xref: /openbsd-src/sys/dev/pci/drm/i915/gt/intel_engine_cs.c (revision 24bb5fcea3ed904bc467217bdaadb5dfc618d5bf)
1 /*
2  * Copyright © 2016 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #include <drm/drm_print.h>
26 
27 #include "gem/i915_gem_context.h"
28 
29 #include "i915_drv.h"
30 
31 #include "intel_breadcrumbs.h"
32 #include "intel_context.h"
33 #include "intel_engine.h"
34 #include "intel_engine_pm.h"
35 #include "intel_engine_user.h"
36 #include "intel_gt.h"
37 #include "intel_gt_requests.h"
38 #include "intel_gt_pm.h"
39 #include "intel_lrc.h"
40 #include "intel_reset.h"
41 #include "intel_ring.h"
42 
43 /* Haswell does have the CXT_SIZE register however it does not appear to be
44  * valid. Now, docs explain in dwords what is in the context object. The full
45  * size is 70720 bytes, however, the power context and execlist context will
46  * never be saved (power context is stored elsewhere, and execlists don't work
47  * on HSW) - so the final size, including the extra state required for the
48  * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
49  */
50 #define HSW_CXT_TOTAL_SIZE		(17 * PAGE_SIZE)
51 
52 #define DEFAULT_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
53 #define GEN8_LR_CONTEXT_RENDER_SIZE	(20 * PAGE_SIZE)
54 #define GEN9_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
55 #define GEN10_LR_CONTEXT_RENDER_SIZE	(18 * PAGE_SIZE)
56 #define GEN11_LR_CONTEXT_RENDER_SIZE	(14 * PAGE_SIZE)
57 
58 #define GEN8_LR_CONTEXT_OTHER_SIZE	( 2 * PAGE_SIZE)
59 
60 #define MAX_MMIO_BASES 3
61 struct engine_info {
62 	unsigned int hw_id;
63 	u8 class;
64 	u8 instance;
65 	/* mmio bases table *must* be sorted in reverse gen order */
66 	struct engine_mmio_base {
67 		u32 gen : 8;
68 		u32 base : 24;
69 	} mmio_bases[MAX_MMIO_BASES];
70 };
71 
72 static const struct engine_info intel_engines[] = {
73 	[RCS0] = {
74 		.hw_id = RCS0_HW,
75 		.class = RENDER_CLASS,
76 		.instance = 0,
77 		.mmio_bases = {
78 			{ .gen = 1, .base = RENDER_RING_BASE }
79 		},
80 	},
81 	[BCS0] = {
82 		.hw_id = BCS0_HW,
83 		.class = COPY_ENGINE_CLASS,
84 		.instance = 0,
85 		.mmio_bases = {
86 			{ .gen = 6, .base = BLT_RING_BASE }
87 		},
88 	},
89 	[VCS0] = {
90 		.hw_id = VCS0_HW,
91 		.class = VIDEO_DECODE_CLASS,
92 		.instance = 0,
93 		.mmio_bases = {
94 			{ .gen = 11, .base = GEN11_BSD_RING_BASE },
95 			{ .gen = 6, .base = GEN6_BSD_RING_BASE },
96 			{ .gen = 4, .base = BSD_RING_BASE }
97 		},
98 	},
99 	[VCS1] = {
100 		.hw_id = VCS1_HW,
101 		.class = VIDEO_DECODE_CLASS,
102 		.instance = 1,
103 		.mmio_bases = {
104 			{ .gen = 11, .base = GEN11_BSD2_RING_BASE },
105 			{ .gen = 8, .base = GEN8_BSD2_RING_BASE }
106 		},
107 	},
108 	[VCS2] = {
109 		.hw_id = VCS2_HW,
110 		.class = VIDEO_DECODE_CLASS,
111 		.instance = 2,
112 		.mmio_bases = {
113 			{ .gen = 11, .base = GEN11_BSD3_RING_BASE }
114 		},
115 	},
116 	[VCS3] = {
117 		.hw_id = VCS3_HW,
118 		.class = VIDEO_DECODE_CLASS,
119 		.instance = 3,
120 		.mmio_bases = {
121 			{ .gen = 11, .base = GEN11_BSD4_RING_BASE }
122 		},
123 	},
124 	[VECS0] = {
125 		.hw_id = VECS0_HW,
126 		.class = VIDEO_ENHANCEMENT_CLASS,
127 		.instance = 0,
128 		.mmio_bases = {
129 			{ .gen = 11, .base = GEN11_VEBOX_RING_BASE },
130 			{ .gen = 7, .base = VEBOX_RING_BASE }
131 		},
132 	},
133 	[VECS1] = {
134 		.hw_id = VECS1_HW,
135 		.class = VIDEO_ENHANCEMENT_CLASS,
136 		.instance = 1,
137 		.mmio_bases = {
138 			{ .gen = 11, .base = GEN11_VEBOX2_RING_BASE }
139 		},
140 	},
141 };
142 
143 /**
144  * intel_engine_context_size() - return the size of the context for an engine
145  * @gt: the gt
146  * @class: engine class
147  *
148  * Each engine class may require a different amount of space for a context
149  * image.
150  *
151  * Return: size (in bytes) of an engine class specific context image
152  *
153  * Note: this size includes the HWSP, which is part of the context image
154  * in LRC mode, but does not include the "shared data page" used with
155  * GuC submission. The caller should account for this if using the GuC.
156  */
157 u32 intel_engine_context_size(struct intel_gt *gt, u8 class)
158 {
159 	struct intel_uncore *uncore = gt->uncore;
160 	u32 cxt_size;
161 
162 	BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);
163 
164 	switch (class) {
165 	case RENDER_CLASS:
166 		switch (INTEL_GEN(gt->i915)) {
167 		default:
168 			MISSING_CASE(INTEL_GEN(gt->i915));
169 			return DEFAULT_LR_CONTEXT_RENDER_SIZE;
170 		case 12:
171 		case 11:
172 			return GEN11_LR_CONTEXT_RENDER_SIZE;
173 		case 10:
174 			return GEN10_LR_CONTEXT_RENDER_SIZE;
175 		case 9:
176 			return GEN9_LR_CONTEXT_RENDER_SIZE;
177 		case 8:
178 			return GEN8_LR_CONTEXT_RENDER_SIZE;
179 		case 7:
180 			if (IS_HASWELL(gt->i915))
181 				return HSW_CXT_TOTAL_SIZE;
182 
183 			cxt_size = intel_uncore_read(uncore, GEN7_CXT_SIZE);
184 			return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
185 					PAGE_SIZE);
186 		case 6:
187 			cxt_size = intel_uncore_read(uncore, CXT_SIZE);
188 			return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
189 					PAGE_SIZE);
190 		case 5:
191 		case 4:
192 			/*
193 			 * There is a discrepancy here between the size reported
194 			 * by the register and the size of the context layout
195 			 * in the docs. Both are described as authorative!
196 			 *
197 			 * The discrepancy is on the order of a few cachelines,
198 			 * but the total is under one page (4k), which is our
199 			 * minimum allocation anyway so it should all come
200 			 * out in the wash.
201 			 */
202 			cxt_size = intel_uncore_read(uncore, CXT_SIZE) + 1;
203 			drm_dbg(&gt->i915->drm,
204 				"gen%d CXT_SIZE = %d bytes [0x%08x]\n",
205 				INTEL_GEN(gt->i915), cxt_size * 64,
206 				cxt_size - 1);
207 			return round_up(cxt_size * 64, PAGE_SIZE);
208 		case 3:
209 		case 2:
210 		/* For the special day when i810 gets merged. */
211 		case 1:
212 			return 0;
213 		}
214 		break;
215 	default:
216 		MISSING_CASE(class);
217 		fallthrough;
218 	case VIDEO_DECODE_CLASS:
219 	case VIDEO_ENHANCEMENT_CLASS:
220 	case COPY_ENGINE_CLASS:
221 		if (INTEL_GEN(gt->i915) < 8)
222 			return 0;
223 		return GEN8_LR_CONTEXT_OTHER_SIZE;
224 	}
225 }
226 
227 static u32 __engine_mmio_base(struct drm_i915_private *i915,
228 			      const struct engine_mmio_base *bases)
229 {
230 	int i;
231 
232 	for (i = 0; i < MAX_MMIO_BASES; i++)
233 		if (INTEL_GEN(i915) >= bases[i].gen)
234 			break;
235 
236 	GEM_BUG_ON(i == MAX_MMIO_BASES);
237 	GEM_BUG_ON(!bases[i].base);
238 
239 	return bases[i].base;
240 }
241 
242 static void __sprint_engine_name(struct intel_engine_cs *engine)
243 {
244 	/*
245 	 * Before we know what the uABI name for this engine will be,
246 	 * we still would like to keep track of this engine in the debug logs.
247 	 * We throw in a ' here as a reminder that this isn't its final name.
248 	 */
249 	GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u",
250 			     intel_engine_class_repr(engine->class),
251 			     engine->instance) >= sizeof(engine->name));
252 }
253 
254 void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
255 {
256 	/*
257 	 * Though they added more rings on g4x/ilk, they did not add
258 	 * per-engine HWSTAM until gen6.
259 	 */
260 	if (INTEL_GEN(engine->i915) < 6 && engine->class != RENDER_CLASS)
261 		return;
262 
263 	if (INTEL_GEN(engine->i915) >= 3)
264 		ENGINE_WRITE(engine, RING_HWSTAM, mask);
265 	else
266 		ENGINE_WRITE16(engine, RING_HWSTAM, mask);
267 }
268 
269 static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
270 {
271 	/* Mask off all writes into the unknown HWSP */
272 	intel_engine_set_hwsp_writemask(engine, ~0u);
273 }
274 
275 static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id)
276 {
277 	const struct engine_info *info = &intel_engines[id];
278 	struct drm_i915_private *i915 = gt->i915;
279 	struct intel_engine_cs *engine;
280 
281 	BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
282 	BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));
283 
284 	if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine)))
285 		return -EINVAL;
286 
287 	if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
288 		return -EINVAL;
289 
290 	if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
291 		return -EINVAL;
292 
293 	if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance]))
294 		return -EINVAL;
295 
296 	engine = kzalloc(sizeof(*engine), GFP_KERNEL);
297 	if (!engine)
298 		return -ENOMEM;
299 
300 	BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES);
301 
302 	engine->id = id;
303 	engine->legacy_idx = INVALID_ENGINE;
304 	engine->mask = BIT(id);
305 	engine->i915 = i915;
306 	engine->gt = gt;
307 	engine->uncore = gt->uncore;
308 	engine->hw_id = engine->guc_id = info->hw_id;
309 	engine->mmio_base = __engine_mmio_base(i915, info->mmio_bases);
310 
311 	engine->class = info->class;
312 	engine->instance = info->instance;
313 	__sprint_engine_name(engine);
314 
315 	engine->props.heartbeat_interval_ms =
316 		CONFIG_DRM_I915_HEARTBEAT_INTERVAL;
317 	engine->props.max_busywait_duration_ns =
318 		CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT;
319 	engine->props.preempt_timeout_ms =
320 		CONFIG_DRM_I915_PREEMPT_TIMEOUT;
321 	engine->props.stop_timeout_ms =
322 		CONFIG_DRM_I915_STOP_TIMEOUT;
323 	engine->props.timeslice_duration_ms =
324 		CONFIG_DRM_I915_TIMESLICE_DURATION;
325 
326 	/* Override to uninterruptible for OpenCL workloads. */
327 	if (INTEL_GEN(i915) == 12 && engine->class == RENDER_CLASS)
328 		engine->props.preempt_timeout_ms = 0;
329 
330 	engine->defaults = engine->props; /* never to change again */
331 
332 	engine->context_size = intel_engine_context_size(gt, engine->class);
333 	if (WARN_ON(engine->context_size > BIT(20)))
334 		engine->context_size = 0;
335 	if (engine->context_size)
336 		DRIVER_CAPS(i915)->has_logical_contexts = true;
337 
338 	/* Nothing to do here, execute in order of dependencies */
339 	engine->schedule = NULL;
340 
341 	ewma__engine_latency_init(&engine->latency);
342 	seqlock_init(&engine->stats.lock, IPL_TTY);
343 
344 	ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);
345 
346 	/* Scrub mmio state on takeover */
347 	intel_engine_sanitize_mmio(engine);
348 
349 	gt->engine_class[info->class][info->instance] = engine;
350 	gt->engine[id] = engine;
351 
352 	return 0;
353 }
354 
355 static void __setup_engine_capabilities(struct intel_engine_cs *engine)
356 {
357 	struct drm_i915_private *i915 = engine->i915;
358 
359 	if (engine->class == VIDEO_DECODE_CLASS) {
360 		/*
361 		 * HEVC support is present on first engine instance
362 		 * before Gen11 and on all instances afterwards.
363 		 */
364 		if (INTEL_GEN(i915) >= 11 ||
365 		    (INTEL_GEN(i915) >= 9 && engine->instance == 0))
366 			engine->uabi_capabilities |=
367 				I915_VIDEO_CLASS_CAPABILITY_HEVC;
368 
369 		/*
370 		 * SFC block is present only on even logical engine
371 		 * instances.
372 		 */
373 		if ((INTEL_GEN(i915) >= 11 &&
374 		     (engine->gt->info.vdbox_sfc_access &
375 		      BIT(engine->instance))) ||
376 		    (INTEL_GEN(i915) >= 9 && engine->instance == 0))
377 			engine->uabi_capabilities |=
378 				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
379 	} else if (engine->class == VIDEO_ENHANCEMENT_CLASS) {
380 		if (INTEL_GEN(i915) >= 9)
381 			engine->uabi_capabilities |=
382 				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
383 	}
384 }
385 
386 static void intel_setup_engine_capabilities(struct intel_gt *gt)
387 {
388 	struct intel_engine_cs *engine;
389 	enum intel_engine_id id;
390 
391 	for_each_engine(engine, gt, id)
392 		__setup_engine_capabilities(engine);
393 }
394 
395 /**
396  * intel_engines_release() - free the resources allocated for Command Streamers
397  * @gt: pointer to struct intel_gt
398  */
399 void intel_engines_release(struct intel_gt *gt)
400 {
401 	struct intel_engine_cs *engine;
402 	enum intel_engine_id id;
403 
404 	/*
405 	 * Before we release the resources held by engine, we must be certain
406 	 * that the HW is no longer accessing them -- having the GPU scribble
407 	 * to or read from a page being used for something else causes no end
408 	 * of fun.
409 	 *
410 	 * The GPU should be reset by this point, but assume the worst just
411 	 * in case we aborted before completely initialising the engines.
412 	 */
413 	GEM_BUG_ON(intel_gt_pm_is_awake(gt));
414 	if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
415 		__intel_gt_reset(gt, ALL_ENGINES);
416 
417 	/* Decouple the backend; but keep the layout for late GPU resets */
418 	for_each_engine(engine, gt, id) {
419 		if (!engine->release)
420 			continue;
421 
422 		intel_wakeref_wait_for_idle(&engine->wakeref);
423 		GEM_BUG_ON(intel_engine_pm_is_awake(engine));
424 
425 		engine->release(engine);
426 		engine->release = NULL;
427 
428 		memset(&engine->reset, 0, sizeof(engine->reset));
429 	}
430 }
431 
432 void intel_engine_free_request_pool(struct intel_engine_cs *engine)
433 {
434 	if (!engine->request_pool)
435 		return;
436 
437 #ifdef __linux__
438 	kmem_cache_free(i915_request_slab_cache(), engine->request_pool);
439 #else
440 	pool_put(i915_request_slab_cache(), engine->request_pool);
441 #endif
442 }
443 
444 void intel_engines_free(struct intel_gt *gt)
445 {
446 	struct intel_engine_cs *engine;
447 	enum intel_engine_id id;
448 
449 	/* Free the requests! dma-resv keeps fences around for an eternity */
450 	rcu_barrier();
451 
452 	for_each_engine(engine, gt, id) {
453 		intel_engine_free_request_pool(engine);
454 		kfree(engine);
455 		gt->engine[id] = NULL;
456 	}
457 }
458 
459 /*
460  * Determine which engines are fused off in our particular hardware.
461  * Note that we have a catch-22 situation where we need to be able to access
462  * the blitter forcewake domain to read the engine fuses, but at the same time
463  * we need to know which engines are available on the system to know which
464  * forcewake domains are present. We solve this by intializing the forcewake
465  * domains based on the full engine mask in the platform capabilities before
466  * calling this function and pruning the domains for fused-off engines
467  * afterwards.
468  */
469 static intel_engine_mask_t init_engine_mask(struct intel_gt *gt)
470 {
471 	struct drm_i915_private *i915 = gt->i915;
472 	struct intel_gt_info *info = &gt->info;
473 	struct intel_uncore *uncore = gt->uncore;
474 	unsigned int logical_vdbox = 0;
475 	unsigned int i;
476 	u32 media_fuse;
477 	u16 vdbox_mask;
478 	u16 vebox_mask;
479 
480 	info->engine_mask = INTEL_INFO(i915)->platform_engine_mask;
481 
482 	if (INTEL_GEN(i915) < 11)
483 		return info->engine_mask;
484 
485 	media_fuse = ~intel_uncore_read(uncore, GEN11_GT_VEBOX_VDBOX_DISABLE);
486 
487 	vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK;
488 	vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >>
489 		      GEN11_GT_VEBOX_DISABLE_SHIFT;
490 
491 	for (i = 0; i < I915_MAX_VCS; i++) {
492 		if (!HAS_ENGINE(gt, _VCS(i))) {
493 			vdbox_mask &= ~BIT(i);
494 			continue;
495 		}
496 
497 		if (!(BIT(i) & vdbox_mask)) {
498 			info->engine_mask &= ~BIT(_VCS(i));
499 			drm_dbg(&i915->drm, "vcs%u fused off\n", i);
500 			continue;
501 		}
502 
503 		/*
504 		 * In Gen11, only even numbered logical VDBOXes are
505 		 * hooked up to an SFC (Scaler & Format Converter) unit.
506 		 * In TGL each VDBOX has access to an SFC.
507 		 */
508 		if (INTEL_GEN(i915) >= 12 || logical_vdbox++ % 2 == 0)
509 			gt->info.vdbox_sfc_access |= BIT(i);
510 	}
511 	drm_dbg(&i915->drm, "vdbox enable: %04x, instances: %04lx\n",
512 		vdbox_mask, VDBOX_MASK(gt));
513 	GEM_BUG_ON(vdbox_mask != VDBOX_MASK(gt));
514 
515 	for (i = 0; i < I915_MAX_VECS; i++) {
516 		if (!HAS_ENGINE(gt, _VECS(i))) {
517 			vebox_mask &= ~BIT(i);
518 			continue;
519 		}
520 
521 		if (!(BIT(i) & vebox_mask)) {
522 			info->engine_mask &= ~BIT(_VECS(i));
523 			drm_dbg(&i915->drm, "vecs%u fused off\n", i);
524 		}
525 	}
526 	drm_dbg(&i915->drm, "vebox enable: %04x, instances: %04lx\n",
527 		vebox_mask, VEBOX_MASK(gt));
528 	GEM_BUG_ON(vebox_mask != VEBOX_MASK(gt));
529 
530 	return info->engine_mask;
531 }
532 
533 /**
534  * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
535  * @gt: pointer to struct intel_gt
536  *
537  * Return: non-zero if the initialization failed.
538  */
539 int intel_engines_init_mmio(struct intel_gt *gt)
540 {
541 	struct drm_i915_private *i915 = gt->i915;
542 	const unsigned int engine_mask = init_engine_mask(gt);
543 	unsigned int mask = 0;
544 	unsigned int i;
545 	int err;
546 
547 	drm_WARN_ON(&i915->drm, engine_mask == 0);
548 	drm_WARN_ON(&i915->drm, engine_mask &
549 		    GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
550 
551 	if (i915_inject_probe_failure(i915))
552 		return -ENODEV;
553 
554 	for (i = 0; i < ARRAY_SIZE(intel_engines); i++) {
555 		if (!HAS_ENGINE(gt, i))
556 			continue;
557 
558 		err = intel_engine_setup(gt, i);
559 		if (err)
560 			goto cleanup;
561 
562 		mask |= BIT(i);
563 	}
564 
565 	/*
566 	 * Catch failures to update intel_engines table when the new engines
567 	 * are added to the driver by a warning and disabling the forgotten
568 	 * engines.
569 	 */
570 	if (drm_WARN_ON(&i915->drm, mask != engine_mask))
571 		gt->info.engine_mask = mask;
572 
573 	gt->info.num_engines = hweight32(mask);
574 
575 	intel_gt_check_and_clear_faults(gt);
576 
577 	intel_setup_engine_capabilities(gt);
578 
579 	intel_uncore_prune_engine_fw_domains(gt->uncore, gt);
580 
581 	return 0;
582 
583 cleanup:
584 	intel_engines_free(gt);
585 	return err;
586 }
587 
588 void intel_engine_init_execlists(struct intel_engine_cs *engine)
589 {
590 	struct intel_engine_execlists * const execlists = &engine->execlists;
591 
592 	execlists->port_mask = 1;
593 	GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
594 	GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);
595 
596 	memset(execlists->pending, 0, sizeof(execlists->pending));
597 	execlists->active =
598 		memset(execlists->inflight, 0, sizeof(execlists->inflight));
599 
600 	execlists->queue_priority_hint = INT_MIN;
601 	execlists->queue = RB_ROOT_CACHED;
602 }
603 
604 static void cleanup_status_page(struct intel_engine_cs *engine)
605 {
606 	struct i915_vma *vma;
607 
608 	/* Prevent writes into HWSP after returning the page to the system */
609 	intel_engine_set_hwsp_writemask(engine, ~0u);
610 
611 	vma = fetch_and_zero(&engine->status_page.vma);
612 	if (!vma)
613 		return;
614 
615 	if (!HWS_NEEDS_PHYSICAL(engine->i915))
616 		i915_vma_unpin(vma);
617 
618 	i915_gem_object_unpin_map(vma->obj);
619 	i915_gem_object_put(vma->obj);
620 }
621 
622 static int pin_ggtt_status_page(struct intel_engine_cs *engine,
623 				struct i915_vma *vma)
624 {
625 	unsigned int flags;
626 
627 	if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt))
628 		/*
629 		 * On g33, we cannot place HWS above 256MiB, so
630 		 * restrict its pinning to the low mappable arena.
631 		 * Though this restriction is not documented for
632 		 * gen4, gen5, or byt, they also behave similarly
633 		 * and hang if the HWS is placed at the top of the
634 		 * GTT. To generalise, it appears that all !llc
635 		 * platforms have issues with us placing the HWS
636 		 * above the mappable region (even though we never
637 		 * actually map it).
638 		 */
639 		flags = PIN_MAPPABLE;
640 	else
641 		flags = PIN_HIGH;
642 
643 	return i915_ggtt_pin(vma, NULL, 0, flags);
644 }
645 
646 static int init_status_page(struct intel_engine_cs *engine)
647 {
648 	struct drm_i915_gem_object *obj;
649 	struct i915_vma *vma;
650 	void *vaddr;
651 	int ret;
652 
653 	/*
654 	 * Though the HWS register does support 36bit addresses, historically
655 	 * we have had hangs and corruption reported due to wild writes if
656 	 * the HWS is placed above 4G. We only allow objects to be allocated
657 	 * in GFP_DMA32 for i965, and no earlier physical address users had
658 	 * access to more than 4G.
659 	 */
660 	obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
661 	if (IS_ERR(obj)) {
662 		drm_err(&engine->i915->drm,
663 			"Failed to allocate status page\n");
664 		return PTR_ERR(obj);
665 	}
666 
667 	i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
668 
669 	vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
670 	if (IS_ERR(vma)) {
671 		ret = PTR_ERR(vma);
672 		goto err;
673 	}
674 
675 	vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
676 	if (IS_ERR(vaddr)) {
677 		ret = PTR_ERR(vaddr);
678 		goto err;
679 	}
680 
681 	engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
682 	engine->status_page.vma = vma;
683 
684 	if (!HWS_NEEDS_PHYSICAL(engine->i915)) {
685 		ret = pin_ggtt_status_page(engine, vma);
686 		if (ret)
687 			goto err_unpin;
688 	}
689 
690 	return 0;
691 
692 err_unpin:
693 	i915_gem_object_unpin_map(obj);
694 err:
695 	i915_gem_object_put(obj);
696 	return ret;
697 }
698 
699 static int engine_setup_common(struct intel_engine_cs *engine)
700 {
701 	int err;
702 
703 	init_llist_head(&engine->barrier_tasks);
704 
705 	err = init_status_page(engine);
706 	if (err)
707 		return err;
708 
709 	engine->breadcrumbs = intel_breadcrumbs_create(engine);
710 	if (!engine->breadcrumbs) {
711 		err = -ENOMEM;
712 		goto err_status;
713 	}
714 
715 	err = intel_engine_init_cmd_parser(engine);
716 	if (err)
717 		goto err_cmd_parser;
718 
719 	intel_engine_init_active(engine, ENGINE_PHYSICAL);
720 	intel_engine_init_execlists(engine);
721 	intel_engine_init__pm(engine);
722 	intel_engine_init_retire(engine);
723 
724 	/* Use the whole device by default */
725 	engine->sseu =
726 		intel_sseu_from_device_info(&engine->gt->info.sseu);
727 
728 	intel_engine_init_workarounds(engine);
729 	intel_engine_init_whitelist(engine);
730 	intel_engine_init_ctx_wa(engine);
731 
732 	return 0;
733 
734 err_cmd_parser:
735 	intel_breadcrumbs_free(engine->breadcrumbs);
736 err_status:
737 	cleanup_status_page(engine);
738 	return err;
739 }
740 
741 struct measure_breadcrumb {
742 	struct i915_request rq;
743 	struct intel_ring ring;
744 	u32 cs[2048];
745 };
746 
747 static int measure_breadcrumb_dw(struct intel_context *ce)
748 {
749 	struct intel_engine_cs *engine = ce->engine;
750 	struct measure_breadcrumb *frame;
751 	int dw;
752 
753 	GEM_BUG_ON(!engine->gt->scratch);
754 
755 	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
756 	if (!frame)
757 		return -ENOMEM;
758 
759 	frame->rq.engine = engine;
760 	frame->rq.context = ce;
761 	rcu_assign_pointer(frame->rq.timeline, ce->timeline);
762 
763 	frame->ring.vaddr = frame->cs;
764 	frame->ring.size = sizeof(frame->cs);
765 	frame->ring.wrap =
766 		BITS_PER_TYPE(frame->ring.size) - ilog2(frame->ring.size);
767 	frame->ring.effective_size = frame->ring.size;
768 	intel_ring_update_space(&frame->ring);
769 	frame->rq.ring = &frame->ring;
770 
771 	mutex_lock(&ce->timeline->mutex);
772 	spin_lock_irq(&engine->active.lock);
773 
774 	dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
775 
776 	spin_unlock_irq(&engine->active.lock);
777 	mutex_unlock(&ce->timeline->mutex);
778 
779 	GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */
780 
781 	kfree(frame);
782 	return dw;
783 }
784 
785 void
786 intel_engine_init_active(struct intel_engine_cs *engine, unsigned int subclass)
787 {
788 	INIT_LIST_HEAD(&engine->active.requests);
789 	INIT_LIST_HEAD(&engine->active.hold);
790 
791 	mtx_init(&engine->active.lock, IPL_TTY);
792 	lockdep_set_subclass(&engine->active.lock, subclass);
793 
794 	/*
795 	 * Due to an interesting quirk in lockdep's internal debug tracking,
796 	 * after setting a subclass we must ensure the lock is used. Otherwise,
797 	 * nr_unused_locks is incremented once too often.
798 	 */
799 #ifdef CONFIG_DEBUG_LOCK_ALLOC
800 	local_irq_disable();
801 	lock_map_acquire(&engine->active.lock.dep_map);
802 	lock_map_release(&engine->active.lock.dep_map);
803 	local_irq_enable();
804 #endif
805 }
806 
807 static struct intel_context *
808 create_pinned_context(struct intel_engine_cs *engine,
809 		      unsigned int hwsp,
810 		      struct lock_class_key *key,
811 		      const char *name)
812 {
813 	struct intel_context *ce;
814 	int err;
815 
816 	ce = intel_context_create(engine);
817 	if (IS_ERR(ce))
818 		return ce;
819 
820 	__set_bit(CONTEXT_BARRIER_BIT, &ce->flags);
821 	ce->timeline = page_pack_bits(NULL, hwsp);
822 
823 	err = intel_context_pin(ce); /* perma-pin so it is always available */
824 	if (err) {
825 		intel_context_put(ce);
826 		return ERR_PTR(err);
827 	}
828 
829 	/*
830 	 * Give our perma-pinned kernel timelines a separate lockdep class,
831 	 * so that we can use them from within the normal user timelines
832 	 * should we need to inject GPU operations during their request
833 	 * construction.
834 	 */
835 	lockdep_set_class_and_name(&ce->timeline->mutex, key, name);
836 
837 	return ce;
838 }
839 
840 static struct intel_context *
841 create_kernel_context(struct intel_engine_cs *engine)
842 {
843 	static struct lock_class_key kernel;
844 
845 	return create_pinned_context(engine, I915_GEM_HWS_SEQNO_ADDR,
846 				     &kernel, "kernel_context");
847 }
848 
849 /**
850  * intel_engines_init_common - initialize cengine state which might require hw access
851  * @engine: Engine to initialize.
852  *
853  * Initializes @engine@ structure members shared between legacy and execlists
854  * submission modes which do require hardware access.
855  *
856  * Typcally done at later stages of submission mode specific engine setup.
857  *
858  * Returns zero on success or an error code on failure.
859  */
860 static int engine_init_common(struct intel_engine_cs *engine)
861 {
862 	struct intel_context *ce;
863 	int ret;
864 
865 	engine->set_default_submission(engine);
866 
867 	/*
868 	 * We may need to do things with the shrinker which
869 	 * require us to immediately switch back to the default
870 	 * context. This can cause a problem as pinning the
871 	 * default context also requires GTT space which may not
872 	 * be available. To avoid this we always pin the default
873 	 * context.
874 	 */
875 	ce = create_kernel_context(engine);
876 	if (IS_ERR(ce))
877 		return PTR_ERR(ce);
878 
879 	ret = measure_breadcrumb_dw(ce);
880 	if (ret < 0)
881 		goto err_context;
882 
883 	engine->emit_fini_breadcrumb_dw = ret;
884 	engine->kernel_context = ce;
885 
886 	return 0;
887 
888 err_context:
889 	intel_context_put(ce);
890 	return ret;
891 }
892 
893 int intel_engines_init(struct intel_gt *gt)
894 {
895 	int (*setup)(struct intel_engine_cs *engine);
896 	struct intel_engine_cs *engine;
897 	enum intel_engine_id id;
898 	int err;
899 
900 	if (HAS_EXECLISTS(gt->i915))
901 		setup = intel_execlists_submission_setup;
902 	else
903 		setup = intel_ring_submission_setup;
904 
905 	for_each_engine(engine, gt, id) {
906 		err = engine_setup_common(engine);
907 		if (err)
908 			return err;
909 
910 		err = setup(engine);
911 		if (err)
912 			return err;
913 
914 		err = engine_init_common(engine);
915 		if (err)
916 			return err;
917 
918 		intel_engine_add_user(engine);
919 	}
920 
921 	return 0;
922 }
923 
924 /**
925  * intel_engines_cleanup_common - cleans up the engine state created by
926  *                                the common initiailizers.
927  * @engine: Engine to cleanup.
928  *
929  * This cleans up everything created by the common helpers.
930  */
931 void intel_engine_cleanup_common(struct intel_engine_cs *engine)
932 {
933 	GEM_BUG_ON(!list_empty(&engine->active.requests));
934 	tasklet_kill(&engine->execlists.tasklet); /* flush the callback */
935 
936 	cleanup_status_page(engine);
937 	intel_breadcrumbs_free(engine->breadcrumbs);
938 
939 	intel_engine_fini_retire(engine);
940 	intel_engine_cleanup_cmd_parser(engine);
941 
942 	if (engine->default_state)
943 		uao_detach(engine->default_state);
944 
945 	if (engine->kernel_context) {
946 		intel_context_unpin(engine->kernel_context);
947 		intel_context_put(engine->kernel_context);
948 	}
949 	GEM_BUG_ON(!llist_empty(&engine->barrier_tasks));
950 
951 	intel_wa_list_free(&engine->ctx_wa_list);
952 	intel_wa_list_free(&engine->wa_list);
953 	intel_wa_list_free(&engine->whitelist);
954 }
955 
956 /**
957  * intel_engine_resume - re-initializes the HW state of the engine
958  * @engine: Engine to resume.
959  *
960  * Returns zero on success or an error code on failure.
961  */
962 int intel_engine_resume(struct intel_engine_cs *engine)
963 {
964 	intel_engine_apply_workarounds(engine);
965 	intel_engine_apply_whitelist(engine);
966 
967 	return engine->resume(engine);
968 }
969 
970 u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
971 {
972 	struct drm_i915_private *i915 = engine->i915;
973 
974 	u64 acthd;
975 
976 	if (INTEL_GEN(i915) >= 8)
977 		acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW);
978 	else if (INTEL_GEN(i915) >= 4)
979 		acthd = ENGINE_READ(engine, RING_ACTHD);
980 	else
981 		acthd = ENGINE_READ(engine, ACTHD);
982 
983 	return acthd;
984 }
985 
986 u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
987 {
988 	u64 bbaddr;
989 
990 	if (INTEL_GEN(engine->i915) >= 8)
991 		bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW);
992 	else
993 		bbaddr = ENGINE_READ(engine, RING_BBADDR);
994 
995 	return bbaddr;
996 }
997 
998 static unsigned long stop_timeout(const struct intel_engine_cs *engine)
999 {
1000 	if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */
1001 		return 0;
1002 
1003 	/*
1004 	 * If we are doing a normal GPU reset, we can take our time and allow
1005 	 * the engine to quiesce. We've stopped submission to the engine, and
1006 	 * if we wait long enough an innocent context should complete and
1007 	 * leave the engine idle. So they should not be caught unaware by
1008 	 * the forthcoming GPU reset (which usually follows the stop_cs)!
1009 	 */
1010 	return READ_ONCE(engine->props.stop_timeout_ms);
1011 }
1012 
1013 int intel_engine_stop_cs(struct intel_engine_cs *engine)
1014 {
1015 	struct intel_uncore *uncore = engine->uncore;
1016 	const u32 base = engine->mmio_base;
1017 	const i915_reg_t mode = RING_MI_MODE(base);
1018 	int err;
1019 
1020 	if (INTEL_GEN(engine->i915) < 3)
1021 		return -ENODEV;
1022 
1023 	ENGINE_TRACE(engine, "\n");
1024 
1025 	intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING));
1026 
1027 	err = 0;
1028 	if (__intel_wait_for_register_fw(uncore,
1029 					 mode, MODE_IDLE, MODE_IDLE,
1030 					 1000, stop_timeout(engine),
1031 					 NULL)) {
1032 		ENGINE_TRACE(engine, "timed out on STOP_RING -> IDLE\n");
1033 		err = -ETIMEDOUT;
1034 	}
1035 
1036 	/* A final mmio read to let GPU writes be hopefully flushed to memory */
1037 	intel_uncore_posting_read_fw(uncore, mode);
1038 
1039 	return err;
1040 }
1041 
1042 void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
1043 {
1044 	ENGINE_TRACE(engine, "\n");
1045 
1046 	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
1047 }
1048 
1049 const char *i915_cache_level_str(struct drm_i915_private *i915, int type)
1050 {
1051 	switch (type) {
1052 	case I915_CACHE_NONE: return " uncached";
1053 	case I915_CACHE_LLC: return HAS_LLC(i915) ? " LLC" : " snooped";
1054 	case I915_CACHE_L3_LLC: return " L3+LLC";
1055 	case I915_CACHE_WT: return " WT";
1056 	default: return "";
1057 	}
1058 }
1059 
1060 static u32
1061 read_subslice_reg(const struct intel_engine_cs *engine,
1062 		  int slice, int subslice, i915_reg_t reg)
1063 {
1064 	struct drm_i915_private *i915 = engine->i915;
1065 	struct intel_uncore *uncore = engine->uncore;
1066 	u32 mcr_mask, mcr_ss, mcr, old_mcr, val;
1067 	enum forcewake_domains fw_domains;
1068 
1069 	if (INTEL_GEN(i915) >= 11) {
1070 		mcr_mask = GEN11_MCR_SLICE_MASK | GEN11_MCR_SUBSLICE_MASK;
1071 		mcr_ss = GEN11_MCR_SLICE(slice) | GEN11_MCR_SUBSLICE(subslice);
1072 	} else {
1073 		mcr_mask = GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK;
1074 		mcr_ss = GEN8_MCR_SLICE(slice) | GEN8_MCR_SUBSLICE(subslice);
1075 	}
1076 
1077 	fw_domains = intel_uncore_forcewake_for_reg(uncore, reg,
1078 						    FW_REG_READ);
1079 	fw_domains |= intel_uncore_forcewake_for_reg(uncore,
1080 						     GEN8_MCR_SELECTOR,
1081 						     FW_REG_READ | FW_REG_WRITE);
1082 
1083 	spin_lock_irq(&uncore->lock);
1084 	intel_uncore_forcewake_get__locked(uncore, fw_domains);
1085 
1086 	old_mcr = mcr = intel_uncore_read_fw(uncore, GEN8_MCR_SELECTOR);
1087 
1088 	mcr &= ~mcr_mask;
1089 	mcr |= mcr_ss;
1090 	intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
1091 
1092 	val = intel_uncore_read_fw(uncore, reg);
1093 
1094 	mcr &= ~mcr_mask;
1095 	mcr |= old_mcr & mcr_mask;
1096 
1097 	intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
1098 
1099 	intel_uncore_forcewake_put__locked(uncore, fw_domains);
1100 	spin_unlock_irq(&uncore->lock);
1101 
1102 	return val;
1103 }
1104 
1105 /* NB: please notice the memset */
1106 void intel_engine_get_instdone(const struct intel_engine_cs *engine,
1107 			       struct intel_instdone *instdone)
1108 {
1109 	struct drm_i915_private *i915 = engine->i915;
1110 	const struct sseu_dev_info *sseu = &engine->gt->info.sseu;
1111 	struct intel_uncore *uncore = engine->uncore;
1112 	u32 mmio_base = engine->mmio_base;
1113 	int slice;
1114 	int subslice;
1115 
1116 	memset(instdone, 0, sizeof(*instdone));
1117 
1118 	switch (INTEL_GEN(i915)) {
1119 	default:
1120 		instdone->instdone =
1121 			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1122 
1123 		if (engine->id != RCS0)
1124 			break;
1125 
1126 		instdone->slice_common =
1127 			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1128 		if (INTEL_GEN(i915) >= 12) {
1129 			instdone->slice_common_extra[0] =
1130 				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA);
1131 			instdone->slice_common_extra[1] =
1132 				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA2);
1133 		}
1134 		for_each_instdone_slice_subslice(i915, sseu, slice, subslice) {
1135 			instdone->sampler[slice][subslice] =
1136 				read_subslice_reg(engine, slice, subslice,
1137 						  GEN7_SAMPLER_INSTDONE);
1138 			instdone->row[slice][subslice] =
1139 				read_subslice_reg(engine, slice, subslice,
1140 						  GEN7_ROW_INSTDONE);
1141 		}
1142 		break;
1143 	case 7:
1144 		instdone->instdone =
1145 			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1146 
1147 		if (engine->id != RCS0)
1148 			break;
1149 
1150 		instdone->slice_common =
1151 			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1152 		instdone->sampler[0][0] =
1153 			intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE);
1154 		instdone->row[0][0] =
1155 			intel_uncore_read(uncore, GEN7_ROW_INSTDONE);
1156 
1157 		break;
1158 	case 6:
1159 	case 5:
1160 	case 4:
1161 		instdone->instdone =
1162 			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1163 		if (engine->id == RCS0)
1164 			/* HACK: Using the wrong struct member */
1165 			instdone->slice_common =
1166 				intel_uncore_read(uncore, GEN4_INSTDONE1);
1167 		break;
1168 	case 3:
1169 	case 2:
1170 		instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE);
1171 		break;
1172 	}
1173 }
1174 
1175 static bool ring_is_idle(struct intel_engine_cs *engine)
1176 {
1177 	bool idle = true;
1178 
1179 	if (I915_SELFTEST_ONLY(!engine->mmio_base))
1180 		return true;
1181 
1182 	if (!intel_engine_pm_get_if_awake(engine))
1183 		return true;
1184 
1185 	/* First check that no commands are left in the ring */
1186 	if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) !=
1187 	    (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR))
1188 		idle = false;
1189 
1190 	/* No bit for gen2, so assume the CS parser is idle */
1191 	if (INTEL_GEN(engine->i915) > 2 &&
1192 	    !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE))
1193 		idle = false;
1194 
1195 	intel_engine_pm_put(engine);
1196 
1197 	return idle;
1198 }
1199 
1200 void intel_engine_flush_submission(struct intel_engine_cs *engine)
1201 {
1202 	struct tasklet_struct *t = &engine->execlists.tasklet;
1203 
1204 	if (!t->func)
1205 		return;
1206 
1207 	/* Synchronise and wait for the tasklet on another CPU */
1208 	tasklet_kill(t);
1209 
1210 	/* Having cancelled the tasklet, ensure that is run */
1211 	local_bh_disable();
1212 	if (tasklet_trylock(t)) {
1213 		/* Must wait for any GPU reset in progress. */
1214 		if (__tasklet_is_enabled(t))
1215 			t->func(t->data);
1216 		tasklet_unlock(t);
1217 	}
1218 	local_bh_enable();
1219 }
1220 
1221 /**
1222  * intel_engine_is_idle() - Report if the engine has finished process all work
1223  * @engine: the intel_engine_cs
1224  *
1225  * Return true if there are no requests pending, nothing left to be submitted
1226  * to hardware, and that the engine is idle.
1227  */
1228 bool intel_engine_is_idle(struct intel_engine_cs *engine)
1229 {
1230 	/* More white lies, if wedged, hw state is inconsistent */
1231 	if (intel_gt_is_wedged(engine->gt))
1232 		return true;
1233 
1234 	if (!intel_engine_pm_is_awake(engine))
1235 		return true;
1236 
1237 	/* Waiting to drain ELSP? */
1238 	if (execlists_active(&engine->execlists)) {
1239 #ifdef __linux__
1240 		synchronize_hardirq(engine->i915->drm.pdev->irq);
1241 #else
1242 		intr_barrier(engine->i915->irqh);
1243 #endif
1244 
1245 		intel_engine_flush_submission(engine);
1246 
1247 		if (execlists_active(&engine->execlists))
1248 			return false;
1249 	}
1250 
1251 	/* ELSP is empty, but there are ready requests? E.g. after reset */
1252 	if (!RB_EMPTY_ROOT(&engine->execlists.queue.rb_root))
1253 		return false;
1254 
1255 	/* Ring stopped? */
1256 	return ring_is_idle(engine);
1257 }
1258 
1259 bool intel_engines_are_idle(struct intel_gt *gt)
1260 {
1261 	struct intel_engine_cs *engine;
1262 	enum intel_engine_id id;
1263 
1264 	/*
1265 	 * If the driver is wedged, HW state may be very inconsistent and
1266 	 * report that it is still busy, even though we have stopped using it.
1267 	 */
1268 	if (intel_gt_is_wedged(gt))
1269 		return true;
1270 
1271 	/* Already parked (and passed an idleness test); must still be idle */
1272 	if (!READ_ONCE(gt->awake))
1273 		return true;
1274 
1275 	for_each_engine(engine, gt, id) {
1276 		if (!intel_engine_is_idle(engine))
1277 			return false;
1278 	}
1279 
1280 	return true;
1281 }
1282 
1283 void intel_engines_reset_default_submission(struct intel_gt *gt)
1284 {
1285 	struct intel_engine_cs *engine;
1286 	enum intel_engine_id id;
1287 
1288 	for_each_engine(engine, gt, id)
1289 		engine->set_default_submission(engine);
1290 }
1291 
1292 bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
1293 {
1294 	switch (INTEL_GEN(engine->i915)) {
1295 	case 2:
1296 		return false; /* uses physical not virtual addresses */
1297 	case 3:
1298 		/* maybe only uses physical not virtual addresses */
1299 		return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
1300 	case 4:
1301 		return !IS_I965G(engine->i915); /* who knows! */
1302 	case 6:
1303 		return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
1304 	default:
1305 		return true;
1306 	}
1307 }
1308 
1309 static int print_sched_attr(const struct i915_sched_attr *attr,
1310 			    char *buf, int x, int len)
1311 {
1312 	if (attr->priority == I915_PRIORITY_INVALID)
1313 		return x;
1314 
1315 	x += snprintf(buf + x, len - x,
1316 		      " prio=%d", attr->priority);
1317 
1318 	return x;
1319 }
1320 
1321 static void print_request(struct drm_printer *m,
1322 			  struct i915_request *rq,
1323 			  const char *prefix)
1324 {
1325 	const char *name = rq->fence.ops->get_timeline_name(&rq->fence);
1326 	char buf[80] = "";
1327 	int x = 0;
1328 
1329 	x = print_sched_attr(&rq->sched.attr, buf, x, sizeof(buf));
1330 
1331 	drm_printf(m, "%s %llx:%llx%s%s %s @ %dms: %s\n",
1332 		   prefix,
1333 		   rq->fence.context, rq->fence.seqno,
1334 		   i915_request_completed(rq) ? "!" :
1335 		   i915_request_started(rq) ? "*" :
1336 		   "",
1337 		   test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
1338 			    &rq->fence.flags) ? "+" :
1339 		   test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
1340 			    &rq->fence.flags) ? "-" :
1341 		   "",
1342 		   buf,
1343 		   jiffies_to_msecs(jiffies - rq->emitted_jiffies),
1344 		   name);
1345 }
1346 
1347 static struct intel_timeline *get_timeline(struct i915_request *rq)
1348 {
1349 	struct intel_timeline *tl;
1350 
1351 	/*
1352 	 * Even though we are holding the engine->active.lock here, there
1353 	 * is no control over the submission queue per-se and we are
1354 	 * inspecting the active state at a random point in time, with an
1355 	 * unknown queue. Play safe and make sure the timeline remains valid.
1356 	 * (Only being used for pretty printing, one extra kref shouldn't
1357 	 * cause a camel stampede!)
1358 	 */
1359 	rcu_read_lock();
1360 	tl = rcu_dereference(rq->timeline);
1361 	if (!kref_get_unless_zero(&tl->kref))
1362 		tl = NULL;
1363 	rcu_read_unlock();
1364 
1365 	return tl;
1366 }
1367 
1368 static int print_ring(char *buf, int sz, struct i915_request *rq)
1369 {
1370 	int len = 0;
1371 
1372 	if (!i915_request_signaled(rq)) {
1373 		struct intel_timeline *tl = get_timeline(rq);
1374 
1375 		len = scnprintf(buf, sz,
1376 				"ring:{start:%08x, hwsp:%08x, seqno:%08x, runtime:%llums}, ",
1377 				i915_ggtt_offset(rq->ring->vma),
1378 				tl ? tl->hwsp_offset : 0,
1379 				hwsp_seqno(rq),
1380 				DIV_ROUND_CLOSEST_ULL(intel_context_get_total_runtime_ns(rq->context),
1381 						      1000 * 1000));
1382 
1383 		if (tl)
1384 			intel_timeline_put(tl);
1385 	}
1386 
1387 	return len;
1388 }
1389 
1390 static void hexdump(struct drm_printer *m, const void *buf, size_t len)
1391 {
1392 	STUB();
1393 #ifdef notyet
1394 	const size_t rowsize = 8 * sizeof(u32);
1395 	const void *prev = NULL;
1396 	bool skip = false;
1397 	size_t pos;
1398 
1399 	for (pos = 0; pos < len; pos += rowsize) {
1400 		char line[128];
1401 
1402 		if (prev && !memcmp(prev, buf + pos, rowsize)) {
1403 			if (!skip) {
1404 				drm_printf(m, "*\n");
1405 				skip = true;
1406 			}
1407 			continue;
1408 		}
1409 
1410 		WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
1411 						rowsize, sizeof(u32),
1412 						line, sizeof(line),
1413 						false) >= sizeof(line));
1414 		drm_printf(m, "[%04zx] %s\n", pos, line);
1415 
1416 		prev = buf + pos;
1417 		skip = false;
1418 	}
1419 #endif
1420 }
1421 
1422 static const char *repr_timer(const struct timeout *t)
1423 {
1424 	if (!READ_ONCE(t->to_time))
1425 		return "inactive";
1426 
1427 	if (timer_pending(t))
1428 		return "active";
1429 
1430 	return "expired";
1431 }
1432 
1433 static void intel_engine_print_registers(struct intel_engine_cs *engine,
1434 					 struct drm_printer *m)
1435 {
1436 	struct drm_i915_private *dev_priv = engine->i915;
1437 	struct intel_engine_execlists * const execlists = &engine->execlists;
1438 	u64 addr;
1439 
1440 	if (engine->id == RENDER_CLASS && IS_GEN_RANGE(dev_priv, 4, 7))
1441 		drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID));
1442 	if (HAS_EXECLISTS(dev_priv)) {
1443 		drm_printf(m, "\tEL_STAT_HI: 0x%08x\n",
1444 			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI));
1445 		drm_printf(m, "\tEL_STAT_LO: 0x%08x\n",
1446 			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO));
1447 	}
1448 	drm_printf(m, "\tRING_START: 0x%08x\n",
1449 		   ENGINE_READ(engine, RING_START));
1450 	drm_printf(m, "\tRING_HEAD:  0x%08x\n",
1451 		   ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR);
1452 	drm_printf(m, "\tRING_TAIL:  0x%08x\n",
1453 		   ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR);
1454 	drm_printf(m, "\tRING_CTL:   0x%08x%s\n",
1455 		   ENGINE_READ(engine, RING_CTL),
1456 		   ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
1457 	if (INTEL_GEN(engine->i915) > 2) {
1458 		drm_printf(m, "\tRING_MODE:  0x%08x%s\n",
1459 			   ENGINE_READ(engine, RING_MI_MODE),
1460 			   ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : "");
1461 	}
1462 
1463 	if (INTEL_GEN(dev_priv) >= 6) {
1464 		drm_printf(m, "\tRING_IMR:   0x%08x\n",
1465 			   ENGINE_READ(engine, RING_IMR));
1466 		drm_printf(m, "\tRING_ESR:   0x%08x\n",
1467 			   ENGINE_READ(engine, RING_ESR));
1468 		drm_printf(m, "\tRING_EMR:   0x%08x\n",
1469 			   ENGINE_READ(engine, RING_EMR));
1470 		drm_printf(m, "\tRING_EIR:   0x%08x\n",
1471 			   ENGINE_READ(engine, RING_EIR));
1472 	}
1473 
1474 	addr = intel_engine_get_active_head(engine);
1475 	drm_printf(m, "\tACTHD:  0x%08x_%08x\n",
1476 		   upper_32_bits(addr), lower_32_bits(addr));
1477 	addr = intel_engine_get_last_batch_head(engine);
1478 	drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
1479 		   upper_32_bits(addr), lower_32_bits(addr));
1480 	if (INTEL_GEN(dev_priv) >= 8)
1481 		addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW);
1482 	else if (INTEL_GEN(dev_priv) >= 4)
1483 		addr = ENGINE_READ(engine, RING_DMA_FADD);
1484 	else
1485 		addr = ENGINE_READ(engine, DMA_FADD_I8XX);
1486 	drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
1487 		   upper_32_bits(addr), lower_32_bits(addr));
1488 	if (INTEL_GEN(dev_priv) >= 4) {
1489 		drm_printf(m, "\tIPEIR: 0x%08x\n",
1490 			   ENGINE_READ(engine, RING_IPEIR));
1491 		drm_printf(m, "\tIPEHR: 0x%08x\n",
1492 			   ENGINE_READ(engine, RING_IPEHR));
1493 	} else {
1494 		drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR));
1495 		drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR));
1496 	}
1497 
1498 	if (HAS_EXECLISTS(dev_priv)) {
1499 		struct i915_request * const *port, *rq;
1500 		const u32 *hws =
1501 			&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
1502 		const u8 num_entries = execlists->csb_size;
1503 		unsigned int idx;
1504 		u8 read, write;
1505 
1506 		drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n",
1507 			   yesno(test_bit(TASKLET_STATE_SCHED,
1508 					  &engine->execlists.tasklet.state)),
1509 			   enableddisabled(!atomic_read(&engine->execlists.tasklet.count)),
1510 			   repr_timer(&engine->execlists.preempt),
1511 			   repr_timer(&engine->execlists.timer));
1512 
1513 		read = execlists->csb_head;
1514 		write = READ_ONCE(*execlists->csb_write);
1515 
1516 		drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n",
1517 			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO),
1518 			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI),
1519 			   read, write, num_entries);
1520 
1521 		if (read >= num_entries)
1522 			read = 0;
1523 		if (write >= num_entries)
1524 			write = 0;
1525 		if (read > write)
1526 			write += num_entries;
1527 		while (read < write) {
1528 			idx = ++read % num_entries;
1529 			drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
1530 				   idx, hws[idx * 2], hws[idx * 2 + 1]);
1531 		}
1532 
1533 		execlists_active_lock_bh(execlists);
1534 		rcu_read_lock();
1535 		for (port = execlists->active; (rq = *port); port++) {
1536 			char hdr[160];
1537 			int len;
1538 
1539 			len = scnprintf(hdr, sizeof(hdr),
1540 					"\t\tActive[%d]:  ccid:%08x%s%s, ",
1541 					(int)(port - execlists->active),
1542 					rq->context->lrc.ccid,
1543 					intel_context_is_closed(rq->context) ? "!" : "",
1544 					intel_context_is_banned(rq->context) ? "*" : "");
1545 			len += print_ring(hdr + len, sizeof(hdr) - len, rq);
1546 			scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
1547 			print_request(m, rq, hdr);
1548 		}
1549 		for (port = execlists->pending; (rq = *port); port++) {
1550 			char hdr[160];
1551 			int len;
1552 
1553 			len = scnprintf(hdr, sizeof(hdr),
1554 					"\t\tPending[%d]: ccid:%08x%s%s, ",
1555 					(int)(port - execlists->pending),
1556 					rq->context->lrc.ccid,
1557 					intel_context_is_closed(rq->context) ? "!" : "",
1558 					intel_context_is_banned(rq->context) ? "*" : "");
1559 			len += print_ring(hdr + len, sizeof(hdr) - len, rq);
1560 			scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
1561 			print_request(m, rq, hdr);
1562 		}
1563 		rcu_read_unlock();
1564 		execlists_active_unlock_bh(execlists);
1565 	} else if (INTEL_GEN(dev_priv) > 6) {
1566 		drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
1567 			   ENGINE_READ(engine, RING_PP_DIR_BASE));
1568 		drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
1569 			   ENGINE_READ(engine, RING_PP_DIR_BASE_READ));
1570 		drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
1571 			   ENGINE_READ(engine, RING_PP_DIR_DCLV));
1572 	}
1573 }
1574 
1575 static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
1576 {
1577 	void *ring;
1578 	int size;
1579 
1580 	drm_printf(m,
1581 		   "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
1582 		   rq->head, rq->postfix, rq->tail,
1583 		   rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u,
1584 		   rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u);
1585 
1586 	size = rq->tail - rq->head;
1587 	if (rq->tail < rq->head)
1588 		size += rq->ring->size;
1589 
1590 	ring = kmalloc(size, GFP_ATOMIC);
1591 	if (ring) {
1592 		const void *vaddr = rq->ring->vaddr;
1593 		unsigned int head = rq->head;
1594 		unsigned int len = 0;
1595 
1596 		if (rq->tail < head) {
1597 			len = rq->ring->size - head;
1598 			memcpy(ring, vaddr + head, len);
1599 			head = 0;
1600 		}
1601 		memcpy(ring + len, vaddr + head, size - len);
1602 
1603 		hexdump(m, ring, size);
1604 		kfree(ring);
1605 	}
1606 }
1607 
1608 static unsigned long list_count(struct list_head *list)
1609 {
1610 	struct list_head *pos;
1611 	unsigned long count = 0;
1612 
1613 	list_for_each(pos, list)
1614 		count++;
1615 
1616 	return count;
1617 }
1618 
1619 void intel_engine_dump(struct intel_engine_cs *engine,
1620 		       struct drm_printer *m,
1621 		       const char *header, ...)
1622 {
1623 	struct i915_gpu_error * const error = &engine->i915->gpu_error;
1624 	struct i915_request *rq;
1625 	intel_wakeref_t wakeref;
1626 	unsigned long flags;
1627 	ktime_t dummy;
1628 
1629 	if (header) {
1630 		va_list ap;
1631 
1632 		va_start(ap, header);
1633 		drm_vprintf(m, header, &ap);
1634 		va_end(ap);
1635 	}
1636 
1637 	if (intel_gt_is_wedged(engine->gt))
1638 		drm_printf(m, "*** WEDGED ***\n");
1639 
1640 	drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count));
1641 	drm_printf(m, "\tBarriers?: %s\n",
1642 		   yesno(!llist_empty(&engine->barrier_tasks)));
1643 	drm_printf(m, "\tLatency: %luus\n",
1644 		   ewma__engine_latency_read(&engine->latency));
1645 	if (intel_engine_supports_stats(engine))
1646 		drm_printf(m, "\tRuntime: %llums\n",
1647 			   ktime_to_ms(intel_engine_get_busy_time(engine,
1648 								  &dummy)));
1649 	drm_printf(m, "\tForcewake: %x domains, %d active\n",
1650 		   engine->fw_domain, atomic_read(&engine->fw_active));
1651 
1652 	rcu_read_lock();
1653 	rq = READ_ONCE(engine->heartbeat.systole);
1654 	if (rq)
1655 		drm_printf(m, "\tHeartbeat: %d ms ago\n",
1656 			   jiffies_to_msecs(jiffies - rq->emitted_jiffies));
1657 	rcu_read_unlock();
1658 	drm_printf(m, "\tReset count: %d (global %d)\n",
1659 		   i915_reset_engine_count(error, engine),
1660 		   i915_reset_count(error));
1661 
1662 	drm_printf(m, "\tRequests:\n");
1663 
1664 	spin_lock_irqsave(&engine->active.lock, flags);
1665 	rq = intel_engine_find_active_request(engine);
1666 	if (rq) {
1667 		struct intel_timeline *tl = get_timeline(rq);
1668 
1669 		print_request(m, rq, "\t\tactive ");
1670 
1671 		drm_printf(m, "\t\tring->start:  0x%08x\n",
1672 			   i915_ggtt_offset(rq->ring->vma));
1673 		drm_printf(m, "\t\tring->head:   0x%08x\n",
1674 			   rq->ring->head);
1675 		drm_printf(m, "\t\tring->tail:   0x%08x\n",
1676 			   rq->ring->tail);
1677 		drm_printf(m, "\t\tring->emit:   0x%08x\n",
1678 			   rq->ring->emit);
1679 		drm_printf(m, "\t\tring->space:  0x%08x\n",
1680 			   rq->ring->space);
1681 
1682 		if (tl) {
1683 			drm_printf(m, "\t\tring->hwsp:   0x%08x\n",
1684 				   tl->hwsp_offset);
1685 			intel_timeline_put(tl);
1686 		}
1687 
1688 		print_request_ring(m, rq);
1689 
1690 		if (rq->context->lrc_reg_state) {
1691 			drm_printf(m, "Logical Ring Context:\n");
1692 			hexdump(m, rq->context->lrc_reg_state, PAGE_SIZE);
1693 		}
1694 	}
1695 	drm_printf(m, "\tOn hold?: %lu\n", list_count(&engine->active.hold));
1696 	spin_unlock_irqrestore(&engine->active.lock, flags);
1697 
1698 	drm_printf(m, "\tMMIO base:  0x%08x\n", engine->mmio_base);
1699 	wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm);
1700 	if (wakeref) {
1701 		intel_engine_print_registers(engine, m);
1702 		intel_runtime_pm_put(engine->uncore->rpm, wakeref);
1703 	} else {
1704 		drm_printf(m, "\tDevice is asleep; skipping register dump\n");
1705 	}
1706 
1707 	intel_execlists_show_requests(engine, m, print_request, 8);
1708 
1709 	drm_printf(m, "HWSP:\n");
1710 	hexdump(m, engine->status_page.addr, PAGE_SIZE);
1711 
1712 	drm_printf(m, "Idle? %s\n", yesno(intel_engine_is_idle(engine)));
1713 
1714 	intel_engine_print_breadcrumbs(engine, m);
1715 }
1716 
1717 static ktime_t __intel_engine_get_busy_time(struct intel_engine_cs *engine,
1718 					    ktime_t *now)
1719 {
1720 	ktime_t total = engine->stats.total;
1721 
1722 	/*
1723 	 * If the engine is executing something at the moment
1724 	 * add it to the total.
1725 	 */
1726 	*now = ktime_get();
1727 	if (atomic_read(&engine->stats.active))
1728 		total = ktime_add(total, ktime_sub(*now, engine->stats.start));
1729 
1730 	return total;
1731 }
1732 
1733 /**
1734  * intel_engine_get_busy_time() - Return current accumulated engine busyness
1735  * @engine: engine to report on
1736  * @now: monotonic timestamp of sampling
1737  *
1738  * Returns accumulated time @engine was busy since engine stats were enabled.
1739  */
1740 ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine, ktime_t *now)
1741 {
1742 	unsigned int seq;
1743 	ktime_t total;
1744 
1745 	do {
1746 		seq = read_seqbegin(&engine->stats.lock);
1747 		total = __intel_engine_get_busy_time(engine, now);
1748 	} while (read_seqretry(&engine->stats.lock, seq));
1749 
1750 	return total;
1751 }
1752 
1753 static bool match_ring(struct i915_request *rq)
1754 {
1755 	u32 ring = ENGINE_READ(rq->engine, RING_START);
1756 
1757 	return ring == i915_ggtt_offset(rq->ring->vma);
1758 }
1759 
1760 struct i915_request *
1761 intel_engine_find_active_request(struct intel_engine_cs *engine)
1762 {
1763 	struct i915_request *request, *active = NULL;
1764 
1765 	/*
1766 	 * We are called by the error capture, reset and to dump engine
1767 	 * state at random points in time. In particular, note that neither is
1768 	 * crucially ordered with an interrupt. After a hang, the GPU is dead
1769 	 * and we assume that no more writes can happen (we waited long enough
1770 	 * for all writes that were in transaction to be flushed) - adding an
1771 	 * extra delay for a recent interrupt is pointless. Hence, we do
1772 	 * not need an engine->irq_seqno_barrier() before the seqno reads.
1773 	 * At all other times, we must assume the GPU is still running, but
1774 	 * we only care about the snapshot of this moment.
1775 	 */
1776 	lockdep_assert_held(&engine->active.lock);
1777 
1778 	rcu_read_lock();
1779 	request = execlists_active(&engine->execlists);
1780 	if (request) {
1781 		struct intel_timeline *tl = request->context->timeline;
1782 
1783 		list_for_each_entry_from_reverse(request, &tl->requests, link) {
1784 			if (i915_request_completed(request))
1785 				break;
1786 
1787 			active = request;
1788 		}
1789 	}
1790 	rcu_read_unlock();
1791 	if (active)
1792 		return active;
1793 
1794 	list_for_each_entry(request, &engine->active.requests, sched.link) {
1795 		if (i915_request_completed(request))
1796 			continue;
1797 
1798 		if (!i915_request_started(request))
1799 			continue;
1800 
1801 		/* More than one preemptible request may match! */
1802 		if (!match_ring(request))
1803 			continue;
1804 
1805 		active = request;
1806 		break;
1807 	}
1808 
1809 	return active;
1810 }
1811 
1812 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1813 #include "mock_engine.c"
1814 #include "selftest_engine.c"
1815 #include "selftest_engine_cs.c"
1816 #endif
1817