1 /* 2 * SPDX-License-Identifier: MIT 3 * 4 * Copyright © 2008,2010 Intel Corporation 5 */ 6 7 #include <linux/intel-iommu.h> 8 #include <linux/dma-resv.h> 9 #include <linux/sync_file.h> 10 #include <linux/uaccess.h> 11 12 #include <drm/drm_syncobj.h> 13 14 #include <dev/pci/pcivar.h> 15 #include <dev/pci/agpvar.h> 16 17 #include "display/intel_frontbuffer.h" 18 19 #include "gem/i915_gem_ioctls.h" 20 #include "gt/intel_context.h" 21 #include "gt/intel_gpu_commands.h" 22 #include "gt/intel_gt.h" 23 #include "gt/intel_gt_buffer_pool.h" 24 #include "gt/intel_gt_pm.h" 25 #include "gt/intel_ring.h" 26 27 #include "i915_drv.h" 28 #include "i915_gem_clflush.h" 29 #include "i915_gem_context.h" 30 #include "i915_gem_ioctls.h" 31 #include "i915_trace.h" 32 #include "i915_user_extensions.h" 33 34 struct eb_vma { 35 struct i915_vma *vma; 36 unsigned int flags; 37 38 /** This vma's place in the execbuf reservation list */ 39 struct drm_i915_gem_exec_object2 *exec; 40 struct list_head bind_link; 41 struct list_head reloc_link; 42 43 struct hlist_node node; 44 u32 handle; 45 }; 46 47 enum { 48 FORCE_CPU_RELOC = 1, 49 FORCE_GTT_RELOC, 50 FORCE_GPU_RELOC, 51 #define DBG_FORCE_RELOC 0 /* choose one of the above! */ 52 }; 53 54 /* __EXEC_OBJECT_NO_RESERVE is BIT(31), defined in i915_vma.h */ 55 #define __EXEC_OBJECT_HAS_PIN BIT(30) 56 #define __EXEC_OBJECT_HAS_FENCE BIT(29) 57 #define __EXEC_OBJECT_USERPTR_INIT BIT(28) 58 #define __EXEC_OBJECT_NEEDS_MAP BIT(27) 59 #define __EXEC_OBJECT_NEEDS_BIAS BIT(26) 60 #define __EXEC_OBJECT_INTERNAL_FLAGS (~0u << 26) /* all of the above + */ 61 #define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE) 62 63 #define __EXEC_HAS_RELOC BIT(31) 64 #define __EXEC_ENGINE_PINNED BIT(30) 65 #define __EXEC_USERPTR_USED BIT(29) 66 #define __EXEC_INTERNAL_FLAGS (~0u << 29) 67 #define UPDATE PIN_OFFSET_FIXED 68 69 #define BATCH_OFFSET_BIAS (256*1024) 70 71 #define __I915_EXEC_ILLEGAL_FLAGS \ 72 (__I915_EXEC_UNKNOWN_FLAGS | \ 73 I915_EXEC_CONSTANTS_MASK | \ 74 I915_EXEC_RESOURCE_STREAMER) 75 76 /* Catch emission of unexpected errors for CI! */ 77 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) 78 #undef EINVAL 79 #define EINVAL ({ \ 80 DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \ 81 22; \ 82 }) 83 #endif 84 85 /** 86 * DOC: User command execution 87 * 88 * Userspace submits commands to be executed on the GPU as an instruction 89 * stream within a GEM object we call a batchbuffer. This instructions may 90 * refer to other GEM objects containing auxiliary state such as kernels, 91 * samplers, render targets and even secondary batchbuffers. Userspace does 92 * not know where in the GPU memory these objects reside and so before the 93 * batchbuffer is passed to the GPU for execution, those addresses in the 94 * batchbuffer and auxiliary objects are updated. This is known as relocation, 95 * or patching. To try and avoid having to relocate each object on the next 96 * execution, userspace is told the location of those objects in this pass, 97 * but this remains just a hint as the kernel may choose a new location for 98 * any object in the future. 99 * 100 * At the level of talking to the hardware, submitting a batchbuffer for the 101 * GPU to execute is to add content to a buffer from which the HW 102 * command streamer is reading. 103 * 104 * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e. 105 * Execlists, this command is not placed on the same buffer as the 106 * remaining items. 107 * 108 * 2. Add a command to invalidate caches to the buffer. 109 * 110 * 3. Add a batchbuffer start command to the buffer; the start command is 111 * essentially a token together with the GPU address of the batchbuffer 112 * to be executed. 113 * 114 * 4. Add a pipeline flush to the buffer. 115 * 116 * 5. Add a memory write command to the buffer to record when the GPU 117 * is done executing the batchbuffer. The memory write writes the 118 * global sequence number of the request, ``i915_request::global_seqno``; 119 * the i915 driver uses the current value in the register to determine 120 * if the GPU has completed the batchbuffer. 121 * 122 * 6. Add a user interrupt command to the buffer. This command instructs 123 * the GPU to issue an interrupt when the command, pipeline flush and 124 * memory write are completed. 125 * 126 * 7. Inform the hardware of the additional commands added to the buffer 127 * (by updating the tail pointer). 128 * 129 * Processing an execbuf ioctl is conceptually split up into a few phases. 130 * 131 * 1. Validation - Ensure all the pointers, handles and flags are valid. 132 * 2. Reservation - Assign GPU address space for every object 133 * 3. Relocation - Update any addresses to point to the final locations 134 * 4. Serialisation - Order the request with respect to its dependencies 135 * 5. Construction - Construct a request to execute the batchbuffer 136 * 6. Submission (at some point in the future execution) 137 * 138 * Reserving resources for the execbuf is the most complicated phase. We 139 * neither want to have to migrate the object in the address space, nor do 140 * we want to have to update any relocations pointing to this object. Ideally, 141 * we want to leave the object where it is and for all the existing relocations 142 * to match. If the object is given a new address, or if userspace thinks the 143 * object is elsewhere, we have to parse all the relocation entries and update 144 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that 145 * all the target addresses in all of its objects match the value in the 146 * relocation entries and that they all match the presumed offsets given by the 147 * list of execbuffer objects. Using this knowledge, we know that if we haven't 148 * moved any buffers, all the relocation entries are valid and we can skip 149 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU 150 * hang.) The requirement for using I915_EXEC_NO_RELOC are: 151 * 152 * The addresses written in the objects must match the corresponding 153 * reloc.presumed_offset which in turn must match the corresponding 154 * execobject.offset. 155 * 156 * Any render targets written to in the batch must be flagged with 157 * EXEC_OBJECT_WRITE. 158 * 159 * To avoid stalling, execobject.offset should match the current 160 * address of that object within the active context. 161 * 162 * The reservation is done is multiple phases. First we try and keep any 163 * object already bound in its current location - so as long as meets the 164 * constraints imposed by the new execbuffer. Any object left unbound after the 165 * first pass is then fitted into any available idle space. If an object does 166 * not fit, all objects are removed from the reservation and the process rerun 167 * after sorting the objects into a priority order (more difficult to fit 168 * objects are tried first). Failing that, the entire VM is cleared and we try 169 * to fit the execbuf once last time before concluding that it simply will not 170 * fit. 171 * 172 * A small complication to all of this is that we allow userspace not only to 173 * specify an alignment and a size for the object in the address space, but 174 * we also allow userspace to specify the exact offset. This objects are 175 * simpler to place (the location is known a priori) all we have to do is make 176 * sure the space is available. 177 * 178 * Once all the objects are in place, patching up the buried pointers to point 179 * to the final locations is a fairly simple job of walking over the relocation 180 * entry arrays, looking up the right address and rewriting the value into 181 * the object. Simple! ... The relocation entries are stored in user memory 182 * and so to access them we have to copy them into a local buffer. That copy 183 * has to avoid taking any pagefaults as they may lead back to a GEM object 184 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split 185 * the relocation into multiple passes. First we try to do everything within an 186 * atomic context (avoid the pagefaults) which requires that we never wait. If 187 * we detect that we may wait, or if we need to fault, then we have to fallback 188 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm 189 * bells yet?) Dropping the mutex means that we lose all the state we have 190 * built up so far for the execbuf and we must reset any global data. However, 191 * we do leave the objects pinned in their final locations - which is a 192 * potential issue for concurrent execbufs. Once we have left the mutex, we can 193 * allocate and copy all the relocation entries into a large array at our 194 * leisure, reacquire the mutex, reclaim all the objects and other state and 195 * then proceed to update any incorrect addresses with the objects. 196 * 197 * As we process the relocation entries, we maintain a record of whether the 198 * object is being written to. Using NORELOC, we expect userspace to provide 199 * this information instead. We also check whether we can skip the relocation 200 * by comparing the expected value inside the relocation entry with the target's 201 * final address. If they differ, we have to map the current object and rewrite 202 * the 4 or 8 byte pointer within. 203 * 204 * Serialising an execbuf is quite simple according to the rules of the GEM 205 * ABI. Execution within each context is ordered by the order of submission. 206 * Writes to any GEM object are in order of submission and are exclusive. Reads 207 * from a GEM object are unordered with respect to other reads, but ordered by 208 * writes. A write submitted after a read cannot occur before the read, and 209 * similarly any read submitted after a write cannot occur before the write. 210 * Writes are ordered between engines such that only one write occurs at any 211 * time (completing any reads beforehand) - using semaphores where available 212 * and CPU serialisation otherwise. Other GEM access obey the same rules, any 213 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU 214 * reads before starting, and any read (either using set-domain or pread) must 215 * flush all GPU writes before starting. (Note we only employ a barrier before, 216 * we currently rely on userspace not concurrently starting a new execution 217 * whilst reading or writing to an object. This may be an advantage or not 218 * depending on how much you trust userspace not to shoot themselves in the 219 * foot.) Serialisation may just result in the request being inserted into 220 * a DAG awaiting its turn, but most simple is to wait on the CPU until 221 * all dependencies are resolved. 222 * 223 * After all of that, is just a matter of closing the request and handing it to 224 * the hardware (well, leaving it in a queue to be executed). However, we also 225 * offer the ability for batchbuffers to be run with elevated privileges so 226 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.) 227 * Before any batch is given extra privileges we first must check that it 228 * contains no nefarious instructions, we check that each instruction is from 229 * our whitelist and all registers are also from an allowed list. We first 230 * copy the user's batchbuffer to a shadow (so that the user doesn't have 231 * access to it, either by the CPU or GPU as we scan it) and then parse each 232 * instruction. If everything is ok, we set a flag telling the hardware to run 233 * the batchbuffer in trusted mode, otherwise the ioctl is rejected. 234 */ 235 236 struct eb_fence { 237 struct drm_syncobj *syncobj; /* Use with ptr_mask_bits() */ 238 struct dma_fence *dma_fence; 239 u64 value; 240 struct dma_fence_chain *chain_fence; 241 }; 242 243 struct i915_execbuffer { 244 struct drm_i915_private *i915; /** i915 backpointer */ 245 struct drm_file *file; /** per-file lookup tables and limits */ 246 struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */ 247 struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */ 248 struct eb_vma *vma; 249 250 struct intel_engine_cs *engine; /** engine to queue the request to */ 251 struct intel_context *context; /* logical state for the request */ 252 struct i915_gem_context *gem_context; /** caller's context */ 253 254 struct i915_request *request; /** our request to build */ 255 struct eb_vma *batch; /** identity of the batch obj/vma */ 256 struct i915_vma *trampoline; /** trampoline used for chaining */ 257 258 /** actual size of execobj[] as we may extend it for the cmdparser */ 259 unsigned int buffer_count; 260 261 /** list of vma not yet bound during reservation phase */ 262 struct list_head unbound; 263 264 /** list of vma that have execobj.relocation_count */ 265 struct list_head relocs; 266 267 struct i915_gem_ww_ctx ww; 268 269 /** 270 * Track the most recently used object for relocations, as we 271 * frequently have to perform multiple relocations within the same 272 * obj/page 273 */ 274 struct reloc_cache { 275 struct drm_mm_node node; /** temporary GTT binding */ 276 unsigned long vaddr; /** Current kmap address */ 277 unsigned long page; /** Currently mapped page index */ 278 unsigned int graphics_ver; /** Cached value of GRAPHICS_VER */ 279 bool use_64bit_reloc : 1; 280 bool has_llc : 1; 281 bool has_fence : 1; 282 bool needs_unfenced : 1; 283 284 struct agp_map *map; 285 bus_space_tag_t iot; 286 bus_space_handle_t ioh; 287 } reloc_cache; 288 289 u64 invalid_flags; /** Set of execobj.flags that are invalid */ 290 291 u64 batch_len; /** Length of batch within object */ 292 u32 batch_start_offset; /** Location within object of batch */ 293 u32 batch_flags; /** Flags composed for emit_bb_start() */ 294 struct intel_gt_buffer_pool_node *batch_pool; /** pool node for batch buffer */ 295 296 /** 297 * Indicate either the size of the hastable used to resolve 298 * relocation handles, or if negative that we are using a direct 299 * index into the execobj[]. 300 */ 301 int lut_size; 302 struct hlist_head *buckets; /** ht for relocation handles */ 303 304 struct eb_fence *fences; 305 unsigned long num_fences; 306 }; 307 308 static int eb_parse(struct i915_execbuffer *eb); 309 static struct i915_request *eb_pin_engine(struct i915_execbuffer *eb, 310 bool throttle); 311 static void eb_unpin_engine(struct i915_execbuffer *eb); 312 313 static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb) 314 { 315 return intel_engine_requires_cmd_parser(eb->engine) || 316 (intel_engine_using_cmd_parser(eb->engine) && 317 eb->args->batch_len); 318 } 319 320 static int eb_create(struct i915_execbuffer *eb) 321 { 322 if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) { 323 unsigned int size = 1 + ilog2(eb->buffer_count); 324 325 /* 326 * Without a 1:1 association between relocation handles and 327 * the execobject[] index, we instead create a hashtable. 328 * We size it dynamically based on available memory, starting 329 * first with 1:1 assocative hash and scaling back until 330 * the allocation succeeds. 331 * 332 * Later on we use a positive lut_size to indicate we are 333 * using this hashtable, and a negative value to indicate a 334 * direct lookup. 335 */ 336 do { 337 gfp_t flags; 338 339 /* While we can still reduce the allocation size, don't 340 * raise a warning and allow the allocation to fail. 341 * On the last pass though, we want to try as hard 342 * as possible to perform the allocation and warn 343 * if it fails. 344 */ 345 flags = GFP_KERNEL; 346 if (size > 1) 347 flags |= __GFP_NORETRY | __GFP_NOWARN; 348 349 eb->buckets = kzalloc(sizeof(struct hlist_head) << size, 350 flags); 351 if (eb->buckets) 352 break; 353 } while (--size); 354 355 if (unlikely(!size)) 356 return -ENOMEM; 357 358 eb->lut_size = size; 359 } else { 360 eb->lut_size = -eb->buffer_count; 361 } 362 363 return 0; 364 } 365 366 static bool 367 eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry, 368 const struct i915_vma *vma, 369 unsigned int flags) 370 { 371 if (vma->node.size < entry->pad_to_size) 372 return true; 373 374 if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment)) 375 return true; 376 377 if (flags & EXEC_OBJECT_PINNED && 378 vma->node.start != entry->offset) 379 return true; 380 381 if (flags & __EXEC_OBJECT_NEEDS_BIAS && 382 vma->node.start < BATCH_OFFSET_BIAS) 383 return true; 384 385 if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) && 386 (vma->node.start + vma->node.size + 4095) >> 32) 387 return true; 388 389 if (flags & __EXEC_OBJECT_NEEDS_MAP && 390 !i915_vma_is_map_and_fenceable(vma)) 391 return true; 392 393 return false; 394 } 395 396 static u64 eb_pin_flags(const struct drm_i915_gem_exec_object2 *entry, 397 unsigned int exec_flags) 398 { 399 u64 pin_flags = 0; 400 401 if (exec_flags & EXEC_OBJECT_NEEDS_GTT) 402 pin_flags |= PIN_GLOBAL; 403 404 /* 405 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset, 406 * limit address to the first 4GBs for unflagged objects. 407 */ 408 if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS)) 409 pin_flags |= PIN_ZONE_4G; 410 411 if (exec_flags & __EXEC_OBJECT_NEEDS_MAP) 412 pin_flags |= PIN_MAPPABLE; 413 414 if (exec_flags & EXEC_OBJECT_PINNED) 415 pin_flags |= entry->offset | PIN_OFFSET_FIXED; 416 else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS) 417 pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS; 418 419 return pin_flags; 420 } 421 422 static inline int 423 eb_pin_vma(struct i915_execbuffer *eb, 424 const struct drm_i915_gem_exec_object2 *entry, 425 struct eb_vma *ev) 426 { 427 struct i915_vma *vma = ev->vma; 428 u64 pin_flags; 429 int err; 430 431 if (vma->node.size) 432 pin_flags = vma->node.start; 433 else 434 pin_flags = entry->offset & PIN_OFFSET_MASK; 435 436 pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED; 437 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_GTT)) 438 pin_flags |= PIN_GLOBAL; 439 440 /* Attempt to reuse the current location if available */ 441 err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, pin_flags); 442 if (err == -EDEADLK) 443 return err; 444 445 if (unlikely(err)) { 446 if (entry->flags & EXEC_OBJECT_PINNED) 447 return err; 448 449 /* Failing that pick any _free_ space if suitable */ 450 err = i915_vma_pin_ww(vma, &eb->ww, 451 entry->pad_to_size, 452 entry->alignment, 453 eb_pin_flags(entry, ev->flags) | 454 PIN_USER | PIN_NOEVICT); 455 if (unlikely(err)) 456 return err; 457 } 458 459 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) { 460 err = i915_vma_pin_fence(vma); 461 if (unlikely(err)) { 462 i915_vma_unpin(vma); 463 return err; 464 } 465 466 if (vma->fence) 467 ev->flags |= __EXEC_OBJECT_HAS_FENCE; 468 } 469 470 ev->flags |= __EXEC_OBJECT_HAS_PIN; 471 if (eb_vma_misplaced(entry, vma, ev->flags)) 472 return -EBADSLT; 473 474 return 0; 475 } 476 477 static inline void 478 eb_unreserve_vma(struct eb_vma *ev) 479 { 480 if (!(ev->flags & __EXEC_OBJECT_HAS_PIN)) 481 return; 482 483 if (unlikely(ev->flags & __EXEC_OBJECT_HAS_FENCE)) 484 __i915_vma_unpin_fence(ev->vma); 485 486 __i915_vma_unpin(ev->vma); 487 ev->flags &= ~__EXEC_OBJECT_RESERVED; 488 } 489 490 static int 491 eb_validate_vma(struct i915_execbuffer *eb, 492 struct drm_i915_gem_exec_object2 *entry, 493 struct i915_vma *vma) 494 { 495 /* Relocations are disallowed for all platforms after TGL-LP. This 496 * also covers all platforms with local memory. 497 */ 498 if (entry->relocation_count && 499 GRAPHICS_VER(eb->i915) >= 12 && !IS_TIGERLAKE(eb->i915)) 500 return -EINVAL; 501 502 if (unlikely(entry->flags & eb->invalid_flags)) 503 return -EINVAL; 504 505 if (unlikely(entry->alignment && 506 !is_power_of_2_u64(entry->alignment))) 507 return -EINVAL; 508 509 /* 510 * Offset can be used as input (EXEC_OBJECT_PINNED), reject 511 * any non-page-aligned or non-canonical addresses. 512 */ 513 if (unlikely(entry->flags & EXEC_OBJECT_PINNED && 514 entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK))) 515 return -EINVAL; 516 517 /* pad_to_size was once a reserved field, so sanitize it */ 518 if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) { 519 if (unlikely(offset_in_page(entry->pad_to_size))) 520 return -EINVAL; 521 } else { 522 entry->pad_to_size = 0; 523 } 524 /* 525 * From drm_mm perspective address space is continuous, 526 * so from this point we're always using non-canonical 527 * form internally. 528 */ 529 entry->offset = gen8_noncanonical_addr(entry->offset); 530 531 if (!eb->reloc_cache.has_fence) { 532 entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE; 533 } else { 534 if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE || 535 eb->reloc_cache.needs_unfenced) && 536 i915_gem_object_is_tiled(vma->obj)) 537 entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP; 538 } 539 540 return 0; 541 } 542 543 static void 544 eb_add_vma(struct i915_execbuffer *eb, 545 unsigned int i, unsigned batch_idx, 546 struct i915_vma *vma) 547 { 548 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i]; 549 struct eb_vma *ev = &eb->vma[i]; 550 551 ev->vma = vma; 552 ev->exec = entry; 553 ev->flags = entry->flags; 554 555 if (eb->lut_size > 0) { 556 ev->handle = entry->handle; 557 hlist_add_head(&ev->node, 558 &eb->buckets[hash_32(entry->handle, 559 eb->lut_size)]); 560 } 561 562 if (entry->relocation_count) 563 list_add_tail(&ev->reloc_link, &eb->relocs); 564 565 /* 566 * SNA is doing fancy tricks with compressing batch buffers, which leads 567 * to negative relocation deltas. Usually that works out ok since the 568 * relocate address is still positive, except when the batch is placed 569 * very low in the GTT. Ensure this doesn't happen. 570 * 571 * Note that actual hangs have only been observed on gen7, but for 572 * paranoia do it everywhere. 573 */ 574 if (i == batch_idx) { 575 if (entry->relocation_count && 576 !(ev->flags & EXEC_OBJECT_PINNED)) 577 ev->flags |= __EXEC_OBJECT_NEEDS_BIAS; 578 if (eb->reloc_cache.has_fence) 579 ev->flags |= EXEC_OBJECT_NEEDS_FENCE; 580 581 eb->batch = ev; 582 } 583 } 584 585 static inline int use_cpu_reloc(const struct reloc_cache *cache, 586 const struct drm_i915_gem_object *obj) 587 { 588 if (!i915_gem_object_has_struct_page(obj)) 589 return false; 590 591 if (DBG_FORCE_RELOC == FORCE_CPU_RELOC) 592 return true; 593 594 if (DBG_FORCE_RELOC == FORCE_GTT_RELOC) 595 return false; 596 597 return (cache->has_llc || 598 obj->cache_dirty || 599 obj->cache_level != I915_CACHE_NONE); 600 } 601 602 static int eb_reserve_vma(struct i915_execbuffer *eb, 603 struct eb_vma *ev, 604 u64 pin_flags) 605 { 606 struct drm_i915_gem_exec_object2 *entry = ev->exec; 607 struct i915_vma *vma = ev->vma; 608 int err; 609 610 if (drm_mm_node_allocated(&vma->node) && 611 eb_vma_misplaced(entry, vma, ev->flags)) { 612 err = i915_vma_unbind(vma); 613 if (err) 614 return err; 615 } 616 617 err = i915_vma_pin_ww(vma, &eb->ww, 618 entry->pad_to_size, entry->alignment, 619 eb_pin_flags(entry, ev->flags) | pin_flags); 620 if (err) 621 return err; 622 623 if (entry->offset != vma->node.start) { 624 entry->offset = vma->node.start | UPDATE; 625 eb->args->flags |= __EXEC_HAS_RELOC; 626 } 627 628 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) { 629 err = i915_vma_pin_fence(vma); 630 if (unlikely(err)) { 631 i915_vma_unpin(vma); 632 return err; 633 } 634 635 if (vma->fence) 636 ev->flags |= __EXEC_OBJECT_HAS_FENCE; 637 } 638 639 ev->flags |= __EXEC_OBJECT_HAS_PIN; 640 GEM_BUG_ON(eb_vma_misplaced(entry, vma, ev->flags)); 641 642 return 0; 643 } 644 645 static int eb_reserve(struct i915_execbuffer *eb) 646 { 647 const unsigned int count = eb->buffer_count; 648 unsigned int pin_flags = PIN_USER | PIN_NONBLOCK; 649 struct list_head last; 650 struct eb_vma *ev; 651 unsigned int i, pass; 652 int err = 0; 653 654 /* 655 * Attempt to pin all of the buffers into the GTT. 656 * This is done in 3 phases: 657 * 658 * 1a. Unbind all objects that do not match the GTT constraints for 659 * the execbuffer (fenceable, mappable, alignment etc). 660 * 1b. Increment pin count for already bound objects. 661 * 2. Bind new objects. 662 * 3. Decrement pin count. 663 * 664 * This avoid unnecessary unbinding of later objects in order to make 665 * room for the earlier objects *unless* we need to defragment. 666 */ 667 pass = 0; 668 do { 669 list_for_each_entry(ev, &eb->unbound, bind_link) { 670 err = eb_reserve_vma(eb, ev, pin_flags); 671 if (err) 672 break; 673 } 674 if (err != -ENOSPC) 675 return err; 676 677 /* Resort *all* the objects into priority order */ 678 INIT_LIST_HEAD(&eb->unbound); 679 INIT_LIST_HEAD(&last); 680 for (i = 0; i < count; i++) { 681 unsigned int flags; 682 683 ev = &eb->vma[i]; 684 flags = ev->flags; 685 if (flags & EXEC_OBJECT_PINNED && 686 flags & __EXEC_OBJECT_HAS_PIN) 687 continue; 688 689 eb_unreserve_vma(ev); 690 691 if (flags & EXEC_OBJECT_PINNED) 692 /* Pinned must have their slot */ 693 list_add(&ev->bind_link, &eb->unbound); 694 else if (flags & __EXEC_OBJECT_NEEDS_MAP) 695 /* Map require the lowest 256MiB (aperture) */ 696 list_add_tail(&ev->bind_link, &eb->unbound); 697 else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS)) 698 /* Prioritise 4GiB region for restricted bo */ 699 list_add(&ev->bind_link, &last); 700 else 701 list_add_tail(&ev->bind_link, &last); 702 } 703 list_splice_tail(&last, &eb->unbound); 704 705 switch (pass++) { 706 case 0: 707 break; 708 709 case 1: 710 /* Too fragmented, unbind everything and retry */ 711 mutex_lock(&eb->context->vm->mutex); 712 err = i915_gem_evict_vm(eb->context->vm); 713 mutex_unlock(&eb->context->vm->mutex); 714 if (err) 715 return err; 716 break; 717 718 default: 719 return -ENOSPC; 720 } 721 722 pin_flags = PIN_USER; 723 } while (1); 724 } 725 726 static unsigned int eb_batch_index(const struct i915_execbuffer *eb) 727 { 728 if (eb->args->flags & I915_EXEC_BATCH_FIRST) 729 return 0; 730 else 731 return eb->buffer_count - 1; 732 } 733 734 static int eb_select_context(struct i915_execbuffer *eb) 735 { 736 struct i915_gem_context *ctx; 737 738 ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1); 739 if (unlikely(IS_ERR(ctx))) 740 return PTR_ERR(ctx); 741 742 eb->gem_context = ctx; 743 if (rcu_access_pointer(ctx->vm)) 744 eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT; 745 746 return 0; 747 } 748 749 static int __eb_add_lut(struct i915_execbuffer *eb, 750 u32 handle, struct i915_vma *vma) 751 { 752 struct i915_gem_context *ctx = eb->gem_context; 753 struct i915_lut_handle *lut; 754 int err; 755 756 lut = i915_lut_handle_alloc(); 757 if (unlikely(!lut)) 758 return -ENOMEM; 759 760 i915_vma_get(vma); 761 if (!atomic_fetch_inc(&vma->open_count)) 762 i915_vma_reopen(vma); 763 lut->handle = handle; 764 lut->ctx = ctx; 765 766 /* Check that the context hasn't been closed in the meantime */ 767 err = -EINTR; 768 if (!mutex_lock_interruptible(&ctx->lut_mutex)) { 769 struct i915_address_space *vm = rcu_access_pointer(ctx->vm); 770 771 if (unlikely(vm && vma->vm != vm)) 772 err = -EAGAIN; /* user racing with ctx set-vm */ 773 else if (likely(!i915_gem_context_is_closed(ctx))) 774 err = radix_tree_insert(&ctx->handles_vma, handle, vma); 775 else 776 err = -ENOENT; 777 if (err == 0) { /* And nor has this handle */ 778 struct drm_i915_gem_object *obj = vma->obj; 779 780 spin_lock(&obj->lut_lock); 781 if (idr_find(&eb->file->object_idr, handle) == obj) { 782 list_add(&lut->obj_link, &obj->lut_list); 783 } else { 784 radix_tree_delete(&ctx->handles_vma, handle); 785 err = -ENOENT; 786 } 787 spin_unlock(&obj->lut_lock); 788 } 789 mutex_unlock(&ctx->lut_mutex); 790 } 791 if (unlikely(err)) 792 goto err; 793 794 return 0; 795 796 err: 797 i915_vma_close(vma); 798 i915_vma_put(vma); 799 i915_lut_handle_free(lut); 800 return err; 801 } 802 803 static struct i915_vma *eb_lookup_vma(struct i915_execbuffer *eb, u32 handle) 804 { 805 struct i915_address_space *vm = eb->context->vm; 806 807 do { 808 struct drm_i915_gem_object *obj; 809 struct i915_vma *vma; 810 int err; 811 812 rcu_read_lock(); 813 vma = radix_tree_lookup(&eb->gem_context->handles_vma, handle); 814 if (likely(vma && vma->vm == vm)) 815 vma = i915_vma_tryget(vma); 816 rcu_read_unlock(); 817 if (likely(vma)) 818 return vma; 819 820 obj = i915_gem_object_lookup(eb->file, handle); 821 if (unlikely(!obj)) 822 return ERR_PTR(-ENOENT); 823 824 vma = i915_vma_instance(obj, vm, NULL); 825 if (IS_ERR(vma)) { 826 i915_gem_object_put(obj); 827 return vma; 828 } 829 830 err = __eb_add_lut(eb, handle, vma); 831 if (likely(!err)) 832 return vma; 833 834 i915_gem_object_put(obj); 835 if (err != -EEXIST) 836 return ERR_PTR(err); 837 } while (1); 838 } 839 840 static int eb_lookup_vmas(struct i915_execbuffer *eb) 841 { 842 struct drm_i915_private *i915 = eb->i915; 843 unsigned int batch = eb_batch_index(eb); 844 unsigned int i; 845 int err = 0; 846 847 INIT_LIST_HEAD(&eb->relocs); 848 849 for (i = 0; i < eb->buffer_count; i++) { 850 struct i915_vma *vma; 851 852 vma = eb_lookup_vma(eb, eb->exec[i].handle); 853 if (IS_ERR(vma)) { 854 err = PTR_ERR(vma); 855 goto err; 856 } 857 858 err = eb_validate_vma(eb, &eb->exec[i], vma); 859 if (unlikely(err)) { 860 i915_vma_put(vma); 861 goto err; 862 } 863 864 eb_add_vma(eb, i, batch, vma); 865 866 if (i915_gem_object_is_userptr(vma->obj)) { 867 err = i915_gem_object_userptr_submit_init(vma->obj); 868 if (err) { 869 if (i + 1 < eb->buffer_count) { 870 /* 871 * Execbuffer code expects last vma entry to be NULL, 872 * since we already initialized this entry, 873 * set the next value to NULL or we mess up 874 * cleanup handling. 875 */ 876 eb->vma[i + 1].vma = NULL; 877 } 878 879 return err; 880 } 881 882 eb->vma[i].flags |= __EXEC_OBJECT_USERPTR_INIT; 883 eb->args->flags |= __EXEC_USERPTR_USED; 884 } 885 } 886 887 if (unlikely(eb->batch->flags & EXEC_OBJECT_WRITE)) { 888 drm_dbg(&i915->drm, 889 "Attempting to use self-modifying batch buffer\n"); 890 return -EINVAL; 891 } 892 893 if (range_overflows_t(u64, 894 eb->batch_start_offset, eb->batch_len, 895 eb->batch->vma->size)) { 896 drm_dbg(&i915->drm, "Attempting to use out-of-bounds batch\n"); 897 return -EINVAL; 898 } 899 900 if (eb->batch_len == 0) 901 eb->batch_len = eb->batch->vma->size - eb->batch_start_offset; 902 if (unlikely(eb->batch_len == 0)) { /* impossible! */ 903 drm_dbg(&i915->drm, "Invalid batch length\n"); 904 return -EINVAL; 905 } 906 907 return 0; 908 909 err: 910 eb->vma[i].vma = NULL; 911 return err; 912 } 913 914 static int eb_lock_vmas(struct i915_execbuffer *eb) 915 { 916 unsigned int i; 917 int err; 918 919 for (i = 0; i < eb->buffer_count; i++) { 920 struct eb_vma *ev = &eb->vma[i]; 921 struct i915_vma *vma = ev->vma; 922 923 err = i915_gem_object_lock(vma->obj, &eb->ww); 924 if (err) 925 return err; 926 } 927 928 return 0; 929 } 930 931 static int eb_validate_vmas(struct i915_execbuffer *eb) 932 { 933 unsigned int i; 934 int err; 935 936 INIT_LIST_HEAD(&eb->unbound); 937 938 err = eb_lock_vmas(eb); 939 if (err) 940 return err; 941 942 for (i = 0; i < eb->buffer_count; i++) { 943 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i]; 944 struct eb_vma *ev = &eb->vma[i]; 945 struct i915_vma *vma = ev->vma; 946 947 err = eb_pin_vma(eb, entry, ev); 948 if (err == -EDEADLK) 949 return err; 950 951 if (!err) { 952 if (entry->offset != vma->node.start) { 953 entry->offset = vma->node.start | UPDATE; 954 eb->args->flags |= __EXEC_HAS_RELOC; 955 } 956 } else { 957 eb_unreserve_vma(ev); 958 959 list_add_tail(&ev->bind_link, &eb->unbound); 960 if (drm_mm_node_allocated(&vma->node)) { 961 err = i915_vma_unbind(vma); 962 if (err) 963 return err; 964 } 965 } 966 967 if (!(ev->flags & EXEC_OBJECT_WRITE)) { 968 err = dma_resv_reserve_shared(vma->resv, 1); 969 if (err) 970 return err; 971 } 972 973 GEM_BUG_ON(drm_mm_node_allocated(&vma->node) && 974 eb_vma_misplaced(&eb->exec[i], vma, ev->flags)); 975 } 976 977 if (!list_empty(&eb->unbound)) 978 return eb_reserve(eb); 979 980 return 0; 981 } 982 983 static struct eb_vma * 984 eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle) 985 { 986 if (eb->lut_size < 0) { 987 if (handle >= -eb->lut_size) 988 return NULL; 989 return &eb->vma[handle]; 990 } else { 991 struct hlist_head *head; 992 struct eb_vma *ev; 993 994 head = &eb->buckets[hash_32(handle, eb->lut_size)]; 995 hlist_for_each_entry(ev, head, node) { 996 if (ev->handle == handle) 997 return ev; 998 } 999 return NULL; 1000 } 1001 } 1002 1003 static void eb_release_vmas(struct i915_execbuffer *eb, bool final) 1004 { 1005 const unsigned int count = eb->buffer_count; 1006 unsigned int i; 1007 1008 for (i = 0; i < count; i++) { 1009 struct eb_vma *ev = &eb->vma[i]; 1010 struct i915_vma *vma = ev->vma; 1011 1012 if (!vma) 1013 break; 1014 1015 eb_unreserve_vma(ev); 1016 1017 if (final) 1018 i915_vma_put(vma); 1019 } 1020 1021 eb_unpin_engine(eb); 1022 } 1023 1024 static void eb_destroy(const struct i915_execbuffer *eb) 1025 { 1026 if (eb->lut_size > 0) 1027 kfree(eb->buckets); 1028 } 1029 1030 static inline u64 1031 relocation_target(const struct drm_i915_gem_relocation_entry *reloc, 1032 const struct i915_vma *target) 1033 { 1034 return gen8_canonical_addr((int)reloc->delta + target->node.start); 1035 } 1036 1037 static void reloc_cache_init(struct reloc_cache *cache, 1038 struct drm_i915_private *i915) 1039 { 1040 cache->page = -1; 1041 cache->vaddr = 0; 1042 /* Must be a variable in the struct to allow GCC to unroll. */ 1043 cache->graphics_ver = GRAPHICS_VER(i915); 1044 cache->has_llc = HAS_LLC(i915); 1045 cache->use_64bit_reloc = HAS_64BIT_RELOC(i915); 1046 cache->has_fence = cache->graphics_ver < 4; 1047 cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment; 1048 cache->node.flags = 0; 1049 1050 cache->map = i915->agph; 1051 cache->iot = i915->bst; 1052 } 1053 1054 static inline void *unmask_page(unsigned long p) 1055 { 1056 return (void *)(uintptr_t)(p & LINUX_PAGE_MASK); 1057 } 1058 1059 static inline unsigned int unmask_flags(unsigned long p) 1060 { 1061 return p & ~LINUX_PAGE_MASK; 1062 } 1063 1064 #define KMAP 0x4 /* after CLFLUSH_FLAGS */ 1065 1066 static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache) 1067 { 1068 struct drm_i915_private *i915 = 1069 container_of(cache, struct i915_execbuffer, reloc_cache)->i915; 1070 return &i915->ggtt; 1071 } 1072 1073 static void reloc_cache_reset(struct reloc_cache *cache, struct i915_execbuffer *eb) 1074 { 1075 void *vaddr; 1076 1077 if (!cache->vaddr) 1078 return; 1079 1080 vaddr = unmask_page(cache->vaddr); 1081 if (cache->vaddr & KMAP) { 1082 struct drm_i915_gem_object *obj = 1083 (struct drm_i915_gem_object *)cache->node.mm; 1084 if (cache->vaddr & CLFLUSH_AFTER) 1085 mb(); 1086 1087 kunmap_atomic(vaddr); 1088 i915_gem_object_finish_access(obj); 1089 } else { 1090 struct i915_ggtt *ggtt = cache_to_ggtt(cache); 1091 1092 intel_gt_flush_ggtt_writes(ggtt->vm.gt); 1093 #ifdef __linux__ 1094 io_mapping_unmap_atomic((void __iomem *)vaddr); 1095 #else 1096 agp_unmap_atomic(cache->map, cache->ioh); 1097 #endif 1098 1099 if (drm_mm_node_allocated(&cache->node)) { 1100 ggtt->vm.clear_range(&ggtt->vm, 1101 cache->node.start, 1102 cache->node.size); 1103 mutex_lock(&ggtt->vm.mutex); 1104 drm_mm_remove_node(&cache->node); 1105 mutex_unlock(&ggtt->vm.mutex); 1106 } else { 1107 i915_vma_unpin((struct i915_vma *)cache->node.mm); 1108 } 1109 } 1110 1111 cache->vaddr = 0; 1112 cache->page = -1; 1113 } 1114 1115 static void *reloc_kmap(struct drm_i915_gem_object *obj, 1116 struct reloc_cache *cache, 1117 unsigned long pageno) 1118 { 1119 void *vaddr; 1120 struct vm_page *page; 1121 1122 if (cache->vaddr) { 1123 kunmap_atomic(unmask_page(cache->vaddr)); 1124 } else { 1125 unsigned int flushes; 1126 int err; 1127 1128 err = i915_gem_object_prepare_write(obj, &flushes); 1129 if (err) 1130 return ERR_PTR(err); 1131 1132 BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS); 1133 BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & LINUX_PAGE_MASK); 1134 1135 cache->vaddr = flushes | KMAP; 1136 cache->node.mm = (void *)obj; 1137 if (flushes) 1138 mb(); 1139 } 1140 1141 page = i915_gem_object_get_page(obj, pageno); 1142 if (!obj->mm.dirty) 1143 set_page_dirty(page); 1144 1145 vaddr = kmap_atomic(page); 1146 cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr; 1147 cache->page = pageno; 1148 1149 return vaddr; 1150 } 1151 1152 static void *reloc_iomap(struct drm_i915_gem_object *obj, 1153 struct i915_execbuffer *eb, 1154 unsigned long page) 1155 { 1156 struct reloc_cache *cache = &eb->reloc_cache; 1157 struct i915_ggtt *ggtt = cache_to_ggtt(cache); 1158 unsigned long offset; 1159 void *vaddr; 1160 1161 if (cache->vaddr) { 1162 intel_gt_flush_ggtt_writes(ggtt->vm.gt); 1163 #ifdef __linux__ 1164 io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr)); 1165 #else 1166 agp_unmap_atomic(cache->map, cache->ioh); 1167 #endif 1168 } else { 1169 struct i915_vma *vma; 1170 int err; 1171 1172 if (i915_gem_object_is_tiled(obj)) 1173 return ERR_PTR(-EINVAL); 1174 1175 if (use_cpu_reloc(cache, obj)) 1176 return NULL; 1177 1178 err = i915_gem_object_set_to_gtt_domain(obj, true); 1179 if (err) 1180 return ERR_PTR(err); 1181 1182 vma = i915_gem_object_ggtt_pin_ww(obj, &eb->ww, NULL, 0, 0, 1183 PIN_MAPPABLE | 1184 PIN_NONBLOCK /* NOWARN */ | 1185 PIN_NOEVICT); 1186 if (vma == ERR_PTR(-EDEADLK)) 1187 return vma; 1188 1189 if (IS_ERR(vma)) { 1190 memset(&cache->node, 0, sizeof(cache->node)); 1191 mutex_lock(&ggtt->vm.mutex); 1192 err = drm_mm_insert_node_in_range 1193 (&ggtt->vm.mm, &cache->node, 1194 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE, 1195 0, ggtt->mappable_end, 1196 DRM_MM_INSERT_LOW); 1197 mutex_unlock(&ggtt->vm.mutex); 1198 if (err) /* no inactive aperture space, use cpu reloc */ 1199 return NULL; 1200 } else { 1201 cache->node.start = vma->node.start; 1202 cache->node.mm = (void *)vma; 1203 } 1204 } 1205 1206 offset = cache->node.start; 1207 if (drm_mm_node_allocated(&cache->node)) { 1208 ggtt->vm.insert_page(&ggtt->vm, 1209 i915_gem_object_get_dma_address(obj, page), 1210 offset, I915_CACHE_NONE, 0); 1211 } else { 1212 offset += page << PAGE_SHIFT; 1213 } 1214 1215 #ifdef __linux__ 1216 vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap, 1217 offset); 1218 #else 1219 agp_map_atomic(cache->map, offset, &cache->ioh); 1220 vaddr = bus_space_vaddr(cache->iot, cache->ioh); 1221 #endif 1222 cache->page = page; 1223 cache->vaddr = (unsigned long)vaddr; 1224 1225 return vaddr; 1226 } 1227 1228 static void *reloc_vaddr(struct drm_i915_gem_object *obj, 1229 struct i915_execbuffer *eb, 1230 unsigned long page) 1231 { 1232 struct reloc_cache *cache = &eb->reloc_cache; 1233 void *vaddr; 1234 1235 if (cache->page == page) { 1236 vaddr = unmask_page(cache->vaddr); 1237 } else { 1238 vaddr = NULL; 1239 if ((cache->vaddr & KMAP) == 0) 1240 vaddr = reloc_iomap(obj, eb, page); 1241 if (!vaddr) 1242 vaddr = reloc_kmap(obj, cache, page); 1243 } 1244 1245 return vaddr; 1246 } 1247 1248 static void clflush_write32(u32 *addr, u32 value, unsigned int flushes) 1249 { 1250 if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) { 1251 if (flushes & CLFLUSH_BEFORE) { 1252 clflushopt(addr); 1253 mb(); 1254 } 1255 1256 *addr = value; 1257 1258 /* 1259 * Writes to the same cacheline are serialised by the CPU 1260 * (including clflush). On the write path, we only require 1261 * that it hits memory in an orderly fashion and place 1262 * mb barriers at the start and end of the relocation phase 1263 * to ensure ordering of clflush wrt to the system. 1264 */ 1265 if (flushes & CLFLUSH_AFTER) 1266 clflushopt(addr); 1267 } else 1268 *addr = value; 1269 } 1270 1271 static u64 1272 relocate_entry(struct i915_vma *vma, 1273 const struct drm_i915_gem_relocation_entry *reloc, 1274 struct i915_execbuffer *eb, 1275 const struct i915_vma *target) 1276 { 1277 u64 target_addr = relocation_target(reloc, target); 1278 u64 offset = reloc->offset; 1279 bool wide = eb->reloc_cache.use_64bit_reloc; 1280 void *vaddr; 1281 1282 repeat: 1283 vaddr = reloc_vaddr(vma->obj, eb, 1284 offset >> PAGE_SHIFT); 1285 if (IS_ERR(vaddr)) 1286 return PTR_ERR(vaddr); 1287 1288 GEM_BUG_ON(!IS_ALIGNED(offset, sizeof(u32))); 1289 clflush_write32(vaddr + offset_in_page(offset), 1290 lower_32_bits(target_addr), 1291 eb->reloc_cache.vaddr); 1292 1293 if (wide) { 1294 offset += sizeof(u32); 1295 target_addr >>= 32; 1296 wide = false; 1297 goto repeat; 1298 } 1299 1300 return target->node.start | UPDATE; 1301 } 1302 1303 static u64 1304 eb_relocate_entry(struct i915_execbuffer *eb, 1305 struct eb_vma *ev, 1306 const struct drm_i915_gem_relocation_entry *reloc) 1307 { 1308 struct drm_i915_private *i915 = eb->i915; 1309 struct eb_vma *target; 1310 int err; 1311 1312 /* we've already hold a reference to all valid objects */ 1313 target = eb_get_vma(eb, reloc->target_handle); 1314 if (unlikely(!target)) 1315 return -ENOENT; 1316 1317 /* Validate that the target is in a valid r/w GPU domain */ 1318 if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) { 1319 drm_dbg(&i915->drm, "reloc with multiple write domains: " 1320 "target %d offset %d " 1321 "read %08x write %08x", 1322 reloc->target_handle, 1323 (int) reloc->offset, 1324 reloc->read_domains, 1325 reloc->write_domain); 1326 return -EINVAL; 1327 } 1328 if (unlikely((reloc->write_domain | reloc->read_domains) 1329 & ~I915_GEM_GPU_DOMAINS)) { 1330 drm_dbg(&i915->drm, "reloc with read/write non-GPU domains: " 1331 "target %d offset %d " 1332 "read %08x write %08x", 1333 reloc->target_handle, 1334 (int) reloc->offset, 1335 reloc->read_domains, 1336 reloc->write_domain); 1337 return -EINVAL; 1338 } 1339 1340 if (reloc->write_domain) { 1341 target->flags |= EXEC_OBJECT_WRITE; 1342 1343 /* 1344 * Sandybridge PPGTT errata: We need a global gtt mapping 1345 * for MI and pipe_control writes because the gpu doesn't 1346 * properly redirect them through the ppgtt for non_secure 1347 * batchbuffers. 1348 */ 1349 if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION && 1350 GRAPHICS_VER(eb->i915) == 6) { 1351 err = i915_vma_bind(target->vma, 1352 target->vma->obj->cache_level, 1353 PIN_GLOBAL, NULL); 1354 if (err) 1355 return err; 1356 } 1357 } 1358 1359 /* 1360 * If the relocation already has the right value in it, no 1361 * more work needs to be done. 1362 */ 1363 if (!DBG_FORCE_RELOC && 1364 gen8_canonical_addr(target->vma->node.start) == reloc->presumed_offset) 1365 return 0; 1366 1367 /* Check that the relocation address is valid... */ 1368 if (unlikely(reloc->offset > 1369 ev->vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) { 1370 drm_dbg(&i915->drm, "Relocation beyond object bounds: " 1371 "target %d offset %d size %d.\n", 1372 reloc->target_handle, 1373 (int)reloc->offset, 1374 (int)ev->vma->size); 1375 return -EINVAL; 1376 } 1377 if (unlikely(reloc->offset & 3)) { 1378 drm_dbg(&i915->drm, "Relocation not 4-byte aligned: " 1379 "target %d offset %d.\n", 1380 reloc->target_handle, 1381 (int)reloc->offset); 1382 return -EINVAL; 1383 } 1384 1385 /* 1386 * If we write into the object, we need to force the synchronisation 1387 * barrier, either with an asynchronous clflush or if we executed the 1388 * patching using the GPU (though that should be serialised by the 1389 * timeline). To be completely sure, and since we are required to 1390 * do relocations we are already stalling, disable the user's opt 1391 * out of our synchronisation. 1392 */ 1393 ev->flags &= ~EXEC_OBJECT_ASYNC; 1394 1395 /* and update the user's relocation entry */ 1396 return relocate_entry(ev->vma, reloc, eb, target->vma); 1397 } 1398 1399 static int eb_relocate_vma(struct i915_execbuffer *eb, struct eb_vma *ev) 1400 { 1401 #define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry)) 1402 struct drm_i915_gem_relocation_entry stack[N_RELOC(512)]; 1403 const struct drm_i915_gem_exec_object2 *entry = ev->exec; 1404 struct drm_i915_gem_relocation_entry __user *urelocs = 1405 u64_to_user_ptr(entry->relocs_ptr); 1406 unsigned long remain = entry->relocation_count; 1407 1408 if (unlikely(remain > N_RELOC(ULONG_MAX))) 1409 return -EINVAL; 1410 1411 /* 1412 * We must check that the entire relocation array is safe 1413 * to read. However, if the array is not writable the user loses 1414 * the updated relocation values. 1415 */ 1416 if (unlikely(!access_ok(urelocs, remain * sizeof(*urelocs)))) 1417 return -EFAULT; 1418 1419 do { 1420 struct drm_i915_gem_relocation_entry *r = stack; 1421 unsigned int count = 1422 min_t(unsigned long, remain, ARRAY_SIZE(stack)); 1423 unsigned int copied; 1424 1425 /* 1426 * This is the fast path and we cannot handle a pagefault 1427 * whilst holding the struct mutex lest the user pass in the 1428 * relocations contained within a mmaped bo. For in such a case 1429 * we, the page fault handler would call i915_gem_fault() and 1430 * we would try to acquire the struct mutex again. Obviously 1431 * this is bad and so lockdep complains vehemently. 1432 */ 1433 pagefault_disable(); 1434 copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0])); 1435 pagefault_enable(); 1436 if (unlikely(copied)) { 1437 remain = -EFAULT; 1438 goto out; 1439 } 1440 1441 remain -= count; 1442 do { 1443 u64 offset = eb_relocate_entry(eb, ev, r); 1444 1445 if (likely(offset == 0)) { 1446 } else if ((s64)offset < 0) { 1447 remain = (int)offset; 1448 goto out; 1449 } else { 1450 /* 1451 * Note that reporting an error now 1452 * leaves everything in an inconsistent 1453 * state as we have *already* changed 1454 * the relocation value inside the 1455 * object. As we have not changed the 1456 * reloc.presumed_offset or will not 1457 * change the execobject.offset, on the 1458 * call we may not rewrite the value 1459 * inside the object, leaving it 1460 * dangling and causing a GPU hang. Unless 1461 * userspace dynamically rebuilds the 1462 * relocations on each execbuf rather than 1463 * presume a static tree. 1464 * 1465 * We did previously check if the relocations 1466 * were writable (access_ok), an error now 1467 * would be a strange race with mprotect, 1468 * having already demonstrated that we 1469 * can read from this userspace address. 1470 */ 1471 offset = gen8_canonical_addr(offset & ~UPDATE); 1472 __put_user(offset, 1473 &urelocs[r - stack].presumed_offset); 1474 } 1475 } while (r++, --count); 1476 urelocs += ARRAY_SIZE(stack); 1477 } while (remain); 1478 out: 1479 reloc_cache_reset(&eb->reloc_cache, eb); 1480 return remain; 1481 } 1482 1483 static int 1484 eb_relocate_vma_slow(struct i915_execbuffer *eb, struct eb_vma *ev) 1485 { 1486 const struct drm_i915_gem_exec_object2 *entry = ev->exec; 1487 struct drm_i915_gem_relocation_entry *relocs = 1488 u64_to_ptr(typeof(*relocs), entry->relocs_ptr); 1489 unsigned int i; 1490 int err; 1491 1492 for (i = 0; i < entry->relocation_count; i++) { 1493 u64 offset = eb_relocate_entry(eb, ev, &relocs[i]); 1494 1495 if ((s64)offset < 0) { 1496 err = (int)offset; 1497 goto err; 1498 } 1499 } 1500 err = 0; 1501 err: 1502 reloc_cache_reset(&eb->reloc_cache, eb); 1503 return err; 1504 } 1505 1506 static int check_relocations(const struct drm_i915_gem_exec_object2 *entry) 1507 { 1508 const char __user *addr, *end; 1509 unsigned long size; 1510 char __maybe_unused c; 1511 1512 size = entry->relocation_count; 1513 if (size == 0) 1514 return 0; 1515 1516 if (size > N_RELOC(ULONG_MAX)) 1517 return -EINVAL; 1518 1519 addr = u64_to_user_ptr(entry->relocs_ptr); 1520 size *= sizeof(struct drm_i915_gem_relocation_entry); 1521 if (!access_ok(addr, size)) 1522 return -EFAULT; 1523 1524 end = addr + size; 1525 for (; addr < end; addr += PAGE_SIZE) { 1526 int err = __get_user(c, addr); 1527 if (err) 1528 return err; 1529 } 1530 return __get_user(c, end - 1); 1531 } 1532 1533 static int eb_copy_relocations(const struct i915_execbuffer *eb) 1534 { 1535 struct drm_i915_gem_relocation_entry *relocs; 1536 const unsigned int count = eb->buffer_count; 1537 unsigned int i; 1538 int err; 1539 1540 for (i = 0; i < count; i++) { 1541 const unsigned int nreloc = eb->exec[i].relocation_count; 1542 struct drm_i915_gem_relocation_entry __user *urelocs; 1543 unsigned long size; 1544 unsigned long copied; 1545 1546 if (nreloc == 0) 1547 continue; 1548 1549 err = check_relocations(&eb->exec[i]); 1550 if (err) 1551 goto err; 1552 1553 urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr); 1554 size = nreloc * sizeof(*relocs); 1555 1556 relocs = kvmalloc_array(size, 1, GFP_KERNEL); 1557 if (!relocs) { 1558 err = -ENOMEM; 1559 goto err; 1560 } 1561 1562 /* copy_from_user is limited to < 4GiB */ 1563 copied = 0; 1564 do { 1565 unsigned int len = 1566 min_t(u64, BIT_ULL(31), size - copied); 1567 1568 if (__copy_from_user((char *)relocs + copied, 1569 (char __user *)urelocs + copied, 1570 len)) 1571 goto end; 1572 1573 copied += len; 1574 } while (copied < size); 1575 1576 /* 1577 * As we do not update the known relocation offsets after 1578 * relocating (due to the complexities in lock handling), 1579 * we need to mark them as invalid now so that we force the 1580 * relocation processing next time. Just in case the target 1581 * object is evicted and then rebound into its old 1582 * presumed_offset before the next execbuffer - if that 1583 * happened we would make the mistake of assuming that the 1584 * relocations were valid. 1585 */ 1586 if (!user_access_begin(urelocs, size)) 1587 goto end; 1588 1589 for (copied = 0; copied < nreloc; copied++) 1590 unsafe_put_user(-1, 1591 &urelocs[copied].presumed_offset, 1592 end_user); 1593 user_access_end(); 1594 1595 eb->exec[i].relocs_ptr = (uintptr_t)relocs; 1596 } 1597 1598 return 0; 1599 1600 end_user: 1601 user_access_end(); 1602 end: 1603 kvfree(relocs); 1604 err = -EFAULT; 1605 err: 1606 while (i--) { 1607 relocs = u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr); 1608 if (eb->exec[i].relocation_count) 1609 kvfree(relocs); 1610 } 1611 return err; 1612 } 1613 1614 static int eb_prefault_relocations(const struct i915_execbuffer *eb) 1615 { 1616 const unsigned int count = eb->buffer_count; 1617 unsigned int i; 1618 1619 for (i = 0; i < count; i++) { 1620 int err; 1621 1622 err = check_relocations(&eb->exec[i]); 1623 if (err) 1624 return err; 1625 } 1626 1627 return 0; 1628 } 1629 1630 static int eb_reinit_userptr(struct i915_execbuffer *eb) 1631 { 1632 const unsigned int count = eb->buffer_count; 1633 unsigned int i; 1634 int ret; 1635 1636 if (likely(!(eb->args->flags & __EXEC_USERPTR_USED))) 1637 return 0; 1638 1639 for (i = 0; i < count; i++) { 1640 struct eb_vma *ev = &eb->vma[i]; 1641 1642 if (!i915_gem_object_is_userptr(ev->vma->obj)) 1643 continue; 1644 1645 ret = i915_gem_object_userptr_submit_init(ev->vma->obj); 1646 if (ret) 1647 return ret; 1648 1649 ev->flags |= __EXEC_OBJECT_USERPTR_INIT; 1650 } 1651 1652 return 0; 1653 } 1654 1655 static noinline int eb_relocate_parse_slow(struct i915_execbuffer *eb, 1656 struct i915_request *rq) 1657 { 1658 bool have_copy = false; 1659 struct eb_vma *ev; 1660 int err = 0; 1661 1662 repeat: 1663 if (signal_pending(current)) { 1664 err = -ERESTARTSYS; 1665 goto out; 1666 } 1667 1668 /* We may process another execbuffer during the unlock... */ 1669 eb_release_vmas(eb, false); 1670 i915_gem_ww_ctx_fini(&eb->ww); 1671 1672 if (rq) { 1673 /* nonblocking is always false */ 1674 if (i915_request_wait(rq, I915_WAIT_INTERRUPTIBLE, 1675 MAX_SCHEDULE_TIMEOUT) < 0) { 1676 i915_request_put(rq); 1677 rq = NULL; 1678 1679 err = -EINTR; 1680 goto err_relock; 1681 } 1682 1683 i915_request_put(rq); 1684 rq = NULL; 1685 } 1686 1687 /* 1688 * We take 3 passes through the slowpatch. 1689 * 1690 * 1 - we try to just prefault all the user relocation entries and 1691 * then attempt to reuse the atomic pagefault disabled fast path again. 1692 * 1693 * 2 - we copy the user entries to a local buffer here outside of the 1694 * local and allow ourselves to wait upon any rendering before 1695 * relocations 1696 * 1697 * 3 - we already have a local copy of the relocation entries, but 1698 * were interrupted (EAGAIN) whilst waiting for the objects, try again. 1699 */ 1700 if (!err) { 1701 err = eb_prefault_relocations(eb); 1702 } else if (!have_copy) { 1703 err = eb_copy_relocations(eb); 1704 have_copy = err == 0; 1705 } else { 1706 cond_resched(); 1707 err = 0; 1708 } 1709 1710 if (!err) 1711 err = eb_reinit_userptr(eb); 1712 1713 err_relock: 1714 i915_gem_ww_ctx_init(&eb->ww, true); 1715 if (err) 1716 goto out; 1717 1718 /* reacquire the objects */ 1719 repeat_validate: 1720 rq = eb_pin_engine(eb, false); 1721 if (IS_ERR(rq)) { 1722 err = PTR_ERR(rq); 1723 rq = NULL; 1724 goto err; 1725 } 1726 1727 /* We didn't throttle, should be NULL */ 1728 GEM_WARN_ON(rq); 1729 1730 err = eb_validate_vmas(eb); 1731 if (err) 1732 goto err; 1733 1734 GEM_BUG_ON(!eb->batch); 1735 1736 list_for_each_entry(ev, &eb->relocs, reloc_link) { 1737 if (!have_copy) { 1738 err = eb_relocate_vma(eb, ev); 1739 if (err) 1740 break; 1741 } else { 1742 err = eb_relocate_vma_slow(eb, ev); 1743 if (err) 1744 break; 1745 } 1746 } 1747 1748 if (err == -EDEADLK) 1749 goto err; 1750 1751 if (err && !have_copy) 1752 goto repeat; 1753 1754 if (err) 1755 goto err; 1756 1757 /* as last step, parse the command buffer */ 1758 err = eb_parse(eb); 1759 if (err) 1760 goto err; 1761 1762 /* 1763 * Leave the user relocations as are, this is the painfully slow path, 1764 * and we want to avoid the complication of dropping the lock whilst 1765 * having buffers reserved in the aperture and so causing spurious 1766 * ENOSPC for random operations. 1767 */ 1768 1769 err: 1770 if (err == -EDEADLK) { 1771 eb_release_vmas(eb, false); 1772 err = i915_gem_ww_ctx_backoff(&eb->ww); 1773 if (!err) 1774 goto repeat_validate; 1775 } 1776 1777 if (err == -EAGAIN) 1778 goto repeat; 1779 1780 out: 1781 if (have_copy) { 1782 const unsigned int count = eb->buffer_count; 1783 unsigned int i; 1784 1785 for (i = 0; i < count; i++) { 1786 const struct drm_i915_gem_exec_object2 *entry = 1787 &eb->exec[i]; 1788 struct drm_i915_gem_relocation_entry *relocs; 1789 1790 if (!entry->relocation_count) 1791 continue; 1792 1793 relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr); 1794 kvfree(relocs); 1795 } 1796 } 1797 1798 if (rq) 1799 i915_request_put(rq); 1800 1801 return err; 1802 } 1803 1804 static int eb_relocate_parse(struct i915_execbuffer *eb) 1805 { 1806 int err; 1807 struct i915_request *rq = NULL; 1808 bool throttle = true; 1809 1810 retry: 1811 rq = eb_pin_engine(eb, throttle); 1812 if (IS_ERR(rq)) { 1813 err = PTR_ERR(rq); 1814 rq = NULL; 1815 if (err != -EDEADLK) 1816 return err; 1817 1818 goto err; 1819 } 1820 1821 if (rq) { 1822 #ifdef __linux__ 1823 bool nonblock = eb->file->filp->f_flags & O_NONBLOCK; 1824 #else 1825 bool nonblock = eb->file->filp->f_flag & FNONBLOCK; 1826 #endif 1827 1828 /* Need to drop all locks now for throttling, take slowpath */ 1829 err = i915_request_wait(rq, I915_WAIT_INTERRUPTIBLE, 0); 1830 if (err == -ETIME) { 1831 if (nonblock) { 1832 err = -EWOULDBLOCK; 1833 i915_request_put(rq); 1834 goto err; 1835 } 1836 goto slow; 1837 } 1838 i915_request_put(rq); 1839 rq = NULL; 1840 } 1841 1842 /* only throttle once, even if we didn't need to throttle */ 1843 throttle = false; 1844 1845 err = eb_validate_vmas(eb); 1846 if (err == -EAGAIN) 1847 goto slow; 1848 else if (err) 1849 goto err; 1850 1851 /* The objects are in their final locations, apply the relocations. */ 1852 if (eb->args->flags & __EXEC_HAS_RELOC) { 1853 struct eb_vma *ev; 1854 1855 list_for_each_entry(ev, &eb->relocs, reloc_link) { 1856 err = eb_relocate_vma(eb, ev); 1857 if (err) 1858 break; 1859 } 1860 1861 if (err == -EDEADLK) 1862 goto err; 1863 else if (err) 1864 goto slow; 1865 } 1866 1867 if (!err) 1868 err = eb_parse(eb); 1869 1870 err: 1871 if (err == -EDEADLK) { 1872 eb_release_vmas(eb, false); 1873 err = i915_gem_ww_ctx_backoff(&eb->ww); 1874 if (!err) 1875 goto retry; 1876 } 1877 1878 return err; 1879 1880 slow: 1881 err = eb_relocate_parse_slow(eb, rq); 1882 if (err) 1883 /* 1884 * If the user expects the execobject.offset and 1885 * reloc.presumed_offset to be an exact match, 1886 * as for using NO_RELOC, then we cannot update 1887 * the execobject.offset until we have completed 1888 * relocation. 1889 */ 1890 eb->args->flags &= ~__EXEC_HAS_RELOC; 1891 1892 return err; 1893 } 1894 1895 static int eb_move_to_gpu(struct i915_execbuffer *eb) 1896 { 1897 const unsigned int count = eb->buffer_count; 1898 unsigned int i = count; 1899 int err = 0; 1900 1901 while (i--) { 1902 struct eb_vma *ev = &eb->vma[i]; 1903 struct i915_vma *vma = ev->vma; 1904 unsigned int flags = ev->flags; 1905 struct drm_i915_gem_object *obj = vma->obj; 1906 1907 assert_vma_held(vma); 1908 1909 if (flags & EXEC_OBJECT_CAPTURE) { 1910 struct i915_capture_list *capture; 1911 1912 capture = kmalloc(sizeof(*capture), GFP_KERNEL); 1913 if (capture) { 1914 capture->next = eb->request->capture_list; 1915 capture->vma = vma; 1916 eb->request->capture_list = capture; 1917 } 1918 } 1919 1920 /* 1921 * If the GPU is not _reading_ through the CPU cache, we need 1922 * to make sure that any writes (both previous GPU writes from 1923 * before a change in snooping levels and normal CPU writes) 1924 * caught in that cache are flushed to main memory. 1925 * 1926 * We want to say 1927 * obj->cache_dirty && 1928 * !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ) 1929 * but gcc's optimiser doesn't handle that as well and emits 1930 * two jumps instead of one. Maybe one day... 1931 */ 1932 if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) { 1933 if (i915_gem_clflush_object(obj, 0)) 1934 flags &= ~EXEC_OBJECT_ASYNC; 1935 } 1936 1937 if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) { 1938 err = i915_request_await_object 1939 (eb->request, obj, flags & EXEC_OBJECT_WRITE); 1940 } 1941 1942 if (err == 0) 1943 err = i915_vma_move_to_active(vma, eb->request, 1944 flags | __EXEC_OBJECT_NO_RESERVE); 1945 } 1946 1947 #ifdef CONFIG_MMU_NOTIFIER 1948 if (!err && (eb->args->flags & __EXEC_USERPTR_USED)) { 1949 read_lock(&eb->i915->mm.notifier_lock); 1950 1951 /* 1952 * count is always at least 1, otherwise __EXEC_USERPTR_USED 1953 * could not have been set 1954 */ 1955 for (i = 0; i < count; i++) { 1956 struct eb_vma *ev = &eb->vma[i]; 1957 struct drm_i915_gem_object *obj = ev->vma->obj; 1958 1959 if (!i915_gem_object_is_userptr(obj)) 1960 continue; 1961 1962 err = i915_gem_object_userptr_submit_done(obj); 1963 if (err) 1964 break; 1965 } 1966 1967 read_unlock(&eb->i915->mm.notifier_lock); 1968 } 1969 #endif 1970 1971 if (unlikely(err)) 1972 goto err_skip; 1973 1974 /* Unconditionally flush any chipset caches (for streaming writes). */ 1975 intel_gt_chipset_flush(eb->engine->gt); 1976 return 0; 1977 1978 err_skip: 1979 i915_request_set_error_once(eb->request, err); 1980 return err; 1981 } 1982 1983 static int i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec) 1984 { 1985 if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS) 1986 return -EINVAL; 1987 1988 /* Kernel clipping was a DRI1 misfeature */ 1989 if (!(exec->flags & (I915_EXEC_FENCE_ARRAY | 1990 I915_EXEC_USE_EXTENSIONS))) { 1991 if (exec->num_cliprects || exec->cliprects_ptr) 1992 return -EINVAL; 1993 } 1994 1995 if (exec->DR4 == 0xffffffff) { 1996 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n"); 1997 exec->DR4 = 0; 1998 } 1999 if (exec->DR1 || exec->DR4) 2000 return -EINVAL; 2001 2002 if ((exec->batch_start_offset | exec->batch_len) & 0x7) 2003 return -EINVAL; 2004 2005 return 0; 2006 } 2007 2008 static int i915_reset_gen7_sol_offsets(struct i915_request *rq) 2009 { 2010 u32 *cs; 2011 int i; 2012 2013 if (GRAPHICS_VER(rq->engine->i915) != 7 || rq->engine->id != RCS0) { 2014 drm_dbg(&rq->engine->i915->drm, "sol reset is gen7/rcs only\n"); 2015 return -EINVAL; 2016 } 2017 2018 cs = intel_ring_begin(rq, 4 * 2 + 2); 2019 if (IS_ERR(cs)) 2020 return PTR_ERR(cs); 2021 2022 *cs++ = MI_LOAD_REGISTER_IMM(4); 2023 for (i = 0; i < 4; i++) { 2024 *cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i)); 2025 *cs++ = 0; 2026 } 2027 *cs++ = MI_NOOP; 2028 intel_ring_advance(rq, cs); 2029 2030 return 0; 2031 } 2032 2033 static struct i915_vma * 2034 shadow_batch_pin(struct i915_execbuffer *eb, 2035 struct drm_i915_gem_object *obj, 2036 struct i915_address_space *vm, 2037 unsigned int flags) 2038 { 2039 struct i915_vma *vma; 2040 int err; 2041 2042 vma = i915_vma_instance(obj, vm, NULL); 2043 if (IS_ERR(vma)) 2044 return vma; 2045 2046 err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, flags); 2047 if (err) 2048 return ERR_PTR(err); 2049 2050 return vma; 2051 } 2052 2053 static struct i915_vma *eb_dispatch_secure(struct i915_execbuffer *eb, struct i915_vma *vma) 2054 { 2055 /* 2056 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure 2057 * batch" bit. Hence we need to pin secure batches into the global gtt. 2058 * hsw should have this fixed, but bdw mucks it up again. */ 2059 if (eb->batch_flags & I915_DISPATCH_SECURE) 2060 return i915_gem_object_ggtt_pin_ww(vma->obj, &eb->ww, NULL, 0, 0, 0); 2061 2062 return NULL; 2063 } 2064 2065 static int eb_parse(struct i915_execbuffer *eb) 2066 { 2067 struct drm_i915_private *i915 = eb->i915; 2068 struct intel_gt_buffer_pool_node *pool = eb->batch_pool; 2069 struct i915_vma *shadow, *trampoline, *batch; 2070 unsigned long len; 2071 int err; 2072 2073 if (!eb_use_cmdparser(eb)) { 2074 batch = eb_dispatch_secure(eb, eb->batch->vma); 2075 if (IS_ERR(batch)) 2076 return PTR_ERR(batch); 2077 2078 goto secure_batch; 2079 } 2080 2081 len = eb->batch_len; 2082 if (!CMDPARSER_USES_GGTT(eb->i915)) { 2083 /* 2084 * ppGTT backed shadow buffers must be mapped RO, to prevent 2085 * post-scan tampering 2086 */ 2087 if (!eb->context->vm->has_read_only) { 2088 drm_dbg(&i915->drm, 2089 "Cannot prevent post-scan tampering without RO capable vm\n"); 2090 return -EINVAL; 2091 } 2092 } else { 2093 len += I915_CMD_PARSER_TRAMPOLINE_SIZE; 2094 } 2095 if (unlikely(len < eb->batch_len)) /* last paranoid check of overflow */ 2096 return -EINVAL; 2097 2098 if (!pool) { 2099 pool = intel_gt_get_buffer_pool(eb->engine->gt, len, 2100 I915_MAP_WB); 2101 if (IS_ERR(pool)) 2102 return PTR_ERR(pool); 2103 eb->batch_pool = pool; 2104 } 2105 2106 err = i915_gem_object_lock(pool->obj, &eb->ww); 2107 if (err) 2108 goto err; 2109 2110 shadow = shadow_batch_pin(eb, pool->obj, eb->context->vm, PIN_USER); 2111 if (IS_ERR(shadow)) { 2112 err = PTR_ERR(shadow); 2113 goto err; 2114 } 2115 intel_gt_buffer_pool_mark_used(pool); 2116 i915_gem_object_set_readonly(shadow->obj); 2117 shadow->private = pool; 2118 2119 trampoline = NULL; 2120 if (CMDPARSER_USES_GGTT(eb->i915)) { 2121 trampoline = shadow; 2122 2123 shadow = shadow_batch_pin(eb, pool->obj, 2124 &eb->engine->gt->ggtt->vm, 2125 PIN_GLOBAL); 2126 if (IS_ERR(shadow)) { 2127 err = PTR_ERR(shadow); 2128 shadow = trampoline; 2129 goto err_shadow; 2130 } 2131 shadow->private = pool; 2132 2133 eb->batch_flags |= I915_DISPATCH_SECURE; 2134 } 2135 2136 batch = eb_dispatch_secure(eb, shadow); 2137 if (IS_ERR(batch)) { 2138 err = PTR_ERR(batch); 2139 goto err_trampoline; 2140 } 2141 2142 err = dma_resv_reserve_shared(shadow->resv, 1); 2143 if (err) 2144 goto err_trampoline; 2145 2146 err = intel_engine_cmd_parser(eb->engine, 2147 eb->batch->vma, 2148 eb->batch_start_offset, 2149 eb->batch_len, 2150 shadow, trampoline); 2151 if (err) 2152 goto err_unpin_batch; 2153 2154 eb->batch = &eb->vma[eb->buffer_count++]; 2155 eb->batch->vma = i915_vma_get(shadow); 2156 eb->batch->flags = __EXEC_OBJECT_HAS_PIN; 2157 2158 eb->trampoline = trampoline; 2159 eb->batch_start_offset = 0; 2160 2161 secure_batch: 2162 if (batch) { 2163 eb->batch = &eb->vma[eb->buffer_count++]; 2164 eb->batch->flags = __EXEC_OBJECT_HAS_PIN; 2165 eb->batch->vma = i915_vma_get(batch); 2166 } 2167 return 0; 2168 2169 err_unpin_batch: 2170 if (batch) 2171 i915_vma_unpin(batch); 2172 err_trampoline: 2173 if (trampoline) 2174 i915_vma_unpin(trampoline); 2175 err_shadow: 2176 i915_vma_unpin(shadow); 2177 err: 2178 return err; 2179 } 2180 2181 static int eb_submit(struct i915_execbuffer *eb, struct i915_vma *batch) 2182 { 2183 int err; 2184 2185 if (intel_context_nopreempt(eb->context)) 2186 __set_bit(I915_FENCE_FLAG_NOPREEMPT, &eb->request->fence.flags); 2187 2188 err = eb_move_to_gpu(eb); 2189 if (err) 2190 return err; 2191 2192 if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) { 2193 err = i915_reset_gen7_sol_offsets(eb->request); 2194 if (err) 2195 return err; 2196 } 2197 2198 /* 2199 * After we completed waiting for other engines (using HW semaphores) 2200 * then we can signal that this request/batch is ready to run. This 2201 * allows us to determine if the batch is still waiting on the GPU 2202 * or actually running by checking the breadcrumb. 2203 */ 2204 if (eb->engine->emit_init_breadcrumb) { 2205 err = eb->engine->emit_init_breadcrumb(eb->request); 2206 if (err) 2207 return err; 2208 } 2209 2210 err = eb->engine->emit_bb_start(eb->request, 2211 batch->node.start + 2212 eb->batch_start_offset, 2213 eb->batch_len, 2214 eb->batch_flags); 2215 if (err) 2216 return err; 2217 2218 if (eb->trampoline) { 2219 GEM_BUG_ON(eb->batch_start_offset); 2220 err = eb->engine->emit_bb_start(eb->request, 2221 eb->trampoline->node.start + 2222 eb->batch_len, 2223 0, 0); 2224 if (err) 2225 return err; 2226 } 2227 2228 return 0; 2229 } 2230 2231 static int num_vcs_engines(const struct drm_i915_private *i915) 2232 { 2233 return hweight_long(VDBOX_MASK(&i915->gt)); 2234 } 2235 2236 /* 2237 * Find one BSD ring to dispatch the corresponding BSD command. 2238 * The engine index is returned. 2239 */ 2240 static unsigned int 2241 gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv, 2242 struct drm_file *file) 2243 { 2244 struct drm_i915_file_private *file_priv = file->driver_priv; 2245 2246 /* Check whether the file_priv has already selected one ring. */ 2247 if ((int)file_priv->bsd_engine < 0) 2248 file_priv->bsd_engine = 2249 get_random_int() % num_vcs_engines(dev_priv); 2250 2251 return file_priv->bsd_engine; 2252 } 2253 2254 static const enum intel_engine_id user_ring_map[] = { 2255 [I915_EXEC_DEFAULT] = RCS0, 2256 [I915_EXEC_RENDER] = RCS0, 2257 [I915_EXEC_BLT] = BCS0, 2258 [I915_EXEC_BSD] = VCS0, 2259 [I915_EXEC_VEBOX] = VECS0 2260 }; 2261 2262 static struct i915_request *eb_throttle(struct i915_execbuffer *eb, struct intel_context *ce) 2263 { 2264 struct intel_ring *ring = ce->ring; 2265 struct intel_timeline *tl = ce->timeline; 2266 struct i915_request *rq; 2267 2268 /* 2269 * Completely unscientific finger-in-the-air estimates for suitable 2270 * maximum user request size (to avoid blocking) and then backoff. 2271 */ 2272 if (intel_ring_update_space(ring) >= PAGE_SIZE) 2273 return NULL; 2274 2275 /* 2276 * Find a request that after waiting upon, there will be at least half 2277 * the ring available. The hysteresis allows us to compete for the 2278 * shared ring and should mean that we sleep less often prior to 2279 * claiming our resources, but not so long that the ring completely 2280 * drains before we can submit our next request. 2281 */ 2282 list_for_each_entry(rq, &tl->requests, link) { 2283 if (rq->ring != ring) 2284 continue; 2285 2286 if (__intel_ring_space(rq->postfix, 2287 ring->emit, ring->size) > ring->size / 2) 2288 break; 2289 } 2290 if (&rq->link == &tl->requests) 2291 return NULL; /* weird, we will check again later for real */ 2292 2293 return i915_request_get(rq); 2294 } 2295 2296 static struct i915_request *eb_pin_engine(struct i915_execbuffer *eb, bool throttle) 2297 { 2298 struct intel_context *ce = eb->context; 2299 struct intel_timeline *tl; 2300 struct i915_request *rq = NULL; 2301 int err; 2302 2303 GEM_BUG_ON(eb->args->flags & __EXEC_ENGINE_PINNED); 2304 2305 if (unlikely(intel_context_is_banned(ce))) 2306 return ERR_PTR(-EIO); 2307 2308 /* 2309 * Pinning the contexts may generate requests in order to acquire 2310 * GGTT space, so do this first before we reserve a seqno for 2311 * ourselves. 2312 */ 2313 err = intel_context_pin_ww(ce, &eb->ww); 2314 if (err) 2315 return ERR_PTR(err); 2316 2317 /* 2318 * Take a local wakeref for preparing to dispatch the execbuf as 2319 * we expect to access the hardware fairly frequently in the 2320 * process, and require the engine to be kept awake between accesses. 2321 * Upon dispatch, we acquire another prolonged wakeref that we hold 2322 * until the timeline is idle, which in turn releases the wakeref 2323 * taken on the engine, and the parent device. 2324 */ 2325 tl = intel_context_timeline_lock(ce); 2326 if (IS_ERR(tl)) { 2327 intel_context_unpin(ce); 2328 return ERR_CAST(tl); 2329 } 2330 2331 intel_context_enter(ce); 2332 if (throttle) 2333 rq = eb_throttle(eb, ce); 2334 intel_context_timeline_unlock(tl); 2335 2336 eb->args->flags |= __EXEC_ENGINE_PINNED; 2337 return rq; 2338 } 2339 2340 static void eb_unpin_engine(struct i915_execbuffer *eb) 2341 { 2342 struct intel_context *ce = eb->context; 2343 struct intel_timeline *tl = ce->timeline; 2344 2345 if (!(eb->args->flags & __EXEC_ENGINE_PINNED)) 2346 return; 2347 2348 eb->args->flags &= ~__EXEC_ENGINE_PINNED; 2349 2350 mutex_lock(&tl->mutex); 2351 intel_context_exit(ce); 2352 mutex_unlock(&tl->mutex); 2353 2354 intel_context_unpin(ce); 2355 } 2356 2357 static unsigned int 2358 eb_select_legacy_ring(struct i915_execbuffer *eb) 2359 { 2360 struct drm_i915_private *i915 = eb->i915; 2361 struct drm_i915_gem_execbuffer2 *args = eb->args; 2362 unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK; 2363 2364 if (user_ring_id != I915_EXEC_BSD && 2365 (args->flags & I915_EXEC_BSD_MASK)) { 2366 drm_dbg(&i915->drm, 2367 "execbuf with non bsd ring but with invalid " 2368 "bsd dispatch flags: %d\n", (int)(args->flags)); 2369 return -1; 2370 } 2371 2372 if (user_ring_id == I915_EXEC_BSD && num_vcs_engines(i915) > 1) { 2373 unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK; 2374 2375 if (bsd_idx == I915_EXEC_BSD_DEFAULT) { 2376 bsd_idx = gen8_dispatch_bsd_engine(i915, eb->file); 2377 } else if (bsd_idx >= I915_EXEC_BSD_RING1 && 2378 bsd_idx <= I915_EXEC_BSD_RING2) { 2379 bsd_idx >>= I915_EXEC_BSD_SHIFT; 2380 bsd_idx--; 2381 } else { 2382 drm_dbg(&i915->drm, 2383 "execbuf with unknown bsd ring: %u\n", 2384 bsd_idx); 2385 return -1; 2386 } 2387 2388 return _VCS(bsd_idx); 2389 } 2390 2391 if (user_ring_id >= ARRAY_SIZE(user_ring_map)) { 2392 drm_dbg(&i915->drm, "execbuf with unknown ring: %u\n", 2393 user_ring_id); 2394 return -1; 2395 } 2396 2397 return user_ring_map[user_ring_id]; 2398 } 2399 2400 static int 2401 eb_select_engine(struct i915_execbuffer *eb) 2402 { 2403 struct intel_context *ce; 2404 unsigned int idx; 2405 int err; 2406 2407 if (i915_gem_context_user_engines(eb->gem_context)) 2408 idx = eb->args->flags & I915_EXEC_RING_MASK; 2409 else 2410 idx = eb_select_legacy_ring(eb); 2411 2412 ce = i915_gem_context_get_engine(eb->gem_context, idx); 2413 if (IS_ERR(ce)) 2414 return PTR_ERR(ce); 2415 2416 intel_gt_pm_get(ce->engine->gt); 2417 2418 if (!test_bit(CONTEXT_ALLOC_BIT, &ce->flags)) { 2419 err = intel_context_alloc_state(ce); 2420 if (err) 2421 goto err; 2422 } 2423 2424 /* 2425 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report 2426 * EIO if the GPU is already wedged. 2427 */ 2428 err = intel_gt_terminally_wedged(ce->engine->gt); 2429 if (err) 2430 goto err; 2431 2432 eb->context = ce; 2433 eb->engine = ce->engine; 2434 2435 /* 2436 * Make sure engine pool stays alive even if we call intel_context_put 2437 * during ww handling. The pool is destroyed when last pm reference 2438 * is dropped, which breaks our -EDEADLK handling. 2439 */ 2440 return err; 2441 2442 err: 2443 intel_gt_pm_put(ce->engine->gt); 2444 intel_context_put(ce); 2445 return err; 2446 } 2447 2448 static void 2449 eb_put_engine(struct i915_execbuffer *eb) 2450 { 2451 intel_gt_pm_put(eb->engine->gt); 2452 intel_context_put(eb->context); 2453 } 2454 2455 static void 2456 __free_fence_array(struct eb_fence *fences, unsigned int n) 2457 { 2458 while (n--) { 2459 drm_syncobj_put(ptr_mask_bits(fences[n].syncobj, 2)); 2460 dma_fence_put(fences[n].dma_fence); 2461 dma_fence_chain_free(fences[n].chain_fence); 2462 } 2463 kvfree(fences); 2464 } 2465 2466 static int 2467 add_timeline_fence_array(struct i915_execbuffer *eb, 2468 const struct drm_i915_gem_execbuffer_ext_timeline_fences *timeline_fences) 2469 { 2470 struct drm_i915_gem_exec_fence __user *user_fences; 2471 u64 __user *user_values; 2472 struct eb_fence *f; 2473 u64 nfences; 2474 int err = 0; 2475 2476 nfences = timeline_fences->fence_count; 2477 if (!nfences) 2478 return 0; 2479 2480 /* Check multiplication overflow for access_ok() and kvmalloc_array() */ 2481 BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long)); 2482 if (nfences > min_t(unsigned long, 2483 ULONG_MAX / sizeof(*user_fences), 2484 SIZE_MAX / sizeof(*f)) - eb->num_fences) 2485 return -EINVAL; 2486 2487 user_fences = u64_to_user_ptr(timeline_fences->handles_ptr); 2488 if (!access_ok(user_fences, nfences * sizeof(*user_fences))) 2489 return -EFAULT; 2490 2491 user_values = u64_to_user_ptr(timeline_fences->values_ptr); 2492 if (!access_ok(user_values, nfences * sizeof(*user_values))) 2493 return -EFAULT; 2494 2495 #ifdef __linux__ 2496 f = krealloc(eb->fences, 2497 (eb->num_fences + nfences) * sizeof(*f), 2498 __GFP_NOWARN | GFP_KERNEL); 2499 if (!f) 2500 return -ENOMEM; 2501 #else 2502 f = kmalloc((eb->num_fences + nfences) * sizeof(*f), 2503 __GFP_NOWARN | GFP_KERNEL); 2504 if (!f) 2505 return -ENOMEM; 2506 memcpy(f, eb->fences, eb->num_fences * sizeof(*f)); 2507 kfree(eb->fences); 2508 #endif 2509 2510 eb->fences = f; 2511 f += eb->num_fences; 2512 2513 #ifdef notyet 2514 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) & 2515 ~__I915_EXEC_FENCE_UNKNOWN_FLAGS); 2516 #endif 2517 2518 while (nfences--) { 2519 struct drm_i915_gem_exec_fence user_fence; 2520 struct drm_syncobj *syncobj; 2521 struct dma_fence *fence = NULL; 2522 u64 point; 2523 2524 if (__copy_from_user(&user_fence, 2525 user_fences++, 2526 sizeof(user_fence))) 2527 return -EFAULT; 2528 2529 if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) 2530 return -EINVAL; 2531 2532 if (__get_user(point, user_values++)) 2533 return -EFAULT; 2534 2535 syncobj = drm_syncobj_find(eb->file, user_fence.handle); 2536 if (!syncobj) { 2537 DRM_DEBUG("Invalid syncobj handle provided\n"); 2538 return -ENOENT; 2539 } 2540 2541 fence = drm_syncobj_fence_get(syncobj); 2542 2543 if (!fence && user_fence.flags && 2544 !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) { 2545 DRM_DEBUG("Syncobj handle has no fence\n"); 2546 drm_syncobj_put(syncobj); 2547 return -EINVAL; 2548 } 2549 2550 if (fence) 2551 err = dma_fence_chain_find_seqno(&fence, point); 2552 2553 if (err && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) { 2554 DRM_DEBUG("Syncobj handle missing requested point %llu\n", point); 2555 dma_fence_put(fence); 2556 drm_syncobj_put(syncobj); 2557 return err; 2558 } 2559 2560 /* 2561 * A point might have been signaled already and 2562 * garbage collected from the timeline. In this case 2563 * just ignore the point and carry on. 2564 */ 2565 if (!fence && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) { 2566 drm_syncobj_put(syncobj); 2567 continue; 2568 } 2569 2570 /* 2571 * For timeline syncobjs we need to preallocate chains for 2572 * later signaling. 2573 */ 2574 if (point != 0 && user_fence.flags & I915_EXEC_FENCE_SIGNAL) { 2575 /* 2576 * Waiting and signaling the same point (when point != 2577 * 0) would break the timeline. 2578 */ 2579 if (user_fence.flags & I915_EXEC_FENCE_WAIT) { 2580 DRM_DEBUG("Trying to wait & signal the same timeline point.\n"); 2581 dma_fence_put(fence); 2582 drm_syncobj_put(syncobj); 2583 return -EINVAL; 2584 } 2585 2586 f->chain_fence = dma_fence_chain_alloc(); 2587 if (!f->chain_fence) { 2588 drm_syncobj_put(syncobj); 2589 dma_fence_put(fence); 2590 return -ENOMEM; 2591 } 2592 } else { 2593 f->chain_fence = NULL; 2594 } 2595 2596 f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2); 2597 f->dma_fence = fence; 2598 f->value = point; 2599 f++; 2600 eb->num_fences++; 2601 } 2602 2603 return 0; 2604 } 2605 2606 static int add_fence_array(struct i915_execbuffer *eb) 2607 { 2608 struct drm_i915_gem_execbuffer2 *args = eb->args; 2609 struct drm_i915_gem_exec_fence __user *user; 2610 unsigned long num_fences = args->num_cliprects; 2611 struct eb_fence *f; 2612 2613 if (!(args->flags & I915_EXEC_FENCE_ARRAY)) 2614 return 0; 2615 2616 if (!num_fences) 2617 return 0; 2618 2619 /* Check multiplication overflow for access_ok() and kvmalloc_array() */ 2620 BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long)); 2621 if (num_fences > min_t(unsigned long, 2622 ULONG_MAX / sizeof(*user), 2623 SIZE_MAX / sizeof(*f) - eb->num_fences)) 2624 return -EINVAL; 2625 2626 user = u64_to_user_ptr(args->cliprects_ptr); 2627 if (!access_ok(user, num_fences * sizeof(*user))) 2628 return -EFAULT; 2629 2630 #ifdef __linux__ 2631 f = krealloc(eb->fences, 2632 (eb->num_fences + num_fences) * sizeof(*f), 2633 __GFP_NOWARN | GFP_KERNEL); 2634 if (!f) 2635 return -ENOMEM; 2636 #else 2637 f = kmalloc((eb->num_fences + num_fences) * sizeof(*f), 2638 __GFP_NOWARN | GFP_KERNEL); 2639 if (!f) 2640 return -ENOMEM; 2641 memcpy(f, eb->fences, eb->num_fences * sizeof(*f)); 2642 kfree(eb->fences); 2643 #endif 2644 2645 eb->fences = f; 2646 f += eb->num_fences; 2647 while (num_fences--) { 2648 struct drm_i915_gem_exec_fence user_fence; 2649 struct drm_syncobj *syncobj; 2650 struct dma_fence *fence = NULL; 2651 2652 if (__copy_from_user(&user_fence, user++, sizeof(user_fence))) 2653 return -EFAULT; 2654 2655 if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) 2656 return -EINVAL; 2657 2658 syncobj = drm_syncobj_find(eb->file, user_fence.handle); 2659 if (!syncobj) { 2660 DRM_DEBUG("Invalid syncobj handle provided\n"); 2661 return -ENOENT; 2662 } 2663 2664 if (user_fence.flags & I915_EXEC_FENCE_WAIT) { 2665 fence = drm_syncobj_fence_get(syncobj); 2666 if (!fence) { 2667 DRM_DEBUG("Syncobj handle has no fence\n"); 2668 drm_syncobj_put(syncobj); 2669 return -EINVAL; 2670 } 2671 } 2672 2673 #ifdef notyet 2674 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) & 2675 ~__I915_EXEC_FENCE_UNKNOWN_FLAGS); 2676 #endif 2677 2678 f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2); 2679 f->dma_fence = fence; 2680 f->value = 0; 2681 f->chain_fence = NULL; 2682 f++; 2683 eb->num_fences++; 2684 } 2685 2686 return 0; 2687 } 2688 2689 static void put_fence_array(struct eb_fence *fences, int num_fences) 2690 { 2691 if (fences) 2692 __free_fence_array(fences, num_fences); 2693 } 2694 2695 static int 2696 await_fence_array(struct i915_execbuffer *eb) 2697 { 2698 unsigned int n; 2699 int err; 2700 2701 for (n = 0; n < eb->num_fences; n++) { 2702 struct drm_syncobj *syncobj; 2703 unsigned int flags; 2704 2705 syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2); 2706 2707 if (!eb->fences[n].dma_fence) 2708 continue; 2709 2710 err = i915_request_await_dma_fence(eb->request, 2711 eb->fences[n].dma_fence); 2712 if (err < 0) 2713 return err; 2714 } 2715 2716 return 0; 2717 } 2718 2719 static void signal_fence_array(const struct i915_execbuffer *eb) 2720 { 2721 struct dma_fence * const fence = &eb->request->fence; 2722 unsigned int n; 2723 2724 for (n = 0; n < eb->num_fences; n++) { 2725 struct drm_syncobj *syncobj; 2726 unsigned int flags; 2727 2728 syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2); 2729 if (!(flags & I915_EXEC_FENCE_SIGNAL)) 2730 continue; 2731 2732 if (eb->fences[n].chain_fence) { 2733 drm_syncobj_add_point(syncobj, 2734 eb->fences[n].chain_fence, 2735 fence, 2736 eb->fences[n].value); 2737 /* 2738 * The chain's ownership is transferred to the 2739 * timeline. 2740 */ 2741 eb->fences[n].chain_fence = NULL; 2742 } else { 2743 drm_syncobj_replace_fence(syncobj, fence); 2744 } 2745 } 2746 } 2747 2748 static int 2749 parse_timeline_fences(struct i915_user_extension __user *ext, void *data) 2750 { 2751 struct i915_execbuffer *eb = data; 2752 struct drm_i915_gem_execbuffer_ext_timeline_fences timeline_fences; 2753 2754 if (copy_from_user(&timeline_fences, ext, sizeof(timeline_fences))) 2755 return -EFAULT; 2756 2757 return add_timeline_fence_array(eb, &timeline_fences); 2758 } 2759 2760 static void retire_requests(struct intel_timeline *tl, struct i915_request *end) 2761 { 2762 struct i915_request *rq, *rn; 2763 2764 list_for_each_entry_safe(rq, rn, &tl->requests, link) 2765 if (rq == end || !i915_request_retire(rq)) 2766 break; 2767 } 2768 2769 static int eb_request_add(struct i915_execbuffer *eb, int err) 2770 { 2771 struct i915_request *rq = eb->request; 2772 struct intel_timeline * const tl = i915_request_timeline(rq); 2773 struct i915_sched_attr attr = {}; 2774 struct i915_request *prev; 2775 2776 lockdep_assert_held(&tl->mutex); 2777 lockdep_unpin_lock(&tl->mutex, rq->cookie); 2778 2779 trace_i915_request_add(rq); 2780 2781 prev = __i915_request_commit(rq); 2782 2783 /* Check that the context wasn't destroyed before submission */ 2784 if (likely(!intel_context_is_closed(eb->context))) { 2785 attr = eb->gem_context->sched; 2786 } else { 2787 /* Serialise with context_close via the add_to_timeline */ 2788 i915_request_set_error_once(rq, -ENOENT); 2789 __i915_request_skip(rq); 2790 err = -ENOENT; /* override any transient errors */ 2791 } 2792 2793 __i915_request_queue(rq, &attr); 2794 2795 /* Try to clean up the client's timeline after submitting the request */ 2796 if (prev) 2797 retire_requests(tl, prev); 2798 2799 mutex_unlock(&tl->mutex); 2800 2801 return err; 2802 } 2803 2804 static const i915_user_extension_fn execbuf_extensions[] = { 2805 [DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES] = parse_timeline_fences, 2806 }; 2807 2808 static int 2809 parse_execbuf2_extensions(struct drm_i915_gem_execbuffer2 *args, 2810 struct i915_execbuffer *eb) 2811 { 2812 if (!(args->flags & I915_EXEC_USE_EXTENSIONS)) 2813 return 0; 2814 2815 /* The execbuf2 extension mechanism reuses cliprects_ptr. So we cannot 2816 * have another flag also using it at the same time. 2817 */ 2818 if (eb->args->flags & I915_EXEC_FENCE_ARRAY) 2819 return -EINVAL; 2820 2821 if (args->num_cliprects != 0) 2822 return -EINVAL; 2823 2824 return i915_user_extensions(u64_to_user_ptr(args->cliprects_ptr), 2825 execbuf_extensions, 2826 ARRAY_SIZE(execbuf_extensions), 2827 eb); 2828 } 2829 2830 static int 2831 i915_gem_do_execbuffer(struct drm_device *dev, 2832 struct drm_file *file, 2833 struct drm_i915_gem_execbuffer2 *args, 2834 struct drm_i915_gem_exec_object2 *exec) 2835 { 2836 struct drm_i915_private *i915 = to_i915(dev); 2837 struct i915_execbuffer eb; 2838 struct dma_fence *in_fence = NULL; 2839 struct sync_file *out_fence = NULL; 2840 struct i915_vma *batch; 2841 int out_fence_fd = -1; 2842 int err; 2843 2844 BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS); 2845 BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS & 2846 ~__EXEC_OBJECT_UNKNOWN_FLAGS); 2847 2848 eb.i915 = i915; 2849 eb.file = file; 2850 eb.args = args; 2851 if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC)) 2852 args->flags |= __EXEC_HAS_RELOC; 2853 2854 eb.exec = exec; 2855 eb.vma = (struct eb_vma *)(exec + args->buffer_count + 1); 2856 eb.vma[0].vma = NULL; 2857 eb.batch_pool = NULL; 2858 2859 eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS; 2860 reloc_cache_init(&eb.reloc_cache, eb.i915); 2861 2862 eb.buffer_count = args->buffer_count; 2863 eb.batch_start_offset = args->batch_start_offset; 2864 eb.batch_len = args->batch_len; 2865 eb.trampoline = NULL; 2866 2867 eb.fences = NULL; 2868 eb.num_fences = 0; 2869 2870 eb.batch_flags = 0; 2871 if (args->flags & I915_EXEC_SECURE) { 2872 if (GRAPHICS_VER(i915) >= 11) 2873 return -ENODEV; 2874 2875 /* Return -EPERM to trigger fallback code on old binaries. */ 2876 if (!HAS_SECURE_BATCHES(i915)) 2877 return -EPERM; 2878 2879 if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN)) 2880 return -EPERM; 2881 2882 eb.batch_flags |= I915_DISPATCH_SECURE; 2883 } 2884 if (args->flags & I915_EXEC_IS_PINNED) 2885 eb.batch_flags |= I915_DISPATCH_PINNED; 2886 2887 err = parse_execbuf2_extensions(args, &eb); 2888 if (err) 2889 goto err_ext; 2890 2891 err = add_fence_array(&eb); 2892 if (err) 2893 goto err_ext; 2894 2895 #define IN_FENCES (I915_EXEC_FENCE_IN | I915_EXEC_FENCE_SUBMIT) 2896 if (args->flags & IN_FENCES) { 2897 if ((args->flags & IN_FENCES) == IN_FENCES) 2898 return -EINVAL; 2899 2900 in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2)); 2901 if (!in_fence) { 2902 err = -EINVAL; 2903 goto err_ext; 2904 } 2905 } 2906 #undef IN_FENCES 2907 2908 if (args->flags & I915_EXEC_FENCE_OUT) { 2909 out_fence_fd = get_unused_fd_flags(O_CLOEXEC); 2910 if (out_fence_fd < 0) { 2911 err = out_fence_fd; 2912 goto err_in_fence; 2913 } 2914 } 2915 2916 err = eb_create(&eb); 2917 if (err) 2918 goto err_out_fence; 2919 2920 GEM_BUG_ON(!eb.lut_size); 2921 2922 err = eb_select_context(&eb); 2923 if (unlikely(err)) 2924 goto err_destroy; 2925 2926 err = eb_select_engine(&eb); 2927 if (unlikely(err)) 2928 goto err_context; 2929 2930 err = eb_lookup_vmas(&eb); 2931 if (err) { 2932 eb_release_vmas(&eb, true); 2933 goto err_engine; 2934 } 2935 2936 i915_gem_ww_ctx_init(&eb.ww, true); 2937 2938 err = eb_relocate_parse(&eb); 2939 if (err) { 2940 /* 2941 * If the user expects the execobject.offset and 2942 * reloc.presumed_offset to be an exact match, 2943 * as for using NO_RELOC, then we cannot update 2944 * the execobject.offset until we have completed 2945 * relocation. 2946 */ 2947 args->flags &= ~__EXEC_HAS_RELOC; 2948 goto err_vma; 2949 } 2950 2951 ww_acquire_done(&eb.ww.ctx); 2952 2953 batch = eb.batch->vma; 2954 2955 /* Allocate a request for this batch buffer nice and early. */ 2956 eb.request = i915_request_create(eb.context); 2957 if (IS_ERR(eb.request)) { 2958 err = PTR_ERR(eb.request); 2959 goto err_vma; 2960 } 2961 2962 if (unlikely(eb.gem_context->syncobj)) { 2963 struct dma_fence *fence; 2964 2965 fence = drm_syncobj_fence_get(eb.gem_context->syncobj); 2966 err = i915_request_await_dma_fence(eb.request, fence); 2967 dma_fence_put(fence); 2968 if (err) 2969 goto err_ext; 2970 } 2971 2972 if (in_fence) { 2973 if (args->flags & I915_EXEC_FENCE_SUBMIT) 2974 err = i915_request_await_execution(eb.request, 2975 in_fence); 2976 else 2977 err = i915_request_await_dma_fence(eb.request, 2978 in_fence); 2979 if (err < 0) 2980 goto err_request; 2981 } 2982 2983 if (eb.fences) { 2984 err = await_fence_array(&eb); 2985 if (err) 2986 goto err_request; 2987 } 2988 2989 if (out_fence_fd != -1) { 2990 out_fence = sync_file_create(&eb.request->fence); 2991 if (!out_fence) { 2992 err = -ENOMEM; 2993 goto err_request; 2994 } 2995 } 2996 2997 /* 2998 * Whilst this request exists, batch_obj will be on the 2999 * active_list, and so will hold the active reference. Only when this 3000 * request is retired will the the batch_obj be moved onto the 3001 * inactive_list and lose its active reference. Hence we do not need 3002 * to explicitly hold another reference here. 3003 */ 3004 eb.request->batch = batch; 3005 if (eb.batch_pool) 3006 intel_gt_buffer_pool_mark_active(eb.batch_pool, eb.request); 3007 3008 trace_i915_request_queue(eb.request, eb.batch_flags); 3009 err = eb_submit(&eb, batch); 3010 3011 err_request: 3012 i915_request_get(eb.request); 3013 err = eb_request_add(&eb, err); 3014 3015 if (eb.fences) 3016 signal_fence_array(&eb); 3017 3018 if (out_fence) { 3019 if (err == 0) { 3020 fd_install(out_fence_fd, out_fence->file); 3021 args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */ 3022 args->rsvd2 |= (u64)out_fence_fd << 32; 3023 out_fence_fd = -1; 3024 } else { 3025 fput(out_fence->file); 3026 } 3027 } 3028 3029 if (unlikely(eb.gem_context->syncobj)) { 3030 drm_syncobj_replace_fence(eb.gem_context->syncobj, 3031 &eb.request->fence); 3032 } 3033 3034 i915_request_put(eb.request); 3035 3036 err_vma: 3037 eb_release_vmas(&eb, true); 3038 if (eb.trampoline) 3039 i915_vma_unpin(eb.trampoline); 3040 WARN_ON(err == -EDEADLK); 3041 i915_gem_ww_ctx_fini(&eb.ww); 3042 3043 if (eb.batch_pool) 3044 intel_gt_buffer_pool_put(eb.batch_pool); 3045 err_engine: 3046 eb_put_engine(&eb); 3047 err_context: 3048 i915_gem_context_put(eb.gem_context); 3049 err_destroy: 3050 eb_destroy(&eb); 3051 err_out_fence: 3052 if (out_fence_fd != -1) 3053 put_unused_fd(out_fence_fd); 3054 err_in_fence: 3055 dma_fence_put(in_fence); 3056 err_ext: 3057 put_fence_array(eb.fences, eb.num_fences); 3058 return err; 3059 } 3060 3061 static size_t eb_element_size(void) 3062 { 3063 return sizeof(struct drm_i915_gem_exec_object2) + sizeof(struct eb_vma); 3064 } 3065 3066 static bool check_buffer_count(size_t count) 3067 { 3068 const size_t sz = eb_element_size(); 3069 3070 /* 3071 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup 3072 * array size (see eb_create()). Otherwise, we can accept an array as 3073 * large as can be addressed (though use large arrays at your peril)! 3074 */ 3075 3076 return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1); 3077 } 3078 3079 int 3080 i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data, 3081 struct drm_file *file) 3082 { 3083 struct drm_i915_private *i915 = to_i915(dev); 3084 struct drm_i915_gem_execbuffer2 *args = data; 3085 struct drm_i915_gem_exec_object2 *exec2_list; 3086 const size_t count = args->buffer_count; 3087 int err; 3088 3089 if (!check_buffer_count(count)) { 3090 drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count); 3091 return -EINVAL; 3092 } 3093 3094 err = i915_gem_check_execbuffer(args); 3095 if (err) 3096 return err; 3097 3098 /* Allocate extra slots for use by the command parser */ 3099 exec2_list = kvmalloc_array(count + 2, eb_element_size(), 3100 __GFP_NOWARN | GFP_KERNEL); 3101 if (exec2_list == NULL) { 3102 drm_dbg(&i915->drm, "Failed to allocate exec list for %zd buffers\n", 3103 count); 3104 return -ENOMEM; 3105 } 3106 if (copy_from_user(exec2_list, 3107 u64_to_user_ptr(args->buffers_ptr), 3108 sizeof(*exec2_list) * count)) { 3109 drm_dbg(&i915->drm, "copy %zd exec entries failed\n", count); 3110 kvfree(exec2_list); 3111 return -EFAULT; 3112 } 3113 3114 err = i915_gem_do_execbuffer(dev, file, args, exec2_list); 3115 3116 /* 3117 * Now that we have begun execution of the batchbuffer, we ignore 3118 * any new error after this point. Also given that we have already 3119 * updated the associated relocations, we try to write out the current 3120 * object locations irrespective of any error. 3121 */ 3122 if (args->flags & __EXEC_HAS_RELOC) { 3123 struct drm_i915_gem_exec_object2 __user *user_exec_list = 3124 u64_to_user_ptr(args->buffers_ptr); 3125 unsigned int i; 3126 3127 /* Copy the new buffer offsets back to the user's exec list. */ 3128 /* 3129 * Note: count * sizeof(*user_exec_list) does not overflow, 3130 * because we checked 'count' in check_buffer_count(). 3131 * 3132 * And this range already got effectively checked earlier 3133 * when we did the "copy_from_user()" above. 3134 */ 3135 if (!user_write_access_begin(user_exec_list, 3136 count * sizeof(*user_exec_list))) 3137 goto end; 3138 3139 for (i = 0; i < args->buffer_count; i++) { 3140 if (!(exec2_list[i].offset & UPDATE)) 3141 continue; 3142 3143 exec2_list[i].offset = 3144 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK); 3145 unsafe_put_user(exec2_list[i].offset, 3146 &user_exec_list[i].offset, 3147 end_user); 3148 } 3149 end_user: 3150 user_write_access_end(); 3151 end:; 3152 } 3153 3154 args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS; 3155 kvfree(exec2_list); 3156 return err; 3157 } 3158