1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2008-2018 Intel Corporation 4 */ 5 6 #include <linux/sched/mm.h> 7 #include <linux/stop_machine.h> 8 #include <linux/string_helpers.h> 9 10 #include "display/intel_display.h" 11 #include "display/intel_overlay.h" 12 13 #include "gem/i915_gem_context.h" 14 15 #include "gt/intel_gt_regs.h" 16 17 #include "i915_drv.h" 18 #include "i915_file_private.h" 19 #include "i915_gpu_error.h" 20 #include "i915_irq.h" 21 #include "intel_breadcrumbs.h" 22 #include "intel_engine_pm.h" 23 #include "intel_engine_regs.h" 24 #include "intel_gt.h" 25 #include "intel_gt_pm.h" 26 #include "intel_gt_requests.h" 27 #include "intel_mchbar_regs.h" 28 #include "intel_pci_config.h" 29 #include "intel_reset.h" 30 31 #include "uc/intel_guc.h" 32 33 #define RESET_MAX_RETRIES 3 34 35 /* XXX How to handle concurrent GGTT updates using tiling registers? */ 36 #define RESET_UNDER_STOP_MACHINE 0 37 38 static void rmw_set_fw(struct intel_uncore *uncore, i915_reg_t reg, u32 set) 39 { 40 intel_uncore_rmw_fw(uncore, reg, 0, set); 41 } 42 43 static void rmw_clear_fw(struct intel_uncore *uncore, i915_reg_t reg, u32 clr) 44 { 45 intel_uncore_rmw_fw(uncore, reg, clr, 0); 46 } 47 48 static void client_mark_guilty(struct i915_gem_context *ctx, bool banned) 49 { 50 struct drm_i915_file_private *file_priv = ctx->file_priv; 51 unsigned long prev_hang; 52 unsigned int score; 53 54 if (IS_ERR_OR_NULL(file_priv)) 55 return; 56 57 score = 0; 58 if (banned) 59 score = I915_CLIENT_SCORE_CONTEXT_BAN; 60 61 prev_hang = xchg(&file_priv->hang_timestamp, jiffies); 62 if (time_before(jiffies, prev_hang + I915_CLIENT_FAST_HANG_JIFFIES)) 63 score += I915_CLIENT_SCORE_HANG_FAST; 64 65 if (score) { 66 atomic_add(score, &file_priv->ban_score); 67 68 drm_dbg(&ctx->i915->drm, 69 "client %s: gained %u ban score, now %u\n", 70 ctx->name, score, 71 atomic_read(&file_priv->ban_score)); 72 } 73 } 74 75 static bool mark_guilty(struct i915_request *rq) 76 { 77 struct i915_gem_context *ctx; 78 unsigned long prev_hang; 79 bool banned; 80 int i; 81 82 if (intel_context_is_closed(rq->context)) 83 return true; 84 85 rcu_read_lock(); 86 ctx = rcu_dereference(rq->context->gem_context); 87 if (ctx && !kref_get_unless_zero(&ctx->ref)) 88 ctx = NULL; 89 rcu_read_unlock(); 90 if (!ctx) 91 return intel_context_is_banned(rq->context); 92 93 atomic_inc(&ctx->guilty_count); 94 95 /* Cool contexts are too cool to be banned! (Used for reset testing.) */ 96 if (!i915_gem_context_is_bannable(ctx)) { 97 banned = false; 98 goto out; 99 } 100 101 drm_notice(&ctx->i915->drm, 102 "%s context reset due to GPU hang\n", 103 ctx->name); 104 105 /* Record the timestamp for the last N hangs */ 106 prev_hang = ctx->hang_timestamp[0]; 107 for (i = 0; i < ARRAY_SIZE(ctx->hang_timestamp) - 1; i++) 108 ctx->hang_timestamp[i] = ctx->hang_timestamp[i + 1]; 109 ctx->hang_timestamp[i] = jiffies; 110 111 /* If we have hung N+1 times in rapid succession, we ban the context! */ 112 banned = !i915_gem_context_is_recoverable(ctx); 113 if (time_before(jiffies, prev_hang + CONTEXT_FAST_HANG_JIFFIES)) 114 banned = true; 115 if (banned) 116 drm_dbg(&ctx->i915->drm, "context %s: guilty %d, banned\n", 117 ctx->name, atomic_read(&ctx->guilty_count)); 118 119 client_mark_guilty(ctx, banned); 120 121 out: 122 i915_gem_context_put(ctx); 123 return banned; 124 } 125 126 static void mark_innocent(struct i915_request *rq) 127 { 128 struct i915_gem_context *ctx; 129 130 rcu_read_lock(); 131 ctx = rcu_dereference(rq->context->gem_context); 132 if (ctx) 133 atomic_inc(&ctx->active_count); 134 rcu_read_unlock(); 135 } 136 137 void __i915_request_reset(struct i915_request *rq, bool guilty) 138 { 139 bool banned = false; 140 141 RQ_TRACE(rq, "guilty? %s\n", str_yes_no(guilty)); 142 GEM_BUG_ON(__i915_request_is_complete(rq)); 143 144 rcu_read_lock(); /* protect the GEM context */ 145 if (guilty) { 146 i915_request_set_error_once(rq, -EIO); 147 __i915_request_skip(rq); 148 banned = mark_guilty(rq); 149 } else { 150 i915_request_set_error_once(rq, -EAGAIN); 151 mark_innocent(rq); 152 } 153 rcu_read_unlock(); 154 155 if (banned) 156 intel_context_ban(rq->context, rq); 157 } 158 159 static bool i915_in_reset(struct pci_dev *pdev) 160 { 161 u8 gdrst; 162 163 pci_read_config_byte(pdev, I915_GDRST, &gdrst); 164 return gdrst & GRDOM_RESET_STATUS; 165 } 166 167 static int i915_do_reset(struct intel_gt *gt, 168 intel_engine_mask_t engine_mask, 169 unsigned int retry) 170 { 171 struct pci_dev *pdev = gt->i915->drm.pdev; 172 int err; 173 174 /* Assert reset for at least 20 usec, and wait for acknowledgement. */ 175 pci_write_config_byte(pdev, I915_GDRST, GRDOM_RESET_ENABLE); 176 udelay(50); 177 err = wait_for_atomic(i915_in_reset(pdev), 50); 178 179 /* Clear the reset request. */ 180 pci_write_config_byte(pdev, I915_GDRST, 0); 181 udelay(50); 182 if (!err) 183 err = wait_for_atomic(!i915_in_reset(pdev), 50); 184 185 return err; 186 } 187 188 static bool g4x_reset_complete(struct pci_dev *pdev) 189 { 190 u8 gdrst; 191 192 pci_read_config_byte(pdev, I915_GDRST, &gdrst); 193 return (gdrst & GRDOM_RESET_ENABLE) == 0; 194 } 195 196 static int g33_do_reset(struct intel_gt *gt, 197 intel_engine_mask_t engine_mask, 198 unsigned int retry) 199 { 200 struct pci_dev *pdev = gt->i915->drm.pdev; 201 202 pci_write_config_byte(pdev, I915_GDRST, GRDOM_RESET_ENABLE); 203 return wait_for_atomic(g4x_reset_complete(pdev), 50); 204 } 205 206 static int g4x_do_reset(struct intel_gt *gt, 207 intel_engine_mask_t engine_mask, 208 unsigned int retry) 209 { 210 struct pci_dev *pdev = gt->i915->drm.pdev; 211 struct intel_uncore *uncore = gt->uncore; 212 int ret; 213 214 /* WaVcpClkGateDisableForMediaReset:ctg,elk */ 215 rmw_set_fw(uncore, VDECCLK_GATE_D, VCP_UNIT_CLOCK_GATE_DISABLE); 216 intel_uncore_posting_read_fw(uncore, VDECCLK_GATE_D); 217 218 pci_write_config_byte(pdev, I915_GDRST, 219 GRDOM_MEDIA | GRDOM_RESET_ENABLE); 220 ret = wait_for_atomic(g4x_reset_complete(pdev), 50); 221 if (ret) { 222 GT_TRACE(gt, "Wait for media reset failed\n"); 223 goto out; 224 } 225 226 pci_write_config_byte(pdev, I915_GDRST, 227 GRDOM_RENDER | GRDOM_RESET_ENABLE); 228 ret = wait_for_atomic(g4x_reset_complete(pdev), 50); 229 if (ret) { 230 GT_TRACE(gt, "Wait for render reset failed\n"); 231 goto out; 232 } 233 234 out: 235 pci_write_config_byte(pdev, I915_GDRST, 0); 236 237 rmw_clear_fw(uncore, VDECCLK_GATE_D, VCP_UNIT_CLOCK_GATE_DISABLE); 238 intel_uncore_posting_read_fw(uncore, VDECCLK_GATE_D); 239 240 return ret; 241 } 242 243 static int ilk_do_reset(struct intel_gt *gt, intel_engine_mask_t engine_mask, 244 unsigned int retry) 245 { 246 struct intel_uncore *uncore = gt->uncore; 247 int ret; 248 249 intel_uncore_write_fw(uncore, ILK_GDSR, 250 ILK_GRDOM_RENDER | ILK_GRDOM_RESET_ENABLE); 251 ret = __intel_wait_for_register_fw(uncore, ILK_GDSR, 252 ILK_GRDOM_RESET_ENABLE, 0, 253 5000, 0, 254 NULL); 255 if (ret) { 256 GT_TRACE(gt, "Wait for render reset failed\n"); 257 goto out; 258 } 259 260 intel_uncore_write_fw(uncore, ILK_GDSR, 261 ILK_GRDOM_MEDIA | ILK_GRDOM_RESET_ENABLE); 262 ret = __intel_wait_for_register_fw(uncore, ILK_GDSR, 263 ILK_GRDOM_RESET_ENABLE, 0, 264 5000, 0, 265 NULL); 266 if (ret) { 267 GT_TRACE(gt, "Wait for media reset failed\n"); 268 goto out; 269 } 270 271 out: 272 intel_uncore_write_fw(uncore, ILK_GDSR, 0); 273 intel_uncore_posting_read_fw(uncore, ILK_GDSR); 274 return ret; 275 } 276 277 /* Reset the hardware domains (GENX_GRDOM_*) specified by mask */ 278 static int gen6_hw_domain_reset(struct intel_gt *gt, u32 hw_domain_mask) 279 { 280 struct intel_uncore *uncore = gt->uncore; 281 int loops = 2; 282 int err; 283 284 /* 285 * GEN6_GDRST is not in the gt power well, no need to check 286 * for fifo space for the write or forcewake the chip for 287 * the read 288 */ 289 do { 290 intel_uncore_write_fw(uncore, GEN6_GDRST, hw_domain_mask); 291 292 /* 293 * Wait for the device to ack the reset requests. 294 * 295 * On some platforms, e.g. Jasperlake, we see that the 296 * engine register state is not cleared until shortly after 297 * GDRST reports completion, causing a failure as we try 298 * to immediately resume while the internal state is still 299 * in flux. If we immediately repeat the reset, the second 300 * reset appears to serialise with the first, and since 301 * it is a no-op, the registers should retain their reset 302 * value. However, there is still a concern that upon 303 * leaving the second reset, the internal engine state 304 * is still in flux and not ready for resuming. 305 */ 306 err = __intel_wait_for_register_fw(uncore, GEN6_GDRST, 307 hw_domain_mask, 0, 308 2000, 0, 309 NULL); 310 } while (err == 0 && --loops); 311 if (err) 312 GT_TRACE(gt, 313 "Wait for 0x%08x engines reset failed\n", 314 hw_domain_mask); 315 316 /* 317 * As we have observed that the engine state is still volatile 318 * after GDRST is acked, impose a small delay to let everything settle. 319 */ 320 udelay(50); 321 322 return err; 323 } 324 325 static int __gen6_reset_engines(struct intel_gt *gt, 326 intel_engine_mask_t engine_mask, 327 unsigned int retry) 328 { 329 struct intel_engine_cs *engine; 330 u32 hw_mask; 331 332 if (engine_mask == ALL_ENGINES) { 333 hw_mask = GEN6_GRDOM_FULL; 334 } else { 335 intel_engine_mask_t tmp; 336 337 hw_mask = 0; 338 for_each_engine_masked(engine, gt, engine_mask, tmp) { 339 hw_mask |= engine->reset_domain; 340 } 341 } 342 343 return gen6_hw_domain_reset(gt, hw_mask); 344 } 345 346 static int gen6_reset_engines(struct intel_gt *gt, 347 intel_engine_mask_t engine_mask, 348 unsigned int retry) 349 { 350 unsigned long flags; 351 int ret; 352 353 spin_lock_irqsave(>->uncore->lock, flags); 354 ret = __gen6_reset_engines(gt, engine_mask, retry); 355 spin_unlock_irqrestore(>->uncore->lock, flags); 356 357 return ret; 358 } 359 360 static struct intel_engine_cs *find_sfc_paired_vecs_engine(struct intel_engine_cs *engine) 361 { 362 int vecs_id; 363 364 GEM_BUG_ON(engine->class != VIDEO_DECODE_CLASS); 365 366 vecs_id = _VECS((engine->instance) / 2); 367 368 return engine->gt->engine[vecs_id]; 369 } 370 371 struct sfc_lock_data { 372 i915_reg_t lock_reg; 373 i915_reg_t ack_reg; 374 i915_reg_t usage_reg; 375 u32 lock_bit; 376 u32 ack_bit; 377 u32 usage_bit; 378 u32 reset_bit; 379 }; 380 381 static void get_sfc_forced_lock_data(struct intel_engine_cs *engine, 382 struct sfc_lock_data *sfc_lock) 383 { 384 switch (engine->class) { 385 default: 386 MISSING_CASE(engine->class); 387 fallthrough; 388 case VIDEO_DECODE_CLASS: 389 sfc_lock->lock_reg = GEN11_VCS_SFC_FORCED_LOCK(engine->mmio_base); 390 sfc_lock->lock_bit = GEN11_VCS_SFC_FORCED_LOCK_BIT; 391 392 sfc_lock->ack_reg = GEN11_VCS_SFC_LOCK_STATUS(engine->mmio_base); 393 sfc_lock->ack_bit = GEN11_VCS_SFC_LOCK_ACK_BIT; 394 395 sfc_lock->usage_reg = GEN11_VCS_SFC_LOCK_STATUS(engine->mmio_base); 396 sfc_lock->usage_bit = GEN11_VCS_SFC_USAGE_BIT; 397 sfc_lock->reset_bit = GEN11_VCS_SFC_RESET_BIT(engine->instance); 398 399 break; 400 case VIDEO_ENHANCEMENT_CLASS: 401 sfc_lock->lock_reg = GEN11_VECS_SFC_FORCED_LOCK(engine->mmio_base); 402 sfc_lock->lock_bit = GEN11_VECS_SFC_FORCED_LOCK_BIT; 403 404 sfc_lock->ack_reg = GEN11_VECS_SFC_LOCK_ACK(engine->mmio_base); 405 sfc_lock->ack_bit = GEN11_VECS_SFC_LOCK_ACK_BIT; 406 407 sfc_lock->usage_reg = GEN11_VECS_SFC_USAGE(engine->mmio_base); 408 sfc_lock->usage_bit = GEN11_VECS_SFC_USAGE_BIT; 409 sfc_lock->reset_bit = GEN11_VECS_SFC_RESET_BIT(engine->instance); 410 411 break; 412 } 413 } 414 415 static int gen11_lock_sfc(struct intel_engine_cs *engine, 416 u32 *reset_mask, 417 u32 *unlock_mask) 418 { 419 struct intel_uncore *uncore = engine->uncore; 420 u8 vdbox_sfc_access = engine->gt->info.vdbox_sfc_access; 421 struct sfc_lock_data sfc_lock; 422 bool lock_obtained, lock_to_other = false; 423 int ret; 424 425 switch (engine->class) { 426 case VIDEO_DECODE_CLASS: 427 if ((BIT(engine->instance) & vdbox_sfc_access) == 0) 428 return 0; 429 430 fallthrough; 431 case VIDEO_ENHANCEMENT_CLASS: 432 get_sfc_forced_lock_data(engine, &sfc_lock); 433 434 break; 435 default: 436 return 0; 437 } 438 439 if (!(intel_uncore_read_fw(uncore, sfc_lock.usage_reg) & sfc_lock.usage_bit)) { 440 struct intel_engine_cs *paired_vecs; 441 442 if (engine->class != VIDEO_DECODE_CLASS || 443 GRAPHICS_VER(engine->i915) != 12) 444 return 0; 445 446 /* 447 * Wa_14010733141 448 * 449 * If the VCS-MFX isn't using the SFC, we also need to check 450 * whether VCS-HCP is using it. If so, we need to issue a *VE* 451 * forced lock on the VE engine that shares the same SFC. 452 */ 453 if (!(intel_uncore_read_fw(uncore, 454 GEN12_HCP_SFC_LOCK_STATUS(engine->mmio_base)) & 455 GEN12_HCP_SFC_USAGE_BIT)) 456 return 0; 457 458 paired_vecs = find_sfc_paired_vecs_engine(engine); 459 get_sfc_forced_lock_data(paired_vecs, &sfc_lock); 460 lock_to_other = true; 461 *unlock_mask |= paired_vecs->mask; 462 } else { 463 *unlock_mask |= engine->mask; 464 } 465 466 /* 467 * If the engine is using an SFC, tell the engine that a software reset 468 * is going to happen. The engine will then try to force lock the SFC. 469 * If SFC ends up being locked to the engine we want to reset, we have 470 * to reset it as well (we will unlock it once the reset sequence is 471 * completed). 472 */ 473 rmw_set_fw(uncore, sfc_lock.lock_reg, sfc_lock.lock_bit); 474 475 ret = __intel_wait_for_register_fw(uncore, 476 sfc_lock.ack_reg, 477 sfc_lock.ack_bit, 478 sfc_lock.ack_bit, 479 1000, 0, NULL); 480 481 /* 482 * Was the SFC released while we were trying to lock it? 483 * 484 * We should reset both the engine and the SFC if: 485 * - We were locking the SFC to this engine and the lock succeeded 486 * OR 487 * - We were locking the SFC to a different engine (Wa_14010733141) 488 * but the SFC was released before the lock was obtained. 489 * 490 * Otherwise we need only reset the engine by itself and we can 491 * leave the SFC alone. 492 */ 493 lock_obtained = (intel_uncore_read_fw(uncore, sfc_lock.usage_reg) & 494 sfc_lock.usage_bit) != 0; 495 if (lock_obtained == lock_to_other) 496 return 0; 497 498 if (ret) { 499 ENGINE_TRACE(engine, "Wait for SFC forced lock ack failed\n"); 500 return ret; 501 } 502 503 *reset_mask |= sfc_lock.reset_bit; 504 return 0; 505 } 506 507 static void gen11_unlock_sfc(struct intel_engine_cs *engine) 508 { 509 struct intel_uncore *uncore = engine->uncore; 510 u8 vdbox_sfc_access = engine->gt->info.vdbox_sfc_access; 511 struct sfc_lock_data sfc_lock = {}; 512 513 if (engine->class != VIDEO_DECODE_CLASS && 514 engine->class != VIDEO_ENHANCEMENT_CLASS) 515 return; 516 517 if (engine->class == VIDEO_DECODE_CLASS && 518 (BIT(engine->instance) & vdbox_sfc_access) == 0) 519 return; 520 521 get_sfc_forced_lock_data(engine, &sfc_lock); 522 523 rmw_clear_fw(uncore, sfc_lock.lock_reg, sfc_lock.lock_bit); 524 } 525 526 static int __gen11_reset_engines(struct intel_gt *gt, 527 intel_engine_mask_t engine_mask, 528 unsigned int retry) 529 { 530 struct intel_engine_cs *engine; 531 intel_engine_mask_t tmp; 532 u32 reset_mask, unlock_mask = 0; 533 int ret; 534 535 if (engine_mask == ALL_ENGINES) { 536 reset_mask = GEN11_GRDOM_FULL; 537 } else { 538 reset_mask = 0; 539 for_each_engine_masked(engine, gt, engine_mask, tmp) { 540 reset_mask |= engine->reset_domain; 541 ret = gen11_lock_sfc(engine, &reset_mask, &unlock_mask); 542 if (ret) 543 goto sfc_unlock; 544 } 545 } 546 547 ret = gen6_hw_domain_reset(gt, reset_mask); 548 549 sfc_unlock: 550 /* 551 * We unlock the SFC based on the lock status and not the result of 552 * gen11_lock_sfc to make sure that we clean properly if something 553 * wrong happened during the lock (e.g. lock acquired after timeout 554 * expiration). 555 * 556 * Due to Wa_14010733141, we may have locked an SFC to an engine that 557 * wasn't being reset. So instead of calling gen11_unlock_sfc() 558 * on engine_mask, we instead call it on the mask of engines that our 559 * gen11_lock_sfc() calls told us actually had locks attempted. 560 */ 561 for_each_engine_masked(engine, gt, unlock_mask, tmp) 562 gen11_unlock_sfc(engine); 563 564 return ret; 565 } 566 567 static int gen8_engine_reset_prepare(struct intel_engine_cs *engine) 568 { 569 struct intel_uncore *uncore = engine->uncore; 570 const i915_reg_t reg = RING_RESET_CTL(engine->mmio_base); 571 u32 request, mask, ack; 572 int ret; 573 574 if (I915_SELFTEST_ONLY(should_fail(&engine->reset_timeout, 1))) 575 return -ETIMEDOUT; 576 577 ack = intel_uncore_read_fw(uncore, reg); 578 if (ack & RESET_CTL_CAT_ERROR) { 579 /* 580 * For catastrophic errors, ready-for-reset sequence 581 * needs to be bypassed: HAS#396813 582 */ 583 request = RESET_CTL_CAT_ERROR; 584 mask = RESET_CTL_CAT_ERROR; 585 586 /* Catastrophic errors need to be cleared by HW */ 587 ack = 0; 588 } else if (!(ack & RESET_CTL_READY_TO_RESET)) { 589 request = RESET_CTL_REQUEST_RESET; 590 mask = RESET_CTL_READY_TO_RESET; 591 ack = RESET_CTL_READY_TO_RESET; 592 } else { 593 return 0; 594 } 595 596 intel_uncore_write_fw(uncore, reg, _MASKED_BIT_ENABLE(request)); 597 ret = __intel_wait_for_register_fw(uncore, reg, mask, ack, 598 700, 0, NULL); 599 if (ret) 600 drm_err(&engine->i915->drm, 601 "%s reset request timed out: {request: %08x, RESET_CTL: %08x}\n", 602 engine->name, request, 603 intel_uncore_read_fw(uncore, reg)); 604 605 return ret; 606 } 607 608 static void gen8_engine_reset_cancel(struct intel_engine_cs *engine) 609 { 610 intel_uncore_write_fw(engine->uncore, 611 RING_RESET_CTL(engine->mmio_base), 612 _MASKED_BIT_DISABLE(RESET_CTL_REQUEST_RESET)); 613 } 614 615 static int gen8_reset_engines(struct intel_gt *gt, 616 intel_engine_mask_t engine_mask, 617 unsigned int retry) 618 { 619 struct intel_engine_cs *engine; 620 const bool reset_non_ready = retry >= 1; 621 intel_engine_mask_t tmp; 622 unsigned long flags; 623 int ret; 624 625 spin_lock_irqsave(>->uncore->lock, flags); 626 627 for_each_engine_masked(engine, gt, engine_mask, tmp) { 628 ret = gen8_engine_reset_prepare(engine); 629 if (ret && !reset_non_ready) 630 goto skip_reset; 631 632 /* 633 * If this is not the first failed attempt to prepare, 634 * we decide to proceed anyway. 635 * 636 * By doing so we risk context corruption and with 637 * some gens (kbl), possible system hang if reset 638 * happens during active bb execution. 639 * 640 * We rather take context corruption instead of 641 * failed reset with a wedged driver/gpu. And 642 * active bb execution case should be covered by 643 * stop_engines() we have before the reset. 644 */ 645 } 646 647 /* 648 * Wa_22011100796:dg2, whenever Full soft reset is required, 649 * reset all individual engines firstly, and then do a full soft reset. 650 * 651 * This is best effort, so ignore any error from the initial reset. 652 */ 653 if (IS_DG2(gt->i915) && engine_mask == ALL_ENGINES) 654 __gen11_reset_engines(gt, gt->info.engine_mask, 0); 655 656 if (GRAPHICS_VER(gt->i915) >= 11) 657 ret = __gen11_reset_engines(gt, engine_mask, retry); 658 else 659 ret = __gen6_reset_engines(gt, engine_mask, retry); 660 661 skip_reset: 662 for_each_engine_masked(engine, gt, engine_mask, tmp) 663 gen8_engine_reset_cancel(engine); 664 665 spin_unlock_irqrestore(>->uncore->lock, flags); 666 667 return ret; 668 } 669 670 static int mock_reset(struct intel_gt *gt, 671 intel_engine_mask_t mask, 672 unsigned int retry) 673 { 674 return 0; 675 } 676 677 typedef int (*reset_func)(struct intel_gt *, 678 intel_engine_mask_t engine_mask, 679 unsigned int retry); 680 681 static reset_func intel_get_gpu_reset(const struct intel_gt *gt) 682 { 683 struct drm_i915_private *i915 = gt->i915; 684 685 if (is_mock_gt(gt)) 686 return mock_reset; 687 else if (GRAPHICS_VER(i915) >= 8) 688 return gen8_reset_engines; 689 else if (GRAPHICS_VER(i915) >= 6) 690 return gen6_reset_engines; 691 else if (GRAPHICS_VER(i915) >= 5) 692 return ilk_do_reset; 693 else if (IS_G4X(i915)) 694 return g4x_do_reset; 695 else if (IS_G33(i915) || IS_PINEVIEW(i915)) 696 return g33_do_reset; 697 else if (GRAPHICS_VER(i915) >= 3) 698 return i915_do_reset; 699 else 700 return NULL; 701 } 702 703 int __intel_gt_reset(struct intel_gt *gt, intel_engine_mask_t engine_mask) 704 { 705 const int retries = engine_mask == ALL_ENGINES ? RESET_MAX_RETRIES : 1; 706 reset_func reset; 707 int ret = -ETIMEDOUT; 708 int retry; 709 710 reset = intel_get_gpu_reset(gt); 711 if (!reset) 712 return -ENODEV; 713 714 /* 715 * If the power well sleeps during the reset, the reset 716 * request may be dropped and never completes (causing -EIO). 717 */ 718 intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL); 719 for (retry = 0; ret == -ETIMEDOUT && retry < retries; retry++) { 720 GT_TRACE(gt, "engine_mask=%x\n", engine_mask); 721 preempt_disable(); 722 ret = reset(gt, engine_mask, retry); 723 preempt_enable(); 724 } 725 intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL); 726 727 return ret; 728 } 729 730 bool intel_has_gpu_reset(const struct intel_gt *gt) 731 { 732 if (!gt->i915->params.reset) 733 return NULL; 734 735 return intel_get_gpu_reset(gt); 736 } 737 738 bool intel_has_reset_engine(const struct intel_gt *gt) 739 { 740 if (gt->i915->params.reset < 2) 741 return false; 742 743 return INTEL_INFO(gt->i915)->has_reset_engine; 744 } 745 746 int intel_reset_guc(struct intel_gt *gt) 747 { 748 u32 guc_domain = 749 GRAPHICS_VER(gt->i915) >= 11 ? GEN11_GRDOM_GUC : GEN9_GRDOM_GUC; 750 int ret; 751 752 GEM_BUG_ON(!HAS_GT_UC(gt->i915)); 753 754 intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL); 755 ret = gen6_hw_domain_reset(gt, guc_domain); 756 intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL); 757 758 return ret; 759 } 760 761 /* 762 * Ensure irq handler finishes, and not run again. 763 * Also return the active request so that we only search for it once. 764 */ 765 static void reset_prepare_engine(struct intel_engine_cs *engine) 766 { 767 /* 768 * During the reset sequence, we must prevent the engine from 769 * entering RC6. As the context state is undefined until we restart 770 * the engine, if it does enter RC6 during the reset, the state 771 * written to the powercontext is undefined and so we may lose 772 * GPU state upon resume, i.e. fail to restart after a reset. 773 */ 774 intel_uncore_forcewake_get(engine->uncore, FORCEWAKE_ALL); 775 if (engine->reset.prepare) 776 engine->reset.prepare(engine); 777 } 778 779 static void revoke_mmaps(struct intel_gt *gt) 780 { 781 int i; 782 783 for (i = 0; i < gt->ggtt->num_fences; i++) { 784 struct drm_vma_offset_node *node; 785 struct i915_vma *vma; 786 u64 vma_offset; 787 788 vma = READ_ONCE(gt->ggtt->fence_regs[i].vma); 789 if (!vma) 790 continue; 791 792 if (!i915_vma_has_userfault(vma)) 793 continue; 794 795 GEM_BUG_ON(vma->fence != >->ggtt->fence_regs[i]); 796 797 if (!vma->mmo) 798 continue; 799 800 node = &vma->mmo->vma_node; 801 vma_offset = vma->gtt_view.partial.offset << PAGE_SHIFT; 802 803 #ifdef __linux__ 804 unmap_mapping_range(gt->i915->drm.anon_inode->i_mapping, 805 drm_vma_node_offset_addr(node) + vma_offset, 806 vma->size, 807 1); 808 #else 809 { 810 struct drm_i915_private *dev_priv = vma->obj->base.dev->dev_private; 811 struct vm_page *pg; 812 813 for (pg = &dev_priv->pgs[atop(vma->node.start)]; 814 pg != &dev_priv->pgs[atop(vma->node.start + vma->size)]; 815 pg++) 816 pmap_page_protect(pg, PROT_NONE); 817 } 818 #endif 819 } 820 } 821 822 static intel_engine_mask_t reset_prepare(struct intel_gt *gt) 823 { 824 struct intel_engine_cs *engine; 825 intel_engine_mask_t awake = 0; 826 enum intel_engine_id id; 827 828 /* For GuC mode, ensure submission is disabled before stopping ring */ 829 intel_uc_reset_prepare(>->uc); 830 831 for_each_engine(engine, gt, id) { 832 if (intel_engine_pm_get_if_awake(engine)) 833 awake |= engine->mask; 834 reset_prepare_engine(engine); 835 } 836 837 return awake; 838 } 839 840 static void gt_revoke(struct intel_gt *gt) 841 { 842 revoke_mmaps(gt); 843 } 844 845 static int gt_reset(struct intel_gt *gt, intel_engine_mask_t stalled_mask) 846 { 847 struct intel_engine_cs *engine; 848 enum intel_engine_id id; 849 int err; 850 851 /* 852 * Everything depends on having the GTT running, so we need to start 853 * there. 854 */ 855 err = i915_ggtt_enable_hw(gt->i915); 856 if (err) 857 return err; 858 859 local_bh_disable(); 860 for_each_engine(engine, gt, id) 861 __intel_engine_reset(engine, stalled_mask & engine->mask); 862 local_bh_enable(); 863 864 intel_uc_reset(>->uc, ALL_ENGINES); 865 866 intel_ggtt_restore_fences(gt->ggtt); 867 868 return err; 869 } 870 871 static void reset_finish_engine(struct intel_engine_cs *engine) 872 { 873 if (engine->reset.finish) 874 engine->reset.finish(engine); 875 intel_uncore_forcewake_put(engine->uncore, FORCEWAKE_ALL); 876 877 intel_engine_signal_breadcrumbs(engine); 878 } 879 880 static void reset_finish(struct intel_gt *gt, intel_engine_mask_t awake) 881 { 882 struct intel_engine_cs *engine; 883 enum intel_engine_id id; 884 885 for_each_engine(engine, gt, id) { 886 reset_finish_engine(engine); 887 if (awake & engine->mask) 888 intel_engine_pm_put(engine); 889 } 890 891 intel_uc_reset_finish(>->uc); 892 } 893 894 static void nop_submit_request(struct i915_request *request) 895 { 896 RQ_TRACE(request, "-EIO\n"); 897 898 request = i915_request_mark_eio(request); 899 if (request) { 900 i915_request_submit(request); 901 intel_engine_signal_breadcrumbs(request->engine); 902 903 i915_request_put(request); 904 } 905 } 906 907 static void __intel_gt_set_wedged(struct intel_gt *gt) 908 { 909 struct intel_engine_cs *engine; 910 intel_engine_mask_t awake; 911 enum intel_engine_id id; 912 913 if (test_bit(I915_WEDGED, >->reset.flags)) 914 return; 915 916 GT_TRACE(gt, "start\n"); 917 918 /* 919 * First, stop submission to hw, but do not yet complete requests by 920 * rolling the global seqno forward (since this would complete requests 921 * for which we haven't set the fence error to EIO yet). 922 */ 923 awake = reset_prepare(gt); 924 925 /* Even if the GPU reset fails, it should still stop the engines */ 926 if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display) 927 __intel_gt_reset(gt, ALL_ENGINES); 928 929 for_each_engine(engine, gt, id) 930 engine->submit_request = nop_submit_request; 931 932 /* 933 * Make sure no request can slip through without getting completed by 934 * either this call here to intel_engine_write_global_seqno, or the one 935 * in nop_submit_request. 936 */ 937 synchronize_rcu_expedited(); 938 set_bit(I915_WEDGED, >->reset.flags); 939 940 /* Mark all executing requests as skipped */ 941 local_bh_disable(); 942 for_each_engine(engine, gt, id) 943 if (engine->reset.cancel) 944 engine->reset.cancel(engine); 945 intel_uc_cancel_requests(>->uc); 946 local_bh_enable(); 947 948 reset_finish(gt, awake); 949 950 GT_TRACE(gt, "end\n"); 951 } 952 953 void intel_gt_set_wedged(struct intel_gt *gt) 954 { 955 intel_wakeref_t wakeref; 956 957 if (test_bit(I915_WEDGED, >->reset.flags)) 958 return; 959 960 wakeref = intel_runtime_pm_get(gt->uncore->rpm); 961 mutex_lock(>->reset.mutex); 962 963 if (GEM_SHOW_DEBUG()) { 964 struct drm_printer p = drm_debug_printer(__func__); 965 struct intel_engine_cs *engine; 966 enum intel_engine_id id; 967 968 drm_printf(&p, "called from %pS\n", (void *)_RET_IP_); 969 for_each_engine(engine, gt, id) { 970 if (intel_engine_is_idle(engine)) 971 continue; 972 973 intel_engine_dump(engine, &p, "%s\n", engine->name); 974 } 975 } 976 977 __intel_gt_set_wedged(gt); 978 979 mutex_unlock(>->reset.mutex); 980 intel_runtime_pm_put(gt->uncore->rpm, wakeref); 981 } 982 983 static bool __intel_gt_unset_wedged(struct intel_gt *gt) 984 { 985 struct intel_gt_timelines *timelines = >->timelines; 986 struct intel_timeline *tl; 987 bool ok; 988 989 if (!test_bit(I915_WEDGED, >->reset.flags)) 990 return true; 991 992 /* Never fully initialised, recovery impossible */ 993 if (intel_gt_has_unrecoverable_error(gt)) 994 return false; 995 996 GT_TRACE(gt, "start\n"); 997 998 /* 999 * Before unwedging, make sure that all pending operations 1000 * are flushed and errored out - we may have requests waiting upon 1001 * third party fences. We marked all inflight requests as EIO, and 1002 * every execbuf since returned EIO, for consistency we want all 1003 * the currently pending requests to also be marked as EIO, which 1004 * is done inside our nop_submit_request - and so we must wait. 1005 * 1006 * No more can be submitted until we reset the wedged bit. 1007 */ 1008 spin_lock(&timelines->lock); 1009 list_for_each_entry(tl, &timelines->active_list, link) { 1010 struct dma_fence *fence; 1011 1012 fence = i915_active_fence_get(&tl->last_request); 1013 if (!fence) 1014 continue; 1015 1016 spin_unlock(&timelines->lock); 1017 1018 /* 1019 * All internal dependencies (i915_requests) will have 1020 * been flushed by the set-wedge, but we may be stuck waiting 1021 * for external fences. These should all be capped to 10s 1022 * (I915_FENCE_TIMEOUT) so this wait should not be unbounded 1023 * in the worst case. 1024 */ 1025 dma_fence_default_wait(fence, false, MAX_SCHEDULE_TIMEOUT); 1026 dma_fence_put(fence); 1027 1028 /* Restart iteration after droping lock */ 1029 spin_lock(&timelines->lock); 1030 tl = list_entry(&timelines->active_list, typeof(*tl), link); 1031 } 1032 spin_unlock(&timelines->lock); 1033 1034 /* We must reset pending GPU events before restoring our submission */ 1035 ok = !HAS_EXECLISTS(gt->i915); /* XXX better agnosticism desired */ 1036 if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display) 1037 ok = __intel_gt_reset(gt, ALL_ENGINES) == 0; 1038 if (!ok) { 1039 /* 1040 * Warn CI about the unrecoverable wedged condition. 1041 * Time for a reboot. 1042 */ 1043 add_taint_for_CI(gt->i915, TAINT_WARN); 1044 return false; 1045 } 1046 1047 /* 1048 * Undo nop_submit_request. We prevent all new i915 requests from 1049 * being queued (by disallowing execbuf whilst wedged) so having 1050 * waited for all active requests above, we know the system is idle 1051 * and do not have to worry about a thread being inside 1052 * engine->submit_request() as we swap over. So unlike installing 1053 * the nop_submit_request on reset, we can do this from normal 1054 * context and do not require stop_machine(). 1055 */ 1056 intel_engines_reset_default_submission(gt); 1057 1058 GT_TRACE(gt, "end\n"); 1059 1060 smp_mb__before_atomic(); /* complete takeover before enabling execbuf */ 1061 clear_bit(I915_WEDGED, >->reset.flags); 1062 1063 return true; 1064 } 1065 1066 bool intel_gt_unset_wedged(struct intel_gt *gt) 1067 { 1068 bool result; 1069 1070 mutex_lock(>->reset.mutex); 1071 result = __intel_gt_unset_wedged(gt); 1072 mutex_unlock(>->reset.mutex); 1073 1074 return result; 1075 } 1076 1077 static int do_reset(struct intel_gt *gt, intel_engine_mask_t stalled_mask) 1078 { 1079 int err, i; 1080 1081 err = __intel_gt_reset(gt, ALL_ENGINES); 1082 for (i = 0; err && i < RESET_MAX_RETRIES; i++) { 1083 drm_msleep(10 * (i + 1)); 1084 err = __intel_gt_reset(gt, ALL_ENGINES); 1085 } 1086 if (err) 1087 return err; 1088 1089 return gt_reset(gt, stalled_mask); 1090 } 1091 1092 static int resume(struct intel_gt *gt) 1093 { 1094 struct intel_engine_cs *engine; 1095 enum intel_engine_id id; 1096 int ret; 1097 1098 for_each_engine(engine, gt, id) { 1099 ret = intel_engine_resume(engine); 1100 if (ret) 1101 return ret; 1102 } 1103 1104 return 0; 1105 } 1106 1107 /** 1108 * intel_gt_reset - reset chip after a hang 1109 * @gt: #intel_gt to reset 1110 * @stalled_mask: mask of the stalled engines with the guilty requests 1111 * @reason: user error message for why we are resetting 1112 * 1113 * Reset the chip. Useful if a hang is detected. Marks the device as wedged 1114 * on failure. 1115 * 1116 * Procedure is fairly simple: 1117 * - reset the chip using the reset reg 1118 * - re-init context state 1119 * - re-init hardware status page 1120 * - re-init ring buffer 1121 * - re-init interrupt state 1122 * - re-init display 1123 */ 1124 void intel_gt_reset(struct intel_gt *gt, 1125 intel_engine_mask_t stalled_mask, 1126 const char *reason) 1127 { 1128 intel_engine_mask_t awake; 1129 int ret; 1130 1131 GT_TRACE(gt, "flags=%lx\n", gt->reset.flags); 1132 1133 might_sleep(); 1134 GEM_BUG_ON(!test_bit(I915_RESET_BACKOFF, >->reset.flags)); 1135 1136 /* 1137 * FIXME: Revoking cpu mmap ptes cannot be done from a dma_fence 1138 * critical section like gpu reset. 1139 */ 1140 gt_revoke(gt); 1141 1142 mutex_lock(>->reset.mutex); 1143 1144 /* Clear any previous failed attempts at recovery. Time to try again. */ 1145 if (!__intel_gt_unset_wedged(gt)) 1146 goto unlock; 1147 1148 if (reason) 1149 drm_notice(>->i915->drm, 1150 "Resetting chip for %s\n", reason); 1151 atomic_inc(>->i915->gpu_error.reset_count); 1152 1153 awake = reset_prepare(gt); 1154 1155 if (!intel_has_gpu_reset(gt)) { 1156 if (gt->i915->params.reset) 1157 drm_err(>->i915->drm, "GPU reset not supported\n"); 1158 else 1159 drm_dbg(>->i915->drm, "GPU reset disabled\n"); 1160 goto error; 1161 } 1162 1163 if (INTEL_INFO(gt->i915)->gpu_reset_clobbers_display) 1164 intel_runtime_pm_disable_interrupts(gt->i915); 1165 1166 if (do_reset(gt, stalled_mask)) { 1167 drm_err(>->i915->drm, "Failed to reset chip\n"); 1168 goto taint; 1169 } 1170 1171 if (INTEL_INFO(gt->i915)->gpu_reset_clobbers_display) 1172 intel_runtime_pm_enable_interrupts(gt->i915); 1173 1174 intel_overlay_reset(gt->i915); 1175 1176 /* 1177 * Next we need to restore the context, but we don't use those 1178 * yet either... 1179 * 1180 * Ring buffer needs to be re-initialized in the KMS case, or if X 1181 * was running at the time of the reset (i.e. we weren't VT 1182 * switched away). 1183 */ 1184 ret = intel_gt_init_hw(gt); 1185 if (ret) { 1186 drm_err(>->i915->drm, 1187 "Failed to initialise HW following reset (%d)\n", 1188 ret); 1189 goto taint; 1190 } 1191 1192 ret = resume(gt); 1193 if (ret) 1194 goto taint; 1195 1196 finish: 1197 reset_finish(gt, awake); 1198 unlock: 1199 mutex_unlock(>->reset.mutex); 1200 return; 1201 1202 taint: 1203 /* 1204 * History tells us that if we cannot reset the GPU now, we 1205 * never will. This then impacts everything that is run 1206 * subsequently. On failing the reset, we mark the driver 1207 * as wedged, preventing further execution on the GPU. 1208 * We also want to go one step further and add a taint to the 1209 * kernel so that any subsequent faults can be traced back to 1210 * this failure. This is important for CI, where if the 1211 * GPU/driver fails we would like to reboot and restart testing 1212 * rather than continue on into oblivion. For everyone else, 1213 * the system should still plod along, but they have been warned! 1214 */ 1215 add_taint_for_CI(gt->i915, TAINT_WARN); 1216 error: 1217 __intel_gt_set_wedged(gt); 1218 goto finish; 1219 } 1220 1221 static int intel_gt_reset_engine(struct intel_engine_cs *engine) 1222 { 1223 return __intel_gt_reset(engine->gt, engine->mask); 1224 } 1225 1226 int __intel_engine_reset_bh(struct intel_engine_cs *engine, const char *msg) 1227 { 1228 struct intel_gt *gt = engine->gt; 1229 int ret; 1230 1231 ENGINE_TRACE(engine, "flags=%lx\n", gt->reset.flags); 1232 GEM_BUG_ON(!test_bit(I915_RESET_ENGINE + engine->id, >->reset.flags)); 1233 1234 if (intel_engine_uses_guc(engine)) 1235 return -ENODEV; 1236 1237 if (!intel_engine_pm_get_if_awake(engine)) 1238 return 0; 1239 1240 reset_prepare_engine(engine); 1241 1242 if (msg) 1243 drm_notice(&engine->i915->drm, 1244 "Resetting %s for %s\n", engine->name, msg); 1245 atomic_inc(&engine->i915->gpu_error.reset_engine_count[engine->uabi_class]); 1246 1247 ret = intel_gt_reset_engine(engine); 1248 if (ret) { 1249 /* If we fail here, we expect to fallback to a global reset */ 1250 ENGINE_TRACE(engine, "Failed to reset %s, err: %d\n", engine->name, ret); 1251 goto out; 1252 } 1253 1254 /* 1255 * The request that caused the hang is stuck on elsp, we know the 1256 * active request and can drop it, adjust head to skip the offending 1257 * request to resume executing remaining requests in the queue. 1258 */ 1259 __intel_engine_reset(engine, true); 1260 1261 /* 1262 * The engine and its registers (and workarounds in case of render) 1263 * have been reset to their default values. Follow the init_ring 1264 * process to program RING_MODE, HWSP and re-enable submission. 1265 */ 1266 ret = intel_engine_resume(engine); 1267 1268 out: 1269 intel_engine_cancel_stop_cs(engine); 1270 reset_finish_engine(engine); 1271 intel_engine_pm_put_async(engine); 1272 return ret; 1273 } 1274 1275 /** 1276 * intel_engine_reset - reset GPU engine to recover from a hang 1277 * @engine: engine to reset 1278 * @msg: reason for GPU reset; or NULL for no drm_notice() 1279 * 1280 * Reset a specific GPU engine. Useful if a hang is detected. 1281 * Returns zero on successful reset or otherwise an error code. 1282 * 1283 * Procedure is: 1284 * - identifies the request that caused the hang and it is dropped 1285 * - reset engine (which will force the engine to idle) 1286 * - re-init/configure engine 1287 */ 1288 int intel_engine_reset(struct intel_engine_cs *engine, const char *msg) 1289 { 1290 int err; 1291 1292 local_bh_disable(); 1293 err = __intel_engine_reset_bh(engine, msg); 1294 local_bh_enable(); 1295 1296 return err; 1297 } 1298 1299 static void intel_gt_reset_global(struct intel_gt *gt, 1300 u32 engine_mask, 1301 const char *reason) 1302 { 1303 #ifdef notyet 1304 struct kobject *kobj = >->i915->drm.primary->kdev->kobj; 1305 char *error_event[] = { I915_ERROR_UEVENT "=1", NULL }; 1306 char *reset_event[] = { I915_RESET_UEVENT "=1", NULL }; 1307 char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL }; 1308 #endif 1309 struct intel_wedge_me w; 1310 1311 kobject_uevent_env(kobj, KOBJ_CHANGE, error_event); 1312 1313 GT_TRACE(gt, "resetting chip, engines=%x\n", engine_mask); 1314 kobject_uevent_env(kobj, KOBJ_CHANGE, reset_event); 1315 1316 /* Use a watchdog to ensure that our reset completes */ 1317 intel_wedge_on_timeout(&w, gt, 5 * HZ) { 1318 intel_display_prepare_reset(gt->i915); 1319 1320 intel_gt_reset(gt, engine_mask, reason); 1321 1322 intel_display_finish_reset(gt->i915); 1323 } 1324 1325 if (!test_bit(I915_WEDGED, >->reset.flags)) 1326 kobject_uevent_env(kobj, KOBJ_CHANGE, reset_done_event); 1327 } 1328 1329 /** 1330 * intel_gt_handle_error - handle a gpu error 1331 * @gt: the intel_gt 1332 * @engine_mask: mask representing engines that are hung 1333 * @flags: control flags 1334 * @fmt: Error message format string 1335 * 1336 * Do some basic checking of register state at error time and 1337 * dump it to the syslog. Also call i915_capture_error_state() to make 1338 * sure we get a record and make it available in debugfs. Fire a uevent 1339 * so userspace knows something bad happened (should trigger collection 1340 * of a ring dump etc.). 1341 */ 1342 void intel_gt_handle_error(struct intel_gt *gt, 1343 intel_engine_mask_t engine_mask, 1344 unsigned long flags, 1345 const char *fmt, ...) 1346 { 1347 struct intel_engine_cs *engine; 1348 intel_wakeref_t wakeref; 1349 intel_engine_mask_t tmp; 1350 char error_msg[80]; 1351 char *msg = NULL; 1352 1353 if (fmt) { 1354 va_list args; 1355 1356 va_start(args, fmt); 1357 vscnprintf(error_msg, sizeof(error_msg), fmt, args); 1358 va_end(args); 1359 1360 msg = error_msg; 1361 } 1362 1363 /* 1364 * In most cases it's guaranteed that we get here with an RPM 1365 * reference held, for example because there is a pending GPU 1366 * request that won't finish until the reset is done. This 1367 * isn't the case at least when we get here by doing a 1368 * simulated reset via debugfs, so get an RPM reference. 1369 */ 1370 wakeref = intel_runtime_pm_get(gt->uncore->rpm); 1371 1372 engine_mask &= gt->info.engine_mask; 1373 1374 if (flags & I915_ERROR_CAPTURE) { 1375 i915_capture_error_state(gt, engine_mask, CORE_DUMP_FLAG_NONE); 1376 intel_gt_clear_error_registers(gt, engine_mask); 1377 } 1378 1379 /* 1380 * Try engine reset when available. We fall back to full reset if 1381 * single reset fails. 1382 */ 1383 if (!intel_uc_uses_guc_submission(>->uc) && 1384 intel_has_reset_engine(gt) && !intel_gt_is_wedged(gt)) { 1385 local_bh_disable(); 1386 for_each_engine_masked(engine, gt, engine_mask, tmp) { 1387 BUILD_BUG_ON(I915_RESET_MODESET >= I915_RESET_ENGINE); 1388 if (test_and_set_bit(I915_RESET_ENGINE + engine->id, 1389 >->reset.flags)) 1390 continue; 1391 1392 if (__intel_engine_reset_bh(engine, msg) == 0) 1393 engine_mask &= ~engine->mask; 1394 1395 clear_and_wake_up_bit(I915_RESET_ENGINE + engine->id, 1396 >->reset.flags); 1397 } 1398 local_bh_enable(); 1399 } 1400 1401 if (!engine_mask) 1402 goto out; 1403 1404 /* Full reset needs the mutex, stop any other user trying to do so. */ 1405 if (test_and_set_bit(I915_RESET_BACKOFF, >->reset.flags)) { 1406 wait_event(gt->reset.queue, 1407 !test_bit(I915_RESET_BACKOFF, >->reset.flags)); 1408 goto out; /* piggy-back on the other reset */ 1409 } 1410 1411 /* Make sure i915_reset_trylock() sees the I915_RESET_BACKOFF */ 1412 synchronize_rcu_expedited(); 1413 1414 /* 1415 * Prevent any other reset-engine attempt. We don't do this for GuC 1416 * submission the GuC owns the per-engine reset, not the i915. 1417 */ 1418 if (!intel_uc_uses_guc_submission(>->uc)) { 1419 for_each_engine(engine, gt, tmp) { 1420 while (test_and_set_bit(I915_RESET_ENGINE + engine->id, 1421 >->reset.flags)) 1422 wait_on_bit(>->reset.flags, 1423 I915_RESET_ENGINE + engine->id, 1424 TASK_UNINTERRUPTIBLE); 1425 } 1426 } 1427 1428 /* Flush everyone using a resource about to be clobbered */ 1429 synchronize_srcu_expedited(>->reset.backoff_srcu); 1430 1431 intel_gt_reset_global(gt, engine_mask, msg); 1432 1433 if (!intel_uc_uses_guc_submission(>->uc)) { 1434 for_each_engine(engine, gt, tmp) 1435 clear_bit_unlock(I915_RESET_ENGINE + engine->id, 1436 >->reset.flags); 1437 } 1438 clear_bit_unlock(I915_RESET_BACKOFF, >->reset.flags); 1439 smp_mb__after_atomic(); 1440 wake_up_all(>->reset.queue); 1441 1442 out: 1443 intel_runtime_pm_put(gt->uncore->rpm, wakeref); 1444 } 1445 1446 int intel_gt_reset_trylock(struct intel_gt *gt, int *srcu) 1447 { 1448 might_lock(>->reset.backoff_srcu); 1449 might_sleep(); 1450 1451 rcu_read_lock(); 1452 while (test_bit(I915_RESET_BACKOFF, >->reset.flags)) { 1453 rcu_read_unlock(); 1454 1455 if (wait_event_interruptible(gt->reset.queue, 1456 !test_bit(I915_RESET_BACKOFF, 1457 >->reset.flags))) 1458 return -EINTR; 1459 1460 rcu_read_lock(); 1461 } 1462 *srcu = srcu_read_lock(>->reset.backoff_srcu); 1463 rcu_read_unlock(); 1464 1465 return 0; 1466 } 1467 1468 void intel_gt_reset_unlock(struct intel_gt *gt, int tag) 1469 __releases(>->reset.backoff_srcu) 1470 { 1471 srcu_read_unlock(>->reset.backoff_srcu, tag); 1472 } 1473 1474 int intel_gt_terminally_wedged(struct intel_gt *gt) 1475 { 1476 might_sleep(); 1477 1478 if (!intel_gt_is_wedged(gt)) 1479 return 0; 1480 1481 if (intel_gt_has_unrecoverable_error(gt)) 1482 return -EIO; 1483 1484 /* Reset still in progress? Maybe we will recover? */ 1485 if (wait_event_interruptible(gt->reset.queue, 1486 !test_bit(I915_RESET_BACKOFF, 1487 >->reset.flags))) 1488 return -EINTR; 1489 1490 return intel_gt_is_wedged(gt) ? -EIO : 0; 1491 } 1492 1493 void intel_gt_set_wedged_on_init(struct intel_gt *gt) 1494 { 1495 BUILD_BUG_ON(I915_RESET_ENGINE + I915_NUM_ENGINES > 1496 I915_WEDGED_ON_INIT); 1497 intel_gt_set_wedged(gt); 1498 i915_disable_error_state(gt->i915, -ENODEV); 1499 set_bit(I915_WEDGED_ON_INIT, >->reset.flags); 1500 1501 /* Wedged on init is non-recoverable */ 1502 add_taint_for_CI(gt->i915, TAINT_WARN); 1503 } 1504 1505 void intel_gt_set_wedged_on_fini(struct intel_gt *gt) 1506 { 1507 intel_gt_set_wedged(gt); 1508 i915_disable_error_state(gt->i915, -ENODEV); 1509 set_bit(I915_WEDGED_ON_FINI, >->reset.flags); 1510 intel_gt_retire_requests(gt); /* cleanup any wedged requests */ 1511 } 1512 1513 void intel_gt_init_reset(struct intel_gt *gt) 1514 { 1515 init_waitqueue_head(>->reset.queue); 1516 rw_init(>->reset.mutex, "gtres"); 1517 init_srcu_struct(>->reset.backoff_srcu); 1518 1519 /* 1520 * While undesirable to wait inside the shrinker, complain anyway. 1521 * 1522 * If we have to wait during shrinking, we guarantee forward progress 1523 * by forcing the reset. Therefore during the reset we must not 1524 * re-enter the shrinker. By declaring that we take the reset mutex 1525 * within the shrinker, we forbid ourselves from performing any 1526 * fs-reclaim or taking related locks during reset. 1527 */ 1528 i915_gem_shrinker_taints_mutex(gt->i915, >->reset.mutex); 1529 1530 /* no GPU until we are ready! */ 1531 __set_bit(I915_WEDGED, >->reset.flags); 1532 } 1533 1534 void intel_gt_fini_reset(struct intel_gt *gt) 1535 { 1536 cleanup_srcu_struct(>->reset.backoff_srcu); 1537 } 1538 1539 static void intel_wedge_me(struct work_struct *work) 1540 { 1541 struct intel_wedge_me *w = container_of(work, typeof(*w), work.work); 1542 1543 drm_err(&w->gt->i915->drm, 1544 "%s timed out, cancelling all in-flight rendering.\n", 1545 w->name); 1546 intel_gt_set_wedged(w->gt); 1547 } 1548 1549 void __intel_init_wedge(struct intel_wedge_me *w, 1550 struct intel_gt *gt, 1551 long timeout, 1552 const char *name) 1553 { 1554 w->gt = gt; 1555 w->name = name; 1556 1557 INIT_DELAYED_WORK_ONSTACK(&w->work, intel_wedge_me); 1558 schedule_delayed_work(&w->work, timeout); 1559 } 1560 1561 void __intel_fini_wedge(struct intel_wedge_me *w) 1562 { 1563 cancel_delayed_work_sync(&w->work); 1564 destroy_delayed_work_on_stack(&w->work); 1565 w->gt = NULL; 1566 } 1567 1568 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 1569 #include "selftest_reset.c" 1570 #include "selftest_hangcheck.c" 1571 #endif 1572