1 /* 2 * SPDX-License-Identifier: MIT 3 * 4 * Copyright © 2008,2010 Intel Corporation 5 */ 6 7 #include <linux/intel-iommu.h> 8 #include <linux/dma-resv.h> 9 #include <linux/sync_file.h> 10 #include <linux/uaccess.h> 11 12 #include <drm/drm_syncobj.h> 13 14 #include <dev/pci/pcivar.h> 15 #include <dev/pci/agpvar.h> 16 17 #include "display/intel_frontbuffer.h" 18 19 #include "gem/i915_gem_ioctls.h" 20 #include "gt/intel_context.h" 21 #include "gt/intel_gpu_commands.h" 22 #include "gt/intel_gt.h" 23 #include "gt/intel_gt_buffer_pool.h" 24 #include "gt/intel_gt_pm.h" 25 #include "gt/intel_ring.h" 26 27 #include "i915_drv.h" 28 #include "i915_gem_clflush.h" 29 #include "i915_gem_context.h" 30 #include "i915_gem_ioctls.h" 31 #include "i915_trace.h" 32 #include "i915_user_extensions.h" 33 34 struct eb_vma { 35 struct i915_vma *vma; 36 unsigned int flags; 37 38 /** This vma's place in the execbuf reservation list */ 39 struct drm_i915_gem_exec_object2 *exec; 40 struct list_head bind_link; 41 struct list_head reloc_link; 42 43 struct hlist_node node; 44 u32 handle; 45 }; 46 47 enum { 48 FORCE_CPU_RELOC = 1, 49 FORCE_GTT_RELOC, 50 FORCE_GPU_RELOC, 51 #define DBG_FORCE_RELOC 0 /* choose one of the above! */ 52 }; 53 54 /* __EXEC_OBJECT_NO_RESERVE is BIT(31), defined in i915_vma.h */ 55 #define __EXEC_OBJECT_HAS_PIN BIT(30) 56 #define __EXEC_OBJECT_HAS_FENCE BIT(29) 57 #define __EXEC_OBJECT_USERPTR_INIT BIT(28) 58 #define __EXEC_OBJECT_NEEDS_MAP BIT(27) 59 #define __EXEC_OBJECT_NEEDS_BIAS BIT(26) 60 #define __EXEC_OBJECT_INTERNAL_FLAGS (~0u << 26) /* all of the above + */ 61 #define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE) 62 63 #define __EXEC_HAS_RELOC BIT(31) 64 #define __EXEC_ENGINE_PINNED BIT(30) 65 #define __EXEC_USERPTR_USED BIT(29) 66 #define __EXEC_INTERNAL_FLAGS (~0u << 29) 67 #define UPDATE PIN_OFFSET_FIXED 68 69 #define BATCH_OFFSET_BIAS (256*1024) 70 71 #define __I915_EXEC_ILLEGAL_FLAGS \ 72 (__I915_EXEC_UNKNOWN_FLAGS | \ 73 I915_EXEC_CONSTANTS_MASK | \ 74 I915_EXEC_RESOURCE_STREAMER) 75 76 /* Catch emission of unexpected errors for CI! */ 77 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) 78 #undef EINVAL 79 #define EINVAL ({ \ 80 DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \ 81 22; \ 82 }) 83 #endif 84 85 /** 86 * DOC: User command execution 87 * 88 * Userspace submits commands to be executed on the GPU as an instruction 89 * stream within a GEM object we call a batchbuffer. This instructions may 90 * refer to other GEM objects containing auxiliary state such as kernels, 91 * samplers, render targets and even secondary batchbuffers. Userspace does 92 * not know where in the GPU memory these objects reside and so before the 93 * batchbuffer is passed to the GPU for execution, those addresses in the 94 * batchbuffer and auxiliary objects are updated. This is known as relocation, 95 * or patching. To try and avoid having to relocate each object on the next 96 * execution, userspace is told the location of those objects in this pass, 97 * but this remains just a hint as the kernel may choose a new location for 98 * any object in the future. 99 * 100 * At the level of talking to the hardware, submitting a batchbuffer for the 101 * GPU to execute is to add content to a buffer from which the HW 102 * command streamer is reading. 103 * 104 * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e. 105 * Execlists, this command is not placed on the same buffer as the 106 * remaining items. 107 * 108 * 2. Add a command to invalidate caches to the buffer. 109 * 110 * 3. Add a batchbuffer start command to the buffer; the start command is 111 * essentially a token together with the GPU address of the batchbuffer 112 * to be executed. 113 * 114 * 4. Add a pipeline flush to the buffer. 115 * 116 * 5. Add a memory write command to the buffer to record when the GPU 117 * is done executing the batchbuffer. The memory write writes the 118 * global sequence number of the request, ``i915_request::global_seqno``; 119 * the i915 driver uses the current value in the register to determine 120 * if the GPU has completed the batchbuffer. 121 * 122 * 6. Add a user interrupt command to the buffer. This command instructs 123 * the GPU to issue an interrupt when the command, pipeline flush and 124 * memory write are completed. 125 * 126 * 7. Inform the hardware of the additional commands added to the buffer 127 * (by updating the tail pointer). 128 * 129 * Processing an execbuf ioctl is conceptually split up into a few phases. 130 * 131 * 1. Validation - Ensure all the pointers, handles and flags are valid. 132 * 2. Reservation - Assign GPU address space for every object 133 * 3. Relocation - Update any addresses to point to the final locations 134 * 4. Serialisation - Order the request with respect to its dependencies 135 * 5. Construction - Construct a request to execute the batchbuffer 136 * 6. Submission (at some point in the future execution) 137 * 138 * Reserving resources for the execbuf is the most complicated phase. We 139 * neither want to have to migrate the object in the address space, nor do 140 * we want to have to update any relocations pointing to this object. Ideally, 141 * we want to leave the object where it is and for all the existing relocations 142 * to match. If the object is given a new address, or if userspace thinks the 143 * object is elsewhere, we have to parse all the relocation entries and update 144 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that 145 * all the target addresses in all of its objects match the value in the 146 * relocation entries and that they all match the presumed offsets given by the 147 * list of execbuffer objects. Using this knowledge, we know that if we haven't 148 * moved any buffers, all the relocation entries are valid and we can skip 149 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU 150 * hang.) The requirement for using I915_EXEC_NO_RELOC are: 151 * 152 * The addresses written in the objects must match the corresponding 153 * reloc.presumed_offset which in turn must match the corresponding 154 * execobject.offset. 155 * 156 * Any render targets written to in the batch must be flagged with 157 * EXEC_OBJECT_WRITE. 158 * 159 * To avoid stalling, execobject.offset should match the current 160 * address of that object within the active context. 161 * 162 * The reservation is done is multiple phases. First we try and keep any 163 * object already bound in its current location - so as long as meets the 164 * constraints imposed by the new execbuffer. Any object left unbound after the 165 * first pass is then fitted into any available idle space. If an object does 166 * not fit, all objects are removed from the reservation and the process rerun 167 * after sorting the objects into a priority order (more difficult to fit 168 * objects are tried first). Failing that, the entire VM is cleared and we try 169 * to fit the execbuf once last time before concluding that it simply will not 170 * fit. 171 * 172 * A small complication to all of this is that we allow userspace not only to 173 * specify an alignment and a size for the object in the address space, but 174 * we also allow userspace to specify the exact offset. This objects are 175 * simpler to place (the location is known a priori) all we have to do is make 176 * sure the space is available. 177 * 178 * Once all the objects are in place, patching up the buried pointers to point 179 * to the final locations is a fairly simple job of walking over the relocation 180 * entry arrays, looking up the right address and rewriting the value into 181 * the object. Simple! ... The relocation entries are stored in user memory 182 * and so to access them we have to copy them into a local buffer. That copy 183 * has to avoid taking any pagefaults as they may lead back to a GEM object 184 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split 185 * the relocation into multiple passes. First we try to do everything within an 186 * atomic context (avoid the pagefaults) which requires that we never wait. If 187 * we detect that we may wait, or if we need to fault, then we have to fallback 188 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm 189 * bells yet?) Dropping the mutex means that we lose all the state we have 190 * built up so far for the execbuf and we must reset any global data. However, 191 * we do leave the objects pinned in their final locations - which is a 192 * potential issue for concurrent execbufs. Once we have left the mutex, we can 193 * allocate and copy all the relocation entries into a large array at our 194 * leisure, reacquire the mutex, reclaim all the objects and other state and 195 * then proceed to update any incorrect addresses with the objects. 196 * 197 * As we process the relocation entries, we maintain a record of whether the 198 * object is being written to. Using NORELOC, we expect userspace to provide 199 * this information instead. We also check whether we can skip the relocation 200 * by comparing the expected value inside the relocation entry with the target's 201 * final address. If they differ, we have to map the current object and rewrite 202 * the 4 or 8 byte pointer within. 203 * 204 * Serialising an execbuf is quite simple according to the rules of the GEM 205 * ABI. Execution within each context is ordered by the order of submission. 206 * Writes to any GEM object are in order of submission and are exclusive. Reads 207 * from a GEM object are unordered with respect to other reads, but ordered by 208 * writes. A write submitted after a read cannot occur before the read, and 209 * similarly any read submitted after a write cannot occur before the write. 210 * Writes are ordered between engines such that only one write occurs at any 211 * time (completing any reads beforehand) - using semaphores where available 212 * and CPU serialisation otherwise. Other GEM access obey the same rules, any 213 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU 214 * reads before starting, and any read (either using set-domain or pread) must 215 * flush all GPU writes before starting. (Note we only employ a barrier before, 216 * we currently rely on userspace not concurrently starting a new execution 217 * whilst reading or writing to an object. This may be an advantage or not 218 * depending on how much you trust userspace not to shoot themselves in the 219 * foot.) Serialisation may just result in the request being inserted into 220 * a DAG awaiting its turn, but most simple is to wait on the CPU until 221 * all dependencies are resolved. 222 * 223 * After all of that, is just a matter of closing the request and handing it to 224 * the hardware (well, leaving it in a queue to be executed). However, we also 225 * offer the ability for batchbuffers to be run with elevated privileges so 226 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.) 227 * Before any batch is given extra privileges we first must check that it 228 * contains no nefarious instructions, we check that each instruction is from 229 * our whitelist and all registers are also from an allowed list. We first 230 * copy the user's batchbuffer to a shadow (so that the user doesn't have 231 * access to it, either by the CPU or GPU as we scan it) and then parse each 232 * instruction. If everything is ok, we set a flag telling the hardware to run 233 * the batchbuffer in trusted mode, otherwise the ioctl is rejected. 234 */ 235 236 struct eb_fence { 237 struct drm_syncobj *syncobj; /* Use with ptr_mask_bits() */ 238 struct dma_fence *dma_fence; 239 u64 value; 240 struct dma_fence_chain *chain_fence; 241 }; 242 243 struct i915_execbuffer { 244 struct drm_i915_private *i915; /** i915 backpointer */ 245 struct drm_file *file; /** per-file lookup tables and limits */ 246 struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */ 247 struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */ 248 struct eb_vma *vma; 249 250 struct intel_engine_cs *engine; /** engine to queue the request to */ 251 struct intel_context *context; /* logical state for the request */ 252 struct i915_gem_context *gem_context; /** caller's context */ 253 254 struct i915_request *request; /** our request to build */ 255 struct eb_vma *batch; /** identity of the batch obj/vma */ 256 struct i915_vma *trampoline; /** trampoline used for chaining */ 257 258 /** actual size of execobj[] as we may extend it for the cmdparser */ 259 unsigned int buffer_count; 260 261 /** list of vma not yet bound during reservation phase */ 262 struct list_head unbound; 263 264 /** list of vma that have execobj.relocation_count */ 265 struct list_head relocs; 266 267 struct i915_gem_ww_ctx ww; 268 269 /** 270 * Track the most recently used object for relocations, as we 271 * frequently have to perform multiple relocations within the same 272 * obj/page 273 */ 274 struct reloc_cache { 275 struct drm_mm_node node; /** temporary GTT binding */ 276 unsigned long vaddr; /** Current kmap address */ 277 unsigned long page; /** Currently mapped page index */ 278 unsigned int graphics_ver; /** Cached value of GRAPHICS_VER */ 279 bool use_64bit_reloc : 1; 280 bool has_llc : 1; 281 bool has_fence : 1; 282 bool needs_unfenced : 1; 283 284 struct agp_map *map; 285 bus_space_tag_t iot; 286 bus_space_handle_t ioh; 287 } reloc_cache; 288 289 u64 invalid_flags; /** Set of execobj.flags that are invalid */ 290 291 u64 batch_len; /** Length of batch within object */ 292 u32 batch_start_offset; /** Location within object of batch */ 293 u32 batch_flags; /** Flags composed for emit_bb_start() */ 294 struct intel_gt_buffer_pool_node *batch_pool; /** pool node for batch buffer */ 295 296 /** 297 * Indicate either the size of the hastable used to resolve 298 * relocation handles, or if negative that we are using a direct 299 * index into the execobj[]. 300 */ 301 int lut_size; 302 struct hlist_head *buckets; /** ht for relocation handles */ 303 304 struct eb_fence *fences; 305 unsigned long num_fences; 306 }; 307 308 static int eb_parse(struct i915_execbuffer *eb); 309 static struct i915_request *eb_pin_engine(struct i915_execbuffer *eb, 310 bool throttle); 311 static void eb_unpin_engine(struct i915_execbuffer *eb); 312 313 static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb) 314 { 315 return intel_engine_requires_cmd_parser(eb->engine) || 316 (intel_engine_using_cmd_parser(eb->engine) && 317 eb->args->batch_len); 318 } 319 320 static int eb_create(struct i915_execbuffer *eb) 321 { 322 if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) { 323 unsigned int size = 1 + ilog2(eb->buffer_count); 324 325 /* 326 * Without a 1:1 association between relocation handles and 327 * the execobject[] index, we instead create a hashtable. 328 * We size it dynamically based on available memory, starting 329 * first with 1:1 assocative hash and scaling back until 330 * the allocation succeeds. 331 * 332 * Later on we use a positive lut_size to indicate we are 333 * using this hashtable, and a negative value to indicate a 334 * direct lookup. 335 */ 336 do { 337 gfp_t flags; 338 339 /* While we can still reduce the allocation size, don't 340 * raise a warning and allow the allocation to fail. 341 * On the last pass though, we want to try as hard 342 * as possible to perform the allocation and warn 343 * if it fails. 344 */ 345 flags = GFP_KERNEL; 346 if (size > 1) 347 flags |= __GFP_NORETRY | __GFP_NOWARN; 348 349 eb->buckets = kzalloc(sizeof(struct hlist_head) << size, 350 flags); 351 if (eb->buckets) 352 break; 353 } while (--size); 354 355 if (unlikely(!size)) 356 return -ENOMEM; 357 358 eb->lut_size = size; 359 } else { 360 eb->lut_size = -eb->buffer_count; 361 } 362 363 return 0; 364 } 365 366 static bool 367 eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry, 368 const struct i915_vma *vma, 369 unsigned int flags) 370 { 371 if (vma->node.size < entry->pad_to_size) 372 return true; 373 374 if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment)) 375 return true; 376 377 if (flags & EXEC_OBJECT_PINNED && 378 vma->node.start != entry->offset) 379 return true; 380 381 if (flags & __EXEC_OBJECT_NEEDS_BIAS && 382 vma->node.start < BATCH_OFFSET_BIAS) 383 return true; 384 385 if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) && 386 (vma->node.start + vma->node.size + 4095) >> 32) 387 return true; 388 389 if (flags & __EXEC_OBJECT_NEEDS_MAP && 390 !i915_vma_is_map_and_fenceable(vma)) 391 return true; 392 393 return false; 394 } 395 396 static u64 eb_pin_flags(const struct drm_i915_gem_exec_object2 *entry, 397 unsigned int exec_flags) 398 { 399 u64 pin_flags = 0; 400 401 if (exec_flags & EXEC_OBJECT_NEEDS_GTT) 402 pin_flags |= PIN_GLOBAL; 403 404 /* 405 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset, 406 * limit address to the first 4GBs for unflagged objects. 407 */ 408 if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS)) 409 pin_flags |= PIN_ZONE_4G; 410 411 if (exec_flags & __EXEC_OBJECT_NEEDS_MAP) 412 pin_flags |= PIN_MAPPABLE; 413 414 if (exec_flags & EXEC_OBJECT_PINNED) 415 pin_flags |= entry->offset | PIN_OFFSET_FIXED; 416 else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS) 417 pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS; 418 419 return pin_flags; 420 } 421 422 static inline int 423 eb_pin_vma(struct i915_execbuffer *eb, 424 const struct drm_i915_gem_exec_object2 *entry, 425 struct eb_vma *ev) 426 { 427 struct i915_vma *vma = ev->vma; 428 u64 pin_flags; 429 int err; 430 431 if (vma->node.size) 432 pin_flags = vma->node.start; 433 else 434 pin_flags = entry->offset & PIN_OFFSET_MASK; 435 436 pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED; 437 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_GTT)) 438 pin_flags |= PIN_GLOBAL; 439 440 /* Attempt to reuse the current location if available */ 441 err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, pin_flags); 442 if (err == -EDEADLK) 443 return err; 444 445 if (unlikely(err)) { 446 if (entry->flags & EXEC_OBJECT_PINNED) 447 return err; 448 449 /* Failing that pick any _free_ space if suitable */ 450 err = i915_vma_pin_ww(vma, &eb->ww, 451 entry->pad_to_size, 452 entry->alignment, 453 eb_pin_flags(entry, ev->flags) | 454 PIN_USER | PIN_NOEVICT); 455 if (unlikely(err)) 456 return err; 457 } 458 459 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) { 460 err = i915_vma_pin_fence(vma); 461 if (unlikely(err)) { 462 i915_vma_unpin(vma); 463 return err; 464 } 465 466 if (vma->fence) 467 ev->flags |= __EXEC_OBJECT_HAS_FENCE; 468 } 469 470 ev->flags |= __EXEC_OBJECT_HAS_PIN; 471 if (eb_vma_misplaced(entry, vma, ev->flags)) 472 return -EBADSLT; 473 474 return 0; 475 } 476 477 static inline void 478 eb_unreserve_vma(struct eb_vma *ev) 479 { 480 if (!(ev->flags & __EXEC_OBJECT_HAS_PIN)) 481 return; 482 483 if (unlikely(ev->flags & __EXEC_OBJECT_HAS_FENCE)) 484 __i915_vma_unpin_fence(ev->vma); 485 486 __i915_vma_unpin(ev->vma); 487 ev->flags &= ~__EXEC_OBJECT_RESERVED; 488 } 489 490 static int 491 eb_validate_vma(struct i915_execbuffer *eb, 492 struct drm_i915_gem_exec_object2 *entry, 493 struct i915_vma *vma) 494 { 495 /* Relocations are disallowed for all platforms after TGL-LP. This 496 * also covers all platforms with local memory. 497 */ 498 if (entry->relocation_count && 499 GRAPHICS_VER(eb->i915) >= 12 && !IS_TIGERLAKE(eb->i915)) 500 return -EINVAL; 501 502 if (unlikely(entry->flags & eb->invalid_flags)) 503 return -EINVAL; 504 505 if (unlikely(entry->alignment && 506 !is_power_of_2_u64(entry->alignment))) 507 return -EINVAL; 508 509 /* 510 * Offset can be used as input (EXEC_OBJECT_PINNED), reject 511 * any non-page-aligned or non-canonical addresses. 512 */ 513 if (unlikely(entry->flags & EXEC_OBJECT_PINNED && 514 entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK))) 515 return -EINVAL; 516 517 /* pad_to_size was once a reserved field, so sanitize it */ 518 if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) { 519 if (unlikely(offset_in_page(entry->pad_to_size))) 520 return -EINVAL; 521 } else { 522 entry->pad_to_size = 0; 523 } 524 /* 525 * From drm_mm perspective address space is continuous, 526 * so from this point we're always using non-canonical 527 * form internally. 528 */ 529 entry->offset = gen8_noncanonical_addr(entry->offset); 530 531 if (!eb->reloc_cache.has_fence) { 532 entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE; 533 } else { 534 if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE || 535 eb->reloc_cache.needs_unfenced) && 536 i915_gem_object_is_tiled(vma->obj)) 537 entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP; 538 } 539 540 return 0; 541 } 542 543 static void 544 eb_add_vma(struct i915_execbuffer *eb, 545 unsigned int i, unsigned batch_idx, 546 struct i915_vma *vma) 547 { 548 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i]; 549 struct eb_vma *ev = &eb->vma[i]; 550 551 ev->vma = vma; 552 ev->exec = entry; 553 ev->flags = entry->flags; 554 555 if (eb->lut_size > 0) { 556 ev->handle = entry->handle; 557 hlist_add_head(&ev->node, 558 &eb->buckets[hash_32(entry->handle, 559 eb->lut_size)]); 560 } 561 562 if (entry->relocation_count) 563 list_add_tail(&ev->reloc_link, &eb->relocs); 564 565 /* 566 * SNA is doing fancy tricks with compressing batch buffers, which leads 567 * to negative relocation deltas. Usually that works out ok since the 568 * relocate address is still positive, except when the batch is placed 569 * very low in the GTT. Ensure this doesn't happen. 570 * 571 * Note that actual hangs have only been observed on gen7, but for 572 * paranoia do it everywhere. 573 */ 574 if (i == batch_idx) { 575 if (entry->relocation_count && 576 !(ev->flags & EXEC_OBJECT_PINNED)) 577 ev->flags |= __EXEC_OBJECT_NEEDS_BIAS; 578 if (eb->reloc_cache.has_fence) 579 ev->flags |= EXEC_OBJECT_NEEDS_FENCE; 580 581 eb->batch = ev; 582 } 583 } 584 585 static inline int use_cpu_reloc(const struct reloc_cache *cache, 586 const struct drm_i915_gem_object *obj) 587 { 588 if (!i915_gem_object_has_struct_page(obj)) 589 return false; 590 591 if (DBG_FORCE_RELOC == FORCE_CPU_RELOC) 592 return true; 593 594 if (DBG_FORCE_RELOC == FORCE_GTT_RELOC) 595 return false; 596 597 return (cache->has_llc || 598 obj->cache_dirty || 599 obj->cache_level != I915_CACHE_NONE); 600 } 601 602 static int eb_reserve_vma(struct i915_execbuffer *eb, 603 struct eb_vma *ev, 604 u64 pin_flags) 605 { 606 struct drm_i915_gem_exec_object2 *entry = ev->exec; 607 struct i915_vma *vma = ev->vma; 608 int err; 609 610 if (drm_mm_node_allocated(&vma->node) && 611 eb_vma_misplaced(entry, vma, ev->flags)) { 612 err = i915_vma_unbind(vma); 613 if (err) 614 return err; 615 } 616 617 err = i915_vma_pin_ww(vma, &eb->ww, 618 entry->pad_to_size, entry->alignment, 619 eb_pin_flags(entry, ev->flags) | pin_flags); 620 if (err) 621 return err; 622 623 if (entry->offset != vma->node.start) { 624 entry->offset = vma->node.start | UPDATE; 625 eb->args->flags |= __EXEC_HAS_RELOC; 626 } 627 628 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) { 629 err = i915_vma_pin_fence(vma); 630 if (unlikely(err)) { 631 i915_vma_unpin(vma); 632 return err; 633 } 634 635 if (vma->fence) 636 ev->flags |= __EXEC_OBJECT_HAS_FENCE; 637 } 638 639 ev->flags |= __EXEC_OBJECT_HAS_PIN; 640 GEM_BUG_ON(eb_vma_misplaced(entry, vma, ev->flags)); 641 642 return 0; 643 } 644 645 static int eb_reserve(struct i915_execbuffer *eb) 646 { 647 const unsigned int count = eb->buffer_count; 648 unsigned int pin_flags = PIN_USER | PIN_NONBLOCK; 649 struct list_head last; 650 struct eb_vma *ev; 651 unsigned int i, pass; 652 int err = 0; 653 654 /* 655 * Attempt to pin all of the buffers into the GTT. 656 * This is done in 3 phases: 657 * 658 * 1a. Unbind all objects that do not match the GTT constraints for 659 * the execbuffer (fenceable, mappable, alignment etc). 660 * 1b. Increment pin count for already bound objects. 661 * 2. Bind new objects. 662 * 3. Decrement pin count. 663 * 664 * This avoid unnecessary unbinding of later objects in order to make 665 * room for the earlier objects *unless* we need to defragment. 666 */ 667 pass = 0; 668 do { 669 list_for_each_entry(ev, &eb->unbound, bind_link) { 670 err = eb_reserve_vma(eb, ev, pin_flags); 671 if (err) 672 break; 673 } 674 if (err != -ENOSPC) 675 return err; 676 677 /* Resort *all* the objects into priority order */ 678 INIT_LIST_HEAD(&eb->unbound); 679 INIT_LIST_HEAD(&last); 680 for (i = 0; i < count; i++) { 681 unsigned int flags; 682 683 ev = &eb->vma[i]; 684 flags = ev->flags; 685 if (flags & EXEC_OBJECT_PINNED && 686 flags & __EXEC_OBJECT_HAS_PIN) 687 continue; 688 689 eb_unreserve_vma(ev); 690 691 if (flags & EXEC_OBJECT_PINNED) 692 /* Pinned must have their slot */ 693 list_add(&ev->bind_link, &eb->unbound); 694 else if (flags & __EXEC_OBJECT_NEEDS_MAP) 695 /* Map require the lowest 256MiB (aperture) */ 696 list_add_tail(&ev->bind_link, &eb->unbound); 697 else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS)) 698 /* Prioritise 4GiB region for restricted bo */ 699 list_add(&ev->bind_link, &last); 700 else 701 list_add_tail(&ev->bind_link, &last); 702 } 703 list_splice_tail(&last, &eb->unbound); 704 705 switch (pass++) { 706 case 0: 707 break; 708 709 case 1: 710 /* Too fragmented, unbind everything and retry */ 711 mutex_lock(&eb->context->vm->mutex); 712 err = i915_gem_evict_vm(eb->context->vm); 713 mutex_unlock(&eb->context->vm->mutex); 714 if (err) 715 return err; 716 break; 717 718 default: 719 return -ENOSPC; 720 } 721 722 pin_flags = PIN_USER; 723 } while (1); 724 } 725 726 static unsigned int eb_batch_index(const struct i915_execbuffer *eb) 727 { 728 if (eb->args->flags & I915_EXEC_BATCH_FIRST) 729 return 0; 730 else 731 return eb->buffer_count - 1; 732 } 733 734 static int eb_select_context(struct i915_execbuffer *eb) 735 { 736 struct i915_gem_context *ctx; 737 738 ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1); 739 if (unlikely(IS_ERR(ctx))) 740 return PTR_ERR(ctx); 741 742 eb->gem_context = ctx; 743 if (rcu_access_pointer(ctx->vm)) 744 eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT; 745 746 return 0; 747 } 748 749 static int __eb_add_lut(struct i915_execbuffer *eb, 750 u32 handle, struct i915_vma *vma) 751 { 752 struct i915_gem_context *ctx = eb->gem_context; 753 struct i915_lut_handle *lut; 754 int err; 755 756 lut = i915_lut_handle_alloc(); 757 if (unlikely(!lut)) 758 return -ENOMEM; 759 760 i915_vma_get(vma); 761 if (!atomic_fetch_inc(&vma->open_count)) 762 i915_vma_reopen(vma); 763 lut->handle = handle; 764 lut->ctx = ctx; 765 766 /* Check that the context hasn't been closed in the meantime */ 767 err = -EINTR; 768 if (!mutex_lock_interruptible(&ctx->lut_mutex)) { 769 struct i915_address_space *vm = rcu_access_pointer(ctx->vm); 770 771 if (unlikely(vm && vma->vm != vm)) 772 err = -EAGAIN; /* user racing with ctx set-vm */ 773 else if (likely(!i915_gem_context_is_closed(ctx))) 774 err = radix_tree_insert(&ctx->handles_vma, handle, vma); 775 else 776 err = -ENOENT; 777 if (err == 0) { /* And nor has this handle */ 778 struct drm_i915_gem_object *obj = vma->obj; 779 780 spin_lock(&obj->lut_lock); 781 if (idr_find(&eb->file->object_idr, handle) == obj) { 782 list_add(&lut->obj_link, &obj->lut_list); 783 } else { 784 radix_tree_delete(&ctx->handles_vma, handle); 785 err = -ENOENT; 786 } 787 spin_unlock(&obj->lut_lock); 788 } 789 mutex_unlock(&ctx->lut_mutex); 790 } 791 if (unlikely(err)) 792 goto err; 793 794 return 0; 795 796 err: 797 i915_vma_close(vma); 798 i915_vma_put(vma); 799 i915_lut_handle_free(lut); 800 return err; 801 } 802 803 static struct i915_vma *eb_lookup_vma(struct i915_execbuffer *eb, u32 handle) 804 { 805 struct i915_address_space *vm = eb->context->vm; 806 807 do { 808 struct drm_i915_gem_object *obj; 809 struct i915_vma *vma; 810 int err; 811 812 rcu_read_lock(); 813 vma = radix_tree_lookup(&eb->gem_context->handles_vma, handle); 814 if (likely(vma && vma->vm == vm)) 815 vma = i915_vma_tryget(vma); 816 rcu_read_unlock(); 817 if (likely(vma)) 818 return vma; 819 820 obj = i915_gem_object_lookup(eb->file, handle); 821 if (unlikely(!obj)) 822 return ERR_PTR(-ENOENT); 823 824 vma = i915_vma_instance(obj, vm, NULL); 825 if (IS_ERR(vma)) { 826 i915_gem_object_put(obj); 827 return vma; 828 } 829 830 err = __eb_add_lut(eb, handle, vma); 831 if (likely(!err)) 832 return vma; 833 834 i915_gem_object_put(obj); 835 if (err != -EEXIST) 836 return ERR_PTR(err); 837 } while (1); 838 } 839 840 static int eb_lookup_vmas(struct i915_execbuffer *eb) 841 { 842 struct drm_i915_private *i915 = eb->i915; 843 unsigned int batch = eb_batch_index(eb); 844 unsigned int i; 845 int err = 0; 846 847 INIT_LIST_HEAD(&eb->relocs); 848 849 for (i = 0; i < eb->buffer_count; i++) { 850 struct i915_vma *vma; 851 852 vma = eb_lookup_vma(eb, eb->exec[i].handle); 853 if (IS_ERR(vma)) { 854 err = PTR_ERR(vma); 855 goto err; 856 } 857 858 err = eb_validate_vma(eb, &eb->exec[i], vma); 859 if (unlikely(err)) { 860 i915_vma_put(vma); 861 goto err; 862 } 863 864 eb_add_vma(eb, i, batch, vma); 865 866 if (i915_gem_object_is_userptr(vma->obj)) { 867 err = i915_gem_object_userptr_submit_init(vma->obj); 868 if (err) { 869 if (i + 1 < eb->buffer_count) { 870 /* 871 * Execbuffer code expects last vma entry to be NULL, 872 * since we already initialized this entry, 873 * set the next value to NULL or we mess up 874 * cleanup handling. 875 */ 876 eb->vma[i + 1].vma = NULL; 877 } 878 879 return err; 880 } 881 882 eb->vma[i].flags |= __EXEC_OBJECT_USERPTR_INIT; 883 eb->args->flags |= __EXEC_USERPTR_USED; 884 } 885 } 886 887 if (unlikely(eb->batch->flags & EXEC_OBJECT_WRITE)) { 888 drm_dbg(&i915->drm, 889 "Attempting to use self-modifying batch buffer\n"); 890 return -EINVAL; 891 } 892 893 if (range_overflows_t(u64, 894 eb->batch_start_offset, eb->batch_len, 895 eb->batch->vma->size)) { 896 drm_dbg(&i915->drm, "Attempting to use out-of-bounds batch\n"); 897 return -EINVAL; 898 } 899 900 if (eb->batch_len == 0) 901 eb->batch_len = eb->batch->vma->size - eb->batch_start_offset; 902 if (unlikely(eb->batch_len == 0)) { /* impossible! */ 903 drm_dbg(&i915->drm, "Invalid batch length\n"); 904 return -EINVAL; 905 } 906 907 return 0; 908 909 err: 910 eb->vma[i].vma = NULL; 911 return err; 912 } 913 914 static int eb_lock_vmas(struct i915_execbuffer *eb) 915 { 916 unsigned int i; 917 int err; 918 919 for (i = 0; i < eb->buffer_count; i++) { 920 struct eb_vma *ev = &eb->vma[i]; 921 struct i915_vma *vma = ev->vma; 922 923 err = i915_gem_object_lock(vma->obj, &eb->ww); 924 if (err) 925 return err; 926 } 927 928 return 0; 929 } 930 931 static int eb_validate_vmas(struct i915_execbuffer *eb) 932 { 933 unsigned int i; 934 int err; 935 936 INIT_LIST_HEAD(&eb->unbound); 937 938 err = eb_lock_vmas(eb); 939 if (err) 940 return err; 941 942 for (i = 0; i < eb->buffer_count; i++) { 943 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i]; 944 struct eb_vma *ev = &eb->vma[i]; 945 struct i915_vma *vma = ev->vma; 946 947 err = eb_pin_vma(eb, entry, ev); 948 if (err == -EDEADLK) 949 return err; 950 951 if (!err) { 952 if (entry->offset != vma->node.start) { 953 entry->offset = vma->node.start | UPDATE; 954 eb->args->flags |= __EXEC_HAS_RELOC; 955 } 956 } else { 957 eb_unreserve_vma(ev); 958 959 list_add_tail(&ev->bind_link, &eb->unbound); 960 if (drm_mm_node_allocated(&vma->node)) { 961 err = i915_vma_unbind(vma); 962 if (err) 963 return err; 964 } 965 } 966 967 if (!(ev->flags & EXEC_OBJECT_WRITE)) { 968 err = dma_resv_reserve_shared(vma->resv, 1); 969 if (err) 970 return err; 971 } 972 973 GEM_BUG_ON(drm_mm_node_allocated(&vma->node) && 974 eb_vma_misplaced(&eb->exec[i], vma, ev->flags)); 975 } 976 977 if (!list_empty(&eb->unbound)) 978 return eb_reserve(eb); 979 980 return 0; 981 } 982 983 static struct eb_vma * 984 eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle) 985 { 986 if (eb->lut_size < 0) { 987 if (handle >= -eb->lut_size) 988 return NULL; 989 return &eb->vma[handle]; 990 } else { 991 struct hlist_head *head; 992 struct eb_vma *ev; 993 994 head = &eb->buckets[hash_32(handle, eb->lut_size)]; 995 hlist_for_each_entry(ev, head, node) { 996 if (ev->handle == handle) 997 return ev; 998 } 999 return NULL; 1000 } 1001 } 1002 1003 static void eb_release_vmas(struct i915_execbuffer *eb, bool final) 1004 { 1005 const unsigned int count = eb->buffer_count; 1006 unsigned int i; 1007 1008 for (i = 0; i < count; i++) { 1009 struct eb_vma *ev = &eb->vma[i]; 1010 struct i915_vma *vma = ev->vma; 1011 1012 if (!vma) 1013 break; 1014 1015 eb_unreserve_vma(ev); 1016 1017 if (final) 1018 i915_vma_put(vma); 1019 } 1020 1021 eb_unpin_engine(eb); 1022 } 1023 1024 static void eb_destroy(const struct i915_execbuffer *eb) 1025 { 1026 if (eb->lut_size > 0) 1027 kfree(eb->buckets); 1028 } 1029 1030 static inline u64 1031 relocation_target(const struct drm_i915_gem_relocation_entry *reloc, 1032 const struct i915_vma *target) 1033 { 1034 return gen8_canonical_addr((int)reloc->delta + target->node.start); 1035 } 1036 1037 static void reloc_cache_init(struct reloc_cache *cache, 1038 struct drm_i915_private *i915) 1039 { 1040 cache->page = -1; 1041 cache->vaddr = 0; 1042 /* Must be a variable in the struct to allow GCC to unroll. */ 1043 cache->graphics_ver = GRAPHICS_VER(i915); 1044 cache->has_llc = HAS_LLC(i915); 1045 cache->use_64bit_reloc = HAS_64BIT_RELOC(i915); 1046 cache->has_fence = cache->graphics_ver < 4; 1047 cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment; 1048 cache->node.flags = 0; 1049 1050 cache->map = i915->agph; 1051 cache->iot = i915->bst; 1052 } 1053 1054 static inline void *unmask_page(unsigned long p) 1055 { 1056 return (void *)(uintptr_t)(p & LINUX_PAGE_MASK); 1057 } 1058 1059 static inline unsigned int unmask_flags(unsigned long p) 1060 { 1061 return p & ~LINUX_PAGE_MASK; 1062 } 1063 1064 #define KMAP 0x4 /* after CLFLUSH_FLAGS */ 1065 1066 static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache) 1067 { 1068 struct drm_i915_private *i915 = 1069 container_of(cache, struct i915_execbuffer, reloc_cache)->i915; 1070 return &i915->ggtt; 1071 } 1072 1073 static void reloc_cache_unmap(struct reloc_cache *cache) 1074 { 1075 void *vaddr; 1076 1077 if (!cache->vaddr) 1078 return; 1079 1080 vaddr = unmask_page(cache->vaddr); 1081 if (cache->vaddr & KMAP) 1082 kunmap_atomic(vaddr); 1083 else 1084 #ifdef __linux__ 1085 io_mapping_unmap_atomic((void __iomem *)vaddr); 1086 #else 1087 agp_unmap_atomic(cache->map, cache->ioh); 1088 #endif 1089 } 1090 1091 static void reloc_cache_remap(struct reloc_cache *cache, 1092 struct drm_i915_gem_object *obj) 1093 { 1094 void *vaddr; 1095 1096 if (!cache->vaddr) 1097 return; 1098 1099 if (cache->vaddr & KMAP) { 1100 struct vm_page *page = i915_gem_object_get_page(obj, cache->page); 1101 1102 vaddr = kmap_atomic(page); 1103 cache->vaddr = unmask_flags(cache->vaddr) | 1104 (unsigned long)vaddr; 1105 } else { 1106 struct i915_ggtt *ggtt = cache_to_ggtt(cache); 1107 unsigned long offset; 1108 1109 offset = cache->node.start; 1110 if (!drm_mm_node_allocated(&cache->node)) 1111 offset += cache->page << PAGE_SHIFT; 1112 1113 #ifdef __linux__ 1114 cache->vaddr = (unsigned long) 1115 io_mapping_map_atomic_wc(&ggtt->iomap, offset); 1116 #else 1117 agp_map_atomic(cache->map, offset, &cache->ioh); 1118 cache->vaddr = (unsigned long) 1119 bus_space_vaddr(cache->iot, cache->ioh); 1120 #endif 1121 } 1122 } 1123 1124 static void reloc_cache_reset(struct reloc_cache *cache, struct i915_execbuffer *eb) 1125 { 1126 void *vaddr; 1127 1128 if (!cache->vaddr) 1129 return; 1130 1131 vaddr = unmask_page(cache->vaddr); 1132 if (cache->vaddr & KMAP) { 1133 struct drm_i915_gem_object *obj = 1134 (struct drm_i915_gem_object *)cache->node.mm; 1135 if (cache->vaddr & CLFLUSH_AFTER) 1136 mb(); 1137 1138 kunmap_atomic(vaddr); 1139 i915_gem_object_finish_access(obj); 1140 } else { 1141 struct i915_ggtt *ggtt = cache_to_ggtt(cache); 1142 1143 intel_gt_flush_ggtt_writes(ggtt->vm.gt); 1144 #ifdef __linux__ 1145 io_mapping_unmap_atomic((void __iomem *)vaddr); 1146 #else 1147 agp_unmap_atomic(cache->map, cache->ioh); 1148 #endif 1149 1150 if (drm_mm_node_allocated(&cache->node)) { 1151 ggtt->vm.clear_range(&ggtt->vm, 1152 cache->node.start, 1153 cache->node.size); 1154 mutex_lock(&ggtt->vm.mutex); 1155 drm_mm_remove_node(&cache->node); 1156 mutex_unlock(&ggtt->vm.mutex); 1157 } else { 1158 i915_vma_unpin((struct i915_vma *)cache->node.mm); 1159 } 1160 } 1161 1162 cache->vaddr = 0; 1163 cache->page = -1; 1164 } 1165 1166 static void *reloc_kmap(struct drm_i915_gem_object *obj, 1167 struct reloc_cache *cache, 1168 unsigned long pageno) 1169 { 1170 void *vaddr; 1171 struct vm_page *page; 1172 1173 if (cache->vaddr) { 1174 kunmap_atomic(unmask_page(cache->vaddr)); 1175 } else { 1176 unsigned int flushes; 1177 int err; 1178 1179 err = i915_gem_object_prepare_write(obj, &flushes); 1180 if (err) 1181 return ERR_PTR(err); 1182 1183 BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS); 1184 BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & LINUX_PAGE_MASK); 1185 1186 cache->vaddr = flushes | KMAP; 1187 cache->node.mm = (void *)obj; 1188 if (flushes) 1189 mb(); 1190 } 1191 1192 page = i915_gem_object_get_page(obj, pageno); 1193 if (!obj->mm.dirty) 1194 set_page_dirty(page); 1195 1196 vaddr = kmap_atomic(page); 1197 cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr; 1198 cache->page = pageno; 1199 1200 return vaddr; 1201 } 1202 1203 static void *reloc_iomap(struct drm_i915_gem_object *obj, 1204 struct i915_execbuffer *eb, 1205 unsigned long page) 1206 { 1207 struct reloc_cache *cache = &eb->reloc_cache; 1208 struct i915_ggtt *ggtt = cache_to_ggtt(cache); 1209 unsigned long offset; 1210 void *vaddr; 1211 1212 if (cache->vaddr) { 1213 intel_gt_flush_ggtt_writes(ggtt->vm.gt); 1214 #ifdef __linux__ 1215 io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr)); 1216 #else 1217 agp_unmap_atomic(cache->map, cache->ioh); 1218 #endif 1219 } else { 1220 struct i915_vma *vma; 1221 int err; 1222 1223 if (i915_gem_object_is_tiled(obj)) 1224 return ERR_PTR(-EINVAL); 1225 1226 if (use_cpu_reloc(cache, obj)) 1227 return NULL; 1228 1229 err = i915_gem_object_set_to_gtt_domain(obj, true); 1230 if (err) 1231 return ERR_PTR(err); 1232 1233 vma = i915_gem_object_ggtt_pin_ww(obj, &eb->ww, NULL, 0, 0, 1234 PIN_MAPPABLE | 1235 PIN_NONBLOCK /* NOWARN */ | 1236 PIN_NOEVICT); 1237 if (vma == ERR_PTR(-EDEADLK)) 1238 return vma; 1239 1240 if (IS_ERR(vma)) { 1241 memset(&cache->node, 0, sizeof(cache->node)); 1242 mutex_lock(&ggtt->vm.mutex); 1243 err = drm_mm_insert_node_in_range 1244 (&ggtt->vm.mm, &cache->node, 1245 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE, 1246 0, ggtt->mappable_end, 1247 DRM_MM_INSERT_LOW); 1248 mutex_unlock(&ggtt->vm.mutex); 1249 if (err) /* no inactive aperture space, use cpu reloc */ 1250 return NULL; 1251 } else { 1252 cache->node.start = vma->node.start; 1253 cache->node.mm = (void *)vma; 1254 } 1255 } 1256 1257 offset = cache->node.start; 1258 if (drm_mm_node_allocated(&cache->node)) { 1259 ggtt->vm.insert_page(&ggtt->vm, 1260 i915_gem_object_get_dma_address(obj, page), 1261 offset, I915_CACHE_NONE, 0); 1262 } else { 1263 offset += page << PAGE_SHIFT; 1264 } 1265 1266 #ifdef __linux__ 1267 vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap, 1268 offset); 1269 #else 1270 agp_map_atomic(cache->map, offset, &cache->ioh); 1271 vaddr = bus_space_vaddr(cache->iot, cache->ioh); 1272 #endif 1273 cache->page = page; 1274 cache->vaddr = (unsigned long)vaddr; 1275 1276 return vaddr; 1277 } 1278 1279 static void *reloc_vaddr(struct drm_i915_gem_object *obj, 1280 struct i915_execbuffer *eb, 1281 unsigned long page) 1282 { 1283 struct reloc_cache *cache = &eb->reloc_cache; 1284 void *vaddr; 1285 1286 if (cache->page == page) { 1287 vaddr = unmask_page(cache->vaddr); 1288 } else { 1289 vaddr = NULL; 1290 if ((cache->vaddr & KMAP) == 0) 1291 vaddr = reloc_iomap(obj, eb, page); 1292 if (!vaddr) 1293 vaddr = reloc_kmap(obj, cache, page); 1294 } 1295 1296 return vaddr; 1297 } 1298 1299 static void clflush_write32(u32 *addr, u32 value, unsigned int flushes) 1300 { 1301 if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) { 1302 if (flushes & CLFLUSH_BEFORE) { 1303 clflushopt(addr); 1304 mb(); 1305 } 1306 1307 *addr = value; 1308 1309 /* 1310 * Writes to the same cacheline are serialised by the CPU 1311 * (including clflush). On the write path, we only require 1312 * that it hits memory in an orderly fashion and place 1313 * mb barriers at the start and end of the relocation phase 1314 * to ensure ordering of clflush wrt to the system. 1315 */ 1316 if (flushes & CLFLUSH_AFTER) 1317 clflushopt(addr); 1318 } else 1319 *addr = value; 1320 } 1321 1322 static u64 1323 relocate_entry(struct i915_vma *vma, 1324 const struct drm_i915_gem_relocation_entry *reloc, 1325 struct i915_execbuffer *eb, 1326 const struct i915_vma *target) 1327 { 1328 u64 target_addr = relocation_target(reloc, target); 1329 u64 offset = reloc->offset; 1330 bool wide = eb->reloc_cache.use_64bit_reloc; 1331 void *vaddr; 1332 1333 repeat: 1334 vaddr = reloc_vaddr(vma->obj, eb, 1335 offset >> PAGE_SHIFT); 1336 if (IS_ERR(vaddr)) 1337 return PTR_ERR(vaddr); 1338 1339 GEM_BUG_ON(!IS_ALIGNED(offset, sizeof(u32))); 1340 clflush_write32(vaddr + offset_in_page(offset), 1341 lower_32_bits(target_addr), 1342 eb->reloc_cache.vaddr); 1343 1344 if (wide) { 1345 offset += sizeof(u32); 1346 target_addr >>= 32; 1347 wide = false; 1348 goto repeat; 1349 } 1350 1351 return target->node.start | UPDATE; 1352 } 1353 1354 static u64 1355 eb_relocate_entry(struct i915_execbuffer *eb, 1356 struct eb_vma *ev, 1357 const struct drm_i915_gem_relocation_entry *reloc) 1358 { 1359 struct drm_i915_private *i915 = eb->i915; 1360 struct eb_vma *target; 1361 int err; 1362 1363 /* we've already hold a reference to all valid objects */ 1364 target = eb_get_vma(eb, reloc->target_handle); 1365 if (unlikely(!target)) 1366 return -ENOENT; 1367 1368 /* Validate that the target is in a valid r/w GPU domain */ 1369 if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) { 1370 drm_dbg(&i915->drm, "reloc with multiple write domains: " 1371 "target %d offset %d " 1372 "read %08x write %08x", 1373 reloc->target_handle, 1374 (int) reloc->offset, 1375 reloc->read_domains, 1376 reloc->write_domain); 1377 return -EINVAL; 1378 } 1379 if (unlikely((reloc->write_domain | reloc->read_domains) 1380 & ~I915_GEM_GPU_DOMAINS)) { 1381 drm_dbg(&i915->drm, "reloc with read/write non-GPU domains: " 1382 "target %d offset %d " 1383 "read %08x write %08x", 1384 reloc->target_handle, 1385 (int) reloc->offset, 1386 reloc->read_domains, 1387 reloc->write_domain); 1388 return -EINVAL; 1389 } 1390 1391 if (reloc->write_domain) { 1392 target->flags |= EXEC_OBJECT_WRITE; 1393 1394 /* 1395 * Sandybridge PPGTT errata: We need a global gtt mapping 1396 * for MI and pipe_control writes because the gpu doesn't 1397 * properly redirect them through the ppgtt for non_secure 1398 * batchbuffers. 1399 */ 1400 if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION && 1401 GRAPHICS_VER(eb->i915) == 6 && 1402 !i915_vma_is_bound(target->vma, I915_VMA_GLOBAL_BIND)) { 1403 struct i915_vma *vma = target->vma; 1404 1405 reloc_cache_unmap(&eb->reloc_cache); 1406 mutex_lock(&vma->vm->mutex); 1407 err = i915_vma_bind(target->vma, 1408 target->vma->obj->cache_level, 1409 PIN_GLOBAL, NULL); 1410 mutex_unlock(&vma->vm->mutex); 1411 reloc_cache_remap(&eb->reloc_cache, ev->vma->obj); 1412 if (err) 1413 return err; 1414 } 1415 } 1416 1417 /* 1418 * If the relocation already has the right value in it, no 1419 * more work needs to be done. 1420 */ 1421 if (!DBG_FORCE_RELOC && 1422 gen8_canonical_addr(target->vma->node.start) == reloc->presumed_offset) 1423 return 0; 1424 1425 /* Check that the relocation address is valid... */ 1426 if (unlikely(reloc->offset > 1427 ev->vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) { 1428 drm_dbg(&i915->drm, "Relocation beyond object bounds: " 1429 "target %d offset %d size %d.\n", 1430 reloc->target_handle, 1431 (int)reloc->offset, 1432 (int)ev->vma->size); 1433 return -EINVAL; 1434 } 1435 if (unlikely(reloc->offset & 3)) { 1436 drm_dbg(&i915->drm, "Relocation not 4-byte aligned: " 1437 "target %d offset %d.\n", 1438 reloc->target_handle, 1439 (int)reloc->offset); 1440 return -EINVAL; 1441 } 1442 1443 /* 1444 * If we write into the object, we need to force the synchronisation 1445 * barrier, either with an asynchronous clflush or if we executed the 1446 * patching using the GPU (though that should be serialised by the 1447 * timeline). To be completely sure, and since we are required to 1448 * do relocations we are already stalling, disable the user's opt 1449 * out of our synchronisation. 1450 */ 1451 ev->flags &= ~EXEC_OBJECT_ASYNC; 1452 1453 /* and update the user's relocation entry */ 1454 return relocate_entry(ev->vma, reloc, eb, target->vma); 1455 } 1456 1457 static int eb_relocate_vma(struct i915_execbuffer *eb, struct eb_vma *ev) 1458 { 1459 #define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry)) 1460 struct drm_i915_gem_relocation_entry stack[N_RELOC(512)]; 1461 const struct drm_i915_gem_exec_object2 *entry = ev->exec; 1462 struct drm_i915_gem_relocation_entry __user *urelocs = 1463 u64_to_user_ptr(entry->relocs_ptr); 1464 unsigned long remain = entry->relocation_count; 1465 1466 if (unlikely(remain > N_RELOC(ULONG_MAX))) 1467 return -EINVAL; 1468 1469 /* 1470 * We must check that the entire relocation array is safe 1471 * to read. However, if the array is not writable the user loses 1472 * the updated relocation values. 1473 */ 1474 if (unlikely(!access_ok(urelocs, remain * sizeof(*urelocs)))) 1475 return -EFAULT; 1476 1477 do { 1478 struct drm_i915_gem_relocation_entry *r = stack; 1479 unsigned int count = 1480 min_t(unsigned long, remain, ARRAY_SIZE(stack)); 1481 unsigned int copied; 1482 1483 /* 1484 * This is the fast path and we cannot handle a pagefault 1485 * whilst holding the struct mutex lest the user pass in the 1486 * relocations contained within a mmaped bo. For in such a case 1487 * we, the page fault handler would call i915_gem_fault() and 1488 * we would try to acquire the struct mutex again. Obviously 1489 * this is bad and so lockdep complains vehemently. 1490 */ 1491 pagefault_disable(); 1492 copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0])); 1493 pagefault_enable(); 1494 if (unlikely(copied)) { 1495 remain = -EFAULT; 1496 goto out; 1497 } 1498 1499 remain -= count; 1500 do { 1501 u64 offset = eb_relocate_entry(eb, ev, r); 1502 1503 if (likely(offset == 0)) { 1504 } else if ((s64)offset < 0) { 1505 remain = (int)offset; 1506 goto out; 1507 } else { 1508 /* 1509 * Note that reporting an error now 1510 * leaves everything in an inconsistent 1511 * state as we have *already* changed 1512 * the relocation value inside the 1513 * object. As we have not changed the 1514 * reloc.presumed_offset or will not 1515 * change the execobject.offset, on the 1516 * call we may not rewrite the value 1517 * inside the object, leaving it 1518 * dangling and causing a GPU hang. Unless 1519 * userspace dynamically rebuilds the 1520 * relocations on each execbuf rather than 1521 * presume a static tree. 1522 * 1523 * We did previously check if the relocations 1524 * were writable (access_ok), an error now 1525 * would be a strange race with mprotect, 1526 * having already demonstrated that we 1527 * can read from this userspace address. 1528 */ 1529 offset = gen8_canonical_addr(offset & ~UPDATE); 1530 __put_user(offset, 1531 &urelocs[r - stack].presumed_offset); 1532 } 1533 } while (r++, --count); 1534 urelocs += ARRAY_SIZE(stack); 1535 } while (remain); 1536 out: 1537 reloc_cache_reset(&eb->reloc_cache, eb); 1538 return remain; 1539 } 1540 1541 static int 1542 eb_relocate_vma_slow(struct i915_execbuffer *eb, struct eb_vma *ev) 1543 { 1544 const struct drm_i915_gem_exec_object2 *entry = ev->exec; 1545 struct drm_i915_gem_relocation_entry *relocs = 1546 u64_to_ptr(typeof(*relocs), entry->relocs_ptr); 1547 unsigned int i; 1548 int err; 1549 1550 for (i = 0; i < entry->relocation_count; i++) { 1551 u64 offset = eb_relocate_entry(eb, ev, &relocs[i]); 1552 1553 if ((s64)offset < 0) { 1554 err = (int)offset; 1555 goto err; 1556 } 1557 } 1558 err = 0; 1559 err: 1560 reloc_cache_reset(&eb->reloc_cache, eb); 1561 return err; 1562 } 1563 1564 static int check_relocations(const struct drm_i915_gem_exec_object2 *entry) 1565 { 1566 const char __user *addr, *end; 1567 unsigned long size; 1568 char __maybe_unused c; 1569 1570 size = entry->relocation_count; 1571 if (size == 0) 1572 return 0; 1573 1574 if (size > N_RELOC(ULONG_MAX)) 1575 return -EINVAL; 1576 1577 addr = u64_to_user_ptr(entry->relocs_ptr); 1578 size *= sizeof(struct drm_i915_gem_relocation_entry); 1579 if (!access_ok(addr, size)) 1580 return -EFAULT; 1581 1582 end = addr + size; 1583 for (; addr < end; addr += PAGE_SIZE) { 1584 int err = __get_user(c, addr); 1585 if (err) 1586 return err; 1587 } 1588 return __get_user(c, end - 1); 1589 } 1590 1591 static int eb_copy_relocations(const struct i915_execbuffer *eb) 1592 { 1593 struct drm_i915_gem_relocation_entry *relocs; 1594 const unsigned int count = eb->buffer_count; 1595 unsigned int i; 1596 int err; 1597 1598 for (i = 0; i < count; i++) { 1599 const unsigned int nreloc = eb->exec[i].relocation_count; 1600 struct drm_i915_gem_relocation_entry __user *urelocs; 1601 unsigned long size; 1602 unsigned long copied; 1603 1604 if (nreloc == 0) 1605 continue; 1606 1607 err = check_relocations(&eb->exec[i]); 1608 if (err) 1609 goto err; 1610 1611 urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr); 1612 size = nreloc * sizeof(*relocs); 1613 1614 relocs = kvmalloc_array(size, 1, GFP_KERNEL); 1615 if (!relocs) { 1616 err = -ENOMEM; 1617 goto err; 1618 } 1619 1620 /* copy_from_user is limited to < 4GiB */ 1621 copied = 0; 1622 do { 1623 unsigned int len = 1624 min_t(u64, BIT_ULL(31), size - copied); 1625 1626 if (__copy_from_user((char *)relocs + copied, 1627 (char __user *)urelocs + copied, 1628 len)) 1629 goto end; 1630 1631 copied += len; 1632 } while (copied < size); 1633 1634 /* 1635 * As we do not update the known relocation offsets after 1636 * relocating (due to the complexities in lock handling), 1637 * we need to mark them as invalid now so that we force the 1638 * relocation processing next time. Just in case the target 1639 * object is evicted and then rebound into its old 1640 * presumed_offset before the next execbuffer - if that 1641 * happened we would make the mistake of assuming that the 1642 * relocations were valid. 1643 */ 1644 if (!user_access_begin(urelocs, size)) 1645 goto end; 1646 1647 for (copied = 0; copied < nreloc; copied++) 1648 unsafe_put_user(-1, 1649 &urelocs[copied].presumed_offset, 1650 end_user); 1651 user_access_end(); 1652 1653 eb->exec[i].relocs_ptr = (uintptr_t)relocs; 1654 } 1655 1656 return 0; 1657 1658 end_user: 1659 user_access_end(); 1660 end: 1661 kvfree(relocs); 1662 err = -EFAULT; 1663 err: 1664 while (i--) { 1665 relocs = u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr); 1666 if (eb->exec[i].relocation_count) 1667 kvfree(relocs); 1668 } 1669 return err; 1670 } 1671 1672 static int eb_prefault_relocations(const struct i915_execbuffer *eb) 1673 { 1674 const unsigned int count = eb->buffer_count; 1675 unsigned int i; 1676 1677 for (i = 0; i < count; i++) { 1678 int err; 1679 1680 err = check_relocations(&eb->exec[i]); 1681 if (err) 1682 return err; 1683 } 1684 1685 return 0; 1686 } 1687 1688 static int eb_reinit_userptr(struct i915_execbuffer *eb) 1689 { 1690 const unsigned int count = eb->buffer_count; 1691 unsigned int i; 1692 int ret; 1693 1694 if (likely(!(eb->args->flags & __EXEC_USERPTR_USED))) 1695 return 0; 1696 1697 for (i = 0; i < count; i++) { 1698 struct eb_vma *ev = &eb->vma[i]; 1699 1700 if (!i915_gem_object_is_userptr(ev->vma->obj)) 1701 continue; 1702 1703 ret = i915_gem_object_userptr_submit_init(ev->vma->obj); 1704 if (ret) 1705 return ret; 1706 1707 ev->flags |= __EXEC_OBJECT_USERPTR_INIT; 1708 } 1709 1710 return 0; 1711 } 1712 1713 static noinline int eb_relocate_parse_slow(struct i915_execbuffer *eb, 1714 struct i915_request *rq) 1715 { 1716 bool have_copy = false; 1717 struct eb_vma *ev; 1718 int err = 0; 1719 1720 repeat: 1721 if (signal_pending(current)) { 1722 err = -ERESTARTSYS; 1723 goto out; 1724 } 1725 1726 /* We may process another execbuffer during the unlock... */ 1727 eb_release_vmas(eb, false); 1728 i915_gem_ww_ctx_fini(&eb->ww); 1729 1730 if (rq) { 1731 /* nonblocking is always false */ 1732 if (i915_request_wait(rq, I915_WAIT_INTERRUPTIBLE, 1733 MAX_SCHEDULE_TIMEOUT) < 0) { 1734 i915_request_put(rq); 1735 rq = NULL; 1736 1737 err = -EINTR; 1738 goto err_relock; 1739 } 1740 1741 i915_request_put(rq); 1742 rq = NULL; 1743 } 1744 1745 /* 1746 * We take 3 passes through the slowpatch. 1747 * 1748 * 1 - we try to just prefault all the user relocation entries and 1749 * then attempt to reuse the atomic pagefault disabled fast path again. 1750 * 1751 * 2 - we copy the user entries to a local buffer here outside of the 1752 * local and allow ourselves to wait upon any rendering before 1753 * relocations 1754 * 1755 * 3 - we already have a local copy of the relocation entries, but 1756 * were interrupted (EAGAIN) whilst waiting for the objects, try again. 1757 */ 1758 if (!err) { 1759 err = eb_prefault_relocations(eb); 1760 } else if (!have_copy) { 1761 err = eb_copy_relocations(eb); 1762 have_copy = err == 0; 1763 } else { 1764 cond_resched(); 1765 err = 0; 1766 } 1767 1768 if (!err) 1769 err = eb_reinit_userptr(eb); 1770 1771 err_relock: 1772 i915_gem_ww_ctx_init(&eb->ww, true); 1773 if (err) 1774 goto out; 1775 1776 /* reacquire the objects */ 1777 repeat_validate: 1778 rq = eb_pin_engine(eb, false); 1779 if (IS_ERR(rq)) { 1780 err = PTR_ERR(rq); 1781 rq = NULL; 1782 goto err; 1783 } 1784 1785 /* We didn't throttle, should be NULL */ 1786 GEM_WARN_ON(rq); 1787 1788 err = eb_validate_vmas(eb); 1789 if (err) 1790 goto err; 1791 1792 GEM_BUG_ON(!eb->batch); 1793 1794 list_for_each_entry(ev, &eb->relocs, reloc_link) { 1795 if (!have_copy) { 1796 err = eb_relocate_vma(eb, ev); 1797 if (err) 1798 break; 1799 } else { 1800 err = eb_relocate_vma_slow(eb, ev); 1801 if (err) 1802 break; 1803 } 1804 } 1805 1806 if (err == -EDEADLK) 1807 goto err; 1808 1809 if (err && !have_copy) 1810 goto repeat; 1811 1812 if (err) 1813 goto err; 1814 1815 /* as last step, parse the command buffer */ 1816 err = eb_parse(eb); 1817 if (err) 1818 goto err; 1819 1820 /* 1821 * Leave the user relocations as are, this is the painfully slow path, 1822 * and we want to avoid the complication of dropping the lock whilst 1823 * having buffers reserved in the aperture and so causing spurious 1824 * ENOSPC for random operations. 1825 */ 1826 1827 err: 1828 if (err == -EDEADLK) { 1829 eb_release_vmas(eb, false); 1830 err = i915_gem_ww_ctx_backoff(&eb->ww); 1831 if (!err) 1832 goto repeat_validate; 1833 } 1834 1835 if (err == -EAGAIN) 1836 goto repeat; 1837 1838 out: 1839 if (have_copy) { 1840 const unsigned int count = eb->buffer_count; 1841 unsigned int i; 1842 1843 for (i = 0; i < count; i++) { 1844 const struct drm_i915_gem_exec_object2 *entry = 1845 &eb->exec[i]; 1846 struct drm_i915_gem_relocation_entry *relocs; 1847 1848 if (!entry->relocation_count) 1849 continue; 1850 1851 relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr); 1852 kvfree(relocs); 1853 } 1854 } 1855 1856 if (rq) 1857 i915_request_put(rq); 1858 1859 return err; 1860 } 1861 1862 static int eb_relocate_parse(struct i915_execbuffer *eb) 1863 { 1864 int err; 1865 struct i915_request *rq = NULL; 1866 bool throttle = true; 1867 1868 retry: 1869 rq = eb_pin_engine(eb, throttle); 1870 if (IS_ERR(rq)) { 1871 err = PTR_ERR(rq); 1872 rq = NULL; 1873 if (err != -EDEADLK) 1874 return err; 1875 1876 goto err; 1877 } 1878 1879 if (rq) { 1880 #ifdef __linux__ 1881 bool nonblock = eb->file->filp->f_flags & O_NONBLOCK; 1882 #else 1883 bool nonblock = eb->file->filp->f_flag & FNONBLOCK; 1884 #endif 1885 1886 /* Need to drop all locks now for throttling, take slowpath */ 1887 err = i915_request_wait(rq, I915_WAIT_INTERRUPTIBLE, 0); 1888 if (err == -ETIME) { 1889 if (nonblock) { 1890 err = -EWOULDBLOCK; 1891 i915_request_put(rq); 1892 goto err; 1893 } 1894 goto slow; 1895 } 1896 i915_request_put(rq); 1897 rq = NULL; 1898 } 1899 1900 /* only throttle once, even if we didn't need to throttle */ 1901 throttle = false; 1902 1903 err = eb_validate_vmas(eb); 1904 if (err == -EAGAIN) 1905 goto slow; 1906 else if (err) 1907 goto err; 1908 1909 /* The objects are in their final locations, apply the relocations. */ 1910 if (eb->args->flags & __EXEC_HAS_RELOC) { 1911 struct eb_vma *ev; 1912 1913 list_for_each_entry(ev, &eb->relocs, reloc_link) { 1914 err = eb_relocate_vma(eb, ev); 1915 if (err) 1916 break; 1917 } 1918 1919 if (err == -EDEADLK) 1920 goto err; 1921 else if (err) 1922 goto slow; 1923 } 1924 1925 if (!err) 1926 err = eb_parse(eb); 1927 1928 err: 1929 if (err == -EDEADLK) { 1930 eb_release_vmas(eb, false); 1931 err = i915_gem_ww_ctx_backoff(&eb->ww); 1932 if (!err) 1933 goto retry; 1934 } 1935 1936 return err; 1937 1938 slow: 1939 err = eb_relocate_parse_slow(eb, rq); 1940 if (err) 1941 /* 1942 * If the user expects the execobject.offset and 1943 * reloc.presumed_offset to be an exact match, 1944 * as for using NO_RELOC, then we cannot update 1945 * the execobject.offset until we have completed 1946 * relocation. 1947 */ 1948 eb->args->flags &= ~__EXEC_HAS_RELOC; 1949 1950 return err; 1951 } 1952 1953 static int eb_move_to_gpu(struct i915_execbuffer *eb) 1954 { 1955 const unsigned int count = eb->buffer_count; 1956 unsigned int i = count; 1957 int err = 0; 1958 1959 while (i--) { 1960 struct eb_vma *ev = &eb->vma[i]; 1961 struct i915_vma *vma = ev->vma; 1962 unsigned int flags = ev->flags; 1963 struct drm_i915_gem_object *obj = vma->obj; 1964 1965 assert_vma_held(vma); 1966 1967 if (flags & EXEC_OBJECT_CAPTURE) { 1968 struct i915_capture_list *capture; 1969 1970 capture = kmalloc(sizeof(*capture), GFP_KERNEL); 1971 if (capture) { 1972 capture->next = eb->request->capture_list; 1973 capture->vma = vma; 1974 eb->request->capture_list = capture; 1975 } 1976 } 1977 1978 /* 1979 * If the GPU is not _reading_ through the CPU cache, we need 1980 * to make sure that any writes (both previous GPU writes from 1981 * before a change in snooping levels and normal CPU writes) 1982 * caught in that cache are flushed to main memory. 1983 * 1984 * We want to say 1985 * obj->cache_dirty && 1986 * !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ) 1987 * but gcc's optimiser doesn't handle that as well and emits 1988 * two jumps instead of one. Maybe one day... 1989 */ 1990 if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) { 1991 if (i915_gem_clflush_object(obj, 0)) 1992 flags &= ~EXEC_OBJECT_ASYNC; 1993 } 1994 1995 if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) { 1996 err = i915_request_await_object 1997 (eb->request, obj, flags & EXEC_OBJECT_WRITE); 1998 } 1999 2000 if (err == 0) 2001 err = i915_vma_move_to_active(vma, eb->request, 2002 flags | __EXEC_OBJECT_NO_RESERVE); 2003 } 2004 2005 #ifdef CONFIG_MMU_NOTIFIER 2006 if (!err && (eb->args->flags & __EXEC_USERPTR_USED)) { 2007 read_lock(&eb->i915->mm.notifier_lock); 2008 2009 /* 2010 * count is always at least 1, otherwise __EXEC_USERPTR_USED 2011 * could not have been set 2012 */ 2013 for (i = 0; i < count; i++) { 2014 struct eb_vma *ev = &eb->vma[i]; 2015 struct drm_i915_gem_object *obj = ev->vma->obj; 2016 2017 if (!i915_gem_object_is_userptr(obj)) 2018 continue; 2019 2020 err = i915_gem_object_userptr_submit_done(obj); 2021 if (err) 2022 break; 2023 } 2024 2025 read_unlock(&eb->i915->mm.notifier_lock); 2026 } 2027 #endif 2028 2029 if (unlikely(err)) 2030 goto err_skip; 2031 2032 /* Unconditionally flush any chipset caches (for streaming writes). */ 2033 intel_gt_chipset_flush(eb->engine->gt); 2034 return 0; 2035 2036 err_skip: 2037 i915_request_set_error_once(eb->request, err); 2038 return err; 2039 } 2040 2041 static int i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec) 2042 { 2043 if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS) 2044 return -EINVAL; 2045 2046 /* Kernel clipping was a DRI1 misfeature */ 2047 if (!(exec->flags & (I915_EXEC_FENCE_ARRAY | 2048 I915_EXEC_USE_EXTENSIONS))) { 2049 if (exec->num_cliprects || exec->cliprects_ptr) 2050 return -EINVAL; 2051 } 2052 2053 if (exec->DR4 == 0xffffffff) { 2054 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n"); 2055 exec->DR4 = 0; 2056 } 2057 if (exec->DR1 || exec->DR4) 2058 return -EINVAL; 2059 2060 if ((exec->batch_start_offset | exec->batch_len) & 0x7) 2061 return -EINVAL; 2062 2063 return 0; 2064 } 2065 2066 static int i915_reset_gen7_sol_offsets(struct i915_request *rq) 2067 { 2068 u32 *cs; 2069 int i; 2070 2071 if (GRAPHICS_VER(rq->engine->i915) != 7 || rq->engine->id != RCS0) { 2072 drm_dbg(&rq->engine->i915->drm, "sol reset is gen7/rcs only\n"); 2073 return -EINVAL; 2074 } 2075 2076 cs = intel_ring_begin(rq, 4 * 2 + 2); 2077 if (IS_ERR(cs)) 2078 return PTR_ERR(cs); 2079 2080 *cs++ = MI_LOAD_REGISTER_IMM(4); 2081 for (i = 0; i < 4; i++) { 2082 *cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i)); 2083 *cs++ = 0; 2084 } 2085 *cs++ = MI_NOOP; 2086 intel_ring_advance(rq, cs); 2087 2088 return 0; 2089 } 2090 2091 static struct i915_vma * 2092 shadow_batch_pin(struct i915_execbuffer *eb, 2093 struct drm_i915_gem_object *obj, 2094 struct i915_address_space *vm, 2095 unsigned int flags) 2096 { 2097 struct i915_vma *vma; 2098 int err; 2099 2100 vma = i915_vma_instance(obj, vm, NULL); 2101 if (IS_ERR(vma)) 2102 return vma; 2103 2104 err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, flags); 2105 if (err) 2106 return ERR_PTR(err); 2107 2108 return vma; 2109 } 2110 2111 static struct i915_vma *eb_dispatch_secure(struct i915_execbuffer *eb, struct i915_vma *vma) 2112 { 2113 /* 2114 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure 2115 * batch" bit. Hence we need to pin secure batches into the global gtt. 2116 * hsw should have this fixed, but bdw mucks it up again. */ 2117 if (eb->batch_flags & I915_DISPATCH_SECURE) 2118 return i915_gem_object_ggtt_pin_ww(vma->obj, &eb->ww, NULL, 0, 0, 0); 2119 2120 return NULL; 2121 } 2122 2123 static int eb_parse(struct i915_execbuffer *eb) 2124 { 2125 struct drm_i915_private *i915 = eb->i915; 2126 struct intel_gt_buffer_pool_node *pool = eb->batch_pool; 2127 struct i915_vma *shadow, *trampoline, *batch; 2128 unsigned long len; 2129 int err; 2130 2131 if (!eb_use_cmdparser(eb)) { 2132 batch = eb_dispatch_secure(eb, eb->batch->vma); 2133 if (IS_ERR(batch)) 2134 return PTR_ERR(batch); 2135 2136 goto secure_batch; 2137 } 2138 2139 len = eb->batch_len; 2140 if (!CMDPARSER_USES_GGTT(eb->i915)) { 2141 /* 2142 * ppGTT backed shadow buffers must be mapped RO, to prevent 2143 * post-scan tampering 2144 */ 2145 if (!eb->context->vm->has_read_only) { 2146 drm_dbg(&i915->drm, 2147 "Cannot prevent post-scan tampering without RO capable vm\n"); 2148 return -EINVAL; 2149 } 2150 } else { 2151 len += I915_CMD_PARSER_TRAMPOLINE_SIZE; 2152 } 2153 if (unlikely(len < eb->batch_len)) /* last paranoid check of overflow */ 2154 return -EINVAL; 2155 2156 if (!pool) { 2157 pool = intel_gt_get_buffer_pool(eb->engine->gt, len, 2158 I915_MAP_WB); 2159 if (IS_ERR(pool)) 2160 return PTR_ERR(pool); 2161 eb->batch_pool = pool; 2162 } 2163 2164 err = i915_gem_object_lock(pool->obj, &eb->ww); 2165 if (err) 2166 goto err; 2167 2168 shadow = shadow_batch_pin(eb, pool->obj, eb->context->vm, PIN_USER); 2169 if (IS_ERR(shadow)) { 2170 err = PTR_ERR(shadow); 2171 goto err; 2172 } 2173 intel_gt_buffer_pool_mark_used(pool); 2174 i915_gem_object_set_readonly(shadow->obj); 2175 shadow->private = pool; 2176 2177 trampoline = NULL; 2178 if (CMDPARSER_USES_GGTT(eb->i915)) { 2179 trampoline = shadow; 2180 2181 shadow = shadow_batch_pin(eb, pool->obj, 2182 &eb->engine->gt->ggtt->vm, 2183 PIN_GLOBAL); 2184 if (IS_ERR(shadow)) { 2185 err = PTR_ERR(shadow); 2186 shadow = trampoline; 2187 goto err_shadow; 2188 } 2189 shadow->private = pool; 2190 2191 eb->batch_flags |= I915_DISPATCH_SECURE; 2192 } 2193 2194 batch = eb_dispatch_secure(eb, shadow); 2195 if (IS_ERR(batch)) { 2196 err = PTR_ERR(batch); 2197 goto err_trampoline; 2198 } 2199 2200 err = dma_resv_reserve_shared(shadow->resv, 1); 2201 if (err) 2202 goto err_trampoline; 2203 2204 err = intel_engine_cmd_parser(eb->engine, 2205 eb->batch->vma, 2206 eb->batch_start_offset, 2207 eb->batch_len, 2208 shadow, trampoline); 2209 if (err) 2210 goto err_unpin_batch; 2211 2212 eb->batch = &eb->vma[eb->buffer_count++]; 2213 eb->batch->vma = i915_vma_get(shadow); 2214 eb->batch->flags = __EXEC_OBJECT_HAS_PIN; 2215 2216 eb->trampoline = trampoline; 2217 eb->batch_start_offset = 0; 2218 2219 secure_batch: 2220 if (batch) { 2221 eb->batch = &eb->vma[eb->buffer_count++]; 2222 eb->batch->flags = __EXEC_OBJECT_HAS_PIN; 2223 eb->batch->vma = i915_vma_get(batch); 2224 } 2225 return 0; 2226 2227 err_unpin_batch: 2228 if (batch) 2229 i915_vma_unpin(batch); 2230 err_trampoline: 2231 if (trampoline) 2232 i915_vma_unpin(trampoline); 2233 err_shadow: 2234 i915_vma_unpin(shadow); 2235 err: 2236 return err; 2237 } 2238 2239 static int eb_submit(struct i915_execbuffer *eb, struct i915_vma *batch) 2240 { 2241 int err; 2242 2243 if (intel_context_nopreempt(eb->context)) 2244 __set_bit(I915_FENCE_FLAG_NOPREEMPT, &eb->request->fence.flags); 2245 2246 err = eb_move_to_gpu(eb); 2247 if (err) 2248 return err; 2249 2250 if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) { 2251 err = i915_reset_gen7_sol_offsets(eb->request); 2252 if (err) 2253 return err; 2254 } 2255 2256 /* 2257 * After we completed waiting for other engines (using HW semaphores) 2258 * then we can signal that this request/batch is ready to run. This 2259 * allows us to determine if the batch is still waiting on the GPU 2260 * or actually running by checking the breadcrumb. 2261 */ 2262 if (eb->engine->emit_init_breadcrumb) { 2263 err = eb->engine->emit_init_breadcrumb(eb->request); 2264 if (err) 2265 return err; 2266 } 2267 2268 err = eb->engine->emit_bb_start(eb->request, 2269 batch->node.start + 2270 eb->batch_start_offset, 2271 eb->batch_len, 2272 eb->batch_flags); 2273 if (err) 2274 return err; 2275 2276 if (eb->trampoline) { 2277 GEM_BUG_ON(eb->batch_start_offset); 2278 err = eb->engine->emit_bb_start(eb->request, 2279 eb->trampoline->node.start + 2280 eb->batch_len, 2281 0, 0); 2282 if (err) 2283 return err; 2284 } 2285 2286 return 0; 2287 } 2288 2289 static int num_vcs_engines(const struct drm_i915_private *i915) 2290 { 2291 return hweight_long(VDBOX_MASK(&i915->gt)); 2292 } 2293 2294 /* 2295 * Find one BSD ring to dispatch the corresponding BSD command. 2296 * The engine index is returned. 2297 */ 2298 static unsigned int 2299 gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv, 2300 struct drm_file *file) 2301 { 2302 struct drm_i915_file_private *file_priv = file->driver_priv; 2303 2304 /* Check whether the file_priv has already selected one ring. */ 2305 if ((int)file_priv->bsd_engine < 0) 2306 file_priv->bsd_engine = 2307 get_random_int() % num_vcs_engines(dev_priv); 2308 2309 return file_priv->bsd_engine; 2310 } 2311 2312 static const enum intel_engine_id user_ring_map[] = { 2313 [I915_EXEC_DEFAULT] = RCS0, 2314 [I915_EXEC_RENDER] = RCS0, 2315 [I915_EXEC_BLT] = BCS0, 2316 [I915_EXEC_BSD] = VCS0, 2317 [I915_EXEC_VEBOX] = VECS0 2318 }; 2319 2320 static struct i915_request *eb_throttle(struct i915_execbuffer *eb, struct intel_context *ce) 2321 { 2322 struct intel_ring *ring = ce->ring; 2323 struct intel_timeline *tl = ce->timeline; 2324 struct i915_request *rq; 2325 2326 /* 2327 * Completely unscientific finger-in-the-air estimates for suitable 2328 * maximum user request size (to avoid blocking) and then backoff. 2329 */ 2330 if (intel_ring_update_space(ring) >= PAGE_SIZE) 2331 return NULL; 2332 2333 /* 2334 * Find a request that after waiting upon, there will be at least half 2335 * the ring available. The hysteresis allows us to compete for the 2336 * shared ring and should mean that we sleep less often prior to 2337 * claiming our resources, but not so long that the ring completely 2338 * drains before we can submit our next request. 2339 */ 2340 list_for_each_entry(rq, &tl->requests, link) { 2341 if (rq->ring != ring) 2342 continue; 2343 2344 if (__intel_ring_space(rq->postfix, 2345 ring->emit, ring->size) > ring->size / 2) 2346 break; 2347 } 2348 if (&rq->link == &tl->requests) 2349 return NULL; /* weird, we will check again later for real */ 2350 2351 return i915_request_get(rq); 2352 } 2353 2354 static struct i915_request *eb_pin_engine(struct i915_execbuffer *eb, bool throttle) 2355 { 2356 struct intel_context *ce = eb->context; 2357 struct intel_timeline *tl; 2358 struct i915_request *rq = NULL; 2359 int err; 2360 2361 GEM_BUG_ON(eb->args->flags & __EXEC_ENGINE_PINNED); 2362 2363 if (unlikely(intel_context_is_banned(ce))) 2364 return ERR_PTR(-EIO); 2365 2366 /* 2367 * Pinning the contexts may generate requests in order to acquire 2368 * GGTT space, so do this first before we reserve a seqno for 2369 * ourselves. 2370 */ 2371 err = intel_context_pin_ww(ce, &eb->ww); 2372 if (err) 2373 return ERR_PTR(err); 2374 2375 /* 2376 * Take a local wakeref for preparing to dispatch the execbuf as 2377 * we expect to access the hardware fairly frequently in the 2378 * process, and require the engine to be kept awake between accesses. 2379 * Upon dispatch, we acquire another prolonged wakeref that we hold 2380 * until the timeline is idle, which in turn releases the wakeref 2381 * taken on the engine, and the parent device. 2382 */ 2383 tl = intel_context_timeline_lock(ce); 2384 if (IS_ERR(tl)) { 2385 intel_context_unpin(ce); 2386 return ERR_CAST(tl); 2387 } 2388 2389 intel_context_enter(ce); 2390 if (throttle) 2391 rq = eb_throttle(eb, ce); 2392 intel_context_timeline_unlock(tl); 2393 2394 eb->args->flags |= __EXEC_ENGINE_PINNED; 2395 return rq; 2396 } 2397 2398 static void eb_unpin_engine(struct i915_execbuffer *eb) 2399 { 2400 struct intel_context *ce = eb->context; 2401 struct intel_timeline *tl = ce->timeline; 2402 2403 if (!(eb->args->flags & __EXEC_ENGINE_PINNED)) 2404 return; 2405 2406 eb->args->flags &= ~__EXEC_ENGINE_PINNED; 2407 2408 mutex_lock(&tl->mutex); 2409 intel_context_exit(ce); 2410 mutex_unlock(&tl->mutex); 2411 2412 intel_context_unpin(ce); 2413 } 2414 2415 static unsigned int 2416 eb_select_legacy_ring(struct i915_execbuffer *eb) 2417 { 2418 struct drm_i915_private *i915 = eb->i915; 2419 struct drm_i915_gem_execbuffer2 *args = eb->args; 2420 unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK; 2421 2422 if (user_ring_id != I915_EXEC_BSD && 2423 (args->flags & I915_EXEC_BSD_MASK)) { 2424 drm_dbg(&i915->drm, 2425 "execbuf with non bsd ring but with invalid " 2426 "bsd dispatch flags: %d\n", (int)(args->flags)); 2427 return -1; 2428 } 2429 2430 if (user_ring_id == I915_EXEC_BSD && num_vcs_engines(i915) > 1) { 2431 unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK; 2432 2433 if (bsd_idx == I915_EXEC_BSD_DEFAULT) { 2434 bsd_idx = gen8_dispatch_bsd_engine(i915, eb->file); 2435 } else if (bsd_idx >= I915_EXEC_BSD_RING1 && 2436 bsd_idx <= I915_EXEC_BSD_RING2) { 2437 bsd_idx >>= I915_EXEC_BSD_SHIFT; 2438 bsd_idx--; 2439 } else { 2440 drm_dbg(&i915->drm, 2441 "execbuf with unknown bsd ring: %u\n", 2442 bsd_idx); 2443 return -1; 2444 } 2445 2446 return _VCS(bsd_idx); 2447 } 2448 2449 if (user_ring_id >= ARRAY_SIZE(user_ring_map)) { 2450 drm_dbg(&i915->drm, "execbuf with unknown ring: %u\n", 2451 user_ring_id); 2452 return -1; 2453 } 2454 2455 return user_ring_map[user_ring_id]; 2456 } 2457 2458 static int 2459 eb_select_engine(struct i915_execbuffer *eb) 2460 { 2461 struct intel_context *ce; 2462 unsigned int idx; 2463 int err; 2464 2465 if (i915_gem_context_user_engines(eb->gem_context)) 2466 idx = eb->args->flags & I915_EXEC_RING_MASK; 2467 else 2468 idx = eb_select_legacy_ring(eb); 2469 2470 ce = i915_gem_context_get_engine(eb->gem_context, idx); 2471 if (IS_ERR(ce)) 2472 return PTR_ERR(ce); 2473 2474 intel_gt_pm_get(ce->engine->gt); 2475 2476 if (!test_bit(CONTEXT_ALLOC_BIT, &ce->flags)) { 2477 err = intel_context_alloc_state(ce); 2478 if (err) 2479 goto err; 2480 } 2481 2482 /* 2483 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report 2484 * EIO if the GPU is already wedged. 2485 */ 2486 err = intel_gt_terminally_wedged(ce->engine->gt); 2487 if (err) 2488 goto err; 2489 2490 eb->context = ce; 2491 eb->engine = ce->engine; 2492 2493 /* 2494 * Make sure engine pool stays alive even if we call intel_context_put 2495 * during ww handling. The pool is destroyed when last pm reference 2496 * is dropped, which breaks our -EDEADLK handling. 2497 */ 2498 return err; 2499 2500 err: 2501 intel_gt_pm_put(ce->engine->gt); 2502 intel_context_put(ce); 2503 return err; 2504 } 2505 2506 static void 2507 eb_put_engine(struct i915_execbuffer *eb) 2508 { 2509 intel_gt_pm_put(eb->engine->gt); 2510 intel_context_put(eb->context); 2511 } 2512 2513 static void 2514 __free_fence_array(struct eb_fence *fences, unsigned int n) 2515 { 2516 while (n--) { 2517 drm_syncobj_put(ptr_mask_bits(fences[n].syncobj, 2)); 2518 dma_fence_put(fences[n].dma_fence); 2519 dma_fence_chain_free(fences[n].chain_fence); 2520 } 2521 kvfree(fences); 2522 } 2523 2524 static int 2525 add_timeline_fence_array(struct i915_execbuffer *eb, 2526 const struct drm_i915_gem_execbuffer_ext_timeline_fences *timeline_fences) 2527 { 2528 struct drm_i915_gem_exec_fence __user *user_fences; 2529 u64 __user *user_values; 2530 struct eb_fence *f; 2531 u64 nfences; 2532 int err = 0; 2533 2534 nfences = timeline_fences->fence_count; 2535 if (!nfences) 2536 return 0; 2537 2538 /* Check multiplication overflow for access_ok() and kvmalloc_array() */ 2539 BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long)); 2540 if (nfences > min_t(unsigned long, 2541 ULONG_MAX / sizeof(*user_fences), 2542 SIZE_MAX / sizeof(*f)) - eb->num_fences) 2543 return -EINVAL; 2544 2545 user_fences = u64_to_user_ptr(timeline_fences->handles_ptr); 2546 if (!access_ok(user_fences, nfences * sizeof(*user_fences))) 2547 return -EFAULT; 2548 2549 user_values = u64_to_user_ptr(timeline_fences->values_ptr); 2550 if (!access_ok(user_values, nfences * sizeof(*user_values))) 2551 return -EFAULT; 2552 2553 #ifdef __linux__ 2554 f = krealloc(eb->fences, 2555 (eb->num_fences + nfences) * sizeof(*f), 2556 __GFP_NOWARN | GFP_KERNEL); 2557 if (!f) 2558 return -ENOMEM; 2559 #else 2560 f = kmalloc((eb->num_fences + nfences) * sizeof(*f), 2561 __GFP_NOWARN | GFP_KERNEL); 2562 if (!f) 2563 return -ENOMEM; 2564 memcpy(f, eb->fences, eb->num_fences * sizeof(*f)); 2565 kfree(eb->fences); 2566 #endif 2567 2568 eb->fences = f; 2569 f += eb->num_fences; 2570 2571 #ifdef notyet 2572 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) & 2573 ~__I915_EXEC_FENCE_UNKNOWN_FLAGS); 2574 #endif 2575 2576 while (nfences--) { 2577 struct drm_i915_gem_exec_fence user_fence; 2578 struct drm_syncobj *syncobj; 2579 struct dma_fence *fence = NULL; 2580 u64 point; 2581 2582 if (__copy_from_user(&user_fence, 2583 user_fences++, 2584 sizeof(user_fence))) 2585 return -EFAULT; 2586 2587 if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) 2588 return -EINVAL; 2589 2590 if (__get_user(point, user_values++)) 2591 return -EFAULT; 2592 2593 syncobj = drm_syncobj_find(eb->file, user_fence.handle); 2594 if (!syncobj) { 2595 DRM_DEBUG("Invalid syncobj handle provided\n"); 2596 return -ENOENT; 2597 } 2598 2599 fence = drm_syncobj_fence_get(syncobj); 2600 2601 if (!fence && user_fence.flags && 2602 !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) { 2603 DRM_DEBUG("Syncobj handle has no fence\n"); 2604 drm_syncobj_put(syncobj); 2605 return -EINVAL; 2606 } 2607 2608 if (fence) 2609 err = dma_fence_chain_find_seqno(&fence, point); 2610 2611 if (err && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) { 2612 DRM_DEBUG("Syncobj handle missing requested point %llu\n", point); 2613 dma_fence_put(fence); 2614 drm_syncobj_put(syncobj); 2615 return err; 2616 } 2617 2618 /* 2619 * A point might have been signaled already and 2620 * garbage collected from the timeline. In this case 2621 * just ignore the point and carry on. 2622 */ 2623 if (!fence && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) { 2624 drm_syncobj_put(syncobj); 2625 continue; 2626 } 2627 2628 /* 2629 * For timeline syncobjs we need to preallocate chains for 2630 * later signaling. 2631 */ 2632 if (point != 0 && user_fence.flags & I915_EXEC_FENCE_SIGNAL) { 2633 /* 2634 * Waiting and signaling the same point (when point != 2635 * 0) would break the timeline. 2636 */ 2637 if (user_fence.flags & I915_EXEC_FENCE_WAIT) { 2638 DRM_DEBUG("Trying to wait & signal the same timeline point.\n"); 2639 dma_fence_put(fence); 2640 drm_syncobj_put(syncobj); 2641 return -EINVAL; 2642 } 2643 2644 f->chain_fence = dma_fence_chain_alloc(); 2645 if (!f->chain_fence) { 2646 drm_syncobj_put(syncobj); 2647 dma_fence_put(fence); 2648 return -ENOMEM; 2649 } 2650 } else { 2651 f->chain_fence = NULL; 2652 } 2653 2654 f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2); 2655 f->dma_fence = fence; 2656 f->value = point; 2657 f++; 2658 eb->num_fences++; 2659 } 2660 2661 return 0; 2662 } 2663 2664 static int add_fence_array(struct i915_execbuffer *eb) 2665 { 2666 struct drm_i915_gem_execbuffer2 *args = eb->args; 2667 struct drm_i915_gem_exec_fence __user *user; 2668 unsigned long num_fences = args->num_cliprects; 2669 struct eb_fence *f; 2670 2671 if (!(args->flags & I915_EXEC_FENCE_ARRAY)) 2672 return 0; 2673 2674 if (!num_fences) 2675 return 0; 2676 2677 /* Check multiplication overflow for access_ok() and kvmalloc_array() */ 2678 BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long)); 2679 if (num_fences > min_t(unsigned long, 2680 ULONG_MAX / sizeof(*user), 2681 SIZE_MAX / sizeof(*f) - eb->num_fences)) 2682 return -EINVAL; 2683 2684 user = u64_to_user_ptr(args->cliprects_ptr); 2685 if (!access_ok(user, num_fences * sizeof(*user))) 2686 return -EFAULT; 2687 2688 #ifdef __linux__ 2689 f = krealloc(eb->fences, 2690 (eb->num_fences + num_fences) * sizeof(*f), 2691 __GFP_NOWARN | GFP_KERNEL); 2692 if (!f) 2693 return -ENOMEM; 2694 #else 2695 f = kmalloc((eb->num_fences + num_fences) * sizeof(*f), 2696 __GFP_NOWARN | GFP_KERNEL); 2697 if (!f) 2698 return -ENOMEM; 2699 memcpy(f, eb->fences, eb->num_fences * sizeof(*f)); 2700 kfree(eb->fences); 2701 #endif 2702 2703 eb->fences = f; 2704 f += eb->num_fences; 2705 while (num_fences--) { 2706 struct drm_i915_gem_exec_fence user_fence; 2707 struct drm_syncobj *syncobj; 2708 struct dma_fence *fence = NULL; 2709 2710 if (__copy_from_user(&user_fence, user++, sizeof(user_fence))) 2711 return -EFAULT; 2712 2713 if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) 2714 return -EINVAL; 2715 2716 syncobj = drm_syncobj_find(eb->file, user_fence.handle); 2717 if (!syncobj) { 2718 DRM_DEBUG("Invalid syncobj handle provided\n"); 2719 return -ENOENT; 2720 } 2721 2722 if (user_fence.flags & I915_EXEC_FENCE_WAIT) { 2723 fence = drm_syncobj_fence_get(syncobj); 2724 if (!fence) { 2725 DRM_DEBUG("Syncobj handle has no fence\n"); 2726 drm_syncobj_put(syncobj); 2727 return -EINVAL; 2728 } 2729 } 2730 2731 #ifdef notyet 2732 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) & 2733 ~__I915_EXEC_FENCE_UNKNOWN_FLAGS); 2734 #endif 2735 2736 f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2); 2737 f->dma_fence = fence; 2738 f->value = 0; 2739 f->chain_fence = NULL; 2740 f++; 2741 eb->num_fences++; 2742 } 2743 2744 return 0; 2745 } 2746 2747 static void put_fence_array(struct eb_fence *fences, int num_fences) 2748 { 2749 if (fences) 2750 __free_fence_array(fences, num_fences); 2751 } 2752 2753 static int 2754 await_fence_array(struct i915_execbuffer *eb) 2755 { 2756 unsigned int n; 2757 int err; 2758 2759 for (n = 0; n < eb->num_fences; n++) { 2760 struct drm_syncobj *syncobj; 2761 unsigned int flags; 2762 2763 syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2); 2764 2765 if (!eb->fences[n].dma_fence) 2766 continue; 2767 2768 err = i915_request_await_dma_fence(eb->request, 2769 eb->fences[n].dma_fence); 2770 if (err < 0) 2771 return err; 2772 } 2773 2774 return 0; 2775 } 2776 2777 static void signal_fence_array(const struct i915_execbuffer *eb) 2778 { 2779 struct dma_fence * const fence = &eb->request->fence; 2780 unsigned int n; 2781 2782 for (n = 0; n < eb->num_fences; n++) { 2783 struct drm_syncobj *syncobj; 2784 unsigned int flags; 2785 2786 syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2); 2787 if (!(flags & I915_EXEC_FENCE_SIGNAL)) 2788 continue; 2789 2790 if (eb->fences[n].chain_fence) { 2791 drm_syncobj_add_point(syncobj, 2792 eb->fences[n].chain_fence, 2793 fence, 2794 eb->fences[n].value); 2795 /* 2796 * The chain's ownership is transferred to the 2797 * timeline. 2798 */ 2799 eb->fences[n].chain_fence = NULL; 2800 } else { 2801 drm_syncobj_replace_fence(syncobj, fence); 2802 } 2803 } 2804 } 2805 2806 static int 2807 parse_timeline_fences(struct i915_user_extension __user *ext, void *data) 2808 { 2809 struct i915_execbuffer *eb = data; 2810 struct drm_i915_gem_execbuffer_ext_timeline_fences timeline_fences; 2811 2812 if (copy_from_user(&timeline_fences, ext, sizeof(timeline_fences))) 2813 return -EFAULT; 2814 2815 return add_timeline_fence_array(eb, &timeline_fences); 2816 } 2817 2818 static void retire_requests(struct intel_timeline *tl, struct i915_request *end) 2819 { 2820 struct i915_request *rq, *rn; 2821 2822 list_for_each_entry_safe(rq, rn, &tl->requests, link) 2823 if (rq == end || !i915_request_retire(rq)) 2824 break; 2825 } 2826 2827 static int eb_request_add(struct i915_execbuffer *eb, int err) 2828 { 2829 struct i915_request *rq = eb->request; 2830 struct intel_timeline * const tl = i915_request_timeline(rq); 2831 struct i915_sched_attr attr = {}; 2832 struct i915_request *prev; 2833 2834 lockdep_assert_held(&tl->mutex); 2835 lockdep_unpin_lock(&tl->mutex, rq->cookie); 2836 2837 trace_i915_request_add(rq); 2838 2839 prev = __i915_request_commit(rq); 2840 2841 /* Check that the context wasn't destroyed before submission */ 2842 if (likely(!intel_context_is_closed(eb->context))) { 2843 attr = eb->gem_context->sched; 2844 } else { 2845 /* Serialise with context_close via the add_to_timeline */ 2846 i915_request_set_error_once(rq, -ENOENT); 2847 __i915_request_skip(rq); 2848 err = -ENOENT; /* override any transient errors */ 2849 } 2850 2851 __i915_request_queue(rq, &attr); 2852 2853 /* Try to clean up the client's timeline after submitting the request */ 2854 if (prev) 2855 retire_requests(tl, prev); 2856 2857 mutex_unlock(&tl->mutex); 2858 2859 return err; 2860 } 2861 2862 static const i915_user_extension_fn execbuf_extensions[] = { 2863 [DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES] = parse_timeline_fences, 2864 }; 2865 2866 static int 2867 parse_execbuf2_extensions(struct drm_i915_gem_execbuffer2 *args, 2868 struct i915_execbuffer *eb) 2869 { 2870 if (!(args->flags & I915_EXEC_USE_EXTENSIONS)) 2871 return 0; 2872 2873 /* The execbuf2 extension mechanism reuses cliprects_ptr. So we cannot 2874 * have another flag also using it at the same time. 2875 */ 2876 if (eb->args->flags & I915_EXEC_FENCE_ARRAY) 2877 return -EINVAL; 2878 2879 if (args->num_cliprects != 0) 2880 return -EINVAL; 2881 2882 return i915_user_extensions(u64_to_user_ptr(args->cliprects_ptr), 2883 execbuf_extensions, 2884 ARRAY_SIZE(execbuf_extensions), 2885 eb); 2886 } 2887 2888 static int 2889 i915_gem_do_execbuffer(struct drm_device *dev, 2890 struct drm_file *file, 2891 struct drm_i915_gem_execbuffer2 *args, 2892 struct drm_i915_gem_exec_object2 *exec) 2893 { 2894 struct drm_i915_private *i915 = to_i915(dev); 2895 struct i915_execbuffer eb; 2896 struct dma_fence *in_fence = NULL; 2897 struct sync_file *out_fence = NULL; 2898 struct i915_vma *batch; 2899 int out_fence_fd = -1; 2900 int err; 2901 2902 BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS); 2903 BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS & 2904 ~__EXEC_OBJECT_UNKNOWN_FLAGS); 2905 2906 eb.i915 = i915; 2907 eb.file = file; 2908 eb.args = args; 2909 if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC)) 2910 args->flags |= __EXEC_HAS_RELOC; 2911 2912 eb.exec = exec; 2913 eb.vma = (struct eb_vma *)(exec + args->buffer_count + 1); 2914 eb.vma[0].vma = NULL; 2915 eb.batch_pool = NULL; 2916 2917 eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS; 2918 reloc_cache_init(&eb.reloc_cache, eb.i915); 2919 2920 eb.buffer_count = args->buffer_count; 2921 eb.batch_start_offset = args->batch_start_offset; 2922 eb.batch_len = args->batch_len; 2923 eb.trampoline = NULL; 2924 2925 eb.fences = NULL; 2926 eb.num_fences = 0; 2927 2928 eb.batch_flags = 0; 2929 if (args->flags & I915_EXEC_SECURE) { 2930 if (GRAPHICS_VER(i915) >= 11) 2931 return -ENODEV; 2932 2933 /* Return -EPERM to trigger fallback code on old binaries. */ 2934 if (!HAS_SECURE_BATCHES(i915)) 2935 return -EPERM; 2936 2937 if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN)) 2938 return -EPERM; 2939 2940 eb.batch_flags |= I915_DISPATCH_SECURE; 2941 } 2942 if (args->flags & I915_EXEC_IS_PINNED) 2943 eb.batch_flags |= I915_DISPATCH_PINNED; 2944 2945 err = parse_execbuf2_extensions(args, &eb); 2946 if (err) 2947 goto err_ext; 2948 2949 err = add_fence_array(&eb); 2950 if (err) 2951 goto err_ext; 2952 2953 #define IN_FENCES (I915_EXEC_FENCE_IN | I915_EXEC_FENCE_SUBMIT) 2954 if (args->flags & IN_FENCES) { 2955 if ((args->flags & IN_FENCES) == IN_FENCES) 2956 return -EINVAL; 2957 2958 in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2)); 2959 if (!in_fence) { 2960 err = -EINVAL; 2961 goto err_ext; 2962 } 2963 } 2964 #undef IN_FENCES 2965 2966 if (args->flags & I915_EXEC_FENCE_OUT) { 2967 out_fence_fd = get_unused_fd_flags(O_CLOEXEC); 2968 if (out_fence_fd < 0) { 2969 err = out_fence_fd; 2970 goto err_in_fence; 2971 } 2972 } 2973 2974 err = eb_create(&eb); 2975 if (err) 2976 goto err_out_fence; 2977 2978 GEM_BUG_ON(!eb.lut_size); 2979 2980 err = eb_select_context(&eb); 2981 if (unlikely(err)) 2982 goto err_destroy; 2983 2984 err = eb_select_engine(&eb); 2985 if (unlikely(err)) 2986 goto err_context; 2987 2988 err = eb_lookup_vmas(&eb); 2989 if (err) { 2990 eb_release_vmas(&eb, true); 2991 goto err_engine; 2992 } 2993 2994 i915_gem_ww_ctx_init(&eb.ww, true); 2995 2996 err = eb_relocate_parse(&eb); 2997 if (err) { 2998 /* 2999 * If the user expects the execobject.offset and 3000 * reloc.presumed_offset to be an exact match, 3001 * as for using NO_RELOC, then we cannot update 3002 * the execobject.offset until we have completed 3003 * relocation. 3004 */ 3005 args->flags &= ~__EXEC_HAS_RELOC; 3006 goto err_vma; 3007 } 3008 3009 ww_acquire_done(&eb.ww.ctx); 3010 3011 batch = eb.batch->vma; 3012 3013 /* Allocate a request for this batch buffer nice and early. */ 3014 eb.request = i915_request_create(eb.context); 3015 if (IS_ERR(eb.request)) { 3016 err = PTR_ERR(eb.request); 3017 goto err_vma; 3018 } 3019 3020 if (unlikely(eb.gem_context->syncobj)) { 3021 struct dma_fence *fence; 3022 3023 fence = drm_syncobj_fence_get(eb.gem_context->syncobj); 3024 err = i915_request_await_dma_fence(eb.request, fence); 3025 dma_fence_put(fence); 3026 if (err) 3027 goto err_ext; 3028 } 3029 3030 if (in_fence) { 3031 if (args->flags & I915_EXEC_FENCE_SUBMIT) 3032 err = i915_request_await_execution(eb.request, 3033 in_fence); 3034 else 3035 err = i915_request_await_dma_fence(eb.request, 3036 in_fence); 3037 if (err < 0) 3038 goto err_request; 3039 } 3040 3041 if (eb.fences) { 3042 err = await_fence_array(&eb); 3043 if (err) 3044 goto err_request; 3045 } 3046 3047 if (out_fence_fd != -1) { 3048 out_fence = sync_file_create(&eb.request->fence); 3049 if (!out_fence) { 3050 err = -ENOMEM; 3051 goto err_request; 3052 } 3053 } 3054 3055 /* 3056 * Whilst this request exists, batch_obj will be on the 3057 * active_list, and so will hold the active reference. Only when this 3058 * request is retired will the the batch_obj be moved onto the 3059 * inactive_list and lose its active reference. Hence we do not need 3060 * to explicitly hold another reference here. 3061 */ 3062 eb.request->batch = batch; 3063 if (eb.batch_pool) 3064 intel_gt_buffer_pool_mark_active(eb.batch_pool, eb.request); 3065 3066 trace_i915_request_queue(eb.request, eb.batch_flags); 3067 err = eb_submit(&eb, batch); 3068 3069 err_request: 3070 i915_request_get(eb.request); 3071 err = eb_request_add(&eb, err); 3072 3073 if (eb.fences) 3074 signal_fence_array(&eb); 3075 3076 if (out_fence) { 3077 if (err == 0) { 3078 fd_install(out_fence_fd, out_fence->file); 3079 args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */ 3080 args->rsvd2 |= (u64)out_fence_fd << 32; 3081 out_fence_fd = -1; 3082 } else { 3083 fput(out_fence->file); 3084 } 3085 } 3086 3087 if (unlikely(eb.gem_context->syncobj)) { 3088 drm_syncobj_replace_fence(eb.gem_context->syncobj, 3089 &eb.request->fence); 3090 } 3091 3092 i915_request_put(eb.request); 3093 3094 err_vma: 3095 eb_release_vmas(&eb, true); 3096 if (eb.trampoline) 3097 i915_vma_unpin(eb.trampoline); 3098 WARN_ON(err == -EDEADLK); 3099 i915_gem_ww_ctx_fini(&eb.ww); 3100 3101 if (eb.batch_pool) 3102 intel_gt_buffer_pool_put(eb.batch_pool); 3103 err_engine: 3104 eb_put_engine(&eb); 3105 err_context: 3106 i915_gem_context_put(eb.gem_context); 3107 err_destroy: 3108 eb_destroy(&eb); 3109 err_out_fence: 3110 if (out_fence_fd != -1) 3111 put_unused_fd(out_fence_fd); 3112 err_in_fence: 3113 dma_fence_put(in_fence); 3114 err_ext: 3115 put_fence_array(eb.fences, eb.num_fences); 3116 return err; 3117 } 3118 3119 static size_t eb_element_size(void) 3120 { 3121 return sizeof(struct drm_i915_gem_exec_object2) + sizeof(struct eb_vma); 3122 } 3123 3124 static bool check_buffer_count(size_t count) 3125 { 3126 const size_t sz = eb_element_size(); 3127 3128 /* 3129 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup 3130 * array size (see eb_create()). Otherwise, we can accept an array as 3131 * large as can be addressed (though use large arrays at your peril)! 3132 */ 3133 3134 return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1); 3135 } 3136 3137 int 3138 i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data, 3139 struct drm_file *file) 3140 { 3141 struct drm_i915_private *i915 = to_i915(dev); 3142 struct drm_i915_gem_execbuffer2 *args = data; 3143 struct drm_i915_gem_exec_object2 *exec2_list; 3144 const size_t count = args->buffer_count; 3145 int err; 3146 3147 if (!check_buffer_count(count)) { 3148 drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count); 3149 return -EINVAL; 3150 } 3151 3152 err = i915_gem_check_execbuffer(args); 3153 if (err) 3154 return err; 3155 3156 /* Allocate extra slots for use by the command parser */ 3157 exec2_list = kvmalloc_array(count + 2, eb_element_size(), 3158 __GFP_NOWARN | GFP_KERNEL); 3159 if (exec2_list == NULL) { 3160 drm_dbg(&i915->drm, "Failed to allocate exec list for %zd buffers\n", 3161 count); 3162 return -ENOMEM; 3163 } 3164 if (copy_from_user(exec2_list, 3165 u64_to_user_ptr(args->buffers_ptr), 3166 sizeof(*exec2_list) * count)) { 3167 drm_dbg(&i915->drm, "copy %zd exec entries failed\n", count); 3168 kvfree(exec2_list); 3169 return -EFAULT; 3170 } 3171 3172 err = i915_gem_do_execbuffer(dev, file, args, exec2_list); 3173 3174 /* 3175 * Now that we have begun execution of the batchbuffer, we ignore 3176 * any new error after this point. Also given that we have already 3177 * updated the associated relocations, we try to write out the current 3178 * object locations irrespective of any error. 3179 */ 3180 if (args->flags & __EXEC_HAS_RELOC) { 3181 struct drm_i915_gem_exec_object2 __user *user_exec_list = 3182 u64_to_user_ptr(args->buffers_ptr); 3183 unsigned int i; 3184 3185 /* Copy the new buffer offsets back to the user's exec list. */ 3186 /* 3187 * Note: count * sizeof(*user_exec_list) does not overflow, 3188 * because we checked 'count' in check_buffer_count(). 3189 * 3190 * And this range already got effectively checked earlier 3191 * when we did the "copy_from_user()" above. 3192 */ 3193 if (!user_write_access_begin(user_exec_list, 3194 count * sizeof(*user_exec_list))) 3195 goto end; 3196 3197 for (i = 0; i < args->buffer_count; i++) { 3198 if (!(exec2_list[i].offset & UPDATE)) 3199 continue; 3200 3201 exec2_list[i].offset = 3202 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK); 3203 unsafe_put_user(exec2_list[i].offset, 3204 &user_exec_list[i].offset, 3205 end_user); 3206 } 3207 end_user: 3208 user_write_access_end(); 3209 end:; 3210 } 3211 3212 args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS; 3213 kvfree(exec2_list); 3214 return err; 3215 } 3216