1 /* 2 * SPDX-License-Identifier: MIT 3 * 4 * Copyright © 2008,2010 Intel Corporation 5 */ 6 7 #include <linux/intel-iommu.h> 8 #include <linux/dma-resv.h> 9 #include <linux/sync_file.h> 10 #include <linux/uaccess.h> 11 12 #include <drm/drm_syncobj.h> 13 14 #include <dev/pci/pcivar.h> 15 #include <dev/pci/agpvar.h> 16 17 #include "display/intel_frontbuffer.h" 18 19 #include "gem/i915_gem_ioctls.h" 20 #include "gt/intel_context.h" 21 #include "gt/intel_gt.h" 22 #include "gt/intel_gt_buffer_pool.h" 23 #include "gt/intel_gt_pm.h" 24 #include "gt/intel_ring.h" 25 26 #include "i915_drv.h" 27 #include "i915_gem_clflush.h" 28 #include "i915_gem_context.h" 29 #include "i915_gem_ioctls.h" 30 #include "i915_trace.h" 31 #include "i915_user_extensions.h" 32 33 struct eb_vma { 34 struct i915_vma *vma; 35 unsigned int flags; 36 37 /** This vma's place in the execbuf reservation list */ 38 struct drm_i915_gem_exec_object2 *exec; 39 struct list_head bind_link; 40 struct list_head reloc_link; 41 42 struct hlist_node node; 43 u32 handle; 44 }; 45 46 enum { 47 FORCE_CPU_RELOC = 1, 48 FORCE_GTT_RELOC, 49 FORCE_GPU_RELOC, 50 #define DBG_FORCE_RELOC 0 /* choose one of the above! */ 51 }; 52 53 #define __EXEC_OBJECT_HAS_PIN BIT(31) 54 #define __EXEC_OBJECT_HAS_FENCE BIT(30) 55 #define __EXEC_OBJECT_NEEDS_MAP BIT(29) 56 #define __EXEC_OBJECT_NEEDS_BIAS BIT(28) 57 #define __EXEC_OBJECT_INTERNAL_FLAGS (~0u << 28) /* all of the above */ 58 #define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE) 59 60 #define __EXEC_HAS_RELOC BIT(31) 61 #define __EXEC_ENGINE_PINNED BIT(30) 62 #define __EXEC_INTERNAL_FLAGS (~0u << 30) 63 #define UPDATE PIN_OFFSET_FIXED 64 65 #define BATCH_OFFSET_BIAS (256*1024) 66 67 #define __I915_EXEC_ILLEGAL_FLAGS \ 68 (__I915_EXEC_UNKNOWN_FLAGS | \ 69 I915_EXEC_CONSTANTS_MASK | \ 70 I915_EXEC_RESOURCE_STREAMER) 71 72 /* Catch emission of unexpected errors for CI! */ 73 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) 74 #undef EINVAL 75 #define EINVAL ({ \ 76 DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \ 77 22; \ 78 }) 79 #endif 80 81 /** 82 * DOC: User command execution 83 * 84 * Userspace submits commands to be executed on the GPU as an instruction 85 * stream within a GEM object we call a batchbuffer. This instructions may 86 * refer to other GEM objects containing auxiliary state such as kernels, 87 * samplers, render targets and even secondary batchbuffers. Userspace does 88 * not know where in the GPU memory these objects reside and so before the 89 * batchbuffer is passed to the GPU for execution, those addresses in the 90 * batchbuffer and auxiliary objects are updated. This is known as relocation, 91 * or patching. To try and avoid having to relocate each object on the next 92 * execution, userspace is told the location of those objects in this pass, 93 * but this remains just a hint as the kernel may choose a new location for 94 * any object in the future. 95 * 96 * At the level of talking to the hardware, submitting a batchbuffer for the 97 * GPU to execute is to add content to a buffer from which the HW 98 * command streamer is reading. 99 * 100 * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e. 101 * Execlists, this command is not placed on the same buffer as the 102 * remaining items. 103 * 104 * 2. Add a command to invalidate caches to the buffer. 105 * 106 * 3. Add a batchbuffer start command to the buffer; the start command is 107 * essentially a token together with the GPU address of the batchbuffer 108 * to be executed. 109 * 110 * 4. Add a pipeline flush to the buffer. 111 * 112 * 5. Add a memory write command to the buffer to record when the GPU 113 * is done executing the batchbuffer. The memory write writes the 114 * global sequence number of the request, ``i915_request::global_seqno``; 115 * the i915 driver uses the current value in the register to determine 116 * if the GPU has completed the batchbuffer. 117 * 118 * 6. Add a user interrupt command to the buffer. This command instructs 119 * the GPU to issue an interrupt when the command, pipeline flush and 120 * memory write are completed. 121 * 122 * 7. Inform the hardware of the additional commands added to the buffer 123 * (by updating the tail pointer). 124 * 125 * Processing an execbuf ioctl is conceptually split up into a few phases. 126 * 127 * 1. Validation - Ensure all the pointers, handles and flags are valid. 128 * 2. Reservation - Assign GPU address space for every object 129 * 3. Relocation - Update any addresses to point to the final locations 130 * 4. Serialisation - Order the request with respect to its dependencies 131 * 5. Construction - Construct a request to execute the batchbuffer 132 * 6. Submission (at some point in the future execution) 133 * 134 * Reserving resources for the execbuf is the most complicated phase. We 135 * neither want to have to migrate the object in the address space, nor do 136 * we want to have to update any relocations pointing to this object. Ideally, 137 * we want to leave the object where it is and for all the existing relocations 138 * to match. If the object is given a new address, or if userspace thinks the 139 * object is elsewhere, we have to parse all the relocation entries and update 140 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that 141 * all the target addresses in all of its objects match the value in the 142 * relocation entries and that they all match the presumed offsets given by the 143 * list of execbuffer objects. Using this knowledge, we know that if we haven't 144 * moved any buffers, all the relocation entries are valid and we can skip 145 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU 146 * hang.) The requirement for using I915_EXEC_NO_RELOC are: 147 * 148 * The addresses written in the objects must match the corresponding 149 * reloc.presumed_offset which in turn must match the corresponding 150 * execobject.offset. 151 * 152 * Any render targets written to in the batch must be flagged with 153 * EXEC_OBJECT_WRITE. 154 * 155 * To avoid stalling, execobject.offset should match the current 156 * address of that object within the active context. 157 * 158 * The reservation is done is multiple phases. First we try and keep any 159 * object already bound in its current location - so as long as meets the 160 * constraints imposed by the new execbuffer. Any object left unbound after the 161 * first pass is then fitted into any available idle space. If an object does 162 * not fit, all objects are removed from the reservation and the process rerun 163 * after sorting the objects into a priority order (more difficult to fit 164 * objects are tried first). Failing that, the entire VM is cleared and we try 165 * to fit the execbuf once last time before concluding that it simply will not 166 * fit. 167 * 168 * A small complication to all of this is that we allow userspace not only to 169 * specify an alignment and a size for the object in the address space, but 170 * we also allow userspace to specify the exact offset. This objects are 171 * simpler to place (the location is known a priori) all we have to do is make 172 * sure the space is available. 173 * 174 * Once all the objects are in place, patching up the buried pointers to point 175 * to the final locations is a fairly simple job of walking over the relocation 176 * entry arrays, looking up the right address and rewriting the value into 177 * the object. Simple! ... The relocation entries are stored in user memory 178 * and so to access them we have to copy them into a local buffer. That copy 179 * has to avoid taking any pagefaults as they may lead back to a GEM object 180 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split 181 * the relocation into multiple passes. First we try to do everything within an 182 * atomic context (avoid the pagefaults) which requires that we never wait. If 183 * we detect that we may wait, or if we need to fault, then we have to fallback 184 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm 185 * bells yet?) Dropping the mutex means that we lose all the state we have 186 * built up so far for the execbuf and we must reset any global data. However, 187 * we do leave the objects pinned in their final locations - which is a 188 * potential issue for concurrent execbufs. Once we have left the mutex, we can 189 * allocate and copy all the relocation entries into a large array at our 190 * leisure, reacquire the mutex, reclaim all the objects and other state and 191 * then proceed to update any incorrect addresses with the objects. 192 * 193 * As we process the relocation entries, we maintain a record of whether the 194 * object is being written to. Using NORELOC, we expect userspace to provide 195 * this information instead. We also check whether we can skip the relocation 196 * by comparing the expected value inside the relocation entry with the target's 197 * final address. If they differ, we have to map the current object and rewrite 198 * the 4 or 8 byte pointer within. 199 * 200 * Serialising an execbuf is quite simple according to the rules of the GEM 201 * ABI. Execution within each context is ordered by the order of submission. 202 * Writes to any GEM object are in order of submission and are exclusive. Reads 203 * from a GEM object are unordered with respect to other reads, but ordered by 204 * writes. A write submitted after a read cannot occur before the read, and 205 * similarly any read submitted after a write cannot occur before the write. 206 * Writes are ordered between engines such that only one write occurs at any 207 * time (completing any reads beforehand) - using semaphores where available 208 * and CPU serialisation otherwise. Other GEM access obey the same rules, any 209 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU 210 * reads before starting, and any read (either using set-domain or pread) must 211 * flush all GPU writes before starting. (Note we only employ a barrier before, 212 * we currently rely on userspace not concurrently starting a new execution 213 * whilst reading or writing to an object. This may be an advantage or not 214 * depending on how much you trust userspace not to shoot themselves in the 215 * foot.) Serialisation may just result in the request being inserted into 216 * a DAG awaiting its turn, but most simple is to wait on the CPU until 217 * all dependencies are resolved. 218 * 219 * After all of that, is just a matter of closing the request and handing it to 220 * the hardware (well, leaving it in a queue to be executed). However, we also 221 * offer the ability for batchbuffers to be run with elevated privileges so 222 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.) 223 * Before any batch is given extra privileges we first must check that it 224 * contains no nefarious instructions, we check that each instruction is from 225 * our whitelist and all registers are also from an allowed list. We first 226 * copy the user's batchbuffer to a shadow (so that the user doesn't have 227 * access to it, either by the CPU or GPU as we scan it) and then parse each 228 * instruction. If everything is ok, we set a flag telling the hardware to run 229 * the batchbuffer in trusted mode, otherwise the ioctl is rejected. 230 */ 231 232 struct eb_fence { 233 struct drm_syncobj *syncobj; /* Use with ptr_mask_bits() */ 234 struct dma_fence *dma_fence; 235 u64 value; 236 struct dma_fence_chain *chain_fence; 237 }; 238 239 struct i915_execbuffer { 240 struct drm_i915_private *i915; /** i915 backpointer */ 241 struct drm_file *file; /** per-file lookup tables and limits */ 242 struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */ 243 struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */ 244 struct eb_vma *vma; 245 246 struct intel_engine_cs *engine; /** engine to queue the request to */ 247 struct intel_context *context; /* logical state for the request */ 248 struct i915_gem_context *gem_context; /** caller's context */ 249 250 struct i915_request *request; /** our request to build */ 251 struct eb_vma *batch; /** identity of the batch obj/vma */ 252 struct i915_vma *trampoline; /** trampoline used for chaining */ 253 254 /** actual size of execobj[] as we may extend it for the cmdparser */ 255 unsigned int buffer_count; 256 257 /** list of vma not yet bound during reservation phase */ 258 struct list_head unbound; 259 260 /** list of vma that have execobj.relocation_count */ 261 struct list_head relocs; 262 263 struct i915_gem_ww_ctx ww; 264 265 /** 266 * Track the most recently used object for relocations, as we 267 * frequently have to perform multiple relocations within the same 268 * obj/page 269 */ 270 struct reloc_cache { 271 struct drm_mm_node node; /** temporary GTT binding */ 272 unsigned long vaddr; /** Current kmap address */ 273 unsigned long page; /** Currently mapped page index */ 274 unsigned int gen; /** Cached value of INTEL_GEN */ 275 bool use_64bit_reloc : 1; 276 bool has_llc : 1; 277 bool has_fence : 1; 278 bool needs_unfenced : 1; 279 280 struct i915_request *rq; 281 u32 *rq_cmd; 282 unsigned int rq_size; 283 struct intel_gt_buffer_pool_node *pool; 284 285 struct agp_map *map; 286 bus_space_tag_t iot; 287 bus_space_handle_t ioh; 288 } reloc_cache; 289 290 struct intel_gt_buffer_pool_node *reloc_pool; /** relocation pool for -EDEADLK handling */ 291 struct intel_context *reloc_context; 292 293 u64 invalid_flags; /** Set of execobj.flags that are invalid */ 294 u32 context_flags; /** Set of execobj.flags to insert from the ctx */ 295 296 u64 batch_len; /** Length of batch within object */ 297 u32 batch_start_offset; /** Location within object of batch */ 298 u32 batch_flags; /** Flags composed for emit_bb_start() */ 299 struct intel_gt_buffer_pool_node *batch_pool; /** pool node for batch buffer */ 300 301 /** 302 * Indicate either the size of the hastable used to resolve 303 * relocation handles, or if negative that we are using a direct 304 * index into the execobj[]. 305 */ 306 int lut_size; 307 struct hlist_head *buckets; /** ht for relocation handles */ 308 309 struct eb_fence *fences; 310 unsigned long num_fences; 311 }; 312 313 static int eb_parse(struct i915_execbuffer *eb); 314 static struct i915_request *eb_pin_engine(struct i915_execbuffer *eb, 315 bool throttle); 316 static void eb_unpin_engine(struct i915_execbuffer *eb); 317 318 static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb) 319 { 320 return intel_engine_requires_cmd_parser(eb->engine) || 321 (intel_engine_using_cmd_parser(eb->engine) && 322 eb->args->batch_len); 323 } 324 325 static int eb_create(struct i915_execbuffer *eb) 326 { 327 if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) { 328 unsigned int size = 1 + ilog2(eb->buffer_count); 329 330 /* 331 * Without a 1:1 association between relocation handles and 332 * the execobject[] index, we instead create a hashtable. 333 * We size it dynamically based on available memory, starting 334 * first with 1:1 assocative hash and scaling back until 335 * the allocation succeeds. 336 * 337 * Later on we use a positive lut_size to indicate we are 338 * using this hashtable, and a negative value to indicate a 339 * direct lookup. 340 */ 341 do { 342 gfp_t flags; 343 344 /* While we can still reduce the allocation size, don't 345 * raise a warning and allow the allocation to fail. 346 * On the last pass though, we want to try as hard 347 * as possible to perform the allocation and warn 348 * if it fails. 349 */ 350 flags = GFP_KERNEL; 351 if (size > 1) 352 flags |= __GFP_NORETRY | __GFP_NOWARN; 353 354 eb->buckets = kzalloc(sizeof(struct hlist_head) << size, 355 flags); 356 if (eb->buckets) 357 break; 358 } while (--size); 359 360 if (unlikely(!size)) 361 return -ENOMEM; 362 363 eb->lut_size = size; 364 } else { 365 eb->lut_size = -eb->buffer_count; 366 } 367 368 return 0; 369 } 370 371 static bool 372 eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry, 373 const struct i915_vma *vma, 374 unsigned int flags) 375 { 376 if (vma->node.size < entry->pad_to_size) 377 return true; 378 379 if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment)) 380 return true; 381 382 if (flags & EXEC_OBJECT_PINNED && 383 vma->node.start != entry->offset) 384 return true; 385 386 if (flags & __EXEC_OBJECT_NEEDS_BIAS && 387 vma->node.start < BATCH_OFFSET_BIAS) 388 return true; 389 390 if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) && 391 (vma->node.start + vma->node.size + 4095) >> 32) 392 return true; 393 394 if (flags & __EXEC_OBJECT_NEEDS_MAP && 395 !i915_vma_is_map_and_fenceable(vma)) 396 return true; 397 398 return false; 399 } 400 401 static u64 eb_pin_flags(const struct drm_i915_gem_exec_object2 *entry, 402 unsigned int exec_flags) 403 { 404 u64 pin_flags = 0; 405 406 if (exec_flags & EXEC_OBJECT_NEEDS_GTT) 407 pin_flags |= PIN_GLOBAL; 408 409 /* 410 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset, 411 * limit address to the first 4GBs for unflagged objects. 412 */ 413 if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS)) 414 pin_flags |= PIN_ZONE_4G; 415 416 if (exec_flags & __EXEC_OBJECT_NEEDS_MAP) 417 pin_flags |= PIN_MAPPABLE; 418 419 if (exec_flags & EXEC_OBJECT_PINNED) 420 pin_flags |= entry->offset | PIN_OFFSET_FIXED; 421 else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS) 422 pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS; 423 424 return pin_flags; 425 } 426 427 static inline bool 428 eb_pin_vma(struct i915_execbuffer *eb, 429 const struct drm_i915_gem_exec_object2 *entry, 430 struct eb_vma *ev) 431 { 432 struct i915_vma *vma = ev->vma; 433 u64 pin_flags; 434 435 if (vma->node.size) 436 pin_flags = vma->node.start; 437 else 438 pin_flags = entry->offset & PIN_OFFSET_MASK; 439 440 pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED; 441 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_GTT)) 442 pin_flags |= PIN_GLOBAL; 443 444 /* Attempt to reuse the current location if available */ 445 /* TODO: Add -EDEADLK handling here */ 446 if (unlikely(i915_vma_pin_ww(vma, &eb->ww, 0, 0, pin_flags))) { 447 if (entry->flags & EXEC_OBJECT_PINNED) 448 return false; 449 450 /* Failing that pick any _free_ space if suitable */ 451 if (unlikely(i915_vma_pin_ww(vma, &eb->ww, 452 entry->pad_to_size, 453 entry->alignment, 454 eb_pin_flags(entry, ev->flags) | 455 PIN_USER | PIN_NOEVICT))) 456 return false; 457 } 458 459 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) { 460 if (unlikely(i915_vma_pin_fence(vma))) { 461 i915_vma_unpin(vma); 462 return false; 463 } 464 465 if (vma->fence) 466 ev->flags |= __EXEC_OBJECT_HAS_FENCE; 467 } 468 469 ev->flags |= __EXEC_OBJECT_HAS_PIN; 470 return !eb_vma_misplaced(entry, vma, ev->flags); 471 } 472 473 static inline void 474 eb_unreserve_vma(struct eb_vma *ev) 475 { 476 if (!(ev->flags & __EXEC_OBJECT_HAS_PIN)) 477 return; 478 479 if (unlikely(ev->flags & __EXEC_OBJECT_HAS_FENCE)) 480 __i915_vma_unpin_fence(ev->vma); 481 482 __i915_vma_unpin(ev->vma); 483 ev->flags &= ~__EXEC_OBJECT_RESERVED; 484 } 485 486 static int 487 eb_validate_vma(struct i915_execbuffer *eb, 488 struct drm_i915_gem_exec_object2 *entry, 489 struct i915_vma *vma) 490 { 491 if (unlikely(entry->flags & eb->invalid_flags)) 492 return -EINVAL; 493 494 if (unlikely(entry->alignment && 495 !is_power_of_2_u64(entry->alignment))) 496 return -EINVAL; 497 498 /* 499 * Offset can be used as input (EXEC_OBJECT_PINNED), reject 500 * any non-page-aligned or non-canonical addresses. 501 */ 502 if (unlikely(entry->flags & EXEC_OBJECT_PINNED && 503 entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK))) 504 return -EINVAL; 505 506 /* pad_to_size was once a reserved field, so sanitize it */ 507 if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) { 508 if (unlikely(offset_in_page(entry->pad_to_size))) 509 return -EINVAL; 510 } else { 511 entry->pad_to_size = 0; 512 } 513 /* 514 * From drm_mm perspective address space is continuous, 515 * so from this point we're always using non-canonical 516 * form internally. 517 */ 518 entry->offset = gen8_noncanonical_addr(entry->offset); 519 520 if (!eb->reloc_cache.has_fence) { 521 entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE; 522 } else { 523 if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE || 524 eb->reloc_cache.needs_unfenced) && 525 i915_gem_object_is_tiled(vma->obj)) 526 entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP; 527 } 528 529 if (!(entry->flags & EXEC_OBJECT_PINNED)) 530 entry->flags |= eb->context_flags; 531 532 return 0; 533 } 534 535 static void 536 eb_add_vma(struct i915_execbuffer *eb, 537 unsigned int i, unsigned batch_idx, 538 struct i915_vma *vma) 539 { 540 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i]; 541 struct eb_vma *ev = &eb->vma[i]; 542 543 GEM_BUG_ON(i915_vma_is_closed(vma)); 544 545 ev->vma = vma; 546 ev->exec = entry; 547 ev->flags = entry->flags; 548 549 if (eb->lut_size > 0) { 550 ev->handle = entry->handle; 551 hlist_add_head(&ev->node, 552 &eb->buckets[hash_32(entry->handle, 553 eb->lut_size)]); 554 } 555 556 if (entry->relocation_count) 557 list_add_tail(&ev->reloc_link, &eb->relocs); 558 559 /* 560 * SNA is doing fancy tricks with compressing batch buffers, which leads 561 * to negative relocation deltas. Usually that works out ok since the 562 * relocate address is still positive, except when the batch is placed 563 * very low in the GTT. Ensure this doesn't happen. 564 * 565 * Note that actual hangs have only been observed on gen7, but for 566 * paranoia do it everywhere. 567 */ 568 if (i == batch_idx) { 569 if (entry->relocation_count && 570 !(ev->flags & EXEC_OBJECT_PINNED)) 571 ev->flags |= __EXEC_OBJECT_NEEDS_BIAS; 572 if (eb->reloc_cache.has_fence) 573 ev->flags |= EXEC_OBJECT_NEEDS_FENCE; 574 575 eb->batch = ev; 576 } 577 } 578 579 static inline int use_cpu_reloc(const struct reloc_cache *cache, 580 const struct drm_i915_gem_object *obj) 581 { 582 if (!i915_gem_object_has_struct_page(obj)) 583 return false; 584 585 if (DBG_FORCE_RELOC == FORCE_CPU_RELOC) 586 return true; 587 588 if (DBG_FORCE_RELOC == FORCE_GTT_RELOC) 589 return false; 590 591 return (cache->has_llc || 592 obj->cache_dirty || 593 obj->cache_level != I915_CACHE_NONE); 594 } 595 596 static int eb_reserve_vma(struct i915_execbuffer *eb, 597 struct eb_vma *ev, 598 u64 pin_flags) 599 { 600 struct drm_i915_gem_exec_object2 *entry = ev->exec; 601 struct i915_vma *vma = ev->vma; 602 int err; 603 604 if (drm_mm_node_allocated(&vma->node) && 605 eb_vma_misplaced(entry, vma, ev->flags)) { 606 err = i915_vma_unbind(vma); 607 if (err) 608 return err; 609 } 610 611 err = i915_vma_pin_ww(vma, &eb->ww, 612 entry->pad_to_size, entry->alignment, 613 eb_pin_flags(entry, ev->flags) | pin_flags); 614 if (err) 615 return err; 616 617 if (entry->offset != vma->node.start) { 618 entry->offset = vma->node.start | UPDATE; 619 eb->args->flags |= __EXEC_HAS_RELOC; 620 } 621 622 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) { 623 err = i915_vma_pin_fence(vma); 624 if (unlikely(err)) { 625 i915_vma_unpin(vma); 626 return err; 627 } 628 629 if (vma->fence) 630 ev->flags |= __EXEC_OBJECT_HAS_FENCE; 631 } 632 633 ev->flags |= __EXEC_OBJECT_HAS_PIN; 634 GEM_BUG_ON(eb_vma_misplaced(entry, vma, ev->flags)); 635 636 return 0; 637 } 638 639 static int eb_reserve(struct i915_execbuffer *eb) 640 { 641 const unsigned int count = eb->buffer_count; 642 unsigned int pin_flags = PIN_USER | PIN_NONBLOCK; 643 struct list_head last; 644 struct eb_vma *ev; 645 unsigned int i, pass; 646 int err = 0; 647 648 /* 649 * Attempt to pin all of the buffers into the GTT. 650 * This is done in 3 phases: 651 * 652 * 1a. Unbind all objects that do not match the GTT constraints for 653 * the execbuffer (fenceable, mappable, alignment etc). 654 * 1b. Increment pin count for already bound objects. 655 * 2. Bind new objects. 656 * 3. Decrement pin count. 657 * 658 * This avoid unnecessary unbinding of later objects in order to make 659 * room for the earlier objects *unless* we need to defragment. 660 */ 661 pass = 0; 662 do { 663 list_for_each_entry(ev, &eb->unbound, bind_link) { 664 err = eb_reserve_vma(eb, ev, pin_flags); 665 if (err) 666 break; 667 } 668 if (err != -ENOSPC) 669 return err; 670 671 /* Resort *all* the objects into priority order */ 672 INIT_LIST_HEAD(&eb->unbound); 673 INIT_LIST_HEAD(&last); 674 for (i = 0; i < count; i++) { 675 unsigned int flags; 676 677 ev = &eb->vma[i]; 678 flags = ev->flags; 679 if (flags & EXEC_OBJECT_PINNED && 680 flags & __EXEC_OBJECT_HAS_PIN) 681 continue; 682 683 eb_unreserve_vma(ev); 684 685 if (flags & EXEC_OBJECT_PINNED) 686 /* Pinned must have their slot */ 687 list_add(&ev->bind_link, &eb->unbound); 688 else if (flags & __EXEC_OBJECT_NEEDS_MAP) 689 /* Map require the lowest 256MiB (aperture) */ 690 list_add_tail(&ev->bind_link, &eb->unbound); 691 else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS)) 692 /* Prioritise 4GiB region for restricted bo */ 693 list_add(&ev->bind_link, &last); 694 else 695 list_add_tail(&ev->bind_link, &last); 696 } 697 list_splice_tail(&last, &eb->unbound); 698 699 switch (pass++) { 700 case 0: 701 break; 702 703 case 1: 704 /* Too fragmented, unbind everything and retry */ 705 mutex_lock(&eb->context->vm->mutex); 706 err = i915_gem_evict_vm(eb->context->vm); 707 mutex_unlock(&eb->context->vm->mutex); 708 if (err) 709 return err; 710 break; 711 712 default: 713 return -ENOSPC; 714 } 715 716 pin_flags = PIN_USER; 717 } while (1); 718 } 719 720 static unsigned int eb_batch_index(const struct i915_execbuffer *eb) 721 { 722 if (eb->args->flags & I915_EXEC_BATCH_FIRST) 723 return 0; 724 else 725 return eb->buffer_count - 1; 726 } 727 728 static int eb_select_context(struct i915_execbuffer *eb) 729 { 730 struct i915_gem_context *ctx; 731 732 ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1); 733 if (unlikely(!ctx)) 734 return -ENOENT; 735 736 eb->gem_context = ctx; 737 if (rcu_access_pointer(ctx->vm)) 738 eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT; 739 740 eb->context_flags = 0; 741 if (test_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags)) 742 eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS; 743 744 return 0; 745 } 746 747 static int __eb_add_lut(struct i915_execbuffer *eb, 748 u32 handle, struct i915_vma *vma) 749 { 750 struct i915_gem_context *ctx = eb->gem_context; 751 struct i915_lut_handle *lut; 752 int err; 753 754 lut = i915_lut_handle_alloc(); 755 if (unlikely(!lut)) 756 return -ENOMEM; 757 758 i915_vma_get(vma); 759 if (!atomic_fetch_inc(&vma->open_count)) 760 i915_vma_reopen(vma); 761 lut->handle = handle; 762 lut->ctx = ctx; 763 764 /* Check that the context hasn't been closed in the meantime */ 765 err = -EINTR; 766 if (!mutex_lock_interruptible(&ctx->lut_mutex)) { 767 struct i915_address_space *vm = rcu_access_pointer(ctx->vm); 768 769 if (unlikely(vm && vma->vm != vm)) 770 err = -EAGAIN; /* user racing with ctx set-vm */ 771 else if (likely(!i915_gem_context_is_closed(ctx))) 772 err = radix_tree_insert(&ctx->handles_vma, handle, vma); 773 else 774 err = -ENOENT; 775 if (err == 0) { /* And nor has this handle */ 776 struct drm_i915_gem_object *obj = vma->obj; 777 778 spin_lock(&obj->lut_lock); 779 if (idr_find(&eb->file->object_idr, handle) == obj) { 780 list_add(&lut->obj_link, &obj->lut_list); 781 } else { 782 radix_tree_delete(&ctx->handles_vma, handle); 783 err = -ENOENT; 784 } 785 spin_unlock(&obj->lut_lock); 786 } 787 mutex_unlock(&ctx->lut_mutex); 788 } 789 if (unlikely(err)) 790 goto err; 791 792 return 0; 793 794 err: 795 i915_vma_close(vma); 796 i915_vma_put(vma); 797 i915_lut_handle_free(lut); 798 return err; 799 } 800 801 static struct i915_vma *eb_lookup_vma(struct i915_execbuffer *eb, u32 handle) 802 { 803 struct i915_address_space *vm = eb->context->vm; 804 805 do { 806 struct drm_i915_gem_object *obj; 807 struct i915_vma *vma; 808 int err; 809 810 rcu_read_lock(); 811 vma = radix_tree_lookup(&eb->gem_context->handles_vma, handle); 812 if (likely(vma && vma->vm == vm)) 813 vma = i915_vma_tryget(vma); 814 rcu_read_unlock(); 815 if (likely(vma)) 816 return vma; 817 818 obj = i915_gem_object_lookup(eb->file, handle); 819 if (unlikely(!obj)) 820 return ERR_PTR(-ENOENT); 821 822 vma = i915_vma_instance(obj, vm, NULL); 823 if (IS_ERR(vma)) { 824 i915_gem_object_put(obj); 825 return vma; 826 } 827 828 err = __eb_add_lut(eb, handle, vma); 829 if (likely(!err)) 830 return vma; 831 832 i915_gem_object_put(obj); 833 if (err != -EEXIST) 834 return ERR_PTR(err); 835 } while (1); 836 } 837 838 static int eb_lookup_vmas(struct i915_execbuffer *eb) 839 { 840 struct drm_i915_private *i915 = eb->i915; 841 unsigned int batch = eb_batch_index(eb); 842 unsigned int i; 843 int err = 0; 844 845 INIT_LIST_HEAD(&eb->relocs); 846 847 for (i = 0; i < eb->buffer_count; i++) { 848 struct i915_vma *vma; 849 850 vma = eb_lookup_vma(eb, eb->exec[i].handle); 851 if (IS_ERR(vma)) { 852 err = PTR_ERR(vma); 853 goto err; 854 } 855 856 err = eb_validate_vma(eb, &eb->exec[i], vma); 857 if (unlikely(err)) { 858 i915_vma_put(vma); 859 goto err; 860 } 861 862 eb_add_vma(eb, i, batch, vma); 863 } 864 865 if (unlikely(eb->batch->flags & EXEC_OBJECT_WRITE)) { 866 drm_dbg(&i915->drm, 867 "Attempting to use self-modifying batch buffer\n"); 868 return -EINVAL; 869 } 870 871 if (range_overflows_t(u64, 872 eb->batch_start_offset, eb->batch_len, 873 eb->batch->vma->size)) { 874 drm_dbg(&i915->drm, "Attempting to use out-of-bounds batch\n"); 875 return -EINVAL; 876 } 877 878 if (eb->batch_len == 0) 879 eb->batch_len = eb->batch->vma->size - eb->batch_start_offset; 880 if (unlikely(eb->batch_len == 0)) { /* impossible! */ 881 drm_dbg(&i915->drm, "Invalid batch length\n"); 882 return -EINVAL; 883 } 884 885 return 0; 886 887 err: 888 eb->vma[i].vma = NULL; 889 return err; 890 } 891 892 static int eb_validate_vmas(struct i915_execbuffer *eb) 893 { 894 unsigned int i; 895 int err; 896 897 INIT_LIST_HEAD(&eb->unbound); 898 899 for (i = 0; i < eb->buffer_count; i++) { 900 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i]; 901 struct eb_vma *ev = &eb->vma[i]; 902 struct i915_vma *vma = ev->vma; 903 904 err = i915_gem_object_lock(vma->obj, &eb->ww); 905 if (err) 906 return err; 907 908 if (eb_pin_vma(eb, entry, ev)) { 909 if (entry->offset != vma->node.start) { 910 entry->offset = vma->node.start | UPDATE; 911 eb->args->flags |= __EXEC_HAS_RELOC; 912 } 913 } else { 914 eb_unreserve_vma(ev); 915 916 list_add_tail(&ev->bind_link, &eb->unbound); 917 if (drm_mm_node_allocated(&vma->node)) { 918 err = i915_vma_unbind(vma); 919 if (err) 920 return err; 921 } 922 } 923 924 GEM_BUG_ON(drm_mm_node_allocated(&vma->node) && 925 eb_vma_misplaced(&eb->exec[i], vma, ev->flags)); 926 } 927 928 if (!list_empty(&eb->unbound)) 929 return eb_reserve(eb); 930 931 return 0; 932 } 933 934 static struct eb_vma * 935 eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle) 936 { 937 if (eb->lut_size < 0) { 938 if (handle >= -eb->lut_size) 939 return NULL; 940 return &eb->vma[handle]; 941 } else { 942 struct hlist_head *head; 943 struct eb_vma *ev; 944 945 head = &eb->buckets[hash_32(handle, eb->lut_size)]; 946 hlist_for_each_entry(ev, head, node) { 947 if (ev->handle == handle) 948 return ev; 949 } 950 return NULL; 951 } 952 } 953 954 static void eb_release_vmas(struct i915_execbuffer *eb, bool final) 955 { 956 const unsigned int count = eb->buffer_count; 957 unsigned int i; 958 959 for (i = 0; i < count; i++) { 960 struct eb_vma *ev = &eb->vma[i]; 961 struct i915_vma *vma = ev->vma; 962 963 if (!vma) 964 break; 965 966 eb_unreserve_vma(ev); 967 968 if (final) 969 i915_vma_put(vma); 970 } 971 972 eb_unpin_engine(eb); 973 } 974 975 static void eb_destroy(const struct i915_execbuffer *eb) 976 { 977 GEM_BUG_ON(eb->reloc_cache.rq); 978 979 if (eb->lut_size > 0) 980 kfree(eb->buckets); 981 } 982 983 static inline u64 984 relocation_target(const struct drm_i915_gem_relocation_entry *reloc, 985 const struct i915_vma *target) 986 { 987 return gen8_canonical_addr((int)reloc->delta + target->node.start); 988 } 989 990 static void reloc_cache_clear(struct reloc_cache *cache) 991 { 992 cache->rq = NULL; 993 cache->rq_cmd = NULL; 994 cache->pool = NULL; 995 cache->rq_size = 0; 996 } 997 998 static void reloc_cache_init(struct reloc_cache *cache, 999 struct drm_i915_private *i915) 1000 { 1001 cache->page = -1; 1002 cache->vaddr = 0; 1003 /* Must be a variable in the struct to allow GCC to unroll. */ 1004 cache->gen = INTEL_GEN(i915); 1005 cache->has_llc = HAS_LLC(i915); 1006 cache->use_64bit_reloc = HAS_64BIT_RELOC(i915); 1007 cache->has_fence = cache->gen < 4; 1008 cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment; 1009 cache->node.flags = 0; 1010 1011 cache->map = i915->agph; 1012 cache->iot = i915->bst; 1013 1014 reloc_cache_clear(cache); 1015 } 1016 1017 static inline void *unmask_page(unsigned long p) 1018 { 1019 return (void *)(uintptr_t)(p & LINUX_PAGE_MASK); 1020 } 1021 1022 static inline unsigned int unmask_flags(unsigned long p) 1023 { 1024 return p & ~LINUX_PAGE_MASK; 1025 } 1026 1027 #define KMAP 0x4 /* after CLFLUSH_FLAGS */ 1028 1029 static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache) 1030 { 1031 struct drm_i915_private *i915 = 1032 container_of(cache, struct i915_execbuffer, reloc_cache)->i915; 1033 return &i915->ggtt; 1034 } 1035 1036 static void reloc_cache_put_pool(struct i915_execbuffer *eb, struct reloc_cache *cache) 1037 { 1038 if (!cache->pool) 1039 return; 1040 1041 /* 1042 * This is a bit nasty, normally we keep objects locked until the end 1043 * of execbuffer, but we already submit this, and have to unlock before 1044 * dropping the reference. Fortunately we can only hold 1 pool node at 1045 * a time, so this should be harmless. 1046 */ 1047 i915_gem_ww_unlock_single(cache->pool->obj); 1048 intel_gt_buffer_pool_put(cache->pool); 1049 cache->pool = NULL; 1050 } 1051 1052 static void reloc_gpu_flush(struct i915_execbuffer *eb, struct reloc_cache *cache) 1053 { 1054 struct drm_i915_gem_object *obj = cache->rq->batch->obj; 1055 1056 GEM_BUG_ON(cache->rq_size >= obj->base.size / sizeof(u32)); 1057 cache->rq_cmd[cache->rq_size] = MI_BATCH_BUFFER_END; 1058 1059 i915_gem_object_flush_map(obj); 1060 i915_gem_object_unpin_map(obj); 1061 1062 intel_gt_chipset_flush(cache->rq->engine->gt); 1063 1064 i915_request_add(cache->rq); 1065 reloc_cache_put_pool(eb, cache); 1066 reloc_cache_clear(cache); 1067 1068 eb->reloc_pool = NULL; 1069 } 1070 1071 static void reloc_cache_reset(struct reloc_cache *cache, struct i915_execbuffer *eb) 1072 { 1073 void *vaddr; 1074 1075 if (cache->rq) 1076 reloc_gpu_flush(eb, cache); 1077 1078 if (!cache->vaddr) 1079 return; 1080 1081 vaddr = unmask_page(cache->vaddr); 1082 if (cache->vaddr & KMAP) { 1083 struct drm_i915_gem_object *obj = 1084 (struct drm_i915_gem_object *)cache->node.mm; 1085 if (cache->vaddr & CLFLUSH_AFTER) 1086 mb(); 1087 1088 kunmap_atomic(vaddr); 1089 i915_gem_object_finish_access(obj); 1090 } else { 1091 struct i915_ggtt *ggtt = cache_to_ggtt(cache); 1092 1093 intel_gt_flush_ggtt_writes(ggtt->vm.gt); 1094 #ifdef __linux__ 1095 io_mapping_unmap_atomic((void __iomem *)vaddr); 1096 #else 1097 agp_unmap_atomic(cache->map, cache->ioh); 1098 #endif 1099 1100 if (drm_mm_node_allocated(&cache->node)) { 1101 ggtt->vm.clear_range(&ggtt->vm, 1102 cache->node.start, 1103 cache->node.size); 1104 mutex_lock(&ggtt->vm.mutex); 1105 drm_mm_remove_node(&cache->node); 1106 mutex_unlock(&ggtt->vm.mutex); 1107 } else { 1108 i915_vma_unpin((struct i915_vma *)cache->node.mm); 1109 } 1110 } 1111 1112 cache->vaddr = 0; 1113 cache->page = -1; 1114 } 1115 1116 static void *reloc_kmap(struct drm_i915_gem_object *obj, 1117 struct reloc_cache *cache, 1118 unsigned long pageno) 1119 { 1120 void *vaddr; 1121 struct vm_page *page; 1122 1123 if (cache->vaddr) { 1124 kunmap_atomic(unmask_page(cache->vaddr)); 1125 } else { 1126 unsigned int flushes; 1127 int err; 1128 1129 err = i915_gem_object_prepare_write(obj, &flushes); 1130 if (err) 1131 return ERR_PTR(err); 1132 1133 BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS); 1134 BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & LINUX_PAGE_MASK); 1135 1136 cache->vaddr = flushes | KMAP; 1137 cache->node.mm = (void *)obj; 1138 if (flushes) 1139 mb(); 1140 } 1141 1142 page = i915_gem_object_get_page(obj, pageno); 1143 if (!obj->mm.dirty) 1144 set_page_dirty(page); 1145 1146 vaddr = kmap_atomic(page); 1147 cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr; 1148 cache->page = pageno; 1149 1150 return vaddr; 1151 } 1152 1153 static void *reloc_iomap(struct drm_i915_gem_object *obj, 1154 struct i915_execbuffer *eb, 1155 unsigned long page) 1156 { 1157 struct reloc_cache *cache = &eb->reloc_cache; 1158 struct i915_ggtt *ggtt = cache_to_ggtt(cache); 1159 unsigned long offset; 1160 void *vaddr; 1161 1162 if (cache->vaddr) { 1163 intel_gt_flush_ggtt_writes(ggtt->vm.gt); 1164 #ifdef __linux__ 1165 io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr)); 1166 #else 1167 agp_unmap_atomic(cache->map, cache->ioh); 1168 #endif 1169 } else { 1170 struct i915_vma *vma; 1171 int err; 1172 1173 if (i915_gem_object_is_tiled(obj)) 1174 return ERR_PTR(-EINVAL); 1175 1176 if (use_cpu_reloc(cache, obj)) 1177 return NULL; 1178 1179 err = i915_gem_object_set_to_gtt_domain(obj, true); 1180 if (err) 1181 return ERR_PTR(err); 1182 1183 vma = i915_gem_object_ggtt_pin_ww(obj, &eb->ww, NULL, 0, 0, 1184 PIN_MAPPABLE | 1185 PIN_NONBLOCK /* NOWARN */ | 1186 PIN_NOEVICT); 1187 if (vma == ERR_PTR(-EDEADLK)) 1188 return vma; 1189 1190 if (IS_ERR(vma)) { 1191 memset(&cache->node, 0, sizeof(cache->node)); 1192 mutex_lock(&ggtt->vm.mutex); 1193 err = drm_mm_insert_node_in_range 1194 (&ggtt->vm.mm, &cache->node, 1195 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE, 1196 0, ggtt->mappable_end, 1197 DRM_MM_INSERT_LOW); 1198 mutex_unlock(&ggtt->vm.mutex); 1199 if (err) /* no inactive aperture space, use cpu reloc */ 1200 return NULL; 1201 } else { 1202 cache->node.start = vma->node.start; 1203 cache->node.mm = (void *)vma; 1204 } 1205 } 1206 1207 offset = cache->node.start; 1208 if (drm_mm_node_allocated(&cache->node)) { 1209 ggtt->vm.insert_page(&ggtt->vm, 1210 i915_gem_object_get_dma_address(obj, page), 1211 offset, I915_CACHE_NONE, 0); 1212 } else { 1213 offset += page << PAGE_SHIFT; 1214 } 1215 1216 #ifdef __linux__ 1217 vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap, 1218 offset); 1219 #else 1220 agp_map_atomic(cache->map, offset, &cache->ioh); 1221 vaddr = bus_space_vaddr(cache->iot, cache->ioh); 1222 #endif 1223 cache->page = page; 1224 cache->vaddr = (unsigned long)vaddr; 1225 1226 return vaddr; 1227 } 1228 1229 static void *reloc_vaddr(struct drm_i915_gem_object *obj, 1230 struct i915_execbuffer *eb, 1231 unsigned long page) 1232 { 1233 struct reloc_cache *cache = &eb->reloc_cache; 1234 void *vaddr; 1235 1236 if (cache->page == page) { 1237 vaddr = unmask_page(cache->vaddr); 1238 } else { 1239 vaddr = NULL; 1240 if ((cache->vaddr & KMAP) == 0) 1241 vaddr = reloc_iomap(obj, eb, page); 1242 if (!vaddr) 1243 vaddr = reloc_kmap(obj, cache, page); 1244 } 1245 1246 return vaddr; 1247 } 1248 1249 static void clflush_write32(u32 *addr, u32 value, unsigned int flushes) 1250 { 1251 if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) { 1252 if (flushes & CLFLUSH_BEFORE) { 1253 clflushopt(addr); 1254 mb(); 1255 } 1256 1257 *addr = value; 1258 1259 /* 1260 * Writes to the same cacheline are serialised by the CPU 1261 * (including clflush). On the write path, we only require 1262 * that it hits memory in an orderly fashion and place 1263 * mb barriers at the start and end of the relocation phase 1264 * to ensure ordering of clflush wrt to the system. 1265 */ 1266 if (flushes & CLFLUSH_AFTER) 1267 clflushopt(addr); 1268 } else 1269 *addr = value; 1270 } 1271 1272 static int reloc_move_to_gpu(struct i915_request *rq, struct i915_vma *vma) 1273 { 1274 struct drm_i915_gem_object *obj = vma->obj; 1275 int err; 1276 1277 assert_vma_held(vma); 1278 1279 if (obj->cache_dirty & ~obj->cache_coherent) 1280 i915_gem_clflush_object(obj, 0); 1281 obj->write_domain = 0; 1282 1283 err = i915_request_await_object(rq, vma->obj, true); 1284 if (err == 0) 1285 err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE); 1286 1287 return err; 1288 } 1289 1290 static int __reloc_gpu_alloc(struct i915_execbuffer *eb, 1291 struct intel_engine_cs *engine, 1292 struct i915_vma *vma, 1293 unsigned int len) 1294 { 1295 struct reloc_cache *cache = &eb->reloc_cache; 1296 struct intel_gt_buffer_pool_node *pool = eb->reloc_pool; 1297 struct i915_request *rq; 1298 struct i915_vma *batch; 1299 u32 *cmd; 1300 int err; 1301 1302 if (!pool) { 1303 pool = intel_gt_get_buffer_pool(engine->gt, PAGE_SIZE); 1304 if (IS_ERR(pool)) 1305 return PTR_ERR(pool); 1306 } 1307 eb->reloc_pool = NULL; 1308 1309 err = i915_gem_object_lock(pool->obj, &eb->ww); 1310 if (err) 1311 goto err_pool; 1312 1313 cmd = i915_gem_object_pin_map(pool->obj, 1314 cache->has_llc ? 1315 I915_MAP_FORCE_WB : 1316 I915_MAP_FORCE_WC); 1317 if (IS_ERR(cmd)) { 1318 err = PTR_ERR(cmd); 1319 goto err_pool; 1320 } 1321 1322 memset32(cmd, 0, pool->obj->base.size / sizeof(u32)); 1323 1324 batch = i915_vma_instance(pool->obj, vma->vm, NULL); 1325 if (IS_ERR(batch)) { 1326 err = PTR_ERR(batch); 1327 goto err_unmap; 1328 } 1329 1330 err = i915_vma_pin_ww(batch, &eb->ww, 0, 0, PIN_USER | PIN_NONBLOCK); 1331 if (err) 1332 goto err_unmap; 1333 1334 if (engine == eb->context->engine) { 1335 rq = i915_request_create(eb->context); 1336 } else { 1337 struct intel_context *ce = eb->reloc_context; 1338 1339 if (!ce) { 1340 ce = intel_context_create(engine); 1341 if (IS_ERR(ce)) { 1342 err = PTR_ERR(ce); 1343 goto err_unpin; 1344 } 1345 1346 i915_vm_put(ce->vm); 1347 ce->vm = i915_vm_get(eb->context->vm); 1348 eb->reloc_context = ce; 1349 } 1350 1351 err = intel_context_pin_ww(ce, &eb->ww); 1352 if (err) 1353 goto err_unpin; 1354 1355 rq = i915_request_create(ce); 1356 intel_context_unpin(ce); 1357 } 1358 if (IS_ERR(rq)) { 1359 err = PTR_ERR(rq); 1360 goto err_unpin; 1361 } 1362 1363 err = intel_gt_buffer_pool_mark_active(pool, rq); 1364 if (err) 1365 goto err_request; 1366 1367 err = reloc_move_to_gpu(rq, vma); 1368 if (err) 1369 goto err_request; 1370 1371 err = eb->engine->emit_bb_start(rq, 1372 batch->node.start, PAGE_SIZE, 1373 cache->gen > 5 ? 0 : I915_DISPATCH_SECURE); 1374 if (err) 1375 goto skip_request; 1376 1377 assert_vma_held(batch); 1378 err = i915_request_await_object(rq, batch->obj, false); 1379 if (err == 0) 1380 err = i915_vma_move_to_active(batch, rq, 0); 1381 if (err) 1382 goto skip_request; 1383 1384 rq->batch = batch; 1385 i915_vma_unpin(batch); 1386 1387 cache->rq = rq; 1388 cache->rq_cmd = cmd; 1389 cache->rq_size = 0; 1390 cache->pool = pool; 1391 1392 /* Return with batch mapping (cmd) still pinned */ 1393 return 0; 1394 1395 skip_request: 1396 i915_request_set_error_once(rq, err); 1397 err_request: 1398 i915_request_add(rq); 1399 err_unpin: 1400 i915_vma_unpin(batch); 1401 err_unmap: 1402 i915_gem_object_unpin_map(pool->obj); 1403 err_pool: 1404 eb->reloc_pool = pool; 1405 return err; 1406 } 1407 1408 static bool reloc_can_use_engine(const struct intel_engine_cs *engine) 1409 { 1410 return engine->class != VIDEO_DECODE_CLASS || !IS_GEN(engine->i915, 6); 1411 } 1412 1413 static u32 *reloc_gpu(struct i915_execbuffer *eb, 1414 struct i915_vma *vma, 1415 unsigned int len) 1416 { 1417 struct reloc_cache *cache = &eb->reloc_cache; 1418 u32 *cmd; 1419 1420 if (cache->rq_size > PAGE_SIZE/sizeof(u32) - (len + 1)) 1421 reloc_gpu_flush(eb, cache); 1422 1423 if (unlikely(!cache->rq)) { 1424 int err; 1425 struct intel_engine_cs *engine = eb->engine; 1426 1427 /* If we need to copy for the cmdparser, we will stall anyway */ 1428 if (eb_use_cmdparser(eb)) 1429 return ERR_PTR(-EWOULDBLOCK); 1430 1431 if (!reloc_can_use_engine(engine)) { 1432 engine = engine->gt->engine_class[COPY_ENGINE_CLASS][0]; 1433 if (!engine) 1434 return ERR_PTR(-ENODEV); 1435 } 1436 1437 err = __reloc_gpu_alloc(eb, engine, vma, len); 1438 if (unlikely(err)) 1439 return ERR_PTR(err); 1440 } 1441 1442 cmd = cache->rq_cmd + cache->rq_size; 1443 cache->rq_size += len; 1444 1445 return cmd; 1446 } 1447 1448 static inline bool use_reloc_gpu(struct i915_vma *vma) 1449 { 1450 if (DBG_FORCE_RELOC == FORCE_GPU_RELOC) 1451 return true; 1452 1453 if (DBG_FORCE_RELOC) 1454 return false; 1455 1456 return !dma_resv_test_signaled_rcu(vma->resv, true); 1457 } 1458 1459 static unsigned long vma_phys_addr(struct i915_vma *vma, u32 offset) 1460 { 1461 struct vm_page *page; 1462 unsigned long addr; 1463 1464 GEM_BUG_ON(vma->pages != vma->obj->mm.pages); 1465 1466 page = i915_gem_object_get_page(vma->obj, offset >> PAGE_SHIFT); 1467 addr = PFN_PHYS(page_to_pfn(page)); 1468 GEM_BUG_ON(overflows_type(addr, u32)); /* expected dma32 */ 1469 1470 return addr + offset_in_page(offset); 1471 } 1472 1473 static int __reloc_entry_gpu(struct i915_execbuffer *eb, 1474 struct i915_vma *vma, 1475 u64 offset, 1476 u64 target_addr) 1477 { 1478 const unsigned int gen = eb->reloc_cache.gen; 1479 unsigned int len; 1480 u32 *batch; 1481 u64 addr; 1482 1483 if (gen >= 8) 1484 len = offset & 7 ? 8 : 5; 1485 else if (gen >= 4) 1486 len = 4; 1487 else 1488 len = 3; 1489 1490 batch = reloc_gpu(eb, vma, len); 1491 if (batch == ERR_PTR(-EDEADLK)) 1492 return -EDEADLK; 1493 else if (IS_ERR(batch)) 1494 return false; 1495 1496 addr = gen8_canonical_addr(vma->node.start + offset); 1497 if (gen >= 8) { 1498 if (offset & 7) { 1499 *batch++ = MI_STORE_DWORD_IMM_GEN4; 1500 *batch++ = lower_32_bits(addr); 1501 *batch++ = upper_32_bits(addr); 1502 *batch++ = lower_32_bits(target_addr); 1503 1504 addr = gen8_canonical_addr(addr + 4); 1505 1506 *batch++ = MI_STORE_DWORD_IMM_GEN4; 1507 *batch++ = lower_32_bits(addr); 1508 *batch++ = upper_32_bits(addr); 1509 *batch++ = upper_32_bits(target_addr); 1510 } else { 1511 *batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1; 1512 *batch++ = lower_32_bits(addr); 1513 *batch++ = upper_32_bits(addr); 1514 *batch++ = lower_32_bits(target_addr); 1515 *batch++ = upper_32_bits(target_addr); 1516 } 1517 } else if (gen >= 6) { 1518 *batch++ = MI_STORE_DWORD_IMM_GEN4; 1519 *batch++ = 0; 1520 *batch++ = addr; 1521 *batch++ = target_addr; 1522 } else if (IS_I965G(eb->i915)) { 1523 *batch++ = MI_STORE_DWORD_IMM_GEN4; 1524 *batch++ = 0; 1525 *batch++ = vma_phys_addr(vma, offset); 1526 *batch++ = target_addr; 1527 } else if (gen >= 4) { 1528 *batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT; 1529 *batch++ = 0; 1530 *batch++ = addr; 1531 *batch++ = target_addr; 1532 } else if (gen >= 3 && 1533 !(IS_I915G(eb->i915) || IS_I915GM(eb->i915))) { 1534 *batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL; 1535 *batch++ = addr; 1536 *batch++ = target_addr; 1537 } else { 1538 *batch++ = MI_STORE_DWORD_IMM; 1539 *batch++ = vma_phys_addr(vma, offset); 1540 *batch++ = target_addr; 1541 } 1542 1543 return true; 1544 } 1545 1546 static int reloc_entry_gpu(struct i915_execbuffer *eb, 1547 struct i915_vma *vma, 1548 u64 offset, 1549 u64 target_addr) 1550 { 1551 if (eb->reloc_cache.vaddr) 1552 return false; 1553 1554 if (!use_reloc_gpu(vma)) 1555 return false; 1556 1557 return __reloc_entry_gpu(eb, vma, offset, target_addr); 1558 } 1559 1560 static u64 1561 relocate_entry(struct i915_vma *vma, 1562 const struct drm_i915_gem_relocation_entry *reloc, 1563 struct i915_execbuffer *eb, 1564 const struct i915_vma *target) 1565 { 1566 u64 target_addr = relocation_target(reloc, target); 1567 u64 offset = reloc->offset; 1568 int reloc_gpu = reloc_entry_gpu(eb, vma, offset, target_addr); 1569 1570 if (reloc_gpu < 0) 1571 return reloc_gpu; 1572 1573 if (!reloc_gpu) { 1574 bool wide = eb->reloc_cache.use_64bit_reloc; 1575 void *vaddr; 1576 1577 repeat: 1578 vaddr = reloc_vaddr(vma->obj, eb, 1579 offset >> PAGE_SHIFT); 1580 if (IS_ERR(vaddr)) 1581 return PTR_ERR(vaddr); 1582 1583 GEM_BUG_ON(!IS_ALIGNED(offset, sizeof(u32))); 1584 clflush_write32(vaddr + offset_in_page(offset), 1585 lower_32_bits(target_addr), 1586 eb->reloc_cache.vaddr); 1587 1588 if (wide) { 1589 offset += sizeof(u32); 1590 target_addr >>= 32; 1591 wide = false; 1592 goto repeat; 1593 } 1594 } 1595 1596 return target->node.start | UPDATE; 1597 } 1598 1599 static u64 1600 eb_relocate_entry(struct i915_execbuffer *eb, 1601 struct eb_vma *ev, 1602 const struct drm_i915_gem_relocation_entry *reloc) 1603 { 1604 struct drm_i915_private *i915 = eb->i915; 1605 struct eb_vma *target; 1606 int err; 1607 1608 /* we've already hold a reference to all valid objects */ 1609 target = eb_get_vma(eb, reloc->target_handle); 1610 if (unlikely(!target)) 1611 return -ENOENT; 1612 1613 /* Validate that the target is in a valid r/w GPU domain */ 1614 if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) { 1615 drm_dbg(&i915->drm, "reloc with multiple write domains: " 1616 "target %d offset %d " 1617 "read %08x write %08x", 1618 reloc->target_handle, 1619 (int) reloc->offset, 1620 reloc->read_domains, 1621 reloc->write_domain); 1622 return -EINVAL; 1623 } 1624 if (unlikely((reloc->write_domain | reloc->read_domains) 1625 & ~I915_GEM_GPU_DOMAINS)) { 1626 drm_dbg(&i915->drm, "reloc with read/write non-GPU domains: " 1627 "target %d offset %d " 1628 "read %08x write %08x", 1629 reloc->target_handle, 1630 (int) reloc->offset, 1631 reloc->read_domains, 1632 reloc->write_domain); 1633 return -EINVAL; 1634 } 1635 1636 if (reloc->write_domain) { 1637 target->flags |= EXEC_OBJECT_WRITE; 1638 1639 /* 1640 * Sandybridge PPGTT errata: We need a global gtt mapping 1641 * for MI and pipe_control writes because the gpu doesn't 1642 * properly redirect them through the ppgtt for non_secure 1643 * batchbuffers. 1644 */ 1645 if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION && 1646 IS_GEN(eb->i915, 6)) { 1647 err = i915_vma_bind(target->vma, 1648 target->vma->obj->cache_level, 1649 PIN_GLOBAL, NULL); 1650 if (err) 1651 return err; 1652 } 1653 } 1654 1655 /* 1656 * If the relocation already has the right value in it, no 1657 * more work needs to be done. 1658 */ 1659 if (!DBG_FORCE_RELOC && 1660 gen8_canonical_addr(target->vma->node.start) == reloc->presumed_offset) 1661 return 0; 1662 1663 /* Check that the relocation address is valid... */ 1664 if (unlikely(reloc->offset > 1665 ev->vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) { 1666 drm_dbg(&i915->drm, "Relocation beyond object bounds: " 1667 "target %d offset %d size %d.\n", 1668 reloc->target_handle, 1669 (int)reloc->offset, 1670 (int)ev->vma->size); 1671 return -EINVAL; 1672 } 1673 if (unlikely(reloc->offset & 3)) { 1674 drm_dbg(&i915->drm, "Relocation not 4-byte aligned: " 1675 "target %d offset %d.\n", 1676 reloc->target_handle, 1677 (int)reloc->offset); 1678 return -EINVAL; 1679 } 1680 1681 /* 1682 * If we write into the object, we need to force the synchronisation 1683 * barrier, either with an asynchronous clflush or if we executed the 1684 * patching using the GPU (though that should be serialised by the 1685 * timeline). To be completely sure, and since we are required to 1686 * do relocations we are already stalling, disable the user's opt 1687 * out of our synchronisation. 1688 */ 1689 ev->flags &= ~EXEC_OBJECT_ASYNC; 1690 1691 /* and update the user's relocation entry */ 1692 return relocate_entry(ev->vma, reloc, eb, target->vma); 1693 } 1694 1695 static int eb_relocate_vma(struct i915_execbuffer *eb, struct eb_vma *ev) 1696 { 1697 #define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry)) 1698 struct drm_i915_gem_relocation_entry stack[N_RELOC(512)]; 1699 const struct drm_i915_gem_exec_object2 *entry = ev->exec; 1700 struct drm_i915_gem_relocation_entry __user *urelocs = 1701 u64_to_user_ptr(entry->relocs_ptr); 1702 unsigned long remain = entry->relocation_count; 1703 1704 if (unlikely(remain > N_RELOC(ULONG_MAX))) 1705 return -EINVAL; 1706 1707 /* 1708 * We must check that the entire relocation array is safe 1709 * to read. However, if the array is not writable the user loses 1710 * the updated relocation values. 1711 */ 1712 if (unlikely(!access_ok(urelocs, remain * sizeof(*urelocs)))) 1713 return -EFAULT; 1714 1715 do { 1716 struct drm_i915_gem_relocation_entry *r = stack; 1717 unsigned int count = 1718 min_t(unsigned long, remain, ARRAY_SIZE(stack)); 1719 unsigned int copied; 1720 1721 /* 1722 * This is the fast path and we cannot handle a pagefault 1723 * whilst holding the struct mutex lest the user pass in the 1724 * relocations contained within a mmaped bo. For in such a case 1725 * we, the page fault handler would call i915_gem_fault() and 1726 * we would try to acquire the struct mutex again. Obviously 1727 * this is bad and so lockdep complains vehemently. 1728 */ 1729 pagefault_disable(); 1730 copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0])); 1731 pagefault_enable(); 1732 if (unlikely(copied)) { 1733 remain = -EFAULT; 1734 goto out; 1735 } 1736 1737 remain -= count; 1738 do { 1739 u64 offset = eb_relocate_entry(eb, ev, r); 1740 1741 if (likely(offset == 0)) { 1742 } else if ((s64)offset < 0) { 1743 remain = (int)offset; 1744 goto out; 1745 } else { 1746 /* 1747 * Note that reporting an error now 1748 * leaves everything in an inconsistent 1749 * state as we have *already* changed 1750 * the relocation value inside the 1751 * object. As we have not changed the 1752 * reloc.presumed_offset or will not 1753 * change the execobject.offset, on the 1754 * call we may not rewrite the value 1755 * inside the object, leaving it 1756 * dangling and causing a GPU hang. Unless 1757 * userspace dynamically rebuilds the 1758 * relocations on each execbuf rather than 1759 * presume a static tree. 1760 * 1761 * We did previously check if the relocations 1762 * were writable (access_ok), an error now 1763 * would be a strange race with mprotect, 1764 * having already demonstrated that we 1765 * can read from this userspace address. 1766 */ 1767 offset = gen8_canonical_addr(offset & ~UPDATE); 1768 __put_user(offset, 1769 &urelocs[r - stack].presumed_offset); 1770 } 1771 } while (r++, --count); 1772 urelocs += ARRAY_SIZE(stack); 1773 } while (remain); 1774 out: 1775 reloc_cache_reset(&eb->reloc_cache, eb); 1776 return remain; 1777 } 1778 1779 static int 1780 eb_relocate_vma_slow(struct i915_execbuffer *eb, struct eb_vma *ev) 1781 { 1782 const struct drm_i915_gem_exec_object2 *entry = ev->exec; 1783 struct drm_i915_gem_relocation_entry *relocs = 1784 u64_to_ptr(typeof(*relocs), entry->relocs_ptr); 1785 unsigned int i; 1786 int err; 1787 1788 for (i = 0; i < entry->relocation_count; i++) { 1789 u64 offset = eb_relocate_entry(eb, ev, &relocs[i]); 1790 1791 if ((s64)offset < 0) { 1792 err = (int)offset; 1793 goto err; 1794 } 1795 } 1796 err = 0; 1797 err: 1798 reloc_cache_reset(&eb->reloc_cache, eb); 1799 return err; 1800 } 1801 1802 static int check_relocations(const struct drm_i915_gem_exec_object2 *entry) 1803 { 1804 const char __user *addr, *end; 1805 unsigned long size; 1806 char __maybe_unused c; 1807 1808 size = entry->relocation_count; 1809 if (size == 0) 1810 return 0; 1811 1812 if (size > N_RELOC(ULONG_MAX)) 1813 return -EINVAL; 1814 1815 addr = u64_to_user_ptr(entry->relocs_ptr); 1816 size *= sizeof(struct drm_i915_gem_relocation_entry); 1817 if (!access_ok(addr, size)) 1818 return -EFAULT; 1819 1820 end = addr + size; 1821 for (; addr < end; addr += PAGE_SIZE) { 1822 int err = __get_user(c, addr); 1823 if (err) 1824 return err; 1825 } 1826 return __get_user(c, end - 1); 1827 } 1828 1829 static int eb_copy_relocations(const struct i915_execbuffer *eb) 1830 { 1831 struct drm_i915_gem_relocation_entry *relocs; 1832 const unsigned int count = eb->buffer_count; 1833 unsigned int i; 1834 int err; 1835 1836 for (i = 0; i < count; i++) { 1837 const unsigned int nreloc = eb->exec[i].relocation_count; 1838 struct drm_i915_gem_relocation_entry __user *urelocs; 1839 unsigned long size; 1840 unsigned long copied; 1841 1842 if (nreloc == 0) 1843 continue; 1844 1845 err = check_relocations(&eb->exec[i]); 1846 if (err) 1847 goto err; 1848 1849 urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr); 1850 size = nreloc * sizeof(*relocs); 1851 1852 relocs = kvmalloc_array(size, 1, GFP_KERNEL); 1853 if (!relocs) { 1854 err = -ENOMEM; 1855 goto err; 1856 } 1857 1858 /* copy_from_user is limited to < 4GiB */ 1859 copied = 0; 1860 do { 1861 unsigned int len = 1862 min_t(u64, BIT_ULL(31), size - copied); 1863 1864 if (__copy_from_user((char *)relocs + copied, 1865 (char __user *)urelocs + copied, 1866 len)) 1867 goto end; 1868 1869 copied += len; 1870 } while (copied < size); 1871 1872 /* 1873 * As we do not update the known relocation offsets after 1874 * relocating (due to the complexities in lock handling), 1875 * we need to mark them as invalid now so that we force the 1876 * relocation processing next time. Just in case the target 1877 * object is evicted and then rebound into its old 1878 * presumed_offset before the next execbuffer - if that 1879 * happened we would make the mistake of assuming that the 1880 * relocations were valid. 1881 */ 1882 if (!user_access_begin(urelocs, size)) 1883 goto end; 1884 1885 for (copied = 0; copied < nreloc; copied++) 1886 unsafe_put_user(-1, 1887 &urelocs[copied].presumed_offset, 1888 end_user); 1889 user_access_end(); 1890 1891 eb->exec[i].relocs_ptr = (uintptr_t)relocs; 1892 } 1893 1894 return 0; 1895 1896 end_user: 1897 user_access_end(); 1898 end: 1899 kvfree(relocs); 1900 err = -EFAULT; 1901 err: 1902 while (i--) { 1903 relocs = u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr); 1904 if (eb->exec[i].relocation_count) 1905 kvfree(relocs); 1906 } 1907 return err; 1908 } 1909 1910 static int eb_prefault_relocations(const struct i915_execbuffer *eb) 1911 { 1912 const unsigned int count = eb->buffer_count; 1913 unsigned int i; 1914 1915 for (i = 0; i < count; i++) { 1916 int err; 1917 1918 err = check_relocations(&eb->exec[i]); 1919 if (err) 1920 return err; 1921 } 1922 1923 return 0; 1924 } 1925 1926 static noinline int eb_relocate_parse_slow(struct i915_execbuffer *eb, 1927 struct i915_request *rq) 1928 { 1929 bool have_copy = false; 1930 struct eb_vma *ev; 1931 int err = 0; 1932 1933 repeat: 1934 if (signal_pending(current)) { 1935 err = -ERESTARTSYS; 1936 goto out; 1937 } 1938 1939 /* We may process another execbuffer during the unlock... */ 1940 eb_release_vmas(eb, false); 1941 i915_gem_ww_ctx_fini(&eb->ww); 1942 1943 if (rq) { 1944 /* nonblocking is always false */ 1945 if (i915_request_wait(rq, I915_WAIT_INTERRUPTIBLE, 1946 MAX_SCHEDULE_TIMEOUT) < 0) { 1947 i915_request_put(rq); 1948 rq = NULL; 1949 1950 err = -EINTR; 1951 goto err_relock; 1952 } 1953 1954 i915_request_put(rq); 1955 rq = NULL; 1956 } 1957 1958 /* 1959 * We take 3 passes through the slowpatch. 1960 * 1961 * 1 - we try to just prefault all the user relocation entries and 1962 * then attempt to reuse the atomic pagefault disabled fast path again. 1963 * 1964 * 2 - we copy the user entries to a local buffer here outside of the 1965 * local and allow ourselves to wait upon any rendering before 1966 * relocations 1967 * 1968 * 3 - we already have a local copy of the relocation entries, but 1969 * were interrupted (EAGAIN) whilst waiting for the objects, try again. 1970 */ 1971 if (!err) { 1972 err = eb_prefault_relocations(eb); 1973 } else if (!have_copy) { 1974 err = eb_copy_relocations(eb); 1975 have_copy = err == 0; 1976 } else { 1977 cond_resched(); 1978 err = 0; 1979 } 1980 1981 if (!err) 1982 flush_workqueue(eb->i915->mm.userptr_wq); 1983 1984 err_relock: 1985 i915_gem_ww_ctx_init(&eb->ww, true); 1986 if (err) 1987 goto out; 1988 1989 /* reacquire the objects */ 1990 repeat_validate: 1991 rq = eb_pin_engine(eb, false); 1992 if (IS_ERR(rq)) { 1993 err = PTR_ERR(rq); 1994 rq = NULL; 1995 goto err; 1996 } 1997 1998 /* We didn't throttle, should be NULL */ 1999 GEM_WARN_ON(rq); 2000 2001 err = eb_validate_vmas(eb); 2002 if (err) 2003 goto err; 2004 2005 GEM_BUG_ON(!eb->batch); 2006 2007 list_for_each_entry(ev, &eb->relocs, reloc_link) { 2008 if (!have_copy) { 2009 pagefault_disable(); 2010 err = eb_relocate_vma(eb, ev); 2011 pagefault_enable(); 2012 if (err) 2013 break; 2014 } else { 2015 err = eb_relocate_vma_slow(eb, ev); 2016 if (err) 2017 break; 2018 } 2019 } 2020 2021 if (err == -EDEADLK) 2022 goto err; 2023 2024 if (err && !have_copy) 2025 goto repeat; 2026 2027 if (err) 2028 goto err; 2029 2030 /* as last step, parse the command buffer */ 2031 err = eb_parse(eb); 2032 if (err) 2033 goto err; 2034 2035 /* 2036 * Leave the user relocations as are, this is the painfully slow path, 2037 * and we want to avoid the complication of dropping the lock whilst 2038 * having buffers reserved in the aperture and so causing spurious 2039 * ENOSPC for random operations. 2040 */ 2041 2042 err: 2043 if (err == -EDEADLK) { 2044 eb_release_vmas(eb, false); 2045 err = i915_gem_ww_ctx_backoff(&eb->ww); 2046 if (!err) 2047 goto repeat_validate; 2048 } 2049 2050 if (err == -EAGAIN) 2051 goto repeat; 2052 2053 out: 2054 if (have_copy) { 2055 const unsigned int count = eb->buffer_count; 2056 unsigned int i; 2057 2058 for (i = 0; i < count; i++) { 2059 const struct drm_i915_gem_exec_object2 *entry = 2060 &eb->exec[i]; 2061 struct drm_i915_gem_relocation_entry *relocs; 2062 2063 if (!entry->relocation_count) 2064 continue; 2065 2066 relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr); 2067 kvfree(relocs); 2068 } 2069 } 2070 2071 if (rq) 2072 i915_request_put(rq); 2073 2074 return err; 2075 } 2076 2077 static int eb_relocate_parse(struct i915_execbuffer *eb) 2078 { 2079 int err; 2080 struct i915_request *rq = NULL; 2081 bool throttle = true; 2082 2083 retry: 2084 rq = eb_pin_engine(eb, throttle); 2085 if (IS_ERR(rq)) { 2086 err = PTR_ERR(rq); 2087 rq = NULL; 2088 if (err != -EDEADLK) 2089 return err; 2090 2091 goto err; 2092 } 2093 2094 if (rq) { 2095 #ifdef __linux__ 2096 bool nonblock = eb->file->filp->f_flags & O_NONBLOCK; 2097 #else 2098 bool nonblock = eb->file->filp->f_flag & FNONBLOCK; 2099 #endif 2100 2101 /* Need to drop all locks now for throttling, take slowpath */ 2102 err = i915_request_wait(rq, I915_WAIT_INTERRUPTIBLE, 0); 2103 if (err == -ETIME) { 2104 if (nonblock) { 2105 err = -EWOULDBLOCK; 2106 i915_request_put(rq); 2107 goto err; 2108 } 2109 goto slow; 2110 } 2111 i915_request_put(rq); 2112 rq = NULL; 2113 } 2114 2115 /* only throttle once, even if we didn't need to throttle */ 2116 throttle = false; 2117 2118 err = eb_validate_vmas(eb); 2119 if (err == -EAGAIN) 2120 goto slow; 2121 else if (err) 2122 goto err; 2123 2124 /* The objects are in their final locations, apply the relocations. */ 2125 if (eb->args->flags & __EXEC_HAS_RELOC) { 2126 struct eb_vma *ev; 2127 2128 list_for_each_entry(ev, &eb->relocs, reloc_link) { 2129 err = eb_relocate_vma(eb, ev); 2130 if (err) 2131 break; 2132 } 2133 2134 if (err == -EDEADLK) 2135 goto err; 2136 else if (err) 2137 goto slow; 2138 } 2139 2140 if (!err) 2141 err = eb_parse(eb); 2142 2143 err: 2144 if (err == -EDEADLK) { 2145 eb_release_vmas(eb, false); 2146 err = i915_gem_ww_ctx_backoff(&eb->ww); 2147 if (!err) 2148 goto retry; 2149 } 2150 2151 return err; 2152 2153 slow: 2154 err = eb_relocate_parse_slow(eb, rq); 2155 if (err) 2156 /* 2157 * If the user expects the execobject.offset and 2158 * reloc.presumed_offset to be an exact match, 2159 * as for using NO_RELOC, then we cannot update 2160 * the execobject.offset until we have completed 2161 * relocation. 2162 */ 2163 eb->args->flags &= ~__EXEC_HAS_RELOC; 2164 2165 return err; 2166 } 2167 2168 static int eb_move_to_gpu(struct i915_execbuffer *eb) 2169 { 2170 const unsigned int count = eb->buffer_count; 2171 unsigned int i = count; 2172 int err = 0; 2173 2174 while (i--) { 2175 struct eb_vma *ev = &eb->vma[i]; 2176 struct i915_vma *vma = ev->vma; 2177 unsigned int flags = ev->flags; 2178 struct drm_i915_gem_object *obj = vma->obj; 2179 2180 assert_vma_held(vma); 2181 2182 if (flags & EXEC_OBJECT_CAPTURE) { 2183 struct i915_capture_list *capture; 2184 2185 capture = kmalloc(sizeof(*capture), GFP_KERNEL); 2186 if (capture) { 2187 capture->next = eb->request->capture_list; 2188 capture->vma = vma; 2189 eb->request->capture_list = capture; 2190 } 2191 } 2192 2193 /* 2194 * If the GPU is not _reading_ through the CPU cache, we need 2195 * to make sure that any writes (both previous GPU writes from 2196 * before a change in snooping levels and normal CPU writes) 2197 * caught in that cache are flushed to main memory. 2198 * 2199 * We want to say 2200 * obj->cache_dirty && 2201 * !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ) 2202 * but gcc's optimiser doesn't handle that as well and emits 2203 * two jumps instead of one. Maybe one day... 2204 */ 2205 if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) { 2206 if (i915_gem_clflush_object(obj, 0)) 2207 flags &= ~EXEC_OBJECT_ASYNC; 2208 } 2209 2210 if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) { 2211 err = i915_request_await_object 2212 (eb->request, obj, flags & EXEC_OBJECT_WRITE); 2213 } 2214 2215 if (err == 0) 2216 err = i915_vma_move_to_active(vma, eb->request, flags); 2217 } 2218 2219 if (unlikely(err)) 2220 goto err_skip; 2221 2222 /* Unconditionally flush any chipset caches (for streaming writes). */ 2223 intel_gt_chipset_flush(eb->engine->gt); 2224 return 0; 2225 2226 err_skip: 2227 i915_request_set_error_once(eb->request, err); 2228 return err; 2229 } 2230 2231 static int i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec) 2232 { 2233 if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS) 2234 return -EINVAL; 2235 2236 /* Kernel clipping was a DRI1 misfeature */ 2237 if (!(exec->flags & (I915_EXEC_FENCE_ARRAY | 2238 I915_EXEC_USE_EXTENSIONS))) { 2239 if (exec->num_cliprects || exec->cliprects_ptr) 2240 return -EINVAL; 2241 } 2242 2243 if (exec->DR4 == 0xffffffff) { 2244 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n"); 2245 exec->DR4 = 0; 2246 } 2247 if (exec->DR1 || exec->DR4) 2248 return -EINVAL; 2249 2250 if ((exec->batch_start_offset | exec->batch_len) & 0x7) 2251 return -EINVAL; 2252 2253 return 0; 2254 } 2255 2256 static int i915_reset_gen7_sol_offsets(struct i915_request *rq) 2257 { 2258 u32 *cs; 2259 int i; 2260 2261 if (!IS_GEN(rq->engine->i915, 7) || rq->engine->id != RCS0) { 2262 drm_dbg(&rq->engine->i915->drm, "sol reset is gen7/rcs only\n"); 2263 return -EINVAL; 2264 } 2265 2266 cs = intel_ring_begin(rq, 4 * 2 + 2); 2267 if (IS_ERR(cs)) 2268 return PTR_ERR(cs); 2269 2270 *cs++ = MI_LOAD_REGISTER_IMM(4); 2271 for (i = 0; i < 4; i++) { 2272 *cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i)); 2273 *cs++ = 0; 2274 } 2275 *cs++ = MI_NOOP; 2276 intel_ring_advance(rq, cs); 2277 2278 return 0; 2279 } 2280 2281 static struct i915_vma * 2282 shadow_batch_pin(struct i915_execbuffer *eb, 2283 struct drm_i915_gem_object *obj, 2284 struct i915_address_space *vm, 2285 unsigned int flags) 2286 { 2287 struct i915_vma *vma; 2288 int err; 2289 2290 vma = i915_vma_instance(obj, vm, NULL); 2291 if (IS_ERR(vma)) 2292 return vma; 2293 2294 err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, flags); 2295 if (err) 2296 return ERR_PTR(err); 2297 2298 return vma; 2299 } 2300 2301 static struct i915_vma *eb_dispatch_secure(struct i915_execbuffer *eb, struct i915_vma *vma) 2302 { 2303 /* 2304 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure 2305 * batch" bit. Hence we need to pin secure batches into the global gtt. 2306 * hsw should have this fixed, but bdw mucks it up again. */ 2307 if (eb->batch_flags & I915_DISPATCH_SECURE) 2308 return i915_gem_object_ggtt_pin_ww(vma->obj, &eb->ww, NULL, 0, 0, 0); 2309 2310 return NULL; 2311 } 2312 2313 static int eb_parse(struct i915_execbuffer *eb) 2314 { 2315 struct drm_i915_private *i915 = eb->i915; 2316 struct intel_gt_buffer_pool_node *pool = eb->batch_pool; 2317 struct i915_vma *shadow, *trampoline, *batch; 2318 unsigned long len; 2319 int err; 2320 2321 if (!eb_use_cmdparser(eb)) { 2322 batch = eb_dispatch_secure(eb, eb->batch->vma); 2323 if (IS_ERR(batch)) 2324 return PTR_ERR(batch); 2325 2326 goto secure_batch; 2327 } 2328 2329 len = eb->batch_len; 2330 if (!CMDPARSER_USES_GGTT(eb->i915)) { 2331 /* 2332 * ppGTT backed shadow buffers must be mapped RO, to prevent 2333 * post-scan tampering 2334 */ 2335 if (!eb->context->vm->has_read_only) { 2336 drm_dbg(&i915->drm, 2337 "Cannot prevent post-scan tampering without RO capable vm\n"); 2338 return -EINVAL; 2339 } 2340 } else { 2341 len += I915_CMD_PARSER_TRAMPOLINE_SIZE; 2342 } 2343 if (unlikely(len < eb->batch_len)) /* last paranoid check of overflow */ 2344 return -EINVAL; 2345 2346 if (!pool) { 2347 pool = intel_gt_get_buffer_pool(eb->engine->gt, len); 2348 if (IS_ERR(pool)) 2349 return PTR_ERR(pool); 2350 eb->batch_pool = pool; 2351 } 2352 2353 err = i915_gem_object_lock(pool->obj, &eb->ww); 2354 if (err) 2355 goto err; 2356 2357 shadow = shadow_batch_pin(eb, pool->obj, eb->context->vm, PIN_USER); 2358 if (IS_ERR(shadow)) { 2359 err = PTR_ERR(shadow); 2360 goto err; 2361 } 2362 i915_gem_object_set_readonly(shadow->obj); 2363 shadow->private = pool; 2364 2365 trampoline = NULL; 2366 if (CMDPARSER_USES_GGTT(eb->i915)) { 2367 trampoline = shadow; 2368 2369 shadow = shadow_batch_pin(eb, pool->obj, 2370 &eb->engine->gt->ggtt->vm, 2371 PIN_GLOBAL); 2372 if (IS_ERR(shadow)) { 2373 err = PTR_ERR(shadow); 2374 shadow = trampoline; 2375 goto err_shadow; 2376 } 2377 shadow->private = pool; 2378 2379 eb->batch_flags |= I915_DISPATCH_SECURE; 2380 } 2381 2382 batch = eb_dispatch_secure(eb, shadow); 2383 if (IS_ERR(batch)) { 2384 err = PTR_ERR(batch); 2385 goto err_trampoline; 2386 } 2387 2388 err = intel_engine_cmd_parser(eb->engine, 2389 eb->batch->vma, 2390 eb->batch_start_offset, 2391 eb->batch_len, 2392 shadow, trampoline); 2393 if (err) 2394 goto err_unpin_batch; 2395 2396 eb->batch = &eb->vma[eb->buffer_count++]; 2397 eb->batch->vma = i915_vma_get(shadow); 2398 eb->batch->flags = __EXEC_OBJECT_HAS_PIN; 2399 2400 eb->trampoline = trampoline; 2401 eb->batch_start_offset = 0; 2402 2403 secure_batch: 2404 if (batch) { 2405 eb->batch = &eb->vma[eb->buffer_count++]; 2406 eb->batch->flags = __EXEC_OBJECT_HAS_PIN; 2407 eb->batch->vma = i915_vma_get(batch); 2408 } 2409 return 0; 2410 2411 err_unpin_batch: 2412 if (batch) 2413 i915_vma_unpin(batch); 2414 err_trampoline: 2415 if (trampoline) 2416 i915_vma_unpin(trampoline); 2417 err_shadow: 2418 i915_vma_unpin(shadow); 2419 err: 2420 return err; 2421 } 2422 2423 static int eb_submit(struct i915_execbuffer *eb, struct i915_vma *batch) 2424 { 2425 int err; 2426 2427 err = eb_move_to_gpu(eb); 2428 if (err) 2429 return err; 2430 2431 if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) { 2432 err = i915_reset_gen7_sol_offsets(eb->request); 2433 if (err) 2434 return err; 2435 } 2436 2437 /* 2438 * After we completed waiting for other engines (using HW semaphores) 2439 * then we can signal that this request/batch is ready to run. This 2440 * allows us to determine if the batch is still waiting on the GPU 2441 * or actually running by checking the breadcrumb. 2442 */ 2443 if (eb->engine->emit_init_breadcrumb) { 2444 err = eb->engine->emit_init_breadcrumb(eb->request); 2445 if (err) 2446 return err; 2447 } 2448 2449 err = eb->engine->emit_bb_start(eb->request, 2450 batch->node.start + 2451 eb->batch_start_offset, 2452 eb->batch_len, 2453 eb->batch_flags); 2454 if (err) 2455 return err; 2456 2457 if (eb->trampoline) { 2458 GEM_BUG_ON(eb->batch_start_offset); 2459 err = eb->engine->emit_bb_start(eb->request, 2460 eb->trampoline->node.start + 2461 eb->batch_len, 2462 0, 0); 2463 if (err) 2464 return err; 2465 } 2466 2467 if (intel_context_nopreempt(eb->context)) 2468 __set_bit(I915_FENCE_FLAG_NOPREEMPT, &eb->request->fence.flags); 2469 2470 return 0; 2471 } 2472 2473 static int num_vcs_engines(const struct drm_i915_private *i915) 2474 { 2475 return hweight64(VDBOX_MASK(&i915->gt)); 2476 } 2477 2478 /* 2479 * Find one BSD ring to dispatch the corresponding BSD command. 2480 * The engine index is returned. 2481 */ 2482 static unsigned int 2483 gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv, 2484 struct drm_file *file) 2485 { 2486 struct drm_i915_file_private *file_priv = file->driver_priv; 2487 2488 /* Check whether the file_priv has already selected one ring. */ 2489 if ((int)file_priv->bsd_engine < 0) 2490 file_priv->bsd_engine = 2491 get_random_int() % num_vcs_engines(dev_priv); 2492 2493 return file_priv->bsd_engine; 2494 } 2495 2496 static const enum intel_engine_id user_ring_map[] = { 2497 [I915_EXEC_DEFAULT] = RCS0, 2498 [I915_EXEC_RENDER] = RCS0, 2499 [I915_EXEC_BLT] = BCS0, 2500 [I915_EXEC_BSD] = VCS0, 2501 [I915_EXEC_VEBOX] = VECS0 2502 }; 2503 2504 static struct i915_request *eb_throttle(struct i915_execbuffer *eb, struct intel_context *ce) 2505 { 2506 struct intel_ring *ring = ce->ring; 2507 struct intel_timeline *tl = ce->timeline; 2508 struct i915_request *rq; 2509 2510 /* 2511 * Completely unscientific finger-in-the-air estimates for suitable 2512 * maximum user request size (to avoid blocking) and then backoff. 2513 */ 2514 if (intel_ring_update_space(ring) >= PAGE_SIZE) 2515 return NULL; 2516 2517 /* 2518 * Find a request that after waiting upon, there will be at least half 2519 * the ring available. The hysteresis allows us to compete for the 2520 * shared ring and should mean that we sleep less often prior to 2521 * claiming our resources, but not so long that the ring completely 2522 * drains before we can submit our next request. 2523 */ 2524 list_for_each_entry(rq, &tl->requests, link) { 2525 if (rq->ring != ring) 2526 continue; 2527 2528 if (__intel_ring_space(rq->postfix, 2529 ring->emit, ring->size) > ring->size / 2) 2530 break; 2531 } 2532 if (&rq->link == &tl->requests) 2533 return NULL; /* weird, we will check again later for real */ 2534 2535 return i915_request_get(rq); 2536 } 2537 2538 static struct i915_request *eb_pin_engine(struct i915_execbuffer *eb, bool throttle) 2539 { 2540 struct intel_context *ce = eb->context; 2541 struct intel_timeline *tl; 2542 struct i915_request *rq = NULL; 2543 int err; 2544 2545 GEM_BUG_ON(eb->args->flags & __EXEC_ENGINE_PINNED); 2546 2547 if (unlikely(intel_context_is_banned(ce))) 2548 return ERR_PTR(-EIO); 2549 2550 /* 2551 * Pinning the contexts may generate requests in order to acquire 2552 * GGTT space, so do this first before we reserve a seqno for 2553 * ourselves. 2554 */ 2555 err = intel_context_pin_ww(ce, &eb->ww); 2556 if (err) 2557 return ERR_PTR(err); 2558 2559 /* 2560 * Take a local wakeref for preparing to dispatch the execbuf as 2561 * we expect to access the hardware fairly frequently in the 2562 * process, and require the engine to be kept awake between accesses. 2563 * Upon dispatch, we acquire another prolonged wakeref that we hold 2564 * until the timeline is idle, which in turn releases the wakeref 2565 * taken on the engine, and the parent device. 2566 */ 2567 tl = intel_context_timeline_lock(ce); 2568 if (IS_ERR(tl)) { 2569 intel_context_unpin(ce); 2570 return ERR_CAST(tl); 2571 } 2572 2573 intel_context_enter(ce); 2574 if (throttle) 2575 rq = eb_throttle(eb, ce); 2576 intel_context_timeline_unlock(tl); 2577 2578 eb->args->flags |= __EXEC_ENGINE_PINNED; 2579 return rq; 2580 } 2581 2582 static void eb_unpin_engine(struct i915_execbuffer *eb) 2583 { 2584 struct intel_context *ce = eb->context; 2585 struct intel_timeline *tl = ce->timeline; 2586 2587 if (!(eb->args->flags & __EXEC_ENGINE_PINNED)) 2588 return; 2589 2590 eb->args->flags &= ~__EXEC_ENGINE_PINNED; 2591 2592 mutex_lock(&tl->mutex); 2593 intel_context_exit(ce); 2594 mutex_unlock(&tl->mutex); 2595 2596 intel_context_unpin(ce); 2597 } 2598 2599 static unsigned int 2600 eb_select_legacy_ring(struct i915_execbuffer *eb) 2601 { 2602 struct drm_i915_private *i915 = eb->i915; 2603 struct drm_i915_gem_execbuffer2 *args = eb->args; 2604 unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK; 2605 2606 if (user_ring_id != I915_EXEC_BSD && 2607 (args->flags & I915_EXEC_BSD_MASK)) { 2608 drm_dbg(&i915->drm, 2609 "execbuf with non bsd ring but with invalid " 2610 "bsd dispatch flags: %d\n", (int)(args->flags)); 2611 return -1; 2612 } 2613 2614 if (user_ring_id == I915_EXEC_BSD && num_vcs_engines(i915) > 1) { 2615 unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK; 2616 2617 if (bsd_idx == I915_EXEC_BSD_DEFAULT) { 2618 bsd_idx = gen8_dispatch_bsd_engine(i915, eb->file); 2619 } else if (bsd_idx >= I915_EXEC_BSD_RING1 && 2620 bsd_idx <= I915_EXEC_BSD_RING2) { 2621 bsd_idx >>= I915_EXEC_BSD_SHIFT; 2622 bsd_idx--; 2623 } else { 2624 drm_dbg(&i915->drm, 2625 "execbuf with unknown bsd ring: %u\n", 2626 bsd_idx); 2627 return -1; 2628 } 2629 2630 return _VCS(bsd_idx); 2631 } 2632 2633 if (user_ring_id >= ARRAY_SIZE(user_ring_map)) { 2634 drm_dbg(&i915->drm, "execbuf with unknown ring: %u\n", 2635 user_ring_id); 2636 return -1; 2637 } 2638 2639 return user_ring_map[user_ring_id]; 2640 } 2641 2642 static int 2643 eb_select_engine(struct i915_execbuffer *eb) 2644 { 2645 struct intel_context *ce; 2646 unsigned int idx; 2647 int err; 2648 2649 if (i915_gem_context_user_engines(eb->gem_context)) 2650 idx = eb->args->flags & I915_EXEC_RING_MASK; 2651 else 2652 idx = eb_select_legacy_ring(eb); 2653 2654 ce = i915_gem_context_get_engine(eb->gem_context, idx); 2655 if (IS_ERR(ce)) 2656 return PTR_ERR(ce); 2657 2658 intel_gt_pm_get(ce->engine->gt); 2659 2660 if (!test_bit(CONTEXT_ALLOC_BIT, &ce->flags)) { 2661 err = intel_context_alloc_state(ce); 2662 if (err) 2663 goto err; 2664 } 2665 2666 /* 2667 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report 2668 * EIO if the GPU is already wedged. 2669 */ 2670 err = intel_gt_terminally_wedged(ce->engine->gt); 2671 if (err) 2672 goto err; 2673 2674 eb->context = ce; 2675 eb->engine = ce->engine; 2676 2677 /* 2678 * Make sure engine pool stays alive even if we call intel_context_put 2679 * during ww handling. The pool is destroyed when last pm reference 2680 * is dropped, which breaks our -EDEADLK handling. 2681 */ 2682 return err; 2683 2684 err: 2685 intel_gt_pm_put(ce->engine->gt); 2686 intel_context_put(ce); 2687 return err; 2688 } 2689 2690 static void 2691 eb_put_engine(struct i915_execbuffer *eb) 2692 { 2693 intel_gt_pm_put(eb->engine->gt); 2694 intel_context_put(eb->context); 2695 } 2696 2697 static void 2698 __free_fence_array(struct eb_fence *fences, unsigned int n) 2699 { 2700 while (n--) { 2701 drm_syncobj_put(ptr_mask_bits(fences[n].syncobj, 2)); 2702 dma_fence_put(fences[n].dma_fence); 2703 kfree(fences[n].chain_fence); 2704 } 2705 kvfree(fences); 2706 } 2707 2708 static int 2709 add_timeline_fence_array(struct i915_execbuffer *eb, 2710 const struct drm_i915_gem_execbuffer_ext_timeline_fences *timeline_fences) 2711 { 2712 struct drm_i915_gem_exec_fence __user *user_fences; 2713 u64 __user *user_values; 2714 struct eb_fence *f; 2715 u64 nfences; 2716 int err = 0; 2717 2718 nfences = timeline_fences->fence_count; 2719 if (!nfences) 2720 return 0; 2721 2722 /* Check multiplication overflow for access_ok() and kvmalloc_array() */ 2723 BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long)); 2724 if (nfences > min_t(unsigned long, 2725 ULONG_MAX / sizeof(*user_fences), 2726 SIZE_MAX / sizeof(*f)) - eb->num_fences) 2727 return -EINVAL; 2728 2729 user_fences = u64_to_user_ptr(timeline_fences->handles_ptr); 2730 if (!access_ok(user_fences, nfences * sizeof(*user_fences))) 2731 return -EFAULT; 2732 2733 user_values = u64_to_user_ptr(timeline_fences->values_ptr); 2734 if (!access_ok(user_values, nfences * sizeof(*user_values))) 2735 return -EFAULT; 2736 2737 #ifdef __linux__ 2738 f = krealloc(eb->fences, 2739 (eb->num_fences + nfences) * sizeof(*f), 2740 __GFP_NOWARN | GFP_KERNEL); 2741 if (!f) 2742 return -ENOMEM; 2743 #else 2744 f = kmalloc((eb->num_fences + nfences) * sizeof(*f), 2745 __GFP_NOWARN | GFP_KERNEL); 2746 if (!f) 2747 return -ENOMEM; 2748 memcpy(f, eb->fences, eb->num_fences * sizeof(*f)); 2749 kfree(eb->fences); 2750 #endif 2751 2752 eb->fences = f; 2753 f += eb->num_fences; 2754 2755 #ifdef notyet 2756 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) & 2757 ~__I915_EXEC_FENCE_UNKNOWN_FLAGS); 2758 #endif 2759 2760 while (nfences--) { 2761 struct drm_i915_gem_exec_fence user_fence; 2762 struct drm_syncobj *syncobj; 2763 struct dma_fence *fence = NULL; 2764 u64 point; 2765 2766 if (__copy_from_user(&user_fence, 2767 user_fences++, 2768 sizeof(user_fence))) 2769 return -EFAULT; 2770 2771 if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) 2772 return -EINVAL; 2773 2774 if (__get_user(point, user_values++)) 2775 return -EFAULT; 2776 2777 syncobj = drm_syncobj_find(eb->file, user_fence.handle); 2778 if (!syncobj) { 2779 DRM_DEBUG("Invalid syncobj handle provided\n"); 2780 return -ENOENT; 2781 } 2782 2783 fence = drm_syncobj_fence_get(syncobj); 2784 2785 if (!fence && user_fence.flags && 2786 !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) { 2787 DRM_DEBUG("Syncobj handle has no fence\n"); 2788 drm_syncobj_put(syncobj); 2789 return -EINVAL; 2790 } 2791 2792 if (fence) 2793 err = dma_fence_chain_find_seqno(&fence, point); 2794 2795 if (err && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) { 2796 DRM_DEBUG("Syncobj handle missing requested point %llu\n", point); 2797 dma_fence_put(fence); 2798 drm_syncobj_put(syncobj); 2799 return err; 2800 } 2801 2802 /* 2803 * A point might have been signaled already and 2804 * garbage collected from the timeline. In this case 2805 * just ignore the point and carry on. 2806 */ 2807 if (!fence && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) { 2808 drm_syncobj_put(syncobj); 2809 continue; 2810 } 2811 2812 /* 2813 * For timeline syncobjs we need to preallocate chains for 2814 * later signaling. 2815 */ 2816 if (point != 0 && user_fence.flags & I915_EXEC_FENCE_SIGNAL) { 2817 /* 2818 * Waiting and signaling the same point (when point != 2819 * 0) would break the timeline. 2820 */ 2821 if (user_fence.flags & I915_EXEC_FENCE_WAIT) { 2822 DRM_DEBUG("Trying to wait & signal the same timeline point.\n"); 2823 dma_fence_put(fence); 2824 drm_syncobj_put(syncobj); 2825 return -EINVAL; 2826 } 2827 2828 f->chain_fence = 2829 kmalloc(sizeof(*f->chain_fence), 2830 GFP_KERNEL); 2831 if (!f->chain_fence) { 2832 drm_syncobj_put(syncobj); 2833 dma_fence_put(fence); 2834 return -ENOMEM; 2835 } 2836 } else { 2837 f->chain_fence = NULL; 2838 } 2839 2840 f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2); 2841 f->dma_fence = fence; 2842 f->value = point; 2843 f++; 2844 eb->num_fences++; 2845 } 2846 2847 return 0; 2848 } 2849 2850 static int add_fence_array(struct i915_execbuffer *eb) 2851 { 2852 struct drm_i915_gem_execbuffer2 *args = eb->args; 2853 struct drm_i915_gem_exec_fence __user *user; 2854 unsigned long num_fences = args->num_cliprects; 2855 struct eb_fence *f; 2856 2857 if (!(args->flags & I915_EXEC_FENCE_ARRAY)) 2858 return 0; 2859 2860 if (!num_fences) 2861 return 0; 2862 2863 /* Check multiplication overflow for access_ok() and kvmalloc_array() */ 2864 BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long)); 2865 if (num_fences > min_t(unsigned long, 2866 ULONG_MAX / sizeof(*user), 2867 SIZE_MAX / sizeof(*f) - eb->num_fences)) 2868 return -EINVAL; 2869 2870 user = u64_to_user_ptr(args->cliprects_ptr); 2871 if (!access_ok(user, num_fences * sizeof(*user))) 2872 return -EFAULT; 2873 2874 #ifdef __linux__ 2875 f = krealloc(eb->fences, 2876 (eb->num_fences + num_fences) * sizeof(*f), 2877 __GFP_NOWARN | GFP_KERNEL); 2878 if (!f) 2879 return -ENOMEM; 2880 #else 2881 f = kmalloc((eb->num_fences + num_fences) * sizeof(*f), 2882 __GFP_NOWARN | GFP_KERNEL); 2883 if (!f) 2884 return -ENOMEM; 2885 memcpy(f, eb->fences, eb->num_fences * sizeof(*f)); 2886 kfree(eb->fences); 2887 #endif 2888 2889 eb->fences = f; 2890 f += eb->num_fences; 2891 while (num_fences--) { 2892 struct drm_i915_gem_exec_fence user_fence; 2893 struct drm_syncobj *syncobj; 2894 struct dma_fence *fence = NULL; 2895 2896 if (__copy_from_user(&user_fence, user++, sizeof(user_fence))) 2897 return -EFAULT; 2898 2899 if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) 2900 return -EINVAL; 2901 2902 syncobj = drm_syncobj_find(eb->file, user_fence.handle); 2903 if (!syncobj) { 2904 DRM_DEBUG("Invalid syncobj handle provided\n"); 2905 return -ENOENT; 2906 } 2907 2908 if (user_fence.flags & I915_EXEC_FENCE_WAIT) { 2909 fence = drm_syncobj_fence_get(syncobj); 2910 if (!fence) { 2911 DRM_DEBUG("Syncobj handle has no fence\n"); 2912 drm_syncobj_put(syncobj); 2913 return -EINVAL; 2914 } 2915 } 2916 2917 #ifdef notyet 2918 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) & 2919 ~__I915_EXEC_FENCE_UNKNOWN_FLAGS); 2920 #endif 2921 2922 f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2); 2923 f->dma_fence = fence; 2924 f->value = 0; 2925 f->chain_fence = NULL; 2926 f++; 2927 eb->num_fences++; 2928 } 2929 2930 return 0; 2931 } 2932 2933 static void put_fence_array(struct eb_fence *fences, int num_fences) 2934 { 2935 if (fences) 2936 __free_fence_array(fences, num_fences); 2937 } 2938 2939 static int 2940 await_fence_array(struct i915_execbuffer *eb) 2941 { 2942 unsigned int n; 2943 int err; 2944 2945 for (n = 0; n < eb->num_fences; n++) { 2946 struct drm_syncobj *syncobj; 2947 unsigned int flags; 2948 2949 syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2); 2950 2951 if (!eb->fences[n].dma_fence) 2952 continue; 2953 2954 err = i915_request_await_dma_fence(eb->request, 2955 eb->fences[n].dma_fence); 2956 if (err < 0) 2957 return err; 2958 } 2959 2960 return 0; 2961 } 2962 2963 static void signal_fence_array(const struct i915_execbuffer *eb) 2964 { 2965 struct dma_fence * const fence = &eb->request->fence; 2966 unsigned int n; 2967 2968 for (n = 0; n < eb->num_fences; n++) { 2969 struct drm_syncobj *syncobj; 2970 unsigned int flags; 2971 2972 syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2); 2973 if (!(flags & I915_EXEC_FENCE_SIGNAL)) 2974 continue; 2975 2976 if (eb->fences[n].chain_fence) { 2977 drm_syncobj_add_point(syncobj, 2978 eb->fences[n].chain_fence, 2979 fence, 2980 eb->fences[n].value); 2981 /* 2982 * The chain's ownership is transferred to the 2983 * timeline. 2984 */ 2985 eb->fences[n].chain_fence = NULL; 2986 } else { 2987 drm_syncobj_replace_fence(syncobj, fence); 2988 } 2989 } 2990 } 2991 2992 static int 2993 parse_timeline_fences(struct i915_user_extension __user *ext, void *data) 2994 { 2995 struct i915_execbuffer *eb = data; 2996 struct drm_i915_gem_execbuffer_ext_timeline_fences timeline_fences; 2997 2998 if (copy_from_user(&timeline_fences, ext, sizeof(timeline_fences))) 2999 return -EFAULT; 3000 3001 return add_timeline_fence_array(eb, &timeline_fences); 3002 } 3003 3004 static void retire_requests(struct intel_timeline *tl, struct i915_request *end) 3005 { 3006 struct i915_request *rq, *rn; 3007 3008 list_for_each_entry_safe(rq, rn, &tl->requests, link) 3009 if (rq == end || !i915_request_retire(rq)) 3010 break; 3011 } 3012 3013 static int eb_request_add(struct i915_execbuffer *eb, int err) 3014 { 3015 struct i915_request *rq = eb->request; 3016 struct intel_timeline * const tl = i915_request_timeline(rq); 3017 struct i915_sched_attr attr = {}; 3018 struct i915_request *prev; 3019 3020 lockdep_assert_held(&tl->mutex); 3021 lockdep_unpin_lock(&tl->mutex, rq->cookie); 3022 3023 trace_i915_request_add(rq); 3024 3025 prev = __i915_request_commit(rq); 3026 3027 /* Check that the context wasn't destroyed before submission */ 3028 if (likely(!intel_context_is_closed(eb->context))) { 3029 attr = eb->gem_context->sched; 3030 } else { 3031 /* Serialise with context_close via the add_to_timeline */ 3032 i915_request_set_error_once(rq, -ENOENT); 3033 __i915_request_skip(rq); 3034 err = -ENOENT; /* override any transient errors */ 3035 } 3036 3037 __i915_request_queue(rq, &attr); 3038 3039 /* Try to clean up the client's timeline after submitting the request */ 3040 if (prev) 3041 retire_requests(tl, prev); 3042 3043 mutex_unlock(&tl->mutex); 3044 3045 return err; 3046 } 3047 3048 static const i915_user_extension_fn execbuf_extensions[] = { 3049 [DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES] = parse_timeline_fences, 3050 }; 3051 3052 static int 3053 parse_execbuf2_extensions(struct drm_i915_gem_execbuffer2 *args, 3054 struct i915_execbuffer *eb) 3055 { 3056 if (!(args->flags & I915_EXEC_USE_EXTENSIONS)) 3057 return 0; 3058 3059 /* The execbuf2 extension mechanism reuses cliprects_ptr. So we cannot 3060 * have another flag also using it at the same time. 3061 */ 3062 if (eb->args->flags & I915_EXEC_FENCE_ARRAY) 3063 return -EINVAL; 3064 3065 if (args->num_cliprects != 0) 3066 return -EINVAL; 3067 3068 return i915_user_extensions(u64_to_user_ptr(args->cliprects_ptr), 3069 execbuf_extensions, 3070 ARRAY_SIZE(execbuf_extensions), 3071 eb); 3072 } 3073 3074 static int 3075 i915_gem_do_execbuffer(struct drm_device *dev, 3076 struct drm_file *file, 3077 struct drm_i915_gem_execbuffer2 *args, 3078 struct drm_i915_gem_exec_object2 *exec) 3079 { 3080 struct drm_i915_private *i915 = to_i915(dev); 3081 struct i915_execbuffer eb; 3082 struct dma_fence *in_fence = NULL; 3083 struct sync_file *out_fence = NULL; 3084 struct i915_vma *batch; 3085 int out_fence_fd = -1; 3086 int err; 3087 3088 BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS); 3089 BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS & 3090 ~__EXEC_OBJECT_UNKNOWN_FLAGS); 3091 3092 eb.i915 = i915; 3093 eb.file = file; 3094 eb.args = args; 3095 if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC)) 3096 args->flags |= __EXEC_HAS_RELOC; 3097 3098 eb.exec = exec; 3099 eb.vma = (struct eb_vma *)(exec + args->buffer_count + 1); 3100 eb.vma[0].vma = NULL; 3101 eb.reloc_pool = eb.batch_pool = NULL; 3102 eb.reloc_context = NULL; 3103 3104 eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS; 3105 reloc_cache_init(&eb.reloc_cache, eb.i915); 3106 3107 eb.buffer_count = args->buffer_count; 3108 eb.batch_start_offset = args->batch_start_offset; 3109 eb.batch_len = args->batch_len; 3110 eb.trampoline = NULL; 3111 3112 eb.fences = NULL; 3113 eb.num_fences = 0; 3114 3115 eb.batch_flags = 0; 3116 if (args->flags & I915_EXEC_SECURE) { 3117 if (INTEL_GEN(i915) >= 11) 3118 return -ENODEV; 3119 3120 /* Return -EPERM to trigger fallback code on old binaries. */ 3121 if (!HAS_SECURE_BATCHES(i915)) 3122 return -EPERM; 3123 3124 if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN)) 3125 return -EPERM; 3126 3127 eb.batch_flags |= I915_DISPATCH_SECURE; 3128 } 3129 if (args->flags & I915_EXEC_IS_PINNED) 3130 eb.batch_flags |= I915_DISPATCH_PINNED; 3131 3132 err = parse_execbuf2_extensions(args, &eb); 3133 if (err) 3134 goto err_ext; 3135 3136 err = add_fence_array(&eb); 3137 if (err) 3138 goto err_ext; 3139 3140 #define IN_FENCES (I915_EXEC_FENCE_IN | I915_EXEC_FENCE_SUBMIT) 3141 if (args->flags & IN_FENCES) { 3142 if ((args->flags & IN_FENCES) == IN_FENCES) 3143 return -EINVAL; 3144 3145 in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2)); 3146 if (!in_fence) { 3147 err = -EINVAL; 3148 goto err_ext; 3149 } 3150 } 3151 #undef IN_FENCES 3152 3153 if (args->flags & I915_EXEC_FENCE_OUT) { 3154 out_fence_fd = get_unused_fd_flags(O_CLOEXEC); 3155 if (out_fence_fd < 0) { 3156 err = out_fence_fd; 3157 goto err_in_fence; 3158 } 3159 } 3160 3161 err = eb_create(&eb); 3162 if (err) 3163 goto err_out_fence; 3164 3165 GEM_BUG_ON(!eb.lut_size); 3166 3167 err = eb_select_context(&eb); 3168 if (unlikely(err)) 3169 goto err_destroy; 3170 3171 err = eb_select_engine(&eb); 3172 if (unlikely(err)) 3173 goto err_context; 3174 3175 err = eb_lookup_vmas(&eb); 3176 if (err) { 3177 eb_release_vmas(&eb, true); 3178 goto err_engine; 3179 } 3180 3181 i915_gem_ww_ctx_init(&eb.ww, true); 3182 3183 err = eb_relocate_parse(&eb); 3184 if (err) { 3185 /* 3186 * If the user expects the execobject.offset and 3187 * reloc.presumed_offset to be an exact match, 3188 * as for using NO_RELOC, then we cannot update 3189 * the execobject.offset until we have completed 3190 * relocation. 3191 */ 3192 args->flags &= ~__EXEC_HAS_RELOC; 3193 goto err_vma; 3194 } 3195 3196 ww_acquire_done(&eb.ww.ctx); 3197 3198 batch = eb.batch->vma; 3199 3200 /* All GPU relocation batches must be submitted prior to the user rq */ 3201 GEM_BUG_ON(eb.reloc_cache.rq); 3202 3203 /* Allocate a request for this batch buffer nice and early. */ 3204 eb.request = i915_request_create(eb.context); 3205 if (IS_ERR(eb.request)) { 3206 err = PTR_ERR(eb.request); 3207 goto err_vma; 3208 } 3209 3210 if (in_fence) { 3211 if (args->flags & I915_EXEC_FENCE_SUBMIT) 3212 err = i915_request_await_execution(eb.request, 3213 in_fence, 3214 eb.engine->bond_execute); 3215 else 3216 err = i915_request_await_dma_fence(eb.request, 3217 in_fence); 3218 if (err < 0) 3219 goto err_request; 3220 } 3221 3222 if (eb.fences) { 3223 err = await_fence_array(&eb); 3224 if (err) 3225 goto err_request; 3226 } 3227 3228 if (out_fence_fd != -1) { 3229 out_fence = sync_file_create(&eb.request->fence); 3230 if (!out_fence) { 3231 err = -ENOMEM; 3232 goto err_request; 3233 } 3234 } 3235 3236 /* 3237 * Whilst this request exists, batch_obj will be on the 3238 * active_list, and so will hold the active reference. Only when this 3239 * request is retired will the the batch_obj be moved onto the 3240 * inactive_list and lose its active reference. Hence we do not need 3241 * to explicitly hold another reference here. 3242 */ 3243 eb.request->batch = batch; 3244 if (eb.batch_pool) 3245 intel_gt_buffer_pool_mark_active(eb.batch_pool, eb.request); 3246 3247 trace_i915_request_queue(eb.request, eb.batch_flags); 3248 err = eb_submit(&eb, batch); 3249 err_request: 3250 i915_request_get(eb.request); 3251 err = eb_request_add(&eb, err); 3252 3253 if (eb.fences) 3254 signal_fence_array(&eb); 3255 3256 if (out_fence) { 3257 if (err == 0) { 3258 fd_install(out_fence_fd, out_fence->file); 3259 args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */ 3260 args->rsvd2 |= (u64)out_fence_fd << 32; 3261 out_fence_fd = -1; 3262 } else { 3263 fput(out_fence->file); 3264 } 3265 } 3266 i915_request_put(eb.request); 3267 3268 err_vma: 3269 eb_release_vmas(&eb, true); 3270 if (eb.trampoline) 3271 i915_vma_unpin(eb.trampoline); 3272 WARN_ON(err == -EDEADLK); 3273 i915_gem_ww_ctx_fini(&eb.ww); 3274 3275 if (eb.batch_pool) 3276 intel_gt_buffer_pool_put(eb.batch_pool); 3277 if (eb.reloc_pool) 3278 intel_gt_buffer_pool_put(eb.reloc_pool); 3279 if (eb.reloc_context) 3280 intel_context_put(eb.reloc_context); 3281 err_engine: 3282 eb_put_engine(&eb); 3283 err_context: 3284 i915_gem_context_put(eb.gem_context); 3285 err_destroy: 3286 eb_destroy(&eb); 3287 err_out_fence: 3288 if (out_fence_fd != -1) 3289 put_unused_fd(out_fence_fd); 3290 err_in_fence: 3291 dma_fence_put(in_fence); 3292 err_ext: 3293 put_fence_array(eb.fences, eb.num_fences); 3294 return err; 3295 } 3296 3297 static size_t eb_element_size(void) 3298 { 3299 return sizeof(struct drm_i915_gem_exec_object2) + sizeof(struct eb_vma); 3300 } 3301 3302 static bool check_buffer_count(size_t count) 3303 { 3304 const size_t sz = eb_element_size(); 3305 3306 /* 3307 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup 3308 * array size (see eb_create()). Otherwise, we can accept an array as 3309 * large as can be addressed (though use large arrays at your peril)! 3310 */ 3311 3312 return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1); 3313 } 3314 3315 /* 3316 * Legacy execbuffer just creates an exec2 list from the original exec object 3317 * list array and passes it to the real function. 3318 */ 3319 int 3320 i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data, 3321 struct drm_file *file) 3322 { 3323 struct drm_i915_private *i915 = to_i915(dev); 3324 struct drm_i915_gem_execbuffer *args = data; 3325 struct drm_i915_gem_execbuffer2 exec2; 3326 struct drm_i915_gem_exec_object *exec_list = NULL; 3327 struct drm_i915_gem_exec_object2 *exec2_list = NULL; 3328 const size_t count = args->buffer_count; 3329 unsigned int i; 3330 int err; 3331 3332 if (!check_buffer_count(count)) { 3333 drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count); 3334 return -EINVAL; 3335 } 3336 3337 exec2.buffers_ptr = args->buffers_ptr; 3338 exec2.buffer_count = args->buffer_count; 3339 exec2.batch_start_offset = args->batch_start_offset; 3340 exec2.batch_len = args->batch_len; 3341 exec2.DR1 = args->DR1; 3342 exec2.DR4 = args->DR4; 3343 exec2.num_cliprects = args->num_cliprects; 3344 exec2.cliprects_ptr = args->cliprects_ptr; 3345 exec2.flags = I915_EXEC_RENDER; 3346 i915_execbuffer2_set_context_id(exec2, 0); 3347 3348 err = i915_gem_check_execbuffer(&exec2); 3349 if (err) 3350 return err; 3351 3352 /* Copy in the exec list from userland */ 3353 exec_list = kvmalloc_array(count, sizeof(*exec_list), 3354 __GFP_NOWARN | GFP_KERNEL); 3355 3356 /* Allocate extra slots for use by the command parser */ 3357 exec2_list = kvmalloc_array(count + 2, eb_element_size(), 3358 __GFP_NOWARN | GFP_KERNEL); 3359 if (exec_list == NULL || exec2_list == NULL) { 3360 drm_dbg(&i915->drm, 3361 "Failed to allocate exec list for %d buffers\n", 3362 args->buffer_count); 3363 kvfree(exec_list); 3364 kvfree(exec2_list); 3365 return -ENOMEM; 3366 } 3367 err = copy_from_user(exec_list, 3368 u64_to_user_ptr(args->buffers_ptr), 3369 sizeof(*exec_list) * count); 3370 if (err) { 3371 drm_dbg(&i915->drm, "copy %d exec entries failed %d\n", 3372 args->buffer_count, err); 3373 kvfree(exec_list); 3374 kvfree(exec2_list); 3375 return -EFAULT; 3376 } 3377 3378 for (i = 0; i < args->buffer_count; i++) { 3379 exec2_list[i].handle = exec_list[i].handle; 3380 exec2_list[i].relocation_count = exec_list[i].relocation_count; 3381 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr; 3382 exec2_list[i].alignment = exec_list[i].alignment; 3383 exec2_list[i].offset = exec_list[i].offset; 3384 if (INTEL_GEN(to_i915(dev)) < 4) 3385 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE; 3386 else 3387 exec2_list[i].flags = 0; 3388 } 3389 3390 err = i915_gem_do_execbuffer(dev, file, &exec2, exec2_list); 3391 if (exec2.flags & __EXEC_HAS_RELOC) { 3392 struct drm_i915_gem_exec_object __user *user_exec_list = 3393 u64_to_user_ptr(args->buffers_ptr); 3394 3395 /* Copy the new buffer offsets back to the user's exec list. */ 3396 for (i = 0; i < args->buffer_count; i++) { 3397 if (!(exec2_list[i].offset & UPDATE)) 3398 continue; 3399 3400 exec2_list[i].offset = 3401 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK); 3402 exec2_list[i].offset &= PIN_OFFSET_MASK; 3403 if (__copy_to_user(&user_exec_list[i].offset, 3404 &exec2_list[i].offset, 3405 sizeof(user_exec_list[i].offset))) 3406 break; 3407 } 3408 } 3409 3410 kvfree(exec_list); 3411 kvfree(exec2_list); 3412 return err; 3413 } 3414 3415 int 3416 i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data, 3417 struct drm_file *file) 3418 { 3419 struct drm_i915_private *i915 = to_i915(dev); 3420 struct drm_i915_gem_execbuffer2 *args = data; 3421 struct drm_i915_gem_exec_object2 *exec2_list; 3422 const size_t count = args->buffer_count; 3423 int err; 3424 3425 if (!check_buffer_count(count)) { 3426 drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count); 3427 return -EINVAL; 3428 } 3429 3430 err = i915_gem_check_execbuffer(args); 3431 if (err) 3432 return err; 3433 3434 /* Allocate extra slots for use by the command parser */ 3435 exec2_list = kvmalloc_array(count + 2, eb_element_size(), 3436 __GFP_NOWARN | GFP_KERNEL); 3437 if (exec2_list == NULL) { 3438 drm_dbg(&i915->drm, "Failed to allocate exec list for %zd buffers\n", 3439 count); 3440 return -ENOMEM; 3441 } 3442 if (copy_from_user(exec2_list, 3443 u64_to_user_ptr(args->buffers_ptr), 3444 sizeof(*exec2_list) * count)) { 3445 drm_dbg(&i915->drm, "copy %zd exec entries failed\n", count); 3446 kvfree(exec2_list); 3447 return -EFAULT; 3448 } 3449 3450 err = i915_gem_do_execbuffer(dev, file, args, exec2_list); 3451 3452 /* 3453 * Now that we have begun execution of the batchbuffer, we ignore 3454 * any new error after this point. Also given that we have already 3455 * updated the associated relocations, we try to write out the current 3456 * object locations irrespective of any error. 3457 */ 3458 if (args->flags & __EXEC_HAS_RELOC) { 3459 struct drm_i915_gem_exec_object2 __user *user_exec_list = 3460 u64_to_user_ptr(args->buffers_ptr); 3461 unsigned int i; 3462 3463 /* Copy the new buffer offsets back to the user's exec list. */ 3464 /* 3465 * Note: count * sizeof(*user_exec_list) does not overflow, 3466 * because we checked 'count' in check_buffer_count(). 3467 * 3468 * And this range already got effectively checked earlier 3469 * when we did the "copy_from_user()" above. 3470 */ 3471 if (!user_write_access_begin(user_exec_list, 3472 count * sizeof(*user_exec_list))) 3473 goto end; 3474 3475 for (i = 0; i < args->buffer_count; i++) { 3476 if (!(exec2_list[i].offset & UPDATE)) 3477 continue; 3478 3479 exec2_list[i].offset = 3480 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK); 3481 unsafe_put_user(exec2_list[i].offset, 3482 &user_exec_list[i].offset, 3483 end_user); 3484 } 3485 end_user: 3486 user_write_access_end(); 3487 end:; 3488 } 3489 3490 args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS; 3491 kvfree(exec2_list); 3492 return err; 3493 } 3494 3495 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 3496 #include "selftests/i915_gem_execbuffer.c" 3497 #endif 3498