1 /* 2 * Copyright © 2016 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 */ 24 25 #include <drm/drm_print.h> 26 27 #include "gem/i915_gem_context.h" 28 29 #include "i915_drv.h" 30 31 #include "intel_breadcrumbs.h" 32 #include "intel_context.h" 33 #include "intel_engine.h" 34 #include "intel_engine_pm.h" 35 #include "intel_engine_user.h" 36 #include "intel_gt.h" 37 #include "intel_gt_requests.h" 38 #include "intel_gt_pm.h" 39 #include "intel_lrc.h" 40 #include "intel_reset.h" 41 #include "intel_ring.h" 42 43 /* Haswell does have the CXT_SIZE register however it does not appear to be 44 * valid. Now, docs explain in dwords what is in the context object. The full 45 * size is 70720 bytes, however, the power context and execlist context will 46 * never be saved (power context is stored elsewhere, and execlists don't work 47 * on HSW) - so the final size, including the extra state required for the 48 * Resource Streamer, is 66944 bytes, which rounds to 17 pages. 49 */ 50 #define HSW_CXT_TOTAL_SIZE (17 * PAGE_SIZE) 51 52 #define DEFAULT_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE) 53 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE) 54 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE) 55 #define GEN10_LR_CONTEXT_RENDER_SIZE (18 * PAGE_SIZE) 56 #define GEN11_LR_CONTEXT_RENDER_SIZE (14 * PAGE_SIZE) 57 58 #define GEN8_LR_CONTEXT_OTHER_SIZE ( 2 * PAGE_SIZE) 59 60 #define MAX_MMIO_BASES 3 61 struct engine_info { 62 unsigned int hw_id; 63 u8 class; 64 u8 instance; 65 /* mmio bases table *must* be sorted in reverse gen order */ 66 struct engine_mmio_base { 67 u32 gen : 8; 68 u32 base : 24; 69 } mmio_bases[MAX_MMIO_BASES]; 70 }; 71 72 static const struct engine_info intel_engines[] = { 73 [RCS0] = { 74 .hw_id = RCS0_HW, 75 .class = RENDER_CLASS, 76 .instance = 0, 77 .mmio_bases = { 78 { .gen = 1, .base = RENDER_RING_BASE } 79 }, 80 }, 81 [BCS0] = { 82 .hw_id = BCS0_HW, 83 .class = COPY_ENGINE_CLASS, 84 .instance = 0, 85 .mmio_bases = { 86 { .gen = 6, .base = BLT_RING_BASE } 87 }, 88 }, 89 [VCS0] = { 90 .hw_id = VCS0_HW, 91 .class = VIDEO_DECODE_CLASS, 92 .instance = 0, 93 .mmio_bases = { 94 { .gen = 11, .base = GEN11_BSD_RING_BASE }, 95 { .gen = 6, .base = GEN6_BSD_RING_BASE }, 96 { .gen = 4, .base = BSD_RING_BASE } 97 }, 98 }, 99 [VCS1] = { 100 .hw_id = VCS1_HW, 101 .class = VIDEO_DECODE_CLASS, 102 .instance = 1, 103 .mmio_bases = { 104 { .gen = 11, .base = GEN11_BSD2_RING_BASE }, 105 { .gen = 8, .base = GEN8_BSD2_RING_BASE } 106 }, 107 }, 108 [VCS2] = { 109 .hw_id = VCS2_HW, 110 .class = VIDEO_DECODE_CLASS, 111 .instance = 2, 112 .mmio_bases = { 113 { .gen = 11, .base = GEN11_BSD3_RING_BASE } 114 }, 115 }, 116 [VCS3] = { 117 .hw_id = VCS3_HW, 118 .class = VIDEO_DECODE_CLASS, 119 .instance = 3, 120 .mmio_bases = { 121 { .gen = 11, .base = GEN11_BSD4_RING_BASE } 122 }, 123 }, 124 [VECS0] = { 125 .hw_id = VECS0_HW, 126 .class = VIDEO_ENHANCEMENT_CLASS, 127 .instance = 0, 128 .mmio_bases = { 129 { .gen = 11, .base = GEN11_VEBOX_RING_BASE }, 130 { .gen = 7, .base = VEBOX_RING_BASE } 131 }, 132 }, 133 [VECS1] = { 134 .hw_id = VECS1_HW, 135 .class = VIDEO_ENHANCEMENT_CLASS, 136 .instance = 1, 137 .mmio_bases = { 138 { .gen = 11, .base = GEN11_VEBOX2_RING_BASE } 139 }, 140 }, 141 }; 142 143 /** 144 * intel_engine_context_size() - return the size of the context for an engine 145 * @gt: the gt 146 * @class: engine class 147 * 148 * Each engine class may require a different amount of space for a context 149 * image. 150 * 151 * Return: size (in bytes) of an engine class specific context image 152 * 153 * Note: this size includes the HWSP, which is part of the context image 154 * in LRC mode, but does not include the "shared data page" used with 155 * GuC submission. The caller should account for this if using the GuC. 156 */ 157 u32 intel_engine_context_size(struct intel_gt *gt, u8 class) 158 { 159 struct intel_uncore *uncore = gt->uncore; 160 u32 cxt_size; 161 162 BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE); 163 164 switch (class) { 165 case RENDER_CLASS: 166 switch (INTEL_GEN(gt->i915)) { 167 default: 168 MISSING_CASE(INTEL_GEN(gt->i915)); 169 return DEFAULT_LR_CONTEXT_RENDER_SIZE; 170 case 12: 171 case 11: 172 return GEN11_LR_CONTEXT_RENDER_SIZE; 173 case 10: 174 return GEN10_LR_CONTEXT_RENDER_SIZE; 175 case 9: 176 return GEN9_LR_CONTEXT_RENDER_SIZE; 177 case 8: 178 return GEN8_LR_CONTEXT_RENDER_SIZE; 179 case 7: 180 if (IS_HASWELL(gt->i915)) 181 return HSW_CXT_TOTAL_SIZE; 182 183 cxt_size = intel_uncore_read(uncore, GEN7_CXT_SIZE); 184 return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64, 185 PAGE_SIZE); 186 case 6: 187 cxt_size = intel_uncore_read(uncore, CXT_SIZE); 188 return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64, 189 PAGE_SIZE); 190 case 5: 191 case 4: 192 /* 193 * There is a discrepancy here between the size reported 194 * by the register and the size of the context layout 195 * in the docs. Both are described as authorative! 196 * 197 * The discrepancy is on the order of a few cachelines, 198 * but the total is under one page (4k), which is our 199 * minimum allocation anyway so it should all come 200 * out in the wash. 201 */ 202 cxt_size = intel_uncore_read(uncore, CXT_SIZE) + 1; 203 drm_dbg(>->i915->drm, 204 "gen%d CXT_SIZE = %d bytes [0x%08x]\n", 205 INTEL_GEN(gt->i915), cxt_size * 64, 206 cxt_size - 1); 207 return round_up(cxt_size * 64, PAGE_SIZE); 208 case 3: 209 case 2: 210 /* For the special day when i810 gets merged. */ 211 case 1: 212 return 0; 213 } 214 break; 215 default: 216 MISSING_CASE(class); 217 fallthrough; 218 case VIDEO_DECODE_CLASS: 219 case VIDEO_ENHANCEMENT_CLASS: 220 case COPY_ENGINE_CLASS: 221 if (INTEL_GEN(gt->i915) < 8) 222 return 0; 223 return GEN8_LR_CONTEXT_OTHER_SIZE; 224 } 225 } 226 227 static u32 __engine_mmio_base(struct drm_i915_private *i915, 228 const struct engine_mmio_base *bases) 229 { 230 int i; 231 232 for (i = 0; i < MAX_MMIO_BASES; i++) 233 if (INTEL_GEN(i915) >= bases[i].gen) 234 break; 235 236 GEM_BUG_ON(i == MAX_MMIO_BASES); 237 GEM_BUG_ON(!bases[i].base); 238 239 return bases[i].base; 240 } 241 242 static void __sprint_engine_name(struct intel_engine_cs *engine) 243 { 244 /* 245 * Before we know what the uABI name for this engine will be, 246 * we still would like to keep track of this engine in the debug logs. 247 * We throw in a ' here as a reminder that this isn't its final name. 248 */ 249 GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u", 250 intel_engine_class_repr(engine->class), 251 engine->instance) >= sizeof(engine->name)); 252 } 253 254 void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask) 255 { 256 /* 257 * Though they added more rings on g4x/ilk, they did not add 258 * per-engine HWSTAM until gen6. 259 */ 260 if (INTEL_GEN(engine->i915) < 6 && engine->class != RENDER_CLASS) 261 return; 262 263 if (INTEL_GEN(engine->i915) >= 3) 264 ENGINE_WRITE(engine, RING_HWSTAM, mask); 265 else 266 ENGINE_WRITE16(engine, RING_HWSTAM, mask); 267 } 268 269 static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine) 270 { 271 /* Mask off all writes into the unknown HWSP */ 272 intel_engine_set_hwsp_writemask(engine, ~0u); 273 } 274 275 static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id) 276 { 277 const struct engine_info *info = &intel_engines[id]; 278 struct drm_i915_private *i915 = gt->i915; 279 struct intel_engine_cs *engine; 280 281 BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH)); 282 BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH)); 283 284 if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine))) 285 return -EINVAL; 286 287 if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS)) 288 return -EINVAL; 289 290 if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE)) 291 return -EINVAL; 292 293 if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance])) 294 return -EINVAL; 295 296 engine = kzalloc(sizeof(*engine), GFP_KERNEL); 297 if (!engine) 298 return -ENOMEM; 299 300 BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES); 301 302 engine->id = id; 303 engine->legacy_idx = INVALID_ENGINE; 304 engine->mask = BIT(id); 305 engine->i915 = i915; 306 engine->gt = gt; 307 engine->uncore = gt->uncore; 308 engine->hw_id = engine->guc_id = info->hw_id; 309 engine->mmio_base = __engine_mmio_base(i915, info->mmio_bases); 310 311 engine->class = info->class; 312 engine->instance = info->instance; 313 __sprint_engine_name(engine); 314 315 engine->props.heartbeat_interval_ms = 316 CONFIG_DRM_I915_HEARTBEAT_INTERVAL; 317 engine->props.max_busywait_duration_ns = 318 CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT; 319 engine->props.preempt_timeout_ms = 320 CONFIG_DRM_I915_PREEMPT_TIMEOUT; 321 engine->props.stop_timeout_ms = 322 CONFIG_DRM_I915_STOP_TIMEOUT; 323 engine->props.timeslice_duration_ms = 324 CONFIG_DRM_I915_TIMESLICE_DURATION; 325 326 /* Override to uninterruptible for OpenCL workloads. */ 327 if (INTEL_GEN(i915) == 12 && engine->class == RENDER_CLASS) 328 engine->props.preempt_timeout_ms = 0; 329 330 engine->defaults = engine->props; /* never to change again */ 331 332 engine->context_size = intel_engine_context_size(gt, engine->class); 333 if (WARN_ON(engine->context_size > BIT(20))) 334 engine->context_size = 0; 335 if (engine->context_size) 336 DRIVER_CAPS(i915)->has_logical_contexts = true; 337 338 /* Nothing to do here, execute in order of dependencies */ 339 engine->schedule = NULL; 340 341 ewma__engine_latency_init(&engine->latency); 342 seqlock_init(&engine->stats.lock, IPL_TTY); 343 344 ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier); 345 346 /* Scrub mmio state on takeover */ 347 intel_engine_sanitize_mmio(engine); 348 349 gt->engine_class[info->class][info->instance] = engine; 350 gt->engine[id] = engine; 351 352 return 0; 353 } 354 355 static void __setup_engine_capabilities(struct intel_engine_cs *engine) 356 { 357 struct drm_i915_private *i915 = engine->i915; 358 359 if (engine->class == VIDEO_DECODE_CLASS) { 360 /* 361 * HEVC support is present on first engine instance 362 * before Gen11 and on all instances afterwards. 363 */ 364 if (INTEL_GEN(i915) >= 11 || 365 (INTEL_GEN(i915) >= 9 && engine->instance == 0)) 366 engine->uabi_capabilities |= 367 I915_VIDEO_CLASS_CAPABILITY_HEVC; 368 369 /* 370 * SFC block is present only on even logical engine 371 * instances. 372 */ 373 if ((INTEL_GEN(i915) >= 11 && 374 (engine->gt->info.vdbox_sfc_access & 375 BIT(engine->instance))) || 376 (INTEL_GEN(i915) >= 9 && engine->instance == 0)) 377 engine->uabi_capabilities |= 378 I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC; 379 } else if (engine->class == VIDEO_ENHANCEMENT_CLASS) { 380 if (INTEL_GEN(i915) >= 9) 381 engine->uabi_capabilities |= 382 I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC; 383 } 384 } 385 386 static void intel_setup_engine_capabilities(struct intel_gt *gt) 387 { 388 struct intel_engine_cs *engine; 389 enum intel_engine_id id; 390 391 for_each_engine(engine, gt, id) 392 __setup_engine_capabilities(engine); 393 } 394 395 /** 396 * intel_engines_release() - free the resources allocated for Command Streamers 397 * @gt: pointer to struct intel_gt 398 */ 399 void intel_engines_release(struct intel_gt *gt) 400 { 401 struct intel_engine_cs *engine; 402 enum intel_engine_id id; 403 404 /* 405 * Before we release the resources held by engine, we must be certain 406 * that the HW is no longer accessing them -- having the GPU scribble 407 * to or read from a page being used for something else causes no end 408 * of fun. 409 * 410 * The GPU should be reset by this point, but assume the worst just 411 * in case we aborted before completely initialising the engines. 412 */ 413 GEM_BUG_ON(intel_gt_pm_is_awake(gt)); 414 if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display) 415 __intel_gt_reset(gt, ALL_ENGINES); 416 417 /* Decouple the backend; but keep the layout for late GPU resets */ 418 for_each_engine(engine, gt, id) { 419 if (!engine->release) 420 continue; 421 422 intel_wakeref_wait_for_idle(&engine->wakeref); 423 GEM_BUG_ON(intel_engine_pm_is_awake(engine)); 424 425 engine->release(engine); 426 engine->release = NULL; 427 428 memset(&engine->reset, 0, sizeof(engine->reset)); 429 } 430 } 431 432 void intel_engine_free_request_pool(struct intel_engine_cs *engine) 433 { 434 if (!engine->request_pool) 435 return; 436 437 #ifdef __linux__ 438 kmem_cache_free(i915_request_slab_cache(), engine->request_pool); 439 #else 440 pool_put(i915_request_slab_cache(), engine->request_pool); 441 #endif 442 } 443 444 void intel_engines_free(struct intel_gt *gt) 445 { 446 struct intel_engine_cs *engine; 447 enum intel_engine_id id; 448 449 /* Free the requests! dma-resv keeps fences around for an eternity */ 450 rcu_barrier(); 451 452 for_each_engine(engine, gt, id) { 453 intel_engine_free_request_pool(engine); 454 kfree(engine); 455 gt->engine[id] = NULL; 456 } 457 } 458 459 /* 460 * Determine which engines are fused off in our particular hardware. 461 * Note that we have a catch-22 situation where we need to be able to access 462 * the blitter forcewake domain to read the engine fuses, but at the same time 463 * we need to know which engines are available on the system to know which 464 * forcewake domains are present. We solve this by intializing the forcewake 465 * domains based on the full engine mask in the platform capabilities before 466 * calling this function and pruning the domains for fused-off engines 467 * afterwards. 468 */ 469 static intel_engine_mask_t init_engine_mask(struct intel_gt *gt) 470 { 471 struct drm_i915_private *i915 = gt->i915; 472 struct intel_gt_info *info = >->info; 473 struct intel_uncore *uncore = gt->uncore; 474 unsigned int logical_vdbox = 0; 475 unsigned int i; 476 u32 media_fuse; 477 u16 vdbox_mask; 478 u16 vebox_mask; 479 480 info->engine_mask = INTEL_INFO(i915)->platform_engine_mask; 481 482 if (INTEL_GEN(i915) < 11) 483 return info->engine_mask; 484 485 media_fuse = ~intel_uncore_read(uncore, GEN11_GT_VEBOX_VDBOX_DISABLE); 486 487 vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK; 488 vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >> 489 GEN11_GT_VEBOX_DISABLE_SHIFT; 490 491 for (i = 0; i < I915_MAX_VCS; i++) { 492 if (!HAS_ENGINE(gt, _VCS(i))) { 493 vdbox_mask &= ~BIT(i); 494 continue; 495 } 496 497 if (!(BIT(i) & vdbox_mask)) { 498 info->engine_mask &= ~BIT(_VCS(i)); 499 drm_dbg(&i915->drm, "vcs%u fused off\n", i); 500 continue; 501 } 502 503 /* 504 * In Gen11, only even numbered logical VDBOXes are 505 * hooked up to an SFC (Scaler & Format Converter) unit. 506 * In TGL each VDBOX has access to an SFC. 507 */ 508 if (INTEL_GEN(i915) >= 12 || logical_vdbox++ % 2 == 0) 509 gt->info.vdbox_sfc_access |= BIT(i); 510 } 511 drm_dbg(&i915->drm, "vdbox enable: %04x, instances: %04lx\n", 512 vdbox_mask, VDBOX_MASK(gt)); 513 GEM_BUG_ON(vdbox_mask != VDBOX_MASK(gt)); 514 515 for (i = 0; i < I915_MAX_VECS; i++) { 516 if (!HAS_ENGINE(gt, _VECS(i))) { 517 vebox_mask &= ~BIT(i); 518 continue; 519 } 520 521 if (!(BIT(i) & vebox_mask)) { 522 info->engine_mask &= ~BIT(_VECS(i)); 523 drm_dbg(&i915->drm, "vecs%u fused off\n", i); 524 } 525 } 526 drm_dbg(&i915->drm, "vebox enable: %04x, instances: %04lx\n", 527 vebox_mask, VEBOX_MASK(gt)); 528 GEM_BUG_ON(vebox_mask != VEBOX_MASK(gt)); 529 530 return info->engine_mask; 531 } 532 533 /** 534 * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers 535 * @gt: pointer to struct intel_gt 536 * 537 * Return: non-zero if the initialization failed. 538 */ 539 int intel_engines_init_mmio(struct intel_gt *gt) 540 { 541 struct drm_i915_private *i915 = gt->i915; 542 const unsigned int engine_mask = init_engine_mask(gt); 543 unsigned int mask = 0; 544 unsigned int i; 545 int err; 546 547 drm_WARN_ON(&i915->drm, engine_mask == 0); 548 drm_WARN_ON(&i915->drm, engine_mask & 549 GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES)); 550 551 if (i915_inject_probe_failure(i915)) 552 return -ENODEV; 553 554 for (i = 0; i < ARRAY_SIZE(intel_engines); i++) { 555 if (!HAS_ENGINE(gt, i)) 556 continue; 557 558 err = intel_engine_setup(gt, i); 559 if (err) 560 goto cleanup; 561 562 mask |= BIT(i); 563 } 564 565 /* 566 * Catch failures to update intel_engines table when the new engines 567 * are added to the driver by a warning and disabling the forgotten 568 * engines. 569 */ 570 if (drm_WARN_ON(&i915->drm, mask != engine_mask)) 571 gt->info.engine_mask = mask; 572 573 gt->info.num_engines = hweight32(mask); 574 575 intel_gt_check_and_clear_faults(gt); 576 577 intel_setup_engine_capabilities(gt); 578 579 intel_uncore_prune_engine_fw_domains(gt->uncore, gt); 580 581 return 0; 582 583 cleanup: 584 intel_engines_free(gt); 585 return err; 586 } 587 588 void intel_engine_init_execlists(struct intel_engine_cs *engine) 589 { 590 struct intel_engine_execlists * const execlists = &engine->execlists; 591 592 execlists->port_mask = 1; 593 GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists))); 594 GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS); 595 596 memset(execlists->pending, 0, sizeof(execlists->pending)); 597 execlists->active = 598 memset(execlists->inflight, 0, sizeof(execlists->inflight)); 599 600 execlists->queue_priority_hint = INT_MIN; 601 execlists->queue = RB_ROOT_CACHED; 602 } 603 604 static void cleanup_status_page(struct intel_engine_cs *engine) 605 { 606 struct i915_vma *vma; 607 608 /* Prevent writes into HWSP after returning the page to the system */ 609 intel_engine_set_hwsp_writemask(engine, ~0u); 610 611 vma = fetch_and_zero(&engine->status_page.vma); 612 if (!vma) 613 return; 614 615 if (!HWS_NEEDS_PHYSICAL(engine->i915)) 616 i915_vma_unpin(vma); 617 618 i915_gem_object_unpin_map(vma->obj); 619 i915_gem_object_put(vma->obj); 620 } 621 622 static int pin_ggtt_status_page(struct intel_engine_cs *engine, 623 struct i915_vma *vma) 624 { 625 unsigned int flags; 626 627 if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt)) 628 /* 629 * On g33, we cannot place HWS above 256MiB, so 630 * restrict its pinning to the low mappable arena. 631 * Though this restriction is not documented for 632 * gen4, gen5, or byt, they also behave similarly 633 * and hang if the HWS is placed at the top of the 634 * GTT. To generalise, it appears that all !llc 635 * platforms have issues with us placing the HWS 636 * above the mappable region (even though we never 637 * actually map it). 638 */ 639 flags = PIN_MAPPABLE; 640 else 641 flags = PIN_HIGH; 642 643 return i915_ggtt_pin(vma, NULL, 0, flags); 644 } 645 646 static int init_status_page(struct intel_engine_cs *engine) 647 { 648 struct drm_i915_gem_object *obj; 649 struct i915_vma *vma; 650 void *vaddr; 651 int ret; 652 653 /* 654 * Though the HWS register does support 36bit addresses, historically 655 * we have had hangs and corruption reported due to wild writes if 656 * the HWS is placed above 4G. We only allow objects to be allocated 657 * in GFP_DMA32 for i965, and no earlier physical address users had 658 * access to more than 4G. 659 */ 660 obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE); 661 if (IS_ERR(obj)) { 662 drm_err(&engine->i915->drm, 663 "Failed to allocate status page\n"); 664 return PTR_ERR(obj); 665 } 666 667 i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC); 668 669 vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL); 670 if (IS_ERR(vma)) { 671 ret = PTR_ERR(vma); 672 goto err; 673 } 674 675 vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB); 676 if (IS_ERR(vaddr)) { 677 ret = PTR_ERR(vaddr); 678 goto err; 679 } 680 681 engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE); 682 engine->status_page.vma = vma; 683 684 if (!HWS_NEEDS_PHYSICAL(engine->i915)) { 685 ret = pin_ggtt_status_page(engine, vma); 686 if (ret) 687 goto err_unpin; 688 } 689 690 return 0; 691 692 err_unpin: 693 i915_gem_object_unpin_map(obj); 694 err: 695 i915_gem_object_put(obj); 696 return ret; 697 } 698 699 static int engine_setup_common(struct intel_engine_cs *engine) 700 { 701 int err; 702 703 init_llist_head(&engine->barrier_tasks); 704 705 err = init_status_page(engine); 706 if (err) 707 return err; 708 709 engine->breadcrumbs = intel_breadcrumbs_create(engine); 710 if (!engine->breadcrumbs) { 711 err = -ENOMEM; 712 goto err_status; 713 } 714 715 err = intel_engine_init_cmd_parser(engine); 716 if (err) 717 goto err_cmd_parser; 718 719 intel_engine_init_active(engine, ENGINE_PHYSICAL); 720 intel_engine_init_execlists(engine); 721 intel_engine_init__pm(engine); 722 intel_engine_init_retire(engine); 723 724 /* Use the whole device by default */ 725 engine->sseu = 726 intel_sseu_from_device_info(&engine->gt->info.sseu); 727 728 intel_engine_init_workarounds(engine); 729 intel_engine_init_whitelist(engine); 730 intel_engine_init_ctx_wa(engine); 731 732 return 0; 733 734 err_cmd_parser: 735 intel_breadcrumbs_free(engine->breadcrumbs); 736 err_status: 737 cleanup_status_page(engine); 738 return err; 739 } 740 741 struct measure_breadcrumb { 742 struct i915_request rq; 743 struct intel_ring ring; 744 u32 cs[2048]; 745 }; 746 747 static int measure_breadcrumb_dw(struct intel_context *ce) 748 { 749 struct intel_engine_cs *engine = ce->engine; 750 struct measure_breadcrumb *frame; 751 int dw; 752 753 GEM_BUG_ON(!engine->gt->scratch); 754 755 frame = kzalloc(sizeof(*frame), GFP_KERNEL); 756 if (!frame) 757 return -ENOMEM; 758 759 frame->rq.engine = engine; 760 frame->rq.context = ce; 761 rcu_assign_pointer(frame->rq.timeline, ce->timeline); 762 763 frame->ring.vaddr = frame->cs; 764 frame->ring.size = sizeof(frame->cs); 765 frame->ring.wrap = 766 BITS_PER_TYPE(frame->ring.size) - ilog2(frame->ring.size); 767 frame->ring.effective_size = frame->ring.size; 768 intel_ring_update_space(&frame->ring); 769 frame->rq.ring = &frame->ring; 770 771 mutex_lock(&ce->timeline->mutex); 772 spin_lock_irq(&engine->active.lock); 773 774 dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs; 775 776 spin_unlock_irq(&engine->active.lock); 777 mutex_unlock(&ce->timeline->mutex); 778 779 GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */ 780 781 kfree(frame); 782 return dw; 783 } 784 785 void 786 intel_engine_init_active(struct intel_engine_cs *engine, unsigned int subclass) 787 { 788 INIT_LIST_HEAD(&engine->active.requests); 789 INIT_LIST_HEAD(&engine->active.hold); 790 791 mtx_init(&engine->active.lock, IPL_TTY); 792 lockdep_set_subclass(&engine->active.lock, subclass); 793 794 /* 795 * Due to an interesting quirk in lockdep's internal debug tracking, 796 * after setting a subclass we must ensure the lock is used. Otherwise, 797 * nr_unused_locks is incremented once too often. 798 */ 799 #ifdef CONFIG_DEBUG_LOCK_ALLOC 800 local_irq_disable(); 801 lock_map_acquire(&engine->active.lock.dep_map); 802 lock_map_release(&engine->active.lock.dep_map); 803 local_irq_enable(); 804 #endif 805 } 806 807 static struct intel_context * 808 create_pinned_context(struct intel_engine_cs *engine, 809 unsigned int hwsp, 810 struct lock_class_key *key, 811 const char *name) 812 { 813 struct intel_context *ce; 814 int err; 815 816 ce = intel_context_create(engine); 817 if (IS_ERR(ce)) 818 return ce; 819 820 __set_bit(CONTEXT_BARRIER_BIT, &ce->flags); 821 ce->timeline = page_pack_bits(NULL, hwsp); 822 823 err = intel_context_pin(ce); /* perma-pin so it is always available */ 824 if (err) { 825 intel_context_put(ce); 826 return ERR_PTR(err); 827 } 828 829 /* 830 * Give our perma-pinned kernel timelines a separate lockdep class, 831 * so that we can use them from within the normal user timelines 832 * should we need to inject GPU operations during their request 833 * construction. 834 */ 835 lockdep_set_class_and_name(&ce->timeline->mutex, key, name); 836 837 return ce; 838 } 839 840 static struct intel_context * 841 create_kernel_context(struct intel_engine_cs *engine) 842 { 843 static struct lock_class_key kernel; 844 845 return create_pinned_context(engine, I915_GEM_HWS_SEQNO_ADDR, 846 &kernel, "kernel_context"); 847 } 848 849 /** 850 * intel_engines_init_common - initialize cengine state which might require hw access 851 * @engine: Engine to initialize. 852 * 853 * Initializes @engine@ structure members shared between legacy and execlists 854 * submission modes which do require hardware access. 855 * 856 * Typcally done at later stages of submission mode specific engine setup. 857 * 858 * Returns zero on success or an error code on failure. 859 */ 860 static int engine_init_common(struct intel_engine_cs *engine) 861 { 862 struct intel_context *ce; 863 int ret; 864 865 engine->set_default_submission(engine); 866 867 /* 868 * We may need to do things with the shrinker which 869 * require us to immediately switch back to the default 870 * context. This can cause a problem as pinning the 871 * default context also requires GTT space which may not 872 * be available. To avoid this we always pin the default 873 * context. 874 */ 875 ce = create_kernel_context(engine); 876 if (IS_ERR(ce)) 877 return PTR_ERR(ce); 878 879 ret = measure_breadcrumb_dw(ce); 880 if (ret < 0) 881 goto err_context; 882 883 engine->emit_fini_breadcrumb_dw = ret; 884 engine->kernel_context = ce; 885 886 return 0; 887 888 err_context: 889 intel_context_put(ce); 890 return ret; 891 } 892 893 int intel_engines_init(struct intel_gt *gt) 894 { 895 int (*setup)(struct intel_engine_cs *engine); 896 struct intel_engine_cs *engine; 897 enum intel_engine_id id; 898 int err; 899 900 if (HAS_EXECLISTS(gt->i915)) 901 setup = intel_execlists_submission_setup; 902 else 903 setup = intel_ring_submission_setup; 904 905 for_each_engine(engine, gt, id) { 906 err = engine_setup_common(engine); 907 if (err) 908 return err; 909 910 err = setup(engine); 911 if (err) 912 return err; 913 914 err = engine_init_common(engine); 915 if (err) 916 return err; 917 918 intel_engine_add_user(engine); 919 } 920 921 return 0; 922 } 923 924 /** 925 * intel_engines_cleanup_common - cleans up the engine state created by 926 * the common initiailizers. 927 * @engine: Engine to cleanup. 928 * 929 * This cleans up everything created by the common helpers. 930 */ 931 void intel_engine_cleanup_common(struct intel_engine_cs *engine) 932 { 933 GEM_BUG_ON(!list_empty(&engine->active.requests)); 934 tasklet_kill(&engine->execlists.tasklet); /* flush the callback */ 935 936 cleanup_status_page(engine); 937 intel_breadcrumbs_free(engine->breadcrumbs); 938 939 intel_engine_fini_retire(engine); 940 intel_engine_cleanup_cmd_parser(engine); 941 942 if (engine->default_state) 943 uao_detach(engine->default_state); 944 945 if (engine->kernel_context) { 946 intel_context_unpin(engine->kernel_context); 947 intel_context_put(engine->kernel_context); 948 } 949 GEM_BUG_ON(!llist_empty(&engine->barrier_tasks)); 950 951 intel_wa_list_free(&engine->ctx_wa_list); 952 intel_wa_list_free(&engine->wa_list); 953 intel_wa_list_free(&engine->whitelist); 954 } 955 956 /** 957 * intel_engine_resume - re-initializes the HW state of the engine 958 * @engine: Engine to resume. 959 * 960 * Returns zero on success or an error code on failure. 961 */ 962 int intel_engine_resume(struct intel_engine_cs *engine) 963 { 964 intel_engine_apply_workarounds(engine); 965 intel_engine_apply_whitelist(engine); 966 967 return engine->resume(engine); 968 } 969 970 u64 intel_engine_get_active_head(const struct intel_engine_cs *engine) 971 { 972 struct drm_i915_private *i915 = engine->i915; 973 974 u64 acthd; 975 976 if (INTEL_GEN(i915) >= 8) 977 acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW); 978 else if (INTEL_GEN(i915) >= 4) 979 acthd = ENGINE_READ(engine, RING_ACTHD); 980 else 981 acthd = ENGINE_READ(engine, ACTHD); 982 983 return acthd; 984 } 985 986 u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine) 987 { 988 u64 bbaddr; 989 990 if (INTEL_GEN(engine->i915) >= 8) 991 bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW); 992 else 993 bbaddr = ENGINE_READ(engine, RING_BBADDR); 994 995 return bbaddr; 996 } 997 998 static unsigned long stop_timeout(const struct intel_engine_cs *engine) 999 { 1000 if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */ 1001 return 0; 1002 1003 /* 1004 * If we are doing a normal GPU reset, we can take our time and allow 1005 * the engine to quiesce. We've stopped submission to the engine, and 1006 * if we wait long enough an innocent context should complete and 1007 * leave the engine idle. So they should not be caught unaware by 1008 * the forthcoming GPU reset (which usually follows the stop_cs)! 1009 */ 1010 return READ_ONCE(engine->props.stop_timeout_ms); 1011 } 1012 1013 int intel_engine_stop_cs(struct intel_engine_cs *engine) 1014 { 1015 struct intel_uncore *uncore = engine->uncore; 1016 const u32 base = engine->mmio_base; 1017 const i915_reg_t mode = RING_MI_MODE(base); 1018 int err; 1019 1020 if (INTEL_GEN(engine->i915) < 3) 1021 return -ENODEV; 1022 1023 ENGINE_TRACE(engine, "\n"); 1024 1025 intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING)); 1026 1027 err = 0; 1028 if (__intel_wait_for_register_fw(uncore, 1029 mode, MODE_IDLE, MODE_IDLE, 1030 1000, stop_timeout(engine), 1031 NULL)) { 1032 ENGINE_TRACE(engine, "timed out on STOP_RING -> IDLE\n"); 1033 err = -ETIMEDOUT; 1034 } 1035 1036 /* A final mmio read to let GPU writes be hopefully flushed to memory */ 1037 intel_uncore_posting_read_fw(uncore, mode); 1038 1039 return err; 1040 } 1041 1042 void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine) 1043 { 1044 ENGINE_TRACE(engine, "\n"); 1045 1046 ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING)); 1047 } 1048 1049 const char *i915_cache_level_str(struct drm_i915_private *i915, int type) 1050 { 1051 switch (type) { 1052 case I915_CACHE_NONE: return " uncached"; 1053 case I915_CACHE_LLC: return HAS_LLC(i915) ? " LLC" : " snooped"; 1054 case I915_CACHE_L3_LLC: return " L3+LLC"; 1055 case I915_CACHE_WT: return " WT"; 1056 default: return ""; 1057 } 1058 } 1059 1060 static u32 1061 read_subslice_reg(const struct intel_engine_cs *engine, 1062 int slice, int subslice, i915_reg_t reg) 1063 { 1064 struct drm_i915_private *i915 = engine->i915; 1065 struct intel_uncore *uncore = engine->uncore; 1066 u32 mcr_mask, mcr_ss, mcr, old_mcr, val; 1067 enum forcewake_domains fw_domains; 1068 1069 if (INTEL_GEN(i915) >= 11) { 1070 mcr_mask = GEN11_MCR_SLICE_MASK | GEN11_MCR_SUBSLICE_MASK; 1071 mcr_ss = GEN11_MCR_SLICE(slice) | GEN11_MCR_SUBSLICE(subslice); 1072 } else { 1073 mcr_mask = GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK; 1074 mcr_ss = GEN8_MCR_SLICE(slice) | GEN8_MCR_SUBSLICE(subslice); 1075 } 1076 1077 fw_domains = intel_uncore_forcewake_for_reg(uncore, reg, 1078 FW_REG_READ); 1079 fw_domains |= intel_uncore_forcewake_for_reg(uncore, 1080 GEN8_MCR_SELECTOR, 1081 FW_REG_READ | FW_REG_WRITE); 1082 1083 spin_lock_irq(&uncore->lock); 1084 intel_uncore_forcewake_get__locked(uncore, fw_domains); 1085 1086 old_mcr = mcr = intel_uncore_read_fw(uncore, GEN8_MCR_SELECTOR); 1087 1088 mcr &= ~mcr_mask; 1089 mcr |= mcr_ss; 1090 intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr); 1091 1092 val = intel_uncore_read_fw(uncore, reg); 1093 1094 mcr &= ~mcr_mask; 1095 mcr |= old_mcr & mcr_mask; 1096 1097 intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr); 1098 1099 intel_uncore_forcewake_put__locked(uncore, fw_domains); 1100 spin_unlock_irq(&uncore->lock); 1101 1102 return val; 1103 } 1104 1105 /* NB: please notice the memset */ 1106 void intel_engine_get_instdone(const struct intel_engine_cs *engine, 1107 struct intel_instdone *instdone) 1108 { 1109 struct drm_i915_private *i915 = engine->i915; 1110 const struct sseu_dev_info *sseu = &engine->gt->info.sseu; 1111 struct intel_uncore *uncore = engine->uncore; 1112 u32 mmio_base = engine->mmio_base; 1113 int slice; 1114 int subslice; 1115 1116 memset(instdone, 0, sizeof(*instdone)); 1117 1118 switch (INTEL_GEN(i915)) { 1119 default: 1120 instdone->instdone = 1121 intel_uncore_read(uncore, RING_INSTDONE(mmio_base)); 1122 1123 if (engine->id != RCS0) 1124 break; 1125 1126 instdone->slice_common = 1127 intel_uncore_read(uncore, GEN7_SC_INSTDONE); 1128 if (INTEL_GEN(i915) >= 12) { 1129 instdone->slice_common_extra[0] = 1130 intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA); 1131 instdone->slice_common_extra[1] = 1132 intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA2); 1133 } 1134 for_each_instdone_slice_subslice(i915, sseu, slice, subslice) { 1135 instdone->sampler[slice][subslice] = 1136 read_subslice_reg(engine, slice, subslice, 1137 GEN7_SAMPLER_INSTDONE); 1138 instdone->row[slice][subslice] = 1139 read_subslice_reg(engine, slice, subslice, 1140 GEN7_ROW_INSTDONE); 1141 } 1142 break; 1143 case 7: 1144 instdone->instdone = 1145 intel_uncore_read(uncore, RING_INSTDONE(mmio_base)); 1146 1147 if (engine->id != RCS0) 1148 break; 1149 1150 instdone->slice_common = 1151 intel_uncore_read(uncore, GEN7_SC_INSTDONE); 1152 instdone->sampler[0][0] = 1153 intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE); 1154 instdone->row[0][0] = 1155 intel_uncore_read(uncore, GEN7_ROW_INSTDONE); 1156 1157 break; 1158 case 6: 1159 case 5: 1160 case 4: 1161 instdone->instdone = 1162 intel_uncore_read(uncore, RING_INSTDONE(mmio_base)); 1163 if (engine->id == RCS0) 1164 /* HACK: Using the wrong struct member */ 1165 instdone->slice_common = 1166 intel_uncore_read(uncore, GEN4_INSTDONE1); 1167 break; 1168 case 3: 1169 case 2: 1170 instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE); 1171 break; 1172 } 1173 } 1174 1175 static bool ring_is_idle(struct intel_engine_cs *engine) 1176 { 1177 bool idle = true; 1178 1179 if (I915_SELFTEST_ONLY(!engine->mmio_base)) 1180 return true; 1181 1182 if (!intel_engine_pm_get_if_awake(engine)) 1183 return true; 1184 1185 /* First check that no commands are left in the ring */ 1186 if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) != 1187 (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR)) 1188 idle = false; 1189 1190 /* No bit for gen2, so assume the CS parser is idle */ 1191 if (INTEL_GEN(engine->i915) > 2 && 1192 !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE)) 1193 idle = false; 1194 1195 intel_engine_pm_put(engine); 1196 1197 return idle; 1198 } 1199 1200 void intel_engine_flush_submission(struct intel_engine_cs *engine) 1201 { 1202 struct tasklet_struct *t = &engine->execlists.tasklet; 1203 1204 if (!t->func) 1205 return; 1206 1207 /* Synchronise and wait for the tasklet on another CPU */ 1208 tasklet_kill(t); 1209 1210 /* Having cancelled the tasklet, ensure that is run */ 1211 local_bh_disable(); 1212 if (tasklet_trylock(t)) { 1213 /* Must wait for any GPU reset in progress. */ 1214 if (__tasklet_is_enabled(t)) 1215 t->func(t->data); 1216 tasklet_unlock(t); 1217 } 1218 local_bh_enable(); 1219 } 1220 1221 /** 1222 * intel_engine_is_idle() - Report if the engine has finished process all work 1223 * @engine: the intel_engine_cs 1224 * 1225 * Return true if there are no requests pending, nothing left to be submitted 1226 * to hardware, and that the engine is idle. 1227 */ 1228 bool intel_engine_is_idle(struct intel_engine_cs *engine) 1229 { 1230 /* More white lies, if wedged, hw state is inconsistent */ 1231 if (intel_gt_is_wedged(engine->gt)) 1232 return true; 1233 1234 if (!intel_engine_pm_is_awake(engine)) 1235 return true; 1236 1237 /* Waiting to drain ELSP? */ 1238 if (execlists_active(&engine->execlists)) { 1239 #ifdef __linux__ 1240 synchronize_hardirq(engine->i915->drm.pdev->irq); 1241 #else 1242 intr_barrier(engine->i915->irqh); 1243 #endif 1244 1245 intel_engine_flush_submission(engine); 1246 1247 if (execlists_active(&engine->execlists)) 1248 return false; 1249 } 1250 1251 /* ELSP is empty, but there are ready requests? E.g. after reset */ 1252 if (!RB_EMPTY_ROOT(&engine->execlists.queue.rb_root)) 1253 return false; 1254 1255 /* Ring stopped? */ 1256 return ring_is_idle(engine); 1257 } 1258 1259 bool intel_engines_are_idle(struct intel_gt *gt) 1260 { 1261 struct intel_engine_cs *engine; 1262 enum intel_engine_id id; 1263 1264 /* 1265 * If the driver is wedged, HW state may be very inconsistent and 1266 * report that it is still busy, even though we have stopped using it. 1267 */ 1268 if (intel_gt_is_wedged(gt)) 1269 return true; 1270 1271 /* Already parked (and passed an idleness test); must still be idle */ 1272 if (!READ_ONCE(gt->awake)) 1273 return true; 1274 1275 for_each_engine(engine, gt, id) { 1276 if (!intel_engine_is_idle(engine)) 1277 return false; 1278 } 1279 1280 return true; 1281 } 1282 1283 void intel_engines_reset_default_submission(struct intel_gt *gt) 1284 { 1285 struct intel_engine_cs *engine; 1286 enum intel_engine_id id; 1287 1288 for_each_engine(engine, gt, id) 1289 engine->set_default_submission(engine); 1290 } 1291 1292 bool intel_engine_can_store_dword(struct intel_engine_cs *engine) 1293 { 1294 switch (INTEL_GEN(engine->i915)) { 1295 case 2: 1296 return false; /* uses physical not virtual addresses */ 1297 case 3: 1298 /* maybe only uses physical not virtual addresses */ 1299 return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915)); 1300 case 4: 1301 return !IS_I965G(engine->i915); /* who knows! */ 1302 case 6: 1303 return engine->class != VIDEO_DECODE_CLASS; /* b0rked */ 1304 default: 1305 return true; 1306 } 1307 } 1308 1309 static int print_sched_attr(const struct i915_sched_attr *attr, 1310 char *buf, int x, int len) 1311 { 1312 if (attr->priority == I915_PRIORITY_INVALID) 1313 return x; 1314 1315 x += snprintf(buf + x, len - x, 1316 " prio=%d", attr->priority); 1317 1318 return x; 1319 } 1320 1321 static void print_request(struct drm_printer *m, 1322 struct i915_request *rq, 1323 const char *prefix) 1324 { 1325 const char *name = rq->fence.ops->get_timeline_name(&rq->fence); 1326 char buf[80] = ""; 1327 int x = 0; 1328 1329 x = print_sched_attr(&rq->sched.attr, buf, x, sizeof(buf)); 1330 1331 drm_printf(m, "%s %llx:%llx%s%s %s @ %dms: %s\n", 1332 prefix, 1333 rq->fence.context, rq->fence.seqno, 1334 i915_request_completed(rq) ? "!" : 1335 i915_request_started(rq) ? "*" : 1336 "", 1337 test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, 1338 &rq->fence.flags) ? "+" : 1339 test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, 1340 &rq->fence.flags) ? "-" : 1341 "", 1342 buf, 1343 jiffies_to_msecs(jiffies - rq->emitted_jiffies), 1344 name); 1345 } 1346 1347 static struct intel_timeline *get_timeline(struct i915_request *rq) 1348 { 1349 struct intel_timeline *tl; 1350 1351 /* 1352 * Even though we are holding the engine->active.lock here, there 1353 * is no control over the submission queue per-se and we are 1354 * inspecting the active state at a random point in time, with an 1355 * unknown queue. Play safe and make sure the timeline remains valid. 1356 * (Only being used for pretty printing, one extra kref shouldn't 1357 * cause a camel stampede!) 1358 */ 1359 rcu_read_lock(); 1360 tl = rcu_dereference(rq->timeline); 1361 if (!kref_get_unless_zero(&tl->kref)) 1362 tl = NULL; 1363 rcu_read_unlock(); 1364 1365 return tl; 1366 } 1367 1368 static int print_ring(char *buf, int sz, struct i915_request *rq) 1369 { 1370 int len = 0; 1371 1372 if (!i915_request_signaled(rq)) { 1373 struct intel_timeline *tl = get_timeline(rq); 1374 1375 len = scnprintf(buf, sz, 1376 "ring:{start:%08x, hwsp:%08x, seqno:%08x, runtime:%llums}, ", 1377 i915_ggtt_offset(rq->ring->vma), 1378 tl ? tl->hwsp_offset : 0, 1379 hwsp_seqno(rq), 1380 DIV_ROUND_CLOSEST_ULL(intel_context_get_total_runtime_ns(rq->context), 1381 1000 * 1000)); 1382 1383 if (tl) 1384 intel_timeline_put(tl); 1385 } 1386 1387 return len; 1388 } 1389 1390 static void hexdump(struct drm_printer *m, const void *buf, size_t len) 1391 { 1392 STUB(); 1393 #ifdef notyet 1394 const size_t rowsize = 8 * sizeof(u32); 1395 const void *prev = NULL; 1396 bool skip = false; 1397 size_t pos; 1398 1399 for (pos = 0; pos < len; pos += rowsize) { 1400 char line[128]; 1401 1402 if (prev && !memcmp(prev, buf + pos, rowsize)) { 1403 if (!skip) { 1404 drm_printf(m, "*\n"); 1405 skip = true; 1406 } 1407 continue; 1408 } 1409 1410 WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos, 1411 rowsize, sizeof(u32), 1412 line, sizeof(line), 1413 false) >= sizeof(line)); 1414 drm_printf(m, "[%04zx] %s\n", pos, line); 1415 1416 prev = buf + pos; 1417 skip = false; 1418 } 1419 #endif 1420 } 1421 1422 static const char *repr_timer(const struct timeout *t) 1423 { 1424 if (!READ_ONCE(t->to_time)) 1425 return "inactive"; 1426 1427 if (timer_pending(t)) 1428 return "active"; 1429 1430 return "expired"; 1431 } 1432 1433 static void intel_engine_print_registers(struct intel_engine_cs *engine, 1434 struct drm_printer *m) 1435 { 1436 struct drm_i915_private *dev_priv = engine->i915; 1437 struct intel_engine_execlists * const execlists = &engine->execlists; 1438 u64 addr; 1439 1440 if (engine->id == RENDER_CLASS && IS_GEN_RANGE(dev_priv, 4, 7)) 1441 drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID)); 1442 if (HAS_EXECLISTS(dev_priv)) { 1443 drm_printf(m, "\tEL_STAT_HI: 0x%08x\n", 1444 ENGINE_READ(engine, RING_EXECLIST_STATUS_HI)); 1445 drm_printf(m, "\tEL_STAT_LO: 0x%08x\n", 1446 ENGINE_READ(engine, RING_EXECLIST_STATUS_LO)); 1447 } 1448 drm_printf(m, "\tRING_START: 0x%08x\n", 1449 ENGINE_READ(engine, RING_START)); 1450 drm_printf(m, "\tRING_HEAD: 0x%08x\n", 1451 ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR); 1452 drm_printf(m, "\tRING_TAIL: 0x%08x\n", 1453 ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR); 1454 drm_printf(m, "\tRING_CTL: 0x%08x%s\n", 1455 ENGINE_READ(engine, RING_CTL), 1456 ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : ""); 1457 if (INTEL_GEN(engine->i915) > 2) { 1458 drm_printf(m, "\tRING_MODE: 0x%08x%s\n", 1459 ENGINE_READ(engine, RING_MI_MODE), 1460 ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : ""); 1461 } 1462 1463 if (INTEL_GEN(dev_priv) >= 6) { 1464 drm_printf(m, "\tRING_IMR: 0x%08x\n", 1465 ENGINE_READ(engine, RING_IMR)); 1466 drm_printf(m, "\tRING_ESR: 0x%08x\n", 1467 ENGINE_READ(engine, RING_ESR)); 1468 drm_printf(m, "\tRING_EMR: 0x%08x\n", 1469 ENGINE_READ(engine, RING_EMR)); 1470 drm_printf(m, "\tRING_EIR: 0x%08x\n", 1471 ENGINE_READ(engine, RING_EIR)); 1472 } 1473 1474 addr = intel_engine_get_active_head(engine); 1475 drm_printf(m, "\tACTHD: 0x%08x_%08x\n", 1476 upper_32_bits(addr), lower_32_bits(addr)); 1477 addr = intel_engine_get_last_batch_head(engine); 1478 drm_printf(m, "\tBBADDR: 0x%08x_%08x\n", 1479 upper_32_bits(addr), lower_32_bits(addr)); 1480 if (INTEL_GEN(dev_priv) >= 8) 1481 addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW); 1482 else if (INTEL_GEN(dev_priv) >= 4) 1483 addr = ENGINE_READ(engine, RING_DMA_FADD); 1484 else 1485 addr = ENGINE_READ(engine, DMA_FADD_I8XX); 1486 drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n", 1487 upper_32_bits(addr), lower_32_bits(addr)); 1488 if (INTEL_GEN(dev_priv) >= 4) { 1489 drm_printf(m, "\tIPEIR: 0x%08x\n", 1490 ENGINE_READ(engine, RING_IPEIR)); 1491 drm_printf(m, "\tIPEHR: 0x%08x\n", 1492 ENGINE_READ(engine, RING_IPEHR)); 1493 } else { 1494 drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR)); 1495 drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR)); 1496 } 1497 1498 if (HAS_EXECLISTS(dev_priv)) { 1499 struct i915_request * const *port, *rq; 1500 const u32 *hws = 1501 &engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX]; 1502 const u8 num_entries = execlists->csb_size; 1503 unsigned int idx; 1504 u8 read, write; 1505 1506 drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n", 1507 yesno(test_bit(TASKLET_STATE_SCHED, 1508 &engine->execlists.tasklet.state)), 1509 enableddisabled(!atomic_read(&engine->execlists.tasklet.count)), 1510 repr_timer(&engine->execlists.preempt), 1511 repr_timer(&engine->execlists.timer)); 1512 1513 read = execlists->csb_head; 1514 write = READ_ONCE(*execlists->csb_write); 1515 1516 drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n", 1517 ENGINE_READ(engine, RING_EXECLIST_STATUS_LO), 1518 ENGINE_READ(engine, RING_EXECLIST_STATUS_HI), 1519 read, write, num_entries); 1520 1521 if (read >= num_entries) 1522 read = 0; 1523 if (write >= num_entries) 1524 write = 0; 1525 if (read > write) 1526 write += num_entries; 1527 while (read < write) { 1528 idx = ++read % num_entries; 1529 drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n", 1530 idx, hws[idx * 2], hws[idx * 2 + 1]); 1531 } 1532 1533 execlists_active_lock_bh(execlists); 1534 rcu_read_lock(); 1535 for (port = execlists->active; (rq = *port); port++) { 1536 char hdr[160]; 1537 int len; 1538 1539 len = scnprintf(hdr, sizeof(hdr), 1540 "\t\tActive[%d]: ccid:%08x%s%s, ", 1541 (int)(port - execlists->active), 1542 rq->context->lrc.ccid, 1543 intel_context_is_closed(rq->context) ? "!" : "", 1544 intel_context_is_banned(rq->context) ? "*" : ""); 1545 len += print_ring(hdr + len, sizeof(hdr) - len, rq); 1546 scnprintf(hdr + len, sizeof(hdr) - len, "rq: "); 1547 print_request(m, rq, hdr); 1548 } 1549 for (port = execlists->pending; (rq = *port); port++) { 1550 char hdr[160]; 1551 int len; 1552 1553 len = scnprintf(hdr, sizeof(hdr), 1554 "\t\tPending[%d]: ccid:%08x%s%s, ", 1555 (int)(port - execlists->pending), 1556 rq->context->lrc.ccid, 1557 intel_context_is_closed(rq->context) ? "!" : "", 1558 intel_context_is_banned(rq->context) ? "*" : ""); 1559 len += print_ring(hdr + len, sizeof(hdr) - len, rq); 1560 scnprintf(hdr + len, sizeof(hdr) - len, "rq: "); 1561 print_request(m, rq, hdr); 1562 } 1563 rcu_read_unlock(); 1564 execlists_active_unlock_bh(execlists); 1565 } else if (INTEL_GEN(dev_priv) > 6) { 1566 drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n", 1567 ENGINE_READ(engine, RING_PP_DIR_BASE)); 1568 drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n", 1569 ENGINE_READ(engine, RING_PP_DIR_BASE_READ)); 1570 drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n", 1571 ENGINE_READ(engine, RING_PP_DIR_DCLV)); 1572 } 1573 } 1574 1575 static void print_request_ring(struct drm_printer *m, struct i915_request *rq) 1576 { 1577 void *ring; 1578 int size; 1579 1580 drm_printf(m, 1581 "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n", 1582 rq->head, rq->postfix, rq->tail, 1583 rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u, 1584 rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u); 1585 1586 size = rq->tail - rq->head; 1587 if (rq->tail < rq->head) 1588 size += rq->ring->size; 1589 1590 ring = kmalloc(size, GFP_ATOMIC); 1591 if (ring) { 1592 const void *vaddr = rq->ring->vaddr; 1593 unsigned int head = rq->head; 1594 unsigned int len = 0; 1595 1596 if (rq->tail < head) { 1597 len = rq->ring->size - head; 1598 memcpy(ring, vaddr + head, len); 1599 head = 0; 1600 } 1601 memcpy(ring + len, vaddr + head, size - len); 1602 1603 hexdump(m, ring, size); 1604 kfree(ring); 1605 } 1606 } 1607 1608 static unsigned long list_count(struct list_head *list) 1609 { 1610 struct list_head *pos; 1611 unsigned long count = 0; 1612 1613 list_for_each(pos, list) 1614 count++; 1615 1616 return count; 1617 } 1618 1619 void intel_engine_dump(struct intel_engine_cs *engine, 1620 struct drm_printer *m, 1621 const char *header, ...) 1622 { 1623 struct i915_gpu_error * const error = &engine->i915->gpu_error; 1624 struct i915_request *rq; 1625 intel_wakeref_t wakeref; 1626 unsigned long flags; 1627 ktime_t dummy; 1628 1629 if (header) { 1630 va_list ap; 1631 1632 va_start(ap, header); 1633 drm_vprintf(m, header, &ap); 1634 va_end(ap); 1635 } 1636 1637 if (intel_gt_is_wedged(engine->gt)) 1638 drm_printf(m, "*** WEDGED ***\n"); 1639 1640 drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count)); 1641 drm_printf(m, "\tBarriers?: %s\n", 1642 yesno(!llist_empty(&engine->barrier_tasks))); 1643 drm_printf(m, "\tLatency: %luus\n", 1644 ewma__engine_latency_read(&engine->latency)); 1645 if (intel_engine_supports_stats(engine)) 1646 drm_printf(m, "\tRuntime: %llums\n", 1647 ktime_to_ms(intel_engine_get_busy_time(engine, 1648 &dummy))); 1649 drm_printf(m, "\tForcewake: %x domains, %d active\n", 1650 engine->fw_domain, atomic_read(&engine->fw_active)); 1651 1652 rcu_read_lock(); 1653 rq = READ_ONCE(engine->heartbeat.systole); 1654 if (rq) 1655 drm_printf(m, "\tHeartbeat: %d ms ago\n", 1656 jiffies_to_msecs(jiffies - rq->emitted_jiffies)); 1657 rcu_read_unlock(); 1658 drm_printf(m, "\tReset count: %d (global %d)\n", 1659 i915_reset_engine_count(error, engine), 1660 i915_reset_count(error)); 1661 1662 drm_printf(m, "\tRequests:\n"); 1663 1664 spin_lock_irqsave(&engine->active.lock, flags); 1665 rq = intel_engine_find_active_request(engine); 1666 if (rq) { 1667 struct intel_timeline *tl = get_timeline(rq); 1668 1669 print_request(m, rq, "\t\tactive "); 1670 1671 drm_printf(m, "\t\tring->start: 0x%08x\n", 1672 i915_ggtt_offset(rq->ring->vma)); 1673 drm_printf(m, "\t\tring->head: 0x%08x\n", 1674 rq->ring->head); 1675 drm_printf(m, "\t\tring->tail: 0x%08x\n", 1676 rq->ring->tail); 1677 drm_printf(m, "\t\tring->emit: 0x%08x\n", 1678 rq->ring->emit); 1679 drm_printf(m, "\t\tring->space: 0x%08x\n", 1680 rq->ring->space); 1681 1682 if (tl) { 1683 drm_printf(m, "\t\tring->hwsp: 0x%08x\n", 1684 tl->hwsp_offset); 1685 intel_timeline_put(tl); 1686 } 1687 1688 print_request_ring(m, rq); 1689 1690 if (rq->context->lrc_reg_state) { 1691 drm_printf(m, "Logical Ring Context:\n"); 1692 hexdump(m, rq->context->lrc_reg_state, PAGE_SIZE); 1693 } 1694 } 1695 drm_printf(m, "\tOn hold?: %lu\n", list_count(&engine->active.hold)); 1696 spin_unlock_irqrestore(&engine->active.lock, flags); 1697 1698 drm_printf(m, "\tMMIO base: 0x%08x\n", engine->mmio_base); 1699 wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm); 1700 if (wakeref) { 1701 intel_engine_print_registers(engine, m); 1702 intel_runtime_pm_put(engine->uncore->rpm, wakeref); 1703 } else { 1704 drm_printf(m, "\tDevice is asleep; skipping register dump\n"); 1705 } 1706 1707 intel_execlists_show_requests(engine, m, print_request, 8); 1708 1709 drm_printf(m, "HWSP:\n"); 1710 hexdump(m, engine->status_page.addr, PAGE_SIZE); 1711 1712 drm_printf(m, "Idle? %s\n", yesno(intel_engine_is_idle(engine))); 1713 1714 intel_engine_print_breadcrumbs(engine, m); 1715 } 1716 1717 static ktime_t __intel_engine_get_busy_time(struct intel_engine_cs *engine, 1718 ktime_t *now) 1719 { 1720 ktime_t total = engine->stats.total; 1721 1722 /* 1723 * If the engine is executing something at the moment 1724 * add it to the total. 1725 */ 1726 *now = ktime_get(); 1727 if (atomic_read(&engine->stats.active)) 1728 total = ktime_add(total, ktime_sub(*now, engine->stats.start)); 1729 1730 return total; 1731 } 1732 1733 /** 1734 * intel_engine_get_busy_time() - Return current accumulated engine busyness 1735 * @engine: engine to report on 1736 * @now: monotonic timestamp of sampling 1737 * 1738 * Returns accumulated time @engine was busy since engine stats were enabled. 1739 */ 1740 ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine, ktime_t *now) 1741 { 1742 unsigned int seq; 1743 ktime_t total; 1744 1745 do { 1746 seq = read_seqbegin(&engine->stats.lock); 1747 total = __intel_engine_get_busy_time(engine, now); 1748 } while (read_seqretry(&engine->stats.lock, seq)); 1749 1750 return total; 1751 } 1752 1753 static bool match_ring(struct i915_request *rq) 1754 { 1755 u32 ring = ENGINE_READ(rq->engine, RING_START); 1756 1757 return ring == i915_ggtt_offset(rq->ring->vma); 1758 } 1759 1760 struct i915_request * 1761 intel_engine_find_active_request(struct intel_engine_cs *engine) 1762 { 1763 struct i915_request *request, *active = NULL; 1764 1765 /* 1766 * We are called by the error capture, reset and to dump engine 1767 * state at random points in time. In particular, note that neither is 1768 * crucially ordered with an interrupt. After a hang, the GPU is dead 1769 * and we assume that no more writes can happen (we waited long enough 1770 * for all writes that were in transaction to be flushed) - adding an 1771 * extra delay for a recent interrupt is pointless. Hence, we do 1772 * not need an engine->irq_seqno_barrier() before the seqno reads. 1773 * At all other times, we must assume the GPU is still running, but 1774 * we only care about the snapshot of this moment. 1775 */ 1776 lockdep_assert_held(&engine->active.lock); 1777 1778 rcu_read_lock(); 1779 request = execlists_active(&engine->execlists); 1780 if (request) { 1781 struct intel_timeline *tl = request->context->timeline; 1782 1783 list_for_each_entry_from_reverse(request, &tl->requests, link) { 1784 if (i915_request_completed(request)) 1785 break; 1786 1787 active = request; 1788 } 1789 } 1790 rcu_read_unlock(); 1791 if (active) 1792 return active; 1793 1794 list_for_each_entry(request, &engine->active.requests, sched.link) { 1795 if (i915_request_completed(request)) 1796 continue; 1797 1798 if (!i915_request_started(request)) 1799 continue; 1800 1801 /* More than one preemptible request may match! */ 1802 if (!match_ring(request)) 1803 continue; 1804 1805 active = request; 1806 break; 1807 } 1808 1809 return active; 1810 } 1811 1812 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 1813 #include "mock_engine.c" 1814 #include "selftest_engine.c" 1815 #include "selftest_engine_cs.c" 1816 #endif 1817