xref: /openbsd-src/sys/dev/pci/drm/i915/gt/intel_engine_cs.c (revision 1ad61ae0a79a724d2d3ec69e69c8e1d1ff6b53a0)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2016 Intel Corporation
4  */
5 
6 #include <linux/string_helpers.h>
7 
8 #include <drm/drm_print.h>
9 
10 #include "gem/i915_gem_context.h"
11 #include "gem/i915_gem_internal.h"
12 #include "gt/intel_gt_regs.h"
13 
14 #include "i915_cmd_parser.h"
15 #include "i915_drv.h"
16 #include "intel_breadcrumbs.h"
17 #include "intel_context.h"
18 #include "intel_engine.h"
19 #include "intel_engine_pm.h"
20 #include "intel_engine_regs.h"
21 #include "intel_engine_user.h"
22 #include "intel_execlists_submission.h"
23 #include "intel_gt.h"
24 #include "intel_gt_mcr.h"
25 #include "intel_gt_pm.h"
26 #include "intel_gt_requests.h"
27 #include "intel_lrc.h"
28 #include "intel_lrc_reg.h"
29 #include "intel_reset.h"
30 #include "intel_ring.h"
31 #include "uc/intel_guc_submission.h"
32 
33 /* Haswell does have the CXT_SIZE register however it does not appear to be
34  * valid. Now, docs explain in dwords what is in the context object. The full
35  * size is 70720 bytes, however, the power context and execlist context will
36  * never be saved (power context is stored elsewhere, and execlists don't work
37  * on HSW) - so the final size, including the extra state required for the
38  * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
39  */
40 #define HSW_CXT_TOTAL_SIZE		(17 * PAGE_SIZE)
41 
42 #define DEFAULT_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
43 #define GEN8_LR_CONTEXT_RENDER_SIZE	(20 * PAGE_SIZE)
44 #define GEN9_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
45 #define GEN11_LR_CONTEXT_RENDER_SIZE	(14 * PAGE_SIZE)
46 
47 #define GEN8_LR_CONTEXT_OTHER_SIZE	( 2 * PAGE_SIZE)
48 
49 #define MAX_MMIO_BASES 3
50 struct engine_info {
51 	u8 class;
52 	u8 instance;
53 	/* mmio bases table *must* be sorted in reverse graphics_ver order */
54 	struct engine_mmio_base {
55 		u32 graphics_ver : 8;
56 		u32 base : 24;
57 	} mmio_bases[MAX_MMIO_BASES];
58 };
59 
60 static const struct engine_info intel_engines[] = {
61 	[RCS0] = {
62 		.class = RENDER_CLASS,
63 		.instance = 0,
64 		.mmio_bases = {
65 			{ .graphics_ver = 1, .base = RENDER_RING_BASE }
66 		},
67 	},
68 	[BCS0] = {
69 		.class = COPY_ENGINE_CLASS,
70 		.instance = 0,
71 		.mmio_bases = {
72 			{ .graphics_ver = 6, .base = BLT_RING_BASE }
73 		},
74 	},
75 	[BCS1] = {
76 		.class = COPY_ENGINE_CLASS,
77 		.instance = 1,
78 		.mmio_bases = {
79 			{ .graphics_ver = 12, .base = XEHPC_BCS1_RING_BASE }
80 		},
81 	},
82 	[BCS2] = {
83 		.class = COPY_ENGINE_CLASS,
84 		.instance = 2,
85 		.mmio_bases = {
86 			{ .graphics_ver = 12, .base = XEHPC_BCS2_RING_BASE }
87 		},
88 	},
89 	[BCS3] = {
90 		.class = COPY_ENGINE_CLASS,
91 		.instance = 3,
92 		.mmio_bases = {
93 			{ .graphics_ver = 12, .base = XEHPC_BCS3_RING_BASE }
94 		},
95 	},
96 	[BCS4] = {
97 		.class = COPY_ENGINE_CLASS,
98 		.instance = 4,
99 		.mmio_bases = {
100 			{ .graphics_ver = 12, .base = XEHPC_BCS4_RING_BASE }
101 		},
102 	},
103 	[BCS5] = {
104 		.class = COPY_ENGINE_CLASS,
105 		.instance = 5,
106 		.mmio_bases = {
107 			{ .graphics_ver = 12, .base = XEHPC_BCS5_RING_BASE }
108 		},
109 	},
110 	[BCS6] = {
111 		.class = COPY_ENGINE_CLASS,
112 		.instance = 6,
113 		.mmio_bases = {
114 			{ .graphics_ver = 12, .base = XEHPC_BCS6_RING_BASE }
115 		},
116 	},
117 	[BCS7] = {
118 		.class = COPY_ENGINE_CLASS,
119 		.instance = 7,
120 		.mmio_bases = {
121 			{ .graphics_ver = 12, .base = XEHPC_BCS7_RING_BASE }
122 		},
123 	},
124 	[BCS8] = {
125 		.class = COPY_ENGINE_CLASS,
126 		.instance = 8,
127 		.mmio_bases = {
128 			{ .graphics_ver = 12, .base = XEHPC_BCS8_RING_BASE }
129 		},
130 	},
131 	[VCS0] = {
132 		.class = VIDEO_DECODE_CLASS,
133 		.instance = 0,
134 		.mmio_bases = {
135 			{ .graphics_ver = 11, .base = GEN11_BSD_RING_BASE },
136 			{ .graphics_ver = 6, .base = GEN6_BSD_RING_BASE },
137 			{ .graphics_ver = 4, .base = BSD_RING_BASE }
138 		},
139 	},
140 	[VCS1] = {
141 		.class = VIDEO_DECODE_CLASS,
142 		.instance = 1,
143 		.mmio_bases = {
144 			{ .graphics_ver = 11, .base = GEN11_BSD2_RING_BASE },
145 			{ .graphics_ver = 8, .base = GEN8_BSD2_RING_BASE }
146 		},
147 	},
148 	[VCS2] = {
149 		.class = VIDEO_DECODE_CLASS,
150 		.instance = 2,
151 		.mmio_bases = {
152 			{ .graphics_ver = 11, .base = GEN11_BSD3_RING_BASE }
153 		},
154 	},
155 	[VCS3] = {
156 		.class = VIDEO_DECODE_CLASS,
157 		.instance = 3,
158 		.mmio_bases = {
159 			{ .graphics_ver = 11, .base = GEN11_BSD4_RING_BASE }
160 		},
161 	},
162 	[VCS4] = {
163 		.class = VIDEO_DECODE_CLASS,
164 		.instance = 4,
165 		.mmio_bases = {
166 			{ .graphics_ver = 12, .base = XEHP_BSD5_RING_BASE }
167 		},
168 	},
169 	[VCS5] = {
170 		.class = VIDEO_DECODE_CLASS,
171 		.instance = 5,
172 		.mmio_bases = {
173 			{ .graphics_ver = 12, .base = XEHP_BSD6_RING_BASE }
174 		},
175 	},
176 	[VCS6] = {
177 		.class = VIDEO_DECODE_CLASS,
178 		.instance = 6,
179 		.mmio_bases = {
180 			{ .graphics_ver = 12, .base = XEHP_BSD7_RING_BASE }
181 		},
182 	},
183 	[VCS7] = {
184 		.class = VIDEO_DECODE_CLASS,
185 		.instance = 7,
186 		.mmio_bases = {
187 			{ .graphics_ver = 12, .base = XEHP_BSD8_RING_BASE }
188 		},
189 	},
190 	[VECS0] = {
191 		.class = VIDEO_ENHANCEMENT_CLASS,
192 		.instance = 0,
193 		.mmio_bases = {
194 			{ .graphics_ver = 11, .base = GEN11_VEBOX_RING_BASE },
195 			{ .graphics_ver = 7, .base = VEBOX_RING_BASE }
196 		},
197 	},
198 	[VECS1] = {
199 		.class = VIDEO_ENHANCEMENT_CLASS,
200 		.instance = 1,
201 		.mmio_bases = {
202 			{ .graphics_ver = 11, .base = GEN11_VEBOX2_RING_BASE }
203 		},
204 	},
205 	[VECS2] = {
206 		.class = VIDEO_ENHANCEMENT_CLASS,
207 		.instance = 2,
208 		.mmio_bases = {
209 			{ .graphics_ver = 12, .base = XEHP_VEBOX3_RING_BASE }
210 		},
211 	},
212 	[VECS3] = {
213 		.class = VIDEO_ENHANCEMENT_CLASS,
214 		.instance = 3,
215 		.mmio_bases = {
216 			{ .graphics_ver = 12, .base = XEHP_VEBOX4_RING_BASE }
217 		},
218 	},
219 	[CCS0] = {
220 		.class = COMPUTE_CLASS,
221 		.instance = 0,
222 		.mmio_bases = {
223 			{ .graphics_ver = 12, .base = GEN12_COMPUTE0_RING_BASE }
224 		}
225 	},
226 	[CCS1] = {
227 		.class = COMPUTE_CLASS,
228 		.instance = 1,
229 		.mmio_bases = {
230 			{ .graphics_ver = 12, .base = GEN12_COMPUTE1_RING_BASE }
231 		}
232 	},
233 	[CCS2] = {
234 		.class = COMPUTE_CLASS,
235 		.instance = 2,
236 		.mmio_bases = {
237 			{ .graphics_ver = 12, .base = GEN12_COMPUTE2_RING_BASE }
238 		}
239 	},
240 	[CCS3] = {
241 		.class = COMPUTE_CLASS,
242 		.instance = 3,
243 		.mmio_bases = {
244 			{ .graphics_ver = 12, .base = GEN12_COMPUTE3_RING_BASE }
245 		}
246 	},
247 };
248 
249 /**
250  * intel_engine_context_size() - return the size of the context for an engine
251  * @gt: the gt
252  * @class: engine class
253  *
254  * Each engine class may require a different amount of space for a context
255  * image.
256  *
257  * Return: size (in bytes) of an engine class specific context image
258  *
259  * Note: this size includes the HWSP, which is part of the context image
260  * in LRC mode, but does not include the "shared data page" used with
261  * GuC submission. The caller should account for this if using the GuC.
262  */
263 u32 intel_engine_context_size(struct intel_gt *gt, u8 class)
264 {
265 	struct intel_uncore *uncore = gt->uncore;
266 	u32 cxt_size;
267 
268 	BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);
269 
270 	switch (class) {
271 	case COMPUTE_CLASS:
272 		fallthrough;
273 	case RENDER_CLASS:
274 		switch (GRAPHICS_VER(gt->i915)) {
275 		default:
276 			MISSING_CASE(GRAPHICS_VER(gt->i915));
277 			return DEFAULT_LR_CONTEXT_RENDER_SIZE;
278 		case 12:
279 		case 11:
280 			return GEN11_LR_CONTEXT_RENDER_SIZE;
281 		case 9:
282 			return GEN9_LR_CONTEXT_RENDER_SIZE;
283 		case 8:
284 			return GEN8_LR_CONTEXT_RENDER_SIZE;
285 		case 7:
286 			if (IS_HASWELL(gt->i915))
287 				return HSW_CXT_TOTAL_SIZE;
288 
289 			cxt_size = intel_uncore_read(uncore, GEN7_CXT_SIZE);
290 			return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
291 					PAGE_SIZE);
292 		case 6:
293 			cxt_size = intel_uncore_read(uncore, CXT_SIZE);
294 			return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
295 					PAGE_SIZE);
296 		case 5:
297 		case 4:
298 			/*
299 			 * There is a discrepancy here between the size reported
300 			 * by the register and the size of the context layout
301 			 * in the docs. Both are described as authorative!
302 			 *
303 			 * The discrepancy is on the order of a few cachelines,
304 			 * but the total is under one page (4k), which is our
305 			 * minimum allocation anyway so it should all come
306 			 * out in the wash.
307 			 */
308 			cxt_size = intel_uncore_read(uncore, CXT_SIZE) + 1;
309 			drm_dbg(&gt->i915->drm,
310 				"graphics_ver = %d CXT_SIZE = %d bytes [0x%08x]\n",
311 				GRAPHICS_VER(gt->i915), cxt_size * 64,
312 				cxt_size - 1);
313 			return round_up(cxt_size * 64, PAGE_SIZE);
314 		case 3:
315 		case 2:
316 		/* For the special day when i810 gets merged. */
317 		case 1:
318 			return 0;
319 		}
320 		break;
321 	default:
322 		MISSING_CASE(class);
323 		fallthrough;
324 	case VIDEO_DECODE_CLASS:
325 	case VIDEO_ENHANCEMENT_CLASS:
326 	case COPY_ENGINE_CLASS:
327 		if (GRAPHICS_VER(gt->i915) < 8)
328 			return 0;
329 		return GEN8_LR_CONTEXT_OTHER_SIZE;
330 	}
331 }
332 
333 static u32 __engine_mmio_base(struct drm_i915_private *i915,
334 			      const struct engine_mmio_base *bases)
335 {
336 	int i;
337 
338 	for (i = 0; i < MAX_MMIO_BASES; i++)
339 		if (GRAPHICS_VER(i915) >= bases[i].graphics_ver)
340 			break;
341 
342 	GEM_BUG_ON(i == MAX_MMIO_BASES);
343 	GEM_BUG_ON(!bases[i].base);
344 
345 	return bases[i].base;
346 }
347 
348 static void __sprint_engine_name(struct intel_engine_cs *engine)
349 {
350 	/*
351 	 * Before we know what the uABI name for this engine will be,
352 	 * we still would like to keep track of this engine in the debug logs.
353 	 * We throw in a ' here as a reminder that this isn't its final name.
354 	 */
355 	GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u",
356 			     intel_engine_class_repr(engine->class),
357 			     engine->instance) >= sizeof(engine->name));
358 }
359 
360 void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
361 {
362 	/*
363 	 * Though they added more rings on g4x/ilk, they did not add
364 	 * per-engine HWSTAM until gen6.
365 	 */
366 	if (GRAPHICS_VER(engine->i915) < 6 && engine->class != RENDER_CLASS)
367 		return;
368 
369 	if (GRAPHICS_VER(engine->i915) >= 3)
370 		ENGINE_WRITE(engine, RING_HWSTAM, mask);
371 	else
372 		ENGINE_WRITE16(engine, RING_HWSTAM, mask);
373 }
374 
375 static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
376 {
377 	/* Mask off all writes into the unknown HWSP */
378 	intel_engine_set_hwsp_writemask(engine, ~0u);
379 }
380 
381 static void nop_irq_handler(struct intel_engine_cs *engine, u16 iir)
382 {
383 	GEM_DEBUG_WARN_ON(iir);
384 }
385 
386 static u32 get_reset_domain(u8 ver, enum intel_engine_id id)
387 {
388 	u32 reset_domain;
389 
390 	if (ver >= 11) {
391 		static const u32 engine_reset_domains[] = {
392 			[RCS0]  = GEN11_GRDOM_RENDER,
393 			[BCS0]  = GEN11_GRDOM_BLT,
394 			[BCS1]  = XEHPC_GRDOM_BLT1,
395 			[BCS2]  = XEHPC_GRDOM_BLT2,
396 			[BCS3]  = XEHPC_GRDOM_BLT3,
397 			[BCS4]  = XEHPC_GRDOM_BLT4,
398 			[BCS5]  = XEHPC_GRDOM_BLT5,
399 			[BCS6]  = XEHPC_GRDOM_BLT6,
400 			[BCS7]  = XEHPC_GRDOM_BLT7,
401 			[BCS8]  = XEHPC_GRDOM_BLT8,
402 			[VCS0]  = GEN11_GRDOM_MEDIA,
403 			[VCS1]  = GEN11_GRDOM_MEDIA2,
404 			[VCS2]  = GEN11_GRDOM_MEDIA3,
405 			[VCS3]  = GEN11_GRDOM_MEDIA4,
406 			[VCS4]  = GEN11_GRDOM_MEDIA5,
407 			[VCS5]  = GEN11_GRDOM_MEDIA6,
408 			[VCS6]  = GEN11_GRDOM_MEDIA7,
409 			[VCS7]  = GEN11_GRDOM_MEDIA8,
410 			[VECS0] = GEN11_GRDOM_VECS,
411 			[VECS1] = GEN11_GRDOM_VECS2,
412 			[VECS2] = GEN11_GRDOM_VECS3,
413 			[VECS3] = GEN11_GRDOM_VECS4,
414 			[CCS0]  = GEN11_GRDOM_RENDER,
415 			[CCS1]  = GEN11_GRDOM_RENDER,
416 			[CCS2]  = GEN11_GRDOM_RENDER,
417 			[CCS3]  = GEN11_GRDOM_RENDER,
418 		};
419 		GEM_BUG_ON(id >= ARRAY_SIZE(engine_reset_domains) ||
420 			   !engine_reset_domains[id]);
421 		reset_domain = engine_reset_domains[id];
422 	} else {
423 		static const u32 engine_reset_domains[] = {
424 			[RCS0]  = GEN6_GRDOM_RENDER,
425 			[BCS0]  = GEN6_GRDOM_BLT,
426 			[VCS0]  = GEN6_GRDOM_MEDIA,
427 			[VCS1]  = GEN8_GRDOM_MEDIA2,
428 			[VECS0] = GEN6_GRDOM_VECS,
429 		};
430 		GEM_BUG_ON(id >= ARRAY_SIZE(engine_reset_domains) ||
431 			   !engine_reset_domains[id]);
432 		reset_domain = engine_reset_domains[id];
433 	}
434 
435 	return reset_domain;
436 }
437 
438 static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id,
439 			      u8 logical_instance)
440 {
441 	const struct engine_info *info = &intel_engines[id];
442 	struct drm_i915_private *i915 = gt->i915;
443 	struct intel_engine_cs *engine;
444 	u8 guc_class;
445 
446 	BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
447 	BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));
448 	BUILD_BUG_ON(I915_MAX_VCS > (MAX_ENGINE_INSTANCE + 1));
449 	BUILD_BUG_ON(I915_MAX_VECS > (MAX_ENGINE_INSTANCE + 1));
450 
451 	if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine)))
452 		return -EINVAL;
453 
454 	if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
455 		return -EINVAL;
456 
457 	if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
458 		return -EINVAL;
459 
460 	if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance]))
461 		return -EINVAL;
462 
463 	engine = kzalloc(sizeof(*engine), GFP_KERNEL);
464 	if (!engine)
465 		return -ENOMEM;
466 
467 	BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES);
468 
469 	INIT_LIST_HEAD(&engine->pinned_contexts_list);
470 	engine->id = id;
471 	engine->legacy_idx = INVALID_ENGINE;
472 	engine->mask = BIT(id);
473 	engine->reset_domain = get_reset_domain(GRAPHICS_VER(gt->i915),
474 						id);
475 	engine->i915 = i915;
476 	engine->gt = gt;
477 	engine->uncore = gt->uncore;
478 	guc_class = engine_class_to_guc_class(info->class);
479 	engine->guc_id = MAKE_GUC_ID(guc_class, info->instance);
480 	engine->mmio_base = __engine_mmio_base(i915, info->mmio_bases);
481 
482 	engine->irq_handler = nop_irq_handler;
483 
484 	engine->class = info->class;
485 	engine->instance = info->instance;
486 	engine->logical_mask = BIT(logical_instance);
487 	__sprint_engine_name(engine);
488 
489 	if ((engine->class == COMPUTE_CLASS && !RCS_MASK(engine->gt) &&
490 	     __ffs(CCS_MASK(engine->gt)) == engine->instance) ||
491 	     engine->class == RENDER_CLASS)
492 		engine->flags |= I915_ENGINE_FIRST_RENDER_COMPUTE;
493 
494 	/* features common between engines sharing EUs */
495 	if (engine->class == RENDER_CLASS || engine->class == COMPUTE_CLASS) {
496 		engine->flags |= I915_ENGINE_HAS_RCS_REG_STATE;
497 		engine->flags |= I915_ENGINE_HAS_EU_PRIORITY;
498 	}
499 
500 	engine->props.heartbeat_interval_ms =
501 		CONFIG_DRM_I915_HEARTBEAT_INTERVAL;
502 	engine->props.max_busywait_duration_ns =
503 		CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT;
504 	engine->props.preempt_timeout_ms =
505 		CONFIG_DRM_I915_PREEMPT_TIMEOUT;
506 	engine->props.stop_timeout_ms =
507 		CONFIG_DRM_I915_STOP_TIMEOUT;
508 	engine->props.timeslice_duration_ms =
509 		CONFIG_DRM_I915_TIMESLICE_DURATION;
510 
511 	/* Override to uninterruptible for OpenCL workloads. */
512 	if (GRAPHICS_VER(i915) == 12 && (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE))
513 		engine->props.preempt_timeout_ms = 0;
514 
515 	/* Cap properties according to any system limits */
516 #define CLAMP_PROP(field) \
517 	do { \
518 		u64 clamp = intel_clamp_##field(engine, engine->props.field); \
519 		if (clamp != engine->props.field) { \
520 			drm_notice(&engine->i915->drm, \
521 				   "Warning, clamping %s to %lld to prevent overflow\n", \
522 				   #field, clamp); \
523 			engine->props.field = clamp; \
524 		} \
525 	} while (0)
526 
527 	CLAMP_PROP(heartbeat_interval_ms);
528 	CLAMP_PROP(max_busywait_duration_ns);
529 	CLAMP_PROP(preempt_timeout_ms);
530 	CLAMP_PROP(stop_timeout_ms);
531 	CLAMP_PROP(timeslice_duration_ms);
532 
533 #undef CLAMP_PROP
534 
535 	engine->defaults = engine->props; /* never to change again */
536 
537 	engine->context_size = intel_engine_context_size(gt, engine->class);
538 	if (WARN_ON(engine->context_size > BIT(20)))
539 		engine->context_size = 0;
540 	if (engine->context_size)
541 		DRIVER_CAPS(i915)->has_logical_contexts = true;
542 
543 	ewma__engine_latency_init(&engine->latency);
544 
545 	ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);
546 
547 	/* Scrub mmio state on takeover */
548 	intel_engine_sanitize_mmio(engine);
549 
550 	gt->engine_class[info->class][info->instance] = engine;
551 	gt->engine[id] = engine;
552 
553 	return 0;
554 }
555 
556 u64 intel_clamp_heartbeat_interval_ms(struct intel_engine_cs *engine, u64 value)
557 {
558 	value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
559 
560 	return value;
561 }
562 
563 u64 intel_clamp_max_busywait_duration_ns(struct intel_engine_cs *engine, u64 value)
564 {
565 	value = min(value, jiffies_to_nsecs(2));
566 
567 	return value;
568 }
569 
570 u64 intel_clamp_preempt_timeout_ms(struct intel_engine_cs *engine, u64 value)
571 {
572 	/*
573 	 * NB: The GuC API only supports 32bit values. However, the limit is further
574 	 * reduced due to internal calculations which would otherwise overflow.
575 	 */
576 	if (intel_guc_submission_is_wanted(&engine->gt->uc.guc))
577 		value = min_t(u64, value, guc_policy_max_preempt_timeout_ms());
578 
579 	value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
580 
581 	return value;
582 }
583 
584 u64 intel_clamp_stop_timeout_ms(struct intel_engine_cs *engine, u64 value)
585 {
586 	value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
587 
588 	return value;
589 }
590 
591 u64 intel_clamp_timeslice_duration_ms(struct intel_engine_cs *engine, u64 value)
592 {
593 	/*
594 	 * NB: The GuC API only supports 32bit values. However, the limit is further
595 	 * reduced due to internal calculations which would otherwise overflow.
596 	 */
597 	if (intel_guc_submission_is_wanted(&engine->gt->uc.guc))
598 		value = min_t(u64, value, guc_policy_max_exec_quantum_ms());
599 
600 	value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
601 
602 	return value;
603 }
604 
605 static void __setup_engine_capabilities(struct intel_engine_cs *engine)
606 {
607 	struct drm_i915_private *i915 = engine->i915;
608 
609 	if (engine->class == VIDEO_DECODE_CLASS) {
610 		/*
611 		 * HEVC support is present on first engine instance
612 		 * before Gen11 and on all instances afterwards.
613 		 */
614 		if (GRAPHICS_VER(i915) >= 11 ||
615 		    (GRAPHICS_VER(i915) >= 9 && engine->instance == 0))
616 			engine->uabi_capabilities |=
617 				I915_VIDEO_CLASS_CAPABILITY_HEVC;
618 
619 		/*
620 		 * SFC block is present only on even logical engine
621 		 * instances.
622 		 */
623 		if ((GRAPHICS_VER(i915) >= 11 &&
624 		     (engine->gt->info.vdbox_sfc_access &
625 		      BIT(engine->instance))) ||
626 		    (GRAPHICS_VER(i915) >= 9 && engine->instance == 0))
627 			engine->uabi_capabilities |=
628 				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
629 	} else if (engine->class == VIDEO_ENHANCEMENT_CLASS) {
630 		if (GRAPHICS_VER(i915) >= 9 &&
631 		    engine->gt->info.sfc_mask & BIT(engine->instance))
632 			engine->uabi_capabilities |=
633 				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
634 	}
635 }
636 
637 static void intel_setup_engine_capabilities(struct intel_gt *gt)
638 {
639 	struct intel_engine_cs *engine;
640 	enum intel_engine_id id;
641 
642 	for_each_engine(engine, gt, id)
643 		__setup_engine_capabilities(engine);
644 }
645 
646 /**
647  * intel_engines_release() - free the resources allocated for Command Streamers
648  * @gt: pointer to struct intel_gt
649  */
650 void intel_engines_release(struct intel_gt *gt)
651 {
652 	struct intel_engine_cs *engine;
653 	enum intel_engine_id id;
654 
655 	/*
656 	 * Before we release the resources held by engine, we must be certain
657 	 * that the HW is no longer accessing them -- having the GPU scribble
658 	 * to or read from a page being used for something else causes no end
659 	 * of fun.
660 	 *
661 	 * The GPU should be reset by this point, but assume the worst just
662 	 * in case we aborted before completely initialising the engines.
663 	 */
664 	GEM_BUG_ON(intel_gt_pm_is_awake(gt));
665 	if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
666 		__intel_gt_reset(gt, ALL_ENGINES);
667 
668 	/* Decouple the backend; but keep the layout for late GPU resets */
669 	for_each_engine(engine, gt, id) {
670 		if (!engine->release)
671 			continue;
672 
673 		intel_wakeref_wait_for_idle(&engine->wakeref);
674 		GEM_BUG_ON(intel_engine_pm_is_awake(engine));
675 
676 		engine->release(engine);
677 		engine->release = NULL;
678 
679 		memset(&engine->reset, 0, sizeof(engine->reset));
680 	}
681 }
682 
683 void intel_engine_free_request_pool(struct intel_engine_cs *engine)
684 {
685 	if (!engine->request_pool)
686 		return;
687 
688 #ifdef __linux__
689 	kmem_cache_free(i915_request_slab_cache(), engine->request_pool);
690 #else
691 	pool_put(i915_request_slab_cache(), engine->request_pool);
692 #endif
693 }
694 
695 void intel_engines_free(struct intel_gt *gt)
696 {
697 	struct intel_engine_cs *engine;
698 	enum intel_engine_id id;
699 
700 	/* Free the requests! dma-resv keeps fences around for an eternity */
701 	rcu_barrier();
702 
703 	for_each_engine(engine, gt, id) {
704 		intel_engine_free_request_pool(engine);
705 		kfree(engine);
706 		gt->engine[id] = NULL;
707 	}
708 }
709 
710 static
711 bool gen11_vdbox_has_sfc(struct intel_gt *gt,
712 			 unsigned int physical_vdbox,
713 			 unsigned int logical_vdbox, u16 vdbox_mask)
714 {
715 	struct drm_i915_private *i915 = gt->i915;
716 
717 	/*
718 	 * In Gen11, only even numbered logical VDBOXes are hooked
719 	 * up to an SFC (Scaler & Format Converter) unit.
720 	 * In Gen12, Even numbered physical instance always are connected
721 	 * to an SFC. Odd numbered physical instances have SFC only if
722 	 * previous even instance is fused off.
723 	 *
724 	 * Starting with Xe_HP, there's also a dedicated SFC_ENABLE field
725 	 * in the fuse register that tells us whether a specific SFC is present.
726 	 */
727 	if ((gt->info.sfc_mask & BIT(physical_vdbox / 2)) == 0)
728 		return false;
729 	else if (MEDIA_VER(i915) >= 12)
730 		return (physical_vdbox % 2 == 0) ||
731 			!(BIT(physical_vdbox - 1) & vdbox_mask);
732 	else if (MEDIA_VER(i915) == 11)
733 		return logical_vdbox % 2 == 0;
734 
735 	return false;
736 }
737 
738 static void engine_mask_apply_media_fuses(struct intel_gt *gt)
739 {
740 	struct drm_i915_private *i915 = gt->i915;
741 	unsigned int logical_vdbox = 0;
742 	unsigned int i;
743 	u32 media_fuse, fuse1;
744 	u16 vdbox_mask;
745 	u16 vebox_mask;
746 
747 	if (MEDIA_VER(gt->i915) < 11)
748 		return;
749 
750 	/*
751 	 * On newer platforms the fusing register is called 'enable' and has
752 	 * enable semantics, while on older platforms it is called 'disable'
753 	 * and bits have disable semantices.
754 	 */
755 	media_fuse = intel_uncore_read(gt->uncore, GEN11_GT_VEBOX_VDBOX_DISABLE);
756 	if (MEDIA_VER_FULL(i915) < IP_VER(12, 50))
757 		media_fuse = ~media_fuse;
758 
759 	vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK;
760 	vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >>
761 		      GEN11_GT_VEBOX_DISABLE_SHIFT;
762 
763 	if (MEDIA_VER_FULL(i915) >= IP_VER(12, 50)) {
764 		fuse1 = intel_uncore_read(gt->uncore, HSW_PAVP_FUSE1);
765 		gt->info.sfc_mask = REG_FIELD_GET(XEHP_SFC_ENABLE_MASK, fuse1);
766 	} else {
767 		gt->info.sfc_mask = ~0;
768 	}
769 
770 	for (i = 0; i < I915_MAX_VCS; i++) {
771 		if (!HAS_ENGINE(gt, _VCS(i))) {
772 			vdbox_mask &= ~BIT(i);
773 			continue;
774 		}
775 
776 		if (!(BIT(i) & vdbox_mask)) {
777 			gt->info.engine_mask &= ~BIT(_VCS(i));
778 			drm_dbg(&i915->drm, "vcs%u fused off\n", i);
779 			continue;
780 		}
781 
782 		if (gen11_vdbox_has_sfc(gt, i, logical_vdbox, vdbox_mask))
783 			gt->info.vdbox_sfc_access |= BIT(i);
784 		logical_vdbox++;
785 	}
786 	drm_dbg(&i915->drm, "vdbox enable: %04x, instances: %04lx\n",
787 		vdbox_mask, VDBOX_MASK(gt));
788 	GEM_BUG_ON(vdbox_mask != VDBOX_MASK(gt));
789 
790 	for (i = 0; i < I915_MAX_VECS; i++) {
791 		if (!HAS_ENGINE(gt, _VECS(i))) {
792 			vebox_mask &= ~BIT(i);
793 			continue;
794 		}
795 
796 		if (!(BIT(i) & vebox_mask)) {
797 			gt->info.engine_mask &= ~BIT(_VECS(i));
798 			drm_dbg(&i915->drm, "vecs%u fused off\n", i);
799 		}
800 	}
801 	drm_dbg(&i915->drm, "vebox enable: %04x, instances: %04lx\n",
802 		vebox_mask, VEBOX_MASK(gt));
803 	GEM_BUG_ON(vebox_mask != VEBOX_MASK(gt));
804 }
805 
806 static void engine_mask_apply_compute_fuses(struct intel_gt *gt)
807 {
808 	struct drm_i915_private *i915 = gt->i915;
809 	struct intel_gt_info *info = &gt->info;
810 	int ss_per_ccs = info->sseu.max_subslices / I915_MAX_CCS;
811 	unsigned long ccs_mask;
812 	unsigned int i;
813 
814 	if (GRAPHICS_VER(i915) < 11)
815 		return;
816 
817 	if (hweight32(CCS_MASK(gt)) <= 1)
818 		return;
819 
820 	ccs_mask = intel_slicemask_from_xehp_dssmask(info->sseu.compute_subslice_mask,
821 						     ss_per_ccs);
822 	/*
823 	 * If all DSS in a quadrant are fused off, the corresponding CCS
824 	 * engine is not available for use.
825 	 */
826 	for_each_clear_bit(i, &ccs_mask, I915_MAX_CCS) {
827 		info->engine_mask &= ~BIT(_CCS(i));
828 		drm_dbg(&i915->drm, "ccs%u fused off\n", i);
829 	}
830 }
831 
832 static void engine_mask_apply_copy_fuses(struct intel_gt *gt)
833 {
834 	struct drm_i915_private *i915 = gt->i915;
835 	struct intel_gt_info *info = &gt->info;
836 	unsigned long meml3_mask;
837 	unsigned long quad;
838 
839 	if (!(GRAPHICS_VER_FULL(i915) >= IP_VER(12, 60) &&
840 	      GRAPHICS_VER_FULL(i915) < IP_VER(12, 70)))
841 		return;
842 
843 	meml3_mask = intel_uncore_read(gt->uncore, GEN10_MIRROR_FUSE3);
844 	meml3_mask = REG_FIELD_GET(GEN12_MEML3_EN_MASK, meml3_mask);
845 
846 	/*
847 	 * Link Copy engines may be fused off according to meml3_mask. Each
848 	 * bit is a quad that houses 2 Link Copy and two Sub Copy engines.
849 	 */
850 	for_each_clear_bit(quad, &meml3_mask, GEN12_MAX_MSLICES) {
851 		unsigned int instance = quad * 2 + 1;
852 		intel_engine_mask_t mask = GENMASK(_BCS(instance + 1),
853 						   _BCS(instance));
854 
855 		if (mask & info->engine_mask) {
856 			drm_dbg(&i915->drm, "bcs%u fused off\n", instance);
857 			drm_dbg(&i915->drm, "bcs%u fused off\n", instance + 1);
858 
859 			info->engine_mask &= ~mask;
860 		}
861 	}
862 }
863 
864 /*
865  * Determine which engines are fused off in our particular hardware.
866  * Note that we have a catch-22 situation where we need to be able to access
867  * the blitter forcewake domain to read the engine fuses, but at the same time
868  * we need to know which engines are available on the system to know which
869  * forcewake domains are present. We solve this by intializing the forcewake
870  * domains based on the full engine mask in the platform capabilities before
871  * calling this function and pruning the domains for fused-off engines
872  * afterwards.
873  */
874 static intel_engine_mask_t init_engine_mask(struct intel_gt *gt)
875 {
876 	struct intel_gt_info *info = &gt->info;
877 
878 	GEM_BUG_ON(!info->engine_mask);
879 
880 	engine_mask_apply_media_fuses(gt);
881 	engine_mask_apply_compute_fuses(gt);
882 	engine_mask_apply_copy_fuses(gt);
883 
884 	return info->engine_mask;
885 }
886 
887 static void populate_logical_ids(struct intel_gt *gt, u8 *logical_ids,
888 				 u8 class, const u8 *map, u8 num_instances)
889 {
890 	int i, j;
891 	u8 current_logical_id = 0;
892 
893 	for (j = 0; j < num_instances; ++j) {
894 		for (i = 0; i < ARRAY_SIZE(intel_engines); ++i) {
895 			if (!HAS_ENGINE(gt, i) ||
896 			    intel_engines[i].class != class)
897 				continue;
898 
899 			if (intel_engines[i].instance == map[j]) {
900 				logical_ids[intel_engines[i].instance] =
901 					current_logical_id++;
902 				break;
903 			}
904 		}
905 	}
906 }
907 
908 static void setup_logical_ids(struct intel_gt *gt, u8 *logical_ids, u8 class)
909 {
910 	/*
911 	 * Logical to physical mapping is needed for proper support
912 	 * to split-frame feature.
913 	 */
914 	if (MEDIA_VER(gt->i915) >= 11 && class == VIDEO_DECODE_CLASS) {
915 		const u8 map[] = { 0, 2, 4, 6, 1, 3, 5, 7 };
916 
917 		populate_logical_ids(gt, logical_ids, class,
918 				     map, ARRAY_SIZE(map));
919 	} else {
920 		int i;
921 		u8 map[MAX_ENGINE_INSTANCE + 1];
922 
923 		for (i = 0; i < MAX_ENGINE_INSTANCE + 1; ++i)
924 			map[i] = i;
925 		populate_logical_ids(gt, logical_ids, class,
926 				     map, ARRAY_SIZE(map));
927 	}
928 }
929 
930 /**
931  * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
932  * @gt: pointer to struct intel_gt
933  *
934  * Return: non-zero if the initialization failed.
935  */
936 int intel_engines_init_mmio(struct intel_gt *gt)
937 {
938 	struct drm_i915_private *i915 = gt->i915;
939 	const unsigned int engine_mask = init_engine_mask(gt);
940 	unsigned int mask = 0;
941 	unsigned int i, class;
942 	u8 logical_ids[MAX_ENGINE_INSTANCE + 1];
943 	int err;
944 
945 	drm_WARN_ON(&i915->drm, engine_mask == 0);
946 	drm_WARN_ON(&i915->drm, engine_mask &
947 		    GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
948 
949 	if (i915_inject_probe_failure(i915))
950 		return -ENODEV;
951 
952 	for (class = 0; class < MAX_ENGINE_CLASS + 1; ++class) {
953 		setup_logical_ids(gt, logical_ids, class);
954 
955 		for (i = 0; i < ARRAY_SIZE(intel_engines); ++i) {
956 			u8 instance = intel_engines[i].instance;
957 
958 			if (intel_engines[i].class != class ||
959 			    !HAS_ENGINE(gt, i))
960 				continue;
961 
962 			err = intel_engine_setup(gt, i,
963 						 logical_ids[instance]);
964 			if (err)
965 				goto cleanup;
966 
967 			mask |= BIT(i);
968 		}
969 	}
970 
971 	/*
972 	 * Catch failures to update intel_engines table when the new engines
973 	 * are added to the driver by a warning and disabling the forgotten
974 	 * engines.
975 	 */
976 	if (drm_WARN_ON(&i915->drm, mask != engine_mask))
977 		gt->info.engine_mask = mask;
978 
979 	gt->info.num_engines = hweight32(mask);
980 
981 	intel_gt_check_and_clear_faults(gt);
982 
983 	intel_setup_engine_capabilities(gt);
984 
985 	intel_uncore_prune_engine_fw_domains(gt->uncore, gt);
986 
987 	return 0;
988 
989 cleanup:
990 	intel_engines_free(gt);
991 	return err;
992 }
993 
994 void intel_engine_init_execlists(struct intel_engine_cs *engine)
995 {
996 	struct intel_engine_execlists * const execlists = &engine->execlists;
997 
998 	execlists->port_mask = 1;
999 	GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
1000 	GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);
1001 
1002 	memset(execlists->pending, 0, sizeof(execlists->pending));
1003 	execlists->active =
1004 		memset(execlists->inflight, 0, sizeof(execlists->inflight));
1005 }
1006 
1007 static void cleanup_status_page(struct intel_engine_cs *engine)
1008 {
1009 	struct i915_vma *vma;
1010 
1011 	/* Prevent writes into HWSP after returning the page to the system */
1012 	intel_engine_set_hwsp_writemask(engine, ~0u);
1013 
1014 	vma = fetch_and_zero(&engine->status_page.vma);
1015 	if (!vma)
1016 		return;
1017 
1018 	if (!HWS_NEEDS_PHYSICAL(engine->i915))
1019 		i915_vma_unpin(vma);
1020 
1021 	i915_gem_object_unpin_map(vma->obj);
1022 	i915_gem_object_put(vma->obj);
1023 }
1024 
1025 static int pin_ggtt_status_page(struct intel_engine_cs *engine,
1026 				struct i915_gem_ww_ctx *ww,
1027 				struct i915_vma *vma)
1028 {
1029 	unsigned int flags;
1030 
1031 	if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt))
1032 		/*
1033 		 * On g33, we cannot place HWS above 256MiB, so
1034 		 * restrict its pinning to the low mappable arena.
1035 		 * Though this restriction is not documented for
1036 		 * gen4, gen5, or byt, they also behave similarly
1037 		 * and hang if the HWS is placed at the top of the
1038 		 * GTT. To generalise, it appears that all !llc
1039 		 * platforms have issues with us placing the HWS
1040 		 * above the mappable region (even though we never
1041 		 * actually map it).
1042 		 */
1043 		flags = PIN_MAPPABLE;
1044 	else
1045 		flags = PIN_HIGH;
1046 
1047 	return i915_ggtt_pin(vma, ww, 0, flags);
1048 }
1049 
1050 static int init_status_page(struct intel_engine_cs *engine)
1051 {
1052 	struct drm_i915_gem_object *obj;
1053 	struct i915_gem_ww_ctx ww;
1054 	struct i915_vma *vma;
1055 	void *vaddr;
1056 	int ret;
1057 
1058 	INIT_LIST_HEAD(&engine->status_page.timelines);
1059 
1060 	/*
1061 	 * Though the HWS register does support 36bit addresses, historically
1062 	 * we have had hangs and corruption reported due to wild writes if
1063 	 * the HWS is placed above 4G. We only allow objects to be allocated
1064 	 * in GFP_DMA32 for i965, and no earlier physical address users had
1065 	 * access to more than 4G.
1066 	 */
1067 	obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
1068 	if (IS_ERR(obj)) {
1069 		drm_err(&engine->i915->drm,
1070 			"Failed to allocate status page\n");
1071 		return PTR_ERR(obj);
1072 	}
1073 
1074 	i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
1075 
1076 	vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
1077 	if (IS_ERR(vma)) {
1078 		ret = PTR_ERR(vma);
1079 		goto err_put;
1080 	}
1081 
1082 	i915_gem_ww_ctx_init(&ww, true);
1083 retry:
1084 	ret = i915_gem_object_lock(obj, &ww);
1085 	if (!ret && !HWS_NEEDS_PHYSICAL(engine->i915))
1086 		ret = pin_ggtt_status_page(engine, &ww, vma);
1087 	if (ret)
1088 		goto err;
1089 
1090 	vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
1091 	if (IS_ERR(vaddr)) {
1092 		ret = PTR_ERR(vaddr);
1093 		goto err_unpin;
1094 	}
1095 
1096 	engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
1097 	engine->status_page.vma = vma;
1098 
1099 err_unpin:
1100 	if (ret)
1101 		i915_vma_unpin(vma);
1102 err:
1103 	if (ret == -EDEADLK) {
1104 		ret = i915_gem_ww_ctx_backoff(&ww);
1105 		if (!ret)
1106 			goto retry;
1107 	}
1108 	i915_gem_ww_ctx_fini(&ww);
1109 err_put:
1110 	if (ret)
1111 		i915_gem_object_put(obj);
1112 	return ret;
1113 }
1114 
1115 static int engine_setup_common(struct intel_engine_cs *engine)
1116 {
1117 	int err;
1118 
1119 	init_llist_head(&engine->barrier_tasks);
1120 
1121 	err = init_status_page(engine);
1122 	if (err)
1123 		return err;
1124 
1125 	engine->breadcrumbs = intel_breadcrumbs_create(engine);
1126 	if (!engine->breadcrumbs) {
1127 		err = -ENOMEM;
1128 		goto err_status;
1129 	}
1130 
1131 	engine->sched_engine = i915_sched_engine_create(ENGINE_PHYSICAL);
1132 	if (!engine->sched_engine) {
1133 		err = -ENOMEM;
1134 		goto err_sched_engine;
1135 	}
1136 	engine->sched_engine->private_data = engine;
1137 
1138 	err = intel_engine_init_cmd_parser(engine);
1139 	if (err)
1140 		goto err_cmd_parser;
1141 
1142 	intel_engine_init_execlists(engine);
1143 	intel_engine_init__pm(engine);
1144 	intel_engine_init_retire(engine);
1145 
1146 	/* Use the whole device by default */
1147 	engine->sseu =
1148 		intel_sseu_from_device_info(&engine->gt->info.sseu);
1149 
1150 	intel_engine_init_workarounds(engine);
1151 	intel_engine_init_whitelist(engine);
1152 	intel_engine_init_ctx_wa(engine);
1153 
1154 	if (GRAPHICS_VER(engine->i915) >= 12)
1155 		engine->flags |= I915_ENGINE_HAS_RELATIVE_MMIO;
1156 
1157 	return 0;
1158 
1159 err_cmd_parser:
1160 	i915_sched_engine_put(engine->sched_engine);
1161 err_sched_engine:
1162 	intel_breadcrumbs_put(engine->breadcrumbs);
1163 err_status:
1164 	cleanup_status_page(engine);
1165 	return err;
1166 }
1167 
1168 struct measure_breadcrumb {
1169 	struct i915_request rq;
1170 	struct intel_ring ring;
1171 	u32 cs[2048];
1172 };
1173 
1174 static int measure_breadcrumb_dw(struct intel_context *ce)
1175 {
1176 	struct intel_engine_cs *engine = ce->engine;
1177 	struct measure_breadcrumb *frame;
1178 	int dw;
1179 
1180 	GEM_BUG_ON(!engine->gt->scratch);
1181 
1182 	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
1183 	if (!frame)
1184 		return -ENOMEM;
1185 
1186 	frame->rq.engine = engine;
1187 	frame->rq.context = ce;
1188 	rcu_assign_pointer(frame->rq.timeline, ce->timeline);
1189 	frame->rq.hwsp_seqno = ce->timeline->hwsp_seqno;
1190 
1191 	frame->ring.vaddr = frame->cs;
1192 	frame->ring.size = sizeof(frame->cs);
1193 	frame->ring.wrap =
1194 		BITS_PER_TYPE(frame->ring.size) - ilog2(frame->ring.size);
1195 	frame->ring.effective_size = frame->ring.size;
1196 	intel_ring_update_space(&frame->ring);
1197 	frame->rq.ring = &frame->ring;
1198 
1199 	mutex_lock(&ce->timeline->mutex);
1200 	spin_lock_irq(&engine->sched_engine->lock);
1201 
1202 	dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
1203 
1204 	spin_unlock_irq(&engine->sched_engine->lock);
1205 	mutex_unlock(&ce->timeline->mutex);
1206 
1207 	GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */
1208 
1209 	kfree(frame);
1210 	return dw;
1211 }
1212 
1213 struct intel_context *
1214 intel_engine_create_pinned_context(struct intel_engine_cs *engine,
1215 				   struct i915_address_space *vm,
1216 				   unsigned int ring_size,
1217 				   unsigned int hwsp,
1218 				   struct lock_class_key *key,
1219 				   const char *name)
1220 {
1221 	struct intel_context *ce;
1222 	int err;
1223 
1224 	ce = intel_context_create(engine);
1225 	if (IS_ERR(ce))
1226 		return ce;
1227 
1228 	__set_bit(CONTEXT_BARRIER_BIT, &ce->flags);
1229 	ce->timeline = page_pack_bits(NULL, hwsp);
1230 	ce->ring = NULL;
1231 	ce->ring_size = ring_size;
1232 
1233 	i915_vm_put(ce->vm);
1234 	ce->vm = i915_vm_get(vm);
1235 
1236 	err = intel_context_pin(ce); /* perma-pin so it is always available */
1237 	if (err) {
1238 		intel_context_put(ce);
1239 		return ERR_PTR(err);
1240 	}
1241 
1242 	list_add_tail(&ce->pinned_contexts_link, &engine->pinned_contexts_list);
1243 
1244 	/*
1245 	 * Give our perma-pinned kernel timelines a separate lockdep class,
1246 	 * so that we can use them from within the normal user timelines
1247 	 * should we need to inject GPU operations during their request
1248 	 * construction.
1249 	 */
1250 	lockdep_set_class_and_name(&ce->timeline->mutex, key, name);
1251 
1252 	return ce;
1253 }
1254 
1255 void intel_engine_destroy_pinned_context(struct intel_context *ce)
1256 {
1257 	struct intel_engine_cs *engine = ce->engine;
1258 	struct i915_vma *hwsp = engine->status_page.vma;
1259 
1260 	GEM_BUG_ON(ce->timeline->hwsp_ggtt != hwsp);
1261 
1262 	mutex_lock(&hwsp->vm->mutex);
1263 	list_del(&ce->timeline->engine_link);
1264 	mutex_unlock(&hwsp->vm->mutex);
1265 
1266 	list_del(&ce->pinned_contexts_link);
1267 	intel_context_unpin(ce);
1268 	intel_context_put(ce);
1269 }
1270 
1271 static struct intel_context *
1272 create_kernel_context(struct intel_engine_cs *engine)
1273 {
1274 	static struct lock_class_key kernel;
1275 
1276 	return intel_engine_create_pinned_context(engine, engine->gt->vm, SZ_4K,
1277 						  I915_GEM_HWS_SEQNO_ADDR,
1278 						  &kernel, "kernel_context");
1279 }
1280 
1281 /**
1282  * intel_engines_init_common - initialize cengine state which might require hw access
1283  * @engine: Engine to initialize.
1284  *
1285  * Initializes @engine@ structure members shared between legacy and execlists
1286  * submission modes which do require hardware access.
1287  *
1288  * Typcally done at later stages of submission mode specific engine setup.
1289  *
1290  * Returns zero on success or an error code on failure.
1291  */
1292 static int engine_init_common(struct intel_engine_cs *engine)
1293 {
1294 	struct intel_context *ce;
1295 	int ret;
1296 
1297 	engine->set_default_submission(engine);
1298 
1299 	/*
1300 	 * We may need to do things with the shrinker which
1301 	 * require us to immediately switch back to the default
1302 	 * context. This can cause a problem as pinning the
1303 	 * default context also requires GTT space which may not
1304 	 * be available. To avoid this we always pin the default
1305 	 * context.
1306 	 */
1307 	ce = create_kernel_context(engine);
1308 	if (IS_ERR(ce))
1309 		return PTR_ERR(ce);
1310 
1311 	ret = measure_breadcrumb_dw(ce);
1312 	if (ret < 0)
1313 		goto err_context;
1314 
1315 	engine->emit_fini_breadcrumb_dw = ret;
1316 	engine->kernel_context = ce;
1317 
1318 	return 0;
1319 
1320 err_context:
1321 	intel_engine_destroy_pinned_context(ce);
1322 	return ret;
1323 }
1324 
1325 int intel_engines_init(struct intel_gt *gt)
1326 {
1327 	int (*setup)(struct intel_engine_cs *engine);
1328 	struct intel_engine_cs *engine;
1329 	enum intel_engine_id id;
1330 	int err;
1331 
1332 	if (intel_uc_uses_guc_submission(&gt->uc)) {
1333 		gt->submission_method = INTEL_SUBMISSION_GUC;
1334 		setup = intel_guc_submission_setup;
1335 	} else if (HAS_EXECLISTS(gt->i915)) {
1336 		gt->submission_method = INTEL_SUBMISSION_ELSP;
1337 		setup = intel_execlists_submission_setup;
1338 	} else {
1339 		gt->submission_method = INTEL_SUBMISSION_RING;
1340 		setup = intel_ring_submission_setup;
1341 	}
1342 
1343 	for_each_engine(engine, gt, id) {
1344 		err = engine_setup_common(engine);
1345 		if (err)
1346 			return err;
1347 
1348 		err = setup(engine);
1349 		if (err) {
1350 			intel_engine_cleanup_common(engine);
1351 			return err;
1352 		}
1353 
1354 		/* The backend should now be responsible for cleanup */
1355 		GEM_BUG_ON(engine->release == NULL);
1356 
1357 		err = engine_init_common(engine);
1358 		if (err)
1359 			return err;
1360 
1361 		intel_engine_add_user(engine);
1362 	}
1363 
1364 	return 0;
1365 }
1366 
1367 /**
1368  * intel_engines_cleanup_common - cleans up the engine state created by
1369  *                                the common initiailizers.
1370  * @engine: Engine to cleanup.
1371  *
1372  * This cleans up everything created by the common helpers.
1373  */
1374 void intel_engine_cleanup_common(struct intel_engine_cs *engine)
1375 {
1376 	GEM_BUG_ON(!list_empty(&engine->sched_engine->requests));
1377 
1378 	i915_sched_engine_put(engine->sched_engine);
1379 	intel_breadcrumbs_put(engine->breadcrumbs);
1380 
1381 	intel_engine_fini_retire(engine);
1382 	intel_engine_cleanup_cmd_parser(engine);
1383 
1384 	if (engine->default_state)
1385 		uao_detach(engine->default_state);
1386 
1387 	if (engine->kernel_context)
1388 		intel_engine_destroy_pinned_context(engine->kernel_context);
1389 
1390 	GEM_BUG_ON(!llist_empty(&engine->barrier_tasks));
1391 	cleanup_status_page(engine);
1392 
1393 	intel_wa_list_free(&engine->ctx_wa_list);
1394 	intel_wa_list_free(&engine->wa_list);
1395 	intel_wa_list_free(&engine->whitelist);
1396 }
1397 
1398 /**
1399  * intel_engine_resume - re-initializes the HW state of the engine
1400  * @engine: Engine to resume.
1401  *
1402  * Returns zero on success or an error code on failure.
1403  */
1404 int intel_engine_resume(struct intel_engine_cs *engine)
1405 {
1406 	intel_engine_apply_workarounds(engine);
1407 	intel_engine_apply_whitelist(engine);
1408 
1409 	return engine->resume(engine);
1410 }
1411 
1412 u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
1413 {
1414 	struct drm_i915_private *i915 = engine->i915;
1415 
1416 	u64 acthd;
1417 
1418 	if (GRAPHICS_VER(i915) >= 8)
1419 		acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW);
1420 	else if (GRAPHICS_VER(i915) >= 4)
1421 		acthd = ENGINE_READ(engine, RING_ACTHD);
1422 	else
1423 		acthd = ENGINE_READ(engine, ACTHD);
1424 
1425 	return acthd;
1426 }
1427 
1428 u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
1429 {
1430 	u64 bbaddr;
1431 
1432 	if (GRAPHICS_VER(engine->i915) >= 8)
1433 		bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW);
1434 	else
1435 		bbaddr = ENGINE_READ(engine, RING_BBADDR);
1436 
1437 	return bbaddr;
1438 }
1439 
1440 static unsigned long stop_timeout(const struct intel_engine_cs *engine)
1441 {
1442 	if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */
1443 		return 0;
1444 
1445 	/*
1446 	 * If we are doing a normal GPU reset, we can take our time and allow
1447 	 * the engine to quiesce. We've stopped submission to the engine, and
1448 	 * if we wait long enough an innocent context should complete and
1449 	 * leave the engine idle. So they should not be caught unaware by
1450 	 * the forthcoming GPU reset (which usually follows the stop_cs)!
1451 	 */
1452 	return READ_ONCE(engine->props.stop_timeout_ms);
1453 }
1454 
1455 static int __intel_engine_stop_cs(struct intel_engine_cs *engine,
1456 				  int fast_timeout_us,
1457 				  int slow_timeout_ms)
1458 {
1459 	struct intel_uncore *uncore = engine->uncore;
1460 	const i915_reg_t mode = RING_MI_MODE(engine->mmio_base);
1461 	int err;
1462 
1463 	intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING));
1464 
1465 	/*
1466 	 * Wa_22011802037 : gen11, gen12, Prior to doing a reset, ensure CS is
1467 	 * stopped, set ring stop bit and prefetch disable bit to halt CS
1468 	 */
1469 	if (IS_GRAPHICS_VER(engine->i915, 11, 12))
1470 		intel_uncore_write_fw(uncore, RING_MODE_GEN7(engine->mmio_base),
1471 				      _MASKED_BIT_ENABLE(GEN12_GFX_PREFETCH_DISABLE));
1472 
1473 	err = __intel_wait_for_register_fw(engine->uncore, mode,
1474 					   MODE_IDLE, MODE_IDLE,
1475 					   fast_timeout_us,
1476 					   slow_timeout_ms,
1477 					   NULL);
1478 
1479 	/* A final mmio read to let GPU writes be hopefully flushed to memory */
1480 	intel_uncore_posting_read_fw(uncore, mode);
1481 	return err;
1482 }
1483 
1484 int intel_engine_stop_cs(struct intel_engine_cs *engine)
1485 {
1486 	int err = 0;
1487 
1488 	if (GRAPHICS_VER(engine->i915) < 3)
1489 		return -ENODEV;
1490 
1491 	ENGINE_TRACE(engine, "\n");
1492 	/*
1493 	 * TODO: Find out why occasionally stopping the CS times out. Seen
1494 	 * especially with gem_eio tests.
1495 	 *
1496 	 * Occasionally trying to stop the cs times out, but does not adversely
1497 	 * affect functionality. The timeout is set as a config parameter that
1498 	 * defaults to 100ms. In most cases the follow up operation is to wait
1499 	 * for pending MI_FORCE_WAKES. The assumption is that this timeout is
1500 	 * sufficient for any pending MI_FORCEWAKEs to complete. Once root
1501 	 * caused, the caller must check and handle the return from this
1502 	 * function.
1503 	 */
1504 	if (__intel_engine_stop_cs(engine, 1000, stop_timeout(engine))) {
1505 		ENGINE_TRACE(engine,
1506 			     "timed out on STOP_RING -> IDLE; HEAD:%04x, TAIL:%04x\n",
1507 			     ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR,
1508 			     ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR);
1509 
1510 		/*
1511 		 * Sometimes we observe that the idle flag is not
1512 		 * set even though the ring is empty. So double
1513 		 * check before giving up.
1514 		 */
1515 		if ((ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR) !=
1516 		    (ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR))
1517 			err = -ETIMEDOUT;
1518 	}
1519 
1520 	return err;
1521 }
1522 
1523 void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
1524 {
1525 	ENGINE_TRACE(engine, "\n");
1526 
1527 	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
1528 }
1529 
1530 static u32 __cs_pending_mi_force_wakes(struct intel_engine_cs *engine)
1531 {
1532 	static const i915_reg_t _reg[I915_NUM_ENGINES] = {
1533 		[RCS0] = MSG_IDLE_CS,
1534 		[BCS0] = MSG_IDLE_BCS,
1535 		[VCS0] = MSG_IDLE_VCS0,
1536 		[VCS1] = MSG_IDLE_VCS1,
1537 		[VCS2] = MSG_IDLE_VCS2,
1538 		[VCS3] = MSG_IDLE_VCS3,
1539 		[VCS4] = MSG_IDLE_VCS4,
1540 		[VCS5] = MSG_IDLE_VCS5,
1541 		[VCS6] = MSG_IDLE_VCS6,
1542 		[VCS7] = MSG_IDLE_VCS7,
1543 		[VECS0] = MSG_IDLE_VECS0,
1544 		[VECS1] = MSG_IDLE_VECS1,
1545 		[VECS2] = MSG_IDLE_VECS2,
1546 		[VECS3] = MSG_IDLE_VECS3,
1547 		[CCS0] = MSG_IDLE_CS,
1548 		[CCS1] = MSG_IDLE_CS,
1549 		[CCS2] = MSG_IDLE_CS,
1550 		[CCS3] = MSG_IDLE_CS,
1551 	};
1552 	u32 val;
1553 
1554 	if (!_reg[engine->id].reg) {
1555 		drm_err(&engine->i915->drm,
1556 			"MSG IDLE undefined for engine id %u\n", engine->id);
1557 		return 0;
1558 	}
1559 
1560 	val = intel_uncore_read(engine->uncore, _reg[engine->id]);
1561 
1562 	/* bits[29:25] & bits[13:9] >> shift */
1563 	return (val & (val >> 16) & MSG_IDLE_FW_MASK) >> MSG_IDLE_FW_SHIFT;
1564 }
1565 
1566 static void __gpm_wait_for_fw_complete(struct intel_gt *gt, u32 fw_mask)
1567 {
1568 	int ret;
1569 
1570 	/* Ensure GPM receives fw up/down after CS is stopped */
1571 	udelay(1);
1572 
1573 	/* Wait for forcewake request to complete in GPM */
1574 	ret =  __intel_wait_for_register_fw(gt->uncore,
1575 					    GEN9_PWRGT_DOMAIN_STATUS,
1576 					    fw_mask, fw_mask, 5000, 0, NULL);
1577 
1578 	/* Ensure CS receives fw ack from GPM */
1579 	udelay(1);
1580 
1581 	if (ret)
1582 		GT_TRACE(gt, "Failed to complete pending forcewake %d\n", ret);
1583 }
1584 
1585 /*
1586  * Wa_22011802037:gen12: In addition to stopping the cs, we need to wait for any
1587  * pending MI_FORCE_WAKEUP requests that the CS has initiated to complete. The
1588  * pending status is indicated by bits[13:9] (masked by bits[29:25]) in the
1589  * MSG_IDLE register. There's one MSG_IDLE register per reset domain. Since we
1590  * are concerned only with the gt reset here, we use a logical OR of pending
1591  * forcewakeups from all reset domains and then wait for them to complete by
1592  * querying PWRGT_DOMAIN_STATUS.
1593  */
1594 void intel_engine_wait_for_pending_mi_fw(struct intel_engine_cs *engine)
1595 {
1596 	u32 fw_pending = __cs_pending_mi_force_wakes(engine);
1597 
1598 	if (fw_pending)
1599 		__gpm_wait_for_fw_complete(engine->gt, fw_pending);
1600 }
1601 
1602 /* NB: please notice the memset */
1603 void intel_engine_get_instdone(const struct intel_engine_cs *engine,
1604 			       struct intel_instdone *instdone)
1605 {
1606 	struct drm_i915_private *i915 = engine->i915;
1607 	struct intel_uncore *uncore = engine->uncore;
1608 	u32 mmio_base = engine->mmio_base;
1609 	int slice;
1610 	int subslice;
1611 	int iter;
1612 
1613 	memset(instdone, 0, sizeof(*instdone));
1614 
1615 	if (GRAPHICS_VER(i915) >= 8) {
1616 		instdone->instdone =
1617 			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1618 
1619 		if (engine->id != RCS0)
1620 			return;
1621 
1622 		instdone->slice_common =
1623 			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1624 		if (GRAPHICS_VER(i915) >= 12) {
1625 			instdone->slice_common_extra[0] =
1626 				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA);
1627 			instdone->slice_common_extra[1] =
1628 				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA2);
1629 		}
1630 
1631 		for_each_ss_steering(iter, engine->gt, slice, subslice) {
1632 			instdone->sampler[slice][subslice] =
1633 				intel_gt_mcr_read(engine->gt,
1634 						  GEN7_SAMPLER_INSTDONE,
1635 						  slice, subslice);
1636 			instdone->row[slice][subslice] =
1637 				intel_gt_mcr_read(engine->gt,
1638 						  GEN7_ROW_INSTDONE,
1639 						  slice, subslice);
1640 		}
1641 
1642 		if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 55)) {
1643 			for_each_ss_steering(iter, engine->gt, slice, subslice)
1644 				instdone->geom_svg[slice][subslice] =
1645 					intel_gt_mcr_read(engine->gt,
1646 							  XEHPG_INSTDONE_GEOM_SVG,
1647 							  slice, subslice);
1648 		}
1649 	} else if (GRAPHICS_VER(i915) >= 7) {
1650 		instdone->instdone =
1651 			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1652 
1653 		if (engine->id != RCS0)
1654 			return;
1655 
1656 		instdone->slice_common =
1657 			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1658 		instdone->sampler[0][0] =
1659 			intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE);
1660 		instdone->row[0][0] =
1661 			intel_uncore_read(uncore, GEN7_ROW_INSTDONE);
1662 	} else if (GRAPHICS_VER(i915) >= 4) {
1663 		instdone->instdone =
1664 			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1665 		if (engine->id == RCS0)
1666 			/* HACK: Using the wrong struct member */
1667 			instdone->slice_common =
1668 				intel_uncore_read(uncore, GEN4_INSTDONE1);
1669 	} else {
1670 		instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE);
1671 	}
1672 }
1673 
1674 static bool ring_is_idle(struct intel_engine_cs *engine)
1675 {
1676 	bool idle = true;
1677 
1678 	if (I915_SELFTEST_ONLY(!engine->mmio_base))
1679 		return true;
1680 
1681 	if (!intel_engine_pm_get_if_awake(engine))
1682 		return true;
1683 
1684 	/* First check that no commands are left in the ring */
1685 	if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) !=
1686 	    (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR))
1687 		idle = false;
1688 
1689 	/* No bit for gen2, so assume the CS parser is idle */
1690 	if (GRAPHICS_VER(engine->i915) > 2 &&
1691 	    !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE))
1692 		idle = false;
1693 
1694 	intel_engine_pm_put(engine);
1695 
1696 	return idle;
1697 }
1698 
1699 void __intel_engine_flush_submission(struct intel_engine_cs *engine, bool sync)
1700 {
1701 	struct tasklet_struct *t = &engine->sched_engine->tasklet;
1702 
1703 	if (!t->callback)
1704 		return;
1705 
1706 	local_bh_disable();
1707 	if (tasklet_trylock(t)) {
1708 		/* Must wait for any GPU reset in progress. */
1709 		if (__tasklet_is_enabled(t))
1710 			t->callback(t);
1711 		tasklet_unlock(t);
1712 	}
1713 	local_bh_enable();
1714 
1715 	/* Synchronise and wait for the tasklet on another CPU */
1716 	if (sync)
1717 		tasklet_unlock_wait(t);
1718 }
1719 
1720 /**
1721  * intel_engine_is_idle() - Report if the engine has finished process all work
1722  * @engine: the intel_engine_cs
1723  *
1724  * Return true if there are no requests pending, nothing left to be submitted
1725  * to hardware, and that the engine is idle.
1726  */
1727 bool intel_engine_is_idle(struct intel_engine_cs *engine)
1728 {
1729 	/* More white lies, if wedged, hw state is inconsistent */
1730 	if (intel_gt_is_wedged(engine->gt))
1731 		return true;
1732 
1733 	if (!intel_engine_pm_is_awake(engine))
1734 		return true;
1735 
1736 	/* Waiting to drain ELSP? */
1737 	intel_synchronize_hardirq(engine->i915);
1738 	intel_engine_flush_submission(engine);
1739 
1740 	/* ELSP is empty, but there are ready requests? E.g. after reset */
1741 	if (!i915_sched_engine_is_empty(engine->sched_engine))
1742 		return false;
1743 
1744 	/* Ring stopped? */
1745 	return ring_is_idle(engine);
1746 }
1747 
1748 bool intel_engines_are_idle(struct intel_gt *gt)
1749 {
1750 	struct intel_engine_cs *engine;
1751 	enum intel_engine_id id;
1752 
1753 	/*
1754 	 * If the driver is wedged, HW state may be very inconsistent and
1755 	 * report that it is still busy, even though we have stopped using it.
1756 	 */
1757 	if (intel_gt_is_wedged(gt))
1758 		return true;
1759 
1760 	/* Already parked (and passed an idleness test); must still be idle */
1761 	if (!READ_ONCE(gt->awake))
1762 		return true;
1763 
1764 	for_each_engine(engine, gt, id) {
1765 		if (!intel_engine_is_idle(engine))
1766 			return false;
1767 	}
1768 
1769 	return true;
1770 }
1771 
1772 bool intel_engine_irq_enable(struct intel_engine_cs *engine)
1773 {
1774 	if (!engine->irq_enable)
1775 		return false;
1776 
1777 	/* Caller disables interrupts */
1778 	spin_lock(engine->gt->irq_lock);
1779 	engine->irq_enable(engine);
1780 	spin_unlock(engine->gt->irq_lock);
1781 
1782 	return true;
1783 }
1784 
1785 void intel_engine_irq_disable(struct intel_engine_cs *engine)
1786 {
1787 	if (!engine->irq_disable)
1788 		return;
1789 
1790 	/* Caller disables interrupts */
1791 	spin_lock(engine->gt->irq_lock);
1792 	engine->irq_disable(engine);
1793 	spin_unlock(engine->gt->irq_lock);
1794 }
1795 
1796 void intel_engines_reset_default_submission(struct intel_gt *gt)
1797 {
1798 	struct intel_engine_cs *engine;
1799 	enum intel_engine_id id;
1800 
1801 	for_each_engine(engine, gt, id) {
1802 		if (engine->sanitize)
1803 			engine->sanitize(engine);
1804 
1805 		engine->set_default_submission(engine);
1806 	}
1807 }
1808 
1809 bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
1810 {
1811 	switch (GRAPHICS_VER(engine->i915)) {
1812 	case 2:
1813 		return false; /* uses physical not virtual addresses */
1814 	case 3:
1815 		/* maybe only uses physical not virtual addresses */
1816 		return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
1817 	case 4:
1818 		return !IS_I965G(engine->i915); /* who knows! */
1819 	case 6:
1820 		return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
1821 	default:
1822 		return true;
1823 	}
1824 }
1825 
1826 static struct intel_timeline *get_timeline(struct i915_request *rq)
1827 {
1828 	struct intel_timeline *tl;
1829 
1830 	/*
1831 	 * Even though we are holding the engine->sched_engine->lock here, there
1832 	 * is no control over the submission queue per-se and we are
1833 	 * inspecting the active state at a random point in time, with an
1834 	 * unknown queue. Play safe and make sure the timeline remains valid.
1835 	 * (Only being used for pretty printing, one extra kref shouldn't
1836 	 * cause a camel stampede!)
1837 	 */
1838 	rcu_read_lock();
1839 	tl = rcu_dereference(rq->timeline);
1840 	if (!kref_get_unless_zero(&tl->kref))
1841 		tl = NULL;
1842 	rcu_read_unlock();
1843 
1844 	return tl;
1845 }
1846 
1847 static int print_ring(char *buf, int sz, struct i915_request *rq)
1848 {
1849 	int len = 0;
1850 
1851 	if (!i915_request_signaled(rq)) {
1852 		struct intel_timeline *tl = get_timeline(rq);
1853 
1854 		len = scnprintf(buf, sz,
1855 				"ring:{start:%08x, hwsp:%08x, seqno:%08x, runtime:%llums}, ",
1856 				i915_ggtt_offset(rq->ring->vma),
1857 				tl ? tl->hwsp_offset : 0,
1858 				hwsp_seqno(rq),
1859 				DIV_ROUND_CLOSEST_ULL(intel_context_get_total_runtime_ns(rq->context),
1860 						      1000 * 1000));
1861 
1862 		if (tl)
1863 			intel_timeline_put(tl);
1864 	}
1865 
1866 	return len;
1867 }
1868 
1869 static void hexdump(struct drm_printer *m, const void *buf, size_t len)
1870 {
1871 	STUB();
1872 #ifdef notyet
1873 	const size_t rowsize = 8 * sizeof(u32);
1874 	const void *prev = NULL;
1875 	bool skip = false;
1876 	size_t pos;
1877 
1878 	for (pos = 0; pos < len; pos += rowsize) {
1879 		char line[128];
1880 
1881 		if (prev && !memcmp(prev, buf + pos, rowsize)) {
1882 			if (!skip) {
1883 				drm_printf(m, "*\n");
1884 				skip = true;
1885 			}
1886 			continue;
1887 		}
1888 
1889 		WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
1890 						rowsize, sizeof(u32),
1891 						line, sizeof(line),
1892 						false) >= sizeof(line));
1893 		drm_printf(m, "[%04zx] %s\n", pos, line);
1894 
1895 		prev = buf + pos;
1896 		skip = false;
1897 	}
1898 #endif
1899 }
1900 
1901 static const char *repr_timer(const struct timeout *t)
1902 {
1903 	if (!READ_ONCE(t->to_time))
1904 		return "inactive";
1905 
1906 	if (timer_pending(t))
1907 		return "active";
1908 
1909 	return "expired";
1910 }
1911 
1912 static void intel_engine_print_registers(struct intel_engine_cs *engine,
1913 					 struct drm_printer *m)
1914 {
1915 	struct drm_i915_private *dev_priv = engine->i915;
1916 	struct intel_engine_execlists * const execlists = &engine->execlists;
1917 	u64 addr;
1918 
1919 	if (engine->id == RENDER_CLASS && IS_GRAPHICS_VER(dev_priv, 4, 7))
1920 		drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID));
1921 	if (HAS_EXECLISTS(dev_priv)) {
1922 		drm_printf(m, "\tEL_STAT_HI: 0x%08x\n",
1923 			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI));
1924 		drm_printf(m, "\tEL_STAT_LO: 0x%08x\n",
1925 			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO));
1926 	}
1927 	drm_printf(m, "\tRING_START: 0x%08x\n",
1928 		   ENGINE_READ(engine, RING_START));
1929 	drm_printf(m, "\tRING_HEAD:  0x%08x\n",
1930 		   ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR);
1931 	drm_printf(m, "\tRING_TAIL:  0x%08x\n",
1932 		   ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR);
1933 	drm_printf(m, "\tRING_CTL:   0x%08x%s\n",
1934 		   ENGINE_READ(engine, RING_CTL),
1935 		   ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
1936 	if (GRAPHICS_VER(engine->i915) > 2) {
1937 		drm_printf(m, "\tRING_MODE:  0x%08x%s\n",
1938 			   ENGINE_READ(engine, RING_MI_MODE),
1939 			   ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : "");
1940 	}
1941 
1942 	if (GRAPHICS_VER(dev_priv) >= 6) {
1943 		drm_printf(m, "\tRING_IMR:   0x%08x\n",
1944 			   ENGINE_READ(engine, RING_IMR));
1945 		drm_printf(m, "\tRING_ESR:   0x%08x\n",
1946 			   ENGINE_READ(engine, RING_ESR));
1947 		drm_printf(m, "\tRING_EMR:   0x%08x\n",
1948 			   ENGINE_READ(engine, RING_EMR));
1949 		drm_printf(m, "\tRING_EIR:   0x%08x\n",
1950 			   ENGINE_READ(engine, RING_EIR));
1951 	}
1952 
1953 	addr = intel_engine_get_active_head(engine);
1954 	drm_printf(m, "\tACTHD:  0x%08x_%08x\n",
1955 		   upper_32_bits(addr), lower_32_bits(addr));
1956 	addr = intel_engine_get_last_batch_head(engine);
1957 	drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
1958 		   upper_32_bits(addr), lower_32_bits(addr));
1959 	if (GRAPHICS_VER(dev_priv) >= 8)
1960 		addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW);
1961 	else if (GRAPHICS_VER(dev_priv) >= 4)
1962 		addr = ENGINE_READ(engine, RING_DMA_FADD);
1963 	else
1964 		addr = ENGINE_READ(engine, DMA_FADD_I8XX);
1965 	drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
1966 		   upper_32_bits(addr), lower_32_bits(addr));
1967 	if (GRAPHICS_VER(dev_priv) >= 4) {
1968 		drm_printf(m, "\tIPEIR: 0x%08x\n",
1969 			   ENGINE_READ(engine, RING_IPEIR));
1970 		drm_printf(m, "\tIPEHR: 0x%08x\n",
1971 			   ENGINE_READ(engine, RING_IPEHR));
1972 	} else {
1973 		drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR));
1974 		drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR));
1975 	}
1976 
1977 	if (HAS_EXECLISTS(dev_priv) && !intel_engine_uses_guc(engine)) {
1978 		struct i915_request * const *port, *rq;
1979 		const u32 *hws =
1980 			&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
1981 		const u8 num_entries = execlists->csb_size;
1982 		unsigned int idx;
1983 		u8 read, write;
1984 
1985 		drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n",
1986 			   str_yes_no(test_bit(TASKLET_STATE_SCHED, &engine->sched_engine->tasklet.state)),
1987 			   str_enabled_disabled(!atomic_read(&engine->sched_engine->tasklet.count)),
1988 			   repr_timer(&engine->execlists.preempt),
1989 			   repr_timer(&engine->execlists.timer));
1990 
1991 		read = execlists->csb_head;
1992 		write = READ_ONCE(*execlists->csb_write);
1993 
1994 		drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n",
1995 			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO),
1996 			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI),
1997 			   read, write, num_entries);
1998 
1999 		if (read >= num_entries)
2000 			read = 0;
2001 		if (write >= num_entries)
2002 			write = 0;
2003 		if (read > write)
2004 			write += num_entries;
2005 		while (read < write) {
2006 			idx = ++read % num_entries;
2007 			drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
2008 				   idx, hws[idx * 2], hws[idx * 2 + 1]);
2009 		}
2010 
2011 		i915_sched_engine_active_lock_bh(engine->sched_engine);
2012 		rcu_read_lock();
2013 		for (port = execlists->active; (rq = *port); port++) {
2014 			char hdr[160];
2015 			int len;
2016 
2017 			len = scnprintf(hdr, sizeof(hdr),
2018 					"\t\tActive[%d]:  ccid:%08x%s%s, ",
2019 					(int)(port - execlists->active),
2020 					rq->context->lrc.ccid,
2021 					intel_context_is_closed(rq->context) ? "!" : "",
2022 					intel_context_is_banned(rq->context) ? "*" : "");
2023 			len += print_ring(hdr + len, sizeof(hdr) - len, rq);
2024 			scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
2025 			i915_request_show(m, rq, hdr, 0);
2026 		}
2027 		for (port = execlists->pending; (rq = *port); port++) {
2028 			char hdr[160];
2029 			int len;
2030 
2031 			len = scnprintf(hdr, sizeof(hdr),
2032 					"\t\tPending[%d]: ccid:%08x%s%s, ",
2033 					(int)(port - execlists->pending),
2034 					rq->context->lrc.ccid,
2035 					intel_context_is_closed(rq->context) ? "!" : "",
2036 					intel_context_is_banned(rq->context) ? "*" : "");
2037 			len += print_ring(hdr + len, sizeof(hdr) - len, rq);
2038 			scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
2039 			i915_request_show(m, rq, hdr, 0);
2040 		}
2041 		rcu_read_unlock();
2042 		i915_sched_engine_active_unlock_bh(engine->sched_engine);
2043 	} else if (GRAPHICS_VER(dev_priv) > 6) {
2044 		drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
2045 			   ENGINE_READ(engine, RING_PP_DIR_BASE));
2046 		drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
2047 			   ENGINE_READ(engine, RING_PP_DIR_BASE_READ));
2048 		drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
2049 			   ENGINE_READ(engine, RING_PP_DIR_DCLV));
2050 	}
2051 }
2052 
2053 static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
2054 {
2055 	struct i915_vma_resource *vma_res = rq->batch_res;
2056 	void *ring;
2057 	int size;
2058 
2059 	drm_printf(m,
2060 		   "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
2061 		   rq->head, rq->postfix, rq->tail,
2062 		   vma_res ? upper_32_bits(vma_res->start) : ~0u,
2063 		   vma_res ? lower_32_bits(vma_res->start) : ~0u);
2064 
2065 	size = rq->tail - rq->head;
2066 	if (rq->tail < rq->head)
2067 		size += rq->ring->size;
2068 
2069 	ring = kmalloc(size, GFP_ATOMIC);
2070 	if (ring) {
2071 		const void *vaddr = rq->ring->vaddr;
2072 		unsigned int head = rq->head;
2073 		unsigned int len = 0;
2074 
2075 		if (rq->tail < head) {
2076 			len = rq->ring->size - head;
2077 			memcpy(ring, vaddr + head, len);
2078 			head = 0;
2079 		}
2080 		memcpy(ring + len, vaddr + head, size - len);
2081 
2082 		hexdump(m, ring, size);
2083 		kfree(ring);
2084 	}
2085 }
2086 
2087 static unsigned long read_ul(void *p, size_t x)
2088 {
2089 	return *(unsigned long *)(p + x);
2090 }
2091 
2092 static void print_properties(struct intel_engine_cs *engine,
2093 			     struct drm_printer *m)
2094 {
2095 	static const struct pmap {
2096 		size_t offset;
2097 		const char *name;
2098 	} props[] = {
2099 #define P(x) { \
2100 	.offset = offsetof(typeof(engine->props), x), \
2101 	.name = #x \
2102 }
2103 		P(heartbeat_interval_ms),
2104 		P(max_busywait_duration_ns),
2105 		P(preempt_timeout_ms),
2106 		P(stop_timeout_ms),
2107 		P(timeslice_duration_ms),
2108 
2109 		{},
2110 #undef P
2111 	};
2112 	const struct pmap *p;
2113 
2114 	drm_printf(m, "\tProperties:\n");
2115 	for (p = props; p->name; p++)
2116 		drm_printf(m, "\t\t%s: %lu [default %lu]\n",
2117 			   p->name,
2118 			   read_ul(&engine->props, p->offset),
2119 			   read_ul(&engine->defaults, p->offset));
2120 }
2121 
2122 static void engine_dump_request(struct i915_request *rq, struct drm_printer *m, const char *msg)
2123 {
2124 	struct intel_timeline *tl = get_timeline(rq);
2125 
2126 	i915_request_show(m, rq, msg, 0);
2127 
2128 	drm_printf(m, "\t\tring->start:  0x%08x\n",
2129 		   i915_ggtt_offset(rq->ring->vma));
2130 	drm_printf(m, "\t\tring->head:   0x%08x\n",
2131 		   rq->ring->head);
2132 	drm_printf(m, "\t\tring->tail:   0x%08x\n",
2133 		   rq->ring->tail);
2134 	drm_printf(m, "\t\tring->emit:   0x%08x\n",
2135 		   rq->ring->emit);
2136 	drm_printf(m, "\t\tring->space:  0x%08x\n",
2137 		   rq->ring->space);
2138 
2139 	if (tl) {
2140 		drm_printf(m, "\t\tring->hwsp:   0x%08x\n",
2141 			   tl->hwsp_offset);
2142 		intel_timeline_put(tl);
2143 	}
2144 
2145 	print_request_ring(m, rq);
2146 
2147 	if (rq->context->lrc_reg_state) {
2148 		drm_printf(m, "Logical Ring Context:\n");
2149 		hexdump(m, rq->context->lrc_reg_state, PAGE_SIZE);
2150 	}
2151 }
2152 
2153 void intel_engine_dump_active_requests(struct list_head *requests,
2154 				       struct i915_request *hung_rq,
2155 				       struct drm_printer *m)
2156 {
2157 	struct i915_request *rq;
2158 	const char *msg;
2159 	enum i915_request_state state;
2160 
2161 	list_for_each_entry(rq, requests, sched.link) {
2162 		if (rq == hung_rq)
2163 			continue;
2164 
2165 		state = i915_test_request_state(rq);
2166 		if (state < I915_REQUEST_QUEUED)
2167 			continue;
2168 
2169 		if (state == I915_REQUEST_ACTIVE)
2170 			msg = "\t\tactive on engine";
2171 		else
2172 			msg = "\t\tactive in queue";
2173 
2174 		engine_dump_request(rq, m, msg);
2175 	}
2176 }
2177 
2178 static void engine_dump_active_requests(struct intel_engine_cs *engine,
2179 					struct drm_printer *m)
2180 {
2181 	struct intel_context *hung_ce = NULL;
2182 	struct i915_request *hung_rq = NULL;
2183 
2184 	/*
2185 	 * No need for an engine->irq_seqno_barrier() before the seqno reads.
2186 	 * The GPU is still running so requests are still executing and any
2187 	 * hardware reads will be out of date by the time they are reported.
2188 	 * But the intention here is just to report an instantaneous snapshot
2189 	 * so that's fine.
2190 	 */
2191 	intel_engine_get_hung_entity(engine, &hung_ce, &hung_rq);
2192 
2193 	drm_printf(m, "\tRequests:\n");
2194 
2195 	if (hung_rq)
2196 		engine_dump_request(hung_rq, m, "\t\thung");
2197 	else if (hung_ce)
2198 		drm_printf(m, "\t\tGot hung ce but no hung rq!\n");
2199 
2200 	if (intel_uc_uses_guc_submission(&engine->gt->uc))
2201 		intel_guc_dump_active_requests(engine, hung_rq, m);
2202 	else
2203 		intel_execlists_dump_active_requests(engine, hung_rq, m);
2204 
2205 	if (hung_rq)
2206 		i915_request_put(hung_rq);
2207 }
2208 
2209 void intel_engine_dump(struct intel_engine_cs *engine,
2210 		       struct drm_printer *m,
2211 		       const char *header, ...)
2212 {
2213 	struct i915_gpu_error * const error = &engine->i915->gpu_error;
2214 	struct i915_request *rq;
2215 	intel_wakeref_t wakeref;
2216 	ktime_t dummy;
2217 
2218 	if (header) {
2219 		va_list ap;
2220 
2221 		va_start(ap, header);
2222 		drm_vprintf(m, header, &ap);
2223 		va_end(ap);
2224 	}
2225 
2226 	if (intel_gt_is_wedged(engine->gt))
2227 		drm_printf(m, "*** WEDGED ***\n");
2228 
2229 	drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count));
2230 	drm_printf(m, "\tBarriers?: %s\n",
2231 		   str_yes_no(!llist_empty(&engine->barrier_tasks)));
2232 	drm_printf(m, "\tLatency: %luus\n",
2233 		   ewma__engine_latency_read(&engine->latency));
2234 	if (intel_engine_supports_stats(engine))
2235 		drm_printf(m, "\tRuntime: %llums\n",
2236 			   ktime_to_ms(intel_engine_get_busy_time(engine,
2237 								  &dummy)));
2238 	drm_printf(m, "\tForcewake: %x domains, %d active\n",
2239 		   engine->fw_domain, READ_ONCE(engine->fw_active));
2240 
2241 	rcu_read_lock();
2242 	rq = READ_ONCE(engine->heartbeat.systole);
2243 	if (rq)
2244 		drm_printf(m, "\tHeartbeat: %d ms ago\n",
2245 			   jiffies_to_msecs(jiffies - rq->emitted_jiffies));
2246 	rcu_read_unlock();
2247 	drm_printf(m, "\tReset count: %d (global %d)\n",
2248 		   i915_reset_engine_count(error, engine),
2249 		   i915_reset_count(error));
2250 	print_properties(engine, m);
2251 
2252 	engine_dump_active_requests(engine, m);
2253 
2254 	drm_printf(m, "\tMMIO base:  0x%08x\n", engine->mmio_base);
2255 	wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm);
2256 	if (wakeref) {
2257 		intel_engine_print_registers(engine, m);
2258 		intel_runtime_pm_put(engine->uncore->rpm, wakeref);
2259 	} else {
2260 		drm_printf(m, "\tDevice is asleep; skipping register dump\n");
2261 	}
2262 
2263 	intel_execlists_show_requests(engine, m, i915_request_show, 8);
2264 
2265 	drm_printf(m, "HWSP:\n");
2266 	hexdump(m, engine->status_page.addr, PAGE_SIZE);
2267 
2268 	drm_printf(m, "Idle? %s\n", str_yes_no(intel_engine_is_idle(engine)));
2269 
2270 	intel_engine_print_breadcrumbs(engine, m);
2271 }
2272 
2273 /**
2274  * intel_engine_get_busy_time() - Return current accumulated engine busyness
2275  * @engine: engine to report on
2276  * @now: monotonic timestamp of sampling
2277  *
2278  * Returns accumulated time @engine was busy since engine stats were enabled.
2279  */
2280 ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine, ktime_t *now)
2281 {
2282 	return engine->busyness(engine, now);
2283 }
2284 
2285 struct intel_context *
2286 intel_engine_create_virtual(struct intel_engine_cs **siblings,
2287 			    unsigned int count, unsigned long flags)
2288 {
2289 	if (count == 0)
2290 		return ERR_PTR(-EINVAL);
2291 
2292 	if (count == 1 && !(flags & FORCE_VIRTUAL))
2293 		return intel_context_create(siblings[0]);
2294 
2295 	GEM_BUG_ON(!siblings[0]->cops->create_virtual);
2296 	return siblings[0]->cops->create_virtual(siblings, count, flags);
2297 }
2298 
2299 static struct i915_request *engine_execlist_find_hung_request(struct intel_engine_cs *engine)
2300 {
2301 	struct i915_request *request, *active = NULL;
2302 
2303 	/*
2304 	 * This search does not work in GuC submission mode. However, the GuC
2305 	 * will report the hanging context directly to the driver itself. So
2306 	 * the driver should never get here when in GuC mode.
2307 	 */
2308 	GEM_BUG_ON(intel_uc_uses_guc_submission(&engine->gt->uc));
2309 
2310 	/*
2311 	 * We are called by the error capture, reset and to dump engine
2312 	 * state at random points in time. In particular, note that neither is
2313 	 * crucially ordered with an interrupt. After a hang, the GPU is dead
2314 	 * and we assume that no more writes can happen (we waited long enough
2315 	 * for all writes that were in transaction to be flushed) - adding an
2316 	 * extra delay for a recent interrupt is pointless. Hence, we do
2317 	 * not need an engine->irq_seqno_barrier() before the seqno reads.
2318 	 * At all other times, we must assume the GPU is still running, but
2319 	 * we only care about the snapshot of this moment.
2320 	 */
2321 	lockdep_assert_held(&engine->sched_engine->lock);
2322 
2323 	rcu_read_lock();
2324 	request = execlists_active(&engine->execlists);
2325 	if (request) {
2326 		struct intel_timeline *tl = request->context->timeline;
2327 
2328 		list_for_each_entry_from_reverse(request, &tl->requests, link) {
2329 			if (__i915_request_is_complete(request))
2330 				break;
2331 
2332 			active = request;
2333 		}
2334 	}
2335 	rcu_read_unlock();
2336 	if (active)
2337 		return active;
2338 
2339 	list_for_each_entry(request, &engine->sched_engine->requests,
2340 			    sched.link) {
2341 		if (i915_test_request_state(request) != I915_REQUEST_ACTIVE)
2342 			continue;
2343 
2344 		active = request;
2345 		break;
2346 	}
2347 
2348 	return active;
2349 }
2350 
2351 void intel_engine_get_hung_entity(struct intel_engine_cs *engine,
2352 				  struct intel_context **ce, struct i915_request **rq)
2353 {
2354 	unsigned long flags;
2355 
2356 	*ce = intel_engine_get_hung_context(engine);
2357 	if (*ce) {
2358 		intel_engine_clear_hung_context(engine);
2359 
2360 		*rq = intel_context_get_active_request(*ce);
2361 		return;
2362 	}
2363 
2364 	/*
2365 	 * Getting here with GuC enabled means it is a forced error capture
2366 	 * with no actual hang. So, no need to attempt the execlist search.
2367 	 */
2368 	if (intel_uc_uses_guc_submission(&engine->gt->uc))
2369 		return;
2370 
2371 	spin_lock_irqsave(&engine->sched_engine->lock, flags);
2372 	*rq = engine_execlist_find_hung_request(engine);
2373 	if (*rq)
2374 		*rq = i915_request_get_rcu(*rq);
2375 	spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
2376 }
2377 
2378 void xehp_enable_ccs_engines(struct intel_engine_cs *engine)
2379 {
2380 	/*
2381 	 * If there are any non-fused-off CCS engines, we need to enable CCS
2382 	 * support in the RCU_MODE register.  This only needs to be done once,
2383 	 * so for simplicity we'll take care of this in the RCS engine's
2384 	 * resume handler; since the RCS and all CCS engines belong to the
2385 	 * same reset domain and are reset together, this will also take care
2386 	 * of re-applying the setting after i915-triggered resets.
2387 	 */
2388 	if (!CCS_MASK(engine->gt))
2389 		return;
2390 
2391 	intel_uncore_write(engine->uncore, GEN12_RCU_MODE,
2392 			   _MASKED_BIT_ENABLE(GEN12_RCU_MODE_CCS_ENABLE));
2393 }
2394 
2395 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2396 #include "mock_engine.c"
2397 #include "selftest_engine.c"
2398 #include "selftest_engine_cs.c"
2399 #endif
2400