1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2019 Intel Corporation 4 */ 5 6 #include "debugfs_gt.h" 7 8 #include "gem/i915_gem_lmem.h" 9 #include "i915_drv.h" 10 #include "intel_context.h" 11 #include "intel_gt.h" 12 #include "intel_gt_buffer_pool.h" 13 #include "intel_gt_clock_utils.h" 14 #include "intel_gt_pm.h" 15 #include "intel_gt_requests.h" 16 #include "intel_migrate.h" 17 #include "intel_mocs.h" 18 #include "intel_rc6.h" 19 #include "intel_renderstate.h" 20 #include "intel_rps.h" 21 #include "intel_uncore.h" 22 #include "intel_pm.h" 23 #include "shmem_utils.h" 24 25 void intel_gt_init_early(struct intel_gt *gt, struct drm_i915_private *i915) 26 { 27 gt->i915 = i915; 28 gt->uncore = &i915->uncore; 29 30 mtx_init(>->irq_lock, IPL_TTY); 31 32 rw_init(>->tlb_invalidate_lock, "itlbinv"); 33 34 INIT_LIST_HEAD(>->closed_vma); 35 mtx_init(>->closed_lock, IPL_TTY); 36 37 init_llist_head(>->watchdog.list); 38 INIT_WORK(>->watchdog.work, intel_gt_watchdog_work); 39 40 intel_gt_init_buffer_pool(gt); 41 intel_gt_init_reset(gt); 42 intel_gt_init_requests(gt); 43 intel_gt_init_timelines(gt); 44 intel_gt_pm_init_early(gt); 45 46 intel_uc_init_early(>->uc); 47 intel_rps_init_early(>->rps); 48 } 49 50 int intel_gt_probe_lmem(struct intel_gt *gt) 51 { 52 struct drm_i915_private *i915 = gt->i915; 53 struct intel_memory_region *mem; 54 int id; 55 int err; 56 57 mem = intel_gt_setup_lmem(gt); 58 if (mem == ERR_PTR(-ENODEV)) 59 mem = intel_gt_setup_fake_lmem(gt); 60 if (IS_ERR(mem)) { 61 err = PTR_ERR(mem); 62 if (err == -ENODEV) 63 return 0; 64 65 drm_err(&i915->drm, 66 "Failed to setup region(%d) type=%d\n", 67 err, INTEL_MEMORY_LOCAL); 68 return err; 69 } 70 71 id = INTEL_REGION_LMEM; 72 73 mem->id = id; 74 75 intel_memory_region_set_name(mem, "local%u", mem->instance); 76 77 GEM_BUG_ON(!HAS_REGION(i915, id)); 78 GEM_BUG_ON(i915->mm.regions[id]); 79 i915->mm.regions[id] = mem; 80 81 return 0; 82 } 83 84 void intel_gt_init_hw_early(struct intel_gt *gt, struct i915_ggtt *ggtt) 85 { 86 gt->ggtt = ggtt; 87 } 88 89 static const struct intel_mmio_range icl_l3bank_steering_table[] = { 90 { 0x00B100, 0x00B3FF }, 91 {}, 92 }; 93 94 static const struct intel_mmio_range xehpsdv_mslice_steering_table[] = { 95 { 0x004000, 0x004AFF }, 96 { 0x00C800, 0x00CFFF }, 97 { 0x00DD00, 0x00DDFF }, 98 { 0x00E900, 0x00FFFF }, /* 0xEA00 - OxEFFF is unused */ 99 {}, 100 }; 101 102 static const struct intel_mmio_range xehpsdv_lncf_steering_table[] = { 103 { 0x00B000, 0x00B0FF }, 104 { 0x00D800, 0x00D8FF }, 105 {}, 106 }; 107 108 static const struct intel_mmio_range dg2_lncf_steering_table[] = { 109 { 0x00B000, 0x00B0FF }, 110 { 0x00D880, 0x00D8FF }, 111 {}, 112 }; 113 114 static u16 slicemask(struct intel_gt *gt, int count) 115 { 116 u64 dss_mask = intel_sseu_get_subslices(>->info.sseu, 0); 117 118 return intel_slicemask_from_dssmask(dss_mask, count); 119 } 120 121 int intel_gt_init_mmio(struct intel_gt *gt) 122 { 123 struct drm_i915_private *i915 = gt->i915; 124 125 intel_gt_init_clock_frequency(gt); 126 127 intel_uc_init_mmio(>->uc); 128 intel_sseu_info_init(gt); 129 130 /* 131 * An mslice is unavailable only if both the meml3 for the slice is 132 * disabled *and* all of the DSS in the slice (quadrant) are disabled. 133 */ 134 if (HAS_MSLICES(i915)) 135 gt->info.mslice_mask = 136 slicemask(gt, GEN_DSS_PER_MSLICE) | 137 (intel_uncore_read(gt->uncore, GEN10_MIRROR_FUSE3) & 138 GEN12_MEML3_EN_MASK); 139 140 if (IS_DG2(i915)) { 141 gt->steering_table[MSLICE] = xehpsdv_mslice_steering_table; 142 gt->steering_table[LNCF] = dg2_lncf_steering_table; 143 } else if (IS_XEHPSDV(i915)) { 144 gt->steering_table[MSLICE] = xehpsdv_mslice_steering_table; 145 gt->steering_table[LNCF] = xehpsdv_lncf_steering_table; 146 } else if (GRAPHICS_VER(i915) >= 11 && 147 GRAPHICS_VER_FULL(i915) < IP_VER(12, 50)) { 148 gt->steering_table[L3BANK] = icl_l3bank_steering_table; 149 gt->info.l3bank_mask = 150 ~intel_uncore_read(gt->uncore, GEN10_MIRROR_FUSE3) & 151 GEN10_L3BANK_MASK; 152 } else if (HAS_MSLICES(i915)) { 153 MISSING_CASE(INTEL_INFO(i915)->platform); 154 } 155 156 return intel_engines_init_mmio(gt); 157 } 158 159 static void init_unused_ring(struct intel_gt *gt, u32 base) 160 { 161 struct intel_uncore *uncore = gt->uncore; 162 163 intel_uncore_write(uncore, RING_CTL(base), 0); 164 intel_uncore_write(uncore, RING_HEAD(base), 0); 165 intel_uncore_write(uncore, RING_TAIL(base), 0); 166 intel_uncore_write(uncore, RING_START(base), 0); 167 } 168 169 static void init_unused_rings(struct intel_gt *gt) 170 { 171 struct drm_i915_private *i915 = gt->i915; 172 173 if (IS_I830(i915)) { 174 init_unused_ring(gt, PRB1_BASE); 175 init_unused_ring(gt, SRB0_BASE); 176 init_unused_ring(gt, SRB1_BASE); 177 init_unused_ring(gt, SRB2_BASE); 178 init_unused_ring(gt, SRB3_BASE); 179 } else if (GRAPHICS_VER(i915) == 2) { 180 init_unused_ring(gt, SRB0_BASE); 181 init_unused_ring(gt, SRB1_BASE); 182 } else if (GRAPHICS_VER(i915) == 3) { 183 init_unused_ring(gt, PRB1_BASE); 184 init_unused_ring(gt, PRB2_BASE); 185 } 186 } 187 188 int intel_gt_init_hw(struct intel_gt *gt) 189 { 190 struct drm_i915_private *i915 = gt->i915; 191 struct intel_uncore *uncore = gt->uncore; 192 int ret; 193 194 gt->last_init_time = ktime_get(); 195 196 /* Double layer security blanket, see i915_gem_init() */ 197 intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL); 198 199 if (HAS_EDRAM(i915) && GRAPHICS_VER(i915) < 9) 200 intel_uncore_rmw(uncore, HSW_IDICR, 0, IDIHASHMSK(0xf)); 201 202 if (IS_HASWELL(i915)) 203 intel_uncore_write(uncore, 204 MI_PREDICATE_RESULT_2, 205 IS_HSW_GT3(i915) ? 206 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED); 207 208 /* Apply the GT workarounds... */ 209 intel_gt_apply_workarounds(gt); 210 /* ...and determine whether they are sticking. */ 211 intel_gt_verify_workarounds(gt, "init"); 212 213 intel_gt_init_swizzling(gt); 214 215 /* 216 * At least 830 can leave some of the unused rings 217 * "active" (ie. head != tail) after resume which 218 * will prevent c3 entry. Makes sure all unused rings 219 * are totally idle. 220 */ 221 init_unused_rings(gt); 222 223 ret = i915_ppgtt_init_hw(gt); 224 if (ret) { 225 DRM_ERROR("Enabling PPGTT failed (%d)\n", ret); 226 goto out; 227 } 228 229 /* We can't enable contexts until all firmware is loaded */ 230 ret = intel_uc_init_hw(>->uc); 231 if (ret) { 232 i915_probe_error(i915, "Enabling uc failed (%d)\n", ret); 233 goto out; 234 } 235 236 intel_mocs_init(gt); 237 238 out: 239 intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL); 240 return ret; 241 } 242 243 static void rmw_set(struct intel_uncore *uncore, i915_reg_t reg, u32 set) 244 { 245 intel_uncore_rmw(uncore, reg, 0, set); 246 } 247 248 static void rmw_clear(struct intel_uncore *uncore, i915_reg_t reg, u32 clr) 249 { 250 intel_uncore_rmw(uncore, reg, clr, 0); 251 } 252 253 static void clear_register(struct intel_uncore *uncore, i915_reg_t reg) 254 { 255 intel_uncore_rmw(uncore, reg, 0, 0); 256 } 257 258 static void gen6_clear_engine_error_register(struct intel_engine_cs *engine) 259 { 260 GEN6_RING_FAULT_REG_RMW(engine, RING_FAULT_VALID, 0); 261 GEN6_RING_FAULT_REG_POSTING_READ(engine); 262 } 263 264 void 265 intel_gt_clear_error_registers(struct intel_gt *gt, 266 intel_engine_mask_t engine_mask) 267 { 268 struct drm_i915_private *i915 = gt->i915; 269 struct intel_uncore *uncore = gt->uncore; 270 u32 eir; 271 272 if (GRAPHICS_VER(i915) != 2) 273 clear_register(uncore, PGTBL_ER); 274 275 if (GRAPHICS_VER(i915) < 4) 276 clear_register(uncore, IPEIR(RENDER_RING_BASE)); 277 else 278 clear_register(uncore, IPEIR_I965); 279 280 clear_register(uncore, EIR); 281 eir = intel_uncore_read(uncore, EIR); 282 if (eir) { 283 /* 284 * some errors might have become stuck, 285 * mask them. 286 */ 287 DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masking\n", eir); 288 rmw_set(uncore, EMR, eir); 289 intel_uncore_write(uncore, GEN2_IIR, 290 I915_MASTER_ERROR_INTERRUPT); 291 } 292 293 if (GRAPHICS_VER(i915) >= 12) { 294 rmw_clear(uncore, GEN12_RING_FAULT_REG, RING_FAULT_VALID); 295 intel_uncore_posting_read(uncore, GEN12_RING_FAULT_REG); 296 } else if (GRAPHICS_VER(i915) >= 8) { 297 rmw_clear(uncore, GEN8_RING_FAULT_REG, RING_FAULT_VALID); 298 intel_uncore_posting_read(uncore, GEN8_RING_FAULT_REG); 299 } else if (GRAPHICS_VER(i915) >= 6) { 300 struct intel_engine_cs *engine; 301 enum intel_engine_id id; 302 303 for_each_engine_masked(engine, gt, engine_mask, id) 304 gen6_clear_engine_error_register(engine); 305 } 306 } 307 308 static void gen6_check_faults(struct intel_gt *gt) 309 { 310 struct intel_engine_cs *engine; 311 enum intel_engine_id id; 312 u32 fault; 313 314 for_each_engine(engine, gt, id) { 315 fault = GEN6_RING_FAULT_REG_READ(engine); 316 if (fault & RING_FAULT_VALID) { 317 drm_dbg(&engine->i915->drm, "Unexpected fault\n" 318 "\tAddr: 0x%08lx\n" 319 "\tAddress space: %s\n" 320 "\tSource ID: %d\n" 321 "\tType: %d\n", 322 (unsigned long)(fault & LINUX_PAGE_MASK), 323 fault & RING_FAULT_GTTSEL_MASK ? 324 "GGTT" : "PPGTT", 325 RING_FAULT_SRCID(fault), 326 RING_FAULT_FAULT_TYPE(fault)); 327 } 328 } 329 } 330 331 static void gen8_check_faults(struct intel_gt *gt) 332 { 333 struct intel_uncore *uncore = gt->uncore; 334 i915_reg_t fault_reg, fault_data0_reg, fault_data1_reg; 335 u32 fault; 336 337 if (GRAPHICS_VER(gt->i915) >= 12) { 338 fault_reg = GEN12_RING_FAULT_REG; 339 fault_data0_reg = GEN12_FAULT_TLB_DATA0; 340 fault_data1_reg = GEN12_FAULT_TLB_DATA1; 341 } else { 342 fault_reg = GEN8_RING_FAULT_REG; 343 fault_data0_reg = GEN8_FAULT_TLB_DATA0; 344 fault_data1_reg = GEN8_FAULT_TLB_DATA1; 345 } 346 347 fault = intel_uncore_read(uncore, fault_reg); 348 if (fault & RING_FAULT_VALID) { 349 u32 fault_data0, fault_data1; 350 u64 fault_addr; 351 352 fault_data0 = intel_uncore_read(uncore, fault_data0_reg); 353 fault_data1 = intel_uncore_read(uncore, fault_data1_reg); 354 355 fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) | 356 ((u64)fault_data0 << 12); 357 358 drm_dbg(&uncore->i915->drm, "Unexpected fault\n" 359 "\tAddr: 0x%08x_%08x\n" 360 "\tAddress space: %s\n" 361 "\tEngine ID: %d\n" 362 "\tSource ID: %d\n" 363 "\tType: %d\n", 364 upper_32_bits(fault_addr), lower_32_bits(fault_addr), 365 fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT", 366 GEN8_RING_FAULT_ENGINE_ID(fault), 367 RING_FAULT_SRCID(fault), 368 RING_FAULT_FAULT_TYPE(fault)); 369 } 370 } 371 372 void intel_gt_check_and_clear_faults(struct intel_gt *gt) 373 { 374 struct drm_i915_private *i915 = gt->i915; 375 376 /* From GEN8 onwards we only have one 'All Engine Fault Register' */ 377 if (GRAPHICS_VER(i915) >= 8) 378 gen8_check_faults(gt); 379 else if (GRAPHICS_VER(i915) >= 6) 380 gen6_check_faults(gt); 381 else 382 return; 383 384 intel_gt_clear_error_registers(gt, ALL_ENGINES); 385 } 386 387 void intel_gt_flush_ggtt_writes(struct intel_gt *gt) 388 { 389 struct intel_uncore *uncore = gt->uncore; 390 intel_wakeref_t wakeref; 391 392 /* 393 * No actual flushing is required for the GTT write domain for reads 394 * from the GTT domain. Writes to it "immediately" go to main memory 395 * as far as we know, so there's no chipset flush. It also doesn't 396 * land in the GPU render cache. 397 * 398 * However, we do have to enforce the order so that all writes through 399 * the GTT land before any writes to the device, such as updates to 400 * the GATT itself. 401 * 402 * We also have to wait a bit for the writes to land from the GTT. 403 * An uncached read (i.e. mmio) seems to be ideal for the round-trip 404 * timing. This issue has only been observed when switching quickly 405 * between GTT writes and CPU reads from inside the kernel on recent hw, 406 * and it appears to only affect discrete GTT blocks (i.e. on LLC 407 * system agents we cannot reproduce this behaviour, until Cannonlake 408 * that was!). 409 */ 410 411 wmb(); 412 413 if (INTEL_INFO(gt->i915)->has_coherent_ggtt) 414 return; 415 416 intel_gt_chipset_flush(gt); 417 418 with_intel_runtime_pm_if_in_use(uncore->rpm, wakeref) { 419 unsigned long flags; 420 421 spin_lock_irqsave(&uncore->lock, flags); 422 intel_uncore_posting_read_fw(uncore, 423 RING_HEAD(RENDER_RING_BASE)); 424 spin_unlock_irqrestore(&uncore->lock, flags); 425 } 426 } 427 428 void intel_gt_chipset_flush(struct intel_gt *gt) 429 { 430 wmb(); 431 if (GRAPHICS_VER(gt->i915) < 6) 432 intel_gtt_chipset_flush(); 433 } 434 435 void intel_gt_driver_register(struct intel_gt *gt) 436 { 437 intel_rps_driver_register(>->rps); 438 439 debugfs_gt_register(gt); 440 } 441 442 static int intel_gt_init_scratch(struct intel_gt *gt, unsigned int size) 443 { 444 struct drm_i915_private *i915 = gt->i915; 445 struct drm_i915_gem_object *obj; 446 struct i915_vma *vma; 447 int ret; 448 449 obj = i915_gem_object_create_lmem(i915, size, I915_BO_ALLOC_VOLATILE); 450 if (IS_ERR(obj)) 451 obj = i915_gem_object_create_stolen(i915, size); 452 if (IS_ERR(obj)) 453 obj = i915_gem_object_create_internal(i915, size); 454 if (IS_ERR(obj)) { 455 drm_err(&i915->drm, "Failed to allocate scratch page\n"); 456 return PTR_ERR(obj); 457 } 458 459 vma = i915_vma_instance(obj, >->ggtt->vm, NULL); 460 if (IS_ERR(vma)) { 461 ret = PTR_ERR(vma); 462 goto err_unref; 463 } 464 465 ret = i915_ggtt_pin(vma, NULL, 0, PIN_HIGH); 466 if (ret) 467 goto err_unref; 468 469 gt->scratch = i915_vma_make_unshrinkable(vma); 470 471 return 0; 472 473 err_unref: 474 i915_gem_object_put(obj); 475 return ret; 476 } 477 478 static void intel_gt_fini_scratch(struct intel_gt *gt) 479 { 480 i915_vma_unpin_and_release(>->scratch, 0); 481 } 482 483 static struct i915_address_space *kernel_vm(struct intel_gt *gt) 484 { 485 if (INTEL_PPGTT(gt->i915) > INTEL_PPGTT_ALIASING) 486 return &i915_ppgtt_create(gt)->vm; 487 else 488 return i915_vm_get(>->ggtt->vm); 489 } 490 491 static int __engines_record_defaults(struct intel_gt *gt) 492 { 493 struct i915_request *requests[I915_NUM_ENGINES] = {}; 494 struct intel_engine_cs *engine; 495 enum intel_engine_id id; 496 int err = 0; 497 498 /* 499 * As we reset the gpu during very early sanitisation, the current 500 * register state on the GPU should reflect its defaults values. 501 * We load a context onto the hw (with restore-inhibit), then switch 502 * over to a second context to save that default register state. We 503 * can then prime every new context with that state so they all start 504 * from the same default HW values. 505 */ 506 507 for_each_engine(engine, gt, id) { 508 struct intel_renderstate so; 509 struct intel_context *ce; 510 struct i915_request *rq; 511 512 /* We must be able to switch to something! */ 513 GEM_BUG_ON(!engine->kernel_context); 514 515 ce = intel_context_create(engine); 516 if (IS_ERR(ce)) { 517 err = PTR_ERR(ce); 518 goto out; 519 } 520 521 err = intel_renderstate_init(&so, ce); 522 if (err) 523 goto err; 524 525 rq = i915_request_create(ce); 526 if (IS_ERR(rq)) { 527 err = PTR_ERR(rq); 528 goto err_fini; 529 } 530 531 err = intel_engine_emit_ctx_wa(rq); 532 if (err) 533 goto err_rq; 534 535 err = intel_renderstate_emit(&so, rq); 536 if (err) 537 goto err_rq; 538 539 err_rq: 540 requests[id] = i915_request_get(rq); 541 i915_request_add(rq); 542 err_fini: 543 intel_renderstate_fini(&so, ce); 544 err: 545 if (err) { 546 intel_context_put(ce); 547 goto out; 548 } 549 } 550 551 /* Flush the default context image to memory, and enable powersaving. */ 552 if (intel_gt_wait_for_idle(gt, I915_GEM_IDLE_TIMEOUT) == -ETIME) { 553 err = -EIO; 554 goto out; 555 } 556 557 for (id = 0; id < ARRAY_SIZE(requests); id++) { 558 struct i915_request *rq; 559 struct uvm_object *state; 560 561 rq = requests[id]; 562 if (!rq) 563 continue; 564 565 if (rq->fence.error) { 566 err = -EIO; 567 goto out; 568 } 569 570 GEM_BUG_ON(!test_bit(CONTEXT_ALLOC_BIT, &rq->context->flags)); 571 if (!rq->context->state) 572 continue; 573 574 /* Keep a copy of the state's backing pages; free the obj */ 575 #ifdef __linux__ 576 state = shmem_create_from_object(rq->context->state->obj); 577 #else 578 state = uao_create_from_object(rq->context->state->obj); 579 #endif 580 if (IS_ERR(state)) { 581 err = PTR_ERR(state); 582 goto out; 583 } 584 rq->engine->default_state = state; 585 } 586 587 out: 588 /* 589 * If we have to abandon now, we expect the engines to be idle 590 * and ready to be torn-down. The quickest way we can accomplish 591 * this is by declaring ourselves wedged. 592 */ 593 if (err) 594 intel_gt_set_wedged(gt); 595 596 for (id = 0; id < ARRAY_SIZE(requests); id++) { 597 struct intel_context *ce; 598 struct i915_request *rq; 599 600 rq = requests[id]; 601 if (!rq) 602 continue; 603 604 ce = rq->context; 605 i915_request_put(rq); 606 intel_context_put(ce); 607 } 608 return err; 609 } 610 611 static int __engines_verify_workarounds(struct intel_gt *gt) 612 { 613 struct intel_engine_cs *engine; 614 enum intel_engine_id id; 615 int err = 0; 616 617 if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) 618 return 0; 619 620 for_each_engine(engine, gt, id) { 621 if (intel_engine_verify_workarounds(engine, "load")) 622 err = -EIO; 623 } 624 625 /* Flush and restore the kernel context for safety */ 626 if (intel_gt_wait_for_idle(gt, I915_GEM_IDLE_TIMEOUT) == -ETIME) 627 err = -EIO; 628 629 return err; 630 } 631 632 static void __intel_gt_disable(struct intel_gt *gt) 633 { 634 intel_gt_set_wedged_on_fini(gt); 635 636 intel_gt_suspend_prepare(gt); 637 intel_gt_suspend_late(gt); 638 639 GEM_BUG_ON(intel_gt_pm_is_awake(gt)); 640 } 641 642 int intel_gt_wait_for_idle(struct intel_gt *gt, long timeout) 643 { 644 long remaining_timeout; 645 646 /* If the device is asleep, we have no requests outstanding */ 647 if (!intel_gt_pm_is_awake(gt)) 648 return 0; 649 650 while ((timeout = intel_gt_retire_requests_timeout(gt, timeout, 651 &remaining_timeout)) > 0) { 652 cond_resched(); 653 if (signal_pending(current)) 654 return -EINTR; 655 } 656 657 return timeout ? timeout : intel_uc_wait_for_idle(>->uc, 658 remaining_timeout); 659 } 660 661 int intel_gt_init(struct intel_gt *gt) 662 { 663 int err; 664 665 err = i915_inject_probe_error(gt->i915, -ENODEV); 666 if (err) 667 return err; 668 669 /* 670 * This is just a security blanket to placate dragons. 671 * On some systems, we very sporadically observe that the first TLBs 672 * used by the CS may be stale, despite us poking the TLB reset. If 673 * we hold the forcewake during initialisation these problems 674 * just magically go away. 675 */ 676 intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL); 677 678 err = intel_gt_init_scratch(gt, 679 GRAPHICS_VER(gt->i915) == 2 ? SZ_256K : SZ_4K); 680 if (err) 681 goto out_fw; 682 683 intel_gt_pm_init(gt); 684 685 gt->vm = kernel_vm(gt); 686 if (!gt->vm) { 687 err = -ENOMEM; 688 goto err_pm; 689 } 690 691 err = intel_engines_init(gt); 692 if (err) 693 goto err_engines; 694 695 err = intel_uc_init(>->uc); 696 if (err) 697 goto err_engines; 698 699 err = intel_gt_resume(gt); 700 if (err) 701 goto err_uc_init; 702 703 err = __engines_record_defaults(gt); 704 if (err) 705 goto err_gt; 706 707 err = __engines_verify_workarounds(gt); 708 if (err) 709 goto err_gt; 710 711 intel_uc_init_late(>->uc); 712 713 err = i915_inject_probe_error(gt->i915, -EIO); 714 if (err) 715 goto err_gt; 716 717 intel_migrate_init(>->migrate, gt); 718 719 goto out_fw; 720 err_gt: 721 __intel_gt_disable(gt); 722 intel_uc_fini_hw(>->uc); 723 err_uc_init: 724 intel_uc_fini(>->uc); 725 err_engines: 726 intel_engines_release(gt); 727 i915_vm_put(fetch_and_zero(>->vm)); 728 err_pm: 729 intel_gt_pm_fini(gt); 730 intel_gt_fini_scratch(gt); 731 out_fw: 732 if (err) 733 intel_gt_set_wedged_on_init(gt); 734 intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL); 735 return err; 736 } 737 738 void intel_gt_driver_remove(struct intel_gt *gt) 739 { 740 __intel_gt_disable(gt); 741 742 intel_migrate_fini(>->migrate); 743 intel_uc_driver_remove(>->uc); 744 745 intel_engines_release(gt); 746 } 747 748 void intel_gt_driver_unregister(struct intel_gt *gt) 749 { 750 intel_wakeref_t wakeref; 751 752 intel_rps_driver_unregister(>->rps); 753 754 /* 755 * Upon unregistering the device to prevent any new users, cancel 756 * all in-flight requests so that we can quickly unbind the active 757 * resources. 758 */ 759 intel_gt_set_wedged(gt); 760 761 /* Scrub all HW state upon release */ 762 with_intel_runtime_pm(gt->uncore->rpm, wakeref) 763 __intel_gt_reset(gt, ALL_ENGINES); 764 } 765 766 void intel_gt_driver_release(struct intel_gt *gt) 767 { 768 struct i915_address_space *vm; 769 770 vm = fetch_and_zero(>->vm); 771 if (vm) /* FIXME being called twice on error paths :( */ 772 i915_vm_put(vm); 773 774 intel_gt_pm_fini(gt); 775 intel_gt_fini_scratch(gt); 776 intel_gt_fini_buffer_pool(gt); 777 } 778 779 void intel_gt_driver_late_release(struct intel_gt *gt) 780 { 781 /* We need to wait for inflight RCU frees to release their grip */ 782 rcu_barrier(); 783 784 intel_uc_driver_late_release(>->uc); 785 intel_gt_fini_requests(gt); 786 intel_gt_fini_reset(gt); 787 intel_gt_fini_timelines(gt); 788 intel_engines_free(gt); 789 } 790 791 /** 792 * intel_gt_reg_needs_read_steering - determine whether a register read 793 * requires explicit steering 794 * @gt: GT structure 795 * @reg: the register to check steering requirements for 796 * @type: type of multicast steering to check 797 * 798 * Determines whether @reg needs explicit steering of a specific type for 799 * reads. 800 * 801 * Returns false if @reg does not belong to a register range of the given 802 * steering type, or if the default (subslice-based) steering IDs are suitable 803 * for @type steering too. 804 */ 805 static bool intel_gt_reg_needs_read_steering(struct intel_gt *gt, 806 i915_reg_t reg, 807 enum intel_steering_type type) 808 { 809 const u32 offset = i915_mmio_reg_offset(reg); 810 const struct intel_mmio_range *entry; 811 812 if (likely(!intel_gt_needs_read_steering(gt, type))) 813 return false; 814 815 for (entry = gt->steering_table[type]; entry->end; entry++) { 816 if (offset >= entry->start && offset <= entry->end) 817 return true; 818 } 819 820 return false; 821 } 822 823 /** 824 * intel_gt_get_valid_steering - determines valid IDs for a class of MCR steering 825 * @gt: GT structure 826 * @type: multicast register type 827 * @sliceid: Slice ID returned 828 * @subsliceid: Subslice ID returned 829 * 830 * Determines sliceid and subsliceid values that will steer reads 831 * of a specific multicast register class to a valid value. 832 */ 833 static void intel_gt_get_valid_steering(struct intel_gt *gt, 834 enum intel_steering_type type, 835 u8 *sliceid, u8 *subsliceid) 836 { 837 switch (type) { 838 case L3BANK: 839 GEM_DEBUG_WARN_ON(!gt->info.l3bank_mask); /* should be impossible! */ 840 841 *sliceid = 0; /* unused */ 842 *subsliceid = __ffs(gt->info.l3bank_mask); 843 break; 844 case MSLICE: 845 GEM_DEBUG_WARN_ON(!gt->info.mslice_mask); /* should be impossible! */ 846 847 *sliceid = __ffs(gt->info.mslice_mask); 848 *subsliceid = 0; /* unused */ 849 break; 850 case LNCF: 851 GEM_DEBUG_WARN_ON(!gt->info.mslice_mask); /* should be impossible! */ 852 853 /* 854 * An LNCF is always present if its mslice is present, so we 855 * can safely just steer to LNCF 0 in all cases. 856 */ 857 *sliceid = __ffs(gt->info.mslice_mask) << 1; 858 *subsliceid = 0; /* unused */ 859 break; 860 default: 861 MISSING_CASE(type); 862 *sliceid = 0; 863 *subsliceid = 0; 864 } 865 } 866 867 /** 868 * intel_gt_read_register_fw - reads a GT register with support for multicast 869 * @gt: GT structure 870 * @reg: register to read 871 * 872 * This function will read a GT register. If the register is a multicast 873 * register, the read will be steered to a valid instance (i.e., one that 874 * isn't fused off or powered down by power gating). 875 * 876 * Returns the value from a valid instance of @reg. 877 */ 878 u32 intel_gt_read_register_fw(struct intel_gt *gt, i915_reg_t reg) 879 { 880 int type; 881 u8 sliceid, subsliceid; 882 883 for (type = 0; type < NUM_STEERING_TYPES; type++) { 884 if (intel_gt_reg_needs_read_steering(gt, reg, type)) { 885 intel_gt_get_valid_steering(gt, type, &sliceid, 886 &subsliceid); 887 return intel_uncore_read_with_mcr_steering_fw(gt->uncore, 888 reg, 889 sliceid, 890 subsliceid); 891 } 892 } 893 894 return intel_uncore_read_fw(gt->uncore, reg); 895 } 896 897 void intel_gt_info_print(const struct intel_gt_info *info, 898 struct drm_printer *p) 899 { 900 drm_printf(p, "available engines: %x\n", info->engine_mask); 901 902 intel_sseu_dump(&info->sseu, p); 903 } 904 905 struct reg_and_bit { 906 i915_reg_t reg; 907 u32 bit; 908 }; 909 910 static struct reg_and_bit 911 get_reg_and_bit(const struct intel_engine_cs *engine, const bool gen8, 912 const i915_reg_t *regs, const unsigned int num) 913 { 914 const unsigned int class = engine->class; 915 struct reg_and_bit rb = { }; 916 917 if (drm_WARN_ON_ONCE(&engine->i915->drm, 918 class >= num || !regs[class].reg)) 919 return rb; 920 921 rb.reg = regs[class]; 922 if (gen8 && class == VIDEO_DECODE_CLASS) 923 rb.reg.reg += 4 * engine->instance; /* GEN8_M2TCR */ 924 else 925 rb.bit = engine->instance; 926 927 rb.bit = BIT(rb.bit); 928 929 return rb; 930 } 931 932 void intel_gt_invalidate_tlbs(struct intel_gt *gt) 933 { 934 static const i915_reg_t gen8_regs[] = { 935 [RENDER_CLASS] = GEN8_RTCR, 936 [VIDEO_DECODE_CLASS] = GEN8_M1TCR, /* , GEN8_M2TCR */ 937 [VIDEO_ENHANCEMENT_CLASS] = GEN8_VTCR, 938 [COPY_ENGINE_CLASS] = GEN8_BTCR, 939 }; 940 static const i915_reg_t gen12_regs[] = { 941 [RENDER_CLASS] = GEN12_GFX_TLB_INV_CR, 942 [VIDEO_DECODE_CLASS] = GEN12_VD_TLB_INV_CR, 943 [VIDEO_ENHANCEMENT_CLASS] = GEN12_VE_TLB_INV_CR, 944 [COPY_ENGINE_CLASS] = GEN12_BLT_TLB_INV_CR, 945 }; 946 struct drm_i915_private *i915 = gt->i915; 947 struct intel_uncore *uncore = gt->uncore; 948 struct intel_engine_cs *engine; 949 enum intel_engine_id id; 950 const i915_reg_t *regs; 951 unsigned int num = 0; 952 953 if (I915_SELFTEST_ONLY(gt->awake == -ENODEV)) 954 return; 955 956 if (GRAPHICS_VER(i915) == 12) { 957 regs = gen12_regs; 958 num = ARRAY_SIZE(gen12_regs); 959 } else if (GRAPHICS_VER(i915) >= 8 && GRAPHICS_VER(i915) <= 11) { 960 regs = gen8_regs; 961 num = ARRAY_SIZE(gen8_regs); 962 } else if (GRAPHICS_VER(i915) < 8) { 963 return; 964 } 965 966 if (drm_WARN_ONCE(&i915->drm, !num, 967 "Platform does not implement TLB invalidation!")) 968 return; 969 970 GEM_TRACE("\n"); 971 972 assert_rpm_wakelock_held(&i915->runtime_pm); 973 974 mutex_lock(>->tlb_invalidate_lock); 975 intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL); 976 977 spin_lock_irq(&uncore->lock); /* serialise invalidate with GT reset */ 978 979 for_each_engine(engine, gt, id) { 980 struct reg_and_bit rb; 981 982 rb = get_reg_and_bit(engine, regs == gen8_regs, regs, num); 983 if (!i915_mmio_reg_offset(rb.reg)) 984 continue; 985 986 intel_uncore_write_fw(uncore, rb.reg, rb.bit); 987 } 988 989 spin_unlock_irq(&uncore->lock); 990 991 for_each_engine(engine, gt, id) { 992 /* 993 * HW architecture suggest typical invalidation time at 40us, 994 * with pessimistic cases up to 100us and a recommendation to 995 * cap at 1ms. We go a bit higher just in case. 996 */ 997 const unsigned int timeout_us = 100; 998 const unsigned int timeout_ms = 4; 999 struct reg_and_bit rb; 1000 1001 rb = get_reg_and_bit(engine, regs == gen8_regs, regs, num); 1002 if (!i915_mmio_reg_offset(rb.reg)) 1003 continue; 1004 1005 if (__intel_wait_for_register_fw(uncore, 1006 rb.reg, rb.bit, 0, 1007 timeout_us, timeout_ms, 1008 NULL)) 1009 drm_err_ratelimited(>->i915->drm, 1010 "%s TLB invalidation did not complete in %ums!\n", 1011 engine->name, timeout_ms); 1012 } 1013 1014 intel_uncore_forcewake_put_delayed(uncore, FORCEWAKE_ALL); 1015 mutex_unlock(>->tlb_invalidate_lock); 1016 } 1017