 if (err) 325 return err; 326 327 tl->hwsp_offset = 328 i915_ggtt_offset(tl->hwsp_ggtt) + 329 offset_in_page(tl->hwsp_offset); 330 331 cacheline_acquire(tl->hwsp_cacheline); 332 if (atomic_fetch_inc(&tl->pin_count)) { 333 cacheline_release(tl->hwsp_cacheline); 334 __i915_vma_unpin(tl->hwsp_ggtt); 335 } 336 337 return 0; 338 } 339 340 void intel_timeline_enter(struct intel_timeline *tl) 341 { 342 struct intel_gt_timelines *timelines = &tl->gt->timelines; 343 344 /* 345 * Pretend we are serialised by the timeline->mutex. 346 * 347 * While generally true, there are a few exceptions to the rule 348 * for the engine->kernel_context being used to manage power 349 * transitions. As the engine_park may be called from under any 350 * timeline, it uses the power mutex as a global serialisation 351 * lock to prevent any other request entering its timeline. 352 * 353 * The rule is generally tl->mutex, otherwise engine->wakeref.mutex. 354 * 355 * However, intel_gt_retire_request() does not know which engine 356 * it is retiring along and so cannot partake in the engine-pm 357 * barrier, and there we use the tl->active_count as a means to 358 * pin the timeline in the active_list while the locks are dropped. 359 * Ergo, as that is outside of the engine-pm barrier, we need to 360 * use atomic to manipulate tl->active_count. 361 */ 362 lockdep_assert_held(&tl->mutex); 363 364 if (atomic_add_unless(&tl->active_count, 1, 0)) 365 return; 366 367 spin_lock(&timelines->lock); 368 if (!atomic_fetch_inc(&tl->active_count)) 369 list_add_tail(&tl->link, &timelines->active_list); 370 spin_unlock(&timelines->lock); 371 } 372 373 void intel_timeline_exit(struct intel_timeline *tl) 374 { 375 struct intel_gt_timelines *timelines = &tl->gt->timelines; 376 377 /* See intel_timeline_enter() */ 378 lockdep_assert_held(&tl->mutex); 379 380 GEM_BUG_ON(!atomic_read(&tl->active_count)); 381 if (atomic_add_unless(&tl->active_count, -1, 1)) 382 return; 383 384 spin_lock(&timelines->lock); 385 if (atomic_dec_and_test(&tl->active_count)) 386 list_del(&tl->link); 387 spin_unlock(&timelines->lock); 388 389 /* 390 * Since this timeline is idle, all bariers upon which we were waiting 391 * must also be complete and so we can discard the last used barriers 392 * without loss of information. 393 */ 394 i915_syncmap_free(&tl->sync); 395 } 396 397 static u32 timeline_advance(struct intel_timeline *tl) 398 { 399 GEM_BUG_ON(!atomic_read(&tl->pin_count)); 400 GEM_BUG_ON(tl->seqno & tl->has_initial_breadcrumb); 401 402 return tl->seqno += 1 + tl->has_initial_breadcrumb; 403 } 404 405 static void timeline_rollback(struct intel_timeline *tl) 406 { 407 tl->seqno -= 1 + tl->has_initial_breadcrumb; 408 } 409 410 static noinline int 411 __intel_timeline_get_seqno(struct intel_timeline *tl, 412 struct i915_request *rq, 413 u32 *seqno) 414 { 415 struct intel_timeline_cacheline *cl; 416 unsigned int cacheline; 417 struct i915_vma *vma; 418 void *vaddr; 419 int err; 420 421 might_lock(&tl->gt->ggtt->vm.mutex); 422 423 /* 424 * If there is an outstanding GPU reference to this cacheline, 425 * such as it being sampled by a HW semaphore on another timeline, 426 * we cannot wraparound our seqno value (the HW semaphore does 427 * a strict greater-than-or-equals compare, not i915_seqno_passed). 428 * So if the cacheline is still busy, we must detach ourselves 429 * from it and leave it inflight alongside its users. 430 * 431 * However, if nobody is watching and we can guarantee that nobody 432 * will, we could simply reuse the same cacheline. 433 * 434 * if (i915_active_request_is_signaled(&tl->last_request) && 435 * i915_active_is_signaled(&tl->hwsp_cacheline->active)) 436 * return 0; 437 * 438 * That seems unlikely for a busy timeline that needed to wrap in 439 * the first place, so just replace the cacheline. 440 */ 441 442 vma = hwsp_alloc(tl, &cacheline); 443 if (IS_ERR(vma)) { 444 err = PTR_ERR(vma); 445 goto err_rollback; 446 } 447 448 err = i915_ggtt_pin(vma, 0, PIN_HIGH); 449 if (err) { 450 __idle_hwsp_free(vma->private, cacheline); 451 goto err_rollback; 452 } 453 454 cl = cacheline_alloc(vma->private, cacheline); 455 if (IS_ERR(cl)) { 456 err = PTR_ERR(cl); 457 __idle_hwsp_free(vma->private, cacheline); 458 goto err_unpin; 459 } 460 GEM_BUG_ON(cl->hwsp->vma != vma); 461 462 /* 463 * Attach the old cacheline to the current request, so that we only 464 * free it after the current request is retired, which ensures that 465 * all writes into the cacheline from previous requests are complete. 466 */ 467 err = i915_active_ref(&tl->hwsp_cacheline->active, tl, &rq->fence); 468 if (err) 469 goto err_cacheline; 470 471 cacheline_release(tl->hwsp_cacheline); /* ownership now xfered to rq */ 472 cacheline_free(tl->hwsp_cacheline); 473 474 i915_vma_unpin(tl->hwsp_ggtt); /* binding kept alive by old cacheline */ 475 i915_vma_put(tl->hwsp_ggtt); 476 477 tl->hwsp_ggtt = i915_vma_get(vma); 478 479 vaddr = page_mask_bits(cl->vaddr); 480 tl->hwsp_offset = cacheline * CACHELINE_BYTES; 481 tl->hwsp_seqno = 482 memset(vaddr + tl->hwsp_offset, 0, CACHELINE_BYTES); 483 484 tl->hwsp_offset += i915_ggtt_offset(vma); 485 486 cacheline_acquire(cl); 487 tl->hwsp_cacheline = cl; 488 489 *seqno = timeline_advance(tl); 490 GEM_BUG_ON(i915_seqno_passed(*tl->hwsp_seqno, *seqno)); 491 return 0; 492 493 err_cacheline: 494 cacheline_free(cl); 495 err_unpin: 496 i915_vma_unpin(vma); 497 err_rollback: 498 timeline_rollback(tl); 499 return err; 500 } 501 502 int intel_timeline_get_seqno(struct intel_timeline *tl, 503 struct i915_request *rq, 504 u32 *seqno) 505 { 506 *seqno = timeline_advance(tl); 507 508 /* Replace the HWSP on wraparound for HW semaphores */ 509 if (unlikely(!*seqno && tl->hwsp_cacheline)) 510 return __intel_timeline_get_seqno(tl, rq, seqno); 511 512 return 0; 513 } 514 515 static int cacheline_ref(struct intel_timeline_cacheline *cl, 516 struct i915_request *rq) 517 { 518 return i915_active_add_request(&cl->active, rq); 519 } 520 521 int intel_timeline_read_hwsp(struct i915_request *from, 522 struct i915_request *to, 523 u32 *hwsp) 524 { 525 struct intel_timeline_cacheline *cl; 526 int err; 527 528 GEM_BUG_ON(!rcu_access_pointer(from->hwsp_cacheline)); 529 530 rcu_read_lock(); 531 cl = rcu_dereference(from->hwsp_cacheline); 532 if (i915_request_completed(from)) /* confirm cacheline is valid */ 533 goto unlock; 534 if (unlikely(!i915_active_acquire_if_busy(&cl->active))) 535 goto unlock; /* seqno wrapped and completed! */ 536 if (unlikely(i915_request_completed(from))) 537 goto release; 538 rcu_read_unlock(); 539 540 err = cacheline_ref(cl, to); 541 if (err) 542 goto out; 543 544 *hwsp = i915_ggtt_offset(cl->hwsp->vma) + 545 ptr_unmask_bits(cl->vaddr, CACHELINE_BITS) * CACHELINE_BYTES; 546 547 out: 548 i915_active_release(&cl->active); 549 return err; 550 551 release: 552 i915_active_release(&cl->active); 553 unlock: 554 rcu_read_unlock(); 555 return 1; 556 } 557 558 void intel_timeline_unpin(struct intel_timeline *tl) 559 { 560 GEM_BUG_ON(!atomic_read(&tl->pin_count)); 561 if (!atomic_dec_and_test(&tl->pin_count)) 562 return; 563 564 cacheline_release(tl->hwsp_cacheline); 565 566 __i915_vma_unpin(tl->hwsp_ggtt); 567 } 568 569 void __intel_timeline_free(struct kref *kref) 570 { 571 struct intel_timeline *timeline = 572 container_of(kref, typeof(*timeline), kref); 573 574 intel_timeline_fini(timeline); 575 kfree_rcu(timeline, rcu); 576 } 577 578 void intel_gt_fini_timelines(struct intel_gt *gt) 579 { 580 struct intel_gt_timelines *timelines = >->timelines; 581 582 GEM_BUG_ON(!list_empty(&timelines->active_list)); 583 GEM_BUG_ON(!list_empty(&timelines->hwsp_free_list)); 584 } 585 586 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 587 #include "gt/selftests/mock_timeline.c" 588 #include "gt/selftest_timeline.c" 589 #endif 590