xref: /openbsd-src/sys/dev/pci/drm/i915/gt/intel_engine_cs.c (revision 1a8dbaac879b9f3335ad7fb25429ce63ac1d6bac)
1 /*
2  * Copyright © 2016 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #include <drm/drm_print.h>
26 
27 #include "gem/i915_gem_context.h"
28 
29 #include "i915_drv.h"
30 
31 #include "intel_context.h"
32 #include "intel_engine.h"
33 #include "intel_engine_pm.h"
34 #include "intel_engine_pool.h"
35 #include "intel_engine_user.h"
36 #include "intel_gt.h"
37 #include "intel_gt_requests.h"
38 #include "intel_gt_pm.h"
39 #include "intel_lrc.h"
40 #include "intel_reset.h"
41 #include "intel_ring.h"
42 
43 /* Haswell does have the CXT_SIZE register however it does not appear to be
44  * valid. Now, docs explain in dwords what is in the context object. The full
45  * size is 70720 bytes, however, the power context and execlist context will
46  * never be saved (power context is stored elsewhere, and execlists don't work
47  * on HSW) - so the final size, including the extra state required for the
48  * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
49  */
50 #define HSW_CXT_TOTAL_SIZE		(17 * PAGE_SIZE)
51 
52 #define DEFAULT_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
53 #define GEN8_LR_CONTEXT_RENDER_SIZE	(20 * PAGE_SIZE)
54 #define GEN9_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
55 #define GEN10_LR_CONTEXT_RENDER_SIZE	(18 * PAGE_SIZE)
56 #define GEN11_LR_CONTEXT_RENDER_SIZE	(14 * PAGE_SIZE)
57 
58 #define GEN8_LR_CONTEXT_OTHER_SIZE	( 2 * PAGE_SIZE)
59 
60 #define MAX_MMIO_BASES 3
61 struct engine_info {
62 	unsigned int hw_id;
63 	u8 class;
64 	u8 instance;
65 	/* mmio bases table *must* be sorted in reverse gen order */
66 	struct engine_mmio_base {
67 		u32 gen : 8;
68 		u32 base : 24;
69 	} mmio_bases[MAX_MMIO_BASES];
70 };
71 
72 static const struct engine_info intel_engines[] = {
73 	[RCS0] = {
74 		.hw_id = RCS0_HW,
75 		.class = RENDER_CLASS,
76 		.instance = 0,
77 		.mmio_bases = {
78 			{ .gen = 1, .base = RENDER_RING_BASE }
79 		},
80 	},
81 	[BCS0] = {
82 		.hw_id = BCS0_HW,
83 		.class = COPY_ENGINE_CLASS,
84 		.instance = 0,
85 		.mmio_bases = {
86 			{ .gen = 6, .base = BLT_RING_BASE }
87 		},
88 	},
89 	[VCS0] = {
90 		.hw_id = VCS0_HW,
91 		.class = VIDEO_DECODE_CLASS,
92 		.instance = 0,
93 		.mmio_bases = {
94 			{ .gen = 11, .base = GEN11_BSD_RING_BASE },
95 			{ .gen = 6, .base = GEN6_BSD_RING_BASE },
96 			{ .gen = 4, .base = BSD_RING_BASE }
97 		},
98 	},
99 	[VCS1] = {
100 		.hw_id = VCS1_HW,
101 		.class = VIDEO_DECODE_CLASS,
102 		.instance = 1,
103 		.mmio_bases = {
104 			{ .gen = 11, .base = GEN11_BSD2_RING_BASE },
105 			{ .gen = 8, .base = GEN8_BSD2_RING_BASE }
106 		},
107 	},
108 	[VCS2] = {
109 		.hw_id = VCS2_HW,
110 		.class = VIDEO_DECODE_CLASS,
111 		.instance = 2,
112 		.mmio_bases = {
113 			{ .gen = 11, .base = GEN11_BSD3_RING_BASE }
114 		},
115 	},
116 	[VCS3] = {
117 		.hw_id = VCS3_HW,
118 		.class = VIDEO_DECODE_CLASS,
119 		.instance = 3,
120 		.mmio_bases = {
121 			{ .gen = 11, .base = GEN11_BSD4_RING_BASE }
122 		},
123 	},
124 	[VECS0] = {
125 		.hw_id = VECS0_HW,
126 		.class = VIDEO_ENHANCEMENT_CLASS,
127 		.instance = 0,
128 		.mmio_bases = {
129 			{ .gen = 11, .base = GEN11_VEBOX_RING_BASE },
130 			{ .gen = 7, .base = VEBOX_RING_BASE }
131 		},
132 	},
133 	[VECS1] = {
134 		.hw_id = VECS1_HW,
135 		.class = VIDEO_ENHANCEMENT_CLASS,
136 		.instance = 1,
137 		.mmio_bases = {
138 			{ .gen = 11, .base = GEN11_VEBOX2_RING_BASE }
139 		},
140 	},
141 };
142 
143 /**
144  * intel_engine_context_size() - return the size of the context for an engine
145  * @gt: the gt
146  * @class: engine class
147  *
148  * Each engine class may require a different amount of space for a context
149  * image.
150  *
151  * Return: size (in bytes) of an engine class specific context image
152  *
153  * Note: this size includes the HWSP, which is part of the context image
154  * in LRC mode, but does not include the "shared data page" used with
155  * GuC submission. The caller should account for this if using the GuC.
156  */
157 u32 intel_engine_context_size(struct intel_gt *gt, u8 class)
158 {
159 	struct intel_uncore *uncore = gt->uncore;
160 	u32 cxt_size;
161 
162 	BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);
163 
164 	switch (class) {
165 	case RENDER_CLASS:
166 		switch (INTEL_GEN(gt->i915)) {
167 		default:
168 			MISSING_CASE(INTEL_GEN(gt->i915));
169 			return DEFAULT_LR_CONTEXT_RENDER_SIZE;
170 		case 12:
171 		case 11:
172 			return GEN11_LR_CONTEXT_RENDER_SIZE;
173 		case 10:
174 			return GEN10_LR_CONTEXT_RENDER_SIZE;
175 		case 9:
176 			return GEN9_LR_CONTEXT_RENDER_SIZE;
177 		case 8:
178 			return GEN8_LR_CONTEXT_RENDER_SIZE;
179 		case 7:
180 			if (IS_HASWELL(gt->i915))
181 				return HSW_CXT_TOTAL_SIZE;
182 
183 			cxt_size = intel_uncore_read(uncore, GEN7_CXT_SIZE);
184 			return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
185 					PAGE_SIZE);
186 		case 6:
187 			cxt_size = intel_uncore_read(uncore, CXT_SIZE);
188 			return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
189 					PAGE_SIZE);
190 		case 5:
191 		case 4:
192 			/*
193 			 * There is a discrepancy here between the size reported
194 			 * by the register and the size of the context layout
195 			 * in the docs. Both are described as authorative!
196 			 *
197 			 * The discrepancy is on the order of a few cachelines,
198 			 * but the total is under one page (4k), which is our
199 			 * minimum allocation anyway so it should all come
200 			 * out in the wash.
201 			 */
202 			cxt_size = intel_uncore_read(uncore, CXT_SIZE) + 1;
203 			drm_dbg(&gt->i915->drm,
204 				"gen%d CXT_SIZE = %d bytes [0x%08x]\n",
205 				INTEL_GEN(gt->i915), cxt_size * 64,
206 				cxt_size - 1);
207 			return round_up(cxt_size * 64, PAGE_SIZE);
208 		case 3:
209 		case 2:
210 		/* For the special day when i810 gets merged. */
211 		case 1:
212 			return 0;
213 		}
214 		break;
215 	default:
216 		MISSING_CASE(class);
217 		/* fall through */
218 	case VIDEO_DECODE_CLASS:
219 	case VIDEO_ENHANCEMENT_CLASS:
220 	case COPY_ENGINE_CLASS:
221 		if (INTEL_GEN(gt->i915) < 8)
222 			return 0;
223 		return GEN8_LR_CONTEXT_OTHER_SIZE;
224 	}
225 }
226 
227 static u32 __engine_mmio_base(struct drm_i915_private *i915,
228 			      const struct engine_mmio_base *bases)
229 {
230 	int i;
231 
232 	for (i = 0; i < MAX_MMIO_BASES; i++)
233 		if (INTEL_GEN(i915) >= bases[i].gen)
234 			break;
235 
236 	GEM_BUG_ON(i == MAX_MMIO_BASES);
237 	GEM_BUG_ON(!bases[i].base);
238 
239 	return bases[i].base;
240 }
241 
242 static void __sprint_engine_name(struct intel_engine_cs *engine)
243 {
244 	/*
245 	 * Before we know what the uABI name for this engine will be,
246 	 * we still would like to keep track of this engine in the debug logs.
247 	 * We throw in a ' here as a reminder that this isn't its final name.
248 	 */
249 	GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u",
250 			     intel_engine_class_repr(engine->class),
251 			     engine->instance) >= sizeof(engine->name));
252 }
253 
254 void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
255 {
256 	/*
257 	 * Though they added more rings on g4x/ilk, they did not add
258 	 * per-engine HWSTAM until gen6.
259 	 */
260 	if (INTEL_GEN(engine->i915) < 6 && engine->class != RENDER_CLASS)
261 		return;
262 
263 	if (INTEL_GEN(engine->i915) >= 3)
264 		ENGINE_WRITE(engine, RING_HWSTAM, mask);
265 	else
266 		ENGINE_WRITE16(engine, RING_HWSTAM, mask);
267 }
268 
269 static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
270 {
271 	/* Mask off all writes into the unknown HWSP */
272 	intel_engine_set_hwsp_writemask(engine, ~0u);
273 }
274 
275 static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id)
276 {
277 	const struct engine_info *info = &intel_engines[id];
278 	struct drm_i915_private *i915 = gt->i915;
279 	struct intel_engine_cs *engine;
280 
281 	BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
282 	BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));
283 
284 	if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine)))
285 		return -EINVAL;
286 
287 	if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
288 		return -EINVAL;
289 
290 	if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
291 		return -EINVAL;
292 
293 	if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance]))
294 		return -EINVAL;
295 
296 	engine = kzalloc(sizeof(*engine), GFP_KERNEL);
297 	if (!engine)
298 		return -ENOMEM;
299 
300 	BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES);
301 
302 	engine->id = id;
303 	engine->legacy_idx = INVALID_ENGINE;
304 	engine->mask = BIT(id);
305 	engine->i915 = i915;
306 	engine->gt = gt;
307 	engine->uncore = gt->uncore;
308 	engine->hw_id = engine->guc_id = info->hw_id;
309 	engine->mmio_base = __engine_mmio_base(i915, info->mmio_bases);
310 
311 	engine->class = info->class;
312 	engine->instance = info->instance;
313 	__sprint_engine_name(engine);
314 
315 	engine->props.heartbeat_interval_ms =
316 		CONFIG_DRM_I915_HEARTBEAT_INTERVAL;
317 	engine->props.max_busywait_duration_ns =
318 		CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT;
319 	engine->props.preempt_timeout_ms =
320 		CONFIG_DRM_I915_PREEMPT_TIMEOUT;
321 	engine->props.stop_timeout_ms =
322 		CONFIG_DRM_I915_STOP_TIMEOUT;
323 	engine->props.timeslice_duration_ms =
324 		CONFIG_DRM_I915_TIMESLICE_DURATION;
325 
326 	/* Override to uninterruptible for OpenCL workloads. */
327 	if (INTEL_GEN(i915) == 12 && engine->class == RENDER_CLASS)
328 		engine->props.preempt_timeout_ms = 0;
329 
330 	engine->context_size = intel_engine_context_size(gt, engine->class);
331 	if (WARN_ON(engine->context_size > BIT(20)))
332 		engine->context_size = 0;
333 	if (engine->context_size)
334 		DRIVER_CAPS(i915)->has_logical_contexts = true;
335 
336 	/* Nothing to do here, execute in order of dependencies */
337 	engine->schedule = NULL;
338 
339 	ewma__engine_latency_init(&engine->latency);
340 	seqlock_init(&engine->stats.lock, IPL_TTY);
341 
342 	ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);
343 
344 	/* Scrub mmio state on takeover */
345 	intel_engine_sanitize_mmio(engine);
346 
347 	gt->engine_class[info->class][info->instance] = engine;
348 	gt->engine[id] = engine;
349 
350 	i915->engine[id] = engine;
351 
352 	return 0;
353 }
354 
355 static void __setup_engine_capabilities(struct intel_engine_cs *engine)
356 {
357 	struct drm_i915_private *i915 = engine->i915;
358 
359 	if (engine->class == VIDEO_DECODE_CLASS) {
360 		/*
361 		 * HEVC support is present on first engine instance
362 		 * before Gen11 and on all instances afterwards.
363 		 */
364 		if (INTEL_GEN(i915) >= 11 ||
365 		    (INTEL_GEN(i915) >= 9 && engine->instance == 0))
366 			engine->uabi_capabilities |=
367 				I915_VIDEO_CLASS_CAPABILITY_HEVC;
368 
369 		/*
370 		 * SFC block is present only on even logical engine
371 		 * instances.
372 		 */
373 		if ((INTEL_GEN(i915) >= 11 &&
374 		     RUNTIME_INFO(i915)->vdbox_sfc_access & engine->mask) ||
375 		    (INTEL_GEN(i915) >= 9 && engine->instance == 0))
376 			engine->uabi_capabilities |=
377 				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
378 	} else if (engine->class == VIDEO_ENHANCEMENT_CLASS) {
379 		if (INTEL_GEN(i915) >= 9)
380 			engine->uabi_capabilities |=
381 				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
382 	}
383 }
384 
385 static void intel_setup_engine_capabilities(struct intel_gt *gt)
386 {
387 	struct intel_engine_cs *engine;
388 	enum intel_engine_id id;
389 
390 	for_each_engine(engine, gt, id)
391 		__setup_engine_capabilities(engine);
392 }
393 
394 /**
395  * intel_engines_release() - free the resources allocated for Command Streamers
396  * @gt: pointer to struct intel_gt
397  */
398 void intel_engines_release(struct intel_gt *gt)
399 {
400 	struct intel_engine_cs *engine;
401 	enum intel_engine_id id;
402 
403 	/*
404 	 * Before we release the resources held by engine, we must be certain
405 	 * that the HW is no longer accessing them -- having the GPU scribble
406 	 * to or read from a page being used for something else causes no end
407 	 * of fun.
408 	 *
409 	 * The GPU should be reset by this point, but assume the worst just
410 	 * in case we aborted before completely initialising the engines.
411 	 */
412 	GEM_BUG_ON(intel_gt_pm_is_awake(gt));
413 	if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
414 		__intel_gt_reset(gt, ALL_ENGINES);
415 
416 	/* Decouple the backend; but keep the layout for late GPU resets */
417 	for_each_engine(engine, gt, id) {
418 		intel_wakeref_wait_for_idle(&engine->wakeref);
419 		GEM_BUG_ON(intel_engine_pm_is_awake(engine));
420 
421 		if (!engine->release)
422 			continue;
423 
424 		engine->release(engine);
425 		engine->release = NULL;
426 
427 		memset(&engine->reset, 0, sizeof(engine->reset));
428 
429 		gt->i915->engine[id] = NULL;
430 	}
431 }
432 
433 void intel_engines_free(struct intel_gt *gt)
434 {
435 	struct intel_engine_cs *engine;
436 	enum intel_engine_id id;
437 
438 	for_each_engine(engine, gt, id) {
439 		kfree(engine);
440 		gt->engine[id] = NULL;
441 	}
442 }
443 
444 /**
445  * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
446  * @gt: pointer to struct intel_gt
447  *
448  * Return: non-zero if the initialization failed.
449  */
450 int intel_engines_init_mmio(struct intel_gt *gt)
451 {
452 	struct drm_i915_private *i915 = gt->i915;
453 	struct intel_device_info *device_info = mkwrite_device_info(i915);
454 	const unsigned int engine_mask = INTEL_INFO(i915)->engine_mask;
455 	unsigned int mask = 0;
456 	unsigned int i;
457 	int err;
458 
459 	drm_WARN_ON(&i915->drm, engine_mask == 0);
460 	drm_WARN_ON(&i915->drm, engine_mask &
461 		    GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
462 
463 	if (i915_inject_probe_failure(i915))
464 		return -ENODEV;
465 
466 	for (i = 0; i < ARRAY_SIZE(intel_engines); i++) {
467 		if (!HAS_ENGINE(i915, i))
468 			continue;
469 
470 		err = intel_engine_setup(gt, i);
471 		if (err)
472 			goto cleanup;
473 
474 		mask |= BIT(i);
475 	}
476 
477 	/*
478 	 * Catch failures to update intel_engines table when the new engines
479 	 * are added to the driver by a warning and disabling the forgotten
480 	 * engines.
481 	 */
482 	if (drm_WARN_ON(&i915->drm, mask != engine_mask))
483 		device_info->engine_mask = mask;
484 
485 	RUNTIME_INFO(i915)->num_engines = hweight32(mask);
486 
487 	intel_gt_check_and_clear_faults(gt);
488 
489 	intel_setup_engine_capabilities(gt);
490 
491 	return 0;
492 
493 cleanup:
494 	intel_engines_free(gt);
495 	return err;
496 }
497 
498 void intel_engine_init_execlists(struct intel_engine_cs *engine)
499 {
500 	struct intel_engine_execlists * const execlists = &engine->execlists;
501 
502 	execlists->port_mask = 1;
503 	GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
504 	GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);
505 
506 	memset(execlists->pending, 0, sizeof(execlists->pending));
507 	execlists->active =
508 		memset(execlists->inflight, 0, sizeof(execlists->inflight));
509 
510 	execlists->queue_priority_hint = INT_MIN;
511 	execlists->queue = RB_ROOT_CACHED;
512 }
513 
514 static void cleanup_status_page(struct intel_engine_cs *engine)
515 {
516 	struct i915_vma *vma;
517 
518 	/* Prevent writes into HWSP after returning the page to the system */
519 	intel_engine_set_hwsp_writemask(engine, ~0u);
520 
521 	vma = fetch_and_zero(&engine->status_page.vma);
522 	if (!vma)
523 		return;
524 
525 	if (!HWS_NEEDS_PHYSICAL(engine->i915))
526 		i915_vma_unpin(vma);
527 
528 	i915_gem_object_unpin_map(vma->obj);
529 	i915_gem_object_put(vma->obj);
530 }
531 
532 static int pin_ggtt_status_page(struct intel_engine_cs *engine,
533 				struct i915_vma *vma)
534 {
535 	unsigned int flags;
536 
537 	if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt))
538 		/*
539 		 * On g33, we cannot place HWS above 256MiB, so
540 		 * restrict its pinning to the low mappable arena.
541 		 * Though this restriction is not documented for
542 		 * gen4, gen5, or byt, they also behave similarly
543 		 * and hang if the HWS is placed at the top of the
544 		 * GTT. To generalise, it appears that all !llc
545 		 * platforms have issues with us placing the HWS
546 		 * above the mappable region (even though we never
547 		 * actually map it).
548 		 */
549 		flags = PIN_MAPPABLE;
550 	else
551 		flags = PIN_HIGH;
552 
553 	return i915_ggtt_pin(vma, 0, flags);
554 }
555 
556 static int init_status_page(struct intel_engine_cs *engine)
557 {
558 	struct drm_i915_gem_object *obj;
559 	struct i915_vma *vma;
560 	void *vaddr;
561 	int ret;
562 
563 	/*
564 	 * Though the HWS register does support 36bit addresses, historically
565 	 * we have had hangs and corruption reported due to wild writes if
566 	 * the HWS is placed above 4G. We only allow objects to be allocated
567 	 * in GFP_DMA32 for i965, and no earlier physical address users had
568 	 * access to more than 4G.
569 	 */
570 	obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
571 	if (IS_ERR(obj)) {
572 		drm_err(&engine->i915->drm,
573 			"Failed to allocate status page\n");
574 		return PTR_ERR(obj);
575 	}
576 
577 	i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
578 
579 	vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
580 	if (IS_ERR(vma)) {
581 		ret = PTR_ERR(vma);
582 		goto err;
583 	}
584 
585 	vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
586 	if (IS_ERR(vaddr)) {
587 		ret = PTR_ERR(vaddr);
588 		goto err;
589 	}
590 
591 	engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
592 	engine->status_page.vma = vma;
593 
594 	if (!HWS_NEEDS_PHYSICAL(engine->i915)) {
595 		ret = pin_ggtt_status_page(engine, vma);
596 		if (ret)
597 			goto err_unpin;
598 	}
599 
600 	return 0;
601 
602 err_unpin:
603 	i915_gem_object_unpin_map(obj);
604 err:
605 	i915_gem_object_put(obj);
606 	return ret;
607 }
608 
609 static int engine_setup_common(struct intel_engine_cs *engine)
610 {
611 	int err;
612 
613 	init_llist_head(&engine->barrier_tasks);
614 
615 	err = init_status_page(engine);
616 	if (err)
617 		return err;
618 
619 	intel_engine_init_active(engine, ENGINE_PHYSICAL);
620 	intel_engine_init_breadcrumbs(engine);
621 	intel_engine_init_execlists(engine);
622 	intel_engine_init_cmd_parser(engine);
623 	intel_engine_init__pm(engine);
624 	intel_engine_init_retire(engine);
625 
626 	intel_engine_pool_init(&engine->pool);
627 
628 	/* Use the whole device by default */
629 	engine->sseu =
630 		intel_sseu_from_device_info(&RUNTIME_INFO(engine->i915)->sseu);
631 
632 	intel_engine_init_workarounds(engine);
633 	intel_engine_init_whitelist(engine);
634 	intel_engine_init_ctx_wa(engine);
635 
636 	return 0;
637 }
638 
639 struct measure_breadcrumb {
640 	struct i915_request rq;
641 	struct intel_ring ring;
642 	u32 cs[2048];
643 };
644 
645 static int measure_breadcrumb_dw(struct intel_context *ce)
646 {
647 	struct intel_engine_cs *engine = ce->engine;
648 	struct measure_breadcrumb *frame;
649 	int dw;
650 
651 	GEM_BUG_ON(!engine->gt->scratch);
652 
653 	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
654 	if (!frame)
655 		return -ENOMEM;
656 
657 	frame->rq.i915 = engine->i915;
658 	frame->rq.engine = engine;
659 	frame->rq.context = ce;
660 	rcu_assign_pointer(frame->rq.timeline, ce->timeline);
661 
662 	frame->ring.vaddr = frame->cs;
663 	frame->ring.size = sizeof(frame->cs);
664 	frame->ring.wrap =
665 		BITS_PER_TYPE(frame->ring.size) - ilog2(frame->ring.size);
666 	frame->ring.effective_size = frame->ring.size;
667 	intel_ring_update_space(&frame->ring);
668 	frame->rq.ring = &frame->ring;
669 
670 	mutex_lock(&ce->timeline->mutex);
671 	spin_lock_irq(&engine->active.lock);
672 
673 	dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
674 
675 	spin_unlock_irq(&engine->active.lock);
676 	mutex_unlock(&ce->timeline->mutex);
677 
678 	GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */
679 
680 	kfree(frame);
681 	return dw;
682 }
683 
684 void
685 intel_engine_init_active(struct intel_engine_cs *engine, unsigned int subclass)
686 {
687 	INIT_LIST_HEAD(&engine->active.requests);
688 	INIT_LIST_HEAD(&engine->active.hold);
689 
690 	mtx_init(&engine->active.lock, IPL_TTY);
691 	lockdep_set_subclass(&engine->active.lock, subclass);
692 
693 	/*
694 	 * Due to an interesting quirk in lockdep's internal debug tracking,
695 	 * after setting a subclass we must ensure the lock is used. Otherwise,
696 	 * nr_unused_locks is incremented once too often.
697 	 */
698 #ifdef CONFIG_DEBUG_LOCK_ALLOC
699 	local_irq_disable();
700 	lock_map_acquire(&engine->active.lock.dep_map);
701 	lock_map_release(&engine->active.lock.dep_map);
702 	local_irq_enable();
703 #endif
704 }
705 
706 static struct intel_context *
707 create_kernel_context(struct intel_engine_cs *engine)
708 {
709 	static struct lock_class_key kernel;
710 	struct intel_context *ce;
711 	int err;
712 
713 	ce = intel_context_create(engine);
714 	if (IS_ERR(ce))
715 		return ce;
716 
717 	__set_bit(CONTEXT_BARRIER_BIT, &ce->flags);
718 
719 	err = intel_context_pin(ce); /* perma-pin so it is always available */
720 	if (err) {
721 		intel_context_put(ce);
722 		return ERR_PTR(err);
723 	}
724 
725 	/*
726 	 * Give our perma-pinned kernel timelines a separate lockdep class,
727 	 * so that we can use them from within the normal user timelines
728 	 * should we need to inject GPU operations during their request
729 	 * construction.
730 	 */
731 	lockdep_set_class(&ce->timeline->mutex, &kernel);
732 
733 	return ce;
734 }
735 
736 /**
737  * intel_engines_init_common - initialize cengine state which might require hw access
738  * @engine: Engine to initialize.
739  *
740  * Initializes @engine@ structure members shared between legacy and execlists
741  * submission modes which do require hardware access.
742  *
743  * Typcally done at later stages of submission mode specific engine setup.
744  *
745  * Returns zero on success or an error code on failure.
746  */
747 static int engine_init_common(struct intel_engine_cs *engine)
748 {
749 	struct intel_context *ce;
750 	int ret;
751 
752 	engine->set_default_submission(engine);
753 
754 	/*
755 	 * We may need to do things with the shrinker which
756 	 * require us to immediately switch back to the default
757 	 * context. This can cause a problem as pinning the
758 	 * default context also requires GTT space which may not
759 	 * be available. To avoid this we always pin the default
760 	 * context.
761 	 */
762 	ce = create_kernel_context(engine);
763 	if (IS_ERR(ce))
764 		return PTR_ERR(ce);
765 
766 	ret = measure_breadcrumb_dw(ce);
767 	if (ret < 0)
768 		goto err_context;
769 
770 	engine->emit_fini_breadcrumb_dw = ret;
771 	engine->kernel_context = ce;
772 
773 	return 0;
774 
775 err_context:
776 	intel_context_put(ce);
777 	return ret;
778 }
779 
780 int intel_engines_init(struct intel_gt *gt)
781 {
782 	int (*setup)(struct intel_engine_cs *engine);
783 	struct intel_engine_cs *engine;
784 	enum intel_engine_id id;
785 	int err;
786 
787 	if (HAS_EXECLISTS(gt->i915))
788 		setup = intel_execlists_submission_setup;
789 	else
790 		setup = intel_ring_submission_setup;
791 
792 	for_each_engine(engine, gt, id) {
793 		err = engine_setup_common(engine);
794 		if (err)
795 			return err;
796 
797 		err = setup(engine);
798 		if (err)
799 			return err;
800 
801 		err = engine_init_common(engine);
802 		if (err)
803 			return err;
804 
805 		intel_engine_add_user(engine);
806 	}
807 
808 	return 0;
809 }
810 
811 /**
812  * intel_engines_cleanup_common - cleans up the engine state created by
813  *                                the common initiailizers.
814  * @engine: Engine to cleanup.
815  *
816  * This cleans up everything created by the common helpers.
817  */
818 void intel_engine_cleanup_common(struct intel_engine_cs *engine)
819 {
820 	GEM_BUG_ON(!list_empty(&engine->active.requests));
821 	tasklet_kill(&engine->execlists.tasklet); /* flush the callback */
822 
823 	cleanup_status_page(engine);
824 
825 	intel_engine_fini_retire(engine);
826 	intel_engine_pool_fini(&engine->pool);
827 	intel_engine_fini_breadcrumbs(engine);
828 	intel_engine_cleanup_cmd_parser(engine);
829 
830 	if (engine->default_state)
831 		i915_gem_object_put(engine->default_state);
832 
833 	if (engine->kernel_context) {
834 		intel_context_unpin(engine->kernel_context);
835 		intel_context_put(engine->kernel_context);
836 	}
837 	GEM_BUG_ON(!llist_empty(&engine->barrier_tasks));
838 
839 	intel_wa_list_free(&engine->ctx_wa_list);
840 	intel_wa_list_free(&engine->wa_list);
841 	intel_wa_list_free(&engine->whitelist);
842 }
843 
844 /**
845  * intel_engine_resume - re-initializes the HW state of the engine
846  * @engine: Engine to resume.
847  *
848  * Returns zero on success or an error code on failure.
849  */
850 int intel_engine_resume(struct intel_engine_cs *engine)
851 {
852 	intel_engine_apply_workarounds(engine);
853 	intel_engine_apply_whitelist(engine);
854 
855 	return engine->resume(engine);
856 }
857 
858 u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
859 {
860 	struct drm_i915_private *i915 = engine->i915;
861 
862 	u64 acthd;
863 
864 	if (INTEL_GEN(i915) >= 8)
865 		acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW);
866 	else if (INTEL_GEN(i915) >= 4)
867 		acthd = ENGINE_READ(engine, RING_ACTHD);
868 	else
869 		acthd = ENGINE_READ(engine, ACTHD);
870 
871 	return acthd;
872 }
873 
874 u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
875 {
876 	u64 bbaddr;
877 
878 	if (INTEL_GEN(engine->i915) >= 8)
879 		bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW);
880 	else
881 		bbaddr = ENGINE_READ(engine, RING_BBADDR);
882 
883 	return bbaddr;
884 }
885 
886 static unsigned long stop_timeout(const struct intel_engine_cs *engine)
887 {
888 	if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */
889 		return 0;
890 
891 	/*
892 	 * If we are doing a normal GPU reset, we can take our time and allow
893 	 * the engine to quiesce. We've stopped submission to the engine, and
894 	 * if we wait long enough an innocent context should complete and
895 	 * leave the engine idle. So they should not be caught unaware by
896 	 * the forthcoming GPU reset (which usually follows the stop_cs)!
897 	 */
898 	return READ_ONCE(engine->props.stop_timeout_ms);
899 }
900 
901 int intel_engine_stop_cs(struct intel_engine_cs *engine)
902 {
903 	struct intel_uncore *uncore = engine->uncore;
904 	const u32 base = engine->mmio_base;
905 	const i915_reg_t mode = RING_MI_MODE(base);
906 	int err;
907 
908 	if (INTEL_GEN(engine->i915) < 3)
909 		return -ENODEV;
910 
911 	ENGINE_TRACE(engine, "\n");
912 
913 	intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING));
914 
915 	err = 0;
916 	if (__intel_wait_for_register_fw(uncore,
917 					 mode, MODE_IDLE, MODE_IDLE,
918 					 1000, stop_timeout(engine),
919 					 NULL)) {
920 		ENGINE_TRACE(engine, "timed out on STOP_RING -> IDLE\n");
921 		err = -ETIMEDOUT;
922 	}
923 
924 	/* A final mmio read to let GPU writes be hopefully flushed to memory */
925 	intel_uncore_posting_read_fw(uncore, mode);
926 
927 	return err;
928 }
929 
930 void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
931 {
932 	ENGINE_TRACE(engine, "\n");
933 
934 	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
935 }
936 
937 const char *i915_cache_level_str(struct drm_i915_private *i915, int type)
938 {
939 	switch (type) {
940 	case I915_CACHE_NONE: return " uncached";
941 	case I915_CACHE_LLC: return HAS_LLC(i915) ? " LLC" : " snooped";
942 	case I915_CACHE_L3_LLC: return " L3+LLC";
943 	case I915_CACHE_WT: return " WT";
944 	default: return "";
945 	}
946 }
947 
948 static u32
949 read_subslice_reg(const struct intel_engine_cs *engine,
950 		  int slice, int subslice, i915_reg_t reg)
951 {
952 	struct drm_i915_private *i915 = engine->i915;
953 	struct intel_uncore *uncore = engine->uncore;
954 	u32 mcr_mask, mcr_ss, mcr, old_mcr, val;
955 	enum forcewake_domains fw_domains;
956 
957 	if (INTEL_GEN(i915) >= 11) {
958 		mcr_mask = GEN11_MCR_SLICE_MASK | GEN11_MCR_SUBSLICE_MASK;
959 		mcr_ss = GEN11_MCR_SLICE(slice) | GEN11_MCR_SUBSLICE(subslice);
960 	} else {
961 		mcr_mask = GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK;
962 		mcr_ss = GEN8_MCR_SLICE(slice) | GEN8_MCR_SUBSLICE(subslice);
963 	}
964 
965 	fw_domains = intel_uncore_forcewake_for_reg(uncore, reg,
966 						    FW_REG_READ);
967 	fw_domains |= intel_uncore_forcewake_for_reg(uncore,
968 						     GEN8_MCR_SELECTOR,
969 						     FW_REG_READ | FW_REG_WRITE);
970 
971 	spin_lock_irq(&uncore->lock);
972 	intel_uncore_forcewake_get__locked(uncore, fw_domains);
973 
974 	old_mcr = mcr = intel_uncore_read_fw(uncore, GEN8_MCR_SELECTOR);
975 
976 	mcr &= ~mcr_mask;
977 	mcr |= mcr_ss;
978 	intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
979 
980 	val = intel_uncore_read_fw(uncore, reg);
981 
982 	mcr &= ~mcr_mask;
983 	mcr |= old_mcr & mcr_mask;
984 
985 	intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
986 
987 	intel_uncore_forcewake_put__locked(uncore, fw_domains);
988 	spin_unlock_irq(&uncore->lock);
989 
990 	return val;
991 }
992 
993 /* NB: please notice the memset */
994 void intel_engine_get_instdone(const struct intel_engine_cs *engine,
995 			       struct intel_instdone *instdone)
996 {
997 	struct drm_i915_private *i915 = engine->i915;
998 	const struct sseu_dev_info *sseu = &RUNTIME_INFO(i915)->sseu;
999 	struct intel_uncore *uncore = engine->uncore;
1000 	u32 mmio_base = engine->mmio_base;
1001 	int slice;
1002 	int subslice;
1003 
1004 	memset(instdone, 0, sizeof(*instdone));
1005 
1006 	switch (INTEL_GEN(i915)) {
1007 	default:
1008 		instdone->instdone =
1009 			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1010 
1011 		if (engine->id != RCS0)
1012 			break;
1013 
1014 		instdone->slice_common =
1015 			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1016 		if (INTEL_GEN(i915) >= 12) {
1017 			instdone->slice_common_extra[0] =
1018 				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA);
1019 			instdone->slice_common_extra[1] =
1020 				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA2);
1021 		}
1022 		for_each_instdone_slice_subslice(i915, sseu, slice, subslice) {
1023 			instdone->sampler[slice][subslice] =
1024 				read_subslice_reg(engine, slice, subslice,
1025 						  GEN7_SAMPLER_INSTDONE);
1026 			instdone->row[slice][subslice] =
1027 				read_subslice_reg(engine, slice, subslice,
1028 						  GEN7_ROW_INSTDONE);
1029 		}
1030 		break;
1031 	case 7:
1032 		instdone->instdone =
1033 			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1034 
1035 		if (engine->id != RCS0)
1036 			break;
1037 
1038 		instdone->slice_common =
1039 			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1040 		instdone->sampler[0][0] =
1041 			intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE);
1042 		instdone->row[0][0] =
1043 			intel_uncore_read(uncore, GEN7_ROW_INSTDONE);
1044 
1045 		break;
1046 	case 6:
1047 	case 5:
1048 	case 4:
1049 		instdone->instdone =
1050 			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1051 		if (engine->id == RCS0)
1052 			/* HACK: Using the wrong struct member */
1053 			instdone->slice_common =
1054 				intel_uncore_read(uncore, GEN4_INSTDONE1);
1055 		break;
1056 	case 3:
1057 	case 2:
1058 		instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE);
1059 		break;
1060 	}
1061 }
1062 
1063 static bool ring_is_idle(struct intel_engine_cs *engine)
1064 {
1065 	bool idle = true;
1066 
1067 	if (I915_SELFTEST_ONLY(!engine->mmio_base))
1068 		return true;
1069 
1070 	if (!intel_engine_pm_get_if_awake(engine))
1071 		return true;
1072 
1073 	/* First check that no commands are left in the ring */
1074 	if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) !=
1075 	    (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR))
1076 		idle = false;
1077 
1078 	/* No bit for gen2, so assume the CS parser is idle */
1079 	if (INTEL_GEN(engine->i915) > 2 &&
1080 	    !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE))
1081 		idle = false;
1082 
1083 	intel_engine_pm_put(engine);
1084 
1085 	return idle;
1086 }
1087 
1088 void intel_engine_flush_submission(struct intel_engine_cs *engine)
1089 {
1090 	struct tasklet_struct *t = &engine->execlists.tasklet;
1091 
1092 	if (__tasklet_is_scheduled(t)) {
1093 		local_bh_disable();
1094 		if (tasklet_trylock(t)) {
1095 			/* Must wait for any GPU reset in progress. */
1096 			if (__tasklet_is_enabled(t))
1097 				t->func(t->data);
1098 			tasklet_unlock(t);
1099 		}
1100 		local_bh_enable();
1101 	}
1102 
1103 	/* Otherwise flush the tasklet if it was running on another cpu */
1104 	tasklet_unlock_wait(t);
1105 }
1106 
1107 /**
1108  * intel_engine_is_idle() - Report if the engine has finished process all work
1109  * @engine: the intel_engine_cs
1110  *
1111  * Return true if there are no requests pending, nothing left to be submitted
1112  * to hardware, and that the engine is idle.
1113  */
1114 bool intel_engine_is_idle(struct intel_engine_cs *engine)
1115 {
1116 	/* More white lies, if wedged, hw state is inconsistent */
1117 	if (intel_gt_is_wedged(engine->gt))
1118 		return true;
1119 
1120 	if (!intel_engine_pm_is_awake(engine))
1121 		return true;
1122 
1123 	/* Waiting to drain ELSP? */
1124 	if (execlists_active(&engine->execlists)) {
1125 #ifdef __linux__
1126 		synchronize_hardirq(engine->i915->drm.pdev->irq);
1127 #else
1128 		intr_barrier(engine->i915->irqh);
1129 #endif
1130 
1131 		intel_engine_flush_submission(engine);
1132 
1133 		if (execlists_active(&engine->execlists))
1134 			return false;
1135 	}
1136 
1137 	/* ELSP is empty, but there are ready requests? E.g. after reset */
1138 	if (!RB_EMPTY_ROOT(&engine->execlists.queue.rb_root))
1139 		return false;
1140 
1141 	/* Ring stopped? */
1142 	return ring_is_idle(engine);
1143 }
1144 
1145 bool intel_engines_are_idle(struct intel_gt *gt)
1146 {
1147 	struct intel_engine_cs *engine;
1148 	enum intel_engine_id id;
1149 
1150 	/*
1151 	 * If the driver is wedged, HW state may be very inconsistent and
1152 	 * report that it is still busy, even though we have stopped using it.
1153 	 */
1154 	if (intel_gt_is_wedged(gt))
1155 		return true;
1156 
1157 	/* Already parked (and passed an idleness test); must still be idle */
1158 	if (!READ_ONCE(gt->awake))
1159 		return true;
1160 
1161 	for_each_engine(engine, gt, id) {
1162 		if (!intel_engine_is_idle(engine))
1163 			return false;
1164 	}
1165 
1166 	return true;
1167 }
1168 
1169 void intel_engines_reset_default_submission(struct intel_gt *gt)
1170 {
1171 	struct intel_engine_cs *engine;
1172 	enum intel_engine_id id;
1173 
1174 	for_each_engine(engine, gt, id)
1175 		engine->set_default_submission(engine);
1176 }
1177 
1178 bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
1179 {
1180 	switch (INTEL_GEN(engine->i915)) {
1181 	case 2:
1182 		return false; /* uses physical not virtual addresses */
1183 	case 3:
1184 		/* maybe only uses physical not virtual addresses */
1185 		return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
1186 	case 4:
1187 		return !IS_I965G(engine->i915); /* who knows! */
1188 	case 6:
1189 		return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
1190 	default:
1191 		return true;
1192 	}
1193 }
1194 
1195 static int print_sched_attr(struct drm_i915_private *i915,
1196 			    const struct i915_sched_attr *attr,
1197 			    char *buf, int x, int len)
1198 {
1199 	if (attr->priority == I915_PRIORITY_INVALID)
1200 		return x;
1201 
1202 	x += snprintf(buf + x, len - x,
1203 		      " prio=%d", attr->priority);
1204 
1205 	return x;
1206 }
1207 
1208 static void print_request(struct drm_printer *m,
1209 			  struct i915_request *rq,
1210 			  const char *prefix)
1211 {
1212 	const char *name = rq->fence.ops->get_timeline_name(&rq->fence);
1213 	char buf[80] = "";
1214 	int x = 0;
1215 
1216 	x = print_sched_attr(rq->i915, &rq->sched.attr, buf, x, sizeof(buf));
1217 
1218 	drm_printf(m, "%s %llx:%llx%s%s %s @ %dms: %s\n",
1219 		   prefix,
1220 		   rq->fence.context, rq->fence.seqno,
1221 		   i915_request_completed(rq) ? "!" :
1222 		   i915_request_started(rq) ? "*" :
1223 		   "",
1224 		   test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
1225 			    &rq->fence.flags) ? "+" :
1226 		   test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
1227 			    &rq->fence.flags) ? "-" :
1228 		   "",
1229 		   buf,
1230 		   jiffies_to_msecs(jiffies - rq->emitted_jiffies),
1231 		   name);
1232 }
1233 
1234 static void hexdump(struct drm_printer *m, const void *buf, size_t len)
1235 {
1236 	STUB();
1237 #ifdef notyet
1238 	const size_t rowsize = 8 * sizeof(u32);
1239 	const void *prev = NULL;
1240 	bool skip = false;
1241 	size_t pos;
1242 
1243 	for (pos = 0; pos < len; pos += rowsize) {
1244 		char line[128];
1245 
1246 		if (prev && !memcmp(prev, buf + pos, rowsize)) {
1247 			if (!skip) {
1248 				drm_printf(m, "*\n");
1249 				skip = true;
1250 			}
1251 			continue;
1252 		}
1253 
1254 		WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
1255 						rowsize, sizeof(u32),
1256 						line, sizeof(line),
1257 						false) >= sizeof(line));
1258 		drm_printf(m, "[%04zx] %s\n", pos, line);
1259 
1260 		prev = buf + pos;
1261 		skip = false;
1262 	}
1263 #endif
1264 }
1265 
1266 static struct intel_timeline *get_timeline(struct i915_request *rq)
1267 {
1268 	struct intel_timeline *tl;
1269 
1270 	/*
1271 	 * Even though we are holding the engine->active.lock here, there
1272 	 * is no control over the submission queue per-se and we are
1273 	 * inspecting the active state at a random point in time, with an
1274 	 * unknown queue. Play safe and make sure the timeline remains valid.
1275 	 * (Only being used for pretty printing, one extra kref shouldn't
1276 	 * cause a camel stampede!)
1277 	 */
1278 	rcu_read_lock();
1279 	tl = rcu_dereference(rq->timeline);
1280 	if (!kref_get_unless_zero(&tl->kref))
1281 		tl = NULL;
1282 	rcu_read_unlock();
1283 
1284 	return tl;
1285 }
1286 
1287 static const char *repr_timer(const struct timeout *t)
1288 {
1289 	if (!READ_ONCE(t->to_time))
1290 		return "inactive";
1291 
1292 	if (timer_pending(t))
1293 		return "active";
1294 
1295 	return "expired";
1296 }
1297 
1298 static void intel_engine_print_registers(struct intel_engine_cs *engine,
1299 					 struct drm_printer *m)
1300 {
1301 	struct drm_i915_private *dev_priv = engine->i915;
1302 	struct intel_engine_execlists * const execlists = &engine->execlists;
1303 	u64 addr;
1304 
1305 	if (engine->id == RENDER_CLASS && IS_GEN_RANGE(dev_priv, 4, 7))
1306 		drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID));
1307 	if (HAS_EXECLISTS(dev_priv)) {
1308 		drm_printf(m, "\tEL_STAT_HI: 0x%08x\n",
1309 			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI));
1310 		drm_printf(m, "\tEL_STAT_LO: 0x%08x\n",
1311 			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO));
1312 	}
1313 	drm_printf(m, "\tRING_START: 0x%08x\n",
1314 		   ENGINE_READ(engine, RING_START));
1315 	drm_printf(m, "\tRING_HEAD:  0x%08x\n",
1316 		   ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR);
1317 	drm_printf(m, "\tRING_TAIL:  0x%08x\n",
1318 		   ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR);
1319 	drm_printf(m, "\tRING_CTL:   0x%08x%s\n",
1320 		   ENGINE_READ(engine, RING_CTL),
1321 		   ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
1322 	if (INTEL_GEN(engine->i915) > 2) {
1323 		drm_printf(m, "\tRING_MODE:  0x%08x%s\n",
1324 			   ENGINE_READ(engine, RING_MI_MODE),
1325 			   ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : "");
1326 	}
1327 
1328 	if (INTEL_GEN(dev_priv) >= 6) {
1329 		drm_printf(m, "\tRING_IMR:   0x%08x\n",
1330 			   ENGINE_READ(engine, RING_IMR));
1331 		drm_printf(m, "\tRING_ESR:   0x%08x\n",
1332 			   ENGINE_READ(engine, RING_ESR));
1333 		drm_printf(m, "\tRING_EMR:   0x%08x\n",
1334 			   ENGINE_READ(engine, RING_EMR));
1335 		drm_printf(m, "\tRING_EIR:   0x%08x\n",
1336 			   ENGINE_READ(engine, RING_EIR));
1337 	}
1338 
1339 	addr = intel_engine_get_active_head(engine);
1340 	drm_printf(m, "\tACTHD:  0x%08x_%08x\n",
1341 		   upper_32_bits(addr), lower_32_bits(addr));
1342 	addr = intel_engine_get_last_batch_head(engine);
1343 	drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
1344 		   upper_32_bits(addr), lower_32_bits(addr));
1345 	if (INTEL_GEN(dev_priv) >= 8)
1346 		addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW);
1347 	else if (INTEL_GEN(dev_priv) >= 4)
1348 		addr = ENGINE_READ(engine, RING_DMA_FADD);
1349 	else
1350 		addr = ENGINE_READ(engine, DMA_FADD_I8XX);
1351 	drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
1352 		   upper_32_bits(addr), lower_32_bits(addr));
1353 	if (INTEL_GEN(dev_priv) >= 4) {
1354 		drm_printf(m, "\tIPEIR: 0x%08x\n",
1355 			   ENGINE_READ(engine, RING_IPEIR));
1356 		drm_printf(m, "\tIPEHR: 0x%08x\n",
1357 			   ENGINE_READ(engine, RING_IPEHR));
1358 	} else {
1359 		drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR));
1360 		drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR));
1361 	}
1362 
1363 	if (HAS_EXECLISTS(dev_priv)) {
1364 		struct i915_request * const *port, *rq;
1365 		const u32 *hws =
1366 			&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
1367 		const u8 num_entries = execlists->csb_size;
1368 		unsigned int idx;
1369 		u8 read, write;
1370 
1371 		drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n",
1372 			   yesno(test_bit(TASKLET_STATE_SCHED,
1373 					  &engine->execlists.tasklet.state)),
1374 			   enableddisabled(!atomic_read(&engine->execlists.tasklet.count)),
1375 			   repr_timer(&engine->execlists.preempt),
1376 			   repr_timer(&engine->execlists.timer));
1377 
1378 		read = execlists->csb_head;
1379 		write = READ_ONCE(*execlists->csb_write);
1380 
1381 		drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n",
1382 			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO),
1383 			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI),
1384 			   read, write, num_entries);
1385 
1386 		if (read >= num_entries)
1387 			read = 0;
1388 		if (write >= num_entries)
1389 			write = 0;
1390 		if (read > write)
1391 			write += num_entries;
1392 		while (read < write) {
1393 			idx = ++read % num_entries;
1394 			drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
1395 				   idx, hws[idx * 2], hws[idx * 2 + 1]);
1396 		}
1397 
1398 		execlists_active_lock_bh(execlists);
1399 		rcu_read_lock();
1400 		for (port = execlists->active; (rq = *port); port++) {
1401 			char hdr[160];
1402 			int len;
1403 
1404 			len = scnprintf(hdr, sizeof(hdr),
1405 					"\t\tActive[%d]: ",
1406 					(int)(port - execlists->active));
1407 			if (!i915_request_signaled(rq)) {
1408 				struct intel_timeline *tl = get_timeline(rq);
1409 
1410 				len += scnprintf(hdr + len, sizeof(hdr) - len,
1411 						 "ring:{start:%08x, hwsp:%08x, seqno:%08x, runtime:%llums}, ",
1412 						 i915_ggtt_offset(rq->ring->vma),
1413 						 tl ? tl->hwsp_offset : 0,
1414 						 hwsp_seqno(rq),
1415 						 DIV_ROUND_CLOSEST_ULL(intel_context_get_total_runtime_ns(rq->context),
1416 								       1000 * 1000));
1417 
1418 				if (tl)
1419 					intel_timeline_put(tl);
1420 			}
1421 			scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
1422 			print_request(m, rq, hdr);
1423 		}
1424 		for (port = execlists->pending; (rq = *port); port++) {
1425 			struct intel_timeline *tl = get_timeline(rq);
1426 			char hdr[80];
1427 
1428 			snprintf(hdr, sizeof(hdr),
1429 				 "\t\tPending[%d] ring:{start:%08x, hwsp:%08x, seqno:%08x}, rq: ",
1430 				 (int)(port - execlists->pending),
1431 				 i915_ggtt_offset(rq->ring->vma),
1432 				 tl ? tl->hwsp_offset : 0,
1433 				 hwsp_seqno(rq));
1434 			print_request(m, rq, hdr);
1435 
1436 			if (tl)
1437 				intel_timeline_put(tl);
1438 		}
1439 		rcu_read_unlock();
1440 		execlists_active_unlock_bh(execlists);
1441 	} else if (INTEL_GEN(dev_priv) > 6) {
1442 		drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
1443 			   ENGINE_READ(engine, RING_PP_DIR_BASE));
1444 		drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
1445 			   ENGINE_READ(engine, RING_PP_DIR_BASE_READ));
1446 		drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
1447 			   ENGINE_READ(engine, RING_PP_DIR_DCLV));
1448 	}
1449 }
1450 
1451 static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
1452 {
1453 	void *ring;
1454 	int size;
1455 
1456 	drm_printf(m,
1457 		   "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
1458 		   rq->head, rq->postfix, rq->tail,
1459 		   rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u,
1460 		   rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u);
1461 
1462 	size = rq->tail - rq->head;
1463 	if (rq->tail < rq->head)
1464 		size += rq->ring->size;
1465 
1466 	ring = kmalloc(size, GFP_ATOMIC);
1467 	if (ring) {
1468 		const void *vaddr = rq->ring->vaddr;
1469 		unsigned int head = rq->head;
1470 		unsigned int len = 0;
1471 
1472 		if (rq->tail < head) {
1473 			len = rq->ring->size - head;
1474 			memcpy(ring, vaddr + head, len);
1475 			head = 0;
1476 		}
1477 		memcpy(ring + len, vaddr + head, size - len);
1478 
1479 		hexdump(m, ring, size);
1480 		kfree(ring);
1481 	}
1482 }
1483 
1484 static unsigned long list_count(struct list_head *list)
1485 {
1486 	struct list_head *pos;
1487 	unsigned long count = 0;
1488 
1489 	list_for_each(pos, list)
1490 		count++;
1491 
1492 	return count;
1493 }
1494 
1495 void intel_engine_dump(struct intel_engine_cs *engine,
1496 		       struct drm_printer *m,
1497 		       const char *header, ...)
1498 {
1499 	struct i915_gpu_error * const error = &engine->i915->gpu_error;
1500 	struct i915_request *rq;
1501 	intel_wakeref_t wakeref;
1502 	unsigned long flags;
1503 
1504 	if (header) {
1505 		va_list ap;
1506 
1507 		va_start(ap, header);
1508 		drm_vprintf(m, header, &ap);
1509 		va_end(ap);
1510 	}
1511 
1512 	if (intel_gt_is_wedged(engine->gt))
1513 		drm_printf(m, "*** WEDGED ***\n");
1514 
1515 	drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count));
1516 	drm_printf(m, "\tBarriers?: %s\n",
1517 		   yesno(!llist_empty(&engine->barrier_tasks)));
1518 	drm_printf(m, "\tLatency: %luus\n",
1519 		   ewma__engine_latency_read(&engine->latency));
1520 
1521 	rcu_read_lock();
1522 	rq = READ_ONCE(engine->heartbeat.systole);
1523 	if (rq)
1524 		drm_printf(m, "\tHeartbeat: %d ms ago\n",
1525 			   jiffies_to_msecs(jiffies - rq->emitted_jiffies));
1526 	rcu_read_unlock();
1527 	drm_printf(m, "\tReset count: %d (global %d)\n",
1528 		   i915_reset_engine_count(error, engine),
1529 		   i915_reset_count(error));
1530 
1531 	drm_printf(m, "\tRequests:\n");
1532 
1533 	spin_lock_irqsave(&engine->active.lock, flags);
1534 	rq = intel_engine_find_active_request(engine);
1535 	if (rq) {
1536 		struct intel_timeline *tl = get_timeline(rq);
1537 
1538 		print_request(m, rq, "\t\tactive ");
1539 
1540 		drm_printf(m, "\t\tring->start:  0x%08x\n",
1541 			   i915_ggtt_offset(rq->ring->vma));
1542 		drm_printf(m, "\t\tring->head:   0x%08x\n",
1543 			   rq->ring->head);
1544 		drm_printf(m, "\t\tring->tail:   0x%08x\n",
1545 			   rq->ring->tail);
1546 		drm_printf(m, "\t\tring->emit:   0x%08x\n",
1547 			   rq->ring->emit);
1548 		drm_printf(m, "\t\tring->space:  0x%08x\n",
1549 			   rq->ring->space);
1550 
1551 		if (tl) {
1552 			drm_printf(m, "\t\tring->hwsp:   0x%08x\n",
1553 				   tl->hwsp_offset);
1554 			intel_timeline_put(tl);
1555 		}
1556 
1557 		print_request_ring(m, rq);
1558 
1559 		if (rq->context->lrc_reg_state) {
1560 			drm_printf(m, "Logical Ring Context:\n");
1561 			hexdump(m, rq->context->lrc_reg_state, PAGE_SIZE);
1562 		}
1563 	}
1564 	drm_printf(m, "\tOn hold?: %lu\n", list_count(&engine->active.hold));
1565 	spin_unlock_irqrestore(&engine->active.lock, flags);
1566 
1567 	drm_printf(m, "\tMMIO base:  0x%08x\n", engine->mmio_base);
1568 	wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm);
1569 	if (wakeref) {
1570 		intel_engine_print_registers(engine, m);
1571 		intel_runtime_pm_put(engine->uncore->rpm, wakeref);
1572 	} else {
1573 		drm_printf(m, "\tDevice is asleep; skipping register dump\n");
1574 	}
1575 
1576 	intel_execlists_show_requests(engine, m, print_request, 8);
1577 
1578 	drm_printf(m, "HWSP:\n");
1579 	hexdump(m, engine->status_page.addr, PAGE_SIZE);
1580 
1581 	drm_printf(m, "Idle? %s\n", yesno(intel_engine_is_idle(engine)));
1582 
1583 	intel_engine_print_breadcrumbs(engine, m);
1584 }
1585 
1586 /**
1587  * intel_enable_engine_stats() - Enable engine busy tracking on engine
1588  * @engine: engine to enable stats collection
1589  *
1590  * Start collecting the engine busyness data for @engine.
1591  *
1592  * Returns 0 on success or a negative error code.
1593  */
1594 int intel_enable_engine_stats(struct intel_engine_cs *engine)
1595 {
1596 	struct intel_engine_execlists *execlists = &engine->execlists;
1597 	unsigned long flags;
1598 	int err = 0;
1599 
1600 	if (!intel_engine_supports_stats(engine))
1601 		return -ENODEV;
1602 
1603 	execlists_active_lock_bh(execlists);
1604 	write_seqlock_irqsave(&engine->stats.lock, flags);
1605 
1606 	if (unlikely(engine->stats.enabled == ~0)) {
1607 		err = -EBUSY;
1608 		goto unlock;
1609 	}
1610 
1611 	if (engine->stats.enabled++ == 0) {
1612 		struct i915_request * const *port;
1613 		struct i915_request *rq;
1614 
1615 		engine->stats.enabled_at = ktime_get();
1616 
1617 		/* XXX submission method oblivious? */
1618 		for (port = execlists->active; (rq = *port); port++)
1619 			engine->stats.active++;
1620 
1621 		for (port = execlists->pending; (rq = *port); port++) {
1622 			/* Exclude any contexts already counted in active */
1623 			if (!intel_context_inflight_count(rq->context))
1624 				engine->stats.active++;
1625 		}
1626 
1627 		if (engine->stats.active)
1628 			engine->stats.start = engine->stats.enabled_at;
1629 	}
1630 
1631 unlock:
1632 	write_sequnlock_irqrestore(&engine->stats.lock, flags);
1633 	execlists_active_unlock_bh(execlists);
1634 
1635 	return err;
1636 }
1637 
1638 static ktime_t __intel_engine_get_busy_time(struct intel_engine_cs *engine)
1639 {
1640 	ktime_t total = engine->stats.total;
1641 
1642 	/*
1643 	 * If the engine is executing something at the moment
1644 	 * add it to the total.
1645 	 */
1646 	if (engine->stats.active)
1647 		total = ktime_add(total,
1648 				  ktime_sub(ktime_get(), engine->stats.start));
1649 
1650 	return total;
1651 }
1652 
1653 /**
1654  * intel_engine_get_busy_time() - Return current accumulated engine busyness
1655  * @engine: engine to report on
1656  *
1657  * Returns accumulated time @engine was busy since engine stats were enabled.
1658  */
1659 ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine)
1660 {
1661 	unsigned int seq;
1662 	ktime_t total;
1663 
1664 	do {
1665 		seq = read_seqbegin(&engine->stats.lock);
1666 		total = __intel_engine_get_busy_time(engine);
1667 	} while (read_seqretry(&engine->stats.lock, seq));
1668 
1669 	return total;
1670 }
1671 
1672 /**
1673  * intel_disable_engine_stats() - Disable engine busy tracking on engine
1674  * @engine: engine to disable stats collection
1675  *
1676  * Stops collecting the engine busyness data for @engine.
1677  */
1678 void intel_disable_engine_stats(struct intel_engine_cs *engine)
1679 {
1680 	unsigned long flags;
1681 
1682 	if (!intel_engine_supports_stats(engine))
1683 		return;
1684 
1685 	write_seqlock_irqsave(&engine->stats.lock, flags);
1686 	WARN_ON_ONCE(engine->stats.enabled == 0);
1687 	if (--engine->stats.enabled == 0) {
1688 		engine->stats.total = __intel_engine_get_busy_time(engine);
1689 		engine->stats.active = 0;
1690 	}
1691 	write_sequnlock_irqrestore(&engine->stats.lock, flags);
1692 }
1693 
1694 static bool match_ring(struct i915_request *rq)
1695 {
1696 	u32 ring = ENGINE_READ(rq->engine, RING_START);
1697 
1698 	return ring == i915_ggtt_offset(rq->ring->vma);
1699 }
1700 
1701 struct i915_request *
1702 intel_engine_find_active_request(struct intel_engine_cs *engine)
1703 {
1704 	struct i915_request *request, *active = NULL;
1705 
1706 	/*
1707 	 * We are called by the error capture, reset and to dump engine
1708 	 * state at random points in time. In particular, note that neither is
1709 	 * crucially ordered with an interrupt. After a hang, the GPU is dead
1710 	 * and we assume that no more writes can happen (we waited long enough
1711 	 * for all writes that were in transaction to be flushed) - adding an
1712 	 * extra delay for a recent interrupt is pointless. Hence, we do
1713 	 * not need an engine->irq_seqno_barrier() before the seqno reads.
1714 	 * At all other times, we must assume the GPU is still running, but
1715 	 * we only care about the snapshot of this moment.
1716 	 */
1717 	lockdep_assert_held(&engine->active.lock);
1718 
1719 	rcu_read_lock();
1720 	request = execlists_active(&engine->execlists);
1721 	if (request) {
1722 		struct intel_timeline *tl = request->context->timeline;
1723 
1724 		list_for_each_entry_from_reverse(request, &tl->requests, link) {
1725 			if (i915_request_completed(request))
1726 				break;
1727 
1728 			active = request;
1729 		}
1730 	}
1731 	rcu_read_unlock();
1732 	if (active)
1733 		return active;
1734 
1735 	list_for_each_entry(request, &engine->active.requests, sched.link) {
1736 		if (i915_request_completed(request))
1737 			continue;
1738 
1739 		if (!i915_request_started(request))
1740 			continue;
1741 
1742 		/* More than one preemptible request may match! */
1743 		if (!match_ring(request))
1744 			continue;
1745 
1746 		active = request;
1747 		break;
1748 	}
1749 
1750 	return active;
1751 }
1752 
1753 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1754 #include "mock_engine.c"
1755 #include "selftest_engine.c"
1756 #include "selftest_engine_cs.c"
1757 #endif
1758