1 /* 2 * SPDX-License-Identifier: MIT 3 * 4 * Copyright © 2008,2010 Intel Corporation 5 */ 6 7 #include <linux/dma-resv.h> 8 #include <linux/highmem.h> 9 #include <linux/sync_file.h> 10 #include <linux/uaccess.h> 11 12 #include <drm/drm_syncobj.h> 13 14 #include <dev/pci/pcivar.h> 15 #include <dev/pci/agpvar.h> 16 17 #include "display/intel_frontbuffer.h" 18 19 #include "gem/i915_gem_ioctls.h" 20 #include "gt/intel_context.h" 21 #include "gt/intel_gpu_commands.h" 22 #include "gt/intel_gt.h" 23 #include "gt/intel_gt_buffer_pool.h" 24 #include "gt/intel_gt_pm.h" 25 #include "gt/intel_ring.h" 26 27 #include "pxp/intel_pxp.h" 28 29 #include "i915_cmd_parser.h" 30 #include "i915_drv.h" 31 #include "i915_file_private.h" 32 #include "i915_gem_clflush.h" 33 #include "i915_gem_context.h" 34 #include "i915_gem_evict.h" 35 #include "i915_gem_ioctls.h" 36 #include "i915_trace.h" 37 #include "i915_user_extensions.h" 38 39 struct eb_vma { 40 struct i915_vma *vma; 41 unsigned int flags; 42 43 /** This vma's place in the execbuf reservation list */ 44 struct drm_i915_gem_exec_object2 *exec; 45 struct list_head bind_link; 46 struct list_head reloc_link; 47 48 struct hlist_node node; 49 u32 handle; 50 }; 51 52 enum { 53 FORCE_CPU_RELOC = 1, 54 FORCE_GTT_RELOC, 55 FORCE_GPU_RELOC, 56 #define DBG_FORCE_RELOC 0 /* choose one of the above! */ 57 }; 58 59 /* __EXEC_OBJECT_NO_RESERVE is BIT(31), defined in i915_vma.h */ 60 #define __EXEC_OBJECT_HAS_PIN BIT(30) 61 #define __EXEC_OBJECT_HAS_FENCE BIT(29) 62 #define __EXEC_OBJECT_USERPTR_INIT BIT(28) 63 #define __EXEC_OBJECT_NEEDS_MAP BIT(27) 64 #define __EXEC_OBJECT_NEEDS_BIAS BIT(26) 65 #define __EXEC_OBJECT_INTERNAL_FLAGS (~0u << 26) /* all of the above + */ 66 #define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE) 67 68 #define __EXEC_HAS_RELOC BIT(31) 69 #define __EXEC_ENGINE_PINNED BIT(30) 70 #define __EXEC_USERPTR_USED BIT(29) 71 #define __EXEC_INTERNAL_FLAGS (~0u << 29) 72 #define UPDATE PIN_OFFSET_FIXED 73 74 #define BATCH_OFFSET_BIAS (256*1024) 75 76 #define __I915_EXEC_ILLEGAL_FLAGS \ 77 (__I915_EXEC_UNKNOWN_FLAGS | \ 78 I915_EXEC_CONSTANTS_MASK | \ 79 I915_EXEC_RESOURCE_STREAMER) 80 81 /* Catch emission of unexpected errors for CI! */ 82 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) 83 #undef EINVAL 84 #define EINVAL ({ \ 85 DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \ 86 22; \ 87 }) 88 #endif 89 90 /** 91 * DOC: User command execution 92 * 93 * Userspace submits commands to be executed on the GPU as an instruction 94 * stream within a GEM object we call a batchbuffer. This instructions may 95 * refer to other GEM objects containing auxiliary state such as kernels, 96 * samplers, render targets and even secondary batchbuffers. Userspace does 97 * not know where in the GPU memory these objects reside and so before the 98 * batchbuffer is passed to the GPU for execution, those addresses in the 99 * batchbuffer and auxiliary objects are updated. This is known as relocation, 100 * or patching. To try and avoid having to relocate each object on the next 101 * execution, userspace is told the location of those objects in this pass, 102 * but this remains just a hint as the kernel may choose a new location for 103 * any object in the future. 104 * 105 * At the level of talking to the hardware, submitting a batchbuffer for the 106 * GPU to execute is to add content to a buffer from which the HW 107 * command streamer is reading. 108 * 109 * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e. 110 * Execlists, this command is not placed on the same buffer as the 111 * remaining items. 112 * 113 * 2. Add a command to invalidate caches to the buffer. 114 * 115 * 3. Add a batchbuffer start command to the buffer; the start command is 116 * essentially a token together with the GPU address of the batchbuffer 117 * to be executed. 118 * 119 * 4. Add a pipeline flush to the buffer. 120 * 121 * 5. Add a memory write command to the buffer to record when the GPU 122 * is done executing the batchbuffer. The memory write writes the 123 * global sequence number of the request, ``i915_request::global_seqno``; 124 * the i915 driver uses the current value in the register to determine 125 * if the GPU has completed the batchbuffer. 126 * 127 * 6. Add a user interrupt command to the buffer. This command instructs 128 * the GPU to issue an interrupt when the command, pipeline flush and 129 * memory write are completed. 130 * 131 * 7. Inform the hardware of the additional commands added to the buffer 132 * (by updating the tail pointer). 133 * 134 * Processing an execbuf ioctl is conceptually split up into a few phases. 135 * 136 * 1. Validation - Ensure all the pointers, handles and flags are valid. 137 * 2. Reservation - Assign GPU address space for every object 138 * 3. Relocation - Update any addresses to point to the final locations 139 * 4. Serialisation - Order the request with respect to its dependencies 140 * 5. Construction - Construct a request to execute the batchbuffer 141 * 6. Submission (at some point in the future execution) 142 * 143 * Reserving resources for the execbuf is the most complicated phase. We 144 * neither want to have to migrate the object in the address space, nor do 145 * we want to have to update any relocations pointing to this object. Ideally, 146 * we want to leave the object where it is and for all the existing relocations 147 * to match. If the object is given a new address, or if userspace thinks the 148 * object is elsewhere, we have to parse all the relocation entries and update 149 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that 150 * all the target addresses in all of its objects match the value in the 151 * relocation entries and that they all match the presumed offsets given by the 152 * list of execbuffer objects. Using this knowledge, we know that if we haven't 153 * moved any buffers, all the relocation entries are valid and we can skip 154 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU 155 * hang.) The requirement for using I915_EXEC_NO_RELOC are: 156 * 157 * The addresses written in the objects must match the corresponding 158 * reloc.presumed_offset which in turn must match the corresponding 159 * execobject.offset. 160 * 161 * Any render targets written to in the batch must be flagged with 162 * EXEC_OBJECT_WRITE. 163 * 164 * To avoid stalling, execobject.offset should match the current 165 * address of that object within the active context. 166 * 167 * The reservation is done is multiple phases. First we try and keep any 168 * object already bound in its current location - so as long as meets the 169 * constraints imposed by the new execbuffer. Any object left unbound after the 170 * first pass is then fitted into any available idle space. If an object does 171 * not fit, all objects are removed from the reservation and the process rerun 172 * after sorting the objects into a priority order (more difficult to fit 173 * objects are tried first). Failing that, the entire VM is cleared and we try 174 * to fit the execbuf once last time before concluding that it simply will not 175 * fit. 176 * 177 * A small complication to all of this is that we allow userspace not only to 178 * specify an alignment and a size for the object in the address space, but 179 * we also allow userspace to specify the exact offset. This objects are 180 * simpler to place (the location is known a priori) all we have to do is make 181 * sure the space is available. 182 * 183 * Once all the objects are in place, patching up the buried pointers to point 184 * to the final locations is a fairly simple job of walking over the relocation 185 * entry arrays, looking up the right address and rewriting the value into 186 * the object. Simple! ... The relocation entries are stored in user memory 187 * and so to access them we have to copy them into a local buffer. That copy 188 * has to avoid taking any pagefaults as they may lead back to a GEM object 189 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split 190 * the relocation into multiple passes. First we try to do everything within an 191 * atomic context (avoid the pagefaults) which requires that we never wait. If 192 * we detect that we may wait, or if we need to fault, then we have to fallback 193 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm 194 * bells yet?) Dropping the mutex means that we lose all the state we have 195 * built up so far for the execbuf and we must reset any global data. However, 196 * we do leave the objects pinned in their final locations - which is a 197 * potential issue for concurrent execbufs. Once we have left the mutex, we can 198 * allocate and copy all the relocation entries into a large array at our 199 * leisure, reacquire the mutex, reclaim all the objects and other state and 200 * then proceed to update any incorrect addresses with the objects. 201 * 202 * As we process the relocation entries, we maintain a record of whether the 203 * object is being written to. Using NORELOC, we expect userspace to provide 204 * this information instead. We also check whether we can skip the relocation 205 * by comparing the expected value inside the relocation entry with the target's 206 * final address. If they differ, we have to map the current object and rewrite 207 * the 4 or 8 byte pointer within. 208 * 209 * Serialising an execbuf is quite simple according to the rules of the GEM 210 * ABI. Execution within each context is ordered by the order of submission. 211 * Writes to any GEM object are in order of submission and are exclusive. Reads 212 * from a GEM object are unordered with respect to other reads, but ordered by 213 * writes. A write submitted after a read cannot occur before the read, and 214 * similarly any read submitted after a write cannot occur before the write. 215 * Writes are ordered between engines such that only one write occurs at any 216 * time (completing any reads beforehand) - using semaphores where available 217 * and CPU serialisation otherwise. Other GEM access obey the same rules, any 218 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU 219 * reads before starting, and any read (either using set-domain or pread) must 220 * flush all GPU writes before starting. (Note we only employ a barrier before, 221 * we currently rely on userspace not concurrently starting a new execution 222 * whilst reading or writing to an object. This may be an advantage or not 223 * depending on how much you trust userspace not to shoot themselves in the 224 * foot.) Serialisation may just result in the request being inserted into 225 * a DAG awaiting its turn, but most simple is to wait on the CPU until 226 * all dependencies are resolved. 227 * 228 * After all of that, is just a matter of closing the request and handing it to 229 * the hardware (well, leaving it in a queue to be executed). However, we also 230 * offer the ability for batchbuffers to be run with elevated privileges so 231 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.) 232 * Before any batch is given extra privileges we first must check that it 233 * contains no nefarious instructions, we check that each instruction is from 234 * our whitelist and all registers are also from an allowed list. We first 235 * copy the user's batchbuffer to a shadow (so that the user doesn't have 236 * access to it, either by the CPU or GPU as we scan it) and then parse each 237 * instruction. If everything is ok, we set a flag telling the hardware to run 238 * the batchbuffer in trusted mode, otherwise the ioctl is rejected. 239 */ 240 241 struct eb_fence { 242 struct drm_syncobj *syncobj; /* Use with ptr_mask_bits() */ 243 struct dma_fence *dma_fence; 244 u64 value; 245 struct dma_fence_chain *chain_fence; 246 }; 247 248 struct i915_execbuffer { 249 struct drm_i915_private *i915; /** i915 backpointer */ 250 struct drm_file *file; /** per-file lookup tables and limits */ 251 struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */ 252 struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */ 253 struct eb_vma *vma; 254 255 struct intel_gt *gt; /* gt for the execbuf */ 256 struct intel_context *context; /* logical state for the request */ 257 struct i915_gem_context *gem_context; /** caller's context */ 258 259 /** our requests to build */ 260 struct i915_request *requests[MAX_ENGINE_INSTANCE + 1]; 261 /** identity of the batch obj/vma */ 262 struct eb_vma *batches[MAX_ENGINE_INSTANCE + 1]; 263 struct i915_vma *trampoline; /** trampoline used for chaining */ 264 265 /** used for excl fence in dma_resv objects when > 1 BB submitted */ 266 struct dma_fence *composite_fence; 267 268 /** actual size of execobj[] as we may extend it for the cmdparser */ 269 unsigned int buffer_count; 270 271 /* number of batches in execbuf IOCTL */ 272 unsigned int num_batches; 273 274 /** list of vma not yet bound during reservation phase */ 275 struct list_head unbound; 276 277 /** list of vma that have execobj.relocation_count */ 278 struct list_head relocs; 279 280 struct i915_gem_ww_ctx ww; 281 282 /** 283 * Track the most recently used object for relocations, as we 284 * frequently have to perform multiple relocations within the same 285 * obj/page 286 */ 287 struct reloc_cache { 288 struct drm_mm_node node; /** temporary GTT binding */ 289 unsigned long vaddr; /** Current kmap address */ 290 unsigned long page; /** Currently mapped page index */ 291 unsigned int graphics_ver; /** Cached value of GRAPHICS_VER */ 292 bool use_64bit_reloc : 1; 293 bool has_llc : 1; 294 bool has_fence : 1; 295 bool needs_unfenced : 1; 296 297 struct agp_map *map; 298 bus_space_tag_t iot; 299 bus_space_handle_t ioh; 300 } reloc_cache; 301 302 u64 invalid_flags; /** Set of execobj.flags that are invalid */ 303 304 /** Length of batch within object */ 305 u64 batch_len[MAX_ENGINE_INSTANCE + 1]; 306 u32 batch_start_offset; /** Location within object of batch */ 307 u32 batch_flags; /** Flags composed for emit_bb_start() */ 308 struct intel_gt_buffer_pool_node *batch_pool; /** pool node for batch buffer */ 309 310 /** 311 * Indicate either the size of the hastable used to resolve 312 * relocation handles, or if negative that we are using a direct 313 * index into the execobj[]. 314 */ 315 int lut_size; 316 struct hlist_head *buckets; /** ht for relocation handles */ 317 318 struct eb_fence *fences; 319 unsigned long num_fences; 320 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR) 321 struct i915_capture_list *capture_lists[MAX_ENGINE_INSTANCE + 1]; 322 #endif 323 }; 324 325 static int eb_parse(struct i915_execbuffer *eb); 326 static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle); 327 static void eb_unpin_engine(struct i915_execbuffer *eb); 328 static void eb_capture_release(struct i915_execbuffer *eb); 329 330 static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb) 331 { 332 return intel_engine_requires_cmd_parser(eb->context->engine) || 333 (intel_engine_using_cmd_parser(eb->context->engine) && 334 eb->args->batch_len); 335 } 336 337 static int eb_create(struct i915_execbuffer *eb) 338 { 339 if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) { 340 unsigned int size = 1 + ilog2(eb->buffer_count); 341 342 /* 343 * Without a 1:1 association between relocation handles and 344 * the execobject[] index, we instead create a hashtable. 345 * We size it dynamically based on available memory, starting 346 * first with 1:1 assocative hash and scaling back until 347 * the allocation succeeds. 348 * 349 * Later on we use a positive lut_size to indicate we are 350 * using this hashtable, and a negative value to indicate a 351 * direct lookup. 352 */ 353 do { 354 gfp_t flags; 355 356 /* While we can still reduce the allocation size, don't 357 * raise a warning and allow the allocation to fail. 358 * On the last pass though, we want to try as hard 359 * as possible to perform the allocation and warn 360 * if it fails. 361 */ 362 flags = GFP_KERNEL; 363 if (size > 1) 364 flags |= __GFP_NORETRY | __GFP_NOWARN; 365 366 eb->buckets = kzalloc(sizeof(struct hlist_head) << size, 367 flags); 368 if (eb->buckets) 369 break; 370 } while (--size); 371 372 if (unlikely(!size)) 373 return -ENOMEM; 374 375 eb->lut_size = size; 376 } else { 377 eb->lut_size = -eb->buffer_count; 378 } 379 380 return 0; 381 } 382 383 static bool 384 eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry, 385 const struct i915_vma *vma, 386 unsigned int flags) 387 { 388 if (vma->node.size < entry->pad_to_size) 389 return true; 390 391 if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment)) 392 return true; 393 394 if (flags & EXEC_OBJECT_PINNED && 395 vma->node.start != entry->offset) 396 return true; 397 398 if (flags & __EXEC_OBJECT_NEEDS_BIAS && 399 vma->node.start < BATCH_OFFSET_BIAS) 400 return true; 401 402 if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) && 403 (vma->node.start + vma->node.size + 4095) >> 32) 404 return true; 405 406 if (flags & __EXEC_OBJECT_NEEDS_MAP && 407 !i915_vma_is_map_and_fenceable(vma)) 408 return true; 409 410 return false; 411 } 412 413 static u64 eb_pin_flags(const struct drm_i915_gem_exec_object2 *entry, 414 unsigned int exec_flags) 415 { 416 u64 pin_flags = 0; 417 418 if (exec_flags & EXEC_OBJECT_NEEDS_GTT) 419 pin_flags |= PIN_GLOBAL; 420 421 /* 422 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset, 423 * limit address to the first 4GBs for unflagged objects. 424 */ 425 if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS)) 426 pin_flags |= PIN_ZONE_4G; 427 428 if (exec_flags & __EXEC_OBJECT_NEEDS_MAP) 429 pin_flags |= PIN_MAPPABLE; 430 431 if (exec_flags & EXEC_OBJECT_PINNED) 432 pin_flags |= entry->offset | PIN_OFFSET_FIXED; 433 else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS) 434 pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS; 435 436 return pin_flags; 437 } 438 439 static inline int 440 eb_pin_vma(struct i915_execbuffer *eb, 441 const struct drm_i915_gem_exec_object2 *entry, 442 struct eb_vma *ev) 443 { 444 struct i915_vma *vma = ev->vma; 445 u64 pin_flags; 446 int err; 447 448 if (vma->node.size) 449 pin_flags = vma->node.start; 450 else 451 pin_flags = entry->offset & PIN_OFFSET_MASK; 452 453 pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED | PIN_VALIDATE; 454 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_GTT)) 455 pin_flags |= PIN_GLOBAL; 456 457 /* Attempt to reuse the current location if available */ 458 err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, pin_flags); 459 if (err == -EDEADLK) 460 return err; 461 462 if (unlikely(err)) { 463 if (entry->flags & EXEC_OBJECT_PINNED) 464 return err; 465 466 /* Failing that pick any _free_ space if suitable */ 467 err = i915_vma_pin_ww(vma, &eb->ww, 468 entry->pad_to_size, 469 entry->alignment, 470 eb_pin_flags(entry, ev->flags) | 471 PIN_USER | PIN_NOEVICT | PIN_VALIDATE); 472 if (unlikely(err)) 473 return err; 474 } 475 476 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) { 477 err = i915_vma_pin_fence(vma); 478 if (unlikely(err)) 479 return err; 480 481 if (vma->fence) 482 ev->flags |= __EXEC_OBJECT_HAS_FENCE; 483 } 484 485 ev->flags |= __EXEC_OBJECT_HAS_PIN; 486 if (eb_vma_misplaced(entry, vma, ev->flags)) 487 return -EBADSLT; 488 489 return 0; 490 } 491 492 static inline void 493 eb_unreserve_vma(struct eb_vma *ev) 494 { 495 if (unlikely(ev->flags & __EXEC_OBJECT_HAS_FENCE)) 496 __i915_vma_unpin_fence(ev->vma); 497 498 ev->flags &= ~__EXEC_OBJECT_RESERVED; 499 } 500 501 static int 502 eb_validate_vma(struct i915_execbuffer *eb, 503 struct drm_i915_gem_exec_object2 *entry, 504 struct i915_vma *vma) 505 { 506 /* Relocations are disallowed for all platforms after TGL-LP. This 507 * also covers all platforms with local memory. 508 */ 509 if (entry->relocation_count && 510 GRAPHICS_VER(eb->i915) >= 12 && !IS_TIGERLAKE(eb->i915)) 511 return -EINVAL; 512 513 if (unlikely(entry->flags & eb->invalid_flags)) 514 return -EINVAL; 515 516 if (unlikely(entry->alignment && 517 !is_power_of_2_u64(entry->alignment))) 518 return -EINVAL; 519 520 /* 521 * Offset can be used as input (EXEC_OBJECT_PINNED), reject 522 * any non-page-aligned or non-canonical addresses. 523 */ 524 if (unlikely(entry->flags & EXEC_OBJECT_PINNED && 525 entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK))) 526 return -EINVAL; 527 528 /* pad_to_size was once a reserved field, so sanitize it */ 529 if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) { 530 if (unlikely(offset_in_page(entry->pad_to_size))) 531 return -EINVAL; 532 } else { 533 entry->pad_to_size = 0; 534 } 535 /* 536 * From drm_mm perspective address space is continuous, 537 * so from this point we're always using non-canonical 538 * form internally. 539 */ 540 entry->offset = gen8_noncanonical_addr(entry->offset); 541 542 if (!eb->reloc_cache.has_fence) { 543 entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE; 544 } else { 545 if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE || 546 eb->reloc_cache.needs_unfenced) && 547 i915_gem_object_is_tiled(vma->obj)) 548 entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP; 549 } 550 551 return 0; 552 } 553 554 static inline bool 555 is_batch_buffer(struct i915_execbuffer *eb, unsigned int buffer_idx) 556 { 557 return eb->args->flags & I915_EXEC_BATCH_FIRST ? 558 buffer_idx < eb->num_batches : 559 buffer_idx >= eb->args->buffer_count - eb->num_batches; 560 } 561 562 static int 563 eb_add_vma(struct i915_execbuffer *eb, 564 unsigned int *current_batch, 565 unsigned int i, 566 struct i915_vma *vma) 567 { 568 struct drm_i915_private *i915 = eb->i915; 569 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i]; 570 struct eb_vma *ev = &eb->vma[i]; 571 572 ev->vma = vma; 573 ev->exec = entry; 574 ev->flags = entry->flags; 575 576 if (eb->lut_size > 0) { 577 ev->handle = entry->handle; 578 hlist_add_head(&ev->node, 579 &eb->buckets[hash_32(entry->handle, 580 eb->lut_size)]); 581 } 582 583 if (entry->relocation_count) 584 list_add_tail(&ev->reloc_link, &eb->relocs); 585 586 /* 587 * SNA is doing fancy tricks with compressing batch buffers, which leads 588 * to negative relocation deltas. Usually that works out ok since the 589 * relocate address is still positive, except when the batch is placed 590 * very low in the GTT. Ensure this doesn't happen. 591 * 592 * Note that actual hangs have only been observed on gen7, but for 593 * paranoia do it everywhere. 594 */ 595 if (is_batch_buffer(eb, i)) { 596 if (entry->relocation_count && 597 !(ev->flags & EXEC_OBJECT_PINNED)) 598 ev->flags |= __EXEC_OBJECT_NEEDS_BIAS; 599 if (eb->reloc_cache.has_fence) 600 ev->flags |= EXEC_OBJECT_NEEDS_FENCE; 601 602 eb->batches[*current_batch] = ev; 603 604 if (unlikely(ev->flags & EXEC_OBJECT_WRITE)) { 605 drm_dbg(&i915->drm, 606 "Attempting to use self-modifying batch buffer\n"); 607 return -EINVAL; 608 } 609 610 if (range_overflows_t(u64, 611 eb->batch_start_offset, 612 eb->args->batch_len, 613 ev->vma->size)) { 614 drm_dbg(&i915->drm, "Attempting to use out-of-bounds batch\n"); 615 return -EINVAL; 616 } 617 618 if (eb->args->batch_len == 0) 619 eb->batch_len[*current_batch] = ev->vma->size - 620 eb->batch_start_offset; 621 else 622 eb->batch_len[*current_batch] = eb->args->batch_len; 623 if (unlikely(eb->batch_len[*current_batch] == 0)) { /* impossible! */ 624 drm_dbg(&i915->drm, "Invalid batch length\n"); 625 return -EINVAL; 626 } 627 628 ++*current_batch; 629 } 630 631 return 0; 632 } 633 634 static inline int use_cpu_reloc(const struct reloc_cache *cache, 635 const struct drm_i915_gem_object *obj) 636 { 637 if (!i915_gem_object_has_struct_page(obj)) 638 return false; 639 640 if (DBG_FORCE_RELOC == FORCE_CPU_RELOC) 641 return true; 642 643 if (DBG_FORCE_RELOC == FORCE_GTT_RELOC) 644 return false; 645 646 return (cache->has_llc || 647 obj->cache_dirty || 648 obj->cache_level != I915_CACHE_NONE); 649 } 650 651 static int eb_reserve_vma(struct i915_execbuffer *eb, 652 struct eb_vma *ev, 653 u64 pin_flags) 654 { 655 struct drm_i915_gem_exec_object2 *entry = ev->exec; 656 struct i915_vma *vma = ev->vma; 657 int err; 658 659 if (drm_mm_node_allocated(&vma->node) && 660 eb_vma_misplaced(entry, vma, ev->flags)) { 661 err = i915_vma_unbind(vma); 662 if (err) 663 return err; 664 } 665 666 err = i915_vma_pin_ww(vma, &eb->ww, 667 entry->pad_to_size, entry->alignment, 668 eb_pin_flags(entry, ev->flags) | pin_flags); 669 if (err) 670 return err; 671 672 if (entry->offset != vma->node.start) { 673 entry->offset = vma->node.start | UPDATE; 674 eb->args->flags |= __EXEC_HAS_RELOC; 675 } 676 677 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) { 678 err = i915_vma_pin_fence(vma); 679 if (unlikely(err)) 680 return err; 681 682 if (vma->fence) 683 ev->flags |= __EXEC_OBJECT_HAS_FENCE; 684 } 685 686 ev->flags |= __EXEC_OBJECT_HAS_PIN; 687 GEM_BUG_ON(eb_vma_misplaced(entry, vma, ev->flags)); 688 689 return 0; 690 } 691 692 static bool eb_unbind(struct i915_execbuffer *eb, bool force) 693 { 694 const unsigned int count = eb->buffer_count; 695 unsigned int i; 696 struct list_head last; 697 bool unpinned = false; 698 699 /* Resort *all* the objects into priority order */ 700 INIT_LIST_HEAD(&eb->unbound); 701 INIT_LIST_HEAD(&last); 702 703 for (i = 0; i < count; i++) { 704 struct eb_vma *ev = &eb->vma[i]; 705 unsigned int flags = ev->flags; 706 707 if (!force && flags & EXEC_OBJECT_PINNED && 708 flags & __EXEC_OBJECT_HAS_PIN) 709 continue; 710 711 unpinned = true; 712 eb_unreserve_vma(ev); 713 714 if (flags & EXEC_OBJECT_PINNED) 715 /* Pinned must have their slot */ 716 list_add(&ev->bind_link, &eb->unbound); 717 else if (flags & __EXEC_OBJECT_NEEDS_MAP) 718 /* Map require the lowest 256MiB (aperture) */ 719 list_add_tail(&ev->bind_link, &eb->unbound); 720 else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS)) 721 /* Prioritise 4GiB region for restricted bo */ 722 list_add(&ev->bind_link, &last); 723 else 724 list_add_tail(&ev->bind_link, &last); 725 } 726 727 list_splice_tail(&last, &eb->unbound); 728 return unpinned; 729 } 730 731 static int eb_reserve(struct i915_execbuffer *eb) 732 { 733 struct eb_vma *ev; 734 unsigned int pass; 735 int err = 0; 736 bool unpinned; 737 738 /* 739 * Attempt to pin all of the buffers into the GTT. 740 * This is done in 2 phases: 741 * 742 * 1. Unbind all objects that do not match the GTT constraints for 743 * the execbuffer (fenceable, mappable, alignment etc). 744 * 2. Bind new objects. 745 * 746 * This avoid unnecessary unbinding of later objects in order to make 747 * room for the earlier objects *unless* we need to defragment. 748 * 749 * Defragmenting is skipped if all objects are pinned at a fixed location. 750 */ 751 for (pass = 0; pass <= 2; pass++) { 752 int pin_flags = PIN_USER | PIN_VALIDATE; 753 754 if (pass == 0) 755 pin_flags |= PIN_NONBLOCK; 756 757 if (pass >= 1) 758 unpinned = eb_unbind(eb, pass == 2); 759 760 if (pass == 2) { 761 err = mutex_lock_interruptible(&eb->context->vm->mutex); 762 if (!err) { 763 err = i915_gem_evict_vm(eb->context->vm, &eb->ww); 764 mutex_unlock(&eb->context->vm->mutex); 765 } 766 if (err) 767 return err; 768 } 769 770 list_for_each_entry(ev, &eb->unbound, bind_link) { 771 err = eb_reserve_vma(eb, ev, pin_flags); 772 if (err) 773 break; 774 } 775 776 if (err != -ENOSPC) 777 break; 778 } 779 780 return err; 781 } 782 783 static int eb_select_context(struct i915_execbuffer *eb) 784 { 785 struct i915_gem_context *ctx; 786 787 ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1); 788 if (unlikely(IS_ERR(ctx))) 789 return PTR_ERR(ctx); 790 791 eb->gem_context = ctx; 792 if (i915_gem_context_has_full_ppgtt(ctx)) 793 eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT; 794 795 return 0; 796 } 797 798 static int __eb_add_lut(struct i915_execbuffer *eb, 799 u32 handle, struct i915_vma *vma) 800 { 801 struct i915_gem_context *ctx = eb->gem_context; 802 struct i915_lut_handle *lut; 803 int err; 804 805 lut = i915_lut_handle_alloc(); 806 if (unlikely(!lut)) 807 return -ENOMEM; 808 809 i915_vma_get(vma); 810 if (!atomic_fetch_inc(&vma->open_count)) 811 i915_vma_reopen(vma); 812 lut->handle = handle; 813 lut->ctx = ctx; 814 815 /* Check that the context hasn't been closed in the meantime */ 816 err = -EINTR; 817 if (!mutex_lock_interruptible(&ctx->lut_mutex)) { 818 if (likely(!i915_gem_context_is_closed(ctx))) 819 err = radix_tree_insert(&ctx->handles_vma, handle, vma); 820 else 821 err = -ENOENT; 822 if (err == 0) { /* And nor has this handle */ 823 struct drm_i915_gem_object *obj = vma->obj; 824 825 spin_lock(&obj->lut_lock); 826 if (idr_find(&eb->file->object_idr, handle) == obj) { 827 list_add(&lut->obj_link, &obj->lut_list); 828 } else { 829 radix_tree_delete(&ctx->handles_vma, handle); 830 err = -ENOENT; 831 } 832 spin_unlock(&obj->lut_lock); 833 } 834 mutex_unlock(&ctx->lut_mutex); 835 } 836 if (unlikely(err)) 837 goto err; 838 839 return 0; 840 841 err: 842 i915_vma_close(vma); 843 i915_vma_put(vma); 844 i915_lut_handle_free(lut); 845 return err; 846 } 847 848 static struct i915_vma *eb_lookup_vma(struct i915_execbuffer *eb, u32 handle) 849 { 850 struct i915_address_space *vm = eb->context->vm; 851 852 do { 853 struct drm_i915_gem_object *obj; 854 struct i915_vma *vma; 855 int err; 856 857 rcu_read_lock(); 858 vma = radix_tree_lookup(&eb->gem_context->handles_vma, handle); 859 if (likely(vma && vma->vm == vm)) 860 vma = i915_vma_tryget(vma); 861 rcu_read_unlock(); 862 if (likely(vma)) 863 return vma; 864 865 obj = i915_gem_object_lookup(eb->file, handle); 866 if (unlikely(!obj)) 867 return ERR_PTR(-ENOENT); 868 869 /* 870 * If the user has opted-in for protected-object tracking, make 871 * sure the object encryption can be used. 872 * We only need to do this when the object is first used with 873 * this context, because the context itself will be banned when 874 * the protected objects become invalid. 875 */ 876 if (i915_gem_context_uses_protected_content(eb->gem_context) && 877 i915_gem_object_is_protected(obj)) { 878 err = intel_pxp_key_check(&vm->gt->pxp, obj, true); 879 if (err) { 880 i915_gem_object_put(obj); 881 return ERR_PTR(err); 882 } 883 } 884 885 vma = i915_vma_instance(obj, vm, NULL); 886 if (IS_ERR(vma)) { 887 i915_gem_object_put(obj); 888 return vma; 889 } 890 891 err = __eb_add_lut(eb, handle, vma); 892 if (likely(!err)) 893 return vma; 894 895 i915_gem_object_put(obj); 896 if (err != -EEXIST) 897 return ERR_PTR(err); 898 } while (1); 899 } 900 901 static int eb_lookup_vmas(struct i915_execbuffer *eb) 902 { 903 unsigned int i, current_batch = 0; 904 int err = 0; 905 906 INIT_LIST_HEAD(&eb->relocs); 907 908 for (i = 0; i < eb->buffer_count; i++) { 909 struct i915_vma *vma; 910 911 vma = eb_lookup_vma(eb, eb->exec[i].handle); 912 if (IS_ERR(vma)) { 913 err = PTR_ERR(vma); 914 goto err; 915 } 916 917 err = eb_validate_vma(eb, &eb->exec[i], vma); 918 if (unlikely(err)) { 919 i915_vma_put(vma); 920 goto err; 921 } 922 923 err = eb_add_vma(eb, ¤t_batch, i, vma); 924 if (err) 925 return err; 926 927 if (i915_gem_object_is_userptr(vma->obj)) { 928 err = i915_gem_object_userptr_submit_init(vma->obj); 929 if (err) { 930 if (i + 1 < eb->buffer_count) { 931 /* 932 * Execbuffer code expects last vma entry to be NULL, 933 * since we already initialized this entry, 934 * set the next value to NULL or we mess up 935 * cleanup handling. 936 */ 937 eb->vma[i + 1].vma = NULL; 938 } 939 940 return err; 941 } 942 943 eb->vma[i].flags |= __EXEC_OBJECT_USERPTR_INIT; 944 eb->args->flags |= __EXEC_USERPTR_USED; 945 } 946 } 947 948 return 0; 949 950 err: 951 eb->vma[i].vma = NULL; 952 return err; 953 } 954 955 static int eb_lock_vmas(struct i915_execbuffer *eb) 956 { 957 unsigned int i; 958 int err; 959 960 for (i = 0; i < eb->buffer_count; i++) { 961 struct eb_vma *ev = &eb->vma[i]; 962 struct i915_vma *vma = ev->vma; 963 964 err = i915_gem_object_lock(vma->obj, &eb->ww); 965 if (err) 966 return err; 967 } 968 969 return 0; 970 } 971 972 static int eb_validate_vmas(struct i915_execbuffer *eb) 973 { 974 unsigned int i; 975 int err; 976 977 INIT_LIST_HEAD(&eb->unbound); 978 979 err = eb_lock_vmas(eb); 980 if (err) 981 return err; 982 983 for (i = 0; i < eb->buffer_count; i++) { 984 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i]; 985 struct eb_vma *ev = &eb->vma[i]; 986 struct i915_vma *vma = ev->vma; 987 988 err = eb_pin_vma(eb, entry, ev); 989 if (err == -EDEADLK) 990 return err; 991 992 if (!err) { 993 if (entry->offset != vma->node.start) { 994 entry->offset = vma->node.start | UPDATE; 995 eb->args->flags |= __EXEC_HAS_RELOC; 996 } 997 } else { 998 eb_unreserve_vma(ev); 999 1000 list_add_tail(&ev->bind_link, &eb->unbound); 1001 if (drm_mm_node_allocated(&vma->node)) { 1002 err = i915_vma_unbind(vma); 1003 if (err) 1004 return err; 1005 } 1006 } 1007 1008 /* Reserve enough slots to accommodate composite fences */ 1009 err = dma_resv_reserve_fences(vma->obj->base.resv, eb->num_batches); 1010 if (err) 1011 return err; 1012 1013 GEM_BUG_ON(drm_mm_node_allocated(&vma->node) && 1014 eb_vma_misplaced(&eb->exec[i], vma, ev->flags)); 1015 } 1016 1017 if (!list_empty(&eb->unbound)) 1018 return eb_reserve(eb); 1019 1020 return 0; 1021 } 1022 1023 static struct eb_vma * 1024 eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle) 1025 { 1026 if (eb->lut_size < 0) { 1027 if (handle >= -eb->lut_size) 1028 return NULL; 1029 return &eb->vma[handle]; 1030 } else { 1031 struct hlist_head *head; 1032 struct eb_vma *ev; 1033 1034 head = &eb->buckets[hash_32(handle, eb->lut_size)]; 1035 hlist_for_each_entry(ev, head, node) { 1036 if (ev->handle == handle) 1037 return ev; 1038 } 1039 return NULL; 1040 } 1041 } 1042 1043 static void eb_release_vmas(struct i915_execbuffer *eb, bool final) 1044 { 1045 const unsigned int count = eb->buffer_count; 1046 unsigned int i; 1047 1048 for (i = 0; i < count; i++) { 1049 struct eb_vma *ev = &eb->vma[i]; 1050 struct i915_vma *vma = ev->vma; 1051 1052 if (!vma) 1053 break; 1054 1055 eb_unreserve_vma(ev); 1056 1057 if (final) 1058 i915_vma_put(vma); 1059 } 1060 1061 eb_capture_release(eb); 1062 eb_unpin_engine(eb); 1063 } 1064 1065 static void eb_destroy(const struct i915_execbuffer *eb) 1066 { 1067 if (eb->lut_size > 0) 1068 kfree(eb->buckets); 1069 } 1070 1071 static inline u64 1072 relocation_target(const struct drm_i915_gem_relocation_entry *reloc, 1073 const struct i915_vma *target) 1074 { 1075 return gen8_canonical_addr((int)reloc->delta + target->node.start); 1076 } 1077 1078 static void reloc_cache_init(struct reloc_cache *cache, 1079 struct drm_i915_private *i915) 1080 { 1081 cache->page = -1; 1082 cache->vaddr = 0; 1083 /* Must be a variable in the struct to allow GCC to unroll. */ 1084 cache->graphics_ver = GRAPHICS_VER(i915); 1085 cache->has_llc = HAS_LLC(i915); 1086 cache->use_64bit_reloc = HAS_64BIT_RELOC(i915); 1087 cache->has_fence = cache->graphics_ver < 4; 1088 cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment; 1089 cache->node.flags = 0; 1090 1091 cache->map = i915->agph; 1092 cache->iot = i915->bst; 1093 } 1094 1095 static inline void *unmask_page(unsigned long p) 1096 { 1097 return (void *)(uintptr_t)(p & LINUX_PAGE_MASK); 1098 } 1099 1100 static inline unsigned int unmask_flags(unsigned long p) 1101 { 1102 return p & ~LINUX_PAGE_MASK; 1103 } 1104 1105 #define KMAP 0x4 /* after CLFLUSH_FLAGS */ 1106 1107 static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache) 1108 { 1109 struct drm_i915_private *i915 = 1110 container_of(cache, struct i915_execbuffer, reloc_cache)->i915; 1111 return to_gt(i915)->ggtt; 1112 } 1113 1114 static void reloc_cache_unmap(struct reloc_cache *cache) 1115 { 1116 void *vaddr; 1117 1118 if (!cache->vaddr) 1119 return; 1120 1121 vaddr = unmask_page(cache->vaddr); 1122 if (cache->vaddr & KMAP) 1123 kunmap_atomic(vaddr); 1124 else 1125 #ifdef __linux__ 1126 io_mapping_unmap_atomic((void __iomem *)vaddr); 1127 #else 1128 agp_unmap_atomic(cache->map, cache->ioh); 1129 #endif 1130 } 1131 1132 static void reloc_cache_remap(struct reloc_cache *cache, 1133 struct drm_i915_gem_object *obj) 1134 { 1135 void *vaddr; 1136 1137 if (!cache->vaddr) 1138 return; 1139 1140 if (cache->vaddr & KMAP) { 1141 struct vm_page *page = i915_gem_object_get_page(obj, cache->page); 1142 1143 vaddr = kmap_atomic(page); 1144 cache->vaddr = unmask_flags(cache->vaddr) | 1145 (unsigned long)vaddr; 1146 } else { 1147 struct i915_ggtt *ggtt = cache_to_ggtt(cache); 1148 unsigned long offset; 1149 1150 offset = cache->node.start; 1151 if (!drm_mm_node_allocated(&cache->node)) 1152 offset += cache->page << PAGE_SHIFT; 1153 1154 #ifdef __linux__ 1155 cache->vaddr = (unsigned long) 1156 io_mapping_map_atomic_wc(&ggtt->iomap, offset); 1157 #else 1158 agp_map_atomic(cache->map, offset, &cache->ioh); 1159 cache->vaddr = (unsigned long) 1160 bus_space_vaddr(cache->iot, cache->ioh); 1161 #endif 1162 } 1163 } 1164 1165 static void reloc_cache_reset(struct reloc_cache *cache, struct i915_execbuffer *eb) 1166 { 1167 void *vaddr; 1168 1169 if (!cache->vaddr) 1170 return; 1171 1172 vaddr = unmask_page(cache->vaddr); 1173 if (cache->vaddr & KMAP) { 1174 struct drm_i915_gem_object *obj = 1175 (struct drm_i915_gem_object *)cache->node.mm; 1176 if (cache->vaddr & CLFLUSH_AFTER) 1177 mb(); 1178 1179 kunmap_atomic(vaddr); 1180 i915_gem_object_finish_access(obj); 1181 } else { 1182 struct i915_ggtt *ggtt = cache_to_ggtt(cache); 1183 1184 intel_gt_flush_ggtt_writes(ggtt->vm.gt); 1185 #ifdef __linux__ 1186 io_mapping_unmap_atomic((void __iomem *)vaddr); 1187 #else 1188 agp_unmap_atomic(cache->map, cache->ioh); 1189 #endif 1190 1191 if (drm_mm_node_allocated(&cache->node)) { 1192 ggtt->vm.clear_range(&ggtt->vm, 1193 cache->node.start, 1194 cache->node.size); 1195 mutex_lock(&ggtt->vm.mutex); 1196 drm_mm_remove_node(&cache->node); 1197 mutex_unlock(&ggtt->vm.mutex); 1198 } else { 1199 i915_vma_unpin((struct i915_vma *)cache->node.mm); 1200 } 1201 } 1202 1203 cache->vaddr = 0; 1204 cache->page = -1; 1205 } 1206 1207 static void *reloc_kmap(struct drm_i915_gem_object *obj, 1208 struct reloc_cache *cache, 1209 unsigned long pageno) 1210 { 1211 void *vaddr; 1212 struct vm_page *page; 1213 1214 if (cache->vaddr) { 1215 kunmap_atomic(unmask_page(cache->vaddr)); 1216 } else { 1217 unsigned int flushes; 1218 int err; 1219 1220 err = i915_gem_object_prepare_write(obj, &flushes); 1221 if (err) 1222 return ERR_PTR(err); 1223 1224 BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS); 1225 BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & LINUX_PAGE_MASK); 1226 1227 cache->vaddr = flushes | KMAP; 1228 cache->node.mm = (void *)obj; 1229 if (flushes) 1230 mb(); 1231 } 1232 1233 page = i915_gem_object_get_page(obj, pageno); 1234 if (!obj->mm.dirty) 1235 set_page_dirty(page); 1236 1237 vaddr = kmap_atomic(page); 1238 cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr; 1239 cache->page = pageno; 1240 1241 return vaddr; 1242 } 1243 1244 static void *reloc_iomap(struct i915_vma *batch, 1245 struct i915_execbuffer *eb, 1246 unsigned long page) 1247 { 1248 struct drm_i915_gem_object *obj = batch->obj; 1249 struct reloc_cache *cache = &eb->reloc_cache; 1250 struct i915_ggtt *ggtt = cache_to_ggtt(cache); 1251 unsigned long offset; 1252 void *vaddr; 1253 1254 if (cache->vaddr) { 1255 intel_gt_flush_ggtt_writes(ggtt->vm.gt); 1256 #ifdef __linux__ 1257 io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr)); 1258 #else 1259 agp_unmap_atomic(cache->map, cache->ioh); 1260 #endif 1261 } else { 1262 struct i915_vma *vma = ERR_PTR(-ENODEV); 1263 int err; 1264 1265 if (i915_gem_object_is_tiled(obj)) 1266 return ERR_PTR(-EINVAL); 1267 1268 if (use_cpu_reloc(cache, obj)) 1269 return NULL; 1270 1271 err = i915_gem_object_set_to_gtt_domain(obj, true); 1272 if (err) 1273 return ERR_PTR(err); 1274 1275 /* 1276 * i915_gem_object_ggtt_pin_ww may attempt to remove the batch 1277 * VMA from the object list because we no longer pin. 1278 * 1279 * Only attempt to pin the batch buffer to ggtt if the current batch 1280 * is not inside ggtt, or the batch buffer is not misplaced. 1281 */ 1282 if (!i915_is_ggtt(batch->vm) || 1283 !i915_vma_misplaced(batch, 0, 0, PIN_MAPPABLE)) { 1284 vma = i915_gem_object_ggtt_pin_ww(obj, &eb->ww, NULL, 0, 0, 1285 PIN_MAPPABLE | 1286 PIN_NONBLOCK /* NOWARN */ | 1287 PIN_NOEVICT); 1288 } 1289 1290 if (vma == ERR_PTR(-EDEADLK)) 1291 return vma; 1292 1293 if (IS_ERR(vma)) { 1294 memset(&cache->node, 0, sizeof(cache->node)); 1295 mutex_lock(&ggtt->vm.mutex); 1296 err = drm_mm_insert_node_in_range 1297 (&ggtt->vm.mm, &cache->node, 1298 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE, 1299 0, ggtt->mappable_end, 1300 DRM_MM_INSERT_LOW); 1301 mutex_unlock(&ggtt->vm.mutex); 1302 if (err) /* no inactive aperture space, use cpu reloc */ 1303 return NULL; 1304 } else { 1305 cache->node.start = vma->node.start; 1306 cache->node.mm = (void *)vma; 1307 } 1308 } 1309 1310 offset = cache->node.start; 1311 if (drm_mm_node_allocated(&cache->node)) { 1312 ggtt->vm.insert_page(&ggtt->vm, 1313 i915_gem_object_get_dma_address(obj, page), 1314 offset, I915_CACHE_NONE, 0); 1315 } else { 1316 offset += page << PAGE_SHIFT; 1317 } 1318 1319 #ifdef __linux__ 1320 vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap, 1321 offset); 1322 #else 1323 agp_map_atomic(cache->map, offset, &cache->ioh); 1324 vaddr = bus_space_vaddr(cache->iot, cache->ioh); 1325 #endif 1326 cache->page = page; 1327 cache->vaddr = (unsigned long)vaddr; 1328 1329 return vaddr; 1330 } 1331 1332 static void *reloc_vaddr(struct i915_vma *vma, 1333 struct i915_execbuffer *eb, 1334 unsigned long page) 1335 { 1336 struct reloc_cache *cache = &eb->reloc_cache; 1337 void *vaddr; 1338 1339 if (cache->page == page) { 1340 vaddr = unmask_page(cache->vaddr); 1341 } else { 1342 vaddr = NULL; 1343 if ((cache->vaddr & KMAP) == 0) 1344 vaddr = reloc_iomap(vma, eb, page); 1345 if (!vaddr) 1346 vaddr = reloc_kmap(vma->obj, cache, page); 1347 } 1348 1349 return vaddr; 1350 } 1351 1352 static void clflush_write32(u32 *addr, u32 value, unsigned int flushes) 1353 { 1354 if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) { 1355 if (flushes & CLFLUSH_BEFORE) 1356 drm_clflush_virt_range(addr, sizeof(*addr)); 1357 1358 *addr = value; 1359 1360 /* 1361 * Writes to the same cacheline are serialised by the CPU 1362 * (including clflush). On the write path, we only require 1363 * that it hits memory in an orderly fashion and place 1364 * mb barriers at the start and end of the relocation phase 1365 * to ensure ordering of clflush wrt to the system. 1366 */ 1367 if (flushes & CLFLUSH_AFTER) 1368 drm_clflush_virt_range(addr, sizeof(*addr)); 1369 } else 1370 *addr = value; 1371 } 1372 1373 static u64 1374 relocate_entry(struct i915_vma *vma, 1375 const struct drm_i915_gem_relocation_entry *reloc, 1376 struct i915_execbuffer *eb, 1377 const struct i915_vma *target) 1378 { 1379 u64 target_addr = relocation_target(reloc, target); 1380 u64 offset = reloc->offset; 1381 bool wide = eb->reloc_cache.use_64bit_reloc; 1382 void *vaddr; 1383 1384 repeat: 1385 vaddr = reloc_vaddr(vma, eb, 1386 offset >> PAGE_SHIFT); 1387 if (IS_ERR(vaddr)) 1388 return PTR_ERR(vaddr); 1389 1390 GEM_BUG_ON(!IS_ALIGNED(offset, sizeof(u32))); 1391 clflush_write32(vaddr + offset_in_page(offset), 1392 lower_32_bits(target_addr), 1393 eb->reloc_cache.vaddr); 1394 1395 if (wide) { 1396 offset += sizeof(u32); 1397 target_addr >>= 32; 1398 wide = false; 1399 goto repeat; 1400 } 1401 1402 return target->node.start | UPDATE; 1403 } 1404 1405 static u64 1406 eb_relocate_entry(struct i915_execbuffer *eb, 1407 struct eb_vma *ev, 1408 const struct drm_i915_gem_relocation_entry *reloc) 1409 { 1410 struct drm_i915_private *i915 = eb->i915; 1411 struct eb_vma *target; 1412 int err; 1413 1414 /* we've already hold a reference to all valid objects */ 1415 target = eb_get_vma(eb, reloc->target_handle); 1416 if (unlikely(!target)) 1417 return -ENOENT; 1418 1419 /* Validate that the target is in a valid r/w GPU domain */ 1420 if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) { 1421 drm_dbg(&i915->drm, "reloc with multiple write domains: " 1422 "target %d offset %d " 1423 "read %08x write %08x", 1424 reloc->target_handle, 1425 (int) reloc->offset, 1426 reloc->read_domains, 1427 reloc->write_domain); 1428 return -EINVAL; 1429 } 1430 if (unlikely((reloc->write_domain | reloc->read_domains) 1431 & ~I915_GEM_GPU_DOMAINS)) { 1432 drm_dbg(&i915->drm, "reloc with read/write non-GPU domains: " 1433 "target %d offset %d " 1434 "read %08x write %08x", 1435 reloc->target_handle, 1436 (int) reloc->offset, 1437 reloc->read_domains, 1438 reloc->write_domain); 1439 return -EINVAL; 1440 } 1441 1442 if (reloc->write_domain) { 1443 target->flags |= EXEC_OBJECT_WRITE; 1444 1445 /* 1446 * Sandybridge PPGTT errata: We need a global gtt mapping 1447 * for MI and pipe_control writes because the gpu doesn't 1448 * properly redirect them through the ppgtt for non_secure 1449 * batchbuffers. 1450 */ 1451 if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION && 1452 GRAPHICS_VER(eb->i915) == 6 && 1453 !i915_vma_is_bound(target->vma, I915_VMA_GLOBAL_BIND)) { 1454 struct i915_vma *vma = target->vma; 1455 1456 reloc_cache_unmap(&eb->reloc_cache); 1457 mutex_lock(&vma->vm->mutex); 1458 err = i915_vma_bind(target->vma, 1459 target->vma->obj->cache_level, 1460 PIN_GLOBAL, NULL, NULL); 1461 mutex_unlock(&vma->vm->mutex); 1462 reloc_cache_remap(&eb->reloc_cache, ev->vma->obj); 1463 if (err) 1464 return err; 1465 } 1466 } 1467 1468 /* 1469 * If the relocation already has the right value in it, no 1470 * more work needs to be done. 1471 */ 1472 if (!DBG_FORCE_RELOC && 1473 gen8_canonical_addr(target->vma->node.start) == reloc->presumed_offset) 1474 return 0; 1475 1476 /* Check that the relocation address is valid... */ 1477 if (unlikely(reloc->offset > 1478 ev->vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) { 1479 drm_dbg(&i915->drm, "Relocation beyond object bounds: " 1480 "target %d offset %d size %d.\n", 1481 reloc->target_handle, 1482 (int)reloc->offset, 1483 (int)ev->vma->size); 1484 return -EINVAL; 1485 } 1486 if (unlikely(reloc->offset & 3)) { 1487 drm_dbg(&i915->drm, "Relocation not 4-byte aligned: " 1488 "target %d offset %d.\n", 1489 reloc->target_handle, 1490 (int)reloc->offset); 1491 return -EINVAL; 1492 } 1493 1494 /* 1495 * If we write into the object, we need to force the synchronisation 1496 * barrier, either with an asynchronous clflush or if we executed the 1497 * patching using the GPU (though that should be serialised by the 1498 * timeline). To be completely sure, and since we are required to 1499 * do relocations we are already stalling, disable the user's opt 1500 * out of our synchronisation. 1501 */ 1502 ev->flags &= ~EXEC_OBJECT_ASYNC; 1503 1504 /* and update the user's relocation entry */ 1505 return relocate_entry(ev->vma, reloc, eb, target->vma); 1506 } 1507 1508 static int eb_relocate_vma(struct i915_execbuffer *eb, struct eb_vma *ev) 1509 { 1510 #define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry)) 1511 struct drm_i915_gem_relocation_entry stack[N_RELOC(512)]; 1512 const struct drm_i915_gem_exec_object2 *entry = ev->exec; 1513 struct drm_i915_gem_relocation_entry __user *urelocs = 1514 u64_to_user_ptr(entry->relocs_ptr); 1515 unsigned long remain = entry->relocation_count; 1516 1517 if (unlikely(remain > N_RELOC(ULONG_MAX))) 1518 return -EINVAL; 1519 1520 /* 1521 * We must check that the entire relocation array is safe 1522 * to read. However, if the array is not writable the user loses 1523 * the updated relocation values. 1524 */ 1525 if (unlikely(!access_ok(urelocs, remain * sizeof(*urelocs)))) 1526 return -EFAULT; 1527 1528 do { 1529 struct drm_i915_gem_relocation_entry *r = stack; 1530 unsigned int count = 1531 min_t(unsigned long, remain, ARRAY_SIZE(stack)); 1532 unsigned int copied; 1533 1534 /* 1535 * This is the fast path and we cannot handle a pagefault 1536 * whilst holding the struct mutex lest the user pass in the 1537 * relocations contained within a mmaped bo. For in such a case 1538 * we, the page fault handler would call i915_gem_fault() and 1539 * we would try to acquire the struct mutex again. Obviously 1540 * this is bad and so lockdep complains vehemently. 1541 */ 1542 pagefault_disable(); 1543 copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0])); 1544 pagefault_enable(); 1545 if (unlikely(copied)) { 1546 remain = -EFAULT; 1547 goto out; 1548 } 1549 1550 remain -= count; 1551 do { 1552 u64 offset = eb_relocate_entry(eb, ev, r); 1553 1554 if (likely(offset == 0)) { 1555 } else if ((s64)offset < 0) { 1556 remain = (int)offset; 1557 goto out; 1558 } else { 1559 /* 1560 * Note that reporting an error now 1561 * leaves everything in an inconsistent 1562 * state as we have *already* changed 1563 * the relocation value inside the 1564 * object. As we have not changed the 1565 * reloc.presumed_offset or will not 1566 * change the execobject.offset, on the 1567 * call we may not rewrite the value 1568 * inside the object, leaving it 1569 * dangling and causing a GPU hang. Unless 1570 * userspace dynamically rebuilds the 1571 * relocations on each execbuf rather than 1572 * presume a static tree. 1573 * 1574 * We did previously check if the relocations 1575 * were writable (access_ok), an error now 1576 * would be a strange race with mprotect, 1577 * having already demonstrated that we 1578 * can read from this userspace address. 1579 */ 1580 offset = gen8_canonical_addr(offset & ~UPDATE); 1581 __put_user(offset, 1582 &urelocs[r - stack].presumed_offset); 1583 } 1584 } while (r++, --count); 1585 urelocs += ARRAY_SIZE(stack); 1586 } while (remain); 1587 out: 1588 reloc_cache_reset(&eb->reloc_cache, eb); 1589 return remain; 1590 } 1591 1592 static int 1593 eb_relocate_vma_slow(struct i915_execbuffer *eb, struct eb_vma *ev) 1594 { 1595 const struct drm_i915_gem_exec_object2 *entry = ev->exec; 1596 struct drm_i915_gem_relocation_entry *relocs = 1597 u64_to_ptr(typeof(*relocs), entry->relocs_ptr); 1598 unsigned int i; 1599 int err; 1600 1601 for (i = 0; i < entry->relocation_count; i++) { 1602 u64 offset = eb_relocate_entry(eb, ev, &relocs[i]); 1603 1604 if ((s64)offset < 0) { 1605 err = (int)offset; 1606 goto err; 1607 } 1608 } 1609 err = 0; 1610 err: 1611 reloc_cache_reset(&eb->reloc_cache, eb); 1612 return err; 1613 } 1614 1615 static int check_relocations(const struct drm_i915_gem_exec_object2 *entry) 1616 { 1617 const char __user *addr, *end; 1618 unsigned long size; 1619 char __maybe_unused c; 1620 1621 size = entry->relocation_count; 1622 if (size == 0) 1623 return 0; 1624 1625 if (size > N_RELOC(ULONG_MAX)) 1626 return -EINVAL; 1627 1628 addr = u64_to_user_ptr(entry->relocs_ptr); 1629 size *= sizeof(struct drm_i915_gem_relocation_entry); 1630 if (!access_ok(addr, size)) 1631 return -EFAULT; 1632 1633 end = addr + size; 1634 for (; addr < end; addr += PAGE_SIZE) { 1635 int err = __get_user(c, addr); 1636 if (err) 1637 return err; 1638 } 1639 return __get_user(c, end - 1); 1640 } 1641 1642 static int eb_copy_relocations(const struct i915_execbuffer *eb) 1643 { 1644 struct drm_i915_gem_relocation_entry *relocs; 1645 const unsigned int count = eb->buffer_count; 1646 unsigned int i; 1647 int err; 1648 1649 for (i = 0; i < count; i++) { 1650 const unsigned int nreloc = eb->exec[i].relocation_count; 1651 struct drm_i915_gem_relocation_entry __user *urelocs; 1652 unsigned long size; 1653 unsigned long copied; 1654 1655 if (nreloc == 0) 1656 continue; 1657 1658 err = check_relocations(&eb->exec[i]); 1659 if (err) 1660 goto err; 1661 1662 urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr); 1663 size = nreloc * sizeof(*relocs); 1664 1665 relocs = kvmalloc_array(size, 1, GFP_KERNEL); 1666 if (!relocs) { 1667 err = -ENOMEM; 1668 goto err; 1669 } 1670 1671 /* copy_from_user is limited to < 4GiB */ 1672 copied = 0; 1673 do { 1674 unsigned int len = 1675 min_t(u64, BIT_ULL(31), size - copied); 1676 1677 if (__copy_from_user((char *)relocs + copied, 1678 (char __user *)urelocs + copied, 1679 len)) 1680 goto end; 1681 1682 copied += len; 1683 } while (copied < size); 1684 1685 /* 1686 * As we do not update the known relocation offsets after 1687 * relocating (due to the complexities in lock handling), 1688 * we need to mark them as invalid now so that we force the 1689 * relocation processing next time. Just in case the target 1690 * object is evicted and then rebound into its old 1691 * presumed_offset before the next execbuffer - if that 1692 * happened we would make the mistake of assuming that the 1693 * relocations were valid. 1694 */ 1695 if (!user_access_begin(urelocs, size)) 1696 goto end; 1697 1698 for (copied = 0; copied < nreloc; copied++) 1699 unsafe_put_user(-1, 1700 &urelocs[copied].presumed_offset, 1701 end_user); 1702 user_access_end(); 1703 1704 eb->exec[i].relocs_ptr = (uintptr_t)relocs; 1705 } 1706 1707 return 0; 1708 1709 end_user: 1710 user_access_end(); 1711 end: 1712 kvfree(relocs); 1713 err = -EFAULT; 1714 err: 1715 while (i--) { 1716 relocs = u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr); 1717 if (eb->exec[i].relocation_count) 1718 kvfree(relocs); 1719 } 1720 return err; 1721 } 1722 1723 static int eb_prefault_relocations(const struct i915_execbuffer *eb) 1724 { 1725 const unsigned int count = eb->buffer_count; 1726 unsigned int i; 1727 1728 for (i = 0; i < count; i++) { 1729 int err; 1730 1731 err = check_relocations(&eb->exec[i]); 1732 if (err) 1733 return err; 1734 } 1735 1736 return 0; 1737 } 1738 1739 static int eb_reinit_userptr(struct i915_execbuffer *eb) 1740 { 1741 const unsigned int count = eb->buffer_count; 1742 unsigned int i; 1743 int ret; 1744 1745 if (likely(!(eb->args->flags & __EXEC_USERPTR_USED))) 1746 return 0; 1747 1748 for (i = 0; i < count; i++) { 1749 struct eb_vma *ev = &eb->vma[i]; 1750 1751 if (!i915_gem_object_is_userptr(ev->vma->obj)) 1752 continue; 1753 1754 ret = i915_gem_object_userptr_submit_init(ev->vma->obj); 1755 if (ret) 1756 return ret; 1757 1758 ev->flags |= __EXEC_OBJECT_USERPTR_INIT; 1759 } 1760 1761 return 0; 1762 } 1763 1764 static noinline int eb_relocate_parse_slow(struct i915_execbuffer *eb) 1765 { 1766 bool have_copy = false; 1767 struct eb_vma *ev; 1768 int err = 0; 1769 1770 repeat: 1771 if (signal_pending(current)) { 1772 err = -ERESTARTSYS; 1773 goto out; 1774 } 1775 1776 /* We may process another execbuffer during the unlock... */ 1777 eb_release_vmas(eb, false); 1778 i915_gem_ww_ctx_fini(&eb->ww); 1779 1780 /* 1781 * We take 3 passes through the slowpatch. 1782 * 1783 * 1 - we try to just prefault all the user relocation entries and 1784 * then attempt to reuse the atomic pagefault disabled fast path again. 1785 * 1786 * 2 - we copy the user entries to a local buffer here outside of the 1787 * local and allow ourselves to wait upon any rendering before 1788 * relocations 1789 * 1790 * 3 - we already have a local copy of the relocation entries, but 1791 * were interrupted (EAGAIN) whilst waiting for the objects, try again. 1792 */ 1793 if (!err) { 1794 err = eb_prefault_relocations(eb); 1795 } else if (!have_copy) { 1796 err = eb_copy_relocations(eb); 1797 have_copy = err == 0; 1798 } else { 1799 cond_resched(); 1800 err = 0; 1801 } 1802 1803 if (!err) 1804 err = eb_reinit_userptr(eb); 1805 1806 i915_gem_ww_ctx_init(&eb->ww, true); 1807 if (err) 1808 goto out; 1809 1810 /* reacquire the objects */ 1811 repeat_validate: 1812 err = eb_pin_engine(eb, false); 1813 if (err) 1814 goto err; 1815 1816 err = eb_validate_vmas(eb); 1817 if (err) 1818 goto err; 1819 1820 GEM_BUG_ON(!eb->batches[0]); 1821 1822 list_for_each_entry(ev, &eb->relocs, reloc_link) { 1823 if (!have_copy) { 1824 err = eb_relocate_vma(eb, ev); 1825 if (err) 1826 break; 1827 } else { 1828 err = eb_relocate_vma_slow(eb, ev); 1829 if (err) 1830 break; 1831 } 1832 } 1833 1834 if (err == -EDEADLK) 1835 goto err; 1836 1837 if (err && !have_copy) 1838 goto repeat; 1839 1840 if (err) 1841 goto err; 1842 1843 /* as last step, parse the command buffer */ 1844 err = eb_parse(eb); 1845 if (err) 1846 goto err; 1847 1848 /* 1849 * Leave the user relocations as are, this is the painfully slow path, 1850 * and we want to avoid the complication of dropping the lock whilst 1851 * having buffers reserved in the aperture and so causing spurious 1852 * ENOSPC for random operations. 1853 */ 1854 1855 err: 1856 if (err == -EDEADLK) { 1857 eb_release_vmas(eb, false); 1858 err = i915_gem_ww_ctx_backoff(&eb->ww); 1859 if (!err) 1860 goto repeat_validate; 1861 } 1862 1863 if (err == -EAGAIN) 1864 goto repeat; 1865 1866 out: 1867 if (have_copy) { 1868 const unsigned int count = eb->buffer_count; 1869 unsigned int i; 1870 1871 for (i = 0; i < count; i++) { 1872 const struct drm_i915_gem_exec_object2 *entry = 1873 &eb->exec[i]; 1874 struct drm_i915_gem_relocation_entry *relocs; 1875 1876 if (!entry->relocation_count) 1877 continue; 1878 1879 relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr); 1880 kvfree(relocs); 1881 } 1882 } 1883 1884 return err; 1885 } 1886 1887 static int eb_relocate_parse(struct i915_execbuffer *eb) 1888 { 1889 int err; 1890 bool throttle = true; 1891 1892 retry: 1893 err = eb_pin_engine(eb, throttle); 1894 if (err) { 1895 if (err != -EDEADLK) 1896 return err; 1897 1898 goto err; 1899 } 1900 1901 /* only throttle once, even if we didn't need to throttle */ 1902 throttle = false; 1903 1904 err = eb_validate_vmas(eb); 1905 if (err == -EAGAIN) 1906 goto slow; 1907 else if (err) 1908 goto err; 1909 1910 /* The objects are in their final locations, apply the relocations. */ 1911 if (eb->args->flags & __EXEC_HAS_RELOC) { 1912 struct eb_vma *ev; 1913 1914 list_for_each_entry(ev, &eb->relocs, reloc_link) { 1915 err = eb_relocate_vma(eb, ev); 1916 if (err) 1917 break; 1918 } 1919 1920 if (err == -EDEADLK) 1921 goto err; 1922 else if (err) 1923 goto slow; 1924 } 1925 1926 if (!err) 1927 err = eb_parse(eb); 1928 1929 err: 1930 if (err == -EDEADLK) { 1931 eb_release_vmas(eb, false); 1932 err = i915_gem_ww_ctx_backoff(&eb->ww); 1933 if (!err) 1934 goto retry; 1935 } 1936 1937 return err; 1938 1939 slow: 1940 err = eb_relocate_parse_slow(eb); 1941 if (err) 1942 /* 1943 * If the user expects the execobject.offset and 1944 * reloc.presumed_offset to be an exact match, 1945 * as for using NO_RELOC, then we cannot update 1946 * the execobject.offset until we have completed 1947 * relocation. 1948 */ 1949 eb->args->flags &= ~__EXEC_HAS_RELOC; 1950 1951 return err; 1952 } 1953 1954 /* 1955 * Using two helper loops for the order of which requests / batches are created 1956 * and added the to backend. Requests are created in order from the parent to 1957 * the last child. Requests are added in the reverse order, from the last child 1958 * to parent. This is done for locking reasons as the timeline lock is acquired 1959 * during request creation and released when the request is added to the 1960 * backend. To make lockdep happy (see intel_context_timeline_lock) this must be 1961 * the ordering. 1962 */ 1963 #define for_each_batch_create_order(_eb, _i) \ 1964 for ((_i) = 0; (_i) < (_eb)->num_batches; ++(_i)) 1965 #define for_each_batch_add_order(_eb, _i) \ 1966 BUILD_BUG_ON(!typecheck(int, _i)); \ 1967 for ((_i) = (_eb)->num_batches - 1; (_i) >= 0; --(_i)) 1968 1969 static struct i915_request * 1970 eb_find_first_request_added(struct i915_execbuffer *eb) 1971 { 1972 int i; 1973 1974 for_each_batch_add_order(eb, i) 1975 if (eb->requests[i]) 1976 return eb->requests[i]; 1977 1978 GEM_BUG_ON("Request not found"); 1979 1980 return NULL; 1981 } 1982 1983 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR) 1984 1985 /* Stage with GFP_KERNEL allocations before we enter the signaling critical path */ 1986 static int eb_capture_stage(struct i915_execbuffer *eb) 1987 { 1988 const unsigned int count = eb->buffer_count; 1989 unsigned int i = count, j; 1990 1991 while (i--) { 1992 struct eb_vma *ev = &eb->vma[i]; 1993 struct i915_vma *vma = ev->vma; 1994 unsigned int flags = ev->flags; 1995 1996 if (!(flags & EXEC_OBJECT_CAPTURE)) 1997 continue; 1998 1999 if (i915_gem_context_is_recoverable(eb->gem_context) && 2000 (IS_DGFX(eb->i915) || GRAPHICS_VER_FULL(eb->i915) > IP_VER(12, 0))) 2001 return -EINVAL; 2002 2003 for_each_batch_create_order(eb, j) { 2004 struct i915_capture_list *capture; 2005 2006 capture = kmalloc(sizeof(*capture), GFP_KERNEL); 2007 if (!capture) 2008 continue; 2009 2010 capture->next = eb->capture_lists[j]; 2011 capture->vma_res = i915_vma_resource_get(vma->resource); 2012 eb->capture_lists[j] = capture; 2013 } 2014 } 2015 2016 return 0; 2017 } 2018 2019 /* Commit once we're in the critical path */ 2020 static void eb_capture_commit(struct i915_execbuffer *eb) 2021 { 2022 unsigned int j; 2023 2024 for_each_batch_create_order(eb, j) { 2025 struct i915_request *rq = eb->requests[j]; 2026 2027 if (!rq) 2028 break; 2029 2030 rq->capture_list = eb->capture_lists[j]; 2031 eb->capture_lists[j] = NULL; 2032 } 2033 } 2034 2035 /* 2036 * Release anything that didn't get committed due to errors. 2037 * The capture_list will otherwise be freed at request retire. 2038 */ 2039 static void eb_capture_release(struct i915_execbuffer *eb) 2040 { 2041 unsigned int j; 2042 2043 for_each_batch_create_order(eb, j) { 2044 if (eb->capture_lists[j]) { 2045 i915_request_free_capture_list(eb->capture_lists[j]); 2046 eb->capture_lists[j] = NULL; 2047 } 2048 } 2049 } 2050 2051 static void eb_capture_list_clear(struct i915_execbuffer *eb) 2052 { 2053 memset(eb->capture_lists, 0, sizeof(eb->capture_lists)); 2054 } 2055 2056 #else 2057 2058 static int eb_capture_stage(struct i915_execbuffer *eb) 2059 { 2060 return 0; 2061 } 2062 2063 static void eb_capture_commit(struct i915_execbuffer *eb) 2064 { 2065 } 2066 2067 static void eb_capture_release(struct i915_execbuffer *eb) 2068 { 2069 } 2070 2071 static void eb_capture_list_clear(struct i915_execbuffer *eb) 2072 { 2073 } 2074 2075 #endif 2076 2077 static int eb_move_to_gpu(struct i915_execbuffer *eb) 2078 { 2079 const unsigned int count = eb->buffer_count; 2080 unsigned int i = count; 2081 int err = 0, j; 2082 2083 while (i--) { 2084 struct eb_vma *ev = &eb->vma[i]; 2085 struct i915_vma *vma = ev->vma; 2086 unsigned int flags = ev->flags; 2087 struct drm_i915_gem_object *obj = vma->obj; 2088 2089 assert_vma_held(vma); 2090 2091 /* 2092 * If the GPU is not _reading_ through the CPU cache, we need 2093 * to make sure that any writes (both previous GPU writes from 2094 * before a change in snooping levels and normal CPU writes) 2095 * caught in that cache are flushed to main memory. 2096 * 2097 * We want to say 2098 * obj->cache_dirty && 2099 * !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ) 2100 * but gcc's optimiser doesn't handle that as well and emits 2101 * two jumps instead of one. Maybe one day... 2102 * 2103 * FIXME: There is also sync flushing in set_pages(), which 2104 * serves a different purpose(some of the time at least). 2105 * 2106 * We should consider: 2107 * 2108 * 1. Rip out the async flush code. 2109 * 2110 * 2. Or make the sync flushing use the async clflush path 2111 * using mandatory fences underneath. Currently the below 2112 * async flush happens after we bind the object. 2113 */ 2114 if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) { 2115 if (i915_gem_clflush_object(obj, 0)) 2116 flags &= ~EXEC_OBJECT_ASYNC; 2117 } 2118 2119 /* We only need to await on the first request */ 2120 if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) { 2121 err = i915_request_await_object 2122 (eb_find_first_request_added(eb), obj, 2123 flags & EXEC_OBJECT_WRITE); 2124 } 2125 2126 for_each_batch_add_order(eb, j) { 2127 if (err) 2128 break; 2129 if (!eb->requests[j]) 2130 continue; 2131 2132 err = _i915_vma_move_to_active(vma, eb->requests[j], 2133 j ? NULL : 2134 eb->composite_fence ? 2135 eb->composite_fence : 2136 &eb->requests[j]->fence, 2137 flags | __EXEC_OBJECT_NO_RESERVE); 2138 } 2139 } 2140 2141 #ifdef CONFIG_MMU_NOTIFIER 2142 if (!err && (eb->args->flags & __EXEC_USERPTR_USED)) { 2143 read_lock(&eb->i915->mm.notifier_lock); 2144 2145 /* 2146 * count is always at least 1, otherwise __EXEC_USERPTR_USED 2147 * could not have been set 2148 */ 2149 for (i = 0; i < count; i++) { 2150 struct eb_vma *ev = &eb->vma[i]; 2151 struct drm_i915_gem_object *obj = ev->vma->obj; 2152 2153 if (!i915_gem_object_is_userptr(obj)) 2154 continue; 2155 2156 err = i915_gem_object_userptr_submit_done(obj); 2157 if (err) 2158 break; 2159 } 2160 2161 read_unlock(&eb->i915->mm.notifier_lock); 2162 } 2163 #endif 2164 2165 if (unlikely(err)) 2166 goto err_skip; 2167 2168 /* Unconditionally flush any chipset caches (for streaming writes). */ 2169 intel_gt_chipset_flush(eb->gt); 2170 eb_capture_commit(eb); 2171 2172 return 0; 2173 2174 err_skip: 2175 for_each_batch_create_order(eb, j) { 2176 if (!eb->requests[j]) 2177 break; 2178 2179 i915_request_set_error_once(eb->requests[j], err); 2180 } 2181 return err; 2182 } 2183 2184 static int i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec) 2185 { 2186 if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS) 2187 return -EINVAL; 2188 2189 /* Kernel clipping was a DRI1 misfeature */ 2190 if (!(exec->flags & (I915_EXEC_FENCE_ARRAY | 2191 I915_EXEC_USE_EXTENSIONS))) { 2192 if (exec->num_cliprects || exec->cliprects_ptr) 2193 return -EINVAL; 2194 } 2195 2196 if (exec->DR4 == 0xffffffff) { 2197 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n"); 2198 exec->DR4 = 0; 2199 } 2200 if (exec->DR1 || exec->DR4) 2201 return -EINVAL; 2202 2203 if ((exec->batch_start_offset | exec->batch_len) & 0x7) 2204 return -EINVAL; 2205 2206 return 0; 2207 } 2208 2209 static int i915_reset_gen7_sol_offsets(struct i915_request *rq) 2210 { 2211 u32 *cs; 2212 int i; 2213 2214 if (GRAPHICS_VER(rq->engine->i915) != 7 || rq->engine->id != RCS0) { 2215 drm_dbg(&rq->engine->i915->drm, "sol reset is gen7/rcs only\n"); 2216 return -EINVAL; 2217 } 2218 2219 cs = intel_ring_begin(rq, 4 * 2 + 2); 2220 if (IS_ERR(cs)) 2221 return PTR_ERR(cs); 2222 2223 *cs++ = MI_LOAD_REGISTER_IMM(4); 2224 for (i = 0; i < 4; i++) { 2225 *cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i)); 2226 *cs++ = 0; 2227 } 2228 *cs++ = MI_NOOP; 2229 intel_ring_advance(rq, cs); 2230 2231 return 0; 2232 } 2233 2234 static struct i915_vma * 2235 shadow_batch_pin(struct i915_execbuffer *eb, 2236 struct drm_i915_gem_object *obj, 2237 struct i915_address_space *vm, 2238 unsigned int flags) 2239 { 2240 struct i915_vma *vma; 2241 int err; 2242 2243 vma = i915_vma_instance(obj, vm, NULL); 2244 if (IS_ERR(vma)) 2245 return vma; 2246 2247 err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, flags | PIN_VALIDATE); 2248 if (err) 2249 return ERR_PTR(err); 2250 2251 return vma; 2252 } 2253 2254 static struct i915_vma *eb_dispatch_secure(struct i915_execbuffer *eb, struct i915_vma *vma) 2255 { 2256 /* 2257 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure 2258 * batch" bit. Hence we need to pin secure batches into the global gtt. 2259 * hsw should have this fixed, but bdw mucks it up again. */ 2260 if (eb->batch_flags & I915_DISPATCH_SECURE) 2261 return i915_gem_object_ggtt_pin_ww(vma->obj, &eb->ww, NULL, 0, 0, PIN_VALIDATE); 2262 2263 return NULL; 2264 } 2265 2266 static int eb_parse(struct i915_execbuffer *eb) 2267 { 2268 struct drm_i915_private *i915 = eb->i915; 2269 struct intel_gt_buffer_pool_node *pool = eb->batch_pool; 2270 struct i915_vma *shadow, *trampoline, *batch; 2271 unsigned long len; 2272 int err; 2273 2274 if (!eb_use_cmdparser(eb)) { 2275 batch = eb_dispatch_secure(eb, eb->batches[0]->vma); 2276 if (IS_ERR(batch)) 2277 return PTR_ERR(batch); 2278 2279 goto secure_batch; 2280 } 2281 2282 if (intel_context_is_parallel(eb->context)) 2283 return -EINVAL; 2284 2285 len = eb->batch_len[0]; 2286 if (!CMDPARSER_USES_GGTT(eb->i915)) { 2287 /* 2288 * ppGTT backed shadow buffers must be mapped RO, to prevent 2289 * post-scan tampering 2290 */ 2291 if (!eb->context->vm->has_read_only) { 2292 drm_dbg(&i915->drm, 2293 "Cannot prevent post-scan tampering without RO capable vm\n"); 2294 return -EINVAL; 2295 } 2296 } else { 2297 len += I915_CMD_PARSER_TRAMPOLINE_SIZE; 2298 } 2299 if (unlikely(len < eb->batch_len[0])) /* last paranoid check of overflow */ 2300 return -EINVAL; 2301 2302 if (!pool) { 2303 pool = intel_gt_get_buffer_pool(eb->gt, len, 2304 I915_MAP_WB); 2305 if (IS_ERR(pool)) 2306 return PTR_ERR(pool); 2307 eb->batch_pool = pool; 2308 } 2309 2310 err = i915_gem_object_lock(pool->obj, &eb->ww); 2311 if (err) 2312 return err; 2313 2314 shadow = shadow_batch_pin(eb, pool->obj, eb->context->vm, PIN_USER); 2315 if (IS_ERR(shadow)) 2316 return PTR_ERR(shadow); 2317 2318 intel_gt_buffer_pool_mark_used(pool); 2319 i915_gem_object_set_readonly(shadow->obj); 2320 shadow->private = pool; 2321 2322 trampoline = NULL; 2323 if (CMDPARSER_USES_GGTT(eb->i915)) { 2324 trampoline = shadow; 2325 2326 shadow = shadow_batch_pin(eb, pool->obj, 2327 &eb->gt->ggtt->vm, 2328 PIN_GLOBAL); 2329 if (IS_ERR(shadow)) 2330 return PTR_ERR(shadow); 2331 2332 shadow->private = pool; 2333 2334 eb->batch_flags |= I915_DISPATCH_SECURE; 2335 } 2336 2337 batch = eb_dispatch_secure(eb, shadow); 2338 if (IS_ERR(batch)) 2339 return PTR_ERR(batch); 2340 2341 err = dma_resv_reserve_fences(shadow->obj->base.resv, 1); 2342 if (err) 2343 return err; 2344 2345 err = intel_engine_cmd_parser(eb->context->engine, 2346 eb->batches[0]->vma, 2347 eb->batch_start_offset, 2348 eb->batch_len[0], 2349 shadow, trampoline); 2350 if (err) 2351 return err; 2352 2353 eb->batches[0] = &eb->vma[eb->buffer_count++]; 2354 eb->batches[0]->vma = i915_vma_get(shadow); 2355 eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN; 2356 2357 eb->trampoline = trampoline; 2358 eb->batch_start_offset = 0; 2359 2360 secure_batch: 2361 if (batch) { 2362 if (intel_context_is_parallel(eb->context)) 2363 return -EINVAL; 2364 2365 eb->batches[0] = &eb->vma[eb->buffer_count++]; 2366 eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN; 2367 eb->batches[0]->vma = i915_vma_get(batch); 2368 } 2369 return 0; 2370 } 2371 2372 static int eb_request_submit(struct i915_execbuffer *eb, 2373 struct i915_request *rq, 2374 struct i915_vma *batch, 2375 u64 batch_len) 2376 { 2377 int err; 2378 2379 if (intel_context_nopreempt(rq->context)) 2380 __set_bit(I915_FENCE_FLAG_NOPREEMPT, &rq->fence.flags); 2381 2382 if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) { 2383 err = i915_reset_gen7_sol_offsets(rq); 2384 if (err) 2385 return err; 2386 } 2387 2388 /* 2389 * After we completed waiting for other engines (using HW semaphores) 2390 * then we can signal that this request/batch is ready to run. This 2391 * allows us to determine if the batch is still waiting on the GPU 2392 * or actually running by checking the breadcrumb. 2393 */ 2394 if (rq->context->engine->emit_init_breadcrumb) { 2395 err = rq->context->engine->emit_init_breadcrumb(rq); 2396 if (err) 2397 return err; 2398 } 2399 2400 err = rq->context->engine->emit_bb_start(rq, 2401 batch->node.start + 2402 eb->batch_start_offset, 2403 batch_len, 2404 eb->batch_flags); 2405 if (err) 2406 return err; 2407 2408 if (eb->trampoline) { 2409 GEM_BUG_ON(intel_context_is_parallel(rq->context)); 2410 GEM_BUG_ON(eb->batch_start_offset); 2411 err = rq->context->engine->emit_bb_start(rq, 2412 eb->trampoline->node.start + 2413 batch_len, 0, 0); 2414 if (err) 2415 return err; 2416 } 2417 2418 return 0; 2419 } 2420 2421 static int eb_submit(struct i915_execbuffer *eb) 2422 { 2423 unsigned int i; 2424 int err; 2425 2426 err = eb_move_to_gpu(eb); 2427 2428 for_each_batch_create_order(eb, i) { 2429 if (!eb->requests[i]) 2430 break; 2431 2432 trace_i915_request_queue(eb->requests[i], eb->batch_flags); 2433 if (!err) 2434 err = eb_request_submit(eb, eb->requests[i], 2435 eb->batches[i]->vma, 2436 eb->batch_len[i]); 2437 } 2438 2439 return err; 2440 } 2441 2442 static int num_vcs_engines(struct drm_i915_private *i915) 2443 { 2444 return hweight_long(VDBOX_MASK(to_gt(i915))); 2445 } 2446 2447 /* 2448 * Find one BSD ring to dispatch the corresponding BSD command. 2449 * The engine index is returned. 2450 */ 2451 static unsigned int 2452 gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv, 2453 struct drm_file *file) 2454 { 2455 struct drm_i915_file_private *file_priv = file->driver_priv; 2456 2457 /* Check whether the file_priv has already selected one ring. */ 2458 if ((int)file_priv->bsd_engine < 0) 2459 file_priv->bsd_engine = 2460 prandom_u32_max(num_vcs_engines(dev_priv)); 2461 2462 return file_priv->bsd_engine; 2463 } 2464 2465 static const enum intel_engine_id user_ring_map[] = { 2466 [I915_EXEC_DEFAULT] = RCS0, 2467 [I915_EXEC_RENDER] = RCS0, 2468 [I915_EXEC_BLT] = BCS0, 2469 [I915_EXEC_BSD] = VCS0, 2470 [I915_EXEC_VEBOX] = VECS0 2471 }; 2472 2473 static struct i915_request *eb_throttle(struct i915_execbuffer *eb, struct intel_context *ce) 2474 { 2475 struct intel_ring *ring = ce->ring; 2476 struct intel_timeline *tl = ce->timeline; 2477 struct i915_request *rq; 2478 2479 /* 2480 * Completely unscientific finger-in-the-air estimates for suitable 2481 * maximum user request size (to avoid blocking) and then backoff. 2482 */ 2483 if (intel_ring_update_space(ring) >= PAGE_SIZE) 2484 return NULL; 2485 2486 /* 2487 * Find a request that after waiting upon, there will be at least half 2488 * the ring available. The hysteresis allows us to compete for the 2489 * shared ring and should mean that we sleep less often prior to 2490 * claiming our resources, but not so long that the ring completely 2491 * drains before we can submit our next request. 2492 */ 2493 list_for_each_entry(rq, &tl->requests, link) { 2494 if (rq->ring != ring) 2495 continue; 2496 2497 if (__intel_ring_space(rq->postfix, 2498 ring->emit, ring->size) > ring->size / 2) 2499 break; 2500 } 2501 if (&rq->link == &tl->requests) 2502 return NULL; /* weird, we will check again later for real */ 2503 2504 return i915_request_get(rq); 2505 } 2506 2507 static int eb_pin_timeline(struct i915_execbuffer *eb, struct intel_context *ce, 2508 bool throttle) 2509 { 2510 struct intel_timeline *tl; 2511 struct i915_request *rq = NULL; 2512 2513 /* 2514 * Take a local wakeref for preparing to dispatch the execbuf as 2515 * we expect to access the hardware fairly frequently in the 2516 * process, and require the engine to be kept awake between accesses. 2517 * Upon dispatch, we acquire another prolonged wakeref that we hold 2518 * until the timeline is idle, which in turn releases the wakeref 2519 * taken on the engine, and the parent device. 2520 */ 2521 tl = intel_context_timeline_lock(ce); 2522 if (IS_ERR(tl)) 2523 return PTR_ERR(tl); 2524 2525 intel_context_enter(ce); 2526 if (throttle) 2527 rq = eb_throttle(eb, ce); 2528 intel_context_timeline_unlock(tl); 2529 2530 if (rq) { 2531 #ifdef __linux__ 2532 bool nonblock = eb->file->filp->f_flags & O_NONBLOCK; 2533 #else 2534 bool nonblock = eb->file->filp->f_flag & FNONBLOCK; 2535 #endif 2536 long timeout = nonblock ? 0 : MAX_SCHEDULE_TIMEOUT; 2537 2538 if (i915_request_wait(rq, I915_WAIT_INTERRUPTIBLE, 2539 timeout) < 0) { 2540 i915_request_put(rq); 2541 2542 /* 2543 * Error path, cannot use intel_context_timeline_lock as 2544 * that is user interruptable and this clean up step 2545 * must be done. 2546 */ 2547 mutex_lock(&ce->timeline->mutex); 2548 intel_context_exit(ce); 2549 mutex_unlock(&ce->timeline->mutex); 2550 2551 if (nonblock) 2552 return -EWOULDBLOCK; 2553 else 2554 return -EINTR; 2555 } 2556 i915_request_put(rq); 2557 } 2558 2559 return 0; 2560 } 2561 2562 static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle) 2563 { 2564 struct intel_context *ce = eb->context, *child; 2565 int err; 2566 int i = 0, j = 0; 2567 2568 GEM_BUG_ON(eb->args->flags & __EXEC_ENGINE_PINNED); 2569 2570 if (unlikely(intel_context_is_banned(ce))) 2571 return -EIO; 2572 2573 /* 2574 * Pinning the contexts may generate requests in order to acquire 2575 * GGTT space, so do this first before we reserve a seqno for 2576 * ourselves. 2577 */ 2578 err = intel_context_pin_ww(ce, &eb->ww); 2579 if (err) 2580 return err; 2581 for_each_child(ce, child) { 2582 err = intel_context_pin_ww(child, &eb->ww); 2583 GEM_BUG_ON(err); /* perma-pinned should incr a counter */ 2584 } 2585 2586 for_each_child(ce, child) { 2587 err = eb_pin_timeline(eb, child, throttle); 2588 if (err) 2589 goto unwind; 2590 ++i; 2591 } 2592 err = eb_pin_timeline(eb, ce, throttle); 2593 if (err) 2594 goto unwind; 2595 2596 eb->args->flags |= __EXEC_ENGINE_PINNED; 2597 return 0; 2598 2599 unwind: 2600 for_each_child(ce, child) { 2601 if (j++ < i) { 2602 mutex_lock(&child->timeline->mutex); 2603 intel_context_exit(child); 2604 mutex_unlock(&child->timeline->mutex); 2605 } 2606 } 2607 for_each_child(ce, child) 2608 intel_context_unpin(child); 2609 intel_context_unpin(ce); 2610 return err; 2611 } 2612 2613 static void eb_unpin_engine(struct i915_execbuffer *eb) 2614 { 2615 struct intel_context *ce = eb->context, *child; 2616 2617 if (!(eb->args->flags & __EXEC_ENGINE_PINNED)) 2618 return; 2619 2620 eb->args->flags &= ~__EXEC_ENGINE_PINNED; 2621 2622 for_each_child(ce, child) { 2623 mutex_lock(&child->timeline->mutex); 2624 intel_context_exit(child); 2625 mutex_unlock(&child->timeline->mutex); 2626 2627 intel_context_unpin(child); 2628 } 2629 2630 mutex_lock(&ce->timeline->mutex); 2631 intel_context_exit(ce); 2632 mutex_unlock(&ce->timeline->mutex); 2633 2634 intel_context_unpin(ce); 2635 } 2636 2637 static unsigned int 2638 eb_select_legacy_ring(struct i915_execbuffer *eb) 2639 { 2640 struct drm_i915_private *i915 = eb->i915; 2641 struct drm_i915_gem_execbuffer2 *args = eb->args; 2642 unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK; 2643 2644 if (user_ring_id != I915_EXEC_BSD && 2645 (args->flags & I915_EXEC_BSD_MASK)) { 2646 drm_dbg(&i915->drm, 2647 "execbuf with non bsd ring but with invalid " 2648 "bsd dispatch flags: %d\n", (int)(args->flags)); 2649 return -1; 2650 } 2651 2652 if (user_ring_id == I915_EXEC_BSD && num_vcs_engines(i915) > 1) { 2653 unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK; 2654 2655 if (bsd_idx == I915_EXEC_BSD_DEFAULT) { 2656 bsd_idx = gen8_dispatch_bsd_engine(i915, eb->file); 2657 } else if (bsd_idx >= I915_EXEC_BSD_RING1 && 2658 bsd_idx <= I915_EXEC_BSD_RING2) { 2659 bsd_idx >>= I915_EXEC_BSD_SHIFT; 2660 bsd_idx--; 2661 } else { 2662 drm_dbg(&i915->drm, 2663 "execbuf with unknown bsd ring: %u\n", 2664 bsd_idx); 2665 return -1; 2666 } 2667 2668 return _VCS(bsd_idx); 2669 } 2670 2671 if (user_ring_id >= ARRAY_SIZE(user_ring_map)) { 2672 drm_dbg(&i915->drm, "execbuf with unknown ring: %u\n", 2673 user_ring_id); 2674 return -1; 2675 } 2676 2677 return user_ring_map[user_ring_id]; 2678 } 2679 2680 static int 2681 eb_select_engine(struct i915_execbuffer *eb) 2682 { 2683 struct intel_context *ce, *child; 2684 unsigned int idx; 2685 int err; 2686 2687 if (i915_gem_context_user_engines(eb->gem_context)) 2688 idx = eb->args->flags & I915_EXEC_RING_MASK; 2689 else 2690 idx = eb_select_legacy_ring(eb); 2691 2692 ce = i915_gem_context_get_engine(eb->gem_context, idx); 2693 if (IS_ERR(ce)) 2694 return PTR_ERR(ce); 2695 2696 if (intel_context_is_parallel(ce)) { 2697 if (eb->buffer_count < ce->parallel.number_children + 1) { 2698 intel_context_put(ce); 2699 return -EINVAL; 2700 } 2701 if (eb->batch_start_offset || eb->args->batch_len) { 2702 intel_context_put(ce); 2703 return -EINVAL; 2704 } 2705 } 2706 eb->num_batches = ce->parallel.number_children + 1; 2707 2708 for_each_child(ce, child) 2709 intel_context_get(child); 2710 intel_gt_pm_get(ce->engine->gt); 2711 2712 if (!test_bit(CONTEXT_ALLOC_BIT, &ce->flags)) { 2713 err = intel_context_alloc_state(ce); 2714 if (err) 2715 goto err; 2716 } 2717 for_each_child(ce, child) { 2718 if (!test_bit(CONTEXT_ALLOC_BIT, &child->flags)) { 2719 err = intel_context_alloc_state(child); 2720 if (err) 2721 goto err; 2722 } 2723 } 2724 2725 /* 2726 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report 2727 * EIO if the GPU is already wedged. 2728 */ 2729 err = intel_gt_terminally_wedged(ce->engine->gt); 2730 if (err) 2731 goto err; 2732 2733 if (!i915_vm_tryget(ce->vm)) { 2734 err = -ENOENT; 2735 goto err; 2736 } 2737 2738 eb->context = ce; 2739 eb->gt = ce->engine->gt; 2740 2741 /* 2742 * Make sure engine pool stays alive even if we call intel_context_put 2743 * during ww handling. The pool is destroyed when last pm reference 2744 * is dropped, which breaks our -EDEADLK handling. 2745 */ 2746 return err; 2747 2748 err: 2749 intel_gt_pm_put(ce->engine->gt); 2750 for_each_child(ce, child) 2751 intel_context_put(child); 2752 intel_context_put(ce); 2753 return err; 2754 } 2755 2756 static void 2757 eb_put_engine(struct i915_execbuffer *eb) 2758 { 2759 struct intel_context *child; 2760 2761 i915_vm_put(eb->context->vm); 2762 intel_gt_pm_put(eb->gt); 2763 for_each_child(eb->context, child) 2764 intel_context_put(child); 2765 intel_context_put(eb->context); 2766 } 2767 2768 static void 2769 __free_fence_array(struct eb_fence *fences, unsigned int n) 2770 { 2771 while (n--) { 2772 drm_syncobj_put(ptr_mask_bits(fences[n].syncobj, 2)); 2773 dma_fence_put(fences[n].dma_fence); 2774 dma_fence_chain_free(fences[n].chain_fence); 2775 } 2776 kvfree(fences); 2777 } 2778 2779 static int 2780 add_timeline_fence_array(struct i915_execbuffer *eb, 2781 const struct drm_i915_gem_execbuffer_ext_timeline_fences *timeline_fences) 2782 { 2783 struct drm_i915_gem_exec_fence __user *user_fences; 2784 u64 __user *user_values; 2785 struct eb_fence *f; 2786 u64 nfences; 2787 int err = 0; 2788 2789 nfences = timeline_fences->fence_count; 2790 if (!nfences) 2791 return 0; 2792 2793 /* Check multiplication overflow for access_ok() and kvmalloc_array() */ 2794 BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long)); 2795 if (nfences > min_t(unsigned long, 2796 ULONG_MAX / sizeof(*user_fences), 2797 SIZE_MAX / sizeof(*f)) - eb->num_fences) 2798 return -EINVAL; 2799 2800 user_fences = u64_to_user_ptr(timeline_fences->handles_ptr); 2801 if (!access_ok(user_fences, nfences * sizeof(*user_fences))) 2802 return -EFAULT; 2803 2804 user_values = u64_to_user_ptr(timeline_fences->values_ptr); 2805 if (!access_ok(user_values, nfences * sizeof(*user_values))) 2806 return -EFAULT; 2807 2808 #ifdef __linux__ 2809 f = krealloc(eb->fences, 2810 (eb->num_fences + nfences) * sizeof(*f), 2811 __GFP_NOWARN | GFP_KERNEL); 2812 if (!f) 2813 return -ENOMEM; 2814 #else 2815 f = kmalloc((eb->num_fences + nfences) * sizeof(*f), 2816 __GFP_NOWARN | GFP_KERNEL); 2817 if (!f) 2818 return -ENOMEM; 2819 memcpy(f, eb->fences, eb->num_fences * sizeof(*f)); 2820 kfree(eb->fences); 2821 #endif 2822 2823 eb->fences = f; 2824 f += eb->num_fences; 2825 2826 #ifdef notyet 2827 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) & 2828 ~__I915_EXEC_FENCE_UNKNOWN_FLAGS); 2829 #endif 2830 2831 while (nfences--) { 2832 struct drm_i915_gem_exec_fence user_fence; 2833 struct drm_syncobj *syncobj; 2834 struct dma_fence *fence = NULL; 2835 u64 point; 2836 2837 if (__copy_from_user(&user_fence, 2838 user_fences++, 2839 sizeof(user_fence))) 2840 return -EFAULT; 2841 2842 if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) 2843 return -EINVAL; 2844 2845 if (__get_user(point, user_values++)) 2846 return -EFAULT; 2847 2848 syncobj = drm_syncobj_find(eb->file, user_fence.handle); 2849 if (!syncobj) { 2850 DRM_DEBUG("Invalid syncobj handle provided\n"); 2851 return -ENOENT; 2852 } 2853 2854 fence = drm_syncobj_fence_get(syncobj); 2855 2856 if (!fence && user_fence.flags && 2857 !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) { 2858 DRM_DEBUG("Syncobj handle has no fence\n"); 2859 drm_syncobj_put(syncobj); 2860 return -EINVAL; 2861 } 2862 2863 if (fence) 2864 err = dma_fence_chain_find_seqno(&fence, point); 2865 2866 if (err && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) { 2867 DRM_DEBUG("Syncobj handle missing requested point %llu\n", point); 2868 dma_fence_put(fence); 2869 drm_syncobj_put(syncobj); 2870 return err; 2871 } 2872 2873 /* 2874 * A point might have been signaled already and 2875 * garbage collected from the timeline. In this case 2876 * just ignore the point and carry on. 2877 */ 2878 if (!fence && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) { 2879 drm_syncobj_put(syncobj); 2880 continue; 2881 } 2882 2883 /* 2884 * For timeline syncobjs we need to preallocate chains for 2885 * later signaling. 2886 */ 2887 if (point != 0 && user_fence.flags & I915_EXEC_FENCE_SIGNAL) { 2888 /* 2889 * Waiting and signaling the same point (when point != 2890 * 0) would break the timeline. 2891 */ 2892 if (user_fence.flags & I915_EXEC_FENCE_WAIT) { 2893 DRM_DEBUG("Trying to wait & signal the same timeline point.\n"); 2894 dma_fence_put(fence); 2895 drm_syncobj_put(syncobj); 2896 return -EINVAL; 2897 } 2898 2899 f->chain_fence = dma_fence_chain_alloc(); 2900 if (!f->chain_fence) { 2901 drm_syncobj_put(syncobj); 2902 dma_fence_put(fence); 2903 return -ENOMEM; 2904 } 2905 } else { 2906 f->chain_fence = NULL; 2907 } 2908 2909 f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2); 2910 f->dma_fence = fence; 2911 f->value = point; 2912 f++; 2913 eb->num_fences++; 2914 } 2915 2916 return 0; 2917 } 2918 2919 static int add_fence_array(struct i915_execbuffer *eb) 2920 { 2921 struct drm_i915_gem_execbuffer2 *args = eb->args; 2922 struct drm_i915_gem_exec_fence __user *user; 2923 unsigned long num_fences = args->num_cliprects; 2924 struct eb_fence *f; 2925 2926 if (!(args->flags & I915_EXEC_FENCE_ARRAY)) 2927 return 0; 2928 2929 if (!num_fences) 2930 return 0; 2931 2932 /* Check multiplication overflow for access_ok() and kvmalloc_array() */ 2933 BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long)); 2934 if (num_fences > min_t(unsigned long, 2935 ULONG_MAX / sizeof(*user), 2936 SIZE_MAX / sizeof(*f) - eb->num_fences)) 2937 return -EINVAL; 2938 2939 user = u64_to_user_ptr(args->cliprects_ptr); 2940 if (!access_ok(user, num_fences * sizeof(*user))) 2941 return -EFAULT; 2942 2943 #ifdef __linux__ 2944 f = krealloc(eb->fences, 2945 (eb->num_fences + num_fences) * sizeof(*f), 2946 __GFP_NOWARN | GFP_KERNEL); 2947 if (!f) 2948 return -ENOMEM; 2949 #else 2950 f = kmalloc((eb->num_fences + num_fences) * sizeof(*f), 2951 __GFP_NOWARN | GFP_KERNEL); 2952 if (!f) 2953 return -ENOMEM; 2954 memcpy(f, eb->fences, eb->num_fences * sizeof(*f)); 2955 kfree(eb->fences); 2956 #endif 2957 2958 eb->fences = f; 2959 f += eb->num_fences; 2960 while (num_fences--) { 2961 struct drm_i915_gem_exec_fence user_fence; 2962 struct drm_syncobj *syncobj; 2963 struct dma_fence *fence = NULL; 2964 2965 if (__copy_from_user(&user_fence, user++, sizeof(user_fence))) 2966 return -EFAULT; 2967 2968 if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) 2969 return -EINVAL; 2970 2971 syncobj = drm_syncobj_find(eb->file, user_fence.handle); 2972 if (!syncobj) { 2973 DRM_DEBUG("Invalid syncobj handle provided\n"); 2974 return -ENOENT; 2975 } 2976 2977 if (user_fence.flags & I915_EXEC_FENCE_WAIT) { 2978 fence = drm_syncobj_fence_get(syncobj); 2979 if (!fence) { 2980 DRM_DEBUG("Syncobj handle has no fence\n"); 2981 drm_syncobj_put(syncobj); 2982 return -EINVAL; 2983 } 2984 } 2985 2986 #ifdef notyet 2987 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) & 2988 ~__I915_EXEC_FENCE_UNKNOWN_FLAGS); 2989 #endif 2990 2991 f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2); 2992 f->dma_fence = fence; 2993 f->value = 0; 2994 f->chain_fence = NULL; 2995 f++; 2996 eb->num_fences++; 2997 } 2998 2999 return 0; 3000 } 3001 3002 static void put_fence_array(struct eb_fence *fences, int num_fences) 3003 { 3004 if (fences) 3005 __free_fence_array(fences, num_fences); 3006 } 3007 3008 static int 3009 await_fence_array(struct i915_execbuffer *eb, 3010 struct i915_request *rq) 3011 { 3012 unsigned int n; 3013 int err; 3014 3015 for (n = 0; n < eb->num_fences; n++) { 3016 struct drm_syncobj *syncobj; 3017 unsigned int flags; 3018 3019 syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2); 3020 3021 if (!eb->fences[n].dma_fence) 3022 continue; 3023 3024 err = i915_request_await_dma_fence(rq, eb->fences[n].dma_fence); 3025 if (err < 0) 3026 return err; 3027 } 3028 3029 return 0; 3030 } 3031 3032 static void signal_fence_array(const struct i915_execbuffer *eb, 3033 struct dma_fence * const fence) 3034 { 3035 unsigned int n; 3036 3037 for (n = 0; n < eb->num_fences; n++) { 3038 struct drm_syncobj *syncobj; 3039 unsigned int flags; 3040 3041 syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2); 3042 if (!(flags & I915_EXEC_FENCE_SIGNAL)) 3043 continue; 3044 3045 if (eb->fences[n].chain_fence) { 3046 drm_syncobj_add_point(syncobj, 3047 eb->fences[n].chain_fence, 3048 fence, 3049 eb->fences[n].value); 3050 /* 3051 * The chain's ownership is transferred to the 3052 * timeline. 3053 */ 3054 eb->fences[n].chain_fence = NULL; 3055 } else { 3056 drm_syncobj_replace_fence(syncobj, fence); 3057 } 3058 } 3059 } 3060 3061 static int 3062 parse_timeline_fences(struct i915_user_extension __user *ext, void *data) 3063 { 3064 struct i915_execbuffer *eb = data; 3065 struct drm_i915_gem_execbuffer_ext_timeline_fences timeline_fences; 3066 3067 if (copy_from_user(&timeline_fences, ext, sizeof(timeline_fences))) 3068 return -EFAULT; 3069 3070 return add_timeline_fence_array(eb, &timeline_fences); 3071 } 3072 3073 static void retire_requests(struct intel_timeline *tl, struct i915_request *end) 3074 { 3075 struct i915_request *rq, *rn; 3076 3077 list_for_each_entry_safe(rq, rn, &tl->requests, link) 3078 if (rq == end || !i915_request_retire(rq)) 3079 break; 3080 } 3081 3082 static int eb_request_add(struct i915_execbuffer *eb, struct i915_request *rq, 3083 int err, bool last_parallel) 3084 { 3085 struct intel_timeline * const tl = i915_request_timeline(rq); 3086 struct i915_sched_attr attr = {}; 3087 struct i915_request *prev; 3088 3089 lockdep_assert_held(&tl->mutex); 3090 lockdep_unpin_lock(&tl->mutex, rq->cookie); 3091 3092 trace_i915_request_add(rq); 3093 3094 prev = __i915_request_commit(rq); 3095 3096 /* Check that the context wasn't destroyed before submission */ 3097 if (likely(!intel_context_is_closed(eb->context))) { 3098 attr = eb->gem_context->sched; 3099 } else { 3100 /* Serialise with context_close via the add_to_timeline */ 3101 i915_request_set_error_once(rq, -ENOENT); 3102 __i915_request_skip(rq); 3103 err = -ENOENT; /* override any transient errors */ 3104 } 3105 3106 if (intel_context_is_parallel(eb->context)) { 3107 if (err) { 3108 __i915_request_skip(rq); 3109 set_bit(I915_FENCE_FLAG_SKIP_PARALLEL, 3110 &rq->fence.flags); 3111 } 3112 if (last_parallel) 3113 set_bit(I915_FENCE_FLAG_SUBMIT_PARALLEL, 3114 &rq->fence.flags); 3115 } 3116 3117 __i915_request_queue(rq, &attr); 3118 3119 /* Try to clean up the client's timeline after submitting the request */ 3120 if (prev) 3121 retire_requests(tl, prev); 3122 3123 mutex_unlock(&tl->mutex); 3124 3125 return err; 3126 } 3127 3128 static int eb_requests_add(struct i915_execbuffer *eb, int err) 3129 { 3130 int i; 3131 3132 /* 3133 * We iterate in reverse order of creation to release timeline mutexes in 3134 * same order. 3135 */ 3136 for_each_batch_add_order(eb, i) { 3137 struct i915_request *rq = eb->requests[i]; 3138 3139 if (!rq) 3140 continue; 3141 err |= eb_request_add(eb, rq, err, i == 0); 3142 } 3143 3144 return err; 3145 } 3146 3147 static const i915_user_extension_fn execbuf_extensions[] = { 3148 [DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES] = parse_timeline_fences, 3149 }; 3150 3151 static int 3152 parse_execbuf2_extensions(struct drm_i915_gem_execbuffer2 *args, 3153 struct i915_execbuffer *eb) 3154 { 3155 if (!(args->flags & I915_EXEC_USE_EXTENSIONS)) 3156 return 0; 3157 3158 /* The execbuf2 extension mechanism reuses cliprects_ptr. So we cannot 3159 * have another flag also using it at the same time. 3160 */ 3161 if (eb->args->flags & I915_EXEC_FENCE_ARRAY) 3162 return -EINVAL; 3163 3164 if (args->num_cliprects != 0) 3165 return -EINVAL; 3166 3167 return i915_user_extensions(u64_to_user_ptr(args->cliprects_ptr), 3168 execbuf_extensions, 3169 ARRAY_SIZE(execbuf_extensions), 3170 eb); 3171 } 3172 3173 static void eb_requests_get(struct i915_execbuffer *eb) 3174 { 3175 unsigned int i; 3176 3177 for_each_batch_create_order(eb, i) { 3178 if (!eb->requests[i]) 3179 break; 3180 3181 i915_request_get(eb->requests[i]); 3182 } 3183 } 3184 3185 static void eb_requests_put(struct i915_execbuffer *eb) 3186 { 3187 unsigned int i; 3188 3189 for_each_batch_create_order(eb, i) { 3190 if (!eb->requests[i]) 3191 break; 3192 3193 i915_request_put(eb->requests[i]); 3194 } 3195 } 3196 3197 static struct sync_file * 3198 eb_composite_fence_create(struct i915_execbuffer *eb, int out_fence_fd) 3199 { 3200 struct sync_file *out_fence = NULL; 3201 struct dma_fence_array *fence_array; 3202 struct dma_fence **fences; 3203 unsigned int i; 3204 3205 GEM_BUG_ON(!intel_context_is_parent(eb->context)); 3206 3207 fences = kmalloc_array(eb->num_batches, sizeof(*fences), GFP_KERNEL); 3208 if (!fences) 3209 return ERR_PTR(-ENOMEM); 3210 3211 for_each_batch_create_order(eb, i) { 3212 fences[i] = &eb->requests[i]->fence; 3213 __set_bit(I915_FENCE_FLAG_COMPOSITE, 3214 &eb->requests[i]->fence.flags); 3215 } 3216 3217 fence_array = dma_fence_array_create(eb->num_batches, 3218 fences, 3219 eb->context->parallel.fence_context, 3220 eb->context->parallel.seqno++, 3221 false); 3222 if (!fence_array) { 3223 kfree(fences); 3224 return ERR_PTR(-ENOMEM); 3225 } 3226 3227 /* Move ownership to the dma_fence_array created above */ 3228 for_each_batch_create_order(eb, i) 3229 dma_fence_get(fences[i]); 3230 3231 if (out_fence_fd != -1) { 3232 out_fence = sync_file_create(&fence_array->base); 3233 /* sync_file now owns fence_arry, drop creation ref */ 3234 dma_fence_put(&fence_array->base); 3235 if (!out_fence) 3236 return ERR_PTR(-ENOMEM); 3237 } 3238 3239 eb->composite_fence = &fence_array->base; 3240 3241 return out_fence; 3242 } 3243 3244 static struct sync_file * 3245 eb_fences_add(struct i915_execbuffer *eb, struct i915_request *rq, 3246 struct dma_fence *in_fence, int out_fence_fd) 3247 { 3248 struct sync_file *out_fence = NULL; 3249 int err; 3250 3251 if (unlikely(eb->gem_context->syncobj)) { 3252 struct dma_fence *fence; 3253 3254 fence = drm_syncobj_fence_get(eb->gem_context->syncobj); 3255 err = i915_request_await_dma_fence(rq, fence); 3256 dma_fence_put(fence); 3257 if (err) 3258 return ERR_PTR(err); 3259 } 3260 3261 if (in_fence) { 3262 if (eb->args->flags & I915_EXEC_FENCE_SUBMIT) 3263 err = i915_request_await_execution(rq, in_fence); 3264 else 3265 err = i915_request_await_dma_fence(rq, in_fence); 3266 if (err < 0) 3267 return ERR_PTR(err); 3268 } 3269 3270 if (eb->fences) { 3271 err = await_fence_array(eb, rq); 3272 if (err) 3273 return ERR_PTR(err); 3274 } 3275 3276 if (intel_context_is_parallel(eb->context)) { 3277 out_fence = eb_composite_fence_create(eb, out_fence_fd); 3278 if (IS_ERR(out_fence)) 3279 return ERR_PTR(-ENOMEM); 3280 } else if (out_fence_fd != -1) { 3281 out_fence = sync_file_create(&rq->fence); 3282 if (!out_fence) 3283 return ERR_PTR(-ENOMEM); 3284 } 3285 3286 return out_fence; 3287 } 3288 3289 static struct intel_context * 3290 eb_find_context(struct i915_execbuffer *eb, unsigned int context_number) 3291 { 3292 struct intel_context *child; 3293 3294 if (likely(context_number == 0)) 3295 return eb->context; 3296 3297 for_each_child(eb->context, child) 3298 if (!--context_number) 3299 return child; 3300 3301 GEM_BUG_ON("Context not found"); 3302 3303 return NULL; 3304 } 3305 3306 static struct sync_file * 3307 eb_requests_create(struct i915_execbuffer *eb, struct dma_fence *in_fence, 3308 int out_fence_fd) 3309 { 3310 struct sync_file *out_fence = NULL; 3311 unsigned int i; 3312 3313 for_each_batch_create_order(eb, i) { 3314 /* Allocate a request for this batch buffer nice and early. */ 3315 eb->requests[i] = i915_request_create(eb_find_context(eb, i)); 3316 if (IS_ERR(eb->requests[i])) { 3317 out_fence = ERR_CAST(eb->requests[i]); 3318 eb->requests[i] = NULL; 3319 return out_fence; 3320 } 3321 3322 /* 3323 * Only the first request added (committed to backend) has to 3324 * take the in fences into account as all subsequent requests 3325 * will have fences inserted inbetween them. 3326 */ 3327 if (i + 1 == eb->num_batches) { 3328 out_fence = eb_fences_add(eb, eb->requests[i], 3329 in_fence, out_fence_fd); 3330 if (IS_ERR(out_fence)) 3331 return out_fence; 3332 } 3333 3334 /* 3335 * Not really on stack, but we don't want to call 3336 * kfree on the batch_snapshot when we put it, so use the 3337 * _onstack interface. 3338 */ 3339 if (eb->batches[i]->vma) 3340 eb->requests[i]->batch_res = 3341 i915_vma_resource_get(eb->batches[i]->vma->resource); 3342 if (eb->batch_pool) { 3343 GEM_BUG_ON(intel_context_is_parallel(eb->context)); 3344 intel_gt_buffer_pool_mark_active(eb->batch_pool, 3345 eb->requests[i]); 3346 } 3347 } 3348 3349 return out_fence; 3350 } 3351 3352 static int 3353 i915_gem_do_execbuffer(struct drm_device *dev, 3354 struct drm_file *file, 3355 struct drm_i915_gem_execbuffer2 *args, 3356 struct drm_i915_gem_exec_object2 *exec) 3357 { 3358 struct drm_i915_private *i915 = to_i915(dev); 3359 struct i915_execbuffer eb; 3360 struct dma_fence *in_fence = NULL; 3361 struct sync_file *out_fence = NULL; 3362 int out_fence_fd = -1; 3363 int err; 3364 3365 BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS); 3366 BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS & 3367 ~__EXEC_OBJECT_UNKNOWN_FLAGS); 3368 3369 eb.i915 = i915; 3370 eb.file = file; 3371 eb.args = args; 3372 if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC)) 3373 args->flags |= __EXEC_HAS_RELOC; 3374 3375 eb.exec = exec; 3376 eb.vma = (struct eb_vma *)(exec + args->buffer_count + 1); 3377 eb.vma[0].vma = NULL; 3378 eb.batch_pool = NULL; 3379 3380 eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS; 3381 reloc_cache_init(&eb.reloc_cache, eb.i915); 3382 3383 eb.buffer_count = args->buffer_count; 3384 eb.batch_start_offset = args->batch_start_offset; 3385 eb.trampoline = NULL; 3386 3387 eb.fences = NULL; 3388 eb.num_fences = 0; 3389 3390 eb_capture_list_clear(&eb); 3391 3392 memset(eb.requests, 0, sizeof(struct i915_request *) * 3393 ARRAY_SIZE(eb.requests)); 3394 eb.composite_fence = NULL; 3395 3396 eb.batch_flags = 0; 3397 if (args->flags & I915_EXEC_SECURE) { 3398 if (GRAPHICS_VER(i915) >= 11) 3399 return -ENODEV; 3400 3401 /* Return -EPERM to trigger fallback code on old binaries. */ 3402 if (!HAS_SECURE_BATCHES(i915)) 3403 return -EPERM; 3404 3405 if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN)) 3406 return -EPERM; 3407 3408 eb.batch_flags |= I915_DISPATCH_SECURE; 3409 } 3410 if (args->flags & I915_EXEC_IS_PINNED) 3411 eb.batch_flags |= I915_DISPATCH_PINNED; 3412 3413 err = parse_execbuf2_extensions(args, &eb); 3414 if (err) 3415 goto err_ext; 3416 3417 err = add_fence_array(&eb); 3418 if (err) 3419 goto err_ext; 3420 3421 #define IN_FENCES (I915_EXEC_FENCE_IN | I915_EXEC_FENCE_SUBMIT) 3422 if (args->flags & IN_FENCES) { 3423 if ((args->flags & IN_FENCES) == IN_FENCES) 3424 return -EINVAL; 3425 3426 in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2)); 3427 if (!in_fence) { 3428 err = -EINVAL; 3429 goto err_ext; 3430 } 3431 } 3432 #undef IN_FENCES 3433 3434 if (args->flags & I915_EXEC_FENCE_OUT) { 3435 out_fence_fd = get_unused_fd_flags(O_CLOEXEC); 3436 if (out_fence_fd < 0) { 3437 err = out_fence_fd; 3438 goto err_in_fence; 3439 } 3440 } 3441 3442 err = eb_create(&eb); 3443 if (err) 3444 goto err_out_fence; 3445 3446 GEM_BUG_ON(!eb.lut_size); 3447 3448 err = eb_select_context(&eb); 3449 if (unlikely(err)) 3450 goto err_destroy; 3451 3452 err = eb_select_engine(&eb); 3453 if (unlikely(err)) 3454 goto err_context; 3455 3456 err = eb_lookup_vmas(&eb); 3457 if (err) { 3458 eb_release_vmas(&eb, true); 3459 goto err_engine; 3460 } 3461 3462 i915_gem_ww_ctx_init(&eb.ww, true); 3463 3464 err = eb_relocate_parse(&eb); 3465 if (err) { 3466 /* 3467 * If the user expects the execobject.offset and 3468 * reloc.presumed_offset to be an exact match, 3469 * as for using NO_RELOC, then we cannot update 3470 * the execobject.offset until we have completed 3471 * relocation. 3472 */ 3473 args->flags &= ~__EXEC_HAS_RELOC; 3474 goto err_vma; 3475 } 3476 3477 ww_acquire_done(&eb.ww.ctx); 3478 err = eb_capture_stage(&eb); 3479 if (err) 3480 goto err_vma; 3481 3482 out_fence = eb_requests_create(&eb, in_fence, out_fence_fd); 3483 if (IS_ERR(out_fence)) { 3484 err = PTR_ERR(out_fence); 3485 out_fence = NULL; 3486 if (eb.requests[0]) 3487 goto err_request; 3488 else 3489 goto err_vma; 3490 } 3491 3492 err = eb_submit(&eb); 3493 3494 err_request: 3495 eb_requests_get(&eb); 3496 err = eb_requests_add(&eb, err); 3497 3498 if (eb.fences) 3499 signal_fence_array(&eb, eb.composite_fence ? 3500 eb.composite_fence : 3501 &eb.requests[0]->fence); 3502 3503 if (out_fence) { 3504 if (err == 0) { 3505 fd_install(out_fence_fd, out_fence->file); 3506 args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */ 3507 args->rsvd2 |= (u64)out_fence_fd << 32; 3508 out_fence_fd = -1; 3509 } else { 3510 fput(out_fence->file); 3511 } 3512 } 3513 3514 if (unlikely(eb.gem_context->syncobj)) { 3515 drm_syncobj_replace_fence(eb.gem_context->syncobj, 3516 eb.composite_fence ? 3517 eb.composite_fence : 3518 &eb.requests[0]->fence); 3519 } 3520 3521 if (!out_fence && eb.composite_fence) 3522 dma_fence_put(eb.composite_fence); 3523 3524 eb_requests_put(&eb); 3525 3526 err_vma: 3527 eb_release_vmas(&eb, true); 3528 WARN_ON(err == -EDEADLK); 3529 i915_gem_ww_ctx_fini(&eb.ww); 3530 3531 if (eb.batch_pool) 3532 intel_gt_buffer_pool_put(eb.batch_pool); 3533 err_engine: 3534 eb_put_engine(&eb); 3535 err_context: 3536 i915_gem_context_put(eb.gem_context); 3537 err_destroy: 3538 eb_destroy(&eb); 3539 err_out_fence: 3540 if (out_fence_fd != -1) 3541 put_unused_fd(out_fence_fd); 3542 err_in_fence: 3543 dma_fence_put(in_fence); 3544 err_ext: 3545 put_fence_array(eb.fences, eb.num_fences); 3546 return err; 3547 } 3548 3549 static size_t eb_element_size(void) 3550 { 3551 return sizeof(struct drm_i915_gem_exec_object2) + sizeof(struct eb_vma); 3552 } 3553 3554 static bool check_buffer_count(size_t count) 3555 { 3556 const size_t sz = eb_element_size(); 3557 3558 /* 3559 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup 3560 * array size (see eb_create()). Otherwise, we can accept an array as 3561 * large as can be addressed (though use large arrays at your peril)! 3562 */ 3563 3564 return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1); 3565 } 3566 3567 int 3568 i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data, 3569 struct drm_file *file) 3570 { 3571 struct drm_i915_private *i915 = to_i915(dev); 3572 struct drm_i915_gem_execbuffer2 *args = data; 3573 struct drm_i915_gem_exec_object2 *exec2_list; 3574 const size_t count = args->buffer_count; 3575 int err; 3576 3577 if (!check_buffer_count(count)) { 3578 drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count); 3579 return -EINVAL; 3580 } 3581 3582 err = i915_gem_check_execbuffer(args); 3583 if (err) 3584 return err; 3585 3586 /* Allocate extra slots for use by the command parser */ 3587 exec2_list = kvmalloc_array(count + 2, eb_element_size(), 3588 __GFP_NOWARN | GFP_KERNEL); 3589 if (exec2_list == NULL) { 3590 drm_dbg(&i915->drm, "Failed to allocate exec list for %zd buffers\n", 3591 count); 3592 return -ENOMEM; 3593 } 3594 if (copy_from_user(exec2_list, 3595 u64_to_user_ptr(args->buffers_ptr), 3596 sizeof(*exec2_list) * count)) { 3597 drm_dbg(&i915->drm, "copy %zd exec entries failed\n", count); 3598 kvfree(exec2_list); 3599 return -EFAULT; 3600 } 3601 3602 err = i915_gem_do_execbuffer(dev, file, args, exec2_list); 3603 3604 /* 3605 * Now that we have begun execution of the batchbuffer, we ignore 3606 * any new error after this point. Also given that we have already 3607 * updated the associated relocations, we try to write out the current 3608 * object locations irrespective of any error. 3609 */ 3610 if (args->flags & __EXEC_HAS_RELOC) { 3611 struct drm_i915_gem_exec_object2 __user *user_exec_list = 3612 u64_to_user_ptr(args->buffers_ptr); 3613 unsigned int i; 3614 3615 /* Copy the new buffer offsets back to the user's exec list. */ 3616 /* 3617 * Note: count * sizeof(*user_exec_list) does not overflow, 3618 * because we checked 'count' in check_buffer_count(). 3619 * 3620 * And this range already got effectively checked earlier 3621 * when we did the "copy_from_user()" above. 3622 */ 3623 if (!user_write_access_begin(user_exec_list, 3624 count * sizeof(*user_exec_list))) 3625 goto end; 3626 3627 for (i = 0; i < args->buffer_count; i++) { 3628 if (!(exec2_list[i].offset & UPDATE)) 3629 continue; 3630 3631 exec2_list[i].offset = 3632 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK); 3633 unsafe_put_user(exec2_list[i].offset, 3634 &user_exec_list[i].offset, 3635 end_user); 3636 } 3637 end_user: 3638 user_write_access_end(); 3639 end:; 3640 } 3641 3642 args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS; 3643 kvfree(exec2_list); 3644 return err; 3645 } 3646