xref: /openbsd-src/sys/dev/pci/drm/i915/gt/intel_reset.c (revision 25c4e8bd056e974b28f4a0ffd39d76c190a56013)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2008-2018 Intel Corporation
4  */
5 
6 #include <linux/sched/mm.h>
7 #include <linux/stop_machine.h>
8 
9 #include "display/intel_display_types.h"
10 #include "display/intel_overlay.h"
11 
12 #include "gem/i915_gem_context.h"
13 
14 #include "i915_drv.h"
15 #include "i915_gpu_error.h"
16 #include "i915_irq.h"
17 #include "intel_breadcrumbs.h"
18 #include "intel_engine_pm.h"
19 #include "intel_gt.h"
20 #include "intel_gt_pm.h"
21 #include "intel_gt_requests.h"
22 #include "intel_reset.h"
23 
24 #include "uc/intel_guc.h"
25 
26 #define RESET_MAX_RETRIES 3
27 
28 /* XXX How to handle concurrent GGTT updates using tiling registers? */
29 #define RESET_UNDER_STOP_MACHINE 0
30 
31 static void rmw_set_fw(struct intel_uncore *uncore, i915_reg_t reg, u32 set)
32 {
33 	intel_uncore_rmw_fw(uncore, reg, 0, set);
34 }
35 
36 static void rmw_clear_fw(struct intel_uncore *uncore, i915_reg_t reg, u32 clr)
37 {
38 	intel_uncore_rmw_fw(uncore, reg, clr, 0);
39 }
40 
41 static void client_mark_guilty(struct i915_gem_context *ctx, bool banned)
42 {
43 	struct drm_i915_file_private *file_priv = ctx->file_priv;
44 	unsigned long prev_hang;
45 	unsigned int score;
46 
47 	if (IS_ERR_OR_NULL(file_priv))
48 		return;
49 
50 	score = 0;
51 	if (banned)
52 		score = I915_CLIENT_SCORE_CONTEXT_BAN;
53 
54 	prev_hang = xchg(&file_priv->hang_timestamp, jiffies);
55 	if (time_before(jiffies, prev_hang + I915_CLIENT_FAST_HANG_JIFFIES))
56 		score += I915_CLIENT_SCORE_HANG_FAST;
57 
58 	if (score) {
59 		atomic_add(score, &file_priv->ban_score);
60 
61 		drm_dbg(&ctx->i915->drm,
62 			"client %s: gained %u ban score, now %u\n",
63 			ctx->name, score,
64 			atomic_read(&file_priv->ban_score));
65 	}
66 }
67 
68 static bool mark_guilty(struct i915_request *rq)
69 {
70 	struct i915_gem_context *ctx;
71 	unsigned long prev_hang;
72 	bool banned;
73 	int i;
74 
75 	if (intel_context_is_closed(rq->context))
76 		return true;
77 
78 	rcu_read_lock();
79 	ctx = rcu_dereference(rq->context->gem_context);
80 	if (ctx && !kref_get_unless_zero(&ctx->ref))
81 		ctx = NULL;
82 	rcu_read_unlock();
83 	if (!ctx)
84 		return intel_context_is_banned(rq->context);
85 
86 	atomic_inc(&ctx->guilty_count);
87 
88 	/* Cool contexts are too cool to be banned! (Used for reset testing.) */
89 	if (!i915_gem_context_is_bannable(ctx)) {
90 		banned = false;
91 		goto out;
92 	}
93 
94 	drm_notice(&ctx->i915->drm,
95 		   "%s context reset due to GPU hang\n",
96 		   ctx->name);
97 
98 	/* Record the timestamp for the last N hangs */
99 	prev_hang = ctx->hang_timestamp[0];
100 	for (i = 0; i < ARRAY_SIZE(ctx->hang_timestamp) - 1; i++)
101 		ctx->hang_timestamp[i] = ctx->hang_timestamp[i + 1];
102 	ctx->hang_timestamp[i] = jiffies;
103 
104 	/* If we have hung N+1 times in rapid succession, we ban the context! */
105 	banned = !i915_gem_context_is_recoverable(ctx);
106 	if (time_before(jiffies, prev_hang + CONTEXT_FAST_HANG_JIFFIES))
107 		banned = true;
108 	if (banned)
109 		drm_dbg(&ctx->i915->drm, "context %s: guilty %d, banned\n",
110 			ctx->name, atomic_read(&ctx->guilty_count));
111 
112 	client_mark_guilty(ctx, banned);
113 
114 out:
115 	i915_gem_context_put(ctx);
116 	return banned;
117 }
118 
119 static void mark_innocent(struct i915_request *rq)
120 {
121 	struct i915_gem_context *ctx;
122 
123 	rcu_read_lock();
124 	ctx = rcu_dereference(rq->context->gem_context);
125 	if (ctx)
126 		atomic_inc(&ctx->active_count);
127 	rcu_read_unlock();
128 }
129 
130 void __i915_request_reset(struct i915_request *rq, bool guilty)
131 {
132 	bool banned = false;
133 
134 	RQ_TRACE(rq, "guilty? %s\n", yesno(guilty));
135 	GEM_BUG_ON(__i915_request_is_complete(rq));
136 
137 	rcu_read_lock(); /* protect the GEM context */
138 	if (guilty) {
139 		i915_request_set_error_once(rq, -EIO);
140 		__i915_request_skip(rq);
141 		banned = mark_guilty(rq);
142 	} else {
143 		i915_request_set_error_once(rq, -EAGAIN);
144 		mark_innocent(rq);
145 	}
146 	rcu_read_unlock();
147 
148 	if (banned)
149 		intel_context_ban(rq->context, rq);
150 }
151 
152 static bool i915_in_reset(struct pci_dev *pdev)
153 {
154 	u8 gdrst;
155 
156 	pci_read_config_byte(pdev, I915_GDRST, &gdrst);
157 	return gdrst & GRDOM_RESET_STATUS;
158 }
159 
160 static int i915_do_reset(struct intel_gt *gt,
161 			 intel_engine_mask_t engine_mask,
162 			 unsigned int retry)
163 {
164 	struct pci_dev *pdev = gt->i915->drm.pdev;
165 	int err;
166 
167 	/* Assert reset for at least 20 usec, and wait for acknowledgement. */
168 	pci_write_config_byte(pdev, I915_GDRST, GRDOM_RESET_ENABLE);
169 	udelay(50);
170 	err = wait_for_atomic(i915_in_reset(pdev), 50);
171 
172 	/* Clear the reset request. */
173 	pci_write_config_byte(pdev, I915_GDRST, 0);
174 	udelay(50);
175 	if (!err)
176 		err = wait_for_atomic(!i915_in_reset(pdev), 50);
177 
178 	return err;
179 }
180 
181 static bool g4x_reset_complete(struct pci_dev *pdev)
182 {
183 	u8 gdrst;
184 
185 	pci_read_config_byte(pdev, I915_GDRST, &gdrst);
186 	return (gdrst & GRDOM_RESET_ENABLE) == 0;
187 }
188 
189 static int g33_do_reset(struct intel_gt *gt,
190 			intel_engine_mask_t engine_mask,
191 			unsigned int retry)
192 {
193 	struct pci_dev *pdev = gt->i915->drm.pdev;
194 
195 	pci_write_config_byte(pdev, I915_GDRST, GRDOM_RESET_ENABLE);
196 	return wait_for_atomic(g4x_reset_complete(pdev), 50);
197 }
198 
199 static int g4x_do_reset(struct intel_gt *gt,
200 			intel_engine_mask_t engine_mask,
201 			unsigned int retry)
202 {
203 	struct pci_dev *pdev = gt->i915->drm.pdev;
204 	struct intel_uncore *uncore = gt->uncore;
205 	int ret;
206 
207 	/* WaVcpClkGateDisableForMediaReset:ctg,elk */
208 	rmw_set_fw(uncore, VDECCLK_GATE_D, VCP_UNIT_CLOCK_GATE_DISABLE);
209 	intel_uncore_posting_read_fw(uncore, VDECCLK_GATE_D);
210 
211 	pci_write_config_byte(pdev, I915_GDRST,
212 			      GRDOM_MEDIA | GRDOM_RESET_ENABLE);
213 	ret =  wait_for_atomic(g4x_reset_complete(pdev), 50);
214 	if (ret) {
215 		GT_TRACE(gt, "Wait for media reset failed\n");
216 		goto out;
217 	}
218 
219 	pci_write_config_byte(pdev, I915_GDRST,
220 			      GRDOM_RENDER | GRDOM_RESET_ENABLE);
221 	ret =  wait_for_atomic(g4x_reset_complete(pdev), 50);
222 	if (ret) {
223 		GT_TRACE(gt, "Wait for render reset failed\n");
224 		goto out;
225 	}
226 
227 out:
228 	pci_write_config_byte(pdev, I915_GDRST, 0);
229 
230 	rmw_clear_fw(uncore, VDECCLK_GATE_D, VCP_UNIT_CLOCK_GATE_DISABLE);
231 	intel_uncore_posting_read_fw(uncore, VDECCLK_GATE_D);
232 
233 	return ret;
234 }
235 
236 static int ilk_do_reset(struct intel_gt *gt, intel_engine_mask_t engine_mask,
237 			unsigned int retry)
238 {
239 	struct intel_uncore *uncore = gt->uncore;
240 	int ret;
241 
242 	intel_uncore_write_fw(uncore, ILK_GDSR,
243 			      ILK_GRDOM_RENDER | ILK_GRDOM_RESET_ENABLE);
244 	ret = __intel_wait_for_register_fw(uncore, ILK_GDSR,
245 					   ILK_GRDOM_RESET_ENABLE, 0,
246 					   5000, 0,
247 					   NULL);
248 	if (ret) {
249 		GT_TRACE(gt, "Wait for render reset failed\n");
250 		goto out;
251 	}
252 
253 	intel_uncore_write_fw(uncore, ILK_GDSR,
254 			      ILK_GRDOM_MEDIA | ILK_GRDOM_RESET_ENABLE);
255 	ret = __intel_wait_for_register_fw(uncore, ILK_GDSR,
256 					   ILK_GRDOM_RESET_ENABLE, 0,
257 					   5000, 0,
258 					   NULL);
259 	if (ret) {
260 		GT_TRACE(gt, "Wait for media reset failed\n");
261 		goto out;
262 	}
263 
264 out:
265 	intel_uncore_write_fw(uncore, ILK_GDSR, 0);
266 	intel_uncore_posting_read_fw(uncore, ILK_GDSR);
267 	return ret;
268 }
269 
270 /* Reset the hardware domains (GENX_GRDOM_*) specified by mask */
271 static int gen6_hw_domain_reset(struct intel_gt *gt, u32 hw_domain_mask)
272 {
273 	struct intel_uncore *uncore = gt->uncore;
274 	int err;
275 
276 	/*
277 	 * GEN6_GDRST is not in the gt power well, no need to check
278 	 * for fifo space for the write or forcewake the chip for
279 	 * the read
280 	 */
281 	intel_uncore_write_fw(uncore, GEN6_GDRST, hw_domain_mask);
282 
283 	/* Wait for the device to ack the reset requests */
284 	err = __intel_wait_for_register_fw(uncore,
285 					   GEN6_GDRST, hw_domain_mask, 0,
286 					   500, 0,
287 					   NULL);
288 	if (err)
289 		GT_TRACE(gt,
290 			 "Wait for 0x%08x engines reset failed\n",
291 			 hw_domain_mask);
292 
293 	return err;
294 }
295 
296 static int __gen6_reset_engines(struct intel_gt *gt,
297 				intel_engine_mask_t engine_mask,
298 				unsigned int retry)
299 {
300 	static const u32 hw_engine_mask[] = {
301 		[RCS0]  = GEN6_GRDOM_RENDER,
302 		[BCS0]  = GEN6_GRDOM_BLT,
303 		[VCS0]  = GEN6_GRDOM_MEDIA,
304 		[VCS1]  = GEN8_GRDOM_MEDIA2,
305 		[VECS0] = GEN6_GRDOM_VECS,
306 	};
307 	struct intel_engine_cs *engine;
308 	u32 hw_mask;
309 
310 	if (engine_mask == ALL_ENGINES) {
311 		hw_mask = GEN6_GRDOM_FULL;
312 	} else {
313 		intel_engine_mask_t tmp;
314 
315 		hw_mask = 0;
316 		for_each_engine_masked(engine, gt, engine_mask, tmp) {
317 			GEM_BUG_ON(engine->id >= ARRAY_SIZE(hw_engine_mask));
318 			hw_mask |= hw_engine_mask[engine->id];
319 		}
320 	}
321 
322 	return gen6_hw_domain_reset(gt, hw_mask);
323 }
324 
325 static int gen6_reset_engines(struct intel_gt *gt,
326 			      intel_engine_mask_t engine_mask,
327 			      unsigned int retry)
328 {
329 	unsigned long flags;
330 	int ret;
331 
332 	spin_lock_irqsave(&gt->uncore->lock, flags);
333 	ret = __gen6_reset_engines(gt, engine_mask, retry);
334 	spin_unlock_irqrestore(&gt->uncore->lock, flags);
335 
336 	return ret;
337 }
338 
339 static struct intel_engine_cs *find_sfc_paired_vecs_engine(struct intel_engine_cs *engine)
340 {
341 	int vecs_id;
342 
343 	GEM_BUG_ON(engine->class != VIDEO_DECODE_CLASS);
344 
345 	vecs_id = _VECS((engine->instance) / 2);
346 
347 	return engine->gt->engine[vecs_id];
348 }
349 
350 struct sfc_lock_data {
351 	i915_reg_t lock_reg;
352 	i915_reg_t ack_reg;
353 	i915_reg_t usage_reg;
354 	u32 lock_bit;
355 	u32 ack_bit;
356 	u32 usage_bit;
357 	u32 reset_bit;
358 };
359 
360 static void get_sfc_forced_lock_data(struct intel_engine_cs *engine,
361 				     struct sfc_lock_data *sfc_lock)
362 {
363 	switch (engine->class) {
364 	default:
365 		MISSING_CASE(engine->class);
366 		fallthrough;
367 	case VIDEO_DECODE_CLASS:
368 		sfc_lock->lock_reg = GEN11_VCS_SFC_FORCED_LOCK(engine);
369 		sfc_lock->lock_bit = GEN11_VCS_SFC_FORCED_LOCK_BIT;
370 
371 		sfc_lock->ack_reg = GEN11_VCS_SFC_LOCK_STATUS(engine);
372 		sfc_lock->ack_bit  = GEN11_VCS_SFC_LOCK_ACK_BIT;
373 
374 		sfc_lock->usage_reg = GEN11_VCS_SFC_LOCK_STATUS(engine);
375 		sfc_lock->usage_bit = GEN11_VCS_SFC_USAGE_BIT;
376 		sfc_lock->reset_bit = GEN11_VCS_SFC_RESET_BIT(engine->instance);
377 
378 		break;
379 	case VIDEO_ENHANCEMENT_CLASS:
380 		sfc_lock->lock_reg = GEN11_VECS_SFC_FORCED_LOCK(engine);
381 		sfc_lock->lock_bit = GEN11_VECS_SFC_FORCED_LOCK_BIT;
382 
383 		sfc_lock->ack_reg = GEN11_VECS_SFC_LOCK_ACK(engine);
384 		sfc_lock->ack_bit  = GEN11_VECS_SFC_LOCK_ACK_BIT;
385 
386 		sfc_lock->usage_reg = GEN11_VECS_SFC_USAGE(engine);
387 		sfc_lock->usage_bit = GEN11_VECS_SFC_USAGE_BIT;
388 		sfc_lock->reset_bit = GEN11_VECS_SFC_RESET_BIT(engine->instance);
389 
390 		break;
391 	}
392 }
393 
394 static int gen11_lock_sfc(struct intel_engine_cs *engine,
395 			  u32 *reset_mask,
396 			  u32 *unlock_mask)
397 {
398 	struct intel_uncore *uncore = engine->uncore;
399 	u8 vdbox_sfc_access = engine->gt->info.vdbox_sfc_access;
400 	struct sfc_lock_data sfc_lock;
401 	bool lock_obtained, lock_to_other = false;
402 	int ret;
403 
404 	switch (engine->class) {
405 	case VIDEO_DECODE_CLASS:
406 		if ((BIT(engine->instance) & vdbox_sfc_access) == 0)
407 			return 0;
408 
409 		fallthrough;
410 	case VIDEO_ENHANCEMENT_CLASS:
411 		get_sfc_forced_lock_data(engine, &sfc_lock);
412 
413 		break;
414 	default:
415 		return 0;
416 	}
417 
418 	if (!(intel_uncore_read_fw(uncore, sfc_lock.usage_reg) & sfc_lock.usage_bit)) {
419 		struct intel_engine_cs *paired_vecs;
420 
421 		if (engine->class != VIDEO_DECODE_CLASS ||
422 		    GRAPHICS_VER(engine->i915) != 12)
423 			return 0;
424 
425 		/*
426 		 * Wa_14010733141
427 		 *
428 		 * If the VCS-MFX isn't using the SFC, we also need to check
429 		 * whether VCS-HCP is using it.  If so, we need to issue a *VE*
430 		 * forced lock on the VE engine that shares the same SFC.
431 		 */
432 		if (!(intel_uncore_read_fw(uncore,
433 					   GEN12_HCP_SFC_LOCK_STATUS(engine)) &
434 		      GEN12_HCP_SFC_USAGE_BIT))
435 			return 0;
436 
437 		paired_vecs = find_sfc_paired_vecs_engine(engine);
438 		get_sfc_forced_lock_data(paired_vecs, &sfc_lock);
439 		lock_to_other = true;
440 		*unlock_mask |= paired_vecs->mask;
441 	} else {
442 		*unlock_mask |= engine->mask;
443 	}
444 
445 	/*
446 	 * If the engine is using an SFC, tell the engine that a software reset
447 	 * is going to happen. The engine will then try to force lock the SFC.
448 	 * If SFC ends up being locked to the engine we want to reset, we have
449 	 * to reset it as well (we will unlock it once the reset sequence is
450 	 * completed).
451 	 */
452 	rmw_set_fw(uncore, sfc_lock.lock_reg, sfc_lock.lock_bit);
453 
454 	ret = __intel_wait_for_register_fw(uncore,
455 					   sfc_lock.ack_reg,
456 					   sfc_lock.ack_bit,
457 					   sfc_lock.ack_bit,
458 					   1000, 0, NULL);
459 
460 	/*
461 	 * Was the SFC released while we were trying to lock it?
462 	 *
463 	 * We should reset both the engine and the SFC if:
464 	 *  - We were locking the SFC to this engine and the lock succeeded
465 	 *       OR
466 	 *  - We were locking the SFC to a different engine (Wa_14010733141)
467 	 *    but the SFC was released before the lock was obtained.
468 	 *
469 	 * Otherwise we need only reset the engine by itself and we can
470 	 * leave the SFC alone.
471 	 */
472 	lock_obtained = (intel_uncore_read_fw(uncore, sfc_lock.usage_reg) &
473 			sfc_lock.usage_bit) != 0;
474 	if (lock_obtained == lock_to_other)
475 		return 0;
476 
477 	if (ret) {
478 		ENGINE_TRACE(engine, "Wait for SFC forced lock ack failed\n");
479 		return ret;
480 	}
481 
482 	*reset_mask |= sfc_lock.reset_bit;
483 	return 0;
484 }
485 
486 static void gen11_unlock_sfc(struct intel_engine_cs *engine)
487 {
488 	struct intel_uncore *uncore = engine->uncore;
489 	u8 vdbox_sfc_access = engine->gt->info.vdbox_sfc_access;
490 	struct sfc_lock_data sfc_lock = {};
491 
492 	if (engine->class != VIDEO_DECODE_CLASS &&
493 	    engine->class != VIDEO_ENHANCEMENT_CLASS)
494 		return;
495 
496 	if (engine->class == VIDEO_DECODE_CLASS &&
497 	    (BIT(engine->instance) & vdbox_sfc_access) == 0)
498 		return;
499 
500 	get_sfc_forced_lock_data(engine, &sfc_lock);
501 
502 	rmw_clear_fw(uncore, sfc_lock.lock_reg, sfc_lock.lock_bit);
503 }
504 
505 static int __gen11_reset_engines(struct intel_gt *gt,
506 				 intel_engine_mask_t engine_mask,
507 				 unsigned int retry)
508 {
509 	static const u32 hw_engine_mask[] = {
510 		[RCS0]  = GEN11_GRDOM_RENDER,
511 		[BCS0]  = GEN11_GRDOM_BLT,
512 		[VCS0]  = GEN11_GRDOM_MEDIA,
513 		[VCS1]  = GEN11_GRDOM_MEDIA2,
514 		[VCS2]  = GEN11_GRDOM_MEDIA3,
515 		[VCS3]  = GEN11_GRDOM_MEDIA4,
516 		[VCS4]  = GEN11_GRDOM_MEDIA5,
517 		[VCS5]  = GEN11_GRDOM_MEDIA6,
518 		[VCS6]  = GEN11_GRDOM_MEDIA7,
519 		[VCS7]  = GEN11_GRDOM_MEDIA8,
520 		[VECS0] = GEN11_GRDOM_VECS,
521 		[VECS1] = GEN11_GRDOM_VECS2,
522 		[VECS2] = GEN11_GRDOM_VECS3,
523 		[VECS3] = GEN11_GRDOM_VECS4,
524 	};
525 	struct intel_engine_cs *engine;
526 	intel_engine_mask_t tmp;
527 	u32 reset_mask, unlock_mask = 0;
528 	int ret;
529 
530 	if (engine_mask == ALL_ENGINES) {
531 		reset_mask = GEN11_GRDOM_FULL;
532 	} else {
533 		reset_mask = 0;
534 		for_each_engine_masked(engine, gt, engine_mask, tmp) {
535 			GEM_BUG_ON(engine->id >= ARRAY_SIZE(hw_engine_mask));
536 			reset_mask |= hw_engine_mask[engine->id];
537 			ret = gen11_lock_sfc(engine, &reset_mask, &unlock_mask);
538 			if (ret)
539 				goto sfc_unlock;
540 		}
541 	}
542 
543 	ret = gen6_hw_domain_reset(gt, reset_mask);
544 
545 sfc_unlock:
546 	/*
547 	 * We unlock the SFC based on the lock status and not the result of
548 	 * gen11_lock_sfc to make sure that we clean properly if something
549 	 * wrong happened during the lock (e.g. lock acquired after timeout
550 	 * expiration).
551 	 *
552 	 * Due to Wa_14010733141, we may have locked an SFC to an engine that
553 	 * wasn't being reset.  So instead of calling gen11_unlock_sfc()
554 	 * on engine_mask, we instead call it on the mask of engines that our
555 	 * gen11_lock_sfc() calls told us actually had locks attempted.
556 	 */
557 	for_each_engine_masked(engine, gt, unlock_mask, tmp)
558 		gen11_unlock_sfc(engine);
559 
560 	return ret;
561 }
562 
563 static int gen8_engine_reset_prepare(struct intel_engine_cs *engine)
564 {
565 	struct intel_uncore *uncore = engine->uncore;
566 	const i915_reg_t reg = RING_RESET_CTL(engine->mmio_base);
567 	u32 request, mask, ack;
568 	int ret;
569 
570 	if (I915_SELFTEST_ONLY(should_fail(&engine->reset_timeout, 1)))
571 		return -ETIMEDOUT;
572 
573 	ack = intel_uncore_read_fw(uncore, reg);
574 	if (ack & RESET_CTL_CAT_ERROR) {
575 		/*
576 		 * For catastrophic errors, ready-for-reset sequence
577 		 * needs to be bypassed: HAS#396813
578 		 */
579 		request = RESET_CTL_CAT_ERROR;
580 		mask = RESET_CTL_CAT_ERROR;
581 
582 		/* Catastrophic errors need to be cleared by HW */
583 		ack = 0;
584 	} else if (!(ack & RESET_CTL_READY_TO_RESET)) {
585 		request = RESET_CTL_REQUEST_RESET;
586 		mask = RESET_CTL_READY_TO_RESET;
587 		ack = RESET_CTL_READY_TO_RESET;
588 	} else {
589 		return 0;
590 	}
591 
592 	intel_uncore_write_fw(uncore, reg, _MASKED_BIT_ENABLE(request));
593 	ret = __intel_wait_for_register_fw(uncore, reg, mask, ack,
594 					   700, 0, NULL);
595 	if (ret)
596 		drm_err(&engine->i915->drm,
597 			"%s reset request timed out: {request: %08x, RESET_CTL: %08x}\n",
598 			engine->name, request,
599 			intel_uncore_read_fw(uncore, reg));
600 
601 	return ret;
602 }
603 
604 static void gen8_engine_reset_cancel(struct intel_engine_cs *engine)
605 {
606 	intel_uncore_write_fw(engine->uncore,
607 			      RING_RESET_CTL(engine->mmio_base),
608 			      _MASKED_BIT_DISABLE(RESET_CTL_REQUEST_RESET));
609 }
610 
611 static int gen8_reset_engines(struct intel_gt *gt,
612 			      intel_engine_mask_t engine_mask,
613 			      unsigned int retry)
614 {
615 	struct intel_engine_cs *engine;
616 	const bool reset_non_ready = retry >= 1;
617 	intel_engine_mask_t tmp;
618 	unsigned long flags;
619 	int ret;
620 
621 	spin_lock_irqsave(&gt->uncore->lock, flags);
622 
623 	for_each_engine_masked(engine, gt, engine_mask, tmp) {
624 		ret = gen8_engine_reset_prepare(engine);
625 		if (ret && !reset_non_ready)
626 			goto skip_reset;
627 
628 		/*
629 		 * If this is not the first failed attempt to prepare,
630 		 * we decide to proceed anyway.
631 		 *
632 		 * By doing so we risk context corruption and with
633 		 * some gens (kbl), possible system hang if reset
634 		 * happens during active bb execution.
635 		 *
636 		 * We rather take context corruption instead of
637 		 * failed reset with a wedged driver/gpu. And
638 		 * active bb execution case should be covered by
639 		 * stop_engines() we have before the reset.
640 		 */
641 	}
642 
643 	/*
644 	 * Wa_22011100796:dg2, whenever Full soft reset is required,
645 	 * reset all individual engines firstly, and then do a full soft reset.
646 	 *
647 	 * This is best effort, so ignore any error from the initial reset.
648 	 */
649 	if (IS_DG2(gt->i915) && engine_mask == ALL_ENGINES)
650 		__gen11_reset_engines(gt, gt->info.engine_mask, 0);
651 
652 	if (GRAPHICS_VER(gt->i915) >= 11)
653 		ret = __gen11_reset_engines(gt, engine_mask, retry);
654 	else
655 		ret = __gen6_reset_engines(gt, engine_mask, retry);
656 
657 skip_reset:
658 	for_each_engine_masked(engine, gt, engine_mask, tmp)
659 		gen8_engine_reset_cancel(engine);
660 
661 	spin_unlock_irqrestore(&gt->uncore->lock, flags);
662 
663 	return ret;
664 }
665 
666 static int mock_reset(struct intel_gt *gt,
667 		      intel_engine_mask_t mask,
668 		      unsigned int retry)
669 {
670 	return 0;
671 }
672 
673 typedef int (*reset_func)(struct intel_gt *,
674 			  intel_engine_mask_t engine_mask,
675 			  unsigned int retry);
676 
677 static reset_func intel_get_gpu_reset(const struct intel_gt *gt)
678 {
679 	struct drm_i915_private *i915 = gt->i915;
680 
681 	if (is_mock_gt(gt))
682 		return mock_reset;
683 	else if (GRAPHICS_VER(i915) >= 8)
684 		return gen8_reset_engines;
685 	else if (GRAPHICS_VER(i915) >= 6)
686 		return gen6_reset_engines;
687 	else if (GRAPHICS_VER(i915) >= 5)
688 		return ilk_do_reset;
689 	else if (IS_G4X(i915))
690 		return g4x_do_reset;
691 	else if (IS_G33(i915) || IS_PINEVIEW(i915))
692 		return g33_do_reset;
693 	else if (GRAPHICS_VER(i915) >= 3)
694 		return i915_do_reset;
695 	else
696 		return NULL;
697 }
698 
699 int __intel_gt_reset(struct intel_gt *gt, intel_engine_mask_t engine_mask)
700 {
701 	const int retries = engine_mask == ALL_ENGINES ? RESET_MAX_RETRIES : 1;
702 	reset_func reset;
703 	int ret = -ETIMEDOUT;
704 	int retry;
705 
706 	reset = intel_get_gpu_reset(gt);
707 	if (!reset)
708 		return -ENODEV;
709 
710 	/*
711 	 * If the power well sleeps during the reset, the reset
712 	 * request may be dropped and never completes (causing -EIO).
713 	 */
714 	intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL);
715 	for (retry = 0; ret == -ETIMEDOUT && retry < retries; retry++) {
716 		GT_TRACE(gt, "engine_mask=%x\n", engine_mask);
717 		preempt_disable();
718 		ret = reset(gt, engine_mask, retry);
719 		preempt_enable();
720 	}
721 	intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL);
722 
723 	return ret;
724 }
725 
726 bool intel_has_gpu_reset(const struct intel_gt *gt)
727 {
728 	if (!gt->i915->params.reset)
729 		return NULL;
730 
731 	return intel_get_gpu_reset(gt);
732 }
733 
734 bool intel_has_reset_engine(const struct intel_gt *gt)
735 {
736 	if (gt->i915->params.reset < 2)
737 		return false;
738 
739 	return INTEL_INFO(gt->i915)->has_reset_engine;
740 }
741 
742 int intel_reset_guc(struct intel_gt *gt)
743 {
744 	u32 guc_domain =
745 		GRAPHICS_VER(gt->i915) >= 11 ? GEN11_GRDOM_GUC : GEN9_GRDOM_GUC;
746 	int ret;
747 
748 	GEM_BUG_ON(!HAS_GT_UC(gt->i915));
749 
750 	intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL);
751 	ret = gen6_hw_domain_reset(gt, guc_domain);
752 	intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL);
753 
754 	return ret;
755 }
756 
757 /*
758  * Ensure irq handler finishes, and not run again.
759  * Also return the active request so that we only search for it once.
760  */
761 static void reset_prepare_engine(struct intel_engine_cs *engine)
762 {
763 	/*
764 	 * During the reset sequence, we must prevent the engine from
765 	 * entering RC6. As the context state is undefined until we restart
766 	 * the engine, if it does enter RC6 during the reset, the state
767 	 * written to the powercontext is undefined and so we may lose
768 	 * GPU state upon resume, i.e. fail to restart after a reset.
769 	 */
770 	intel_uncore_forcewake_get(engine->uncore, FORCEWAKE_ALL);
771 	if (engine->reset.prepare)
772 		engine->reset.prepare(engine);
773 }
774 
775 static void revoke_mmaps(struct intel_gt *gt)
776 {
777 	int i;
778 
779 	for (i = 0; i < gt->ggtt->num_fences; i++) {
780 		struct drm_vma_offset_node *node;
781 		struct i915_vma *vma;
782 		u64 vma_offset;
783 
784 		vma = READ_ONCE(gt->ggtt->fence_regs[i].vma);
785 		if (!vma)
786 			continue;
787 
788 		if (!i915_vma_has_userfault(vma))
789 			continue;
790 
791 		GEM_BUG_ON(vma->fence != &gt->ggtt->fence_regs[i]);
792 
793 		if (!vma->mmo)
794 			continue;
795 
796 		node = &vma->mmo->vma_node;
797 		vma_offset = vma->ggtt_view.partial.offset << PAGE_SHIFT;
798 
799 #ifdef __linux__
800 		unmap_mapping_range(gt->i915->drm.anon_inode->i_mapping,
801 				    drm_vma_node_offset_addr(node) + vma_offset,
802 				    vma->size,
803 				    1);
804 #else
805 {
806 		struct drm_i915_private *dev_priv = vma->obj->base.dev->dev_private;
807 		struct vm_page *pg;
808 
809 		for (pg = &dev_priv->pgs[atop(vma->node.start)];
810 		     pg != &dev_priv->pgs[atop(vma->node.start + vma->size)];
811 		     pg++)
812 			pmap_page_protect(pg, PROT_NONE);
813 }
814 #endif
815 	}
816 }
817 
818 static intel_engine_mask_t reset_prepare(struct intel_gt *gt)
819 {
820 	struct intel_engine_cs *engine;
821 	intel_engine_mask_t awake = 0;
822 	enum intel_engine_id id;
823 
824 	for_each_engine(engine, gt, id) {
825 		if (intel_engine_pm_get_if_awake(engine))
826 			awake |= engine->mask;
827 		reset_prepare_engine(engine);
828 	}
829 
830 	intel_uc_reset_prepare(&gt->uc);
831 
832 	return awake;
833 }
834 
835 static void gt_revoke(struct intel_gt *gt)
836 {
837 	revoke_mmaps(gt);
838 }
839 
840 static int gt_reset(struct intel_gt *gt, intel_engine_mask_t stalled_mask)
841 {
842 	struct intel_engine_cs *engine;
843 	enum intel_engine_id id;
844 	int err;
845 
846 	/*
847 	 * Everything depends on having the GTT running, so we need to start
848 	 * there.
849 	 */
850 	err = i915_ggtt_enable_hw(gt->i915);
851 	if (err)
852 		return err;
853 
854 	local_bh_disable();
855 	for_each_engine(engine, gt, id)
856 		__intel_engine_reset(engine, stalled_mask & engine->mask);
857 	local_bh_enable();
858 
859 	intel_uc_reset(&gt->uc, true);
860 
861 	intel_ggtt_restore_fences(gt->ggtt);
862 
863 	return err;
864 }
865 
866 static void reset_finish_engine(struct intel_engine_cs *engine)
867 {
868 	if (engine->reset.finish)
869 		engine->reset.finish(engine);
870 	intel_uncore_forcewake_put(engine->uncore, FORCEWAKE_ALL);
871 
872 	intel_engine_signal_breadcrumbs(engine);
873 }
874 
875 static void reset_finish(struct intel_gt *gt, intel_engine_mask_t awake)
876 {
877 	struct intel_engine_cs *engine;
878 	enum intel_engine_id id;
879 
880 	for_each_engine(engine, gt, id) {
881 		reset_finish_engine(engine);
882 		if (awake & engine->mask)
883 			intel_engine_pm_put(engine);
884 	}
885 
886 	intel_uc_reset_finish(&gt->uc);
887 }
888 
889 static void nop_submit_request(struct i915_request *request)
890 {
891 	RQ_TRACE(request, "-EIO\n");
892 
893 	request = i915_request_mark_eio(request);
894 	if (request) {
895 		i915_request_submit(request);
896 		intel_engine_signal_breadcrumbs(request->engine);
897 
898 		i915_request_put(request);
899 	}
900 }
901 
902 static void __intel_gt_set_wedged(struct intel_gt *gt)
903 {
904 	struct intel_engine_cs *engine;
905 	intel_engine_mask_t awake;
906 	enum intel_engine_id id;
907 
908 	if (test_bit(I915_WEDGED, &gt->reset.flags))
909 		return;
910 
911 	GT_TRACE(gt, "start\n");
912 
913 	/*
914 	 * First, stop submission to hw, but do not yet complete requests by
915 	 * rolling the global seqno forward (since this would complete requests
916 	 * for which we haven't set the fence error to EIO yet).
917 	 */
918 	awake = reset_prepare(gt);
919 
920 	/* Even if the GPU reset fails, it should still stop the engines */
921 	if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
922 		__intel_gt_reset(gt, ALL_ENGINES);
923 
924 	for_each_engine(engine, gt, id)
925 		engine->submit_request = nop_submit_request;
926 
927 	/*
928 	 * Make sure no request can slip through without getting completed by
929 	 * either this call here to intel_engine_write_global_seqno, or the one
930 	 * in nop_submit_request.
931 	 */
932 	synchronize_rcu_expedited();
933 	set_bit(I915_WEDGED, &gt->reset.flags);
934 
935 	/* Mark all executing requests as skipped */
936 	local_bh_disable();
937 	for_each_engine(engine, gt, id)
938 		if (engine->reset.cancel)
939 			engine->reset.cancel(engine);
940 	intel_uc_cancel_requests(&gt->uc);
941 	local_bh_enable();
942 
943 	reset_finish(gt, awake);
944 
945 	GT_TRACE(gt, "end\n");
946 }
947 
948 void intel_gt_set_wedged(struct intel_gt *gt)
949 {
950 	intel_wakeref_t wakeref;
951 
952 	if (test_bit(I915_WEDGED, &gt->reset.flags))
953 		return;
954 
955 	wakeref = intel_runtime_pm_get(gt->uncore->rpm);
956 	mutex_lock(&gt->reset.mutex);
957 
958 	if (GEM_SHOW_DEBUG()) {
959 		struct drm_printer p = drm_debug_printer(__func__);
960 		struct intel_engine_cs *engine;
961 		enum intel_engine_id id;
962 
963 		drm_printf(&p, "called from %pS\n", (void *)_RET_IP_);
964 		for_each_engine(engine, gt, id) {
965 			if (intel_engine_is_idle(engine))
966 				continue;
967 
968 			intel_engine_dump(engine, &p, "%s\n", engine->name);
969 		}
970 	}
971 
972 	__intel_gt_set_wedged(gt);
973 
974 	mutex_unlock(&gt->reset.mutex);
975 	intel_runtime_pm_put(gt->uncore->rpm, wakeref);
976 }
977 
978 static bool __intel_gt_unset_wedged(struct intel_gt *gt)
979 {
980 	struct intel_gt_timelines *timelines = &gt->timelines;
981 	struct intel_timeline *tl;
982 	bool ok;
983 
984 	if (!test_bit(I915_WEDGED, &gt->reset.flags))
985 		return true;
986 
987 	/* Never fully initialised, recovery impossible */
988 	if (intel_gt_has_unrecoverable_error(gt))
989 		return false;
990 
991 	GT_TRACE(gt, "start\n");
992 
993 	/*
994 	 * Before unwedging, make sure that all pending operations
995 	 * are flushed and errored out - we may have requests waiting upon
996 	 * third party fences. We marked all inflight requests as EIO, and
997 	 * every execbuf since returned EIO, for consistency we want all
998 	 * the currently pending requests to also be marked as EIO, which
999 	 * is done inside our nop_submit_request - and so we must wait.
1000 	 *
1001 	 * No more can be submitted until we reset the wedged bit.
1002 	 */
1003 	spin_lock(&timelines->lock);
1004 	list_for_each_entry(tl, &timelines->active_list, link) {
1005 		struct dma_fence *fence;
1006 
1007 		fence = i915_active_fence_get(&tl->last_request);
1008 		if (!fence)
1009 			continue;
1010 
1011 		spin_unlock(&timelines->lock);
1012 
1013 		/*
1014 		 * All internal dependencies (i915_requests) will have
1015 		 * been flushed by the set-wedge, but we may be stuck waiting
1016 		 * for external fences. These should all be capped to 10s
1017 		 * (I915_FENCE_TIMEOUT) so this wait should not be unbounded
1018 		 * in the worst case.
1019 		 */
1020 		dma_fence_default_wait(fence, false, MAX_SCHEDULE_TIMEOUT);
1021 		dma_fence_put(fence);
1022 
1023 		/* Restart iteration after droping lock */
1024 		spin_lock(&timelines->lock);
1025 		tl = list_entry(&timelines->active_list, typeof(*tl), link);
1026 	}
1027 	spin_unlock(&timelines->lock);
1028 
1029 	/* We must reset pending GPU events before restoring our submission */
1030 	ok = !HAS_EXECLISTS(gt->i915); /* XXX better agnosticism desired */
1031 	if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
1032 		ok = __intel_gt_reset(gt, ALL_ENGINES) == 0;
1033 	if (!ok) {
1034 		/*
1035 		 * Warn CI about the unrecoverable wedged condition.
1036 		 * Time for a reboot.
1037 		 */
1038 		add_taint_for_CI(gt->i915, TAINT_WARN);
1039 		return false;
1040 	}
1041 
1042 	/*
1043 	 * Undo nop_submit_request. We prevent all new i915 requests from
1044 	 * being queued (by disallowing execbuf whilst wedged) so having
1045 	 * waited for all active requests above, we know the system is idle
1046 	 * and do not have to worry about a thread being inside
1047 	 * engine->submit_request() as we swap over. So unlike installing
1048 	 * the nop_submit_request on reset, we can do this from normal
1049 	 * context and do not require stop_machine().
1050 	 */
1051 	intel_engines_reset_default_submission(gt);
1052 
1053 	GT_TRACE(gt, "end\n");
1054 
1055 	smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
1056 	clear_bit(I915_WEDGED, &gt->reset.flags);
1057 
1058 	return true;
1059 }
1060 
1061 bool intel_gt_unset_wedged(struct intel_gt *gt)
1062 {
1063 	bool result;
1064 
1065 	mutex_lock(&gt->reset.mutex);
1066 	result = __intel_gt_unset_wedged(gt);
1067 	mutex_unlock(&gt->reset.mutex);
1068 
1069 	return result;
1070 }
1071 
1072 static int do_reset(struct intel_gt *gt, intel_engine_mask_t stalled_mask)
1073 {
1074 	int err, i;
1075 
1076 	err = __intel_gt_reset(gt, ALL_ENGINES);
1077 	for (i = 0; err && i < RESET_MAX_RETRIES; i++) {
1078 		drm_msleep(10 * (i + 1));
1079 		err = __intel_gt_reset(gt, ALL_ENGINES);
1080 	}
1081 	if (err)
1082 		return err;
1083 
1084 	return gt_reset(gt, stalled_mask);
1085 }
1086 
1087 static int resume(struct intel_gt *gt)
1088 {
1089 	struct intel_engine_cs *engine;
1090 	enum intel_engine_id id;
1091 	int ret;
1092 
1093 	for_each_engine(engine, gt, id) {
1094 		ret = intel_engine_resume(engine);
1095 		if (ret)
1096 			return ret;
1097 	}
1098 
1099 	return 0;
1100 }
1101 
1102 /**
1103  * intel_gt_reset - reset chip after a hang
1104  * @gt: #intel_gt to reset
1105  * @stalled_mask: mask of the stalled engines with the guilty requests
1106  * @reason: user error message for why we are resetting
1107  *
1108  * Reset the chip.  Useful if a hang is detected. Marks the device as wedged
1109  * on failure.
1110  *
1111  * Procedure is fairly simple:
1112  *   - reset the chip using the reset reg
1113  *   - re-init context state
1114  *   - re-init hardware status page
1115  *   - re-init ring buffer
1116  *   - re-init interrupt state
1117  *   - re-init display
1118  */
1119 void intel_gt_reset(struct intel_gt *gt,
1120 		    intel_engine_mask_t stalled_mask,
1121 		    const char *reason)
1122 {
1123 	intel_engine_mask_t awake;
1124 	int ret;
1125 
1126 	GT_TRACE(gt, "flags=%lx\n", gt->reset.flags);
1127 
1128 	might_sleep();
1129 	GEM_BUG_ON(!test_bit(I915_RESET_BACKOFF, &gt->reset.flags));
1130 
1131 	/*
1132 	 * FIXME: Revoking cpu mmap ptes cannot be done from a dma_fence
1133 	 * critical section like gpu reset.
1134 	 */
1135 	gt_revoke(gt);
1136 
1137 	mutex_lock(&gt->reset.mutex);
1138 
1139 	/* Clear any previous failed attempts at recovery. Time to try again. */
1140 	if (!__intel_gt_unset_wedged(gt))
1141 		goto unlock;
1142 
1143 	if (reason)
1144 		drm_notice(&gt->i915->drm,
1145 			   "Resetting chip for %s\n", reason);
1146 	atomic_inc(&gt->i915->gpu_error.reset_count);
1147 
1148 	awake = reset_prepare(gt);
1149 
1150 	if (!intel_has_gpu_reset(gt)) {
1151 		if (gt->i915->params.reset)
1152 			drm_err(&gt->i915->drm, "GPU reset not supported\n");
1153 		else
1154 			drm_dbg(&gt->i915->drm, "GPU reset disabled\n");
1155 		goto error;
1156 	}
1157 
1158 	if (INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
1159 		intel_runtime_pm_disable_interrupts(gt->i915);
1160 
1161 	if (do_reset(gt, stalled_mask)) {
1162 		drm_err(&gt->i915->drm, "Failed to reset chip\n");
1163 		goto taint;
1164 	}
1165 
1166 	if (INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
1167 		intel_runtime_pm_enable_interrupts(gt->i915);
1168 
1169 	intel_overlay_reset(gt->i915);
1170 
1171 	/*
1172 	 * Next we need to restore the context, but we don't use those
1173 	 * yet either...
1174 	 *
1175 	 * Ring buffer needs to be re-initialized in the KMS case, or if X
1176 	 * was running at the time of the reset (i.e. we weren't VT
1177 	 * switched away).
1178 	 */
1179 	ret = intel_gt_init_hw(gt);
1180 	if (ret) {
1181 		drm_err(&gt->i915->drm,
1182 			"Failed to initialise HW following reset (%d)\n",
1183 			ret);
1184 		goto taint;
1185 	}
1186 
1187 	ret = resume(gt);
1188 	if (ret)
1189 		goto taint;
1190 
1191 finish:
1192 	reset_finish(gt, awake);
1193 unlock:
1194 	mutex_unlock(&gt->reset.mutex);
1195 	return;
1196 
1197 taint:
1198 	/*
1199 	 * History tells us that if we cannot reset the GPU now, we
1200 	 * never will. This then impacts everything that is run
1201 	 * subsequently. On failing the reset, we mark the driver
1202 	 * as wedged, preventing further execution on the GPU.
1203 	 * We also want to go one step further and add a taint to the
1204 	 * kernel so that any subsequent faults can be traced back to
1205 	 * this failure. This is important for CI, where if the
1206 	 * GPU/driver fails we would like to reboot and restart testing
1207 	 * rather than continue on into oblivion. For everyone else,
1208 	 * the system should still plod along, but they have been warned!
1209 	 */
1210 	add_taint_for_CI(gt->i915, TAINT_WARN);
1211 error:
1212 	__intel_gt_set_wedged(gt);
1213 	goto finish;
1214 }
1215 
1216 static int intel_gt_reset_engine(struct intel_engine_cs *engine)
1217 {
1218 	return __intel_gt_reset(engine->gt, engine->mask);
1219 }
1220 
1221 int __intel_engine_reset_bh(struct intel_engine_cs *engine, const char *msg)
1222 {
1223 	struct intel_gt *gt = engine->gt;
1224 	int ret;
1225 
1226 	ENGINE_TRACE(engine, "flags=%lx\n", gt->reset.flags);
1227 	GEM_BUG_ON(!test_bit(I915_RESET_ENGINE + engine->id, &gt->reset.flags));
1228 
1229 	if (intel_engine_uses_guc(engine))
1230 		return -ENODEV;
1231 
1232 	if (!intel_engine_pm_get_if_awake(engine))
1233 		return 0;
1234 
1235 	reset_prepare_engine(engine);
1236 
1237 	if (msg)
1238 		drm_notice(&engine->i915->drm,
1239 			   "Resetting %s for %s\n", engine->name, msg);
1240 	atomic_inc(&engine->i915->gpu_error.reset_engine_count[engine->uabi_class]);
1241 
1242 	ret = intel_gt_reset_engine(engine);
1243 	if (ret) {
1244 		/* If we fail here, we expect to fallback to a global reset */
1245 		ENGINE_TRACE(engine, "Failed to reset %s, err: %d\n", engine->name, ret);
1246 		goto out;
1247 	}
1248 
1249 	/*
1250 	 * The request that caused the hang is stuck on elsp, we know the
1251 	 * active request and can drop it, adjust head to skip the offending
1252 	 * request to resume executing remaining requests in the queue.
1253 	 */
1254 	__intel_engine_reset(engine, true);
1255 
1256 	/*
1257 	 * The engine and its registers (and workarounds in case of render)
1258 	 * have been reset to their default values. Follow the init_ring
1259 	 * process to program RING_MODE, HWSP and re-enable submission.
1260 	 */
1261 	ret = intel_engine_resume(engine);
1262 
1263 out:
1264 	intel_engine_cancel_stop_cs(engine);
1265 	reset_finish_engine(engine);
1266 	intel_engine_pm_put_async(engine);
1267 	return ret;
1268 }
1269 
1270 /**
1271  * intel_engine_reset - reset GPU engine to recover from a hang
1272  * @engine: engine to reset
1273  * @msg: reason for GPU reset; or NULL for no drm_notice()
1274  *
1275  * Reset a specific GPU engine. Useful if a hang is detected.
1276  * Returns zero on successful reset or otherwise an error code.
1277  *
1278  * Procedure is:
1279  *  - identifies the request that caused the hang and it is dropped
1280  *  - reset engine (which will force the engine to idle)
1281  *  - re-init/configure engine
1282  */
1283 int intel_engine_reset(struct intel_engine_cs *engine, const char *msg)
1284 {
1285 	int err;
1286 
1287 	local_bh_disable();
1288 	err = __intel_engine_reset_bh(engine, msg);
1289 	local_bh_enable();
1290 
1291 	return err;
1292 }
1293 
1294 static void intel_gt_reset_global(struct intel_gt *gt,
1295 				  u32 engine_mask,
1296 				  const char *reason)
1297 {
1298 #ifdef notyet
1299 	struct kobject *kobj = &gt->i915->drm.primary->kdev->kobj;
1300 	char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
1301 	char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
1302 	char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
1303 #endif
1304 	struct intel_wedge_me w;
1305 
1306 	kobject_uevent_env(kobj, KOBJ_CHANGE, error_event);
1307 
1308 	GT_TRACE(gt, "resetting chip, engines=%x\n", engine_mask);
1309 	kobject_uevent_env(kobj, KOBJ_CHANGE, reset_event);
1310 
1311 	/* Use a watchdog to ensure that our reset completes */
1312 	intel_wedge_on_timeout(&w, gt, 5 * HZ) {
1313 		intel_display_prepare_reset(gt->i915);
1314 
1315 		/* Flush everyone using a resource about to be clobbered */
1316 		synchronize_srcu_expedited(&gt->reset.backoff_srcu);
1317 
1318 		intel_gt_reset(gt, engine_mask, reason);
1319 
1320 		intel_display_finish_reset(gt->i915);
1321 	}
1322 
1323 	if (!test_bit(I915_WEDGED, &gt->reset.flags))
1324 		kobject_uevent_env(kobj, KOBJ_CHANGE, reset_done_event);
1325 }
1326 
1327 /**
1328  * intel_gt_handle_error - handle a gpu error
1329  * @gt: the intel_gt
1330  * @engine_mask: mask representing engines that are hung
1331  * @flags: control flags
1332  * @fmt: Error message format string
1333  *
1334  * Do some basic checking of register state at error time and
1335  * dump it to the syslog.  Also call i915_capture_error_state() to make
1336  * sure we get a record and make it available in debugfs.  Fire a uevent
1337  * so userspace knows something bad happened (should trigger collection
1338  * of a ring dump etc.).
1339  */
1340 void intel_gt_handle_error(struct intel_gt *gt,
1341 			   intel_engine_mask_t engine_mask,
1342 			   unsigned long flags,
1343 			   const char *fmt, ...)
1344 {
1345 	struct intel_engine_cs *engine;
1346 	intel_wakeref_t wakeref;
1347 	intel_engine_mask_t tmp;
1348 	char error_msg[80];
1349 	char *msg = NULL;
1350 
1351 	if (fmt) {
1352 		va_list args;
1353 
1354 		va_start(args, fmt);
1355 		vscnprintf(error_msg, sizeof(error_msg), fmt, args);
1356 		va_end(args);
1357 
1358 		msg = error_msg;
1359 	}
1360 
1361 	/*
1362 	 * In most cases it's guaranteed that we get here with an RPM
1363 	 * reference held, for example because there is a pending GPU
1364 	 * request that won't finish until the reset is done. This
1365 	 * isn't the case at least when we get here by doing a
1366 	 * simulated reset via debugfs, so get an RPM reference.
1367 	 */
1368 	wakeref = intel_runtime_pm_get(gt->uncore->rpm);
1369 
1370 	engine_mask &= gt->info.engine_mask;
1371 
1372 	if (flags & I915_ERROR_CAPTURE) {
1373 		i915_capture_error_state(gt, engine_mask);
1374 		intel_gt_clear_error_registers(gt, engine_mask);
1375 	}
1376 
1377 	/*
1378 	 * Try engine reset when available. We fall back to full reset if
1379 	 * single reset fails.
1380 	 */
1381 	if (!intel_uc_uses_guc_submission(&gt->uc) &&
1382 	    intel_has_reset_engine(gt) && !intel_gt_is_wedged(gt)) {
1383 		local_bh_disable();
1384 		for_each_engine_masked(engine, gt, engine_mask, tmp) {
1385 			BUILD_BUG_ON(I915_RESET_MODESET >= I915_RESET_ENGINE);
1386 			if (test_and_set_bit(I915_RESET_ENGINE + engine->id,
1387 					     &gt->reset.flags))
1388 				continue;
1389 
1390 			if (__intel_engine_reset_bh(engine, msg) == 0)
1391 				engine_mask &= ~engine->mask;
1392 
1393 			clear_and_wake_up_bit(I915_RESET_ENGINE + engine->id,
1394 					      &gt->reset.flags);
1395 		}
1396 		local_bh_enable();
1397 	}
1398 
1399 	if (!engine_mask)
1400 		goto out;
1401 
1402 	/* Full reset needs the mutex, stop any other user trying to do so. */
1403 	if (test_and_set_bit(I915_RESET_BACKOFF, &gt->reset.flags)) {
1404 		wait_event(gt->reset.queue,
1405 			   !test_bit(I915_RESET_BACKOFF, &gt->reset.flags));
1406 		goto out; /* piggy-back on the other reset */
1407 	}
1408 
1409 	/* Make sure i915_reset_trylock() sees the I915_RESET_BACKOFF */
1410 	synchronize_rcu_expedited();
1411 
1412 	/* Prevent any other reset-engine attempt. */
1413 	for_each_engine(engine, gt, tmp) {
1414 		while (test_and_set_bit(I915_RESET_ENGINE + engine->id,
1415 					&gt->reset.flags))
1416 			wait_on_bit(&gt->reset.flags,
1417 				    I915_RESET_ENGINE + engine->id,
1418 				    TASK_UNINTERRUPTIBLE);
1419 	}
1420 
1421 	intel_gt_reset_global(gt, engine_mask, msg);
1422 
1423 	for_each_engine(engine, gt, tmp)
1424 		clear_bit_unlock(I915_RESET_ENGINE + engine->id,
1425 				 &gt->reset.flags);
1426 	clear_bit_unlock(I915_RESET_BACKOFF, &gt->reset.flags);
1427 	smp_mb__after_atomic();
1428 	wake_up_all(&gt->reset.queue);
1429 
1430 out:
1431 	intel_runtime_pm_put(gt->uncore->rpm, wakeref);
1432 }
1433 
1434 int intel_gt_reset_trylock(struct intel_gt *gt, int *srcu)
1435 {
1436 	might_lock(&gt->reset.backoff_srcu);
1437 	might_sleep();
1438 
1439 	rcu_read_lock();
1440 	while (test_bit(I915_RESET_BACKOFF, &gt->reset.flags)) {
1441 		rcu_read_unlock();
1442 
1443 		if (wait_event_interruptible(gt->reset.queue,
1444 					     !test_bit(I915_RESET_BACKOFF,
1445 						       &gt->reset.flags)))
1446 			return -EINTR;
1447 
1448 		rcu_read_lock();
1449 	}
1450 	*srcu = srcu_read_lock(&gt->reset.backoff_srcu);
1451 	rcu_read_unlock();
1452 
1453 	return 0;
1454 }
1455 
1456 void intel_gt_reset_unlock(struct intel_gt *gt, int tag)
1457 __releases(&gt->reset.backoff_srcu)
1458 {
1459 	srcu_read_unlock(&gt->reset.backoff_srcu, tag);
1460 }
1461 
1462 int intel_gt_terminally_wedged(struct intel_gt *gt)
1463 {
1464 	might_sleep();
1465 
1466 	if (!intel_gt_is_wedged(gt))
1467 		return 0;
1468 
1469 	if (intel_gt_has_unrecoverable_error(gt))
1470 		return -EIO;
1471 
1472 	/* Reset still in progress? Maybe we will recover? */
1473 	if (wait_event_interruptible(gt->reset.queue,
1474 				     !test_bit(I915_RESET_BACKOFF,
1475 					       &gt->reset.flags)))
1476 		return -EINTR;
1477 
1478 	return intel_gt_is_wedged(gt) ? -EIO : 0;
1479 }
1480 
1481 void intel_gt_set_wedged_on_init(struct intel_gt *gt)
1482 {
1483 	BUILD_BUG_ON(I915_RESET_ENGINE + I915_NUM_ENGINES >
1484 		     I915_WEDGED_ON_INIT);
1485 	intel_gt_set_wedged(gt);
1486 	set_bit(I915_WEDGED_ON_INIT, &gt->reset.flags);
1487 
1488 	/* Wedged on init is non-recoverable */
1489 	add_taint_for_CI(gt->i915, TAINT_WARN);
1490 }
1491 
1492 void intel_gt_set_wedged_on_fini(struct intel_gt *gt)
1493 {
1494 	intel_gt_set_wedged(gt);
1495 	set_bit(I915_WEDGED_ON_FINI, &gt->reset.flags);
1496 	intel_gt_retire_requests(gt); /* cleanup any wedged requests */
1497 }
1498 
1499 void intel_gt_init_reset(struct intel_gt *gt)
1500 {
1501 	init_waitqueue_head(&gt->reset.queue);
1502 	rw_init(&gt->reset.mutex, "gtres");
1503 	init_srcu_struct(&gt->reset.backoff_srcu);
1504 
1505 	/*
1506 	 * While undesirable to wait inside the shrinker, complain anyway.
1507 	 *
1508 	 * If we have to wait during shrinking, we guarantee forward progress
1509 	 * by forcing the reset. Therefore during the reset we must not
1510 	 * re-enter the shrinker. By declaring that we take the reset mutex
1511 	 * within the shrinker, we forbid ourselves from performing any
1512 	 * fs-reclaim or taking related locks during reset.
1513 	 */
1514 	i915_gem_shrinker_taints_mutex(gt->i915, &gt->reset.mutex);
1515 
1516 	/* no GPU until we are ready! */
1517 	__set_bit(I915_WEDGED, &gt->reset.flags);
1518 }
1519 
1520 void intel_gt_fini_reset(struct intel_gt *gt)
1521 {
1522 	cleanup_srcu_struct(&gt->reset.backoff_srcu);
1523 }
1524 
1525 static void intel_wedge_me(struct work_struct *work)
1526 {
1527 	struct intel_wedge_me *w = container_of(work, typeof(*w), work.work);
1528 
1529 	drm_err(&w->gt->i915->drm,
1530 		"%s timed out, cancelling all in-flight rendering.\n",
1531 		w->name);
1532 	intel_gt_set_wedged(w->gt);
1533 }
1534 
1535 void __intel_init_wedge(struct intel_wedge_me *w,
1536 			struct intel_gt *gt,
1537 			long timeout,
1538 			const char *name)
1539 {
1540 	w->gt = gt;
1541 	w->name = name;
1542 
1543 	INIT_DELAYED_WORK_ONSTACK(&w->work, intel_wedge_me);
1544 	schedule_delayed_work(&w->work, timeout);
1545 }
1546 
1547 void __intel_fini_wedge(struct intel_wedge_me *w)
1548 {
1549 	cancel_delayed_work_sync(&w->work);
1550 	destroy_delayed_work_on_stack(&w->work);
1551 	w->gt = NULL;
1552 }
1553 
1554 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1555 #include "selftest_reset.c"
1556 #include "selftest_hangcheck.c"
1557 #endif
1558