1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2016 Intel Corporation 4 */ 5 6 #include <drm/drm_print.h> 7 8 #include "gem/i915_gem_context.h" 9 10 #include "i915_drv.h" 11 12 #include "intel_breadcrumbs.h" 13 #include "intel_context.h" 14 #include "intel_engine.h" 15 #include "intel_engine_pm.h" 16 #include "intel_engine_user.h" 17 #include "intel_execlists_submission.h" 18 #include "intel_gt.h" 19 #include "intel_gt_requests.h" 20 #include "intel_gt_pm.h" 21 #include "intel_lrc_reg.h" 22 #include "intel_reset.h" 23 #include "intel_ring.h" 24 #include "uc/intel_guc_submission.h" 25 26 /* Haswell does have the CXT_SIZE register however it does not appear to be 27 * valid. Now, docs explain in dwords what is in the context object. The full 28 * size is 70720 bytes, however, the power context and execlist context will 29 * never be saved (power context is stored elsewhere, and execlists don't work 30 * on HSW) - so the final size, including the extra state required for the 31 * Resource Streamer, is 66944 bytes, which rounds to 17 pages. 32 */ 33 #define HSW_CXT_TOTAL_SIZE (17 * PAGE_SIZE) 34 35 #define DEFAULT_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE) 36 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE) 37 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE) 38 #define GEN11_LR_CONTEXT_RENDER_SIZE (14 * PAGE_SIZE) 39 40 #define GEN8_LR_CONTEXT_OTHER_SIZE ( 2 * PAGE_SIZE) 41 42 #define MAX_MMIO_BASES 3 43 struct engine_info { 44 u8 class; 45 u8 instance; 46 /* mmio bases table *must* be sorted in reverse graphics_ver order */ 47 struct engine_mmio_base { 48 u32 graphics_ver : 8; 49 u32 base : 24; 50 } mmio_bases[MAX_MMIO_BASES]; 51 }; 52 53 static const struct engine_info intel_engines[] = { 54 [RCS0] = { 55 .class = RENDER_CLASS, 56 .instance = 0, 57 .mmio_bases = { 58 { .graphics_ver = 1, .base = RENDER_RING_BASE } 59 }, 60 }, 61 [BCS0] = { 62 .class = COPY_ENGINE_CLASS, 63 .instance = 0, 64 .mmio_bases = { 65 { .graphics_ver = 6, .base = BLT_RING_BASE } 66 }, 67 }, 68 [VCS0] = { 69 .class = VIDEO_DECODE_CLASS, 70 .instance = 0, 71 .mmio_bases = { 72 { .graphics_ver = 11, .base = GEN11_BSD_RING_BASE }, 73 { .graphics_ver = 6, .base = GEN6_BSD_RING_BASE }, 74 { .graphics_ver = 4, .base = BSD_RING_BASE } 75 }, 76 }, 77 [VCS1] = { 78 .class = VIDEO_DECODE_CLASS, 79 .instance = 1, 80 .mmio_bases = { 81 { .graphics_ver = 11, .base = GEN11_BSD2_RING_BASE }, 82 { .graphics_ver = 8, .base = GEN8_BSD2_RING_BASE } 83 }, 84 }, 85 [VCS2] = { 86 .class = VIDEO_DECODE_CLASS, 87 .instance = 2, 88 .mmio_bases = { 89 { .graphics_ver = 11, .base = GEN11_BSD3_RING_BASE } 90 }, 91 }, 92 [VCS3] = { 93 .class = VIDEO_DECODE_CLASS, 94 .instance = 3, 95 .mmio_bases = { 96 { .graphics_ver = 11, .base = GEN11_BSD4_RING_BASE } 97 }, 98 }, 99 [VCS4] = { 100 .class = VIDEO_DECODE_CLASS, 101 .instance = 4, 102 .mmio_bases = { 103 { .graphics_ver = 12, .base = XEHP_BSD5_RING_BASE } 104 }, 105 }, 106 [VCS5] = { 107 .class = VIDEO_DECODE_CLASS, 108 .instance = 5, 109 .mmio_bases = { 110 { .graphics_ver = 12, .base = XEHP_BSD6_RING_BASE } 111 }, 112 }, 113 [VCS6] = { 114 .class = VIDEO_DECODE_CLASS, 115 .instance = 6, 116 .mmio_bases = { 117 { .graphics_ver = 12, .base = XEHP_BSD7_RING_BASE } 118 }, 119 }, 120 [VCS7] = { 121 .class = VIDEO_DECODE_CLASS, 122 .instance = 7, 123 .mmio_bases = { 124 { .graphics_ver = 12, .base = XEHP_BSD8_RING_BASE } 125 }, 126 }, 127 [VECS0] = { 128 .class = VIDEO_ENHANCEMENT_CLASS, 129 .instance = 0, 130 .mmio_bases = { 131 { .graphics_ver = 11, .base = GEN11_VEBOX_RING_BASE }, 132 { .graphics_ver = 7, .base = VEBOX_RING_BASE } 133 }, 134 }, 135 [VECS1] = { 136 .class = VIDEO_ENHANCEMENT_CLASS, 137 .instance = 1, 138 .mmio_bases = { 139 { .graphics_ver = 11, .base = GEN11_VEBOX2_RING_BASE } 140 }, 141 }, 142 [VECS2] = { 143 .class = VIDEO_ENHANCEMENT_CLASS, 144 .instance = 2, 145 .mmio_bases = { 146 { .graphics_ver = 12, .base = XEHP_VEBOX3_RING_BASE } 147 }, 148 }, 149 [VECS3] = { 150 .class = VIDEO_ENHANCEMENT_CLASS, 151 .instance = 3, 152 .mmio_bases = { 153 { .graphics_ver = 12, .base = XEHP_VEBOX4_RING_BASE } 154 }, 155 }, 156 }; 157 158 /** 159 * intel_engine_context_size() - return the size of the context for an engine 160 * @gt: the gt 161 * @class: engine class 162 * 163 * Each engine class may require a different amount of space for a context 164 * image. 165 * 166 * Return: size (in bytes) of an engine class specific context image 167 * 168 * Note: this size includes the HWSP, which is part of the context image 169 * in LRC mode, but does not include the "shared data page" used with 170 * GuC submission. The caller should account for this if using the GuC. 171 */ 172 u32 intel_engine_context_size(struct intel_gt *gt, u8 class) 173 { 174 struct intel_uncore *uncore = gt->uncore; 175 u32 cxt_size; 176 177 BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE); 178 179 switch (class) { 180 case RENDER_CLASS: 181 switch (GRAPHICS_VER(gt->i915)) { 182 default: 183 MISSING_CASE(GRAPHICS_VER(gt->i915)); 184 return DEFAULT_LR_CONTEXT_RENDER_SIZE; 185 case 12: 186 case 11: 187 return GEN11_LR_CONTEXT_RENDER_SIZE; 188 case 9: 189 return GEN9_LR_CONTEXT_RENDER_SIZE; 190 case 8: 191 return GEN8_LR_CONTEXT_RENDER_SIZE; 192 case 7: 193 if (IS_HASWELL(gt->i915)) 194 return HSW_CXT_TOTAL_SIZE; 195 196 cxt_size = intel_uncore_read(uncore, GEN7_CXT_SIZE); 197 return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64, 198 PAGE_SIZE); 199 case 6: 200 cxt_size = intel_uncore_read(uncore, CXT_SIZE); 201 return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64, 202 PAGE_SIZE); 203 case 5: 204 case 4: 205 /* 206 * There is a discrepancy here between the size reported 207 * by the register and the size of the context layout 208 * in the docs. Both are described as authorative! 209 * 210 * The discrepancy is on the order of a few cachelines, 211 * but the total is under one page (4k), which is our 212 * minimum allocation anyway so it should all come 213 * out in the wash. 214 */ 215 cxt_size = intel_uncore_read(uncore, CXT_SIZE) + 1; 216 drm_dbg(>->i915->drm, 217 "graphics_ver = %d CXT_SIZE = %d bytes [0x%08x]\n", 218 GRAPHICS_VER(gt->i915), cxt_size * 64, 219 cxt_size - 1); 220 return round_up(cxt_size * 64, PAGE_SIZE); 221 case 3: 222 case 2: 223 /* For the special day when i810 gets merged. */ 224 case 1: 225 return 0; 226 } 227 break; 228 default: 229 MISSING_CASE(class); 230 fallthrough; 231 case VIDEO_DECODE_CLASS: 232 case VIDEO_ENHANCEMENT_CLASS: 233 case COPY_ENGINE_CLASS: 234 if (GRAPHICS_VER(gt->i915) < 8) 235 return 0; 236 return GEN8_LR_CONTEXT_OTHER_SIZE; 237 } 238 } 239 240 static u32 __engine_mmio_base(struct drm_i915_private *i915, 241 const struct engine_mmio_base *bases) 242 { 243 int i; 244 245 for (i = 0; i < MAX_MMIO_BASES; i++) 246 if (GRAPHICS_VER(i915) >= bases[i].graphics_ver) 247 break; 248 249 GEM_BUG_ON(i == MAX_MMIO_BASES); 250 GEM_BUG_ON(!bases[i].base); 251 252 return bases[i].base; 253 } 254 255 static void __sprint_engine_name(struct intel_engine_cs *engine) 256 { 257 /* 258 * Before we know what the uABI name for this engine will be, 259 * we still would like to keep track of this engine in the debug logs. 260 * We throw in a ' here as a reminder that this isn't its final name. 261 */ 262 GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u", 263 intel_engine_class_repr(engine->class), 264 engine->instance) >= sizeof(engine->name)); 265 } 266 267 void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask) 268 { 269 /* 270 * Though they added more rings on g4x/ilk, they did not add 271 * per-engine HWSTAM until gen6. 272 */ 273 if (GRAPHICS_VER(engine->i915) < 6 && engine->class != RENDER_CLASS) 274 return; 275 276 if (GRAPHICS_VER(engine->i915) >= 3) 277 ENGINE_WRITE(engine, RING_HWSTAM, mask); 278 else 279 ENGINE_WRITE16(engine, RING_HWSTAM, mask); 280 } 281 282 static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine) 283 { 284 /* Mask off all writes into the unknown HWSP */ 285 intel_engine_set_hwsp_writemask(engine, ~0u); 286 } 287 288 static void nop_irq_handler(struct intel_engine_cs *engine, u16 iir) 289 { 290 GEM_DEBUG_WARN_ON(iir); 291 } 292 293 static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id) 294 { 295 const struct engine_info *info = &intel_engines[id]; 296 struct drm_i915_private *i915 = gt->i915; 297 struct intel_engine_cs *engine; 298 u8 guc_class; 299 300 BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH)); 301 BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH)); 302 BUILD_BUG_ON(I915_MAX_VCS > (MAX_ENGINE_INSTANCE + 1)); 303 BUILD_BUG_ON(I915_MAX_VECS > (MAX_ENGINE_INSTANCE + 1)); 304 305 if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine))) 306 return -EINVAL; 307 308 if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS)) 309 return -EINVAL; 310 311 if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE)) 312 return -EINVAL; 313 314 if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance])) 315 return -EINVAL; 316 317 engine = kzalloc(sizeof(*engine), GFP_KERNEL); 318 if (!engine) 319 return -ENOMEM; 320 321 BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES); 322 323 engine->id = id; 324 engine->legacy_idx = INVALID_ENGINE; 325 engine->mask = BIT(id); 326 engine->i915 = i915; 327 engine->gt = gt; 328 engine->uncore = gt->uncore; 329 guc_class = engine_class_to_guc_class(info->class); 330 engine->guc_id = MAKE_GUC_ID(guc_class, info->instance); 331 engine->mmio_base = __engine_mmio_base(i915, info->mmio_bases); 332 333 engine->irq_handler = nop_irq_handler; 334 335 engine->class = info->class; 336 engine->instance = info->instance; 337 __sprint_engine_name(engine); 338 339 engine->props.heartbeat_interval_ms = 340 CONFIG_DRM_I915_HEARTBEAT_INTERVAL; 341 engine->props.max_busywait_duration_ns = 342 CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT; 343 engine->props.preempt_timeout_ms = 344 CONFIG_DRM_I915_PREEMPT_TIMEOUT; 345 engine->props.stop_timeout_ms = 346 CONFIG_DRM_I915_STOP_TIMEOUT; 347 engine->props.timeslice_duration_ms = 348 CONFIG_DRM_I915_TIMESLICE_DURATION; 349 350 /* Override to uninterruptible for OpenCL workloads. */ 351 if (GRAPHICS_VER(i915) == 12 && engine->class == RENDER_CLASS) 352 engine->props.preempt_timeout_ms = 0; 353 354 engine->defaults = engine->props; /* never to change again */ 355 356 engine->context_size = intel_engine_context_size(gt, engine->class); 357 if (WARN_ON(engine->context_size > BIT(20))) 358 engine->context_size = 0; 359 if (engine->context_size) 360 DRIVER_CAPS(i915)->has_logical_contexts = true; 361 362 ewma__engine_latency_init(&engine->latency); 363 seqcount_init(&engine->stats.lock); 364 365 ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier); 366 367 /* Scrub mmio state on takeover */ 368 intel_engine_sanitize_mmio(engine); 369 370 gt->engine_class[info->class][info->instance] = engine; 371 gt->engine[id] = engine; 372 373 return 0; 374 } 375 376 static void __setup_engine_capabilities(struct intel_engine_cs *engine) 377 { 378 struct drm_i915_private *i915 = engine->i915; 379 380 if (engine->class == VIDEO_DECODE_CLASS) { 381 /* 382 * HEVC support is present on first engine instance 383 * before Gen11 and on all instances afterwards. 384 */ 385 if (GRAPHICS_VER(i915) >= 11 || 386 (GRAPHICS_VER(i915) >= 9 && engine->instance == 0)) 387 engine->uabi_capabilities |= 388 I915_VIDEO_CLASS_CAPABILITY_HEVC; 389 390 /* 391 * SFC block is present only on even logical engine 392 * instances. 393 */ 394 if ((GRAPHICS_VER(i915) >= 11 && 395 (engine->gt->info.vdbox_sfc_access & 396 BIT(engine->instance))) || 397 (GRAPHICS_VER(i915) >= 9 && engine->instance == 0)) 398 engine->uabi_capabilities |= 399 I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC; 400 } else if (engine->class == VIDEO_ENHANCEMENT_CLASS) { 401 if (GRAPHICS_VER(i915) >= 9) 402 engine->uabi_capabilities |= 403 I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC; 404 } 405 } 406 407 static void intel_setup_engine_capabilities(struct intel_gt *gt) 408 { 409 struct intel_engine_cs *engine; 410 enum intel_engine_id id; 411 412 for_each_engine(engine, gt, id) 413 __setup_engine_capabilities(engine); 414 } 415 416 /** 417 * intel_engines_release() - free the resources allocated for Command Streamers 418 * @gt: pointer to struct intel_gt 419 */ 420 void intel_engines_release(struct intel_gt *gt) 421 { 422 struct intel_engine_cs *engine; 423 enum intel_engine_id id; 424 425 /* 426 * Before we release the resources held by engine, we must be certain 427 * that the HW is no longer accessing them -- having the GPU scribble 428 * to or read from a page being used for something else causes no end 429 * of fun. 430 * 431 * The GPU should be reset by this point, but assume the worst just 432 * in case we aborted before completely initialising the engines. 433 */ 434 GEM_BUG_ON(intel_gt_pm_is_awake(gt)); 435 if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display) 436 __intel_gt_reset(gt, ALL_ENGINES); 437 438 /* Decouple the backend; but keep the layout for late GPU resets */ 439 for_each_engine(engine, gt, id) { 440 if (!engine->release) 441 continue; 442 443 intel_wakeref_wait_for_idle(&engine->wakeref); 444 GEM_BUG_ON(intel_engine_pm_is_awake(engine)); 445 446 engine->release(engine); 447 engine->release = NULL; 448 449 memset(&engine->reset, 0, sizeof(engine->reset)); 450 } 451 } 452 453 void intel_engine_free_request_pool(struct intel_engine_cs *engine) 454 { 455 if (!engine->request_pool) 456 return; 457 458 #ifdef __linux__ 459 kmem_cache_free(i915_request_slab_cache(), engine->request_pool); 460 #else 461 pool_put(i915_request_slab_cache(), engine->request_pool); 462 #endif 463 } 464 465 void intel_engines_free(struct intel_gt *gt) 466 { 467 struct intel_engine_cs *engine; 468 enum intel_engine_id id; 469 470 /* Free the requests! dma-resv keeps fences around for an eternity */ 471 rcu_barrier(); 472 473 for_each_engine(engine, gt, id) { 474 intel_engine_free_request_pool(engine); 475 kfree(engine); 476 gt->engine[id] = NULL; 477 } 478 } 479 480 static 481 bool gen11_vdbox_has_sfc(struct drm_i915_private *i915, 482 unsigned int physical_vdbox, 483 unsigned int logical_vdbox, u16 vdbox_mask) 484 { 485 /* 486 * In Gen11, only even numbered logical VDBOXes are hooked 487 * up to an SFC (Scaler & Format Converter) unit. 488 * In Gen12, Even numbered physical instance always are connected 489 * to an SFC. Odd numbered physical instances have SFC only if 490 * previous even instance is fused off. 491 */ 492 if (GRAPHICS_VER(i915) == 12) 493 return (physical_vdbox % 2 == 0) || 494 !(BIT(physical_vdbox - 1) & vdbox_mask); 495 else if (GRAPHICS_VER(i915) == 11) 496 return logical_vdbox % 2 == 0; 497 498 MISSING_CASE(GRAPHICS_VER(i915)); 499 return false; 500 } 501 502 /* 503 * Determine which engines are fused off in our particular hardware. 504 * Note that we have a catch-22 situation where we need to be able to access 505 * the blitter forcewake domain to read the engine fuses, but at the same time 506 * we need to know which engines are available on the system to know which 507 * forcewake domains are present. We solve this by intializing the forcewake 508 * domains based on the full engine mask in the platform capabilities before 509 * calling this function and pruning the domains for fused-off engines 510 * afterwards. 511 */ 512 static intel_engine_mask_t init_engine_mask(struct intel_gt *gt) 513 { 514 struct drm_i915_private *i915 = gt->i915; 515 struct intel_gt_info *info = >->info; 516 struct intel_uncore *uncore = gt->uncore; 517 unsigned int logical_vdbox = 0; 518 unsigned int i; 519 u32 media_fuse; 520 u16 vdbox_mask; 521 u16 vebox_mask; 522 523 info->engine_mask = INTEL_INFO(i915)->platform_engine_mask; 524 525 if (GRAPHICS_VER(i915) < 11) 526 return info->engine_mask; 527 528 /* 529 * On newer platforms the fusing register is called 'enable' and has 530 * enable semantics, while on older platforms it is called 'disable' 531 * and bits have disable semantices. 532 */ 533 media_fuse = intel_uncore_read(uncore, GEN11_GT_VEBOX_VDBOX_DISABLE); 534 if (GRAPHICS_VER_FULL(i915) < IP_VER(12, 50)) 535 media_fuse = ~media_fuse; 536 537 vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK; 538 vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >> 539 GEN11_GT_VEBOX_DISABLE_SHIFT; 540 541 for (i = 0; i < I915_MAX_VCS; i++) { 542 if (!HAS_ENGINE(gt, _VCS(i))) { 543 vdbox_mask &= ~BIT(i); 544 continue; 545 } 546 547 if (!(BIT(i) & vdbox_mask)) { 548 info->engine_mask &= ~BIT(_VCS(i)); 549 drm_dbg(&i915->drm, "vcs%u fused off\n", i); 550 continue; 551 } 552 553 if (gen11_vdbox_has_sfc(i915, i, logical_vdbox, vdbox_mask)) 554 gt->info.vdbox_sfc_access |= BIT(i); 555 logical_vdbox++; 556 } 557 drm_dbg(&i915->drm, "vdbox enable: %04x, instances: %04lx\n", 558 vdbox_mask, VDBOX_MASK(gt)); 559 GEM_BUG_ON(vdbox_mask != VDBOX_MASK(gt)); 560 561 for (i = 0; i < I915_MAX_VECS; i++) { 562 if (!HAS_ENGINE(gt, _VECS(i))) { 563 vebox_mask &= ~BIT(i); 564 continue; 565 } 566 567 if (!(BIT(i) & vebox_mask)) { 568 info->engine_mask &= ~BIT(_VECS(i)); 569 drm_dbg(&i915->drm, "vecs%u fused off\n", i); 570 } 571 } 572 drm_dbg(&i915->drm, "vebox enable: %04x, instances: %04lx\n", 573 vebox_mask, VEBOX_MASK(gt)); 574 GEM_BUG_ON(vebox_mask != VEBOX_MASK(gt)); 575 576 return info->engine_mask; 577 } 578 579 /** 580 * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers 581 * @gt: pointer to struct intel_gt 582 * 583 * Return: non-zero if the initialization failed. 584 */ 585 int intel_engines_init_mmio(struct intel_gt *gt) 586 { 587 struct drm_i915_private *i915 = gt->i915; 588 const unsigned int engine_mask = init_engine_mask(gt); 589 unsigned int mask = 0; 590 unsigned int i; 591 int err; 592 593 drm_WARN_ON(&i915->drm, engine_mask == 0); 594 drm_WARN_ON(&i915->drm, engine_mask & 595 GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES)); 596 597 if (i915_inject_probe_failure(i915)) 598 return -ENODEV; 599 600 for (i = 0; i < ARRAY_SIZE(intel_engines); i++) { 601 if (!HAS_ENGINE(gt, i)) 602 continue; 603 604 err = intel_engine_setup(gt, i); 605 if (err) 606 goto cleanup; 607 608 mask |= BIT(i); 609 } 610 611 /* 612 * Catch failures to update intel_engines table when the new engines 613 * are added to the driver by a warning and disabling the forgotten 614 * engines. 615 */ 616 if (drm_WARN_ON(&i915->drm, mask != engine_mask)) 617 gt->info.engine_mask = mask; 618 619 gt->info.num_engines = hweight32(mask); 620 621 intel_gt_check_and_clear_faults(gt); 622 623 intel_setup_engine_capabilities(gt); 624 625 intel_uncore_prune_engine_fw_domains(gt->uncore, gt); 626 627 return 0; 628 629 cleanup: 630 intel_engines_free(gt); 631 return err; 632 } 633 634 void intel_engine_init_execlists(struct intel_engine_cs *engine) 635 { 636 struct intel_engine_execlists * const execlists = &engine->execlists; 637 638 execlists->port_mask = 1; 639 GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists))); 640 GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS); 641 642 memset(execlists->pending, 0, sizeof(execlists->pending)); 643 execlists->active = 644 memset(execlists->inflight, 0, sizeof(execlists->inflight)); 645 } 646 647 static void cleanup_status_page(struct intel_engine_cs *engine) 648 { 649 struct i915_vma *vma; 650 651 /* Prevent writes into HWSP after returning the page to the system */ 652 intel_engine_set_hwsp_writemask(engine, ~0u); 653 654 vma = fetch_and_zero(&engine->status_page.vma); 655 if (!vma) 656 return; 657 658 if (!HWS_NEEDS_PHYSICAL(engine->i915)) 659 i915_vma_unpin(vma); 660 661 i915_gem_object_unpin_map(vma->obj); 662 i915_gem_object_put(vma->obj); 663 } 664 665 static int pin_ggtt_status_page(struct intel_engine_cs *engine, 666 struct i915_gem_ww_ctx *ww, 667 struct i915_vma *vma) 668 { 669 unsigned int flags; 670 671 if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt)) 672 /* 673 * On g33, we cannot place HWS above 256MiB, so 674 * restrict its pinning to the low mappable arena. 675 * Though this restriction is not documented for 676 * gen4, gen5, or byt, they also behave similarly 677 * and hang if the HWS is placed at the top of the 678 * GTT. To generalise, it appears that all !llc 679 * platforms have issues with us placing the HWS 680 * above the mappable region (even though we never 681 * actually map it). 682 */ 683 flags = PIN_MAPPABLE; 684 else 685 flags = PIN_HIGH; 686 687 return i915_ggtt_pin(vma, ww, 0, flags); 688 } 689 690 static int init_status_page(struct intel_engine_cs *engine) 691 { 692 struct drm_i915_gem_object *obj; 693 struct i915_gem_ww_ctx ww; 694 struct i915_vma *vma; 695 void *vaddr; 696 int ret; 697 698 INIT_LIST_HEAD(&engine->status_page.timelines); 699 700 /* 701 * Though the HWS register does support 36bit addresses, historically 702 * we have had hangs and corruption reported due to wild writes if 703 * the HWS is placed above 4G. We only allow objects to be allocated 704 * in GFP_DMA32 for i965, and no earlier physical address users had 705 * access to more than 4G. 706 */ 707 obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE); 708 if (IS_ERR(obj)) { 709 drm_err(&engine->i915->drm, 710 "Failed to allocate status page\n"); 711 return PTR_ERR(obj); 712 } 713 714 i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC); 715 716 vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL); 717 if (IS_ERR(vma)) { 718 ret = PTR_ERR(vma); 719 goto err_put; 720 } 721 722 i915_gem_ww_ctx_init(&ww, true); 723 retry: 724 ret = i915_gem_object_lock(obj, &ww); 725 if (!ret && !HWS_NEEDS_PHYSICAL(engine->i915)) 726 ret = pin_ggtt_status_page(engine, &ww, vma); 727 if (ret) 728 goto err; 729 730 vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB); 731 if (IS_ERR(vaddr)) { 732 ret = PTR_ERR(vaddr); 733 goto err_unpin; 734 } 735 736 engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE); 737 engine->status_page.vma = vma; 738 739 err_unpin: 740 if (ret) 741 i915_vma_unpin(vma); 742 err: 743 if (ret == -EDEADLK) { 744 ret = i915_gem_ww_ctx_backoff(&ww); 745 if (!ret) 746 goto retry; 747 } 748 i915_gem_ww_ctx_fini(&ww); 749 err_put: 750 if (ret) 751 i915_gem_object_put(obj); 752 return ret; 753 } 754 755 static int engine_setup_common(struct intel_engine_cs *engine) 756 { 757 int err; 758 759 init_llist_head(&engine->barrier_tasks); 760 761 err = init_status_page(engine); 762 if (err) 763 return err; 764 765 engine->breadcrumbs = intel_breadcrumbs_create(engine); 766 if (!engine->breadcrumbs) { 767 err = -ENOMEM; 768 goto err_status; 769 } 770 771 engine->sched_engine = i915_sched_engine_create(ENGINE_PHYSICAL); 772 if (!engine->sched_engine) { 773 err = -ENOMEM; 774 goto err_sched_engine; 775 } 776 engine->sched_engine->private_data = engine; 777 778 err = intel_engine_init_cmd_parser(engine); 779 if (err) 780 goto err_cmd_parser; 781 782 intel_engine_init_execlists(engine); 783 intel_engine_init__pm(engine); 784 intel_engine_init_retire(engine); 785 786 /* Use the whole device by default */ 787 engine->sseu = 788 intel_sseu_from_device_info(&engine->gt->info.sseu); 789 790 intel_engine_init_workarounds(engine); 791 intel_engine_init_whitelist(engine); 792 intel_engine_init_ctx_wa(engine); 793 794 if (GRAPHICS_VER(engine->i915) >= 12) 795 engine->flags |= I915_ENGINE_HAS_RELATIVE_MMIO; 796 797 return 0; 798 799 err_cmd_parser: 800 i915_sched_engine_put(engine->sched_engine); 801 err_sched_engine: 802 intel_breadcrumbs_put(engine->breadcrumbs); 803 err_status: 804 cleanup_status_page(engine); 805 return err; 806 } 807 808 struct measure_breadcrumb { 809 struct i915_request rq; 810 struct intel_ring ring; 811 u32 cs[2048]; 812 }; 813 814 static int measure_breadcrumb_dw(struct intel_context *ce) 815 { 816 struct intel_engine_cs *engine = ce->engine; 817 struct measure_breadcrumb *frame; 818 int dw; 819 820 GEM_BUG_ON(!engine->gt->scratch); 821 822 frame = kzalloc(sizeof(*frame), GFP_KERNEL); 823 if (!frame) 824 return -ENOMEM; 825 826 frame->rq.engine = engine; 827 frame->rq.context = ce; 828 rcu_assign_pointer(frame->rq.timeline, ce->timeline); 829 frame->rq.hwsp_seqno = ce->timeline->hwsp_seqno; 830 831 frame->ring.vaddr = frame->cs; 832 frame->ring.size = sizeof(frame->cs); 833 frame->ring.wrap = 834 BITS_PER_TYPE(frame->ring.size) - ilog2(frame->ring.size); 835 frame->ring.effective_size = frame->ring.size; 836 intel_ring_update_space(&frame->ring); 837 frame->rq.ring = &frame->ring; 838 839 mutex_lock(&ce->timeline->mutex); 840 spin_lock_irq(&engine->sched_engine->lock); 841 842 dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs; 843 844 spin_unlock_irq(&engine->sched_engine->lock); 845 mutex_unlock(&ce->timeline->mutex); 846 847 GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */ 848 849 kfree(frame); 850 return dw; 851 } 852 853 struct intel_context * 854 intel_engine_create_pinned_context(struct intel_engine_cs *engine, 855 struct i915_address_space *vm, 856 unsigned int ring_size, 857 unsigned int hwsp, 858 struct lock_class_key *key, 859 const char *name) 860 { 861 struct intel_context *ce; 862 int err; 863 864 ce = intel_context_create(engine); 865 if (IS_ERR(ce)) 866 return ce; 867 868 __set_bit(CONTEXT_BARRIER_BIT, &ce->flags); 869 ce->timeline = page_pack_bits(NULL, hwsp); 870 ce->ring = NULL; 871 ce->ring_size = ring_size; 872 873 i915_vm_put(ce->vm); 874 ce->vm = i915_vm_get(vm); 875 876 err = intel_context_pin(ce); /* perma-pin so it is always available */ 877 if (err) { 878 intel_context_put(ce); 879 return ERR_PTR(err); 880 } 881 882 /* 883 * Give our perma-pinned kernel timelines a separate lockdep class, 884 * so that we can use them from within the normal user timelines 885 * should we need to inject GPU operations during their request 886 * construction. 887 */ 888 lockdep_set_class_and_name(&ce->timeline->mutex, key, name); 889 890 return ce; 891 } 892 893 void intel_engine_destroy_pinned_context(struct intel_context *ce) 894 { 895 struct intel_engine_cs *engine = ce->engine; 896 struct i915_vma *hwsp = engine->status_page.vma; 897 898 GEM_BUG_ON(ce->timeline->hwsp_ggtt != hwsp); 899 900 mutex_lock(&hwsp->vm->mutex); 901 list_del(&ce->timeline->engine_link); 902 mutex_unlock(&hwsp->vm->mutex); 903 904 intel_context_unpin(ce); 905 intel_context_put(ce); 906 } 907 908 static struct intel_context * 909 create_kernel_context(struct intel_engine_cs *engine) 910 { 911 static struct lock_class_key kernel; 912 913 return intel_engine_create_pinned_context(engine, engine->gt->vm, SZ_4K, 914 I915_GEM_HWS_SEQNO_ADDR, 915 &kernel, "kernel_context"); 916 } 917 918 /** 919 * intel_engines_init_common - initialize cengine state which might require hw access 920 * @engine: Engine to initialize. 921 * 922 * Initializes @engine@ structure members shared between legacy and execlists 923 * submission modes which do require hardware access. 924 * 925 * Typcally done at later stages of submission mode specific engine setup. 926 * 927 * Returns zero on success or an error code on failure. 928 */ 929 static int engine_init_common(struct intel_engine_cs *engine) 930 { 931 struct intel_context *ce; 932 int ret; 933 934 engine->set_default_submission(engine); 935 936 /* 937 * We may need to do things with the shrinker which 938 * require us to immediately switch back to the default 939 * context. This can cause a problem as pinning the 940 * default context also requires GTT space which may not 941 * be available. To avoid this we always pin the default 942 * context. 943 */ 944 ce = create_kernel_context(engine); 945 if (IS_ERR(ce)) 946 return PTR_ERR(ce); 947 948 ret = measure_breadcrumb_dw(ce); 949 if (ret < 0) 950 goto err_context; 951 952 engine->emit_fini_breadcrumb_dw = ret; 953 engine->kernel_context = ce; 954 955 return 0; 956 957 err_context: 958 intel_engine_destroy_pinned_context(ce); 959 return ret; 960 } 961 962 int intel_engines_init(struct intel_gt *gt) 963 { 964 int (*setup)(struct intel_engine_cs *engine); 965 struct intel_engine_cs *engine; 966 enum intel_engine_id id; 967 int err; 968 969 if (intel_uc_uses_guc_submission(>->uc)) { 970 gt->submission_method = INTEL_SUBMISSION_GUC; 971 setup = intel_guc_submission_setup; 972 } else if (HAS_EXECLISTS(gt->i915)) { 973 gt->submission_method = INTEL_SUBMISSION_ELSP; 974 setup = intel_execlists_submission_setup; 975 } else { 976 gt->submission_method = INTEL_SUBMISSION_RING; 977 setup = intel_ring_submission_setup; 978 } 979 980 for_each_engine(engine, gt, id) { 981 err = engine_setup_common(engine); 982 if (err) 983 return err; 984 985 err = setup(engine); 986 if (err) 987 return err; 988 989 err = engine_init_common(engine); 990 if (err) 991 return err; 992 993 intel_engine_add_user(engine); 994 } 995 996 return 0; 997 } 998 999 /** 1000 * intel_engines_cleanup_common - cleans up the engine state created by 1001 * the common initiailizers. 1002 * @engine: Engine to cleanup. 1003 * 1004 * This cleans up everything created by the common helpers. 1005 */ 1006 void intel_engine_cleanup_common(struct intel_engine_cs *engine) 1007 { 1008 GEM_BUG_ON(!list_empty(&engine->sched_engine->requests)); 1009 1010 i915_sched_engine_put(engine->sched_engine); 1011 intel_breadcrumbs_put(engine->breadcrumbs); 1012 1013 intel_engine_fini_retire(engine); 1014 intel_engine_cleanup_cmd_parser(engine); 1015 1016 if (engine->default_state) 1017 uao_detach(engine->default_state); 1018 1019 if (engine->kernel_context) 1020 intel_engine_destroy_pinned_context(engine->kernel_context); 1021 1022 GEM_BUG_ON(!llist_empty(&engine->barrier_tasks)); 1023 cleanup_status_page(engine); 1024 1025 intel_wa_list_free(&engine->ctx_wa_list); 1026 intel_wa_list_free(&engine->wa_list); 1027 intel_wa_list_free(&engine->whitelist); 1028 } 1029 1030 /** 1031 * intel_engine_resume - re-initializes the HW state of the engine 1032 * @engine: Engine to resume. 1033 * 1034 * Returns zero on success or an error code on failure. 1035 */ 1036 int intel_engine_resume(struct intel_engine_cs *engine) 1037 { 1038 intel_engine_apply_workarounds(engine); 1039 intel_engine_apply_whitelist(engine); 1040 1041 return engine->resume(engine); 1042 } 1043 1044 u64 intel_engine_get_active_head(const struct intel_engine_cs *engine) 1045 { 1046 struct drm_i915_private *i915 = engine->i915; 1047 1048 u64 acthd; 1049 1050 if (GRAPHICS_VER(i915) >= 8) 1051 acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW); 1052 else if (GRAPHICS_VER(i915) >= 4) 1053 acthd = ENGINE_READ(engine, RING_ACTHD); 1054 else 1055 acthd = ENGINE_READ(engine, ACTHD); 1056 1057 return acthd; 1058 } 1059 1060 u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine) 1061 { 1062 u64 bbaddr; 1063 1064 if (GRAPHICS_VER(engine->i915) >= 8) 1065 bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW); 1066 else 1067 bbaddr = ENGINE_READ(engine, RING_BBADDR); 1068 1069 return bbaddr; 1070 } 1071 1072 static unsigned long stop_timeout(const struct intel_engine_cs *engine) 1073 { 1074 if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */ 1075 return 0; 1076 1077 /* 1078 * If we are doing a normal GPU reset, we can take our time and allow 1079 * the engine to quiesce. We've stopped submission to the engine, and 1080 * if we wait long enough an innocent context should complete and 1081 * leave the engine idle. So they should not be caught unaware by 1082 * the forthcoming GPU reset (which usually follows the stop_cs)! 1083 */ 1084 return READ_ONCE(engine->props.stop_timeout_ms); 1085 } 1086 1087 static int __intel_engine_stop_cs(struct intel_engine_cs *engine, 1088 int fast_timeout_us, 1089 int slow_timeout_ms) 1090 { 1091 struct intel_uncore *uncore = engine->uncore; 1092 const i915_reg_t mode = RING_MI_MODE(engine->mmio_base); 1093 int err; 1094 1095 intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING)); 1096 err = __intel_wait_for_register_fw(engine->uncore, mode, 1097 MODE_IDLE, MODE_IDLE, 1098 fast_timeout_us, 1099 slow_timeout_ms, 1100 NULL); 1101 1102 /* A final mmio read to let GPU writes be hopefully flushed to memory */ 1103 intel_uncore_posting_read_fw(uncore, mode); 1104 return err; 1105 } 1106 1107 int intel_engine_stop_cs(struct intel_engine_cs *engine) 1108 { 1109 int err = 0; 1110 1111 if (GRAPHICS_VER(engine->i915) < 3) 1112 return -ENODEV; 1113 1114 ENGINE_TRACE(engine, "\n"); 1115 if (__intel_engine_stop_cs(engine, 1000, stop_timeout(engine))) { 1116 ENGINE_TRACE(engine, 1117 "timed out on STOP_RING -> IDLE; HEAD:%04x, TAIL:%04x\n", 1118 ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR, 1119 ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR); 1120 1121 /* 1122 * Sometimes we observe that the idle flag is not 1123 * set even though the ring is empty. So double 1124 * check before giving up. 1125 */ 1126 if ((ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR) != 1127 (ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR)) 1128 err = -ETIMEDOUT; 1129 } 1130 1131 return err; 1132 } 1133 1134 void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine) 1135 { 1136 ENGINE_TRACE(engine, "\n"); 1137 1138 ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING)); 1139 } 1140 1141 const char *i915_cache_level_str(struct drm_i915_private *i915, int type) 1142 { 1143 switch (type) { 1144 case I915_CACHE_NONE: return " uncached"; 1145 case I915_CACHE_LLC: return HAS_LLC(i915) ? " LLC" : " snooped"; 1146 case I915_CACHE_L3_LLC: return " L3+LLC"; 1147 case I915_CACHE_WT: return " WT"; 1148 default: return ""; 1149 } 1150 } 1151 1152 static u32 1153 read_subslice_reg(const struct intel_engine_cs *engine, 1154 int slice, int subslice, i915_reg_t reg) 1155 { 1156 return intel_uncore_read_with_mcr_steering(engine->uncore, reg, 1157 slice, subslice); 1158 } 1159 1160 /* NB: please notice the memset */ 1161 void intel_engine_get_instdone(const struct intel_engine_cs *engine, 1162 struct intel_instdone *instdone) 1163 { 1164 struct drm_i915_private *i915 = engine->i915; 1165 const struct sseu_dev_info *sseu = &engine->gt->info.sseu; 1166 struct intel_uncore *uncore = engine->uncore; 1167 u32 mmio_base = engine->mmio_base; 1168 int slice; 1169 int subslice; 1170 1171 memset(instdone, 0, sizeof(*instdone)); 1172 1173 switch (GRAPHICS_VER(i915)) { 1174 default: 1175 instdone->instdone = 1176 intel_uncore_read(uncore, RING_INSTDONE(mmio_base)); 1177 1178 if (engine->id != RCS0) 1179 break; 1180 1181 instdone->slice_common = 1182 intel_uncore_read(uncore, GEN7_SC_INSTDONE); 1183 if (GRAPHICS_VER(i915) >= 12) { 1184 instdone->slice_common_extra[0] = 1185 intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA); 1186 instdone->slice_common_extra[1] = 1187 intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA2); 1188 } 1189 for_each_instdone_slice_subslice(i915, sseu, slice, subslice) { 1190 instdone->sampler[slice][subslice] = 1191 read_subslice_reg(engine, slice, subslice, 1192 GEN7_SAMPLER_INSTDONE); 1193 instdone->row[slice][subslice] = 1194 read_subslice_reg(engine, slice, subslice, 1195 GEN7_ROW_INSTDONE); 1196 } 1197 break; 1198 case 7: 1199 instdone->instdone = 1200 intel_uncore_read(uncore, RING_INSTDONE(mmio_base)); 1201 1202 if (engine->id != RCS0) 1203 break; 1204 1205 instdone->slice_common = 1206 intel_uncore_read(uncore, GEN7_SC_INSTDONE); 1207 instdone->sampler[0][0] = 1208 intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE); 1209 instdone->row[0][0] = 1210 intel_uncore_read(uncore, GEN7_ROW_INSTDONE); 1211 1212 break; 1213 case 6: 1214 case 5: 1215 case 4: 1216 instdone->instdone = 1217 intel_uncore_read(uncore, RING_INSTDONE(mmio_base)); 1218 if (engine->id == RCS0) 1219 /* HACK: Using the wrong struct member */ 1220 instdone->slice_common = 1221 intel_uncore_read(uncore, GEN4_INSTDONE1); 1222 break; 1223 case 3: 1224 case 2: 1225 instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE); 1226 break; 1227 } 1228 } 1229 1230 static bool ring_is_idle(struct intel_engine_cs *engine) 1231 { 1232 bool idle = true; 1233 1234 if (I915_SELFTEST_ONLY(!engine->mmio_base)) 1235 return true; 1236 1237 if (!intel_engine_pm_get_if_awake(engine)) 1238 return true; 1239 1240 /* First check that no commands are left in the ring */ 1241 if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) != 1242 (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR)) 1243 idle = false; 1244 1245 /* No bit for gen2, so assume the CS parser is idle */ 1246 if (GRAPHICS_VER(engine->i915) > 2 && 1247 !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE)) 1248 idle = false; 1249 1250 intel_engine_pm_put(engine); 1251 1252 return idle; 1253 } 1254 1255 void __intel_engine_flush_submission(struct intel_engine_cs *engine, bool sync) 1256 { 1257 struct tasklet_struct *t = &engine->sched_engine->tasklet; 1258 1259 if (!t->callback) 1260 return; 1261 1262 local_bh_disable(); 1263 if (tasklet_trylock(t)) { 1264 /* Must wait for any GPU reset in progress. */ 1265 if (__tasklet_is_enabled(t)) 1266 t->callback(t); 1267 tasklet_unlock(t); 1268 } 1269 local_bh_enable(); 1270 1271 /* Synchronise and wait for the tasklet on another CPU */ 1272 if (sync) 1273 tasklet_unlock_wait(t); 1274 } 1275 1276 /** 1277 * intel_engine_is_idle() - Report if the engine has finished process all work 1278 * @engine: the intel_engine_cs 1279 * 1280 * Return true if there are no requests pending, nothing left to be submitted 1281 * to hardware, and that the engine is idle. 1282 */ 1283 bool intel_engine_is_idle(struct intel_engine_cs *engine) 1284 { 1285 /* More white lies, if wedged, hw state is inconsistent */ 1286 if (intel_gt_is_wedged(engine->gt)) 1287 return true; 1288 1289 if (!intel_engine_pm_is_awake(engine)) 1290 return true; 1291 1292 /* Waiting to drain ELSP? */ 1293 intel_synchronize_hardirq(engine->i915); 1294 intel_engine_flush_submission(engine); 1295 1296 /* ELSP is empty, but there are ready requests? E.g. after reset */ 1297 if (!i915_sched_engine_is_empty(engine->sched_engine)) 1298 return false; 1299 1300 /* Ring stopped? */ 1301 return ring_is_idle(engine); 1302 } 1303 1304 bool intel_engines_are_idle(struct intel_gt *gt) 1305 { 1306 struct intel_engine_cs *engine; 1307 enum intel_engine_id id; 1308 1309 /* 1310 * If the driver is wedged, HW state may be very inconsistent and 1311 * report that it is still busy, even though we have stopped using it. 1312 */ 1313 if (intel_gt_is_wedged(gt)) 1314 return true; 1315 1316 /* Already parked (and passed an idleness test); must still be idle */ 1317 if (!READ_ONCE(gt->awake)) 1318 return true; 1319 1320 for_each_engine(engine, gt, id) { 1321 if (!intel_engine_is_idle(engine)) 1322 return false; 1323 } 1324 1325 return true; 1326 } 1327 1328 bool intel_engine_irq_enable(struct intel_engine_cs *engine) 1329 { 1330 if (!engine->irq_enable) 1331 return false; 1332 1333 /* Caller disables interrupts */ 1334 spin_lock(&engine->gt->irq_lock); 1335 engine->irq_enable(engine); 1336 spin_unlock(&engine->gt->irq_lock); 1337 1338 return true; 1339 } 1340 1341 void intel_engine_irq_disable(struct intel_engine_cs *engine) 1342 { 1343 if (!engine->irq_disable) 1344 return; 1345 1346 /* Caller disables interrupts */ 1347 spin_lock(&engine->gt->irq_lock); 1348 engine->irq_disable(engine); 1349 spin_unlock(&engine->gt->irq_lock); 1350 } 1351 1352 void intel_engines_reset_default_submission(struct intel_gt *gt) 1353 { 1354 struct intel_engine_cs *engine; 1355 enum intel_engine_id id; 1356 1357 for_each_engine(engine, gt, id) { 1358 if (engine->sanitize) 1359 engine->sanitize(engine); 1360 1361 engine->set_default_submission(engine); 1362 } 1363 } 1364 1365 bool intel_engine_can_store_dword(struct intel_engine_cs *engine) 1366 { 1367 switch (GRAPHICS_VER(engine->i915)) { 1368 case 2: 1369 return false; /* uses physical not virtual addresses */ 1370 case 3: 1371 /* maybe only uses physical not virtual addresses */ 1372 return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915)); 1373 case 4: 1374 return !IS_I965G(engine->i915); /* who knows! */ 1375 case 6: 1376 return engine->class != VIDEO_DECODE_CLASS; /* b0rked */ 1377 default: 1378 return true; 1379 } 1380 } 1381 1382 static struct intel_timeline *get_timeline(struct i915_request *rq) 1383 { 1384 struct intel_timeline *tl; 1385 1386 /* 1387 * Even though we are holding the engine->sched_engine->lock here, there 1388 * is no control over the submission queue per-se and we are 1389 * inspecting the active state at a random point in time, with an 1390 * unknown queue. Play safe and make sure the timeline remains valid. 1391 * (Only being used for pretty printing, one extra kref shouldn't 1392 * cause a camel stampede!) 1393 */ 1394 rcu_read_lock(); 1395 tl = rcu_dereference(rq->timeline); 1396 if (!kref_get_unless_zero(&tl->kref)) 1397 tl = NULL; 1398 rcu_read_unlock(); 1399 1400 return tl; 1401 } 1402 1403 static int print_ring(char *buf, int sz, struct i915_request *rq) 1404 { 1405 int len = 0; 1406 1407 if (!i915_request_signaled(rq)) { 1408 struct intel_timeline *tl = get_timeline(rq); 1409 1410 len = scnprintf(buf, sz, 1411 "ring:{start:%08x, hwsp:%08x, seqno:%08x, runtime:%llums}, ", 1412 i915_ggtt_offset(rq->ring->vma), 1413 tl ? tl->hwsp_offset : 0, 1414 hwsp_seqno(rq), 1415 DIV_ROUND_CLOSEST_ULL(intel_context_get_total_runtime_ns(rq->context), 1416 1000 * 1000)); 1417 1418 if (tl) 1419 intel_timeline_put(tl); 1420 } 1421 1422 return len; 1423 } 1424 1425 static void hexdump(struct drm_printer *m, const void *buf, size_t len) 1426 { 1427 STUB(); 1428 #ifdef notyet 1429 const size_t rowsize = 8 * sizeof(u32); 1430 const void *prev = NULL; 1431 bool skip = false; 1432 size_t pos; 1433 1434 for (pos = 0; pos < len; pos += rowsize) { 1435 char line[128]; 1436 1437 if (prev && !memcmp(prev, buf + pos, rowsize)) { 1438 if (!skip) { 1439 drm_printf(m, "*\n"); 1440 skip = true; 1441 } 1442 continue; 1443 } 1444 1445 WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos, 1446 rowsize, sizeof(u32), 1447 line, sizeof(line), 1448 false) >= sizeof(line)); 1449 drm_printf(m, "[%04zx] %s\n", pos, line); 1450 1451 prev = buf + pos; 1452 skip = false; 1453 } 1454 #endif 1455 } 1456 1457 static const char *repr_timer(const struct timeout *t) 1458 { 1459 if (!READ_ONCE(t->to_time)) 1460 return "inactive"; 1461 1462 if (timer_pending(t)) 1463 return "active"; 1464 1465 return "expired"; 1466 } 1467 1468 static void intel_engine_print_registers(struct intel_engine_cs *engine, 1469 struct drm_printer *m) 1470 { 1471 struct drm_i915_private *dev_priv = engine->i915; 1472 struct intel_engine_execlists * const execlists = &engine->execlists; 1473 u64 addr; 1474 1475 if (engine->id == RENDER_CLASS && IS_GRAPHICS_VER(dev_priv, 4, 7)) 1476 drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID)); 1477 if (HAS_EXECLISTS(dev_priv)) { 1478 drm_printf(m, "\tEL_STAT_HI: 0x%08x\n", 1479 ENGINE_READ(engine, RING_EXECLIST_STATUS_HI)); 1480 drm_printf(m, "\tEL_STAT_LO: 0x%08x\n", 1481 ENGINE_READ(engine, RING_EXECLIST_STATUS_LO)); 1482 } 1483 drm_printf(m, "\tRING_START: 0x%08x\n", 1484 ENGINE_READ(engine, RING_START)); 1485 drm_printf(m, "\tRING_HEAD: 0x%08x\n", 1486 ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR); 1487 drm_printf(m, "\tRING_TAIL: 0x%08x\n", 1488 ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR); 1489 drm_printf(m, "\tRING_CTL: 0x%08x%s\n", 1490 ENGINE_READ(engine, RING_CTL), 1491 ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : ""); 1492 if (GRAPHICS_VER(engine->i915) > 2) { 1493 drm_printf(m, "\tRING_MODE: 0x%08x%s\n", 1494 ENGINE_READ(engine, RING_MI_MODE), 1495 ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : ""); 1496 } 1497 1498 if (GRAPHICS_VER(dev_priv) >= 6) { 1499 drm_printf(m, "\tRING_IMR: 0x%08x\n", 1500 ENGINE_READ(engine, RING_IMR)); 1501 drm_printf(m, "\tRING_ESR: 0x%08x\n", 1502 ENGINE_READ(engine, RING_ESR)); 1503 drm_printf(m, "\tRING_EMR: 0x%08x\n", 1504 ENGINE_READ(engine, RING_EMR)); 1505 drm_printf(m, "\tRING_EIR: 0x%08x\n", 1506 ENGINE_READ(engine, RING_EIR)); 1507 } 1508 1509 addr = intel_engine_get_active_head(engine); 1510 drm_printf(m, "\tACTHD: 0x%08x_%08x\n", 1511 upper_32_bits(addr), lower_32_bits(addr)); 1512 addr = intel_engine_get_last_batch_head(engine); 1513 drm_printf(m, "\tBBADDR: 0x%08x_%08x\n", 1514 upper_32_bits(addr), lower_32_bits(addr)); 1515 if (GRAPHICS_VER(dev_priv) >= 8) 1516 addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW); 1517 else if (GRAPHICS_VER(dev_priv) >= 4) 1518 addr = ENGINE_READ(engine, RING_DMA_FADD); 1519 else 1520 addr = ENGINE_READ(engine, DMA_FADD_I8XX); 1521 drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n", 1522 upper_32_bits(addr), lower_32_bits(addr)); 1523 if (GRAPHICS_VER(dev_priv) >= 4) { 1524 drm_printf(m, "\tIPEIR: 0x%08x\n", 1525 ENGINE_READ(engine, RING_IPEIR)); 1526 drm_printf(m, "\tIPEHR: 0x%08x\n", 1527 ENGINE_READ(engine, RING_IPEHR)); 1528 } else { 1529 drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR)); 1530 drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR)); 1531 } 1532 1533 if (intel_engine_uses_guc(engine)) { 1534 /* nothing to print yet */ 1535 } else if (HAS_EXECLISTS(dev_priv)) { 1536 struct i915_request * const *port, *rq; 1537 const u32 *hws = 1538 &engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX]; 1539 const u8 num_entries = execlists->csb_size; 1540 unsigned int idx; 1541 u8 read, write; 1542 1543 drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n", 1544 yesno(test_bit(TASKLET_STATE_SCHED, 1545 &engine->sched_engine->tasklet.state)), 1546 enableddisabled(!atomic_read(&engine->sched_engine->tasklet.count)), 1547 repr_timer(&engine->execlists.preempt), 1548 repr_timer(&engine->execlists.timer)); 1549 1550 read = execlists->csb_head; 1551 write = READ_ONCE(*execlists->csb_write); 1552 1553 drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n", 1554 ENGINE_READ(engine, RING_EXECLIST_STATUS_LO), 1555 ENGINE_READ(engine, RING_EXECLIST_STATUS_HI), 1556 read, write, num_entries); 1557 1558 if (read >= num_entries) 1559 read = 0; 1560 if (write >= num_entries) 1561 write = 0; 1562 if (read > write) 1563 write += num_entries; 1564 while (read < write) { 1565 idx = ++read % num_entries; 1566 drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n", 1567 idx, hws[idx * 2], hws[idx * 2 + 1]); 1568 } 1569 1570 i915_sched_engine_active_lock_bh(engine->sched_engine); 1571 rcu_read_lock(); 1572 for (port = execlists->active; (rq = *port); port++) { 1573 char hdr[160]; 1574 int len; 1575 1576 len = scnprintf(hdr, sizeof(hdr), 1577 "\t\tActive[%d]: ccid:%08x%s%s, ", 1578 (int)(port - execlists->active), 1579 rq->context->lrc.ccid, 1580 intel_context_is_closed(rq->context) ? "!" : "", 1581 intel_context_is_banned(rq->context) ? "*" : ""); 1582 len += print_ring(hdr + len, sizeof(hdr) - len, rq); 1583 scnprintf(hdr + len, sizeof(hdr) - len, "rq: "); 1584 i915_request_show(m, rq, hdr, 0); 1585 } 1586 for (port = execlists->pending; (rq = *port); port++) { 1587 char hdr[160]; 1588 int len; 1589 1590 len = scnprintf(hdr, sizeof(hdr), 1591 "\t\tPending[%d]: ccid:%08x%s%s, ", 1592 (int)(port - execlists->pending), 1593 rq->context->lrc.ccid, 1594 intel_context_is_closed(rq->context) ? "!" : "", 1595 intel_context_is_banned(rq->context) ? "*" : ""); 1596 len += print_ring(hdr + len, sizeof(hdr) - len, rq); 1597 scnprintf(hdr + len, sizeof(hdr) - len, "rq: "); 1598 i915_request_show(m, rq, hdr, 0); 1599 } 1600 rcu_read_unlock(); 1601 i915_sched_engine_active_unlock_bh(engine->sched_engine); 1602 } else if (GRAPHICS_VER(dev_priv) > 6) { 1603 drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n", 1604 ENGINE_READ(engine, RING_PP_DIR_BASE)); 1605 drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n", 1606 ENGINE_READ(engine, RING_PP_DIR_BASE_READ)); 1607 drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n", 1608 ENGINE_READ(engine, RING_PP_DIR_DCLV)); 1609 } 1610 } 1611 1612 static void print_request_ring(struct drm_printer *m, struct i915_request *rq) 1613 { 1614 void *ring; 1615 int size; 1616 1617 drm_printf(m, 1618 "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n", 1619 rq->head, rq->postfix, rq->tail, 1620 rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u, 1621 rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u); 1622 1623 size = rq->tail - rq->head; 1624 if (rq->tail < rq->head) 1625 size += rq->ring->size; 1626 1627 ring = kmalloc(size, GFP_ATOMIC); 1628 if (ring) { 1629 const void *vaddr = rq->ring->vaddr; 1630 unsigned int head = rq->head; 1631 unsigned int len = 0; 1632 1633 if (rq->tail < head) { 1634 len = rq->ring->size - head; 1635 memcpy(ring, vaddr + head, len); 1636 head = 0; 1637 } 1638 memcpy(ring + len, vaddr + head, size - len); 1639 1640 hexdump(m, ring, size); 1641 kfree(ring); 1642 } 1643 } 1644 1645 static unsigned long list_count(struct list_head *list) 1646 { 1647 struct list_head *pos; 1648 unsigned long count = 0; 1649 1650 list_for_each(pos, list) 1651 count++; 1652 1653 return count; 1654 } 1655 1656 static unsigned long read_ul(void *p, size_t x) 1657 { 1658 return *(unsigned long *)(p + x); 1659 } 1660 1661 static void print_properties(struct intel_engine_cs *engine, 1662 struct drm_printer *m) 1663 { 1664 static const struct pmap { 1665 size_t offset; 1666 const char *name; 1667 } props[] = { 1668 #define P(x) { \ 1669 .offset = offsetof(typeof(engine->props), x), \ 1670 .name = #x \ 1671 } 1672 P(heartbeat_interval_ms), 1673 P(max_busywait_duration_ns), 1674 P(preempt_timeout_ms), 1675 P(stop_timeout_ms), 1676 P(timeslice_duration_ms), 1677 1678 {}, 1679 #undef P 1680 }; 1681 const struct pmap *p; 1682 1683 drm_printf(m, "\tProperties:\n"); 1684 for (p = props; p->name; p++) 1685 drm_printf(m, "\t\t%s: %lu [default %lu]\n", 1686 p->name, 1687 read_ul(&engine->props, p->offset), 1688 read_ul(&engine->defaults, p->offset)); 1689 } 1690 1691 static void engine_dump_request(struct i915_request *rq, struct drm_printer *m, const char *msg) 1692 { 1693 struct intel_timeline *tl = get_timeline(rq); 1694 1695 i915_request_show(m, rq, msg, 0); 1696 1697 drm_printf(m, "\t\tring->start: 0x%08x\n", 1698 i915_ggtt_offset(rq->ring->vma)); 1699 drm_printf(m, "\t\tring->head: 0x%08x\n", 1700 rq->ring->head); 1701 drm_printf(m, "\t\tring->tail: 0x%08x\n", 1702 rq->ring->tail); 1703 drm_printf(m, "\t\tring->emit: 0x%08x\n", 1704 rq->ring->emit); 1705 drm_printf(m, "\t\tring->space: 0x%08x\n", 1706 rq->ring->space); 1707 1708 if (tl) { 1709 drm_printf(m, "\t\tring->hwsp: 0x%08x\n", 1710 tl->hwsp_offset); 1711 intel_timeline_put(tl); 1712 } 1713 1714 print_request_ring(m, rq); 1715 1716 if (rq->context->lrc_reg_state) { 1717 drm_printf(m, "Logical Ring Context:\n"); 1718 hexdump(m, rq->context->lrc_reg_state, PAGE_SIZE); 1719 } 1720 } 1721 1722 void intel_engine_dump_active_requests(struct list_head *requests, 1723 struct i915_request *hung_rq, 1724 struct drm_printer *m) 1725 { 1726 struct i915_request *rq; 1727 const char *msg; 1728 enum i915_request_state state; 1729 1730 list_for_each_entry(rq, requests, sched.link) { 1731 if (rq == hung_rq) 1732 continue; 1733 1734 state = i915_test_request_state(rq); 1735 if (state < I915_REQUEST_QUEUED) 1736 continue; 1737 1738 if (state == I915_REQUEST_ACTIVE) 1739 msg = "\t\tactive on engine"; 1740 else 1741 msg = "\t\tactive in queue"; 1742 1743 engine_dump_request(rq, m, msg); 1744 } 1745 } 1746 1747 static void engine_dump_active_requests(struct intel_engine_cs *engine, struct drm_printer *m) 1748 { 1749 struct i915_request *hung_rq = NULL; 1750 struct intel_context *ce; 1751 bool guc; 1752 1753 /* 1754 * No need for an engine->irq_seqno_barrier() before the seqno reads. 1755 * The GPU is still running so requests are still executing and any 1756 * hardware reads will be out of date by the time they are reported. 1757 * But the intention here is just to report an instantaneous snapshot 1758 * so that's fine. 1759 */ 1760 lockdep_assert_held(&engine->sched_engine->lock); 1761 1762 drm_printf(m, "\tRequests:\n"); 1763 1764 guc = intel_uc_uses_guc_submission(&engine->gt->uc); 1765 if (guc) { 1766 ce = intel_engine_get_hung_context(engine); 1767 if (ce) 1768 hung_rq = intel_context_find_active_request(ce); 1769 } else { 1770 hung_rq = intel_engine_execlist_find_hung_request(engine); 1771 } 1772 1773 if (hung_rq) 1774 engine_dump_request(hung_rq, m, "\t\thung"); 1775 1776 if (guc) 1777 intel_guc_dump_active_requests(engine, hung_rq, m); 1778 else 1779 intel_engine_dump_active_requests(&engine->sched_engine->requests, 1780 hung_rq, m); 1781 } 1782 1783 void intel_engine_dump(struct intel_engine_cs *engine, 1784 struct drm_printer *m, 1785 const char *header, ...) 1786 { 1787 struct i915_gpu_error * const error = &engine->i915->gpu_error; 1788 struct i915_request *rq; 1789 intel_wakeref_t wakeref; 1790 unsigned long flags; 1791 ktime_t dummy; 1792 1793 if (header) { 1794 va_list ap; 1795 1796 va_start(ap, header); 1797 drm_vprintf(m, header, &ap); 1798 va_end(ap); 1799 } 1800 1801 if (intel_gt_is_wedged(engine->gt)) 1802 drm_printf(m, "*** WEDGED ***\n"); 1803 1804 drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count)); 1805 drm_printf(m, "\tBarriers?: %s\n", 1806 yesno(!llist_empty(&engine->barrier_tasks))); 1807 drm_printf(m, "\tLatency: %luus\n", 1808 ewma__engine_latency_read(&engine->latency)); 1809 if (intel_engine_supports_stats(engine)) 1810 drm_printf(m, "\tRuntime: %llums\n", 1811 ktime_to_ms(intel_engine_get_busy_time(engine, 1812 &dummy))); 1813 drm_printf(m, "\tForcewake: %x domains, %d active\n", 1814 engine->fw_domain, READ_ONCE(engine->fw_active)); 1815 1816 rcu_read_lock(); 1817 rq = READ_ONCE(engine->heartbeat.systole); 1818 if (rq) 1819 drm_printf(m, "\tHeartbeat: %d ms ago\n", 1820 jiffies_to_msecs(jiffies - rq->emitted_jiffies)); 1821 rcu_read_unlock(); 1822 drm_printf(m, "\tReset count: %d (global %d)\n", 1823 i915_reset_engine_count(error, engine), 1824 i915_reset_count(error)); 1825 print_properties(engine, m); 1826 1827 spin_lock_irqsave(&engine->sched_engine->lock, flags); 1828 engine_dump_active_requests(engine, m); 1829 1830 drm_printf(m, "\tOn hold?: %lu\n", 1831 list_count(&engine->sched_engine->hold)); 1832 spin_unlock_irqrestore(&engine->sched_engine->lock, flags); 1833 1834 drm_printf(m, "\tMMIO base: 0x%08x\n", engine->mmio_base); 1835 wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm); 1836 if (wakeref) { 1837 intel_engine_print_registers(engine, m); 1838 intel_runtime_pm_put(engine->uncore->rpm, wakeref); 1839 } else { 1840 drm_printf(m, "\tDevice is asleep; skipping register dump\n"); 1841 } 1842 1843 intel_execlists_show_requests(engine, m, i915_request_show, 8); 1844 1845 drm_printf(m, "HWSP:\n"); 1846 hexdump(m, engine->status_page.addr, PAGE_SIZE); 1847 1848 drm_printf(m, "Idle? %s\n", yesno(intel_engine_is_idle(engine))); 1849 1850 intel_engine_print_breadcrumbs(engine, m); 1851 } 1852 1853 static ktime_t __intel_engine_get_busy_time(struct intel_engine_cs *engine, 1854 ktime_t *now) 1855 { 1856 ktime_t total = engine->stats.total; 1857 1858 /* 1859 * If the engine is executing something at the moment 1860 * add it to the total. 1861 */ 1862 *now = ktime_get(); 1863 if (READ_ONCE(engine->stats.active)) 1864 total = ktime_add(total, ktime_sub(*now, engine->stats.start)); 1865 1866 return total; 1867 } 1868 1869 /** 1870 * intel_engine_get_busy_time() - Return current accumulated engine busyness 1871 * @engine: engine to report on 1872 * @now: monotonic timestamp of sampling 1873 * 1874 * Returns accumulated time @engine was busy since engine stats were enabled. 1875 */ 1876 ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine, ktime_t *now) 1877 { 1878 unsigned int seq; 1879 ktime_t total; 1880 1881 do { 1882 seq = read_seqcount_begin(&engine->stats.lock); 1883 total = __intel_engine_get_busy_time(engine, now); 1884 } while (read_seqcount_retry(&engine->stats.lock, seq)); 1885 1886 return total; 1887 } 1888 1889 struct intel_context * 1890 intel_engine_create_virtual(struct intel_engine_cs **siblings, 1891 unsigned int count) 1892 { 1893 if (count == 0) 1894 return ERR_PTR(-EINVAL); 1895 1896 if (count == 1) 1897 return intel_context_create(siblings[0]); 1898 1899 GEM_BUG_ON(!siblings[0]->cops->create_virtual); 1900 return siblings[0]->cops->create_virtual(siblings, count); 1901 } 1902 1903 struct i915_request * 1904 intel_engine_execlist_find_hung_request(struct intel_engine_cs *engine) 1905 { 1906 struct i915_request *request, *active = NULL; 1907 1908 /* 1909 * This search does not work in GuC submission mode. However, the GuC 1910 * will report the hanging context directly to the driver itself. So 1911 * the driver should never get here when in GuC mode. 1912 */ 1913 GEM_BUG_ON(intel_uc_uses_guc_submission(&engine->gt->uc)); 1914 1915 /* 1916 * We are called by the error capture, reset and to dump engine 1917 * state at random points in time. In particular, note that neither is 1918 * crucially ordered with an interrupt. After a hang, the GPU is dead 1919 * and we assume that no more writes can happen (we waited long enough 1920 * for all writes that were in transaction to be flushed) - adding an 1921 * extra delay for a recent interrupt is pointless. Hence, we do 1922 * not need an engine->irq_seqno_barrier() before the seqno reads. 1923 * At all other times, we must assume the GPU is still running, but 1924 * we only care about the snapshot of this moment. 1925 */ 1926 lockdep_assert_held(&engine->sched_engine->lock); 1927 1928 rcu_read_lock(); 1929 request = execlists_active(&engine->execlists); 1930 if (request) { 1931 struct intel_timeline *tl = request->context->timeline; 1932 1933 list_for_each_entry_from_reverse(request, &tl->requests, link) { 1934 if (__i915_request_is_complete(request)) 1935 break; 1936 1937 active = request; 1938 } 1939 } 1940 rcu_read_unlock(); 1941 if (active) 1942 return active; 1943 1944 list_for_each_entry(request, &engine->sched_engine->requests, 1945 sched.link) { 1946 if (i915_test_request_state(request) != I915_REQUEST_ACTIVE) 1947 continue; 1948 1949 active = request; 1950 break; 1951 } 1952 1953 return active; 1954 } 1955 1956 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 1957 #include "mock_engine.c" 1958 #include "selftest_engine.c" 1959 #include "selftest_engine_cs.c" 1960 #endif 1961