1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2016 Intel Corporation 4 */ 5 6 #include <linux/string_helpers.h> 7 8 #include <drm/drm_print.h> 9 10 #include "gem/i915_gem_context.h" 11 #include "gem/i915_gem_internal.h" 12 #include "gt/intel_gt_print.h" 13 #include "gt/intel_gt_regs.h" 14 15 #include "i915_cmd_parser.h" 16 #include "i915_drv.h" 17 #include "i915_irq.h" 18 #include "i915_reg.h" 19 #include "intel_breadcrumbs.h" 20 #include "intel_context.h" 21 #include "intel_engine.h" 22 #include "intel_engine_pm.h" 23 #include "intel_engine_regs.h" 24 #include "intel_engine_user.h" 25 #include "intel_execlists_submission.h" 26 #include "intel_gt.h" 27 #include "intel_gt_mcr.h" 28 #include "intel_gt_pm.h" 29 #include "intel_gt_requests.h" 30 #include "intel_lrc.h" 31 #include "intel_lrc_reg.h" 32 #include "intel_reset.h" 33 #include "intel_ring.h" 34 #include "uc/intel_guc_submission.h" 35 36 /* Haswell does have the CXT_SIZE register however it does not appear to be 37 * valid. Now, docs explain in dwords what is in the context object. The full 38 * size is 70720 bytes, however, the power context and execlist context will 39 * never be saved (power context is stored elsewhere, and execlists don't work 40 * on HSW) - so the final size, including the extra state required for the 41 * Resource Streamer, is 66944 bytes, which rounds to 17 pages. 42 */ 43 #define HSW_CXT_TOTAL_SIZE (17 * PAGE_SIZE) 44 45 #define DEFAULT_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE) 46 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE) 47 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE) 48 #define GEN11_LR_CONTEXT_RENDER_SIZE (14 * PAGE_SIZE) 49 50 #define GEN8_LR_CONTEXT_OTHER_SIZE ( 2 * PAGE_SIZE) 51 52 #define MAX_MMIO_BASES 3 53 struct engine_info { 54 u8 class; 55 u8 instance; 56 /* mmio bases table *must* be sorted in reverse graphics_ver order */ 57 struct engine_mmio_base { 58 u32 graphics_ver : 8; 59 u32 base : 24; 60 } mmio_bases[MAX_MMIO_BASES]; 61 }; 62 63 static const struct engine_info intel_engines[] = { 64 [RCS0] = { 65 .class = RENDER_CLASS, 66 .instance = 0, 67 .mmio_bases = { 68 { .graphics_ver = 1, .base = RENDER_RING_BASE } 69 }, 70 }, 71 [BCS0] = { 72 .class = COPY_ENGINE_CLASS, 73 .instance = 0, 74 .mmio_bases = { 75 { .graphics_ver = 6, .base = BLT_RING_BASE } 76 }, 77 }, 78 [BCS1] = { 79 .class = COPY_ENGINE_CLASS, 80 .instance = 1, 81 .mmio_bases = { 82 { .graphics_ver = 12, .base = XEHPC_BCS1_RING_BASE } 83 }, 84 }, 85 [BCS2] = { 86 .class = COPY_ENGINE_CLASS, 87 .instance = 2, 88 .mmio_bases = { 89 { .graphics_ver = 12, .base = XEHPC_BCS2_RING_BASE } 90 }, 91 }, 92 [BCS3] = { 93 .class = COPY_ENGINE_CLASS, 94 .instance = 3, 95 .mmio_bases = { 96 { .graphics_ver = 12, .base = XEHPC_BCS3_RING_BASE } 97 }, 98 }, 99 [BCS4] = { 100 .class = COPY_ENGINE_CLASS, 101 .instance = 4, 102 .mmio_bases = { 103 { .graphics_ver = 12, .base = XEHPC_BCS4_RING_BASE } 104 }, 105 }, 106 [BCS5] = { 107 .class = COPY_ENGINE_CLASS, 108 .instance = 5, 109 .mmio_bases = { 110 { .graphics_ver = 12, .base = XEHPC_BCS5_RING_BASE } 111 }, 112 }, 113 [BCS6] = { 114 .class = COPY_ENGINE_CLASS, 115 .instance = 6, 116 .mmio_bases = { 117 { .graphics_ver = 12, .base = XEHPC_BCS6_RING_BASE } 118 }, 119 }, 120 [BCS7] = { 121 .class = COPY_ENGINE_CLASS, 122 .instance = 7, 123 .mmio_bases = { 124 { .graphics_ver = 12, .base = XEHPC_BCS7_RING_BASE } 125 }, 126 }, 127 [BCS8] = { 128 .class = COPY_ENGINE_CLASS, 129 .instance = 8, 130 .mmio_bases = { 131 { .graphics_ver = 12, .base = XEHPC_BCS8_RING_BASE } 132 }, 133 }, 134 [VCS0] = { 135 .class = VIDEO_DECODE_CLASS, 136 .instance = 0, 137 .mmio_bases = { 138 { .graphics_ver = 11, .base = GEN11_BSD_RING_BASE }, 139 { .graphics_ver = 6, .base = GEN6_BSD_RING_BASE }, 140 { .graphics_ver = 4, .base = BSD_RING_BASE } 141 }, 142 }, 143 [VCS1] = { 144 .class = VIDEO_DECODE_CLASS, 145 .instance = 1, 146 .mmio_bases = { 147 { .graphics_ver = 11, .base = GEN11_BSD2_RING_BASE }, 148 { .graphics_ver = 8, .base = GEN8_BSD2_RING_BASE } 149 }, 150 }, 151 [VCS2] = { 152 .class = VIDEO_DECODE_CLASS, 153 .instance = 2, 154 .mmio_bases = { 155 { .graphics_ver = 11, .base = GEN11_BSD3_RING_BASE } 156 }, 157 }, 158 [VCS3] = { 159 .class = VIDEO_DECODE_CLASS, 160 .instance = 3, 161 .mmio_bases = { 162 { .graphics_ver = 11, .base = GEN11_BSD4_RING_BASE } 163 }, 164 }, 165 [VCS4] = { 166 .class = VIDEO_DECODE_CLASS, 167 .instance = 4, 168 .mmio_bases = { 169 { .graphics_ver = 12, .base = XEHP_BSD5_RING_BASE } 170 }, 171 }, 172 [VCS5] = { 173 .class = VIDEO_DECODE_CLASS, 174 .instance = 5, 175 .mmio_bases = { 176 { .graphics_ver = 12, .base = XEHP_BSD6_RING_BASE } 177 }, 178 }, 179 [VCS6] = { 180 .class = VIDEO_DECODE_CLASS, 181 .instance = 6, 182 .mmio_bases = { 183 { .graphics_ver = 12, .base = XEHP_BSD7_RING_BASE } 184 }, 185 }, 186 [VCS7] = { 187 .class = VIDEO_DECODE_CLASS, 188 .instance = 7, 189 .mmio_bases = { 190 { .graphics_ver = 12, .base = XEHP_BSD8_RING_BASE } 191 }, 192 }, 193 [VECS0] = { 194 .class = VIDEO_ENHANCEMENT_CLASS, 195 .instance = 0, 196 .mmio_bases = { 197 { .graphics_ver = 11, .base = GEN11_VEBOX_RING_BASE }, 198 { .graphics_ver = 7, .base = VEBOX_RING_BASE } 199 }, 200 }, 201 [VECS1] = { 202 .class = VIDEO_ENHANCEMENT_CLASS, 203 .instance = 1, 204 .mmio_bases = { 205 { .graphics_ver = 11, .base = GEN11_VEBOX2_RING_BASE } 206 }, 207 }, 208 [VECS2] = { 209 .class = VIDEO_ENHANCEMENT_CLASS, 210 .instance = 2, 211 .mmio_bases = { 212 { .graphics_ver = 12, .base = XEHP_VEBOX3_RING_BASE } 213 }, 214 }, 215 [VECS3] = { 216 .class = VIDEO_ENHANCEMENT_CLASS, 217 .instance = 3, 218 .mmio_bases = { 219 { .graphics_ver = 12, .base = XEHP_VEBOX4_RING_BASE } 220 }, 221 }, 222 [CCS0] = { 223 .class = COMPUTE_CLASS, 224 .instance = 0, 225 .mmio_bases = { 226 { .graphics_ver = 12, .base = GEN12_COMPUTE0_RING_BASE } 227 } 228 }, 229 [CCS1] = { 230 .class = COMPUTE_CLASS, 231 .instance = 1, 232 .mmio_bases = { 233 { .graphics_ver = 12, .base = GEN12_COMPUTE1_RING_BASE } 234 } 235 }, 236 [CCS2] = { 237 .class = COMPUTE_CLASS, 238 .instance = 2, 239 .mmio_bases = { 240 { .graphics_ver = 12, .base = GEN12_COMPUTE2_RING_BASE } 241 } 242 }, 243 [CCS3] = { 244 .class = COMPUTE_CLASS, 245 .instance = 3, 246 .mmio_bases = { 247 { .graphics_ver = 12, .base = GEN12_COMPUTE3_RING_BASE } 248 } 249 }, 250 [GSC0] = { 251 .class = OTHER_CLASS, 252 .instance = OTHER_GSC_INSTANCE, 253 .mmio_bases = { 254 { .graphics_ver = 12, .base = MTL_GSC_RING_BASE } 255 } 256 }, 257 }; 258 259 /** 260 * intel_engine_context_size() - return the size of the context for an engine 261 * @gt: the gt 262 * @class: engine class 263 * 264 * Each engine class may require a different amount of space for a context 265 * image. 266 * 267 * Return: size (in bytes) of an engine class specific context image 268 * 269 * Note: this size includes the HWSP, which is part of the context image 270 * in LRC mode, but does not include the "shared data page" used with 271 * GuC submission. The caller should account for this if using the GuC. 272 */ 273 u32 intel_engine_context_size(struct intel_gt *gt, u8 class) 274 { 275 struct intel_uncore *uncore = gt->uncore; 276 u32 cxt_size; 277 278 BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE); 279 280 switch (class) { 281 case COMPUTE_CLASS: 282 fallthrough; 283 case RENDER_CLASS: 284 switch (GRAPHICS_VER(gt->i915)) { 285 default: 286 MISSING_CASE(GRAPHICS_VER(gt->i915)); 287 return DEFAULT_LR_CONTEXT_RENDER_SIZE; 288 case 12: 289 case 11: 290 return GEN11_LR_CONTEXT_RENDER_SIZE; 291 case 9: 292 return GEN9_LR_CONTEXT_RENDER_SIZE; 293 case 8: 294 return GEN8_LR_CONTEXT_RENDER_SIZE; 295 case 7: 296 if (IS_HASWELL(gt->i915)) 297 return HSW_CXT_TOTAL_SIZE; 298 299 cxt_size = intel_uncore_read(uncore, GEN7_CXT_SIZE); 300 return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64, 301 PAGE_SIZE); 302 case 6: 303 cxt_size = intel_uncore_read(uncore, CXT_SIZE); 304 return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64, 305 PAGE_SIZE); 306 case 5: 307 case 4: 308 /* 309 * There is a discrepancy here between the size reported 310 * by the register and the size of the context layout 311 * in the docs. Both are described as authorative! 312 * 313 * The discrepancy is on the order of a few cachelines, 314 * but the total is under one page (4k), which is our 315 * minimum allocation anyway so it should all come 316 * out in the wash. 317 */ 318 cxt_size = intel_uncore_read(uncore, CXT_SIZE) + 1; 319 drm_dbg(>->i915->drm, 320 "graphics_ver = %d CXT_SIZE = %d bytes [0x%08x]\n", 321 GRAPHICS_VER(gt->i915), cxt_size * 64, 322 cxt_size - 1); 323 return round_up(cxt_size * 64, PAGE_SIZE); 324 case 3: 325 case 2: 326 /* For the special day when i810 gets merged. */ 327 case 1: 328 return 0; 329 } 330 break; 331 default: 332 MISSING_CASE(class); 333 fallthrough; 334 case VIDEO_DECODE_CLASS: 335 case VIDEO_ENHANCEMENT_CLASS: 336 case COPY_ENGINE_CLASS: 337 case OTHER_CLASS: 338 if (GRAPHICS_VER(gt->i915) < 8) 339 return 0; 340 return GEN8_LR_CONTEXT_OTHER_SIZE; 341 } 342 } 343 344 static u32 __engine_mmio_base(struct drm_i915_private *i915, 345 const struct engine_mmio_base *bases) 346 { 347 int i; 348 349 for (i = 0; i < MAX_MMIO_BASES; i++) 350 if (GRAPHICS_VER(i915) >= bases[i].graphics_ver) 351 break; 352 353 GEM_BUG_ON(i == MAX_MMIO_BASES); 354 GEM_BUG_ON(!bases[i].base); 355 356 return bases[i].base; 357 } 358 359 static void __sprint_engine_name(struct intel_engine_cs *engine) 360 { 361 /* 362 * Before we know what the uABI name for this engine will be, 363 * we still would like to keep track of this engine in the debug logs. 364 * We throw in a ' here as a reminder that this isn't its final name. 365 */ 366 GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u", 367 intel_engine_class_repr(engine->class), 368 engine->instance) >= sizeof(engine->name)); 369 } 370 371 void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask) 372 { 373 /* 374 * Though they added more rings on g4x/ilk, they did not add 375 * per-engine HWSTAM until gen6. 376 */ 377 if (GRAPHICS_VER(engine->i915) < 6 && engine->class != RENDER_CLASS) 378 return; 379 380 if (GRAPHICS_VER(engine->i915) >= 3) 381 ENGINE_WRITE(engine, RING_HWSTAM, mask); 382 else 383 ENGINE_WRITE16(engine, RING_HWSTAM, mask); 384 } 385 386 static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine) 387 { 388 /* Mask off all writes into the unknown HWSP */ 389 intel_engine_set_hwsp_writemask(engine, ~0u); 390 } 391 392 static void nop_irq_handler(struct intel_engine_cs *engine, u16 iir) 393 { 394 GEM_DEBUG_WARN_ON(iir); 395 } 396 397 static u32 get_reset_domain(u8 ver, enum intel_engine_id id) 398 { 399 u32 reset_domain; 400 401 if (ver >= 11) { 402 static const u32 engine_reset_domains[] = { 403 [RCS0] = GEN11_GRDOM_RENDER, 404 [BCS0] = GEN11_GRDOM_BLT, 405 [BCS1] = XEHPC_GRDOM_BLT1, 406 [BCS2] = XEHPC_GRDOM_BLT2, 407 [BCS3] = XEHPC_GRDOM_BLT3, 408 [BCS4] = XEHPC_GRDOM_BLT4, 409 [BCS5] = XEHPC_GRDOM_BLT5, 410 [BCS6] = XEHPC_GRDOM_BLT6, 411 [BCS7] = XEHPC_GRDOM_BLT7, 412 [BCS8] = XEHPC_GRDOM_BLT8, 413 [VCS0] = GEN11_GRDOM_MEDIA, 414 [VCS1] = GEN11_GRDOM_MEDIA2, 415 [VCS2] = GEN11_GRDOM_MEDIA3, 416 [VCS3] = GEN11_GRDOM_MEDIA4, 417 [VCS4] = GEN11_GRDOM_MEDIA5, 418 [VCS5] = GEN11_GRDOM_MEDIA6, 419 [VCS6] = GEN11_GRDOM_MEDIA7, 420 [VCS7] = GEN11_GRDOM_MEDIA8, 421 [VECS0] = GEN11_GRDOM_VECS, 422 [VECS1] = GEN11_GRDOM_VECS2, 423 [VECS2] = GEN11_GRDOM_VECS3, 424 [VECS3] = GEN11_GRDOM_VECS4, 425 [CCS0] = GEN11_GRDOM_RENDER, 426 [CCS1] = GEN11_GRDOM_RENDER, 427 [CCS2] = GEN11_GRDOM_RENDER, 428 [CCS3] = GEN11_GRDOM_RENDER, 429 [GSC0] = GEN12_GRDOM_GSC, 430 }; 431 GEM_BUG_ON(id >= ARRAY_SIZE(engine_reset_domains) || 432 !engine_reset_domains[id]); 433 reset_domain = engine_reset_domains[id]; 434 } else { 435 static const u32 engine_reset_domains[] = { 436 [RCS0] = GEN6_GRDOM_RENDER, 437 [BCS0] = GEN6_GRDOM_BLT, 438 [VCS0] = GEN6_GRDOM_MEDIA, 439 [VCS1] = GEN8_GRDOM_MEDIA2, 440 [VECS0] = GEN6_GRDOM_VECS, 441 }; 442 GEM_BUG_ON(id >= ARRAY_SIZE(engine_reset_domains) || 443 !engine_reset_domains[id]); 444 reset_domain = engine_reset_domains[id]; 445 } 446 447 return reset_domain; 448 } 449 450 static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id, 451 u8 logical_instance) 452 { 453 const struct engine_info *info = &intel_engines[id]; 454 struct drm_i915_private *i915 = gt->i915; 455 struct intel_engine_cs *engine; 456 u8 guc_class; 457 458 BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH)); 459 BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH)); 460 BUILD_BUG_ON(I915_MAX_VCS > (MAX_ENGINE_INSTANCE + 1)); 461 BUILD_BUG_ON(I915_MAX_VECS > (MAX_ENGINE_INSTANCE + 1)); 462 463 if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine))) 464 return -EINVAL; 465 466 if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS)) 467 return -EINVAL; 468 469 if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE)) 470 return -EINVAL; 471 472 if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance])) 473 return -EINVAL; 474 475 engine = kzalloc(sizeof(*engine), GFP_KERNEL); 476 if (!engine) 477 return -ENOMEM; 478 479 BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES); 480 481 INIT_LIST_HEAD(&engine->pinned_contexts_list); 482 engine->id = id; 483 engine->legacy_idx = INVALID_ENGINE; 484 engine->mask = BIT(id); 485 engine->reset_domain = get_reset_domain(GRAPHICS_VER(gt->i915), 486 id); 487 engine->i915 = i915; 488 engine->gt = gt; 489 engine->uncore = gt->uncore; 490 guc_class = engine_class_to_guc_class(info->class); 491 engine->guc_id = MAKE_GUC_ID(guc_class, info->instance); 492 engine->mmio_base = __engine_mmio_base(i915, info->mmio_bases); 493 494 engine->irq_handler = nop_irq_handler; 495 496 engine->class = info->class; 497 engine->instance = info->instance; 498 engine->logical_mask = BIT(logical_instance); 499 __sprint_engine_name(engine); 500 501 if ((engine->class == COMPUTE_CLASS && !RCS_MASK(engine->gt) && 502 __ffs(CCS_MASK(engine->gt)) == engine->instance) || 503 engine->class == RENDER_CLASS) 504 engine->flags |= I915_ENGINE_FIRST_RENDER_COMPUTE; 505 506 /* features common between engines sharing EUs */ 507 if (engine->class == RENDER_CLASS || engine->class == COMPUTE_CLASS) { 508 engine->flags |= I915_ENGINE_HAS_RCS_REG_STATE; 509 engine->flags |= I915_ENGINE_HAS_EU_PRIORITY; 510 } 511 512 engine->props.heartbeat_interval_ms = 513 CONFIG_DRM_I915_HEARTBEAT_INTERVAL; 514 engine->props.max_busywait_duration_ns = 515 CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT; 516 engine->props.preempt_timeout_ms = 517 CONFIG_DRM_I915_PREEMPT_TIMEOUT; 518 engine->props.stop_timeout_ms = 519 CONFIG_DRM_I915_STOP_TIMEOUT; 520 engine->props.timeslice_duration_ms = 521 CONFIG_DRM_I915_TIMESLICE_DURATION; 522 523 /* 524 * Mid-thread pre-emption is not available in Gen12. Unfortunately, 525 * some compute workloads run quite long threads. That means they get 526 * reset due to not pre-empting in a timely manner. So, bump the 527 * pre-emption timeout value to be much higher for compute engines. 528 */ 529 if (GRAPHICS_VER(i915) == 12 && (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE)) 530 engine->props.preempt_timeout_ms = CONFIG_DRM_I915_PREEMPT_TIMEOUT_COMPUTE; 531 532 /* Cap properties according to any system limits */ 533 #define CLAMP_PROP(field) \ 534 do { \ 535 u64 clamp = intel_clamp_##field(engine, engine->props.field); \ 536 if (clamp != engine->props.field) { \ 537 drm_notice(&engine->i915->drm, \ 538 "Warning, clamping %s to %lld to prevent overflow\n", \ 539 #field, clamp); \ 540 engine->props.field = clamp; \ 541 } \ 542 } while (0) 543 544 CLAMP_PROP(heartbeat_interval_ms); 545 CLAMP_PROP(max_busywait_duration_ns); 546 CLAMP_PROP(preempt_timeout_ms); 547 CLAMP_PROP(stop_timeout_ms); 548 CLAMP_PROP(timeslice_duration_ms); 549 550 #undef CLAMP_PROP 551 552 engine->defaults = engine->props; /* never to change again */ 553 554 engine->context_size = intel_engine_context_size(gt, engine->class); 555 if (WARN_ON(engine->context_size > BIT(20))) 556 engine->context_size = 0; 557 if (engine->context_size) 558 DRIVER_CAPS(i915)->has_logical_contexts = true; 559 560 ewma__engine_latency_init(&engine->latency); 561 562 ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier); 563 564 /* Scrub mmio state on takeover */ 565 intel_engine_sanitize_mmio(engine); 566 567 gt->engine_class[info->class][info->instance] = engine; 568 gt->engine[id] = engine; 569 570 return 0; 571 } 572 573 u64 intel_clamp_heartbeat_interval_ms(struct intel_engine_cs *engine, u64 value) 574 { 575 value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT)); 576 577 return value; 578 } 579 580 u64 intel_clamp_max_busywait_duration_ns(struct intel_engine_cs *engine, u64 value) 581 { 582 value = min(value, jiffies_to_nsecs(2)); 583 584 return value; 585 } 586 587 u64 intel_clamp_preempt_timeout_ms(struct intel_engine_cs *engine, u64 value) 588 { 589 /* 590 * NB: The GuC API only supports 32bit values. However, the limit is further 591 * reduced due to internal calculations which would otherwise overflow. 592 */ 593 if (intel_guc_submission_is_wanted(&engine->gt->uc.guc)) 594 value = min_t(u64, value, guc_policy_max_preempt_timeout_ms()); 595 596 value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT)); 597 598 return value; 599 } 600 601 u64 intel_clamp_stop_timeout_ms(struct intel_engine_cs *engine, u64 value) 602 { 603 value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT)); 604 605 return value; 606 } 607 608 u64 intel_clamp_timeslice_duration_ms(struct intel_engine_cs *engine, u64 value) 609 { 610 /* 611 * NB: The GuC API only supports 32bit values. However, the limit is further 612 * reduced due to internal calculations which would otherwise overflow. 613 */ 614 if (intel_guc_submission_is_wanted(&engine->gt->uc.guc)) 615 value = min_t(u64, value, guc_policy_max_exec_quantum_ms()); 616 617 value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT)); 618 619 return value; 620 } 621 622 static void __setup_engine_capabilities(struct intel_engine_cs *engine) 623 { 624 struct drm_i915_private *i915 = engine->i915; 625 626 if (engine->class == VIDEO_DECODE_CLASS) { 627 /* 628 * HEVC support is present on first engine instance 629 * before Gen11 and on all instances afterwards. 630 */ 631 if (GRAPHICS_VER(i915) >= 11 || 632 (GRAPHICS_VER(i915) >= 9 && engine->instance == 0)) 633 engine->uabi_capabilities |= 634 I915_VIDEO_CLASS_CAPABILITY_HEVC; 635 636 /* 637 * SFC block is present only on even logical engine 638 * instances. 639 */ 640 if ((GRAPHICS_VER(i915) >= 11 && 641 (engine->gt->info.vdbox_sfc_access & 642 BIT(engine->instance))) || 643 (GRAPHICS_VER(i915) >= 9 && engine->instance == 0)) 644 engine->uabi_capabilities |= 645 I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC; 646 } else if (engine->class == VIDEO_ENHANCEMENT_CLASS) { 647 if (GRAPHICS_VER(i915) >= 9 && 648 engine->gt->info.sfc_mask & BIT(engine->instance)) 649 engine->uabi_capabilities |= 650 I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC; 651 } 652 } 653 654 static void intel_setup_engine_capabilities(struct intel_gt *gt) 655 { 656 struct intel_engine_cs *engine; 657 enum intel_engine_id id; 658 659 for_each_engine(engine, gt, id) 660 __setup_engine_capabilities(engine); 661 } 662 663 /** 664 * intel_engines_release() - free the resources allocated for Command Streamers 665 * @gt: pointer to struct intel_gt 666 */ 667 void intel_engines_release(struct intel_gt *gt) 668 { 669 struct intel_engine_cs *engine; 670 enum intel_engine_id id; 671 672 /* 673 * Before we release the resources held by engine, we must be certain 674 * that the HW is no longer accessing them -- having the GPU scribble 675 * to or read from a page being used for something else causes no end 676 * of fun. 677 * 678 * The GPU should be reset by this point, but assume the worst just 679 * in case we aborted before completely initialising the engines. 680 */ 681 GEM_BUG_ON(intel_gt_pm_is_awake(gt)); 682 if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display) 683 __intel_gt_reset(gt, ALL_ENGINES); 684 685 /* Decouple the backend; but keep the layout for late GPU resets */ 686 for_each_engine(engine, gt, id) { 687 if (!engine->release) 688 continue; 689 690 intel_wakeref_wait_for_idle(&engine->wakeref); 691 GEM_BUG_ON(intel_engine_pm_is_awake(engine)); 692 693 engine->release(engine); 694 engine->release = NULL; 695 696 memset(&engine->reset, 0, sizeof(engine->reset)); 697 } 698 } 699 700 void intel_engine_free_request_pool(struct intel_engine_cs *engine) 701 { 702 if (!engine->request_pool) 703 return; 704 705 #ifdef __linux__ 706 kmem_cache_free(i915_request_slab_cache(), engine->request_pool); 707 #else 708 pool_put(i915_request_slab_cache(), engine->request_pool); 709 #endif 710 } 711 712 void intel_engines_free(struct intel_gt *gt) 713 { 714 struct intel_engine_cs *engine; 715 enum intel_engine_id id; 716 717 /* Free the requests! dma-resv keeps fences around for an eternity */ 718 rcu_barrier(); 719 720 for_each_engine(engine, gt, id) { 721 intel_engine_free_request_pool(engine); 722 kfree(engine); 723 gt->engine[id] = NULL; 724 } 725 } 726 727 static 728 bool gen11_vdbox_has_sfc(struct intel_gt *gt, 729 unsigned int physical_vdbox, 730 unsigned int logical_vdbox, u16 vdbox_mask) 731 { 732 struct drm_i915_private *i915 = gt->i915; 733 734 /* 735 * In Gen11, only even numbered logical VDBOXes are hooked 736 * up to an SFC (Scaler & Format Converter) unit. 737 * In Gen12, Even numbered physical instance always are connected 738 * to an SFC. Odd numbered physical instances have SFC only if 739 * previous even instance is fused off. 740 * 741 * Starting with Xe_HP, there's also a dedicated SFC_ENABLE field 742 * in the fuse register that tells us whether a specific SFC is present. 743 */ 744 if ((gt->info.sfc_mask & BIT(physical_vdbox / 2)) == 0) 745 return false; 746 else if (MEDIA_VER(i915) >= 12) 747 return (physical_vdbox % 2 == 0) || 748 !(BIT(physical_vdbox - 1) & vdbox_mask); 749 else if (MEDIA_VER(i915) == 11) 750 return logical_vdbox % 2 == 0; 751 752 return false; 753 } 754 755 static void engine_mask_apply_media_fuses(struct intel_gt *gt) 756 { 757 struct drm_i915_private *i915 = gt->i915; 758 unsigned int logical_vdbox = 0; 759 unsigned int i; 760 u32 media_fuse, fuse1; 761 u16 vdbox_mask; 762 u16 vebox_mask; 763 764 if (MEDIA_VER(gt->i915) < 11) 765 return; 766 767 /* 768 * On newer platforms the fusing register is called 'enable' and has 769 * enable semantics, while on older platforms it is called 'disable' 770 * and bits have disable semantices. 771 */ 772 media_fuse = intel_uncore_read(gt->uncore, GEN11_GT_VEBOX_VDBOX_DISABLE); 773 if (MEDIA_VER_FULL(i915) < IP_VER(12, 50)) 774 media_fuse = ~media_fuse; 775 776 vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK; 777 vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >> 778 GEN11_GT_VEBOX_DISABLE_SHIFT; 779 780 if (MEDIA_VER_FULL(i915) >= IP_VER(12, 50)) { 781 fuse1 = intel_uncore_read(gt->uncore, HSW_PAVP_FUSE1); 782 gt->info.sfc_mask = REG_FIELD_GET(XEHP_SFC_ENABLE_MASK, fuse1); 783 } else { 784 gt->info.sfc_mask = ~0; 785 } 786 787 for (i = 0; i < I915_MAX_VCS; i++) { 788 if (!HAS_ENGINE(gt, _VCS(i))) { 789 vdbox_mask &= ~BIT(i); 790 continue; 791 } 792 793 if (!(BIT(i) & vdbox_mask)) { 794 gt->info.engine_mask &= ~BIT(_VCS(i)); 795 drm_dbg(&i915->drm, "vcs%u fused off\n", i); 796 continue; 797 } 798 799 if (gen11_vdbox_has_sfc(gt, i, logical_vdbox, vdbox_mask)) 800 gt->info.vdbox_sfc_access |= BIT(i); 801 logical_vdbox++; 802 } 803 drm_dbg(&i915->drm, "vdbox enable: %04x, instances: %04lx\n", 804 vdbox_mask, VDBOX_MASK(gt)); 805 GEM_BUG_ON(vdbox_mask != VDBOX_MASK(gt)); 806 807 for (i = 0; i < I915_MAX_VECS; i++) { 808 if (!HAS_ENGINE(gt, _VECS(i))) { 809 vebox_mask &= ~BIT(i); 810 continue; 811 } 812 813 if (!(BIT(i) & vebox_mask)) { 814 gt->info.engine_mask &= ~BIT(_VECS(i)); 815 drm_dbg(&i915->drm, "vecs%u fused off\n", i); 816 } 817 } 818 drm_dbg(&i915->drm, "vebox enable: %04x, instances: %04lx\n", 819 vebox_mask, VEBOX_MASK(gt)); 820 GEM_BUG_ON(vebox_mask != VEBOX_MASK(gt)); 821 } 822 823 static void engine_mask_apply_compute_fuses(struct intel_gt *gt) 824 { 825 struct drm_i915_private *i915 = gt->i915; 826 struct intel_gt_info *info = >->info; 827 int ss_per_ccs = info->sseu.max_subslices / I915_MAX_CCS; 828 unsigned long ccs_mask; 829 unsigned int i; 830 831 if (GRAPHICS_VER(i915) < 11) 832 return; 833 834 if (hweight32(CCS_MASK(gt)) <= 1) 835 return; 836 837 ccs_mask = intel_slicemask_from_xehp_dssmask(info->sseu.compute_subslice_mask, 838 ss_per_ccs); 839 /* 840 * If all DSS in a quadrant are fused off, the corresponding CCS 841 * engine is not available for use. 842 */ 843 for_each_clear_bit(i, &ccs_mask, I915_MAX_CCS) { 844 info->engine_mask &= ~BIT(_CCS(i)); 845 drm_dbg(&i915->drm, "ccs%u fused off\n", i); 846 } 847 } 848 849 static void engine_mask_apply_copy_fuses(struct intel_gt *gt) 850 { 851 struct drm_i915_private *i915 = gt->i915; 852 struct intel_gt_info *info = >->info; 853 unsigned long meml3_mask; 854 unsigned long quad; 855 856 if (!(GRAPHICS_VER_FULL(i915) >= IP_VER(12, 60) && 857 GRAPHICS_VER_FULL(i915) < IP_VER(12, 70))) 858 return; 859 860 meml3_mask = intel_uncore_read(gt->uncore, GEN10_MIRROR_FUSE3); 861 meml3_mask = REG_FIELD_GET(GEN12_MEML3_EN_MASK, meml3_mask); 862 863 /* 864 * Link Copy engines may be fused off according to meml3_mask. Each 865 * bit is a quad that houses 2 Link Copy and two Sub Copy engines. 866 */ 867 for_each_clear_bit(quad, &meml3_mask, GEN12_MAX_MSLICES) { 868 unsigned int instance = quad * 2 + 1; 869 intel_engine_mask_t mask = GENMASK(_BCS(instance + 1), 870 _BCS(instance)); 871 872 if (mask & info->engine_mask) { 873 drm_dbg(&i915->drm, "bcs%u fused off\n", instance); 874 drm_dbg(&i915->drm, "bcs%u fused off\n", instance + 1); 875 876 info->engine_mask &= ~mask; 877 } 878 } 879 } 880 881 /* 882 * Determine which engines are fused off in our particular hardware. 883 * Note that we have a catch-22 situation where we need to be able to access 884 * the blitter forcewake domain to read the engine fuses, but at the same time 885 * we need to know which engines are available on the system to know which 886 * forcewake domains are present. We solve this by intializing the forcewake 887 * domains based on the full engine mask in the platform capabilities before 888 * calling this function and pruning the domains for fused-off engines 889 * afterwards. 890 */ 891 static intel_engine_mask_t init_engine_mask(struct intel_gt *gt) 892 { 893 struct intel_gt_info *info = >->info; 894 895 GEM_BUG_ON(!info->engine_mask); 896 897 engine_mask_apply_media_fuses(gt); 898 engine_mask_apply_compute_fuses(gt); 899 engine_mask_apply_copy_fuses(gt); 900 901 /* 902 * The only use of the GSC CS is to load and communicate with the GSC 903 * FW, so we have no use for it if we don't have the FW. 904 * 905 * IMPORTANT: in cases where we don't have the GSC FW, we have a 906 * catch-22 situation that breaks media C6 due to 2 requirements: 907 * 1) once turned on, the GSC power well will not go to sleep unless the 908 * GSC FW is loaded. 909 * 2) to enable idling (which is required for media C6) we need to 910 * initialize the IDLE_MSG register for the GSC CS and do at least 1 911 * submission, which will wake up the GSC power well. 912 */ 913 if (__HAS_ENGINE(info->engine_mask, GSC0) && !intel_uc_wants_gsc_uc(>->uc)) { 914 drm_notice(>->i915->drm, 915 "No GSC FW selected, disabling GSC CS and media C6\n"); 916 info->engine_mask &= ~BIT(GSC0); 917 } 918 919 /* 920 * Do not create the command streamer for CCS slices beyond the first. 921 * All the workload submitted to the first engine will be shared among 922 * all the slices. 923 * 924 * Once the user will be allowed to customize the CCS mode, then this 925 * check needs to be removed. 926 */ 927 if (IS_DG2(gt->i915)) { 928 u8 first_ccs = __ffs(CCS_MASK(gt)); 929 930 /* 931 * Store the number of active cslices before 932 * changing the CCS engine configuration 933 */ 934 gt->ccs.cslices = CCS_MASK(gt); 935 936 /* Mask off all the CCS engine */ 937 info->engine_mask &= ~GENMASK(CCS3, CCS0); 938 /* Put back in the first CCS engine */ 939 info->engine_mask |= BIT(_CCS(first_ccs)); 940 } 941 942 return info->engine_mask; 943 } 944 945 static void populate_logical_ids(struct intel_gt *gt, u8 *logical_ids, 946 u8 class, const u8 *map, u8 num_instances) 947 { 948 int i, j; 949 u8 current_logical_id = 0; 950 951 for (j = 0; j < num_instances; ++j) { 952 for (i = 0; i < ARRAY_SIZE(intel_engines); ++i) { 953 if (!HAS_ENGINE(gt, i) || 954 intel_engines[i].class != class) 955 continue; 956 957 if (intel_engines[i].instance == map[j]) { 958 logical_ids[intel_engines[i].instance] = 959 current_logical_id++; 960 break; 961 } 962 } 963 } 964 } 965 966 static void setup_logical_ids(struct intel_gt *gt, u8 *logical_ids, u8 class) 967 { 968 /* 969 * Logical to physical mapping is needed for proper support 970 * to split-frame feature. 971 */ 972 if (MEDIA_VER(gt->i915) >= 11 && class == VIDEO_DECODE_CLASS) { 973 const u8 map[] = { 0, 2, 4, 6, 1, 3, 5, 7 }; 974 975 populate_logical_ids(gt, logical_ids, class, 976 map, ARRAY_SIZE(map)); 977 } else { 978 int i; 979 u8 map[MAX_ENGINE_INSTANCE + 1]; 980 981 for (i = 0; i < MAX_ENGINE_INSTANCE + 1; ++i) 982 map[i] = i; 983 populate_logical_ids(gt, logical_ids, class, 984 map, ARRAY_SIZE(map)); 985 } 986 } 987 988 /** 989 * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers 990 * @gt: pointer to struct intel_gt 991 * 992 * Return: non-zero if the initialization failed. 993 */ 994 int intel_engines_init_mmio(struct intel_gt *gt) 995 { 996 struct drm_i915_private *i915 = gt->i915; 997 const unsigned int engine_mask = init_engine_mask(gt); 998 unsigned int mask = 0; 999 unsigned int i, class; 1000 u8 logical_ids[MAX_ENGINE_INSTANCE + 1]; 1001 int err; 1002 1003 drm_WARN_ON(&i915->drm, engine_mask == 0); 1004 drm_WARN_ON(&i915->drm, engine_mask & 1005 GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES)); 1006 1007 if (i915_inject_probe_failure(i915)) 1008 return -ENODEV; 1009 1010 for (class = 0; class < MAX_ENGINE_CLASS + 1; ++class) { 1011 setup_logical_ids(gt, logical_ids, class); 1012 1013 for (i = 0; i < ARRAY_SIZE(intel_engines); ++i) { 1014 u8 instance = intel_engines[i].instance; 1015 1016 if (intel_engines[i].class != class || 1017 !HAS_ENGINE(gt, i)) 1018 continue; 1019 1020 err = intel_engine_setup(gt, i, 1021 logical_ids[instance]); 1022 if (err) 1023 goto cleanup; 1024 1025 mask |= BIT(i); 1026 } 1027 } 1028 1029 /* 1030 * Catch failures to update intel_engines table when the new engines 1031 * are added to the driver by a warning and disabling the forgotten 1032 * engines. 1033 */ 1034 if (drm_WARN_ON(&i915->drm, mask != engine_mask)) 1035 gt->info.engine_mask = mask; 1036 1037 gt->info.num_engines = hweight32(mask); 1038 1039 intel_gt_check_and_clear_faults(gt); 1040 1041 intel_setup_engine_capabilities(gt); 1042 1043 intel_uncore_prune_engine_fw_domains(gt->uncore, gt); 1044 1045 return 0; 1046 1047 cleanup: 1048 intel_engines_free(gt); 1049 return err; 1050 } 1051 1052 void intel_engine_init_execlists(struct intel_engine_cs *engine) 1053 { 1054 struct intel_engine_execlists * const execlists = &engine->execlists; 1055 1056 execlists->port_mask = 1; 1057 GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists))); 1058 GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS); 1059 1060 memset(execlists->pending, 0, sizeof(execlists->pending)); 1061 execlists->active = 1062 memset(execlists->inflight, 0, sizeof(execlists->inflight)); 1063 } 1064 1065 static void cleanup_status_page(struct intel_engine_cs *engine) 1066 { 1067 struct i915_vma *vma; 1068 1069 /* Prevent writes into HWSP after returning the page to the system */ 1070 intel_engine_set_hwsp_writemask(engine, ~0u); 1071 1072 vma = fetch_and_zero(&engine->status_page.vma); 1073 if (!vma) 1074 return; 1075 1076 if (!HWS_NEEDS_PHYSICAL(engine->i915)) 1077 i915_vma_unpin(vma); 1078 1079 i915_gem_object_unpin_map(vma->obj); 1080 i915_gem_object_put(vma->obj); 1081 } 1082 1083 static int pin_ggtt_status_page(struct intel_engine_cs *engine, 1084 struct i915_gem_ww_ctx *ww, 1085 struct i915_vma *vma) 1086 { 1087 unsigned int flags; 1088 1089 if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt)) 1090 /* 1091 * On g33, we cannot place HWS above 256MiB, so 1092 * restrict its pinning to the low mappable arena. 1093 * Though this restriction is not documented for 1094 * gen4, gen5, or byt, they also behave similarly 1095 * and hang if the HWS is placed at the top of the 1096 * GTT. To generalise, it appears that all !llc 1097 * platforms have issues with us placing the HWS 1098 * above the mappable region (even though we never 1099 * actually map it). 1100 */ 1101 flags = PIN_MAPPABLE; 1102 else 1103 flags = PIN_HIGH; 1104 1105 return i915_ggtt_pin(vma, ww, 0, flags); 1106 } 1107 1108 static int init_status_page(struct intel_engine_cs *engine) 1109 { 1110 struct drm_i915_gem_object *obj; 1111 struct i915_gem_ww_ctx ww; 1112 struct i915_vma *vma; 1113 void *vaddr; 1114 int ret; 1115 1116 INIT_LIST_HEAD(&engine->status_page.timelines); 1117 1118 /* 1119 * Though the HWS register does support 36bit addresses, historically 1120 * we have had hangs and corruption reported due to wild writes if 1121 * the HWS is placed above 4G. We only allow objects to be allocated 1122 * in GFP_DMA32 for i965, and no earlier physical address users had 1123 * access to more than 4G. 1124 */ 1125 obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE); 1126 if (IS_ERR(obj)) { 1127 drm_err(&engine->i915->drm, 1128 "Failed to allocate status page\n"); 1129 return PTR_ERR(obj); 1130 } 1131 1132 i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC); 1133 1134 vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL); 1135 if (IS_ERR(vma)) { 1136 ret = PTR_ERR(vma); 1137 goto err_put; 1138 } 1139 1140 i915_gem_ww_ctx_init(&ww, true); 1141 retry: 1142 ret = i915_gem_object_lock(obj, &ww); 1143 if (!ret && !HWS_NEEDS_PHYSICAL(engine->i915)) 1144 ret = pin_ggtt_status_page(engine, &ww, vma); 1145 if (ret) 1146 goto err; 1147 1148 vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB); 1149 if (IS_ERR(vaddr)) { 1150 ret = PTR_ERR(vaddr); 1151 goto err_unpin; 1152 } 1153 1154 engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE); 1155 engine->status_page.vma = vma; 1156 1157 err_unpin: 1158 if (ret) 1159 i915_vma_unpin(vma); 1160 err: 1161 if (ret == -EDEADLK) { 1162 ret = i915_gem_ww_ctx_backoff(&ww); 1163 if (!ret) 1164 goto retry; 1165 } 1166 i915_gem_ww_ctx_fini(&ww); 1167 err_put: 1168 if (ret) 1169 i915_gem_object_put(obj); 1170 return ret; 1171 } 1172 1173 static int intel_engine_init_tlb_invalidation(struct intel_engine_cs *engine) 1174 { 1175 static const union intel_engine_tlb_inv_reg gen8_regs[] = { 1176 [RENDER_CLASS].reg = GEN8_RTCR, 1177 [VIDEO_DECODE_CLASS].reg = GEN8_M1TCR, /* , GEN8_M2TCR */ 1178 [VIDEO_ENHANCEMENT_CLASS].reg = GEN8_VTCR, 1179 [COPY_ENGINE_CLASS].reg = GEN8_BTCR, 1180 }; 1181 static const union intel_engine_tlb_inv_reg gen12_regs[] = { 1182 [RENDER_CLASS].reg = GEN12_GFX_TLB_INV_CR, 1183 [VIDEO_DECODE_CLASS].reg = GEN12_VD_TLB_INV_CR, 1184 [VIDEO_ENHANCEMENT_CLASS].reg = GEN12_VE_TLB_INV_CR, 1185 [COPY_ENGINE_CLASS].reg = GEN12_BLT_TLB_INV_CR, 1186 [COMPUTE_CLASS].reg = GEN12_COMPCTX_TLB_INV_CR, 1187 }; 1188 static const union intel_engine_tlb_inv_reg xehp_regs[] = { 1189 [RENDER_CLASS].mcr_reg = XEHP_GFX_TLB_INV_CR, 1190 [VIDEO_DECODE_CLASS].mcr_reg = XEHP_VD_TLB_INV_CR, 1191 [VIDEO_ENHANCEMENT_CLASS].mcr_reg = XEHP_VE_TLB_INV_CR, 1192 [COPY_ENGINE_CLASS].mcr_reg = XEHP_BLT_TLB_INV_CR, 1193 [COMPUTE_CLASS].mcr_reg = XEHP_COMPCTX_TLB_INV_CR, 1194 }; 1195 static const union intel_engine_tlb_inv_reg xelpmp_regs[] = { 1196 [VIDEO_DECODE_CLASS].reg = GEN12_VD_TLB_INV_CR, 1197 [VIDEO_ENHANCEMENT_CLASS].reg = GEN12_VE_TLB_INV_CR, 1198 [OTHER_CLASS].reg = XELPMP_GSC_TLB_INV_CR, 1199 }; 1200 struct drm_i915_private *i915 = engine->i915; 1201 const unsigned int instance = engine->instance; 1202 const unsigned int class = engine->class; 1203 const union intel_engine_tlb_inv_reg *regs; 1204 union intel_engine_tlb_inv_reg reg; 1205 unsigned int num = 0; 1206 u32 val; 1207 1208 /* 1209 * New platforms should not be added with catch-all-newer (>=) 1210 * condition so that any later platform added triggers the below warning 1211 * and in turn mandates a human cross-check of whether the invalidation 1212 * flows have compatible semantics. 1213 * 1214 * For instance with the 11.00 -> 12.00 transition three out of five 1215 * respective engine registers were moved to masked type. Then after the 1216 * 12.00 -> 12.50 transition multi cast handling is required too. 1217 */ 1218 1219 if (engine->gt->type == GT_MEDIA) { 1220 if (MEDIA_VER_FULL(i915) == IP_VER(13, 0)) { 1221 regs = xelpmp_regs; 1222 num = ARRAY_SIZE(xelpmp_regs); 1223 } 1224 } else { 1225 if (GRAPHICS_VER_FULL(i915) == IP_VER(12, 71) || 1226 GRAPHICS_VER_FULL(i915) == IP_VER(12, 70) || 1227 GRAPHICS_VER_FULL(i915) == IP_VER(12, 50) || 1228 GRAPHICS_VER_FULL(i915) == IP_VER(12, 55)) { 1229 regs = xehp_regs; 1230 num = ARRAY_SIZE(xehp_regs); 1231 } else if (GRAPHICS_VER_FULL(i915) == IP_VER(12, 0) || 1232 GRAPHICS_VER_FULL(i915) == IP_VER(12, 10)) { 1233 regs = gen12_regs; 1234 num = ARRAY_SIZE(gen12_regs); 1235 } else if (GRAPHICS_VER(i915) >= 8 && GRAPHICS_VER(i915) <= 11) { 1236 regs = gen8_regs; 1237 num = ARRAY_SIZE(gen8_regs); 1238 } else if (GRAPHICS_VER(i915) < 8) { 1239 return 0; 1240 } 1241 } 1242 1243 if (gt_WARN_ONCE(engine->gt, !num, 1244 "Platform does not implement TLB invalidation!")) 1245 return -ENODEV; 1246 1247 if (gt_WARN_ON_ONCE(engine->gt, 1248 class >= num || 1249 (!regs[class].reg.reg && 1250 !regs[class].mcr_reg.reg))) 1251 return -ERANGE; 1252 1253 reg = regs[class]; 1254 1255 if (regs == xelpmp_regs && class == OTHER_CLASS) { 1256 /* 1257 * There's only a single GSC instance, but it uses register bit 1258 * 1 instead of either 0 or OTHER_GSC_INSTANCE. 1259 */ 1260 GEM_WARN_ON(instance != OTHER_GSC_INSTANCE); 1261 val = 1; 1262 } else if (regs == gen8_regs && class == VIDEO_DECODE_CLASS && instance == 1) { 1263 reg.reg = GEN8_M2TCR; 1264 val = 0; 1265 } else { 1266 val = instance; 1267 } 1268 1269 val = BIT(val); 1270 1271 engine->tlb_inv.mcr = regs == xehp_regs; 1272 engine->tlb_inv.reg = reg; 1273 engine->tlb_inv.done = val; 1274 1275 if (GRAPHICS_VER(i915) >= 12 && 1276 (engine->class == VIDEO_DECODE_CLASS || 1277 engine->class == VIDEO_ENHANCEMENT_CLASS || 1278 engine->class == COMPUTE_CLASS || 1279 engine->class == OTHER_CLASS)) 1280 engine->tlb_inv.request = _MASKED_BIT_ENABLE(val); 1281 else 1282 engine->tlb_inv.request = val; 1283 1284 return 0; 1285 } 1286 1287 static int engine_setup_common(struct intel_engine_cs *engine) 1288 { 1289 int err; 1290 1291 init_llist_head(&engine->barrier_tasks); 1292 1293 err = intel_engine_init_tlb_invalidation(engine); 1294 if (err) 1295 return err; 1296 1297 err = init_status_page(engine); 1298 if (err) 1299 return err; 1300 1301 engine->breadcrumbs = intel_breadcrumbs_create(engine); 1302 if (!engine->breadcrumbs) { 1303 err = -ENOMEM; 1304 goto err_status; 1305 } 1306 1307 engine->sched_engine = i915_sched_engine_create(ENGINE_PHYSICAL); 1308 if (!engine->sched_engine) { 1309 err = -ENOMEM; 1310 goto err_sched_engine; 1311 } 1312 engine->sched_engine->private_data = engine; 1313 1314 err = intel_engine_init_cmd_parser(engine); 1315 if (err) 1316 goto err_cmd_parser; 1317 1318 intel_engine_init_execlists(engine); 1319 intel_engine_init__pm(engine); 1320 intel_engine_init_retire(engine); 1321 1322 /* Use the whole device by default */ 1323 engine->sseu = 1324 intel_sseu_from_device_info(&engine->gt->info.sseu); 1325 1326 intel_engine_init_workarounds(engine); 1327 intel_engine_init_whitelist(engine); 1328 intel_engine_init_ctx_wa(engine); 1329 1330 if (GRAPHICS_VER(engine->i915) >= 12) 1331 engine->flags |= I915_ENGINE_HAS_RELATIVE_MMIO; 1332 1333 return 0; 1334 1335 err_cmd_parser: 1336 i915_sched_engine_put(engine->sched_engine); 1337 err_sched_engine: 1338 intel_breadcrumbs_put(engine->breadcrumbs); 1339 err_status: 1340 cleanup_status_page(engine); 1341 return err; 1342 } 1343 1344 struct measure_breadcrumb { 1345 struct i915_request rq; 1346 struct intel_ring ring; 1347 u32 cs[2048]; 1348 }; 1349 1350 static int measure_breadcrumb_dw(struct intel_context *ce) 1351 { 1352 struct intel_engine_cs *engine = ce->engine; 1353 struct measure_breadcrumb *frame; 1354 int dw; 1355 1356 GEM_BUG_ON(!engine->gt->scratch); 1357 1358 frame = kzalloc(sizeof(*frame), GFP_KERNEL); 1359 if (!frame) 1360 return -ENOMEM; 1361 1362 frame->rq.i915 = engine->i915; 1363 frame->rq.engine = engine; 1364 frame->rq.context = ce; 1365 rcu_assign_pointer(frame->rq.timeline, ce->timeline); 1366 frame->rq.hwsp_seqno = ce->timeline->hwsp_seqno; 1367 1368 frame->ring.vaddr = frame->cs; 1369 frame->ring.size = sizeof(frame->cs); 1370 frame->ring.wrap = 1371 BITS_PER_TYPE(frame->ring.size) - ilog2(frame->ring.size); 1372 frame->ring.effective_size = frame->ring.size; 1373 intel_ring_update_space(&frame->ring); 1374 frame->rq.ring = &frame->ring; 1375 1376 mutex_lock(&ce->timeline->mutex); 1377 spin_lock_irq(&engine->sched_engine->lock); 1378 1379 dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs; 1380 1381 spin_unlock_irq(&engine->sched_engine->lock); 1382 mutex_unlock(&ce->timeline->mutex); 1383 1384 GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */ 1385 1386 kfree(frame); 1387 return dw; 1388 } 1389 1390 struct intel_context * 1391 intel_engine_create_pinned_context(struct intel_engine_cs *engine, 1392 struct i915_address_space *vm, 1393 unsigned int ring_size, 1394 unsigned int hwsp, 1395 struct lock_class_key *key, 1396 const char *name) 1397 { 1398 struct intel_context *ce; 1399 int err; 1400 1401 ce = intel_context_create(engine); 1402 if (IS_ERR(ce)) 1403 return ce; 1404 1405 __set_bit(CONTEXT_BARRIER_BIT, &ce->flags); 1406 ce->timeline = page_pack_bits(NULL, hwsp); 1407 ce->ring = NULL; 1408 ce->ring_size = ring_size; 1409 1410 i915_vm_put(ce->vm); 1411 ce->vm = i915_vm_get(vm); 1412 1413 err = intel_context_pin(ce); /* perma-pin so it is always available */ 1414 if (err) { 1415 intel_context_put(ce); 1416 return ERR_PTR(err); 1417 } 1418 1419 list_add_tail(&ce->pinned_contexts_link, &engine->pinned_contexts_list); 1420 1421 /* 1422 * Give our perma-pinned kernel timelines a separate lockdep class, 1423 * so that we can use them from within the normal user timelines 1424 * should we need to inject GPU operations during their request 1425 * construction. 1426 */ 1427 lockdep_set_class_and_name(&ce->timeline->mutex, key, name); 1428 1429 return ce; 1430 } 1431 1432 void intel_engine_destroy_pinned_context(struct intel_context *ce) 1433 { 1434 struct intel_engine_cs *engine = ce->engine; 1435 struct i915_vma *hwsp = engine->status_page.vma; 1436 1437 GEM_BUG_ON(ce->timeline->hwsp_ggtt != hwsp); 1438 1439 mutex_lock(&hwsp->vm->mutex); 1440 list_del(&ce->timeline->engine_link); 1441 mutex_unlock(&hwsp->vm->mutex); 1442 1443 list_del(&ce->pinned_contexts_link); 1444 intel_context_unpin(ce); 1445 intel_context_put(ce); 1446 } 1447 1448 static struct intel_context * 1449 create_kernel_context(struct intel_engine_cs *engine) 1450 { 1451 static struct lock_class_key kernel; 1452 1453 return intel_engine_create_pinned_context(engine, engine->gt->vm, SZ_4K, 1454 I915_GEM_HWS_SEQNO_ADDR, 1455 &kernel, "kernel_context"); 1456 } 1457 1458 /* 1459 * engine_init_common - initialize engine state which might require hw access 1460 * @engine: Engine to initialize. 1461 * 1462 * Initializes @engine@ structure members shared between legacy and execlists 1463 * submission modes which do require hardware access. 1464 * 1465 * Typcally done at later stages of submission mode specific engine setup. 1466 * 1467 * Returns zero on success or an error code on failure. 1468 */ 1469 static int engine_init_common(struct intel_engine_cs *engine) 1470 { 1471 struct intel_context *ce; 1472 int ret; 1473 1474 engine->set_default_submission(engine); 1475 1476 /* 1477 * We may need to do things with the shrinker which 1478 * require us to immediately switch back to the default 1479 * context. This can cause a problem as pinning the 1480 * default context also requires GTT space which may not 1481 * be available. To avoid this we always pin the default 1482 * context. 1483 */ 1484 ce = create_kernel_context(engine); 1485 if (IS_ERR(ce)) 1486 return PTR_ERR(ce); 1487 1488 ret = measure_breadcrumb_dw(ce); 1489 if (ret < 0) 1490 goto err_context; 1491 1492 engine->emit_fini_breadcrumb_dw = ret; 1493 engine->kernel_context = ce; 1494 1495 return 0; 1496 1497 err_context: 1498 intel_engine_destroy_pinned_context(ce); 1499 return ret; 1500 } 1501 1502 int intel_engines_init(struct intel_gt *gt) 1503 { 1504 int (*setup)(struct intel_engine_cs *engine); 1505 struct intel_engine_cs *engine; 1506 enum intel_engine_id id; 1507 int err; 1508 1509 if (intel_uc_uses_guc_submission(>->uc)) { 1510 gt->submission_method = INTEL_SUBMISSION_GUC; 1511 setup = intel_guc_submission_setup; 1512 } else if (HAS_EXECLISTS(gt->i915)) { 1513 gt->submission_method = INTEL_SUBMISSION_ELSP; 1514 setup = intel_execlists_submission_setup; 1515 } else { 1516 gt->submission_method = INTEL_SUBMISSION_RING; 1517 setup = intel_ring_submission_setup; 1518 } 1519 1520 for_each_engine(engine, gt, id) { 1521 err = engine_setup_common(engine); 1522 if (err) 1523 return err; 1524 1525 err = setup(engine); 1526 if (err) { 1527 intel_engine_cleanup_common(engine); 1528 return err; 1529 } 1530 1531 /* The backend should now be responsible for cleanup */ 1532 GEM_BUG_ON(engine->release == NULL); 1533 1534 err = engine_init_common(engine); 1535 if (err) 1536 return err; 1537 1538 intel_engine_add_user(engine); 1539 } 1540 1541 return 0; 1542 } 1543 1544 /** 1545 * intel_engine_cleanup_common - cleans up the engine state created by 1546 * the common initiailizers. 1547 * @engine: Engine to cleanup. 1548 * 1549 * This cleans up everything created by the common helpers. 1550 */ 1551 void intel_engine_cleanup_common(struct intel_engine_cs *engine) 1552 { 1553 GEM_BUG_ON(!list_empty(&engine->sched_engine->requests)); 1554 1555 i915_sched_engine_put(engine->sched_engine); 1556 intel_breadcrumbs_put(engine->breadcrumbs); 1557 1558 intel_engine_fini_retire(engine); 1559 intel_engine_cleanup_cmd_parser(engine); 1560 1561 if (engine->default_state) 1562 uao_detach(engine->default_state); 1563 1564 if (engine->kernel_context) 1565 intel_engine_destroy_pinned_context(engine->kernel_context); 1566 1567 GEM_BUG_ON(!llist_empty(&engine->barrier_tasks)); 1568 cleanup_status_page(engine); 1569 1570 intel_wa_list_free(&engine->ctx_wa_list); 1571 intel_wa_list_free(&engine->wa_list); 1572 intel_wa_list_free(&engine->whitelist); 1573 } 1574 1575 /** 1576 * intel_engine_resume - re-initializes the HW state of the engine 1577 * @engine: Engine to resume. 1578 * 1579 * Returns zero on success or an error code on failure. 1580 */ 1581 int intel_engine_resume(struct intel_engine_cs *engine) 1582 { 1583 intel_engine_apply_workarounds(engine); 1584 intel_engine_apply_whitelist(engine); 1585 1586 return engine->resume(engine); 1587 } 1588 1589 u64 intel_engine_get_active_head(const struct intel_engine_cs *engine) 1590 { 1591 struct drm_i915_private *i915 = engine->i915; 1592 1593 u64 acthd; 1594 1595 if (GRAPHICS_VER(i915) >= 8) 1596 acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW); 1597 else if (GRAPHICS_VER(i915) >= 4) 1598 acthd = ENGINE_READ(engine, RING_ACTHD); 1599 else 1600 acthd = ENGINE_READ(engine, ACTHD); 1601 1602 return acthd; 1603 } 1604 1605 u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine) 1606 { 1607 u64 bbaddr; 1608 1609 if (GRAPHICS_VER(engine->i915) >= 8) 1610 bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW); 1611 else 1612 bbaddr = ENGINE_READ(engine, RING_BBADDR); 1613 1614 return bbaddr; 1615 } 1616 1617 static unsigned long stop_timeout(const struct intel_engine_cs *engine) 1618 { 1619 if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */ 1620 return 0; 1621 1622 /* 1623 * If we are doing a normal GPU reset, we can take our time and allow 1624 * the engine to quiesce. We've stopped submission to the engine, and 1625 * if we wait long enough an innocent context should complete and 1626 * leave the engine idle. So they should not be caught unaware by 1627 * the forthcoming GPU reset (which usually follows the stop_cs)! 1628 */ 1629 return READ_ONCE(engine->props.stop_timeout_ms); 1630 } 1631 1632 static int __intel_engine_stop_cs(struct intel_engine_cs *engine, 1633 int fast_timeout_us, 1634 int slow_timeout_ms) 1635 { 1636 struct intel_uncore *uncore = engine->uncore; 1637 const i915_reg_t mode = RING_MI_MODE(engine->mmio_base); 1638 int err; 1639 1640 intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING)); 1641 1642 /* 1643 * Wa_22011802037: Prior to doing a reset, ensure CS is 1644 * stopped, set ring stop bit and prefetch disable bit to halt CS 1645 */ 1646 if (intel_engine_reset_needs_wa_22011802037(engine->gt)) 1647 intel_uncore_write_fw(uncore, RING_MODE_GEN7(engine->mmio_base), 1648 _MASKED_BIT_ENABLE(GEN12_GFX_PREFETCH_DISABLE)); 1649 1650 err = __intel_wait_for_register_fw(engine->uncore, mode, 1651 MODE_IDLE, MODE_IDLE, 1652 fast_timeout_us, 1653 slow_timeout_ms, 1654 NULL); 1655 1656 /* A final mmio read to let GPU writes be hopefully flushed to memory */ 1657 intel_uncore_posting_read_fw(uncore, mode); 1658 return err; 1659 } 1660 1661 int intel_engine_stop_cs(struct intel_engine_cs *engine) 1662 { 1663 int err = 0; 1664 1665 if (GRAPHICS_VER(engine->i915) < 3) 1666 return -ENODEV; 1667 1668 ENGINE_TRACE(engine, "\n"); 1669 /* 1670 * TODO: Find out why occasionally stopping the CS times out. Seen 1671 * especially with gem_eio tests. 1672 * 1673 * Occasionally trying to stop the cs times out, but does not adversely 1674 * affect functionality. The timeout is set as a config parameter that 1675 * defaults to 100ms. In most cases the follow up operation is to wait 1676 * for pending MI_FORCE_WAKES. The assumption is that this timeout is 1677 * sufficient for any pending MI_FORCEWAKEs to complete. Once root 1678 * caused, the caller must check and handle the return from this 1679 * function. 1680 */ 1681 if (__intel_engine_stop_cs(engine, 1000, stop_timeout(engine))) { 1682 ENGINE_TRACE(engine, 1683 "timed out on STOP_RING -> IDLE; HEAD:%04x, TAIL:%04x\n", 1684 ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR, 1685 ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR); 1686 1687 /* 1688 * Sometimes we observe that the idle flag is not 1689 * set even though the ring is empty. So double 1690 * check before giving up. 1691 */ 1692 if ((ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR) != 1693 (ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR)) 1694 err = -ETIMEDOUT; 1695 } 1696 1697 return err; 1698 } 1699 1700 void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine) 1701 { 1702 ENGINE_TRACE(engine, "\n"); 1703 1704 ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING)); 1705 } 1706 1707 static u32 __cs_pending_mi_force_wakes(struct intel_engine_cs *engine) 1708 { 1709 static const i915_reg_t _reg[I915_NUM_ENGINES] = { 1710 [RCS0] = MSG_IDLE_CS, 1711 [BCS0] = MSG_IDLE_BCS, 1712 [VCS0] = MSG_IDLE_VCS0, 1713 [VCS1] = MSG_IDLE_VCS1, 1714 [VCS2] = MSG_IDLE_VCS2, 1715 [VCS3] = MSG_IDLE_VCS3, 1716 [VCS4] = MSG_IDLE_VCS4, 1717 [VCS5] = MSG_IDLE_VCS5, 1718 [VCS6] = MSG_IDLE_VCS6, 1719 [VCS7] = MSG_IDLE_VCS7, 1720 [VECS0] = MSG_IDLE_VECS0, 1721 [VECS1] = MSG_IDLE_VECS1, 1722 [VECS2] = MSG_IDLE_VECS2, 1723 [VECS3] = MSG_IDLE_VECS3, 1724 [CCS0] = MSG_IDLE_CS, 1725 [CCS1] = MSG_IDLE_CS, 1726 [CCS2] = MSG_IDLE_CS, 1727 [CCS3] = MSG_IDLE_CS, 1728 }; 1729 u32 val; 1730 1731 if (!_reg[engine->id].reg) 1732 return 0; 1733 1734 val = intel_uncore_read(engine->uncore, _reg[engine->id]); 1735 1736 /* bits[29:25] & bits[13:9] >> shift */ 1737 return (val & (val >> 16) & MSG_IDLE_FW_MASK) >> MSG_IDLE_FW_SHIFT; 1738 } 1739 1740 static void __gpm_wait_for_fw_complete(struct intel_gt *gt, u32 fw_mask) 1741 { 1742 int ret; 1743 1744 /* Ensure GPM receives fw up/down after CS is stopped */ 1745 udelay(1); 1746 1747 /* Wait for forcewake request to complete in GPM */ 1748 ret = __intel_wait_for_register_fw(gt->uncore, 1749 GEN9_PWRGT_DOMAIN_STATUS, 1750 fw_mask, fw_mask, 5000, 0, NULL); 1751 1752 /* Ensure CS receives fw ack from GPM */ 1753 udelay(1); 1754 1755 if (ret) 1756 GT_TRACE(gt, "Failed to complete pending forcewake %d\n", ret); 1757 } 1758 1759 /* 1760 * Wa_22011802037:gen12: In addition to stopping the cs, we need to wait for any 1761 * pending MI_FORCE_WAKEUP requests that the CS has initiated to complete. The 1762 * pending status is indicated by bits[13:9] (masked by bits[29:25]) in the 1763 * MSG_IDLE register. There's one MSG_IDLE register per reset domain. Since we 1764 * are concerned only with the gt reset here, we use a logical OR of pending 1765 * forcewakeups from all reset domains and then wait for them to complete by 1766 * querying PWRGT_DOMAIN_STATUS. 1767 */ 1768 void intel_engine_wait_for_pending_mi_fw(struct intel_engine_cs *engine) 1769 { 1770 u32 fw_pending = __cs_pending_mi_force_wakes(engine); 1771 1772 if (fw_pending) 1773 __gpm_wait_for_fw_complete(engine->gt, fw_pending); 1774 } 1775 1776 /* NB: please notice the memset */ 1777 void intel_engine_get_instdone(const struct intel_engine_cs *engine, 1778 struct intel_instdone *instdone) 1779 { 1780 struct drm_i915_private *i915 = engine->i915; 1781 struct intel_uncore *uncore = engine->uncore; 1782 u32 mmio_base = engine->mmio_base; 1783 int slice; 1784 int subslice; 1785 int iter; 1786 1787 memset(instdone, 0, sizeof(*instdone)); 1788 1789 if (GRAPHICS_VER(i915) >= 8) { 1790 instdone->instdone = 1791 intel_uncore_read(uncore, RING_INSTDONE(mmio_base)); 1792 1793 if (engine->id != RCS0) 1794 return; 1795 1796 instdone->slice_common = 1797 intel_uncore_read(uncore, GEN7_SC_INSTDONE); 1798 if (GRAPHICS_VER(i915) >= 12) { 1799 instdone->slice_common_extra[0] = 1800 intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA); 1801 instdone->slice_common_extra[1] = 1802 intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA2); 1803 } 1804 1805 for_each_ss_steering(iter, engine->gt, slice, subslice) { 1806 instdone->sampler[slice][subslice] = 1807 intel_gt_mcr_read(engine->gt, 1808 GEN8_SAMPLER_INSTDONE, 1809 slice, subslice); 1810 instdone->row[slice][subslice] = 1811 intel_gt_mcr_read(engine->gt, 1812 GEN8_ROW_INSTDONE, 1813 slice, subslice); 1814 } 1815 1816 if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 55)) { 1817 for_each_ss_steering(iter, engine->gt, slice, subslice) 1818 instdone->geom_svg[slice][subslice] = 1819 intel_gt_mcr_read(engine->gt, 1820 XEHPG_INSTDONE_GEOM_SVG, 1821 slice, subslice); 1822 } 1823 } else if (GRAPHICS_VER(i915) >= 7) { 1824 instdone->instdone = 1825 intel_uncore_read(uncore, RING_INSTDONE(mmio_base)); 1826 1827 if (engine->id != RCS0) 1828 return; 1829 1830 instdone->slice_common = 1831 intel_uncore_read(uncore, GEN7_SC_INSTDONE); 1832 instdone->sampler[0][0] = 1833 intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE); 1834 instdone->row[0][0] = 1835 intel_uncore_read(uncore, GEN7_ROW_INSTDONE); 1836 } else if (GRAPHICS_VER(i915) >= 4) { 1837 instdone->instdone = 1838 intel_uncore_read(uncore, RING_INSTDONE(mmio_base)); 1839 if (engine->id == RCS0) 1840 /* HACK: Using the wrong struct member */ 1841 instdone->slice_common = 1842 intel_uncore_read(uncore, GEN4_INSTDONE1); 1843 } else { 1844 instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE); 1845 } 1846 } 1847 1848 static bool ring_is_idle(struct intel_engine_cs *engine) 1849 { 1850 bool idle = true; 1851 1852 if (I915_SELFTEST_ONLY(!engine->mmio_base)) 1853 return true; 1854 1855 if (!intel_engine_pm_get_if_awake(engine)) 1856 return true; 1857 1858 /* First check that no commands are left in the ring */ 1859 if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) != 1860 (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR)) 1861 idle = false; 1862 1863 /* No bit for gen2, so assume the CS parser is idle */ 1864 if (GRAPHICS_VER(engine->i915) > 2 && 1865 !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE)) 1866 idle = false; 1867 1868 intel_engine_pm_put(engine); 1869 1870 return idle; 1871 } 1872 1873 void __intel_engine_flush_submission(struct intel_engine_cs *engine, bool sync) 1874 { 1875 struct tasklet_struct *t = &engine->sched_engine->tasklet; 1876 1877 if (!t->callback) 1878 return; 1879 1880 local_bh_disable(); 1881 if (tasklet_trylock(t)) { 1882 /* Must wait for any GPU reset in progress. */ 1883 if (__tasklet_is_enabled(t)) 1884 t->callback(t); 1885 tasklet_unlock(t); 1886 } 1887 local_bh_enable(); 1888 1889 /* Synchronise and wait for the tasklet on another CPU */ 1890 if (sync) 1891 tasklet_unlock_wait(t); 1892 } 1893 1894 /** 1895 * intel_engine_is_idle() - Report if the engine has finished process all work 1896 * @engine: the intel_engine_cs 1897 * 1898 * Return true if there are no requests pending, nothing left to be submitted 1899 * to hardware, and that the engine is idle. 1900 */ 1901 bool intel_engine_is_idle(struct intel_engine_cs *engine) 1902 { 1903 /* More white lies, if wedged, hw state is inconsistent */ 1904 if (intel_gt_is_wedged(engine->gt)) 1905 return true; 1906 1907 if (!intel_engine_pm_is_awake(engine)) 1908 return true; 1909 1910 /* Waiting to drain ELSP? */ 1911 intel_synchronize_hardirq(engine->i915); 1912 intel_engine_flush_submission(engine); 1913 1914 /* ELSP is empty, but there are ready requests? E.g. after reset */ 1915 if (!i915_sched_engine_is_empty(engine->sched_engine)) 1916 return false; 1917 1918 /* Ring stopped? */ 1919 return ring_is_idle(engine); 1920 } 1921 1922 bool intel_engines_are_idle(struct intel_gt *gt) 1923 { 1924 struct intel_engine_cs *engine; 1925 enum intel_engine_id id; 1926 1927 /* 1928 * If the driver is wedged, HW state may be very inconsistent and 1929 * report that it is still busy, even though we have stopped using it. 1930 */ 1931 if (intel_gt_is_wedged(gt)) 1932 return true; 1933 1934 /* Already parked (and passed an idleness test); must still be idle */ 1935 if (!READ_ONCE(gt->awake)) 1936 return true; 1937 1938 for_each_engine(engine, gt, id) { 1939 if (!intel_engine_is_idle(engine)) 1940 return false; 1941 } 1942 1943 return true; 1944 } 1945 1946 bool intel_engine_irq_enable(struct intel_engine_cs *engine) 1947 { 1948 if (!engine->irq_enable) 1949 return false; 1950 1951 /* Caller disables interrupts */ 1952 spin_lock(engine->gt->irq_lock); 1953 engine->irq_enable(engine); 1954 spin_unlock(engine->gt->irq_lock); 1955 1956 return true; 1957 } 1958 1959 void intel_engine_irq_disable(struct intel_engine_cs *engine) 1960 { 1961 if (!engine->irq_disable) 1962 return; 1963 1964 /* Caller disables interrupts */ 1965 spin_lock(engine->gt->irq_lock); 1966 engine->irq_disable(engine); 1967 spin_unlock(engine->gt->irq_lock); 1968 } 1969 1970 void intel_engines_reset_default_submission(struct intel_gt *gt) 1971 { 1972 struct intel_engine_cs *engine; 1973 enum intel_engine_id id; 1974 1975 for_each_engine(engine, gt, id) { 1976 if (engine->sanitize) 1977 engine->sanitize(engine); 1978 1979 engine->set_default_submission(engine); 1980 } 1981 } 1982 1983 bool intel_engine_can_store_dword(struct intel_engine_cs *engine) 1984 { 1985 switch (GRAPHICS_VER(engine->i915)) { 1986 case 2: 1987 return false; /* uses physical not virtual addresses */ 1988 case 3: 1989 /* maybe only uses physical not virtual addresses */ 1990 return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915)); 1991 case 4: 1992 return !IS_I965G(engine->i915); /* who knows! */ 1993 case 6: 1994 return engine->class != VIDEO_DECODE_CLASS; /* b0rked */ 1995 default: 1996 return true; 1997 } 1998 } 1999 2000 static struct intel_timeline *get_timeline(struct i915_request *rq) 2001 { 2002 struct intel_timeline *tl; 2003 2004 /* 2005 * Even though we are holding the engine->sched_engine->lock here, there 2006 * is no control over the submission queue per-se and we are 2007 * inspecting the active state at a random point in time, with an 2008 * unknown queue. Play safe and make sure the timeline remains valid. 2009 * (Only being used for pretty printing, one extra kref shouldn't 2010 * cause a camel stampede!) 2011 */ 2012 rcu_read_lock(); 2013 tl = rcu_dereference(rq->timeline); 2014 if (!kref_get_unless_zero(&tl->kref)) 2015 tl = NULL; 2016 rcu_read_unlock(); 2017 2018 return tl; 2019 } 2020 2021 static int print_ring(char *buf, int sz, struct i915_request *rq) 2022 { 2023 int len = 0; 2024 2025 if (!i915_request_signaled(rq)) { 2026 struct intel_timeline *tl = get_timeline(rq); 2027 2028 len = scnprintf(buf, sz, 2029 "ring:{start:%08x, hwsp:%08x, seqno:%08x, runtime:%llums}, ", 2030 i915_ggtt_offset(rq->ring->vma), 2031 tl ? tl->hwsp_offset : 0, 2032 hwsp_seqno(rq), 2033 DIV_ROUND_CLOSEST_ULL(intel_context_get_total_runtime_ns(rq->context), 2034 1000 * 1000)); 2035 2036 if (tl) 2037 intel_timeline_put(tl); 2038 } 2039 2040 return len; 2041 } 2042 2043 static void hexdump(struct drm_printer *m, const void *buf, size_t len) 2044 { 2045 STUB(); 2046 #ifdef notyet 2047 const size_t rowsize = 8 * sizeof(u32); 2048 const void *prev = NULL; 2049 bool skip = false; 2050 size_t pos; 2051 2052 for (pos = 0; pos < len; pos += rowsize) { 2053 char line[128]; 2054 2055 if (prev && !memcmp(prev, buf + pos, rowsize)) { 2056 if (!skip) { 2057 drm_printf(m, "*\n"); 2058 skip = true; 2059 } 2060 continue; 2061 } 2062 2063 WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos, 2064 rowsize, sizeof(u32), 2065 line, sizeof(line), 2066 false) >= sizeof(line)); 2067 drm_printf(m, "[%04zx] %s\n", pos, line); 2068 2069 prev = buf + pos; 2070 skip = false; 2071 } 2072 #endif 2073 } 2074 2075 static const char *repr_timer(const struct timeout *t) 2076 { 2077 if (!READ_ONCE(t->to_time)) 2078 return "inactive"; 2079 2080 if (timer_pending(t)) 2081 return "active"; 2082 2083 return "expired"; 2084 } 2085 2086 static void intel_engine_print_registers(struct intel_engine_cs *engine, 2087 struct drm_printer *m) 2088 { 2089 struct drm_i915_private *i915 = engine->i915; 2090 struct intel_engine_execlists * const execlists = &engine->execlists; 2091 u64 addr; 2092 2093 if (engine->id == RENDER_CLASS && IS_GRAPHICS_VER(i915, 4, 7)) 2094 drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID)); 2095 if (HAS_EXECLISTS(i915)) { 2096 drm_printf(m, "\tEL_STAT_HI: 0x%08x\n", 2097 ENGINE_READ(engine, RING_EXECLIST_STATUS_HI)); 2098 drm_printf(m, "\tEL_STAT_LO: 0x%08x\n", 2099 ENGINE_READ(engine, RING_EXECLIST_STATUS_LO)); 2100 } 2101 drm_printf(m, "\tRING_START: 0x%08x\n", 2102 ENGINE_READ(engine, RING_START)); 2103 drm_printf(m, "\tRING_HEAD: 0x%08x\n", 2104 ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR); 2105 drm_printf(m, "\tRING_TAIL: 0x%08x\n", 2106 ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR); 2107 drm_printf(m, "\tRING_CTL: 0x%08x%s\n", 2108 ENGINE_READ(engine, RING_CTL), 2109 ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : ""); 2110 if (GRAPHICS_VER(engine->i915) > 2) { 2111 drm_printf(m, "\tRING_MODE: 0x%08x%s\n", 2112 ENGINE_READ(engine, RING_MI_MODE), 2113 ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : ""); 2114 } 2115 2116 if (GRAPHICS_VER(i915) >= 6) { 2117 drm_printf(m, "\tRING_IMR: 0x%08x\n", 2118 ENGINE_READ(engine, RING_IMR)); 2119 drm_printf(m, "\tRING_ESR: 0x%08x\n", 2120 ENGINE_READ(engine, RING_ESR)); 2121 drm_printf(m, "\tRING_EMR: 0x%08x\n", 2122 ENGINE_READ(engine, RING_EMR)); 2123 drm_printf(m, "\tRING_EIR: 0x%08x\n", 2124 ENGINE_READ(engine, RING_EIR)); 2125 } 2126 2127 addr = intel_engine_get_active_head(engine); 2128 drm_printf(m, "\tACTHD: 0x%08x_%08x\n", 2129 upper_32_bits(addr), lower_32_bits(addr)); 2130 addr = intel_engine_get_last_batch_head(engine); 2131 drm_printf(m, "\tBBADDR: 0x%08x_%08x\n", 2132 upper_32_bits(addr), lower_32_bits(addr)); 2133 if (GRAPHICS_VER(i915) >= 8) 2134 addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW); 2135 else if (GRAPHICS_VER(i915) >= 4) 2136 addr = ENGINE_READ(engine, RING_DMA_FADD); 2137 else 2138 addr = ENGINE_READ(engine, DMA_FADD_I8XX); 2139 drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n", 2140 upper_32_bits(addr), lower_32_bits(addr)); 2141 if (GRAPHICS_VER(i915) >= 4) { 2142 drm_printf(m, "\tIPEIR: 0x%08x\n", 2143 ENGINE_READ(engine, RING_IPEIR)); 2144 drm_printf(m, "\tIPEHR: 0x%08x\n", 2145 ENGINE_READ(engine, RING_IPEHR)); 2146 } else { 2147 drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR)); 2148 drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR)); 2149 } 2150 2151 if (HAS_EXECLISTS(i915) && !intel_engine_uses_guc(engine)) { 2152 struct i915_request * const *port, *rq; 2153 const u32 *hws = 2154 &engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX]; 2155 const u8 num_entries = execlists->csb_size; 2156 unsigned int idx; 2157 u8 read, write; 2158 2159 drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n", 2160 str_yes_no(test_bit(TASKLET_STATE_SCHED, &engine->sched_engine->tasklet.state)), 2161 str_enabled_disabled(!atomic_read(&engine->sched_engine->tasklet.count)), 2162 repr_timer(&engine->execlists.preempt), 2163 repr_timer(&engine->execlists.timer)); 2164 2165 read = execlists->csb_head; 2166 write = READ_ONCE(*execlists->csb_write); 2167 2168 drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n", 2169 ENGINE_READ(engine, RING_EXECLIST_STATUS_LO), 2170 ENGINE_READ(engine, RING_EXECLIST_STATUS_HI), 2171 read, write, num_entries); 2172 2173 if (read >= num_entries) 2174 read = 0; 2175 if (write >= num_entries) 2176 write = 0; 2177 if (read > write) 2178 write += num_entries; 2179 while (read < write) { 2180 idx = ++read % num_entries; 2181 drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n", 2182 idx, hws[idx * 2], hws[idx * 2 + 1]); 2183 } 2184 2185 i915_sched_engine_active_lock_bh(engine->sched_engine); 2186 rcu_read_lock(); 2187 for (port = execlists->active; (rq = *port); port++) { 2188 char hdr[160]; 2189 int len; 2190 2191 len = scnprintf(hdr, sizeof(hdr), 2192 "\t\tActive[%d]: ccid:%08x%s%s, ", 2193 (int)(port - execlists->active), 2194 rq->context->lrc.ccid, 2195 intel_context_is_closed(rq->context) ? "!" : "", 2196 intel_context_is_banned(rq->context) ? "*" : ""); 2197 len += print_ring(hdr + len, sizeof(hdr) - len, rq); 2198 scnprintf(hdr + len, sizeof(hdr) - len, "rq: "); 2199 i915_request_show(m, rq, hdr, 0); 2200 } 2201 for (port = execlists->pending; (rq = *port); port++) { 2202 char hdr[160]; 2203 int len; 2204 2205 len = scnprintf(hdr, sizeof(hdr), 2206 "\t\tPending[%d]: ccid:%08x%s%s, ", 2207 (int)(port - execlists->pending), 2208 rq->context->lrc.ccid, 2209 intel_context_is_closed(rq->context) ? "!" : "", 2210 intel_context_is_banned(rq->context) ? "*" : ""); 2211 len += print_ring(hdr + len, sizeof(hdr) - len, rq); 2212 scnprintf(hdr + len, sizeof(hdr) - len, "rq: "); 2213 i915_request_show(m, rq, hdr, 0); 2214 } 2215 rcu_read_unlock(); 2216 i915_sched_engine_active_unlock_bh(engine->sched_engine); 2217 } else if (GRAPHICS_VER(i915) > 6) { 2218 drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n", 2219 ENGINE_READ(engine, RING_PP_DIR_BASE)); 2220 drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n", 2221 ENGINE_READ(engine, RING_PP_DIR_BASE_READ)); 2222 drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n", 2223 ENGINE_READ(engine, RING_PP_DIR_DCLV)); 2224 } 2225 } 2226 2227 static void print_request_ring(struct drm_printer *m, struct i915_request *rq) 2228 { 2229 struct i915_vma_resource *vma_res = rq->batch_res; 2230 void *ring; 2231 int size; 2232 2233 drm_printf(m, 2234 "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n", 2235 rq->head, rq->postfix, rq->tail, 2236 vma_res ? upper_32_bits(vma_res->start) : ~0u, 2237 vma_res ? lower_32_bits(vma_res->start) : ~0u); 2238 2239 size = rq->tail - rq->head; 2240 if (rq->tail < rq->head) 2241 size += rq->ring->size; 2242 2243 ring = kmalloc(size, GFP_ATOMIC); 2244 if (ring) { 2245 const void *vaddr = rq->ring->vaddr; 2246 unsigned int head = rq->head; 2247 unsigned int len = 0; 2248 2249 if (rq->tail < head) { 2250 len = rq->ring->size - head; 2251 memcpy(ring, vaddr + head, len); 2252 head = 0; 2253 } 2254 memcpy(ring + len, vaddr + head, size - len); 2255 2256 hexdump(m, ring, size); 2257 kfree(ring); 2258 } 2259 } 2260 2261 static unsigned long read_ul(void *p, size_t x) 2262 { 2263 return *(unsigned long *)(p + x); 2264 } 2265 2266 static void print_properties(struct intel_engine_cs *engine, 2267 struct drm_printer *m) 2268 { 2269 static const struct pmap { 2270 size_t offset; 2271 const char *name; 2272 } props[] = { 2273 #define P(x) { \ 2274 .offset = offsetof(typeof(engine->props), x), \ 2275 .name = #x \ 2276 } 2277 P(heartbeat_interval_ms), 2278 P(max_busywait_duration_ns), 2279 P(preempt_timeout_ms), 2280 P(stop_timeout_ms), 2281 P(timeslice_duration_ms), 2282 2283 {}, 2284 #undef P 2285 }; 2286 const struct pmap *p; 2287 2288 drm_printf(m, "\tProperties:\n"); 2289 for (p = props; p->name; p++) 2290 drm_printf(m, "\t\t%s: %lu [default %lu]\n", 2291 p->name, 2292 read_ul(&engine->props, p->offset), 2293 read_ul(&engine->defaults, p->offset)); 2294 } 2295 2296 static void engine_dump_request(struct i915_request *rq, struct drm_printer *m, const char *msg) 2297 { 2298 struct intel_timeline *tl = get_timeline(rq); 2299 2300 i915_request_show(m, rq, msg, 0); 2301 2302 drm_printf(m, "\t\tring->start: 0x%08x\n", 2303 i915_ggtt_offset(rq->ring->vma)); 2304 drm_printf(m, "\t\tring->head: 0x%08x\n", 2305 rq->ring->head); 2306 drm_printf(m, "\t\tring->tail: 0x%08x\n", 2307 rq->ring->tail); 2308 drm_printf(m, "\t\tring->emit: 0x%08x\n", 2309 rq->ring->emit); 2310 drm_printf(m, "\t\tring->space: 0x%08x\n", 2311 rq->ring->space); 2312 2313 if (tl) { 2314 drm_printf(m, "\t\tring->hwsp: 0x%08x\n", 2315 tl->hwsp_offset); 2316 intel_timeline_put(tl); 2317 } 2318 2319 print_request_ring(m, rq); 2320 2321 if (rq->context->lrc_reg_state) { 2322 drm_printf(m, "Logical Ring Context:\n"); 2323 hexdump(m, rq->context->lrc_reg_state, PAGE_SIZE); 2324 } 2325 } 2326 2327 void intel_engine_dump_active_requests(struct list_head *requests, 2328 struct i915_request *hung_rq, 2329 struct drm_printer *m) 2330 { 2331 struct i915_request *rq; 2332 const char *msg; 2333 enum i915_request_state state; 2334 2335 list_for_each_entry(rq, requests, sched.link) { 2336 if (rq == hung_rq) 2337 continue; 2338 2339 state = i915_test_request_state(rq); 2340 if (state < I915_REQUEST_QUEUED) 2341 continue; 2342 2343 if (state == I915_REQUEST_ACTIVE) 2344 msg = "\t\tactive on engine"; 2345 else 2346 msg = "\t\tactive in queue"; 2347 2348 engine_dump_request(rq, m, msg); 2349 } 2350 } 2351 2352 static void engine_dump_active_requests(struct intel_engine_cs *engine, 2353 struct drm_printer *m) 2354 { 2355 struct intel_context *hung_ce = NULL; 2356 struct i915_request *hung_rq = NULL; 2357 2358 /* 2359 * No need for an engine->irq_seqno_barrier() before the seqno reads. 2360 * The GPU is still running so requests are still executing and any 2361 * hardware reads will be out of date by the time they are reported. 2362 * But the intention here is just to report an instantaneous snapshot 2363 * so that's fine. 2364 */ 2365 intel_engine_get_hung_entity(engine, &hung_ce, &hung_rq); 2366 2367 drm_printf(m, "\tRequests:\n"); 2368 2369 if (hung_rq) 2370 engine_dump_request(hung_rq, m, "\t\thung"); 2371 else if (hung_ce) 2372 drm_printf(m, "\t\tGot hung ce but no hung rq!\n"); 2373 2374 if (intel_uc_uses_guc_submission(&engine->gt->uc)) 2375 intel_guc_dump_active_requests(engine, hung_rq, m); 2376 else 2377 intel_execlists_dump_active_requests(engine, hung_rq, m); 2378 2379 if (hung_rq) 2380 i915_request_put(hung_rq); 2381 } 2382 2383 void intel_engine_dump(struct intel_engine_cs *engine, 2384 struct drm_printer *m, 2385 const char *header, ...) 2386 { 2387 struct i915_gpu_error * const error = &engine->i915->gpu_error; 2388 struct i915_request *rq; 2389 intel_wakeref_t wakeref; 2390 ktime_t dummy; 2391 2392 if (header) { 2393 va_list ap; 2394 2395 va_start(ap, header); 2396 drm_vprintf(m, header, &ap); 2397 va_end(ap); 2398 } 2399 2400 if (intel_gt_is_wedged(engine->gt)) 2401 drm_printf(m, "*** WEDGED ***\n"); 2402 2403 drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count)); 2404 drm_printf(m, "\tBarriers?: %s\n", 2405 str_yes_no(!llist_empty(&engine->barrier_tasks))); 2406 drm_printf(m, "\tLatency: %luus\n", 2407 ewma__engine_latency_read(&engine->latency)); 2408 if (intel_engine_supports_stats(engine)) 2409 drm_printf(m, "\tRuntime: %llums\n", 2410 ktime_to_ms(intel_engine_get_busy_time(engine, 2411 &dummy))); 2412 drm_printf(m, "\tForcewake: %x domains, %d active\n", 2413 engine->fw_domain, READ_ONCE(engine->fw_active)); 2414 2415 rcu_read_lock(); 2416 rq = READ_ONCE(engine->heartbeat.systole); 2417 if (rq) 2418 drm_printf(m, "\tHeartbeat: %d ms ago\n", 2419 jiffies_to_msecs(jiffies - rq->emitted_jiffies)); 2420 rcu_read_unlock(); 2421 drm_printf(m, "\tReset count: %d (global %d)\n", 2422 i915_reset_engine_count(error, engine), 2423 i915_reset_count(error)); 2424 print_properties(engine, m); 2425 2426 engine_dump_active_requests(engine, m); 2427 2428 drm_printf(m, "\tMMIO base: 0x%08x\n", engine->mmio_base); 2429 wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm); 2430 if (wakeref) { 2431 intel_engine_print_registers(engine, m); 2432 intel_runtime_pm_put(engine->uncore->rpm, wakeref); 2433 } else { 2434 drm_printf(m, "\tDevice is asleep; skipping register dump\n"); 2435 } 2436 2437 intel_execlists_show_requests(engine, m, i915_request_show, 8); 2438 2439 drm_printf(m, "HWSP:\n"); 2440 hexdump(m, engine->status_page.addr, PAGE_SIZE); 2441 2442 drm_printf(m, "Idle? %s\n", str_yes_no(intel_engine_is_idle(engine))); 2443 2444 intel_engine_print_breadcrumbs(engine, m); 2445 } 2446 2447 /** 2448 * intel_engine_get_busy_time() - Return current accumulated engine busyness 2449 * @engine: engine to report on 2450 * @now: monotonic timestamp of sampling 2451 * 2452 * Returns accumulated time @engine was busy since engine stats were enabled. 2453 */ 2454 ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine, ktime_t *now) 2455 { 2456 return engine->busyness(engine, now); 2457 } 2458 2459 struct intel_context * 2460 intel_engine_create_virtual(struct intel_engine_cs **siblings, 2461 unsigned int count, unsigned long flags) 2462 { 2463 if (count == 0) 2464 return ERR_PTR(-EINVAL); 2465 2466 if (count == 1 && !(flags & FORCE_VIRTUAL)) 2467 return intel_context_create(siblings[0]); 2468 2469 GEM_BUG_ON(!siblings[0]->cops->create_virtual); 2470 return siblings[0]->cops->create_virtual(siblings, count, flags); 2471 } 2472 2473 static struct i915_request *engine_execlist_find_hung_request(struct intel_engine_cs *engine) 2474 { 2475 struct i915_request *request, *active = NULL; 2476 2477 /* 2478 * This search does not work in GuC submission mode. However, the GuC 2479 * will report the hanging context directly to the driver itself. So 2480 * the driver should never get here when in GuC mode. 2481 */ 2482 GEM_BUG_ON(intel_uc_uses_guc_submission(&engine->gt->uc)); 2483 2484 /* 2485 * We are called by the error capture, reset and to dump engine 2486 * state at random points in time. In particular, note that neither is 2487 * crucially ordered with an interrupt. After a hang, the GPU is dead 2488 * and we assume that no more writes can happen (we waited long enough 2489 * for all writes that were in transaction to be flushed) - adding an 2490 * extra delay for a recent interrupt is pointless. Hence, we do 2491 * not need an engine->irq_seqno_barrier() before the seqno reads. 2492 * At all other times, we must assume the GPU is still running, but 2493 * we only care about the snapshot of this moment. 2494 */ 2495 lockdep_assert_held(&engine->sched_engine->lock); 2496 2497 rcu_read_lock(); 2498 request = execlists_active(&engine->execlists); 2499 if (request) { 2500 struct intel_timeline *tl = request->context->timeline; 2501 2502 list_for_each_entry_from_reverse(request, &tl->requests, link) { 2503 if (__i915_request_is_complete(request)) 2504 break; 2505 2506 active = request; 2507 } 2508 } 2509 rcu_read_unlock(); 2510 if (active) 2511 return active; 2512 2513 list_for_each_entry(request, &engine->sched_engine->requests, 2514 sched.link) { 2515 if (i915_test_request_state(request) != I915_REQUEST_ACTIVE) 2516 continue; 2517 2518 active = request; 2519 break; 2520 } 2521 2522 return active; 2523 } 2524 2525 void intel_engine_get_hung_entity(struct intel_engine_cs *engine, 2526 struct intel_context **ce, struct i915_request **rq) 2527 { 2528 unsigned long flags; 2529 2530 *ce = intel_engine_get_hung_context(engine); 2531 if (*ce) { 2532 intel_engine_clear_hung_context(engine); 2533 2534 *rq = intel_context_get_active_request(*ce); 2535 return; 2536 } 2537 2538 /* 2539 * Getting here with GuC enabled means it is a forced error capture 2540 * with no actual hang. So, no need to attempt the execlist search. 2541 */ 2542 if (intel_uc_uses_guc_submission(&engine->gt->uc)) 2543 return; 2544 2545 spin_lock_irqsave(&engine->sched_engine->lock, flags); 2546 *rq = engine_execlist_find_hung_request(engine); 2547 if (*rq) 2548 *rq = i915_request_get_rcu(*rq); 2549 spin_unlock_irqrestore(&engine->sched_engine->lock, flags); 2550 } 2551 2552 void xehp_enable_ccs_engines(struct intel_engine_cs *engine) 2553 { 2554 /* 2555 * If there are any non-fused-off CCS engines, we need to enable CCS 2556 * support in the RCU_MODE register. This only needs to be done once, 2557 * so for simplicity we'll take care of this in the RCS engine's 2558 * resume handler; since the RCS and all CCS engines belong to the 2559 * same reset domain and are reset together, this will also take care 2560 * of re-applying the setting after i915-triggered resets. 2561 */ 2562 if (!CCS_MASK(engine->gt)) 2563 return; 2564 2565 intel_uncore_write(engine->uncore, GEN12_RCU_MODE, 2566 _MASKED_BIT_ENABLE(GEN12_RCU_MODE_CCS_ENABLE)); 2567 } 2568 2569 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 2570 #include "mock_engine.c" 2571 #include "selftest_engine.c" 2572 #include "selftest_engine_cs.c" 2573 #endif 2574