1 /* 2 * Copyright © 2008 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Keith Packard <keithp@keithp.com> 25 * 26 */ 27 28 #include <linux/export.h> 29 #include <linux/i2c.h> 30 #include <linux/notifier.h> 31 #include <linux/reboot.h> 32 #include <linux/slab.h> 33 #include <linux/types.h> 34 35 #include <asm/byteorder.h> 36 37 #include <drm/drm_atomic_helper.h> 38 #include <drm/drm_crtc.h> 39 #include <drm/drm_dp_helper.h> 40 #include <drm/drm_edid.h> 41 #include <drm/drm_probe_helper.h> 42 43 #include "i915_debugfs.h" 44 #include "i915_drv.h" 45 #include "i915_trace.h" 46 #include "intel_atomic.h" 47 #include "intel_audio.h" 48 #include "intel_connector.h" 49 #include "intel_ddi.h" 50 #include "intel_display_types.h" 51 #include "intel_dp.h" 52 #include "intel_dp_link_training.h" 53 #include "intel_dp_mst.h" 54 #include "intel_dpio_phy.h" 55 #include "intel_fifo_underrun.h" 56 #include "intel_hdcp.h" 57 #include "intel_hdmi.h" 58 #include "intel_hotplug.h" 59 #include "intel_lspcon.h" 60 #include "intel_lvds.h" 61 #include "intel_panel.h" 62 #include "intel_psr.h" 63 #include "intel_sideband.h" 64 #include "intel_tc.h" 65 #include "intel_vdsc.h" 66 67 #define DP_DPRX_ESI_LEN 14 68 69 /* DP DSC throughput values used for slice count calculations KPixels/s */ 70 #define DP_DSC_PEAK_PIXEL_RATE 2720000 71 #define DP_DSC_MAX_ENC_THROUGHPUT_0 340000 72 #define DP_DSC_MAX_ENC_THROUGHPUT_1 400000 73 74 /* DP DSC FEC Overhead factor = 1/(0.972261) */ 75 #define DP_DSC_FEC_OVERHEAD_FACTOR 972261 76 77 /* Compliance test status bits */ 78 #define INTEL_DP_RESOLUTION_SHIFT_MASK 0 79 #define INTEL_DP_RESOLUTION_PREFERRED (1 << INTEL_DP_RESOLUTION_SHIFT_MASK) 80 #define INTEL_DP_RESOLUTION_STANDARD (2 << INTEL_DP_RESOLUTION_SHIFT_MASK) 81 #define INTEL_DP_RESOLUTION_FAILSAFE (3 << INTEL_DP_RESOLUTION_SHIFT_MASK) 82 83 struct dp_link_dpll { 84 int clock; 85 struct dpll dpll; 86 }; 87 88 static const struct dp_link_dpll g4x_dpll[] = { 89 { 162000, 90 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } }, 91 { 270000, 92 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } } 93 }; 94 95 static const struct dp_link_dpll pch_dpll[] = { 96 { 162000, 97 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } }, 98 { 270000, 99 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } } 100 }; 101 102 static const struct dp_link_dpll vlv_dpll[] = { 103 { 162000, 104 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } }, 105 { 270000, 106 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } } 107 }; 108 109 /* 110 * CHV supports eDP 1.4 that have more link rates. 111 * Below only provides the fixed rate but exclude variable rate. 112 */ 113 static const struct dp_link_dpll chv_dpll[] = { 114 /* 115 * CHV requires to program fractional division for m2. 116 * m2 is stored in fixed point format using formula below 117 * (m2_int << 22) | m2_fraction 118 */ 119 { 162000, /* m2_int = 32, m2_fraction = 1677722 */ 120 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } }, 121 { 270000, /* m2_int = 27, m2_fraction = 0 */ 122 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }, 123 }; 124 125 /* Constants for DP DSC configurations */ 126 static const u8 valid_dsc_bpp[] = {6, 8, 10, 12, 15}; 127 128 /* With Single pipe configuration, HW is capable of supporting maximum 129 * of 4 slices per line. 130 */ 131 static const u8 valid_dsc_slicecount[] = {1, 2, 4}; 132 133 /** 134 * intel_dp_is_edp - is the given port attached to an eDP panel (either CPU or PCH) 135 * @intel_dp: DP struct 136 * 137 * If a CPU or PCH DP output is attached to an eDP panel, this function 138 * will return true, and false otherwise. 139 */ 140 bool intel_dp_is_edp(struct intel_dp *intel_dp) 141 { 142 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 143 144 return dig_port->base.type == INTEL_OUTPUT_EDP; 145 } 146 147 static void intel_dp_link_down(struct intel_encoder *encoder, 148 const struct intel_crtc_state *old_crtc_state); 149 static bool edp_panel_vdd_on(struct intel_dp *intel_dp); 150 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync); 151 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder, 152 const struct intel_crtc_state *crtc_state); 153 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv, 154 enum pipe pipe); 155 static void intel_dp_unset_edid(struct intel_dp *intel_dp); 156 157 /* update sink rates from dpcd */ 158 static void intel_dp_set_sink_rates(struct intel_dp *intel_dp) 159 { 160 static const int dp_rates[] = { 161 162000, 270000, 540000, 810000 162 }; 163 int i, max_rate; 164 165 if (drm_dp_has_quirk(&intel_dp->desc, 0, 166 DP_DPCD_QUIRK_CAN_DO_MAX_LINK_RATE_3_24_GBPS)) { 167 /* Needed, e.g., for Apple MBP 2017, 15 inch eDP Retina panel */ 168 static const int quirk_rates[] = { 162000, 270000, 324000 }; 169 170 memcpy(intel_dp->sink_rates, quirk_rates, sizeof(quirk_rates)); 171 intel_dp->num_sink_rates = ARRAY_SIZE(quirk_rates); 172 173 return; 174 } 175 176 max_rate = drm_dp_bw_code_to_link_rate(intel_dp->dpcd[DP_MAX_LINK_RATE]); 177 178 for (i = 0; i < ARRAY_SIZE(dp_rates); i++) { 179 if (dp_rates[i] > max_rate) 180 break; 181 intel_dp->sink_rates[i] = dp_rates[i]; 182 } 183 184 intel_dp->num_sink_rates = i; 185 } 186 187 /* Get length of rates array potentially limited by max_rate. */ 188 static int intel_dp_rate_limit_len(const int *rates, int len, int max_rate) 189 { 190 int i; 191 192 /* Limit results by potentially reduced max rate */ 193 for (i = 0; i < len; i++) { 194 if (rates[len - i - 1] <= max_rate) 195 return len - i; 196 } 197 198 return 0; 199 } 200 201 /* Get length of common rates array potentially limited by max_rate. */ 202 static int intel_dp_common_len_rate_limit(const struct intel_dp *intel_dp, 203 int max_rate) 204 { 205 return intel_dp_rate_limit_len(intel_dp->common_rates, 206 intel_dp->num_common_rates, max_rate); 207 } 208 209 /* Theoretical max between source and sink */ 210 static int intel_dp_max_common_rate(struct intel_dp *intel_dp) 211 { 212 return intel_dp->common_rates[intel_dp->num_common_rates - 1]; 213 } 214 215 /* Theoretical max between source and sink */ 216 static int intel_dp_max_common_lane_count(struct intel_dp *intel_dp) 217 { 218 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 219 int source_max = dig_port->max_lanes; 220 int sink_max = drm_dp_max_lane_count(intel_dp->dpcd); 221 int fia_max = intel_tc_port_fia_max_lane_count(dig_port); 222 223 return min3(source_max, sink_max, fia_max); 224 } 225 226 int intel_dp_max_lane_count(struct intel_dp *intel_dp) 227 { 228 return intel_dp->max_link_lane_count; 229 } 230 231 int 232 intel_dp_link_required(int pixel_clock, int bpp) 233 { 234 /* pixel_clock is in kHz, divide bpp by 8 for bit to Byte conversion */ 235 return DIV_ROUND_UP(pixel_clock * bpp, 8); 236 } 237 238 int 239 intel_dp_max_data_rate(int max_link_clock, int max_lanes) 240 { 241 /* max_link_clock is the link symbol clock (LS_Clk) in kHz and not the 242 * link rate that is generally expressed in Gbps. Since, 8 bits of data 243 * is transmitted every LS_Clk per lane, there is no need to account for 244 * the channel encoding that is done in the PHY layer here. 245 */ 246 247 return max_link_clock * max_lanes; 248 } 249 250 static int cnl_max_source_rate(struct intel_dp *intel_dp) 251 { 252 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 253 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); 254 enum port port = dig_port->base.port; 255 256 u32 voltage = intel_de_read(dev_priv, CNL_PORT_COMP_DW3) & VOLTAGE_INFO_MASK; 257 258 /* Low voltage SKUs are limited to max of 5.4G */ 259 if (voltage == VOLTAGE_INFO_0_85V) 260 return 540000; 261 262 /* For this SKU 8.1G is supported in all ports */ 263 if (IS_CNL_WITH_PORT_F(dev_priv)) 264 return 810000; 265 266 /* For other SKUs, max rate on ports A and D is 5.4G */ 267 if (port == PORT_A || port == PORT_D) 268 return 540000; 269 270 return 810000; 271 } 272 273 static int icl_max_source_rate(struct intel_dp *intel_dp) 274 { 275 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 276 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); 277 enum phy phy = intel_port_to_phy(dev_priv, dig_port->base.port); 278 279 if (intel_phy_is_combo(dev_priv, phy) && 280 !IS_ELKHARTLAKE(dev_priv) && 281 !intel_dp_is_edp(intel_dp)) 282 return 540000; 283 284 return 810000; 285 } 286 287 static void 288 intel_dp_set_source_rates(struct intel_dp *intel_dp) 289 { 290 /* The values must be in increasing order */ 291 static const int cnl_rates[] = { 292 162000, 216000, 270000, 324000, 432000, 540000, 648000, 810000 293 }; 294 static const int bxt_rates[] = { 295 162000, 216000, 243000, 270000, 324000, 432000, 540000 296 }; 297 static const int skl_rates[] = { 298 162000, 216000, 270000, 324000, 432000, 540000 299 }; 300 static const int hsw_rates[] = { 301 162000, 270000, 540000 302 }; 303 static const int g4x_rates[] = { 304 162000, 270000 305 }; 306 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 307 struct intel_encoder *encoder = &dig_port->base; 308 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); 309 const int *source_rates; 310 int size, max_rate = 0, vbt_max_rate; 311 312 /* This should only be done once */ 313 drm_WARN_ON(&dev_priv->drm, 314 intel_dp->source_rates || intel_dp->num_source_rates); 315 316 if (INTEL_GEN(dev_priv) >= 10) { 317 source_rates = cnl_rates; 318 size = ARRAY_SIZE(cnl_rates); 319 if (IS_GEN(dev_priv, 10)) 320 max_rate = cnl_max_source_rate(intel_dp); 321 else 322 max_rate = icl_max_source_rate(intel_dp); 323 } else if (IS_GEN9_LP(dev_priv)) { 324 source_rates = bxt_rates; 325 size = ARRAY_SIZE(bxt_rates); 326 } else if (IS_GEN9_BC(dev_priv)) { 327 source_rates = skl_rates; 328 size = ARRAY_SIZE(skl_rates); 329 } else if ((IS_HASWELL(dev_priv) && !IS_HSW_ULX(dev_priv)) || 330 IS_BROADWELL(dev_priv)) { 331 source_rates = hsw_rates; 332 size = ARRAY_SIZE(hsw_rates); 333 } else { 334 source_rates = g4x_rates; 335 size = ARRAY_SIZE(g4x_rates); 336 } 337 338 vbt_max_rate = intel_bios_dp_max_link_rate(encoder); 339 if (max_rate && vbt_max_rate) 340 max_rate = min(max_rate, vbt_max_rate); 341 else if (vbt_max_rate) 342 max_rate = vbt_max_rate; 343 344 if (max_rate) 345 size = intel_dp_rate_limit_len(source_rates, size, max_rate); 346 347 intel_dp->source_rates = source_rates; 348 intel_dp->num_source_rates = size; 349 } 350 351 static int intersect_rates(const int *source_rates, int source_len, 352 const int *sink_rates, int sink_len, 353 int *common_rates) 354 { 355 int i = 0, j = 0, k = 0; 356 357 while (i < source_len && j < sink_len) { 358 if (source_rates[i] == sink_rates[j]) { 359 if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES)) 360 return k; 361 common_rates[k] = source_rates[i]; 362 ++k; 363 ++i; 364 ++j; 365 } else if (source_rates[i] < sink_rates[j]) { 366 ++i; 367 } else { 368 ++j; 369 } 370 } 371 return k; 372 } 373 374 /* return index of rate in rates array, or -1 if not found */ 375 static int intel_dp_rate_index(const int *rates, int len, int rate) 376 { 377 int i; 378 379 for (i = 0; i < len; i++) 380 if (rate == rates[i]) 381 return i; 382 383 return -1; 384 } 385 386 static void intel_dp_set_common_rates(struct intel_dp *intel_dp) 387 { 388 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 389 390 drm_WARN_ON(&i915->drm, 391 !intel_dp->num_source_rates || !intel_dp->num_sink_rates); 392 393 intel_dp->num_common_rates = intersect_rates(intel_dp->source_rates, 394 intel_dp->num_source_rates, 395 intel_dp->sink_rates, 396 intel_dp->num_sink_rates, 397 intel_dp->common_rates); 398 399 /* Paranoia, there should always be something in common. */ 400 if (drm_WARN_ON(&i915->drm, intel_dp->num_common_rates == 0)) { 401 intel_dp->common_rates[0] = 162000; 402 intel_dp->num_common_rates = 1; 403 } 404 } 405 406 static bool intel_dp_link_params_valid(struct intel_dp *intel_dp, int link_rate, 407 u8 lane_count) 408 { 409 /* 410 * FIXME: we need to synchronize the current link parameters with 411 * hardware readout. Currently fast link training doesn't work on 412 * boot-up. 413 */ 414 if (link_rate == 0 || 415 link_rate > intel_dp->max_link_rate) 416 return false; 417 418 if (lane_count == 0 || 419 lane_count > intel_dp_max_lane_count(intel_dp)) 420 return false; 421 422 return true; 423 } 424 425 static bool intel_dp_can_link_train_fallback_for_edp(struct intel_dp *intel_dp, 426 int link_rate, 427 u8 lane_count) 428 { 429 const struct drm_display_mode *fixed_mode = 430 intel_dp->attached_connector->panel.fixed_mode; 431 int mode_rate, max_rate; 432 433 mode_rate = intel_dp_link_required(fixed_mode->clock, 18); 434 max_rate = intel_dp_max_data_rate(link_rate, lane_count); 435 if (mode_rate > max_rate) 436 return false; 437 438 return true; 439 } 440 441 int intel_dp_get_link_train_fallback_values(struct intel_dp *intel_dp, 442 int link_rate, u8 lane_count) 443 { 444 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 445 int index; 446 447 /* 448 * TODO: Enable fallback on MST links once MST link compute can handle 449 * the fallback params. 450 */ 451 if (intel_dp->is_mst) { 452 drm_err(&i915->drm, "Link Training Unsuccessful\n"); 453 return -1; 454 } 455 456 index = intel_dp_rate_index(intel_dp->common_rates, 457 intel_dp->num_common_rates, 458 link_rate); 459 if (index > 0) { 460 if (intel_dp_is_edp(intel_dp) && 461 !intel_dp_can_link_train_fallback_for_edp(intel_dp, 462 intel_dp->common_rates[index - 1], 463 lane_count)) { 464 drm_dbg_kms(&i915->drm, 465 "Retrying Link training for eDP with same parameters\n"); 466 return 0; 467 } 468 intel_dp->max_link_rate = intel_dp->common_rates[index - 1]; 469 intel_dp->max_link_lane_count = lane_count; 470 } else if (lane_count > 1) { 471 if (intel_dp_is_edp(intel_dp) && 472 !intel_dp_can_link_train_fallback_for_edp(intel_dp, 473 intel_dp_max_common_rate(intel_dp), 474 lane_count >> 1)) { 475 drm_dbg_kms(&i915->drm, 476 "Retrying Link training for eDP with same parameters\n"); 477 return 0; 478 } 479 intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp); 480 intel_dp->max_link_lane_count = lane_count >> 1; 481 } else { 482 drm_err(&i915->drm, "Link Training Unsuccessful\n"); 483 return -1; 484 } 485 486 return 0; 487 } 488 489 u32 intel_dp_mode_to_fec_clock(u32 mode_clock) 490 { 491 return div_u64(mul_u32_u32(mode_clock, 1000000U), 492 DP_DSC_FEC_OVERHEAD_FACTOR); 493 } 494 495 static int 496 small_joiner_ram_size_bits(struct drm_i915_private *i915) 497 { 498 if (INTEL_GEN(i915) >= 11) 499 return 7680 * 8; 500 else 501 return 6144 * 8; 502 } 503 504 static u16 intel_dp_dsc_get_output_bpp(struct drm_i915_private *i915, 505 u32 link_clock, u32 lane_count, 506 u32 mode_clock, u32 mode_hdisplay) 507 { 508 u32 bits_per_pixel, max_bpp_small_joiner_ram; 509 int i; 510 511 /* 512 * Available Link Bandwidth(Kbits/sec) = (NumberOfLanes)* 513 * (LinkSymbolClock)* 8 * (TimeSlotsPerMTP) 514 * for SST -> TimeSlotsPerMTP is 1, 515 * for MST -> TimeSlotsPerMTP has to be calculated 516 */ 517 bits_per_pixel = (link_clock * lane_count * 8) / 518 intel_dp_mode_to_fec_clock(mode_clock); 519 drm_dbg_kms(&i915->drm, "Max link bpp: %u\n", bits_per_pixel); 520 521 /* Small Joiner Check: output bpp <= joiner RAM (bits) / Horiz. width */ 522 max_bpp_small_joiner_ram = small_joiner_ram_size_bits(i915) / 523 mode_hdisplay; 524 drm_dbg_kms(&i915->drm, "Max small joiner bpp: %u\n", 525 max_bpp_small_joiner_ram); 526 527 /* 528 * Greatest allowed DSC BPP = MIN (output BPP from available Link BW 529 * check, output bpp from small joiner RAM check) 530 */ 531 bits_per_pixel = min(bits_per_pixel, max_bpp_small_joiner_ram); 532 533 /* Error out if the max bpp is less than smallest allowed valid bpp */ 534 if (bits_per_pixel < valid_dsc_bpp[0]) { 535 drm_dbg_kms(&i915->drm, "Unsupported BPP %u, min %u\n", 536 bits_per_pixel, valid_dsc_bpp[0]); 537 return 0; 538 } 539 540 /* Find the nearest match in the array of known BPPs from VESA */ 541 for (i = 0; i < ARRAY_SIZE(valid_dsc_bpp) - 1; i++) { 542 if (bits_per_pixel < valid_dsc_bpp[i + 1]) 543 break; 544 } 545 bits_per_pixel = valid_dsc_bpp[i]; 546 547 /* 548 * Compressed BPP in U6.4 format so multiply by 16, for Gen 11, 549 * fractional part is 0 550 */ 551 return bits_per_pixel << 4; 552 } 553 554 static u8 intel_dp_dsc_get_slice_count(struct intel_dp *intel_dp, 555 int mode_clock, int mode_hdisplay) 556 { 557 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 558 u8 min_slice_count, i; 559 int max_slice_width; 560 561 if (mode_clock <= DP_DSC_PEAK_PIXEL_RATE) 562 min_slice_count = DIV_ROUND_UP(mode_clock, 563 DP_DSC_MAX_ENC_THROUGHPUT_0); 564 else 565 min_slice_count = DIV_ROUND_UP(mode_clock, 566 DP_DSC_MAX_ENC_THROUGHPUT_1); 567 568 max_slice_width = drm_dp_dsc_sink_max_slice_width(intel_dp->dsc_dpcd); 569 if (max_slice_width < DP_DSC_MIN_SLICE_WIDTH_VALUE) { 570 drm_dbg_kms(&i915->drm, 571 "Unsupported slice width %d by DP DSC Sink device\n", 572 max_slice_width); 573 return 0; 574 } 575 /* Also take into account max slice width */ 576 min_slice_count = max_t(u8, min_slice_count, 577 DIV_ROUND_UP(mode_hdisplay, 578 max_slice_width)); 579 580 /* Find the closest match to the valid slice count values */ 581 for (i = 0; i < ARRAY_SIZE(valid_dsc_slicecount); i++) { 582 if (valid_dsc_slicecount[i] > 583 drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd, 584 false)) 585 break; 586 if (min_slice_count <= valid_dsc_slicecount[i]) 587 return valid_dsc_slicecount[i]; 588 } 589 590 drm_dbg_kms(&i915->drm, "Unsupported Slice Count %d\n", 591 min_slice_count); 592 return 0; 593 } 594 595 static bool intel_dp_hdisplay_bad(struct drm_i915_private *dev_priv, 596 int hdisplay) 597 { 598 /* 599 * Older platforms don't like hdisplay==4096 with DP. 600 * 601 * On ILK/SNB/IVB the pipe seems to be somewhat running (scanline 602 * and frame counter increment), but we don't get vblank interrupts, 603 * and the pipe underruns immediately. The link also doesn't seem 604 * to get trained properly. 605 * 606 * On CHV the vblank interrupts don't seem to disappear but 607 * otherwise the symptoms are similar. 608 * 609 * TODO: confirm the behaviour on HSW+ 610 */ 611 return hdisplay == 4096 && !HAS_DDI(dev_priv); 612 } 613 614 static enum drm_mode_status 615 intel_dp_mode_valid_downstream(struct intel_connector *connector, 616 const struct drm_display_mode *mode, 617 int target_clock) 618 { 619 struct intel_dp *intel_dp = intel_attached_dp(connector); 620 const struct drm_display_info *info = &connector->base.display_info; 621 int tmds_clock; 622 623 if (intel_dp->dfp.max_dotclock && 624 target_clock > intel_dp->dfp.max_dotclock) 625 return MODE_CLOCK_HIGH; 626 627 /* Assume 8bpc for the DP++/HDMI/DVI TMDS clock check */ 628 tmds_clock = target_clock; 629 if (drm_mode_is_420_only(info, mode)) 630 tmds_clock /= 2; 631 632 if (intel_dp->dfp.min_tmds_clock && 633 tmds_clock < intel_dp->dfp.min_tmds_clock) 634 return MODE_CLOCK_LOW; 635 if (intel_dp->dfp.max_tmds_clock && 636 tmds_clock > intel_dp->dfp.max_tmds_clock) 637 return MODE_CLOCK_HIGH; 638 639 return MODE_OK; 640 } 641 642 static enum drm_mode_status 643 intel_dp_mode_valid(struct drm_connector *connector, 644 struct drm_display_mode *mode) 645 { 646 struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector)); 647 struct intel_connector *intel_connector = to_intel_connector(connector); 648 struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode; 649 struct drm_i915_private *dev_priv = to_i915(connector->dev); 650 int target_clock = mode->clock; 651 int max_rate, mode_rate, max_lanes, max_link_clock; 652 int max_dotclk = dev_priv->max_dotclk_freq; 653 u16 dsc_max_output_bpp = 0; 654 u8 dsc_slice_count = 0; 655 enum drm_mode_status status; 656 657 if (mode->flags & DRM_MODE_FLAG_DBLSCAN) 658 return MODE_NO_DBLESCAN; 659 660 if (intel_dp_is_edp(intel_dp) && fixed_mode) { 661 if (mode->hdisplay > fixed_mode->hdisplay) 662 return MODE_PANEL; 663 664 if (mode->vdisplay > fixed_mode->vdisplay) 665 return MODE_PANEL; 666 667 target_clock = fixed_mode->clock; 668 } 669 670 max_link_clock = intel_dp_max_link_rate(intel_dp); 671 max_lanes = intel_dp_max_lane_count(intel_dp); 672 673 max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes); 674 mode_rate = intel_dp_link_required(target_clock, 18); 675 676 if (intel_dp_hdisplay_bad(dev_priv, mode->hdisplay)) 677 return MODE_H_ILLEGAL; 678 679 /* 680 * Output bpp is stored in 6.4 format so right shift by 4 to get the 681 * integer value since we support only integer values of bpp. 682 */ 683 if ((INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) && 684 drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd)) { 685 if (intel_dp_is_edp(intel_dp)) { 686 dsc_max_output_bpp = 687 drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4; 688 dsc_slice_count = 689 drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd, 690 true); 691 } else if (drm_dp_sink_supports_fec(intel_dp->fec_capable)) { 692 dsc_max_output_bpp = 693 intel_dp_dsc_get_output_bpp(dev_priv, 694 max_link_clock, 695 max_lanes, 696 target_clock, 697 mode->hdisplay) >> 4; 698 dsc_slice_count = 699 intel_dp_dsc_get_slice_count(intel_dp, 700 target_clock, 701 mode->hdisplay); 702 } 703 } 704 705 if ((mode_rate > max_rate && !(dsc_max_output_bpp && dsc_slice_count)) || 706 target_clock > max_dotclk) 707 return MODE_CLOCK_HIGH; 708 709 if (mode->clock < 10000) 710 return MODE_CLOCK_LOW; 711 712 if (mode->flags & DRM_MODE_FLAG_DBLCLK) 713 return MODE_H_ILLEGAL; 714 715 status = intel_dp_mode_valid_downstream(intel_connector, 716 mode, target_clock); 717 if (status != MODE_OK) 718 return status; 719 720 return intel_mode_valid_max_plane_size(dev_priv, mode); 721 } 722 723 u32 intel_dp_pack_aux(const u8 *src, int src_bytes) 724 { 725 int i; 726 u32 v = 0; 727 728 if (src_bytes > 4) 729 src_bytes = 4; 730 for (i = 0; i < src_bytes; i++) 731 v |= ((u32)src[i]) << ((3 - i) * 8); 732 return v; 733 } 734 735 static void intel_dp_unpack_aux(u32 src, u8 *dst, int dst_bytes) 736 { 737 int i; 738 if (dst_bytes > 4) 739 dst_bytes = 4; 740 for (i = 0; i < dst_bytes; i++) 741 dst[i] = src >> ((3-i) * 8); 742 } 743 744 static void 745 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp); 746 static void 747 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp, 748 bool force_disable_vdd); 749 static void 750 intel_dp_pps_init(struct intel_dp *intel_dp); 751 752 static intel_wakeref_t 753 pps_lock(struct intel_dp *intel_dp) 754 { 755 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 756 intel_wakeref_t wakeref; 757 758 /* 759 * See intel_power_sequencer_reset() why we need 760 * a power domain reference here. 761 */ 762 wakeref = intel_display_power_get(dev_priv, 763 intel_aux_power_domain(dp_to_dig_port(intel_dp))); 764 765 mutex_lock(&dev_priv->pps_mutex); 766 767 return wakeref; 768 } 769 770 static intel_wakeref_t 771 pps_unlock(struct intel_dp *intel_dp, intel_wakeref_t wakeref) 772 { 773 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 774 775 mutex_unlock(&dev_priv->pps_mutex); 776 intel_display_power_put(dev_priv, 777 intel_aux_power_domain(dp_to_dig_port(intel_dp)), 778 wakeref); 779 return 0; 780 } 781 782 #define with_pps_lock(dp, wf) \ 783 for ((wf) = pps_lock(dp); (wf); (wf) = pps_unlock((dp), (wf))) 784 785 static void 786 vlv_power_sequencer_kick(struct intel_dp *intel_dp) 787 { 788 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 789 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 790 enum pipe pipe = intel_dp->pps_pipe; 791 bool pll_enabled, release_cl_override = false; 792 enum dpio_phy phy = DPIO_PHY(pipe); 793 enum dpio_channel ch = vlv_pipe_to_channel(pipe); 794 u32 DP; 795 796 if (drm_WARN(&dev_priv->drm, 797 intel_de_read(dev_priv, intel_dp->output_reg) & DP_PORT_EN, 798 "skipping pipe %c power sequencer kick due to [ENCODER:%d:%s] being active\n", 799 pipe_name(pipe), dig_port->base.base.base.id, 800 dig_port->base.base.name)) 801 return; 802 803 drm_dbg_kms(&dev_priv->drm, 804 "kicking pipe %c power sequencer for [ENCODER:%d:%s]\n", 805 pipe_name(pipe), dig_port->base.base.base.id, 806 dig_port->base.base.name); 807 808 /* Preserve the BIOS-computed detected bit. This is 809 * supposed to be read-only. 810 */ 811 DP = intel_de_read(dev_priv, intel_dp->output_reg) & DP_DETECTED; 812 DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0; 813 DP |= DP_PORT_WIDTH(1); 814 DP |= DP_LINK_TRAIN_PAT_1; 815 816 if (IS_CHERRYVIEW(dev_priv)) 817 DP |= DP_PIPE_SEL_CHV(pipe); 818 else 819 DP |= DP_PIPE_SEL(pipe); 820 821 pll_enabled = intel_de_read(dev_priv, DPLL(pipe)) & DPLL_VCO_ENABLE; 822 823 /* 824 * The DPLL for the pipe must be enabled for this to work. 825 * So enable temporarily it if it's not already enabled. 826 */ 827 if (!pll_enabled) { 828 release_cl_override = IS_CHERRYVIEW(dev_priv) && 829 !chv_phy_powergate_ch(dev_priv, phy, ch, true); 830 831 if (vlv_force_pll_on(dev_priv, pipe, IS_CHERRYVIEW(dev_priv) ? 832 &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) { 833 drm_err(&dev_priv->drm, 834 "Failed to force on pll for pipe %c!\n", 835 pipe_name(pipe)); 836 return; 837 } 838 } 839 840 /* 841 * Similar magic as in intel_dp_enable_port(). 842 * We _must_ do this port enable + disable trick 843 * to make this power sequencer lock onto the port. 844 * Otherwise even VDD force bit won't work. 845 */ 846 intel_de_write(dev_priv, intel_dp->output_reg, DP); 847 intel_de_posting_read(dev_priv, intel_dp->output_reg); 848 849 intel_de_write(dev_priv, intel_dp->output_reg, DP | DP_PORT_EN); 850 intel_de_posting_read(dev_priv, intel_dp->output_reg); 851 852 intel_de_write(dev_priv, intel_dp->output_reg, DP & ~DP_PORT_EN); 853 intel_de_posting_read(dev_priv, intel_dp->output_reg); 854 855 if (!pll_enabled) { 856 vlv_force_pll_off(dev_priv, pipe); 857 858 if (release_cl_override) 859 chv_phy_powergate_ch(dev_priv, phy, ch, false); 860 } 861 } 862 863 static enum pipe vlv_find_free_pps(struct drm_i915_private *dev_priv) 864 { 865 struct intel_encoder *encoder; 866 unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B); 867 868 /* 869 * We don't have power sequencer currently. 870 * Pick one that's not used by other ports. 871 */ 872 for_each_intel_dp(&dev_priv->drm, encoder) { 873 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 874 875 if (encoder->type == INTEL_OUTPUT_EDP) { 876 drm_WARN_ON(&dev_priv->drm, 877 intel_dp->active_pipe != INVALID_PIPE && 878 intel_dp->active_pipe != 879 intel_dp->pps_pipe); 880 881 if (intel_dp->pps_pipe != INVALID_PIPE) 882 pipes &= ~(1 << intel_dp->pps_pipe); 883 } else { 884 drm_WARN_ON(&dev_priv->drm, 885 intel_dp->pps_pipe != INVALID_PIPE); 886 887 if (intel_dp->active_pipe != INVALID_PIPE) 888 pipes &= ~(1 << intel_dp->active_pipe); 889 } 890 } 891 892 if (pipes == 0) 893 return INVALID_PIPE; 894 895 return ffs(pipes) - 1; 896 } 897 898 static enum pipe 899 vlv_power_sequencer_pipe(struct intel_dp *intel_dp) 900 { 901 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 902 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 903 enum pipe pipe; 904 905 lockdep_assert_held(&dev_priv->pps_mutex); 906 907 /* We should never land here with regular DP ports */ 908 drm_WARN_ON(&dev_priv->drm, !intel_dp_is_edp(intel_dp)); 909 910 drm_WARN_ON(&dev_priv->drm, intel_dp->active_pipe != INVALID_PIPE && 911 intel_dp->active_pipe != intel_dp->pps_pipe); 912 913 if (intel_dp->pps_pipe != INVALID_PIPE) 914 return intel_dp->pps_pipe; 915 916 pipe = vlv_find_free_pps(dev_priv); 917 918 /* 919 * Didn't find one. This should not happen since there 920 * are two power sequencers and up to two eDP ports. 921 */ 922 if (drm_WARN_ON(&dev_priv->drm, pipe == INVALID_PIPE)) 923 pipe = PIPE_A; 924 925 vlv_steal_power_sequencer(dev_priv, pipe); 926 intel_dp->pps_pipe = pipe; 927 928 drm_dbg_kms(&dev_priv->drm, 929 "picked pipe %c power sequencer for [ENCODER:%d:%s]\n", 930 pipe_name(intel_dp->pps_pipe), 931 dig_port->base.base.base.id, 932 dig_port->base.base.name); 933 934 /* init power sequencer on this pipe and port */ 935 intel_dp_init_panel_power_sequencer(intel_dp); 936 intel_dp_init_panel_power_sequencer_registers(intel_dp, true); 937 938 /* 939 * Even vdd force doesn't work until we've made 940 * the power sequencer lock in on the port. 941 */ 942 vlv_power_sequencer_kick(intel_dp); 943 944 return intel_dp->pps_pipe; 945 } 946 947 static int 948 bxt_power_sequencer_idx(struct intel_dp *intel_dp) 949 { 950 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 951 int backlight_controller = dev_priv->vbt.backlight.controller; 952 953 lockdep_assert_held(&dev_priv->pps_mutex); 954 955 /* We should never land here with regular DP ports */ 956 drm_WARN_ON(&dev_priv->drm, !intel_dp_is_edp(intel_dp)); 957 958 if (!intel_dp->pps_reset) 959 return backlight_controller; 960 961 intel_dp->pps_reset = false; 962 963 /* 964 * Only the HW needs to be reprogrammed, the SW state is fixed and 965 * has been setup during connector init. 966 */ 967 intel_dp_init_panel_power_sequencer_registers(intel_dp, false); 968 969 return backlight_controller; 970 } 971 972 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv, 973 enum pipe pipe); 974 975 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv, 976 enum pipe pipe) 977 { 978 return intel_de_read(dev_priv, PP_STATUS(pipe)) & PP_ON; 979 } 980 981 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv, 982 enum pipe pipe) 983 { 984 return intel_de_read(dev_priv, PP_CONTROL(pipe)) & EDP_FORCE_VDD; 985 } 986 987 static bool vlv_pipe_any(struct drm_i915_private *dev_priv, 988 enum pipe pipe) 989 { 990 return true; 991 } 992 993 static enum pipe 994 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv, 995 enum port port, 996 vlv_pipe_check pipe_check) 997 { 998 enum pipe pipe; 999 1000 for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) { 1001 u32 port_sel = intel_de_read(dev_priv, PP_ON_DELAYS(pipe)) & 1002 PANEL_PORT_SELECT_MASK; 1003 1004 if (port_sel != PANEL_PORT_SELECT_VLV(port)) 1005 continue; 1006 1007 if (!pipe_check(dev_priv, pipe)) 1008 continue; 1009 1010 return pipe; 1011 } 1012 1013 return INVALID_PIPE; 1014 } 1015 1016 static void 1017 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp) 1018 { 1019 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1020 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1021 enum port port = dig_port->base.port; 1022 1023 lockdep_assert_held(&dev_priv->pps_mutex); 1024 1025 /* try to find a pipe with this port selected */ 1026 /* first pick one where the panel is on */ 1027 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port, 1028 vlv_pipe_has_pp_on); 1029 /* didn't find one? pick one where vdd is on */ 1030 if (intel_dp->pps_pipe == INVALID_PIPE) 1031 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port, 1032 vlv_pipe_has_vdd_on); 1033 /* didn't find one? pick one with just the correct port */ 1034 if (intel_dp->pps_pipe == INVALID_PIPE) 1035 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port, 1036 vlv_pipe_any); 1037 1038 /* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */ 1039 if (intel_dp->pps_pipe == INVALID_PIPE) { 1040 drm_dbg_kms(&dev_priv->drm, 1041 "no initial power sequencer for [ENCODER:%d:%s]\n", 1042 dig_port->base.base.base.id, 1043 dig_port->base.base.name); 1044 return; 1045 } 1046 1047 drm_dbg_kms(&dev_priv->drm, 1048 "initial power sequencer for [ENCODER:%d:%s]: pipe %c\n", 1049 dig_port->base.base.base.id, 1050 dig_port->base.base.name, 1051 pipe_name(intel_dp->pps_pipe)); 1052 1053 intel_dp_init_panel_power_sequencer(intel_dp); 1054 intel_dp_init_panel_power_sequencer_registers(intel_dp, false); 1055 } 1056 1057 void intel_power_sequencer_reset(struct drm_i915_private *dev_priv) 1058 { 1059 struct intel_encoder *encoder; 1060 1061 if (drm_WARN_ON(&dev_priv->drm, 1062 !(IS_VALLEYVIEW(dev_priv) || 1063 IS_CHERRYVIEW(dev_priv) || 1064 IS_GEN9_LP(dev_priv)))) 1065 return; 1066 1067 /* 1068 * We can't grab pps_mutex here due to deadlock with power_domain 1069 * mutex when power_domain functions are called while holding pps_mutex. 1070 * That also means that in order to use pps_pipe the code needs to 1071 * hold both a power domain reference and pps_mutex, and the power domain 1072 * reference get/put must be done while _not_ holding pps_mutex. 1073 * pps_{lock,unlock}() do these steps in the correct order, so one 1074 * should use them always. 1075 */ 1076 1077 for_each_intel_dp(&dev_priv->drm, encoder) { 1078 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 1079 1080 drm_WARN_ON(&dev_priv->drm, 1081 intel_dp->active_pipe != INVALID_PIPE); 1082 1083 if (encoder->type != INTEL_OUTPUT_EDP) 1084 continue; 1085 1086 if (IS_GEN9_LP(dev_priv)) 1087 intel_dp->pps_reset = true; 1088 else 1089 intel_dp->pps_pipe = INVALID_PIPE; 1090 } 1091 } 1092 1093 struct pps_registers { 1094 i915_reg_t pp_ctrl; 1095 i915_reg_t pp_stat; 1096 i915_reg_t pp_on; 1097 i915_reg_t pp_off; 1098 i915_reg_t pp_div; 1099 }; 1100 1101 static void intel_pps_get_registers(struct intel_dp *intel_dp, 1102 struct pps_registers *regs) 1103 { 1104 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1105 int pps_idx = 0; 1106 1107 memset(regs, 0, sizeof(*regs)); 1108 1109 if (IS_GEN9_LP(dev_priv)) 1110 pps_idx = bxt_power_sequencer_idx(intel_dp); 1111 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 1112 pps_idx = vlv_power_sequencer_pipe(intel_dp); 1113 1114 regs->pp_ctrl = PP_CONTROL(pps_idx); 1115 regs->pp_stat = PP_STATUS(pps_idx); 1116 regs->pp_on = PP_ON_DELAYS(pps_idx); 1117 regs->pp_off = PP_OFF_DELAYS(pps_idx); 1118 1119 /* Cycle delay moved from PP_DIVISOR to PP_CONTROL */ 1120 if (IS_GEN9_LP(dev_priv) || INTEL_PCH_TYPE(dev_priv) >= PCH_CNP) 1121 regs->pp_div = INVALID_MMIO_REG; 1122 else 1123 regs->pp_div = PP_DIVISOR(pps_idx); 1124 } 1125 1126 static i915_reg_t 1127 _pp_ctrl_reg(struct intel_dp *intel_dp) 1128 { 1129 struct pps_registers regs; 1130 1131 intel_pps_get_registers(intel_dp, ®s); 1132 1133 return regs.pp_ctrl; 1134 } 1135 1136 static i915_reg_t 1137 _pp_stat_reg(struct intel_dp *intel_dp) 1138 { 1139 struct pps_registers regs; 1140 1141 intel_pps_get_registers(intel_dp, ®s); 1142 1143 return regs.pp_stat; 1144 } 1145 1146 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing 1147 This function only applicable when panel PM state is not to be tracked */ 1148 static int edp_notify_handler(struct notifier_block *this, unsigned long code, 1149 void *unused) 1150 { 1151 struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp), 1152 edp_notifier); 1153 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1154 intel_wakeref_t wakeref; 1155 1156 if (!intel_dp_is_edp(intel_dp) || code != SYS_RESTART) 1157 return 0; 1158 1159 with_pps_lock(intel_dp, wakeref) { 1160 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 1161 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp); 1162 i915_reg_t pp_ctrl_reg, pp_div_reg; 1163 u32 pp_div; 1164 1165 pp_ctrl_reg = PP_CONTROL(pipe); 1166 pp_div_reg = PP_DIVISOR(pipe); 1167 pp_div = intel_de_read(dev_priv, pp_div_reg); 1168 pp_div &= PP_REFERENCE_DIVIDER_MASK; 1169 1170 /* 0x1F write to PP_DIV_REG sets max cycle delay */ 1171 intel_de_write(dev_priv, pp_div_reg, pp_div | 0x1F); 1172 intel_de_write(dev_priv, pp_ctrl_reg, 1173 PANEL_UNLOCK_REGS); 1174 drm_msleep(intel_dp->panel_power_cycle_delay); 1175 } 1176 } 1177 1178 return 0; 1179 } 1180 1181 static bool edp_have_panel_power(struct intel_dp *intel_dp) 1182 { 1183 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1184 1185 lockdep_assert_held(&dev_priv->pps_mutex); 1186 1187 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) && 1188 intel_dp->pps_pipe == INVALID_PIPE) 1189 return false; 1190 1191 return (intel_de_read(dev_priv, _pp_stat_reg(intel_dp)) & PP_ON) != 0; 1192 } 1193 1194 static bool edp_have_panel_vdd(struct intel_dp *intel_dp) 1195 { 1196 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1197 1198 lockdep_assert_held(&dev_priv->pps_mutex); 1199 1200 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) && 1201 intel_dp->pps_pipe == INVALID_PIPE) 1202 return false; 1203 1204 return intel_de_read(dev_priv, _pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD; 1205 } 1206 1207 static void 1208 intel_dp_check_edp(struct intel_dp *intel_dp) 1209 { 1210 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1211 1212 if (!intel_dp_is_edp(intel_dp)) 1213 return; 1214 1215 if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) { 1216 drm_WARN(&dev_priv->drm, 1, 1217 "eDP powered off while attempting aux channel communication.\n"); 1218 drm_dbg_kms(&dev_priv->drm, "Status 0x%08x Control 0x%08x\n", 1219 intel_de_read(dev_priv, _pp_stat_reg(intel_dp)), 1220 intel_de_read(dev_priv, _pp_ctrl_reg(intel_dp))); 1221 } 1222 } 1223 1224 static u32 1225 intel_dp_aux_wait_done(struct intel_dp *intel_dp) 1226 { 1227 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 1228 i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp); 1229 const unsigned int timeout_ms = 10; 1230 u32 status; 1231 bool done; 1232 1233 #define C (((status = intel_uncore_read_notrace(&i915->uncore, ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0) 1234 done = wait_event_timeout(i915->gmbus_wait_queue, C, 1235 msecs_to_jiffies_timeout(timeout_ms)); 1236 1237 /* just trace the final value */ 1238 trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true); 1239 1240 if (!done) 1241 drm_err(&i915->drm, 1242 "%s: did not complete or timeout within %ums (status 0x%08x)\n", 1243 intel_dp->aux.name, timeout_ms, status); 1244 #undef C 1245 1246 return status; 1247 } 1248 1249 static u32 g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index) 1250 { 1251 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1252 1253 if (index) 1254 return 0; 1255 1256 /* 1257 * The clock divider is based off the hrawclk, and would like to run at 1258 * 2MHz. So, take the hrawclk value and divide by 2000 and use that 1259 */ 1260 return DIV_ROUND_CLOSEST(RUNTIME_INFO(dev_priv)->rawclk_freq, 2000); 1261 } 1262 1263 static u32 ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index) 1264 { 1265 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1266 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1267 u32 freq; 1268 1269 if (index) 1270 return 0; 1271 1272 /* 1273 * The clock divider is based off the cdclk or PCH rawclk, and would 1274 * like to run at 2MHz. So, take the cdclk or PCH rawclk value and 1275 * divide by 2000 and use that 1276 */ 1277 if (dig_port->aux_ch == AUX_CH_A) 1278 freq = dev_priv->cdclk.hw.cdclk; 1279 else 1280 freq = RUNTIME_INFO(dev_priv)->rawclk_freq; 1281 return DIV_ROUND_CLOSEST(freq, 2000); 1282 } 1283 1284 static u32 hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index) 1285 { 1286 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1287 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1288 1289 if (dig_port->aux_ch != AUX_CH_A && HAS_PCH_LPT_H(dev_priv)) { 1290 /* Workaround for non-ULT HSW */ 1291 switch (index) { 1292 case 0: return 63; 1293 case 1: return 72; 1294 default: return 0; 1295 } 1296 } 1297 1298 return ilk_get_aux_clock_divider(intel_dp, index); 1299 } 1300 1301 static u32 skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index) 1302 { 1303 /* 1304 * SKL doesn't need us to program the AUX clock divider (Hardware will 1305 * derive the clock from CDCLK automatically). We still implement the 1306 * get_aux_clock_divider vfunc to plug-in into the existing code. 1307 */ 1308 return index ? 0 : 1; 1309 } 1310 1311 static u32 g4x_get_aux_send_ctl(struct intel_dp *intel_dp, 1312 int send_bytes, 1313 u32 aux_clock_divider) 1314 { 1315 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1316 struct drm_i915_private *dev_priv = 1317 to_i915(dig_port->base.base.dev); 1318 u32 precharge, timeout; 1319 1320 if (IS_GEN(dev_priv, 6)) 1321 precharge = 3; 1322 else 1323 precharge = 5; 1324 1325 if (IS_BROADWELL(dev_priv)) 1326 timeout = DP_AUX_CH_CTL_TIME_OUT_600us; 1327 else 1328 timeout = DP_AUX_CH_CTL_TIME_OUT_400us; 1329 1330 return DP_AUX_CH_CTL_SEND_BUSY | 1331 DP_AUX_CH_CTL_DONE | 1332 DP_AUX_CH_CTL_INTERRUPT | 1333 DP_AUX_CH_CTL_TIME_OUT_ERROR | 1334 timeout | 1335 DP_AUX_CH_CTL_RECEIVE_ERROR | 1336 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) | 1337 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) | 1338 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT); 1339 } 1340 1341 static u32 skl_get_aux_send_ctl(struct intel_dp *intel_dp, 1342 int send_bytes, 1343 u32 unused) 1344 { 1345 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1346 struct drm_i915_private *i915 = 1347 to_i915(dig_port->base.base.dev); 1348 enum phy phy = intel_port_to_phy(i915, dig_port->base.port); 1349 u32 ret; 1350 1351 ret = DP_AUX_CH_CTL_SEND_BUSY | 1352 DP_AUX_CH_CTL_DONE | 1353 DP_AUX_CH_CTL_INTERRUPT | 1354 DP_AUX_CH_CTL_TIME_OUT_ERROR | 1355 DP_AUX_CH_CTL_TIME_OUT_MAX | 1356 DP_AUX_CH_CTL_RECEIVE_ERROR | 1357 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) | 1358 DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) | 1359 DP_AUX_CH_CTL_SYNC_PULSE_SKL(32); 1360 1361 if (intel_phy_is_tc(i915, phy) && 1362 dig_port->tc_mode == TC_PORT_TBT_ALT) 1363 ret |= DP_AUX_CH_CTL_TBT_IO; 1364 1365 return ret; 1366 } 1367 1368 static int 1369 intel_dp_aux_xfer(struct intel_dp *intel_dp, 1370 const u8 *send, int send_bytes, 1371 u8 *recv, int recv_size, 1372 u32 aux_send_ctl_flags) 1373 { 1374 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1375 struct drm_i915_private *i915 = 1376 to_i915(dig_port->base.base.dev); 1377 struct intel_uncore *uncore = &i915->uncore; 1378 enum phy phy = intel_port_to_phy(i915, dig_port->base.port); 1379 bool is_tc_port = intel_phy_is_tc(i915, phy); 1380 i915_reg_t ch_ctl, ch_data[5]; 1381 u32 aux_clock_divider; 1382 enum intel_display_power_domain aux_domain; 1383 intel_wakeref_t aux_wakeref; 1384 intel_wakeref_t pps_wakeref; 1385 int i, ret, recv_bytes; 1386 int try, clock = 0; 1387 u32 status; 1388 bool vdd; 1389 1390 ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp); 1391 for (i = 0; i < ARRAY_SIZE(ch_data); i++) 1392 ch_data[i] = intel_dp->aux_ch_data_reg(intel_dp, i); 1393 1394 if (is_tc_port) 1395 intel_tc_port_lock(dig_port); 1396 1397 aux_domain = intel_aux_power_domain(dig_port); 1398 1399 aux_wakeref = intel_display_power_get(i915, aux_domain); 1400 pps_wakeref = pps_lock(intel_dp); 1401 1402 /* 1403 * We will be called with VDD already enabled for dpcd/edid/oui reads. 1404 * In such cases we want to leave VDD enabled and it's up to upper layers 1405 * to turn it off. But for eg. i2c-dev access we need to turn it on/off 1406 * ourselves. 1407 */ 1408 vdd = edp_panel_vdd_on(intel_dp); 1409 1410 /* dp aux is extremely sensitive to irq latency, hence request the 1411 * lowest possible wakeup latency and so prevent the cpu from going into 1412 * deep sleep states. 1413 */ 1414 cpu_latency_qos_update_request(&intel_dp->pm_qos, 0); 1415 1416 intel_dp_check_edp(intel_dp); 1417 1418 /* Try to wait for any previous AUX channel activity */ 1419 for (try = 0; try < 3; try++) { 1420 status = intel_uncore_read_notrace(uncore, ch_ctl); 1421 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0) 1422 break; 1423 drm_msleep(1); 1424 } 1425 /* just trace the final value */ 1426 trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true); 1427 1428 if (try == 3) { 1429 const u32 status = intel_uncore_read(uncore, ch_ctl); 1430 1431 if (status != intel_dp->aux_busy_last_status) { 1432 drm_WARN(&i915->drm, 1, 1433 "%s: not started (status 0x%08x)\n", 1434 intel_dp->aux.name, status); 1435 intel_dp->aux_busy_last_status = status; 1436 } 1437 1438 ret = -EBUSY; 1439 goto out; 1440 } 1441 1442 /* Only 5 data registers! */ 1443 if (drm_WARN_ON(&i915->drm, send_bytes > 20 || recv_size > 20)) { 1444 ret = -E2BIG; 1445 goto out; 1446 } 1447 1448 while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) { 1449 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp, 1450 send_bytes, 1451 aux_clock_divider); 1452 1453 send_ctl |= aux_send_ctl_flags; 1454 1455 /* Must try at least 3 times according to DP spec */ 1456 for (try = 0; try < 5; try++) { 1457 /* Load the send data into the aux channel data registers */ 1458 for (i = 0; i < send_bytes; i += 4) 1459 intel_uncore_write(uncore, 1460 ch_data[i >> 2], 1461 intel_dp_pack_aux(send + i, 1462 send_bytes - i)); 1463 1464 /* Send the command and wait for it to complete */ 1465 intel_uncore_write(uncore, ch_ctl, send_ctl); 1466 1467 status = intel_dp_aux_wait_done(intel_dp); 1468 1469 /* Clear done status and any errors */ 1470 intel_uncore_write(uncore, 1471 ch_ctl, 1472 status | 1473 DP_AUX_CH_CTL_DONE | 1474 DP_AUX_CH_CTL_TIME_OUT_ERROR | 1475 DP_AUX_CH_CTL_RECEIVE_ERROR); 1476 1477 /* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2 1478 * 400us delay required for errors and timeouts 1479 * Timeout errors from the HW already meet this 1480 * requirement so skip to next iteration 1481 */ 1482 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) 1483 continue; 1484 1485 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) { 1486 usleep_range(400, 500); 1487 continue; 1488 } 1489 if (status & DP_AUX_CH_CTL_DONE) 1490 goto done; 1491 } 1492 } 1493 1494 if ((status & DP_AUX_CH_CTL_DONE) == 0) { 1495 drm_err(&i915->drm, "%s: not done (status 0x%08x)\n", 1496 intel_dp->aux.name, status); 1497 ret = -EBUSY; 1498 goto out; 1499 } 1500 1501 done: 1502 /* Check for timeout or receive error. 1503 * Timeouts occur when the sink is not connected 1504 */ 1505 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) { 1506 drm_err(&i915->drm, "%s: receive error (status 0x%08x)\n", 1507 intel_dp->aux.name, status); 1508 ret = -EIO; 1509 goto out; 1510 } 1511 1512 /* Timeouts occur when the device isn't connected, so they're 1513 * "normal" -- don't fill the kernel log with these */ 1514 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) { 1515 drm_dbg_kms(&i915->drm, "%s: timeout (status 0x%08x)\n", 1516 intel_dp->aux.name, status); 1517 ret = -ETIMEDOUT; 1518 goto out; 1519 } 1520 1521 /* Unload any bytes sent back from the other side */ 1522 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >> 1523 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT); 1524 1525 /* 1526 * By BSpec: "Message sizes of 0 or >20 are not allowed." 1527 * We have no idea of what happened so we return -EBUSY so 1528 * drm layer takes care for the necessary retries. 1529 */ 1530 if (recv_bytes == 0 || recv_bytes > 20) { 1531 drm_dbg_kms(&i915->drm, 1532 "%s: Forbidden recv_bytes = %d on aux transaction\n", 1533 intel_dp->aux.name, recv_bytes); 1534 ret = -EBUSY; 1535 goto out; 1536 } 1537 1538 if (recv_bytes > recv_size) 1539 recv_bytes = recv_size; 1540 1541 for (i = 0; i < recv_bytes; i += 4) 1542 intel_dp_unpack_aux(intel_uncore_read(uncore, ch_data[i >> 2]), 1543 recv + i, recv_bytes - i); 1544 1545 ret = recv_bytes; 1546 out: 1547 cpu_latency_qos_update_request(&intel_dp->pm_qos, PM_QOS_DEFAULT_VALUE); 1548 1549 if (vdd) 1550 edp_panel_vdd_off(intel_dp, false); 1551 1552 pps_unlock(intel_dp, pps_wakeref); 1553 intel_display_power_put_async(i915, aux_domain, aux_wakeref); 1554 1555 if (is_tc_port) 1556 intel_tc_port_unlock(dig_port); 1557 1558 return ret; 1559 } 1560 1561 #define BARE_ADDRESS_SIZE 3 1562 #define HEADER_SIZE (BARE_ADDRESS_SIZE + 1) 1563 1564 static void 1565 intel_dp_aux_header(u8 txbuf[HEADER_SIZE], 1566 const struct drm_dp_aux_msg *msg) 1567 { 1568 txbuf[0] = (msg->request << 4) | ((msg->address >> 16) & 0xf); 1569 txbuf[1] = (msg->address >> 8) & 0xff; 1570 txbuf[2] = msg->address & 0xff; 1571 txbuf[3] = msg->size - 1; 1572 } 1573 1574 static u32 intel_dp_aux_xfer_flags(const struct drm_dp_aux_msg *msg) 1575 { 1576 /* 1577 * If we're trying to send the HDCP Aksv, we need to set a the Aksv 1578 * select bit to inform the hardware to send the Aksv after our header 1579 * since we can't access that data from software. 1580 */ 1581 if ((msg->request & ~DP_AUX_I2C_MOT) == DP_AUX_NATIVE_WRITE && 1582 msg->address == DP_AUX_HDCP_AKSV) 1583 return DP_AUX_CH_CTL_AUX_AKSV_SELECT; 1584 1585 return 0; 1586 } 1587 1588 static ssize_t 1589 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg) 1590 { 1591 struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux); 1592 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 1593 u8 txbuf[20], rxbuf[20]; 1594 size_t txsize, rxsize; 1595 u32 flags = intel_dp_aux_xfer_flags(msg); 1596 int ret; 1597 1598 intel_dp_aux_header(txbuf, msg); 1599 1600 switch (msg->request & ~DP_AUX_I2C_MOT) { 1601 case DP_AUX_NATIVE_WRITE: 1602 case DP_AUX_I2C_WRITE: 1603 case DP_AUX_I2C_WRITE_STATUS_UPDATE: 1604 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE; 1605 rxsize = 2; /* 0 or 1 data bytes */ 1606 1607 if (drm_WARN_ON(&i915->drm, txsize > 20)) 1608 return -E2BIG; 1609 1610 drm_WARN_ON(&i915->drm, !msg->buffer != !msg->size); 1611 1612 if (msg->buffer) 1613 memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size); 1614 1615 ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize, 1616 rxbuf, rxsize, flags); 1617 if (ret > 0) { 1618 msg->reply = rxbuf[0] >> 4; 1619 1620 if (ret > 1) { 1621 /* Number of bytes written in a short write. */ 1622 ret = clamp_t(int, rxbuf[1], 0, msg->size); 1623 } else { 1624 /* Return payload size. */ 1625 ret = msg->size; 1626 } 1627 } 1628 break; 1629 1630 case DP_AUX_NATIVE_READ: 1631 case DP_AUX_I2C_READ: 1632 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE; 1633 rxsize = msg->size + 1; 1634 1635 if (drm_WARN_ON(&i915->drm, rxsize > 20)) 1636 return -E2BIG; 1637 1638 ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize, 1639 rxbuf, rxsize, flags); 1640 if (ret > 0) { 1641 msg->reply = rxbuf[0] >> 4; 1642 /* 1643 * Assume happy day, and copy the data. The caller is 1644 * expected to check msg->reply before touching it. 1645 * 1646 * Return payload size. 1647 */ 1648 ret--; 1649 memcpy(msg->buffer, rxbuf + 1, ret); 1650 } 1651 break; 1652 1653 default: 1654 ret = -EINVAL; 1655 break; 1656 } 1657 1658 return ret; 1659 } 1660 1661 1662 static i915_reg_t g4x_aux_ctl_reg(struct intel_dp *intel_dp) 1663 { 1664 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1665 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1666 enum aux_ch aux_ch = dig_port->aux_ch; 1667 1668 switch (aux_ch) { 1669 case AUX_CH_B: 1670 case AUX_CH_C: 1671 case AUX_CH_D: 1672 return DP_AUX_CH_CTL(aux_ch); 1673 default: 1674 MISSING_CASE(aux_ch); 1675 return DP_AUX_CH_CTL(AUX_CH_B); 1676 } 1677 } 1678 1679 static i915_reg_t g4x_aux_data_reg(struct intel_dp *intel_dp, int index) 1680 { 1681 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1682 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1683 enum aux_ch aux_ch = dig_port->aux_ch; 1684 1685 switch (aux_ch) { 1686 case AUX_CH_B: 1687 case AUX_CH_C: 1688 case AUX_CH_D: 1689 return DP_AUX_CH_DATA(aux_ch, index); 1690 default: 1691 MISSING_CASE(aux_ch); 1692 return DP_AUX_CH_DATA(AUX_CH_B, index); 1693 } 1694 } 1695 1696 static i915_reg_t ilk_aux_ctl_reg(struct intel_dp *intel_dp) 1697 { 1698 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1699 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1700 enum aux_ch aux_ch = dig_port->aux_ch; 1701 1702 switch (aux_ch) { 1703 case AUX_CH_A: 1704 return DP_AUX_CH_CTL(aux_ch); 1705 case AUX_CH_B: 1706 case AUX_CH_C: 1707 case AUX_CH_D: 1708 return PCH_DP_AUX_CH_CTL(aux_ch); 1709 default: 1710 MISSING_CASE(aux_ch); 1711 return DP_AUX_CH_CTL(AUX_CH_A); 1712 } 1713 } 1714 1715 static i915_reg_t ilk_aux_data_reg(struct intel_dp *intel_dp, int index) 1716 { 1717 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1718 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1719 enum aux_ch aux_ch = dig_port->aux_ch; 1720 1721 switch (aux_ch) { 1722 case AUX_CH_A: 1723 return DP_AUX_CH_DATA(aux_ch, index); 1724 case AUX_CH_B: 1725 case AUX_CH_C: 1726 case AUX_CH_D: 1727 return PCH_DP_AUX_CH_DATA(aux_ch, index); 1728 default: 1729 MISSING_CASE(aux_ch); 1730 return DP_AUX_CH_DATA(AUX_CH_A, index); 1731 } 1732 } 1733 1734 static i915_reg_t skl_aux_ctl_reg(struct intel_dp *intel_dp) 1735 { 1736 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1737 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1738 enum aux_ch aux_ch = dig_port->aux_ch; 1739 1740 switch (aux_ch) { 1741 case AUX_CH_A: 1742 case AUX_CH_B: 1743 case AUX_CH_C: 1744 case AUX_CH_D: 1745 case AUX_CH_E: 1746 case AUX_CH_F: 1747 case AUX_CH_G: 1748 return DP_AUX_CH_CTL(aux_ch); 1749 default: 1750 MISSING_CASE(aux_ch); 1751 return DP_AUX_CH_CTL(AUX_CH_A); 1752 } 1753 } 1754 1755 static i915_reg_t skl_aux_data_reg(struct intel_dp *intel_dp, int index) 1756 { 1757 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1758 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1759 enum aux_ch aux_ch = dig_port->aux_ch; 1760 1761 switch (aux_ch) { 1762 case AUX_CH_A: 1763 case AUX_CH_B: 1764 case AUX_CH_C: 1765 case AUX_CH_D: 1766 case AUX_CH_E: 1767 case AUX_CH_F: 1768 case AUX_CH_G: 1769 return DP_AUX_CH_DATA(aux_ch, index); 1770 default: 1771 MISSING_CASE(aux_ch); 1772 return DP_AUX_CH_DATA(AUX_CH_A, index); 1773 } 1774 } 1775 1776 static void 1777 intel_dp_aux_fini(struct intel_dp *intel_dp) 1778 { 1779 if (cpu_latency_qos_request_active(&intel_dp->pm_qos)) 1780 cpu_latency_qos_remove_request(&intel_dp->pm_qos); 1781 1782 kfree(intel_dp->aux.name); 1783 } 1784 1785 static void 1786 intel_dp_aux_init(struct intel_dp *intel_dp) 1787 { 1788 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1789 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1790 struct intel_encoder *encoder = &dig_port->base; 1791 1792 if (INTEL_GEN(dev_priv) >= 9) { 1793 intel_dp->aux_ch_ctl_reg = skl_aux_ctl_reg; 1794 intel_dp->aux_ch_data_reg = skl_aux_data_reg; 1795 } else if (HAS_PCH_SPLIT(dev_priv)) { 1796 intel_dp->aux_ch_ctl_reg = ilk_aux_ctl_reg; 1797 intel_dp->aux_ch_data_reg = ilk_aux_data_reg; 1798 } else { 1799 intel_dp->aux_ch_ctl_reg = g4x_aux_ctl_reg; 1800 intel_dp->aux_ch_data_reg = g4x_aux_data_reg; 1801 } 1802 1803 if (INTEL_GEN(dev_priv) >= 9) 1804 intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider; 1805 else if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) 1806 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider; 1807 else if (HAS_PCH_SPLIT(dev_priv)) 1808 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider; 1809 else 1810 intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider; 1811 1812 if (INTEL_GEN(dev_priv) >= 9) 1813 intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl; 1814 else 1815 intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl; 1816 1817 drm_dp_aux_init(&intel_dp->aux); 1818 1819 /* Failure to allocate our preferred name is not critical */ 1820 intel_dp->aux.name = kasprintf(GFP_KERNEL, "AUX %c/port %c", 1821 aux_ch_name(dig_port->aux_ch), 1822 port_name(encoder->port)); 1823 intel_dp->aux.transfer = intel_dp_aux_transfer; 1824 cpu_latency_qos_add_request(&intel_dp->pm_qos, PM_QOS_DEFAULT_VALUE); 1825 } 1826 1827 bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp) 1828 { 1829 int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1]; 1830 1831 return max_rate >= 540000; 1832 } 1833 1834 bool intel_dp_source_supports_hbr3(struct intel_dp *intel_dp) 1835 { 1836 int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1]; 1837 1838 return max_rate >= 810000; 1839 } 1840 1841 static void 1842 intel_dp_set_clock(struct intel_encoder *encoder, 1843 struct intel_crtc_state *pipe_config) 1844 { 1845 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 1846 const struct dp_link_dpll *divisor = NULL; 1847 int i, count = 0; 1848 1849 if (IS_G4X(dev_priv)) { 1850 divisor = g4x_dpll; 1851 count = ARRAY_SIZE(g4x_dpll); 1852 } else if (HAS_PCH_SPLIT(dev_priv)) { 1853 divisor = pch_dpll; 1854 count = ARRAY_SIZE(pch_dpll); 1855 } else if (IS_CHERRYVIEW(dev_priv)) { 1856 divisor = chv_dpll; 1857 count = ARRAY_SIZE(chv_dpll); 1858 } else if (IS_VALLEYVIEW(dev_priv)) { 1859 divisor = vlv_dpll; 1860 count = ARRAY_SIZE(vlv_dpll); 1861 } 1862 1863 if (divisor && count) { 1864 for (i = 0; i < count; i++) { 1865 if (pipe_config->port_clock == divisor[i].clock) { 1866 pipe_config->dpll = divisor[i].dpll; 1867 pipe_config->clock_set = true; 1868 break; 1869 } 1870 } 1871 } 1872 } 1873 1874 static void snprintf_int_array(char *str, size_t len, 1875 const int *array, int nelem) 1876 { 1877 int i; 1878 1879 str[0] = '\0'; 1880 1881 for (i = 0; i < nelem; i++) { 1882 int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]); 1883 if (r >= len) 1884 return; 1885 str += r; 1886 len -= r; 1887 } 1888 } 1889 1890 static void intel_dp_print_rates(struct intel_dp *intel_dp) 1891 { 1892 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 1893 char str[128]; /* FIXME: too big for stack? */ 1894 1895 if (!drm_debug_enabled(DRM_UT_KMS)) 1896 return; 1897 1898 snprintf_int_array(str, sizeof(str), 1899 intel_dp->source_rates, intel_dp->num_source_rates); 1900 drm_dbg_kms(&i915->drm, "source rates: %s\n", str); 1901 1902 snprintf_int_array(str, sizeof(str), 1903 intel_dp->sink_rates, intel_dp->num_sink_rates); 1904 drm_dbg_kms(&i915->drm, "sink rates: %s\n", str); 1905 1906 snprintf_int_array(str, sizeof(str), 1907 intel_dp->common_rates, intel_dp->num_common_rates); 1908 drm_dbg_kms(&i915->drm, "common rates: %s\n", str); 1909 } 1910 1911 int 1912 intel_dp_max_link_rate(struct intel_dp *intel_dp) 1913 { 1914 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 1915 int len; 1916 1917 len = intel_dp_common_len_rate_limit(intel_dp, intel_dp->max_link_rate); 1918 if (drm_WARN_ON(&i915->drm, len <= 0)) 1919 return 162000; 1920 1921 return intel_dp->common_rates[len - 1]; 1922 } 1923 1924 int intel_dp_rate_select(struct intel_dp *intel_dp, int rate) 1925 { 1926 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 1927 int i = intel_dp_rate_index(intel_dp->sink_rates, 1928 intel_dp->num_sink_rates, rate); 1929 1930 if (drm_WARN_ON(&i915->drm, i < 0)) 1931 i = 0; 1932 1933 return i; 1934 } 1935 1936 void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock, 1937 u8 *link_bw, u8 *rate_select) 1938 { 1939 /* eDP 1.4 rate select method. */ 1940 if (intel_dp->use_rate_select) { 1941 *link_bw = 0; 1942 *rate_select = 1943 intel_dp_rate_select(intel_dp, port_clock); 1944 } else { 1945 *link_bw = drm_dp_link_rate_to_bw_code(port_clock); 1946 *rate_select = 0; 1947 } 1948 } 1949 1950 static bool intel_dp_source_supports_fec(struct intel_dp *intel_dp, 1951 const struct intel_crtc_state *pipe_config) 1952 { 1953 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1954 1955 /* On TGL, FEC is supported on all Pipes */ 1956 if (INTEL_GEN(dev_priv) >= 12) 1957 return true; 1958 1959 if (IS_GEN(dev_priv, 11) && pipe_config->cpu_transcoder != TRANSCODER_A) 1960 return true; 1961 1962 return false; 1963 } 1964 1965 static bool intel_dp_supports_fec(struct intel_dp *intel_dp, 1966 const struct intel_crtc_state *pipe_config) 1967 { 1968 return intel_dp_source_supports_fec(intel_dp, pipe_config) && 1969 drm_dp_sink_supports_fec(intel_dp->fec_capable); 1970 } 1971 1972 static bool intel_dp_supports_dsc(struct intel_dp *intel_dp, 1973 const struct intel_crtc_state *crtc_state) 1974 { 1975 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; 1976 1977 if (!intel_dp_is_edp(intel_dp) && !crtc_state->fec_enable) 1978 return false; 1979 1980 return intel_dsc_source_support(encoder, crtc_state) && 1981 drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd); 1982 } 1983 1984 static bool intel_dp_hdmi_ycbcr420(struct intel_dp *intel_dp, 1985 const struct intel_crtc_state *crtc_state) 1986 { 1987 return crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420 || 1988 (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444 && 1989 intel_dp->dfp.ycbcr_444_to_420); 1990 } 1991 1992 static int intel_dp_hdmi_tmds_clock(struct intel_dp *intel_dp, 1993 const struct intel_crtc_state *crtc_state, int bpc) 1994 { 1995 int clock = crtc_state->hw.adjusted_mode.crtc_clock * bpc / 8; 1996 1997 if (intel_dp_hdmi_ycbcr420(intel_dp, crtc_state)) 1998 clock /= 2; 1999 2000 return clock; 2001 } 2002 2003 static bool intel_dp_hdmi_tmds_clock_valid(struct intel_dp *intel_dp, 2004 const struct intel_crtc_state *crtc_state, int bpc) 2005 { 2006 int tmds_clock = intel_dp_hdmi_tmds_clock(intel_dp, crtc_state, bpc); 2007 2008 if (intel_dp->dfp.min_tmds_clock && 2009 tmds_clock < intel_dp->dfp.min_tmds_clock) 2010 return false; 2011 2012 if (intel_dp->dfp.max_tmds_clock && 2013 tmds_clock > intel_dp->dfp.max_tmds_clock) 2014 return false; 2015 2016 return true; 2017 } 2018 2019 static bool intel_dp_hdmi_deep_color_possible(struct intel_dp *intel_dp, 2020 const struct intel_crtc_state *crtc_state, 2021 int bpc) 2022 { 2023 2024 return intel_hdmi_deep_color_possible(crtc_state, bpc, 2025 intel_dp->has_hdmi_sink, 2026 intel_dp_hdmi_ycbcr420(intel_dp, crtc_state)) && 2027 intel_dp_hdmi_tmds_clock_valid(intel_dp, crtc_state, bpc); 2028 } 2029 2030 static int intel_dp_max_bpp(struct intel_dp *intel_dp, 2031 const struct intel_crtc_state *crtc_state) 2032 { 2033 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2034 struct intel_connector *intel_connector = intel_dp->attached_connector; 2035 int bpp, bpc; 2036 2037 bpc = crtc_state->pipe_bpp / 3; 2038 2039 if (intel_dp->dfp.max_bpc) 2040 bpc = min_t(int, bpc, intel_dp->dfp.max_bpc); 2041 2042 if (intel_dp->dfp.min_tmds_clock) { 2043 for (; bpc >= 10; bpc -= 2) { 2044 if (intel_dp_hdmi_deep_color_possible(intel_dp, crtc_state, bpc)) 2045 break; 2046 } 2047 } 2048 2049 bpp = bpc * 3; 2050 if (intel_dp_is_edp(intel_dp)) { 2051 /* Get bpp from vbt only for panels that dont have bpp in edid */ 2052 if (intel_connector->base.display_info.bpc == 0 && 2053 dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp) { 2054 drm_dbg_kms(&dev_priv->drm, 2055 "clamping bpp for eDP panel to BIOS-provided %i\n", 2056 dev_priv->vbt.edp.bpp); 2057 bpp = dev_priv->vbt.edp.bpp; 2058 } 2059 } 2060 2061 return bpp; 2062 } 2063 2064 /* Adjust link config limits based on compliance test requests. */ 2065 void 2066 intel_dp_adjust_compliance_config(struct intel_dp *intel_dp, 2067 struct intel_crtc_state *pipe_config, 2068 struct link_config_limits *limits) 2069 { 2070 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 2071 2072 /* For DP Compliance we override the computed bpp for the pipe */ 2073 if (intel_dp->compliance.test_data.bpc != 0) { 2074 int bpp = 3 * intel_dp->compliance.test_data.bpc; 2075 2076 limits->min_bpp = limits->max_bpp = bpp; 2077 pipe_config->dither_force_disable = bpp == 6 * 3; 2078 2079 drm_dbg_kms(&i915->drm, "Setting pipe_bpp to %d\n", bpp); 2080 } 2081 2082 /* Use values requested by Compliance Test Request */ 2083 if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) { 2084 int index; 2085 2086 /* Validate the compliance test data since max values 2087 * might have changed due to link train fallback. 2088 */ 2089 if (intel_dp_link_params_valid(intel_dp, intel_dp->compliance.test_link_rate, 2090 intel_dp->compliance.test_lane_count)) { 2091 index = intel_dp_rate_index(intel_dp->common_rates, 2092 intel_dp->num_common_rates, 2093 intel_dp->compliance.test_link_rate); 2094 if (index >= 0) 2095 limits->min_clock = limits->max_clock = index; 2096 limits->min_lane_count = limits->max_lane_count = 2097 intel_dp->compliance.test_lane_count; 2098 } 2099 } 2100 } 2101 2102 static int intel_dp_output_bpp(const struct intel_crtc_state *crtc_state, int bpp) 2103 { 2104 /* 2105 * bpp value was assumed to RGB format. And YCbCr 4:2:0 output 2106 * format of the number of bytes per pixel will be half the number 2107 * of bytes of RGB pixel. 2108 */ 2109 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420) 2110 bpp /= 2; 2111 2112 return bpp; 2113 } 2114 2115 /* Optimize link config in order: max bpp, min clock, min lanes */ 2116 static int 2117 intel_dp_compute_link_config_wide(struct intel_dp *intel_dp, 2118 struct intel_crtc_state *pipe_config, 2119 const struct link_config_limits *limits) 2120 { 2121 struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode; 2122 int bpp, clock, lane_count; 2123 int mode_rate, link_clock, link_avail; 2124 2125 for (bpp = limits->max_bpp; bpp >= limits->min_bpp; bpp -= 2 * 3) { 2126 int output_bpp = intel_dp_output_bpp(pipe_config, bpp); 2127 2128 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock, 2129 output_bpp); 2130 2131 for (clock = limits->min_clock; clock <= limits->max_clock; clock++) { 2132 for (lane_count = limits->min_lane_count; 2133 lane_count <= limits->max_lane_count; 2134 lane_count <<= 1) { 2135 link_clock = intel_dp->common_rates[clock]; 2136 link_avail = intel_dp_max_data_rate(link_clock, 2137 lane_count); 2138 2139 if (mode_rate <= link_avail) { 2140 pipe_config->lane_count = lane_count; 2141 pipe_config->pipe_bpp = bpp; 2142 pipe_config->port_clock = link_clock; 2143 2144 return 0; 2145 } 2146 } 2147 } 2148 } 2149 2150 return -EINVAL; 2151 } 2152 2153 static int intel_dp_dsc_compute_bpp(struct intel_dp *intel_dp, u8 dsc_max_bpc) 2154 { 2155 int i, num_bpc; 2156 u8 dsc_bpc[3] = {0}; 2157 2158 num_bpc = drm_dp_dsc_sink_supported_input_bpcs(intel_dp->dsc_dpcd, 2159 dsc_bpc); 2160 for (i = 0; i < num_bpc; i++) { 2161 if (dsc_max_bpc >= dsc_bpc[i]) 2162 return dsc_bpc[i] * 3; 2163 } 2164 2165 return 0; 2166 } 2167 2168 #define DSC_SUPPORTED_VERSION_MIN 1 2169 2170 static int intel_dp_dsc_compute_params(struct intel_encoder *encoder, 2171 struct intel_crtc_state *crtc_state) 2172 { 2173 struct drm_i915_private *i915 = to_i915(encoder->base.dev); 2174 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 2175 struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config; 2176 u8 line_buf_depth; 2177 int ret; 2178 2179 ret = intel_dsc_compute_params(encoder, crtc_state); 2180 if (ret) 2181 return ret; 2182 2183 /* 2184 * Slice Height of 8 works for all currently available panels. So start 2185 * with that if pic_height is an integral multiple of 8. Eventually add 2186 * logic to try multiple slice heights. 2187 */ 2188 if (vdsc_cfg->pic_height % 8 == 0) 2189 vdsc_cfg->slice_height = 8; 2190 else if (vdsc_cfg->pic_height % 4 == 0) 2191 vdsc_cfg->slice_height = 4; 2192 else 2193 vdsc_cfg->slice_height = 2; 2194 2195 vdsc_cfg->dsc_version_major = 2196 (intel_dp->dsc_dpcd[DP_DSC_REV - DP_DSC_SUPPORT] & 2197 DP_DSC_MAJOR_MASK) >> DP_DSC_MAJOR_SHIFT; 2198 vdsc_cfg->dsc_version_minor = 2199 min(DSC_SUPPORTED_VERSION_MIN, 2200 (intel_dp->dsc_dpcd[DP_DSC_REV - DP_DSC_SUPPORT] & 2201 DP_DSC_MINOR_MASK) >> DP_DSC_MINOR_SHIFT); 2202 2203 vdsc_cfg->convert_rgb = intel_dp->dsc_dpcd[DP_DSC_DEC_COLOR_FORMAT_CAP - DP_DSC_SUPPORT] & 2204 DP_DSC_RGB; 2205 2206 line_buf_depth = drm_dp_dsc_sink_line_buf_depth(intel_dp->dsc_dpcd); 2207 if (!line_buf_depth) { 2208 drm_dbg_kms(&i915->drm, 2209 "DSC Sink Line Buffer Depth invalid\n"); 2210 return -EINVAL; 2211 } 2212 2213 if (vdsc_cfg->dsc_version_minor == 2) 2214 vdsc_cfg->line_buf_depth = (line_buf_depth == DSC_1_2_MAX_LINEBUF_DEPTH_BITS) ? 2215 DSC_1_2_MAX_LINEBUF_DEPTH_VAL : line_buf_depth; 2216 else 2217 vdsc_cfg->line_buf_depth = (line_buf_depth > DSC_1_1_MAX_LINEBUF_DEPTH_BITS) ? 2218 DSC_1_1_MAX_LINEBUF_DEPTH_BITS : line_buf_depth; 2219 2220 vdsc_cfg->block_pred_enable = 2221 intel_dp->dsc_dpcd[DP_DSC_BLK_PREDICTION_SUPPORT - DP_DSC_SUPPORT] & 2222 DP_DSC_BLK_PREDICTION_IS_SUPPORTED; 2223 2224 return drm_dsc_compute_rc_parameters(vdsc_cfg); 2225 } 2226 2227 static int intel_dp_dsc_compute_config(struct intel_dp *intel_dp, 2228 struct intel_crtc_state *pipe_config, 2229 struct drm_connector_state *conn_state, 2230 struct link_config_limits *limits) 2231 { 2232 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 2233 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); 2234 const struct drm_display_mode *adjusted_mode = 2235 &pipe_config->hw.adjusted_mode; 2236 u8 dsc_max_bpc; 2237 int pipe_bpp; 2238 int ret; 2239 2240 pipe_config->fec_enable = !intel_dp_is_edp(intel_dp) && 2241 intel_dp_supports_fec(intel_dp, pipe_config); 2242 2243 if (!intel_dp_supports_dsc(intel_dp, pipe_config)) 2244 return -EINVAL; 2245 2246 /* Max DSC Input BPC for ICL is 10 and for TGL+ is 12 */ 2247 if (INTEL_GEN(dev_priv) >= 12) 2248 dsc_max_bpc = min_t(u8, 12, conn_state->max_requested_bpc); 2249 else 2250 dsc_max_bpc = min_t(u8, 10, 2251 conn_state->max_requested_bpc); 2252 2253 pipe_bpp = intel_dp_dsc_compute_bpp(intel_dp, dsc_max_bpc); 2254 2255 /* Min Input BPC for ICL+ is 8 */ 2256 if (pipe_bpp < 8 * 3) { 2257 drm_dbg_kms(&dev_priv->drm, 2258 "No DSC support for less than 8bpc\n"); 2259 return -EINVAL; 2260 } 2261 2262 /* 2263 * For now enable DSC for max bpp, max link rate, max lane count. 2264 * Optimize this later for the minimum possible link rate/lane count 2265 * with DSC enabled for the requested mode. 2266 */ 2267 pipe_config->pipe_bpp = pipe_bpp; 2268 pipe_config->port_clock = intel_dp->common_rates[limits->max_clock]; 2269 pipe_config->lane_count = limits->max_lane_count; 2270 2271 if (intel_dp_is_edp(intel_dp)) { 2272 pipe_config->dsc.compressed_bpp = 2273 min_t(u16, drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4, 2274 pipe_config->pipe_bpp); 2275 pipe_config->dsc.slice_count = 2276 drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd, 2277 true); 2278 } else { 2279 u16 dsc_max_output_bpp; 2280 u8 dsc_dp_slice_count; 2281 2282 dsc_max_output_bpp = 2283 intel_dp_dsc_get_output_bpp(dev_priv, 2284 pipe_config->port_clock, 2285 pipe_config->lane_count, 2286 adjusted_mode->crtc_clock, 2287 adjusted_mode->crtc_hdisplay); 2288 dsc_dp_slice_count = 2289 intel_dp_dsc_get_slice_count(intel_dp, 2290 adjusted_mode->crtc_clock, 2291 adjusted_mode->crtc_hdisplay); 2292 if (!dsc_max_output_bpp || !dsc_dp_slice_count) { 2293 drm_dbg_kms(&dev_priv->drm, 2294 "Compressed BPP/Slice Count not supported\n"); 2295 return -EINVAL; 2296 } 2297 pipe_config->dsc.compressed_bpp = min_t(u16, 2298 dsc_max_output_bpp >> 4, 2299 pipe_config->pipe_bpp); 2300 pipe_config->dsc.slice_count = dsc_dp_slice_count; 2301 } 2302 /* 2303 * VDSC engine operates at 1 Pixel per clock, so if peak pixel rate 2304 * is greater than the maximum Cdclock and if slice count is even 2305 * then we need to use 2 VDSC instances. 2306 */ 2307 if (adjusted_mode->crtc_clock > dev_priv->max_cdclk_freq) { 2308 if (pipe_config->dsc.slice_count > 1) { 2309 pipe_config->dsc.dsc_split = true; 2310 } else { 2311 drm_dbg_kms(&dev_priv->drm, 2312 "Cannot split stream to use 2 VDSC instances\n"); 2313 return -EINVAL; 2314 } 2315 } 2316 2317 ret = intel_dp_dsc_compute_params(&dig_port->base, pipe_config); 2318 if (ret < 0) { 2319 drm_dbg_kms(&dev_priv->drm, 2320 "Cannot compute valid DSC parameters for Input Bpp = %d " 2321 "Compressed BPP = %d\n", 2322 pipe_config->pipe_bpp, 2323 pipe_config->dsc.compressed_bpp); 2324 return ret; 2325 } 2326 2327 pipe_config->dsc.compression_enable = true; 2328 drm_dbg_kms(&dev_priv->drm, "DP DSC computed with Input Bpp = %d " 2329 "Compressed Bpp = %d Slice Count = %d\n", 2330 pipe_config->pipe_bpp, 2331 pipe_config->dsc.compressed_bpp, 2332 pipe_config->dsc.slice_count); 2333 2334 return 0; 2335 } 2336 2337 int intel_dp_min_bpp(const struct intel_crtc_state *crtc_state) 2338 { 2339 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB) 2340 return 6 * 3; 2341 else 2342 return 8 * 3; 2343 } 2344 2345 static int 2346 intel_dp_compute_link_config(struct intel_encoder *encoder, 2347 struct intel_crtc_state *pipe_config, 2348 struct drm_connector_state *conn_state) 2349 { 2350 struct drm_i915_private *i915 = to_i915(encoder->base.dev); 2351 const struct drm_display_mode *adjusted_mode = 2352 &pipe_config->hw.adjusted_mode; 2353 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 2354 struct link_config_limits limits; 2355 int common_len; 2356 int ret; 2357 2358 common_len = intel_dp_common_len_rate_limit(intel_dp, 2359 intel_dp->max_link_rate); 2360 2361 /* No common link rates between source and sink */ 2362 drm_WARN_ON(encoder->base.dev, common_len <= 0); 2363 2364 limits.min_clock = 0; 2365 limits.max_clock = common_len - 1; 2366 2367 limits.min_lane_count = 1; 2368 limits.max_lane_count = intel_dp_max_lane_count(intel_dp); 2369 2370 limits.min_bpp = intel_dp_min_bpp(pipe_config); 2371 limits.max_bpp = intel_dp_max_bpp(intel_dp, pipe_config); 2372 2373 if (intel_dp_is_edp(intel_dp)) { 2374 /* 2375 * Use the maximum clock and number of lanes the eDP panel 2376 * advertizes being capable of. The panels are generally 2377 * designed to support only a single clock and lane 2378 * configuration, and typically these values correspond to the 2379 * native resolution of the panel. 2380 */ 2381 limits.min_lane_count = limits.max_lane_count; 2382 limits.min_clock = limits.max_clock; 2383 } 2384 2385 intel_dp_adjust_compliance_config(intel_dp, pipe_config, &limits); 2386 2387 drm_dbg_kms(&i915->drm, "DP link computation with max lane count %i " 2388 "max rate %d max bpp %d pixel clock %iKHz\n", 2389 limits.max_lane_count, 2390 intel_dp->common_rates[limits.max_clock], 2391 limits.max_bpp, adjusted_mode->crtc_clock); 2392 2393 /* 2394 * Optimize for slow and wide. This is the place to add alternative 2395 * optimization policy. 2396 */ 2397 ret = intel_dp_compute_link_config_wide(intel_dp, pipe_config, &limits); 2398 2399 /* enable compression if the mode doesn't fit available BW */ 2400 drm_dbg_kms(&i915->drm, "Force DSC en = %d\n", intel_dp->force_dsc_en); 2401 if (ret || intel_dp->force_dsc_en) { 2402 ret = intel_dp_dsc_compute_config(intel_dp, pipe_config, 2403 conn_state, &limits); 2404 if (ret < 0) 2405 return ret; 2406 } 2407 2408 if (pipe_config->dsc.compression_enable) { 2409 drm_dbg_kms(&i915->drm, 2410 "DP lane count %d clock %d Input bpp %d Compressed bpp %d\n", 2411 pipe_config->lane_count, pipe_config->port_clock, 2412 pipe_config->pipe_bpp, 2413 pipe_config->dsc.compressed_bpp); 2414 2415 drm_dbg_kms(&i915->drm, 2416 "DP link rate required %i available %i\n", 2417 intel_dp_link_required(adjusted_mode->crtc_clock, 2418 pipe_config->dsc.compressed_bpp), 2419 intel_dp_max_data_rate(pipe_config->port_clock, 2420 pipe_config->lane_count)); 2421 } else { 2422 drm_dbg_kms(&i915->drm, "DP lane count %d clock %d bpp %d\n", 2423 pipe_config->lane_count, pipe_config->port_clock, 2424 pipe_config->pipe_bpp); 2425 2426 drm_dbg_kms(&i915->drm, 2427 "DP link rate required %i available %i\n", 2428 intel_dp_link_required(adjusted_mode->crtc_clock, 2429 pipe_config->pipe_bpp), 2430 intel_dp_max_data_rate(pipe_config->port_clock, 2431 pipe_config->lane_count)); 2432 } 2433 return 0; 2434 } 2435 2436 static int 2437 intel_dp_ycbcr420_config(struct intel_dp *intel_dp, 2438 struct intel_crtc_state *crtc_state, 2439 const struct drm_connector_state *conn_state) 2440 { 2441 struct drm_connector *connector = conn_state->connector; 2442 const struct drm_display_info *info = &connector->display_info; 2443 const struct drm_display_mode *adjusted_mode = 2444 &crtc_state->hw.adjusted_mode; 2445 2446 if (!connector->ycbcr_420_allowed) 2447 return 0; 2448 2449 if (!drm_mode_is_420_only(info, adjusted_mode)) 2450 return 0; 2451 2452 if (intel_dp->dfp.ycbcr_444_to_420) { 2453 crtc_state->output_format = INTEL_OUTPUT_FORMAT_YCBCR444; 2454 return 0; 2455 } 2456 2457 crtc_state->output_format = INTEL_OUTPUT_FORMAT_YCBCR420; 2458 2459 return intel_pch_panel_fitting(crtc_state, conn_state); 2460 } 2461 2462 bool intel_dp_limited_color_range(const struct intel_crtc_state *crtc_state, 2463 const struct drm_connector_state *conn_state) 2464 { 2465 const struct intel_digital_connector_state *intel_conn_state = 2466 to_intel_digital_connector_state(conn_state); 2467 const struct drm_display_mode *adjusted_mode = 2468 &crtc_state->hw.adjusted_mode; 2469 2470 /* 2471 * Our YCbCr output is always limited range. 2472 * crtc_state->limited_color_range only applies to RGB, 2473 * and it must never be set for YCbCr or we risk setting 2474 * some conflicting bits in PIPECONF which will mess up 2475 * the colors on the monitor. 2476 */ 2477 if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB) 2478 return false; 2479 2480 if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) { 2481 /* 2482 * See: 2483 * CEA-861-E - 5.1 Default Encoding Parameters 2484 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry 2485 */ 2486 return crtc_state->pipe_bpp != 18 && 2487 drm_default_rgb_quant_range(adjusted_mode) == 2488 HDMI_QUANTIZATION_RANGE_LIMITED; 2489 } else { 2490 return intel_conn_state->broadcast_rgb == 2491 INTEL_BROADCAST_RGB_LIMITED; 2492 } 2493 } 2494 2495 static bool intel_dp_port_has_audio(struct drm_i915_private *dev_priv, 2496 enum port port) 2497 { 2498 if (IS_G4X(dev_priv)) 2499 return false; 2500 if (INTEL_GEN(dev_priv) < 12 && port == PORT_A) 2501 return false; 2502 2503 return true; 2504 } 2505 2506 static void intel_dp_compute_vsc_colorimetry(const struct intel_crtc_state *crtc_state, 2507 const struct drm_connector_state *conn_state, 2508 struct drm_dp_vsc_sdp *vsc) 2509 { 2510 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2511 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2512 2513 /* 2514 * Prepare VSC Header for SU as per DP 1.4 spec, Table 2-118 2515 * VSC SDP supporting 3D stereo, PSR2, and Pixel Encoding/ 2516 * Colorimetry Format indication. 2517 */ 2518 vsc->revision = 0x5; 2519 vsc->length = 0x13; 2520 2521 /* DP 1.4a spec, Table 2-120 */ 2522 switch (crtc_state->output_format) { 2523 case INTEL_OUTPUT_FORMAT_YCBCR444: 2524 vsc->pixelformat = DP_PIXELFORMAT_YUV444; 2525 break; 2526 case INTEL_OUTPUT_FORMAT_YCBCR420: 2527 vsc->pixelformat = DP_PIXELFORMAT_YUV420; 2528 break; 2529 case INTEL_OUTPUT_FORMAT_RGB: 2530 default: 2531 vsc->pixelformat = DP_PIXELFORMAT_RGB; 2532 } 2533 2534 switch (conn_state->colorspace) { 2535 case DRM_MODE_COLORIMETRY_BT709_YCC: 2536 vsc->colorimetry = DP_COLORIMETRY_BT709_YCC; 2537 break; 2538 case DRM_MODE_COLORIMETRY_XVYCC_601: 2539 vsc->colorimetry = DP_COLORIMETRY_XVYCC_601; 2540 break; 2541 case DRM_MODE_COLORIMETRY_XVYCC_709: 2542 vsc->colorimetry = DP_COLORIMETRY_XVYCC_709; 2543 break; 2544 case DRM_MODE_COLORIMETRY_SYCC_601: 2545 vsc->colorimetry = DP_COLORIMETRY_SYCC_601; 2546 break; 2547 case DRM_MODE_COLORIMETRY_OPYCC_601: 2548 vsc->colorimetry = DP_COLORIMETRY_OPYCC_601; 2549 break; 2550 case DRM_MODE_COLORIMETRY_BT2020_CYCC: 2551 vsc->colorimetry = DP_COLORIMETRY_BT2020_CYCC; 2552 break; 2553 case DRM_MODE_COLORIMETRY_BT2020_RGB: 2554 vsc->colorimetry = DP_COLORIMETRY_BT2020_RGB; 2555 break; 2556 case DRM_MODE_COLORIMETRY_BT2020_YCC: 2557 vsc->colorimetry = DP_COLORIMETRY_BT2020_YCC; 2558 break; 2559 case DRM_MODE_COLORIMETRY_DCI_P3_RGB_D65: 2560 case DRM_MODE_COLORIMETRY_DCI_P3_RGB_THEATER: 2561 vsc->colorimetry = DP_COLORIMETRY_DCI_P3_RGB; 2562 break; 2563 default: 2564 /* 2565 * RGB->YCBCR color conversion uses the BT.709 2566 * color space. 2567 */ 2568 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420) 2569 vsc->colorimetry = DP_COLORIMETRY_BT709_YCC; 2570 else 2571 vsc->colorimetry = DP_COLORIMETRY_DEFAULT; 2572 break; 2573 } 2574 2575 vsc->bpc = crtc_state->pipe_bpp / 3; 2576 2577 /* only RGB pixelformat supports 6 bpc */ 2578 drm_WARN_ON(&dev_priv->drm, 2579 vsc->bpc == 6 && vsc->pixelformat != DP_PIXELFORMAT_RGB); 2580 2581 /* all YCbCr are always limited range */ 2582 vsc->dynamic_range = DP_DYNAMIC_RANGE_CTA; 2583 vsc->content_type = DP_CONTENT_TYPE_NOT_DEFINED; 2584 } 2585 2586 static void intel_dp_compute_vsc_sdp(struct intel_dp *intel_dp, 2587 struct intel_crtc_state *crtc_state, 2588 const struct drm_connector_state *conn_state) 2589 { 2590 struct drm_dp_vsc_sdp *vsc = &crtc_state->infoframes.vsc; 2591 2592 /* When a crtc state has PSR, VSC SDP will be handled by PSR routine */ 2593 if (crtc_state->has_psr) 2594 return; 2595 2596 if (!intel_dp_needs_vsc_sdp(crtc_state, conn_state)) 2597 return; 2598 2599 crtc_state->infoframes.enable |= intel_hdmi_infoframe_enable(DP_SDP_VSC); 2600 vsc->sdp_type = DP_SDP_VSC; 2601 intel_dp_compute_vsc_colorimetry(crtc_state, conn_state, 2602 &crtc_state->infoframes.vsc); 2603 } 2604 2605 void intel_dp_compute_psr_vsc_sdp(struct intel_dp *intel_dp, 2606 const struct intel_crtc_state *crtc_state, 2607 const struct drm_connector_state *conn_state, 2608 struct drm_dp_vsc_sdp *vsc) 2609 { 2610 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2611 2612 vsc->sdp_type = DP_SDP_VSC; 2613 2614 if (dev_priv->psr.psr2_enabled) { 2615 if (dev_priv->psr.colorimetry_support && 2616 intel_dp_needs_vsc_sdp(crtc_state, conn_state)) { 2617 /* [PSR2, +Colorimetry] */ 2618 intel_dp_compute_vsc_colorimetry(crtc_state, conn_state, 2619 vsc); 2620 } else { 2621 /* 2622 * [PSR2, -Colorimetry] 2623 * Prepare VSC Header for SU as per eDP 1.4 spec, Table 6-11 2624 * 3D stereo + PSR/PSR2 + Y-coordinate. 2625 */ 2626 vsc->revision = 0x4; 2627 vsc->length = 0xe; 2628 } 2629 } else { 2630 /* 2631 * [PSR1] 2632 * Prepare VSC Header for SU as per DP 1.4 spec, Table 2-118 2633 * VSC SDP supporting 3D stereo + PSR (applies to eDP v1.3 or 2634 * higher). 2635 */ 2636 vsc->revision = 0x2; 2637 vsc->length = 0x8; 2638 } 2639 } 2640 2641 static void 2642 intel_dp_compute_hdr_metadata_infoframe_sdp(struct intel_dp *intel_dp, 2643 struct intel_crtc_state *crtc_state, 2644 const struct drm_connector_state *conn_state) 2645 { 2646 int ret; 2647 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2648 struct hdmi_drm_infoframe *drm_infoframe = &crtc_state->infoframes.drm.drm; 2649 2650 if (!conn_state->hdr_output_metadata) 2651 return; 2652 2653 ret = drm_hdmi_infoframe_set_hdr_metadata(drm_infoframe, conn_state); 2654 2655 if (ret) { 2656 drm_dbg_kms(&dev_priv->drm, "couldn't set HDR metadata in infoframe\n"); 2657 return; 2658 } 2659 2660 crtc_state->infoframes.enable |= 2661 intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GAMUT_METADATA); 2662 } 2663 2664 static void 2665 intel_dp_drrs_compute_config(struct intel_dp *intel_dp, 2666 struct intel_crtc_state *pipe_config, 2667 int output_bpp, bool constant_n) 2668 { 2669 struct intel_connector *intel_connector = intel_dp->attached_connector; 2670 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2671 2672 /* 2673 * DRRS and PSR can't be enable together, so giving preference to PSR 2674 * as it allows more power-savings by complete shutting down display, 2675 * so to guarantee this, intel_dp_drrs_compute_config() must be called 2676 * after intel_psr_compute_config(). 2677 */ 2678 if (pipe_config->has_psr) 2679 return; 2680 2681 if (!intel_connector->panel.downclock_mode || 2682 dev_priv->drrs.type != SEAMLESS_DRRS_SUPPORT) 2683 return; 2684 2685 pipe_config->has_drrs = true; 2686 intel_link_compute_m_n(output_bpp, pipe_config->lane_count, 2687 intel_connector->panel.downclock_mode->clock, 2688 pipe_config->port_clock, &pipe_config->dp_m2_n2, 2689 constant_n, pipe_config->fec_enable); 2690 } 2691 2692 int 2693 intel_dp_compute_config(struct intel_encoder *encoder, 2694 struct intel_crtc_state *pipe_config, 2695 struct drm_connector_state *conn_state) 2696 { 2697 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 2698 struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode; 2699 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 2700 struct intel_lspcon *lspcon = enc_to_intel_lspcon(encoder); 2701 enum port port = encoder->port; 2702 struct intel_connector *intel_connector = intel_dp->attached_connector; 2703 struct intel_digital_connector_state *intel_conn_state = 2704 to_intel_digital_connector_state(conn_state); 2705 bool constant_n = drm_dp_has_quirk(&intel_dp->desc, 0, 2706 DP_DPCD_QUIRK_CONSTANT_N); 2707 int ret = 0, output_bpp; 2708 2709 if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv) && port != PORT_A) 2710 pipe_config->has_pch_encoder = true; 2711 2712 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB; 2713 2714 if (lspcon->active) 2715 lspcon_ycbcr420_config(&intel_connector->base, pipe_config); 2716 else 2717 ret = intel_dp_ycbcr420_config(intel_dp, pipe_config, 2718 conn_state); 2719 if (ret) 2720 return ret; 2721 2722 if (!intel_dp_port_has_audio(dev_priv, port)) 2723 pipe_config->has_audio = false; 2724 else if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO) 2725 pipe_config->has_audio = intel_dp->has_audio; 2726 else 2727 pipe_config->has_audio = intel_conn_state->force_audio == HDMI_AUDIO_ON; 2728 2729 if (intel_dp_is_edp(intel_dp) && intel_connector->panel.fixed_mode) { 2730 intel_fixed_panel_mode(intel_connector->panel.fixed_mode, 2731 adjusted_mode); 2732 2733 if (HAS_GMCH(dev_priv)) 2734 ret = intel_gmch_panel_fitting(pipe_config, conn_state); 2735 else 2736 ret = intel_pch_panel_fitting(pipe_config, conn_state); 2737 if (ret) 2738 return ret; 2739 } 2740 2741 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN) 2742 return -EINVAL; 2743 2744 if (HAS_GMCH(dev_priv) && 2745 adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) 2746 return -EINVAL; 2747 2748 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK) 2749 return -EINVAL; 2750 2751 if (intel_dp_hdisplay_bad(dev_priv, adjusted_mode->crtc_hdisplay)) 2752 return -EINVAL; 2753 2754 ret = intel_dp_compute_link_config(encoder, pipe_config, conn_state); 2755 if (ret < 0) 2756 return ret; 2757 2758 pipe_config->limited_color_range = 2759 intel_dp_limited_color_range(pipe_config, conn_state); 2760 2761 if (pipe_config->dsc.compression_enable) 2762 output_bpp = pipe_config->dsc.compressed_bpp; 2763 else 2764 output_bpp = intel_dp_output_bpp(pipe_config, pipe_config->pipe_bpp); 2765 2766 intel_link_compute_m_n(output_bpp, 2767 pipe_config->lane_count, 2768 adjusted_mode->crtc_clock, 2769 pipe_config->port_clock, 2770 &pipe_config->dp_m_n, 2771 constant_n, pipe_config->fec_enable); 2772 2773 if (!HAS_DDI(dev_priv)) 2774 intel_dp_set_clock(encoder, pipe_config); 2775 2776 intel_psr_compute_config(intel_dp, pipe_config); 2777 intel_dp_drrs_compute_config(intel_dp, pipe_config, output_bpp, 2778 constant_n); 2779 intel_dp_compute_vsc_sdp(intel_dp, pipe_config, conn_state); 2780 intel_dp_compute_hdr_metadata_infoframe_sdp(intel_dp, pipe_config, conn_state); 2781 2782 return 0; 2783 } 2784 2785 void intel_dp_set_link_params(struct intel_dp *intel_dp, 2786 int link_rate, u8 lane_count, 2787 bool link_mst) 2788 { 2789 intel_dp->link_trained = false; 2790 intel_dp->link_rate = link_rate; 2791 intel_dp->lane_count = lane_count; 2792 intel_dp->link_mst = link_mst; 2793 } 2794 2795 static void intel_dp_prepare(struct intel_encoder *encoder, 2796 const struct intel_crtc_state *pipe_config) 2797 { 2798 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 2799 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 2800 enum port port = encoder->port; 2801 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc); 2802 const struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode; 2803 2804 intel_dp_set_link_params(intel_dp, pipe_config->port_clock, 2805 pipe_config->lane_count, 2806 intel_crtc_has_type(pipe_config, 2807 INTEL_OUTPUT_DP_MST)); 2808 2809 /* 2810 * There are four kinds of DP registers: 2811 * 2812 * IBX PCH 2813 * SNB CPU 2814 * IVB CPU 2815 * CPT PCH 2816 * 2817 * IBX PCH and CPU are the same for almost everything, 2818 * except that the CPU DP PLL is configured in this 2819 * register 2820 * 2821 * CPT PCH is quite different, having many bits moved 2822 * to the TRANS_DP_CTL register instead. That 2823 * configuration happens (oddly) in ilk_pch_enable 2824 */ 2825 2826 /* Preserve the BIOS-computed detected bit. This is 2827 * supposed to be read-only. 2828 */ 2829 intel_dp->DP = intel_de_read(dev_priv, intel_dp->output_reg) & DP_DETECTED; 2830 2831 /* Handle DP bits in common between all three register formats */ 2832 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0; 2833 intel_dp->DP |= DP_PORT_WIDTH(pipe_config->lane_count); 2834 2835 /* Split out the IBX/CPU vs CPT settings */ 2836 2837 if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) { 2838 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) 2839 intel_dp->DP |= DP_SYNC_HS_HIGH; 2840 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) 2841 intel_dp->DP |= DP_SYNC_VS_HIGH; 2842 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT; 2843 2844 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd)) 2845 intel_dp->DP |= DP_ENHANCED_FRAMING; 2846 2847 intel_dp->DP |= DP_PIPE_SEL_IVB(crtc->pipe); 2848 } else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) { 2849 u32 trans_dp; 2850 2851 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT; 2852 2853 trans_dp = intel_de_read(dev_priv, TRANS_DP_CTL(crtc->pipe)); 2854 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd)) 2855 trans_dp |= TRANS_DP_ENH_FRAMING; 2856 else 2857 trans_dp &= ~TRANS_DP_ENH_FRAMING; 2858 intel_de_write(dev_priv, TRANS_DP_CTL(crtc->pipe), trans_dp); 2859 } else { 2860 if (IS_G4X(dev_priv) && pipe_config->limited_color_range) 2861 intel_dp->DP |= DP_COLOR_RANGE_16_235; 2862 2863 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) 2864 intel_dp->DP |= DP_SYNC_HS_HIGH; 2865 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) 2866 intel_dp->DP |= DP_SYNC_VS_HIGH; 2867 intel_dp->DP |= DP_LINK_TRAIN_OFF; 2868 2869 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd)) 2870 intel_dp->DP |= DP_ENHANCED_FRAMING; 2871 2872 if (IS_CHERRYVIEW(dev_priv)) 2873 intel_dp->DP |= DP_PIPE_SEL_CHV(crtc->pipe); 2874 else 2875 intel_dp->DP |= DP_PIPE_SEL(crtc->pipe); 2876 } 2877 } 2878 2879 #define IDLE_ON_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK) 2880 #define IDLE_ON_VALUE (PP_ON | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE) 2881 2882 #define IDLE_OFF_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | 0) 2883 #define IDLE_OFF_VALUE (0 | PP_SEQUENCE_NONE | 0 | 0) 2884 2885 #define IDLE_CYCLE_MASK (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK) 2886 #define IDLE_CYCLE_VALUE (0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE) 2887 2888 static void intel_pps_verify_state(struct intel_dp *intel_dp); 2889 2890 static void wait_panel_status(struct intel_dp *intel_dp, 2891 u32 mask, 2892 u32 value) 2893 { 2894 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2895 i915_reg_t pp_stat_reg, pp_ctrl_reg; 2896 2897 lockdep_assert_held(&dev_priv->pps_mutex); 2898 2899 intel_pps_verify_state(intel_dp); 2900 2901 pp_stat_reg = _pp_stat_reg(intel_dp); 2902 pp_ctrl_reg = _pp_ctrl_reg(intel_dp); 2903 2904 drm_dbg_kms(&dev_priv->drm, 2905 "mask %08x value %08x status %08x control %08x\n", 2906 mask, value, 2907 intel_de_read(dev_priv, pp_stat_reg), 2908 intel_de_read(dev_priv, pp_ctrl_reg)); 2909 2910 if (intel_de_wait_for_register(dev_priv, pp_stat_reg, 2911 mask, value, 5000)) 2912 drm_err(&dev_priv->drm, 2913 "Panel status timeout: status %08x control %08x\n", 2914 intel_de_read(dev_priv, pp_stat_reg), 2915 intel_de_read(dev_priv, pp_ctrl_reg)); 2916 2917 drm_dbg_kms(&dev_priv->drm, "Wait complete\n"); 2918 } 2919 2920 static void wait_panel_on(struct intel_dp *intel_dp) 2921 { 2922 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 2923 2924 drm_dbg_kms(&i915->drm, "Wait for panel power on\n"); 2925 wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE); 2926 } 2927 2928 static void wait_panel_off(struct intel_dp *intel_dp) 2929 { 2930 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 2931 2932 drm_dbg_kms(&i915->drm, "Wait for panel power off time\n"); 2933 wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE); 2934 } 2935 2936 static void wait_panel_power_cycle(struct intel_dp *intel_dp) 2937 { 2938 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 2939 ktime_t panel_power_on_time; 2940 s64 panel_power_off_duration; 2941 2942 drm_dbg_kms(&i915->drm, "Wait for panel power cycle\n"); 2943 2944 /* take the difference of currrent time and panel power off time 2945 * and then make panel wait for t11_t12 if needed. */ 2946 panel_power_on_time = ktime_get_boottime(); 2947 panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time); 2948 2949 /* When we disable the VDD override bit last we have to do the manual 2950 * wait. */ 2951 if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay) 2952 wait_remaining_ms_from_jiffies(jiffies, 2953 intel_dp->panel_power_cycle_delay - panel_power_off_duration); 2954 2955 wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE); 2956 } 2957 2958 static void wait_backlight_on(struct intel_dp *intel_dp) 2959 { 2960 wait_remaining_ms_from_jiffies(intel_dp->last_power_on, 2961 intel_dp->backlight_on_delay); 2962 } 2963 2964 static void edp_wait_backlight_off(struct intel_dp *intel_dp) 2965 { 2966 wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off, 2967 intel_dp->backlight_off_delay); 2968 } 2969 2970 /* Read the current pp_control value, unlocking the register if it 2971 * is locked 2972 */ 2973 2974 static u32 ilk_get_pp_control(struct intel_dp *intel_dp) 2975 { 2976 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2977 u32 control; 2978 2979 lockdep_assert_held(&dev_priv->pps_mutex); 2980 2981 control = intel_de_read(dev_priv, _pp_ctrl_reg(intel_dp)); 2982 if (drm_WARN_ON(&dev_priv->drm, !HAS_DDI(dev_priv) && 2983 (control & PANEL_UNLOCK_MASK) != PANEL_UNLOCK_REGS)) { 2984 control &= ~PANEL_UNLOCK_MASK; 2985 control |= PANEL_UNLOCK_REGS; 2986 } 2987 return control; 2988 } 2989 2990 /* 2991 * Must be paired with edp_panel_vdd_off(). 2992 * Must hold pps_mutex around the whole on/off sequence. 2993 * Can be nested with intel_edp_panel_vdd_{on,off}() calls. 2994 */ 2995 static bool edp_panel_vdd_on(struct intel_dp *intel_dp) 2996 { 2997 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2998 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 2999 u32 pp; 3000 i915_reg_t pp_stat_reg, pp_ctrl_reg; 3001 bool need_to_disable = !intel_dp->want_panel_vdd; 3002 3003 lockdep_assert_held(&dev_priv->pps_mutex); 3004 3005 if (!intel_dp_is_edp(intel_dp)) 3006 return false; 3007 3008 cancel_delayed_work(&intel_dp->panel_vdd_work); 3009 intel_dp->want_panel_vdd = true; 3010 3011 if (edp_have_panel_vdd(intel_dp)) 3012 return need_to_disable; 3013 3014 intel_display_power_get(dev_priv, 3015 intel_aux_power_domain(dig_port)); 3016 3017 drm_dbg_kms(&dev_priv->drm, "Turning [ENCODER:%d:%s] VDD on\n", 3018 dig_port->base.base.base.id, 3019 dig_port->base.base.name); 3020 3021 if (!edp_have_panel_power(intel_dp)) 3022 wait_panel_power_cycle(intel_dp); 3023 3024 pp = ilk_get_pp_control(intel_dp); 3025 pp |= EDP_FORCE_VDD; 3026 3027 pp_stat_reg = _pp_stat_reg(intel_dp); 3028 pp_ctrl_reg = _pp_ctrl_reg(intel_dp); 3029 3030 intel_de_write(dev_priv, pp_ctrl_reg, pp); 3031 intel_de_posting_read(dev_priv, pp_ctrl_reg); 3032 drm_dbg_kms(&dev_priv->drm, "PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n", 3033 intel_de_read(dev_priv, pp_stat_reg), 3034 intel_de_read(dev_priv, pp_ctrl_reg)); 3035 /* 3036 * If the panel wasn't on, delay before accessing aux channel 3037 */ 3038 if (!edp_have_panel_power(intel_dp)) { 3039 drm_dbg_kms(&dev_priv->drm, 3040 "[ENCODER:%d:%s] panel power wasn't enabled\n", 3041 dig_port->base.base.base.id, 3042 dig_port->base.base.name); 3043 drm_msleep(intel_dp->panel_power_up_delay); 3044 } 3045 3046 return need_to_disable; 3047 } 3048 3049 /* 3050 * Must be paired with intel_edp_panel_vdd_off() or 3051 * intel_edp_panel_off(). 3052 * Nested calls to these functions are not allowed since 3053 * we drop the lock. Caller must use some higher level 3054 * locking to prevent nested calls from other threads. 3055 */ 3056 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp) 3057 { 3058 intel_wakeref_t wakeref; 3059 bool vdd; 3060 3061 if (!intel_dp_is_edp(intel_dp)) 3062 return; 3063 3064 vdd = false; 3065 with_pps_lock(intel_dp, wakeref) 3066 vdd = edp_panel_vdd_on(intel_dp); 3067 I915_STATE_WARN(!vdd, "[ENCODER:%d:%s] VDD already requested on\n", 3068 dp_to_dig_port(intel_dp)->base.base.base.id, 3069 dp_to_dig_port(intel_dp)->base.base.name); 3070 } 3071 3072 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp) 3073 { 3074 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 3075 struct intel_digital_port *dig_port = 3076 dp_to_dig_port(intel_dp); 3077 u32 pp; 3078 i915_reg_t pp_stat_reg, pp_ctrl_reg; 3079 3080 lockdep_assert_held(&dev_priv->pps_mutex); 3081 3082 drm_WARN_ON(&dev_priv->drm, intel_dp->want_panel_vdd); 3083 3084 if (!edp_have_panel_vdd(intel_dp)) 3085 return; 3086 3087 drm_dbg_kms(&dev_priv->drm, "Turning [ENCODER:%d:%s] VDD off\n", 3088 dig_port->base.base.base.id, 3089 dig_port->base.base.name); 3090 3091 pp = ilk_get_pp_control(intel_dp); 3092 pp &= ~EDP_FORCE_VDD; 3093 3094 pp_ctrl_reg = _pp_ctrl_reg(intel_dp); 3095 pp_stat_reg = _pp_stat_reg(intel_dp); 3096 3097 intel_de_write(dev_priv, pp_ctrl_reg, pp); 3098 intel_de_posting_read(dev_priv, pp_ctrl_reg); 3099 3100 /* Make sure sequencer is idle before allowing subsequent activity */ 3101 drm_dbg_kms(&dev_priv->drm, "PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n", 3102 intel_de_read(dev_priv, pp_stat_reg), 3103 intel_de_read(dev_priv, pp_ctrl_reg)); 3104 3105 if ((pp & PANEL_POWER_ON) == 0) 3106 intel_dp->panel_power_off_time = ktime_get_boottime(); 3107 3108 intel_display_power_put_unchecked(dev_priv, 3109 intel_aux_power_domain(dig_port)); 3110 } 3111 3112 static void edp_panel_vdd_work(struct work_struct *__work) 3113 { 3114 struct intel_dp *intel_dp = 3115 container_of(to_delayed_work(__work), 3116 struct intel_dp, panel_vdd_work); 3117 intel_wakeref_t wakeref; 3118 3119 with_pps_lock(intel_dp, wakeref) { 3120 if (!intel_dp->want_panel_vdd) 3121 edp_panel_vdd_off_sync(intel_dp); 3122 } 3123 } 3124 3125 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp) 3126 { 3127 unsigned long delay; 3128 3129 /* 3130 * Queue the timer to fire a long time from now (relative to the power 3131 * down delay) to keep the panel power up across a sequence of 3132 * operations. 3133 */ 3134 delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5); 3135 schedule_delayed_work(&intel_dp->panel_vdd_work, delay); 3136 } 3137 3138 /* 3139 * Must be paired with edp_panel_vdd_on(). 3140 * Must hold pps_mutex around the whole on/off sequence. 3141 * Can be nested with intel_edp_panel_vdd_{on,off}() calls. 3142 */ 3143 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync) 3144 { 3145 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 3146 3147 lockdep_assert_held(&dev_priv->pps_mutex); 3148 3149 if (!intel_dp_is_edp(intel_dp)) 3150 return; 3151 3152 I915_STATE_WARN(!intel_dp->want_panel_vdd, "[ENCODER:%d:%s] VDD not forced on", 3153 dp_to_dig_port(intel_dp)->base.base.base.id, 3154 dp_to_dig_port(intel_dp)->base.base.name); 3155 3156 intel_dp->want_panel_vdd = false; 3157 3158 if (sync) 3159 edp_panel_vdd_off_sync(intel_dp); 3160 else 3161 edp_panel_vdd_schedule_off(intel_dp); 3162 } 3163 3164 static void edp_panel_on(struct intel_dp *intel_dp) 3165 { 3166 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 3167 u32 pp; 3168 i915_reg_t pp_ctrl_reg; 3169 3170 lockdep_assert_held(&dev_priv->pps_mutex); 3171 3172 if (!intel_dp_is_edp(intel_dp)) 3173 return; 3174 3175 drm_dbg_kms(&dev_priv->drm, "Turn [ENCODER:%d:%s] panel power on\n", 3176 dp_to_dig_port(intel_dp)->base.base.base.id, 3177 dp_to_dig_port(intel_dp)->base.base.name); 3178 3179 if (drm_WARN(&dev_priv->drm, edp_have_panel_power(intel_dp), 3180 "[ENCODER:%d:%s] panel power already on\n", 3181 dp_to_dig_port(intel_dp)->base.base.base.id, 3182 dp_to_dig_port(intel_dp)->base.base.name)) 3183 return; 3184 3185 wait_panel_power_cycle(intel_dp); 3186 3187 pp_ctrl_reg = _pp_ctrl_reg(intel_dp); 3188 pp = ilk_get_pp_control(intel_dp); 3189 if (IS_GEN(dev_priv, 5)) { 3190 /* ILK workaround: disable reset around power sequence */ 3191 pp &= ~PANEL_POWER_RESET; 3192 intel_de_write(dev_priv, pp_ctrl_reg, pp); 3193 intel_de_posting_read(dev_priv, pp_ctrl_reg); 3194 } 3195 3196 pp |= PANEL_POWER_ON; 3197 if (!IS_GEN(dev_priv, 5)) 3198 pp |= PANEL_POWER_RESET; 3199 3200 intel_de_write(dev_priv, pp_ctrl_reg, pp); 3201 intel_de_posting_read(dev_priv, pp_ctrl_reg); 3202 3203 wait_panel_on(intel_dp); 3204 intel_dp->last_power_on = jiffies; 3205 3206 if (IS_GEN(dev_priv, 5)) { 3207 pp |= PANEL_POWER_RESET; /* restore panel reset bit */ 3208 intel_de_write(dev_priv, pp_ctrl_reg, pp); 3209 intel_de_posting_read(dev_priv, pp_ctrl_reg); 3210 } 3211 } 3212 3213 void intel_edp_panel_on(struct intel_dp *intel_dp) 3214 { 3215 intel_wakeref_t wakeref; 3216 3217 if (!intel_dp_is_edp(intel_dp)) 3218 return; 3219 3220 with_pps_lock(intel_dp, wakeref) 3221 edp_panel_on(intel_dp); 3222 } 3223 3224 3225 static void edp_panel_off(struct intel_dp *intel_dp) 3226 { 3227 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 3228 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 3229 u32 pp; 3230 i915_reg_t pp_ctrl_reg; 3231 3232 lockdep_assert_held(&dev_priv->pps_mutex); 3233 3234 if (!intel_dp_is_edp(intel_dp)) 3235 return; 3236 3237 drm_dbg_kms(&dev_priv->drm, "Turn [ENCODER:%d:%s] panel power off\n", 3238 dig_port->base.base.base.id, dig_port->base.base.name); 3239 3240 drm_WARN(&dev_priv->drm, !intel_dp->want_panel_vdd, 3241 "Need [ENCODER:%d:%s] VDD to turn off panel\n", 3242 dig_port->base.base.base.id, dig_port->base.base.name); 3243 3244 pp = ilk_get_pp_control(intel_dp); 3245 /* We need to switch off panel power _and_ force vdd, for otherwise some 3246 * panels get very unhappy and cease to work. */ 3247 pp &= ~(PANEL_POWER_ON | PANEL_POWER_RESET | EDP_FORCE_VDD | 3248 EDP_BLC_ENABLE); 3249 3250 pp_ctrl_reg = _pp_ctrl_reg(intel_dp); 3251 3252 intel_dp->want_panel_vdd = false; 3253 3254 intel_de_write(dev_priv, pp_ctrl_reg, pp); 3255 intel_de_posting_read(dev_priv, pp_ctrl_reg); 3256 3257 wait_panel_off(intel_dp); 3258 intel_dp->panel_power_off_time = ktime_get_boottime(); 3259 3260 /* We got a reference when we enabled the VDD. */ 3261 intel_display_power_put_unchecked(dev_priv, intel_aux_power_domain(dig_port)); 3262 } 3263 3264 void intel_edp_panel_off(struct intel_dp *intel_dp) 3265 { 3266 intel_wakeref_t wakeref; 3267 3268 if (!intel_dp_is_edp(intel_dp)) 3269 return; 3270 3271 with_pps_lock(intel_dp, wakeref) 3272 edp_panel_off(intel_dp); 3273 } 3274 3275 /* Enable backlight in the panel power control. */ 3276 static void _intel_edp_backlight_on(struct intel_dp *intel_dp) 3277 { 3278 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 3279 intel_wakeref_t wakeref; 3280 3281 /* 3282 * If we enable the backlight right away following a panel power 3283 * on, we may see slight flicker as the panel syncs with the eDP 3284 * link. So delay a bit to make sure the image is solid before 3285 * allowing it to appear. 3286 */ 3287 wait_backlight_on(intel_dp); 3288 3289 with_pps_lock(intel_dp, wakeref) { 3290 i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp); 3291 u32 pp; 3292 3293 pp = ilk_get_pp_control(intel_dp); 3294 pp |= EDP_BLC_ENABLE; 3295 3296 intel_de_write(dev_priv, pp_ctrl_reg, pp); 3297 intel_de_posting_read(dev_priv, pp_ctrl_reg); 3298 } 3299 } 3300 3301 /* Enable backlight PWM and backlight PP control. */ 3302 void intel_edp_backlight_on(const struct intel_crtc_state *crtc_state, 3303 const struct drm_connector_state *conn_state) 3304 { 3305 struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(conn_state->best_encoder)); 3306 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 3307 3308 if (!intel_dp_is_edp(intel_dp)) 3309 return; 3310 3311 drm_dbg_kms(&i915->drm, "\n"); 3312 3313 intel_panel_enable_backlight(crtc_state, conn_state); 3314 _intel_edp_backlight_on(intel_dp); 3315 } 3316 3317 /* Disable backlight in the panel power control. */ 3318 static void _intel_edp_backlight_off(struct intel_dp *intel_dp) 3319 { 3320 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 3321 intel_wakeref_t wakeref; 3322 3323 if (!intel_dp_is_edp(intel_dp)) 3324 return; 3325 3326 with_pps_lock(intel_dp, wakeref) { 3327 i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp); 3328 u32 pp; 3329 3330 pp = ilk_get_pp_control(intel_dp); 3331 pp &= ~EDP_BLC_ENABLE; 3332 3333 intel_de_write(dev_priv, pp_ctrl_reg, pp); 3334 intel_de_posting_read(dev_priv, pp_ctrl_reg); 3335 } 3336 3337 intel_dp->last_backlight_off = jiffies; 3338 edp_wait_backlight_off(intel_dp); 3339 } 3340 3341 /* Disable backlight PP control and backlight PWM. */ 3342 void intel_edp_backlight_off(const struct drm_connector_state *old_conn_state) 3343 { 3344 struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(old_conn_state->best_encoder)); 3345 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 3346 3347 if (!intel_dp_is_edp(intel_dp)) 3348 return; 3349 3350 drm_dbg_kms(&i915->drm, "\n"); 3351 3352 _intel_edp_backlight_off(intel_dp); 3353 intel_panel_disable_backlight(old_conn_state); 3354 } 3355 3356 /* 3357 * Hook for controlling the panel power control backlight through the bl_power 3358 * sysfs attribute. Take care to handle multiple calls. 3359 */ 3360 static void intel_edp_backlight_power(struct intel_connector *connector, 3361 bool enable) 3362 { 3363 struct drm_i915_private *i915 = to_i915(connector->base.dev); 3364 struct intel_dp *intel_dp = intel_attached_dp(connector); 3365 intel_wakeref_t wakeref; 3366 bool is_enabled; 3367 3368 is_enabled = false; 3369 with_pps_lock(intel_dp, wakeref) 3370 is_enabled = ilk_get_pp_control(intel_dp) & EDP_BLC_ENABLE; 3371 if (is_enabled == enable) 3372 return; 3373 3374 drm_dbg_kms(&i915->drm, "panel power control backlight %s\n", 3375 enable ? "enable" : "disable"); 3376 3377 if (enable) 3378 _intel_edp_backlight_on(intel_dp); 3379 else 3380 _intel_edp_backlight_off(intel_dp); 3381 } 3382 3383 static void assert_dp_port(struct intel_dp *intel_dp, bool state) 3384 { 3385 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 3386 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); 3387 bool cur_state = intel_de_read(dev_priv, intel_dp->output_reg) & DP_PORT_EN; 3388 3389 I915_STATE_WARN(cur_state != state, 3390 "[ENCODER:%d:%s] state assertion failure (expected %s, current %s)\n", 3391 dig_port->base.base.base.id, dig_port->base.base.name, 3392 onoff(state), onoff(cur_state)); 3393 } 3394 #define assert_dp_port_disabled(d) assert_dp_port((d), false) 3395 3396 static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state) 3397 { 3398 bool cur_state = intel_de_read(dev_priv, DP_A) & DP_PLL_ENABLE; 3399 3400 I915_STATE_WARN(cur_state != state, 3401 "eDP PLL state assertion failure (expected %s, current %s)\n", 3402 onoff(state), onoff(cur_state)); 3403 } 3404 #define assert_edp_pll_enabled(d) assert_edp_pll((d), true) 3405 #define assert_edp_pll_disabled(d) assert_edp_pll((d), false) 3406 3407 static void ilk_edp_pll_on(struct intel_dp *intel_dp, 3408 const struct intel_crtc_state *pipe_config) 3409 { 3410 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc); 3411 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3412 3413 assert_pipe_disabled(dev_priv, pipe_config->cpu_transcoder); 3414 assert_dp_port_disabled(intel_dp); 3415 assert_edp_pll_disabled(dev_priv); 3416 3417 drm_dbg_kms(&dev_priv->drm, "enabling eDP PLL for clock %d\n", 3418 pipe_config->port_clock); 3419 3420 intel_dp->DP &= ~DP_PLL_FREQ_MASK; 3421 3422 if (pipe_config->port_clock == 162000) 3423 intel_dp->DP |= DP_PLL_FREQ_162MHZ; 3424 else 3425 intel_dp->DP |= DP_PLL_FREQ_270MHZ; 3426 3427 intel_de_write(dev_priv, DP_A, intel_dp->DP); 3428 intel_de_posting_read(dev_priv, DP_A); 3429 udelay(500); 3430 3431 /* 3432 * [DevILK] Work around required when enabling DP PLL 3433 * while a pipe is enabled going to FDI: 3434 * 1. Wait for the start of vertical blank on the enabled pipe going to FDI 3435 * 2. Program DP PLL enable 3436 */ 3437 if (IS_GEN(dev_priv, 5)) 3438 intel_wait_for_vblank_if_active(dev_priv, !crtc->pipe); 3439 3440 intel_dp->DP |= DP_PLL_ENABLE; 3441 3442 intel_de_write(dev_priv, DP_A, intel_dp->DP); 3443 intel_de_posting_read(dev_priv, DP_A); 3444 udelay(200); 3445 } 3446 3447 static void ilk_edp_pll_off(struct intel_dp *intel_dp, 3448 const struct intel_crtc_state *old_crtc_state) 3449 { 3450 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); 3451 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3452 3453 assert_pipe_disabled(dev_priv, old_crtc_state->cpu_transcoder); 3454 assert_dp_port_disabled(intel_dp); 3455 assert_edp_pll_enabled(dev_priv); 3456 3457 drm_dbg_kms(&dev_priv->drm, "disabling eDP PLL\n"); 3458 3459 intel_dp->DP &= ~DP_PLL_ENABLE; 3460 3461 intel_de_write(dev_priv, DP_A, intel_dp->DP); 3462 intel_de_posting_read(dev_priv, DP_A); 3463 udelay(200); 3464 } 3465 3466 static bool downstream_hpd_needs_d0(struct intel_dp *intel_dp) 3467 { 3468 /* 3469 * DPCD 1.2+ should support BRANCH_DEVICE_CTRL, and thus 3470 * be capable of signalling downstream hpd with a long pulse. 3471 * Whether or not that means D3 is safe to use is not clear, 3472 * but let's assume so until proven otherwise. 3473 * 3474 * FIXME should really check all downstream ports... 3475 */ 3476 return intel_dp->dpcd[DP_DPCD_REV] == 0x11 && 3477 drm_dp_is_branch(intel_dp->dpcd) && 3478 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD; 3479 } 3480 3481 void intel_dp_sink_set_decompression_state(struct intel_dp *intel_dp, 3482 const struct intel_crtc_state *crtc_state, 3483 bool enable) 3484 { 3485 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 3486 int ret; 3487 3488 if (!crtc_state->dsc.compression_enable) 3489 return; 3490 3491 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_DSC_ENABLE, 3492 enable ? DP_DECOMPRESSION_EN : 0); 3493 if (ret < 0) 3494 drm_dbg_kms(&i915->drm, 3495 "Failed to %s sink decompression state\n", 3496 enable ? "enable" : "disable"); 3497 } 3498 3499 /* If the device supports it, try to set the power state appropriately */ 3500 void intel_dp_set_power(struct intel_dp *intel_dp, u8 mode) 3501 { 3502 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; 3503 struct drm_i915_private *i915 = to_i915(encoder->base.dev); 3504 int ret, i; 3505 3506 /* Should have a valid DPCD by this point */ 3507 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11) 3508 return; 3509 3510 if (mode != DP_SET_POWER_D0) { 3511 if (downstream_hpd_needs_d0(intel_dp)) 3512 return; 3513 3514 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, mode); 3515 } else { 3516 struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp); 3517 3518 /* 3519 * When turning on, we need to retry for 1ms to give the sink 3520 * time to wake up. 3521 */ 3522 for (i = 0; i < 3; i++) { 3523 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, mode); 3524 if (ret == 1) 3525 break; 3526 drm_msleep(1); 3527 } 3528 3529 if (ret == 1 && lspcon->active) 3530 lspcon_wait_pcon_mode(lspcon); 3531 } 3532 3533 if (ret != 1) 3534 drm_dbg_kms(&i915->drm, "[ENCODER:%d:%s] Set power to %s failed\n", 3535 encoder->base.base.id, encoder->base.name, 3536 mode == DP_SET_POWER_D0 ? "D0" : "D3"); 3537 } 3538 3539 static bool cpt_dp_port_selected(struct drm_i915_private *dev_priv, 3540 enum port port, enum pipe *pipe) 3541 { 3542 enum pipe p; 3543 3544 for_each_pipe(dev_priv, p) { 3545 u32 val = intel_de_read(dev_priv, TRANS_DP_CTL(p)); 3546 3547 if ((val & TRANS_DP_PORT_SEL_MASK) == TRANS_DP_PORT_SEL(port)) { 3548 *pipe = p; 3549 return true; 3550 } 3551 } 3552 3553 drm_dbg_kms(&dev_priv->drm, "No pipe for DP port %c found\n", 3554 port_name(port)); 3555 3556 /* must initialize pipe to something for the asserts */ 3557 *pipe = PIPE_A; 3558 3559 return false; 3560 } 3561 3562 bool intel_dp_port_enabled(struct drm_i915_private *dev_priv, 3563 i915_reg_t dp_reg, enum port port, 3564 enum pipe *pipe) 3565 { 3566 bool ret; 3567 u32 val; 3568 3569 val = intel_de_read(dev_priv, dp_reg); 3570 3571 ret = val & DP_PORT_EN; 3572 3573 /* asserts want to know the pipe even if the port is disabled */ 3574 if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) 3575 *pipe = (val & DP_PIPE_SEL_MASK_IVB) >> DP_PIPE_SEL_SHIFT_IVB; 3576 else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) 3577 ret &= cpt_dp_port_selected(dev_priv, port, pipe); 3578 else if (IS_CHERRYVIEW(dev_priv)) 3579 *pipe = (val & DP_PIPE_SEL_MASK_CHV) >> DP_PIPE_SEL_SHIFT_CHV; 3580 else 3581 *pipe = (val & DP_PIPE_SEL_MASK) >> DP_PIPE_SEL_SHIFT; 3582 3583 return ret; 3584 } 3585 3586 static bool intel_dp_get_hw_state(struct intel_encoder *encoder, 3587 enum pipe *pipe) 3588 { 3589 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 3590 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 3591 intel_wakeref_t wakeref; 3592 bool ret; 3593 3594 wakeref = intel_display_power_get_if_enabled(dev_priv, 3595 encoder->power_domain); 3596 if (!wakeref) 3597 return false; 3598 3599 ret = intel_dp_port_enabled(dev_priv, intel_dp->output_reg, 3600 encoder->port, pipe); 3601 3602 intel_display_power_put(dev_priv, encoder->power_domain, wakeref); 3603 3604 return ret; 3605 } 3606 3607 static void intel_dp_get_config(struct intel_encoder *encoder, 3608 struct intel_crtc_state *pipe_config) 3609 { 3610 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 3611 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 3612 u32 tmp, flags = 0; 3613 enum port port = encoder->port; 3614 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc); 3615 3616 if (encoder->type == INTEL_OUTPUT_EDP) 3617 pipe_config->output_types |= BIT(INTEL_OUTPUT_EDP); 3618 else 3619 pipe_config->output_types |= BIT(INTEL_OUTPUT_DP); 3620 3621 tmp = intel_de_read(dev_priv, intel_dp->output_reg); 3622 3623 pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A; 3624 3625 if (HAS_PCH_CPT(dev_priv) && port != PORT_A) { 3626 u32 trans_dp = intel_de_read(dev_priv, 3627 TRANS_DP_CTL(crtc->pipe)); 3628 3629 if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH) 3630 flags |= DRM_MODE_FLAG_PHSYNC; 3631 else 3632 flags |= DRM_MODE_FLAG_NHSYNC; 3633 3634 if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH) 3635 flags |= DRM_MODE_FLAG_PVSYNC; 3636 else 3637 flags |= DRM_MODE_FLAG_NVSYNC; 3638 } else { 3639 if (tmp & DP_SYNC_HS_HIGH) 3640 flags |= DRM_MODE_FLAG_PHSYNC; 3641 else 3642 flags |= DRM_MODE_FLAG_NHSYNC; 3643 3644 if (tmp & DP_SYNC_VS_HIGH) 3645 flags |= DRM_MODE_FLAG_PVSYNC; 3646 else 3647 flags |= DRM_MODE_FLAG_NVSYNC; 3648 } 3649 3650 pipe_config->hw.adjusted_mode.flags |= flags; 3651 3652 if (IS_G4X(dev_priv) && tmp & DP_COLOR_RANGE_16_235) 3653 pipe_config->limited_color_range = true; 3654 3655 pipe_config->lane_count = 3656 ((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1; 3657 3658 intel_dp_get_m_n(crtc, pipe_config); 3659 3660 if (port == PORT_A) { 3661 if ((intel_de_read(dev_priv, DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ) 3662 pipe_config->port_clock = 162000; 3663 else 3664 pipe_config->port_clock = 270000; 3665 } 3666 3667 pipe_config->hw.adjusted_mode.crtc_clock = 3668 intel_dotclock_calculate(pipe_config->port_clock, 3669 &pipe_config->dp_m_n); 3670 3671 if (intel_dp_is_edp(intel_dp) && dev_priv->vbt.edp.bpp && 3672 pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) { 3673 /* 3674 * This is a big fat ugly hack. 3675 * 3676 * Some machines in UEFI boot mode provide us a VBT that has 18 3677 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons 3678 * unknown we fail to light up. Yet the same BIOS boots up with 3679 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as 3680 * max, not what it tells us to use. 3681 * 3682 * Note: This will still be broken if the eDP panel is not lit 3683 * up by the BIOS, and thus we can't get the mode at module 3684 * load. 3685 */ 3686 drm_dbg_kms(&dev_priv->drm, 3687 "pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n", 3688 pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp); 3689 dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp; 3690 } 3691 } 3692 3693 static void intel_disable_dp(struct intel_atomic_state *state, 3694 struct intel_encoder *encoder, 3695 const struct intel_crtc_state *old_crtc_state, 3696 const struct drm_connector_state *old_conn_state) 3697 { 3698 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 3699 3700 intel_dp->link_trained = false; 3701 3702 if (old_crtc_state->has_audio) 3703 intel_audio_codec_disable(encoder, 3704 old_crtc_state, old_conn_state); 3705 3706 /* Make sure the panel is off before trying to change the mode. But also 3707 * ensure that we have vdd while we switch off the panel. */ 3708 intel_edp_panel_vdd_on(intel_dp); 3709 intel_edp_backlight_off(old_conn_state); 3710 intel_dp_set_power(intel_dp, DP_SET_POWER_D3); 3711 intel_edp_panel_off(intel_dp); 3712 } 3713 3714 static void g4x_disable_dp(struct intel_atomic_state *state, 3715 struct intel_encoder *encoder, 3716 const struct intel_crtc_state *old_crtc_state, 3717 const struct drm_connector_state *old_conn_state) 3718 { 3719 intel_disable_dp(state, encoder, old_crtc_state, old_conn_state); 3720 } 3721 3722 static void vlv_disable_dp(struct intel_atomic_state *state, 3723 struct intel_encoder *encoder, 3724 const struct intel_crtc_state *old_crtc_state, 3725 const struct drm_connector_state *old_conn_state) 3726 { 3727 intel_disable_dp(state, encoder, old_crtc_state, old_conn_state); 3728 } 3729 3730 static void g4x_post_disable_dp(struct intel_atomic_state *state, 3731 struct intel_encoder *encoder, 3732 const struct intel_crtc_state *old_crtc_state, 3733 const struct drm_connector_state *old_conn_state) 3734 { 3735 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 3736 enum port port = encoder->port; 3737 3738 /* 3739 * Bspec does not list a specific disable sequence for g4x DP. 3740 * Follow the ilk+ sequence (disable pipe before the port) for 3741 * g4x DP as it does not suffer from underruns like the normal 3742 * g4x modeset sequence (disable pipe after the port). 3743 */ 3744 intel_dp_link_down(encoder, old_crtc_state); 3745 3746 /* Only ilk+ has port A */ 3747 if (port == PORT_A) 3748 ilk_edp_pll_off(intel_dp, old_crtc_state); 3749 } 3750 3751 static void vlv_post_disable_dp(struct intel_atomic_state *state, 3752 struct intel_encoder *encoder, 3753 const struct intel_crtc_state *old_crtc_state, 3754 const struct drm_connector_state *old_conn_state) 3755 { 3756 intel_dp_link_down(encoder, old_crtc_state); 3757 } 3758 3759 static void chv_post_disable_dp(struct intel_atomic_state *state, 3760 struct intel_encoder *encoder, 3761 const struct intel_crtc_state *old_crtc_state, 3762 const struct drm_connector_state *old_conn_state) 3763 { 3764 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 3765 3766 intel_dp_link_down(encoder, old_crtc_state); 3767 3768 vlv_dpio_get(dev_priv); 3769 3770 /* Assert data lane reset */ 3771 chv_data_lane_soft_reset(encoder, old_crtc_state, true); 3772 3773 vlv_dpio_put(dev_priv); 3774 } 3775 3776 static void 3777 cpt_set_link_train(struct intel_dp *intel_dp, 3778 u8 dp_train_pat) 3779 { 3780 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 3781 u32 *DP = &intel_dp->DP; 3782 3783 *DP &= ~DP_LINK_TRAIN_MASK_CPT; 3784 3785 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) { 3786 case DP_TRAINING_PATTERN_DISABLE: 3787 *DP |= DP_LINK_TRAIN_OFF_CPT; 3788 break; 3789 case DP_TRAINING_PATTERN_1: 3790 *DP |= DP_LINK_TRAIN_PAT_1_CPT; 3791 break; 3792 case DP_TRAINING_PATTERN_2: 3793 *DP |= DP_LINK_TRAIN_PAT_2_CPT; 3794 break; 3795 case DP_TRAINING_PATTERN_3: 3796 drm_dbg_kms(&dev_priv->drm, 3797 "TPS3 not supported, using TPS2 instead\n"); 3798 *DP |= DP_LINK_TRAIN_PAT_2_CPT; 3799 break; 3800 } 3801 3802 intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP); 3803 intel_de_posting_read(dev_priv, intel_dp->output_reg); 3804 } 3805 3806 static void 3807 g4x_set_link_train(struct intel_dp *intel_dp, 3808 u8 dp_train_pat) 3809 { 3810 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 3811 u32 *DP = &intel_dp->DP; 3812 3813 *DP &= ~DP_LINK_TRAIN_MASK; 3814 3815 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) { 3816 case DP_TRAINING_PATTERN_DISABLE: 3817 *DP |= DP_LINK_TRAIN_OFF; 3818 break; 3819 case DP_TRAINING_PATTERN_1: 3820 *DP |= DP_LINK_TRAIN_PAT_1; 3821 break; 3822 case DP_TRAINING_PATTERN_2: 3823 *DP |= DP_LINK_TRAIN_PAT_2; 3824 break; 3825 case DP_TRAINING_PATTERN_3: 3826 drm_dbg_kms(&dev_priv->drm, 3827 "TPS3 not supported, using TPS2 instead\n"); 3828 *DP |= DP_LINK_TRAIN_PAT_2; 3829 break; 3830 } 3831 3832 intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP); 3833 intel_de_posting_read(dev_priv, intel_dp->output_reg); 3834 } 3835 3836 static void intel_dp_enable_port(struct intel_dp *intel_dp, 3837 const struct intel_crtc_state *old_crtc_state) 3838 { 3839 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 3840 3841 /* enable with pattern 1 (as per spec) */ 3842 3843 intel_dp_program_link_training_pattern(intel_dp, DP_TRAINING_PATTERN_1); 3844 3845 /* 3846 * Magic for VLV/CHV. We _must_ first set up the register 3847 * without actually enabling the port, and then do another 3848 * write to enable the port. Otherwise link training will 3849 * fail when the power sequencer is freshly used for this port. 3850 */ 3851 intel_dp->DP |= DP_PORT_EN; 3852 if (old_crtc_state->has_audio) 3853 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE; 3854 3855 intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP); 3856 intel_de_posting_read(dev_priv, intel_dp->output_reg); 3857 } 3858 3859 void intel_dp_configure_protocol_converter(struct intel_dp *intel_dp, 3860 const struct intel_crtc_state *crtc_state) 3861 { 3862 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 3863 u8 tmp; 3864 3865 if (intel_dp->dpcd[DP_DPCD_REV] < 0x13) 3866 return; 3867 3868 if (!drm_dp_is_branch(intel_dp->dpcd)) 3869 return; 3870 3871 tmp = intel_dp->has_hdmi_sink ? 3872 DP_HDMI_DVI_OUTPUT_CONFIG : 0; 3873 3874 if (drm_dp_dpcd_writeb(&intel_dp->aux, 3875 DP_PROTOCOL_CONVERTER_CONTROL_0, tmp) != 1) 3876 drm_dbg_kms(&i915->drm, "Failed to set protocol converter HDMI mode to %s\n", 3877 enableddisabled(intel_dp->has_hdmi_sink)); 3878 3879 tmp = crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444 && 3880 intel_dp->dfp.ycbcr_444_to_420 ? DP_CONVERSION_TO_YCBCR420_ENABLE : 0; 3881 3882 if (drm_dp_dpcd_writeb(&intel_dp->aux, 3883 DP_PROTOCOL_CONVERTER_CONTROL_1, tmp) != 1) 3884 drm_dbg_kms(&i915->drm, 3885 "Failed to set protocol converter YCbCr 4:2:0 conversion mode to %s\n", 3886 enableddisabled(intel_dp->dfp.ycbcr_444_to_420)); 3887 3888 tmp = 0; 3889 3890 if (drm_dp_dpcd_writeb(&intel_dp->aux, 3891 DP_PROTOCOL_CONVERTER_CONTROL_2, tmp) <= 0) 3892 drm_dbg_kms(&i915->drm, 3893 "Failed to set protocol converter YCbCr 4:2:2 conversion mode to %s\n", 3894 enableddisabled(false)); 3895 } 3896 3897 static void intel_enable_dp(struct intel_atomic_state *state, 3898 struct intel_encoder *encoder, 3899 const struct intel_crtc_state *pipe_config, 3900 const struct drm_connector_state *conn_state) 3901 { 3902 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 3903 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 3904 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc); 3905 u32 dp_reg = intel_de_read(dev_priv, intel_dp->output_reg); 3906 enum pipe pipe = crtc->pipe; 3907 intel_wakeref_t wakeref; 3908 3909 if (drm_WARN_ON(&dev_priv->drm, dp_reg & DP_PORT_EN)) 3910 return; 3911 3912 with_pps_lock(intel_dp, wakeref) { 3913 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 3914 vlv_init_panel_power_sequencer(encoder, pipe_config); 3915 3916 intel_dp_enable_port(intel_dp, pipe_config); 3917 3918 edp_panel_vdd_on(intel_dp); 3919 edp_panel_on(intel_dp); 3920 edp_panel_vdd_off(intel_dp, true); 3921 } 3922 3923 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 3924 unsigned int lane_mask = 0x0; 3925 3926 if (IS_CHERRYVIEW(dev_priv)) 3927 lane_mask = intel_dp_unused_lane_mask(pipe_config->lane_count); 3928 3929 vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp), 3930 lane_mask); 3931 } 3932 3933 intel_dp_set_power(intel_dp, DP_SET_POWER_D0); 3934 intel_dp_configure_protocol_converter(intel_dp, pipe_config); 3935 intel_dp_start_link_train(intel_dp); 3936 intel_dp_stop_link_train(intel_dp); 3937 3938 if (pipe_config->has_audio) { 3939 drm_dbg(&dev_priv->drm, "Enabling DP audio on pipe %c\n", 3940 pipe_name(pipe)); 3941 intel_audio_codec_enable(encoder, pipe_config, conn_state); 3942 } 3943 } 3944 3945 static void g4x_enable_dp(struct intel_atomic_state *state, 3946 struct intel_encoder *encoder, 3947 const struct intel_crtc_state *pipe_config, 3948 const struct drm_connector_state *conn_state) 3949 { 3950 intel_enable_dp(state, encoder, pipe_config, conn_state); 3951 intel_edp_backlight_on(pipe_config, conn_state); 3952 } 3953 3954 static void vlv_enable_dp(struct intel_atomic_state *state, 3955 struct intel_encoder *encoder, 3956 const struct intel_crtc_state *pipe_config, 3957 const struct drm_connector_state *conn_state) 3958 { 3959 intel_edp_backlight_on(pipe_config, conn_state); 3960 } 3961 3962 static void g4x_pre_enable_dp(struct intel_atomic_state *state, 3963 struct intel_encoder *encoder, 3964 const struct intel_crtc_state *pipe_config, 3965 const struct drm_connector_state *conn_state) 3966 { 3967 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 3968 enum port port = encoder->port; 3969 3970 intel_dp_prepare(encoder, pipe_config); 3971 3972 /* Only ilk+ has port A */ 3973 if (port == PORT_A) 3974 ilk_edp_pll_on(intel_dp, pipe_config); 3975 } 3976 3977 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp) 3978 { 3979 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 3980 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); 3981 enum pipe pipe = intel_dp->pps_pipe; 3982 i915_reg_t pp_on_reg = PP_ON_DELAYS(pipe); 3983 3984 drm_WARN_ON(&dev_priv->drm, intel_dp->active_pipe != INVALID_PIPE); 3985 3986 if (drm_WARN_ON(&dev_priv->drm, pipe != PIPE_A && pipe != PIPE_B)) 3987 return; 3988 3989 edp_panel_vdd_off_sync(intel_dp); 3990 3991 /* 3992 * VLV seems to get confused when multiple power sequencers 3993 * have the same port selected (even if only one has power/vdd 3994 * enabled). The failure manifests as vlv_wait_port_ready() failing 3995 * CHV on the other hand doesn't seem to mind having the same port 3996 * selected in multiple power sequencers, but let's clear the 3997 * port select always when logically disconnecting a power sequencer 3998 * from a port. 3999 */ 4000 drm_dbg_kms(&dev_priv->drm, 4001 "detaching pipe %c power sequencer from [ENCODER:%d:%s]\n", 4002 pipe_name(pipe), dig_port->base.base.base.id, 4003 dig_port->base.base.name); 4004 intel_de_write(dev_priv, pp_on_reg, 0); 4005 intel_de_posting_read(dev_priv, pp_on_reg); 4006 4007 intel_dp->pps_pipe = INVALID_PIPE; 4008 } 4009 4010 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv, 4011 enum pipe pipe) 4012 { 4013 struct intel_encoder *encoder; 4014 4015 lockdep_assert_held(&dev_priv->pps_mutex); 4016 4017 for_each_intel_dp(&dev_priv->drm, encoder) { 4018 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 4019 4020 drm_WARN(&dev_priv->drm, intel_dp->active_pipe == pipe, 4021 "stealing pipe %c power sequencer from active [ENCODER:%d:%s]\n", 4022 pipe_name(pipe), encoder->base.base.id, 4023 encoder->base.name); 4024 4025 if (intel_dp->pps_pipe != pipe) 4026 continue; 4027 4028 drm_dbg_kms(&dev_priv->drm, 4029 "stealing pipe %c power sequencer from [ENCODER:%d:%s]\n", 4030 pipe_name(pipe), encoder->base.base.id, 4031 encoder->base.name); 4032 4033 /* make sure vdd is off before we steal it */ 4034 vlv_detach_power_sequencer(intel_dp); 4035 } 4036 } 4037 4038 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder, 4039 const struct intel_crtc_state *crtc_state) 4040 { 4041 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 4042 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 4043 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 4044 4045 lockdep_assert_held(&dev_priv->pps_mutex); 4046 4047 drm_WARN_ON(&dev_priv->drm, intel_dp->active_pipe != INVALID_PIPE); 4048 4049 if (intel_dp->pps_pipe != INVALID_PIPE && 4050 intel_dp->pps_pipe != crtc->pipe) { 4051 /* 4052 * If another power sequencer was being used on this 4053 * port previously make sure to turn off vdd there while 4054 * we still have control of it. 4055 */ 4056 vlv_detach_power_sequencer(intel_dp); 4057 } 4058 4059 /* 4060 * We may be stealing the power 4061 * sequencer from another port. 4062 */ 4063 vlv_steal_power_sequencer(dev_priv, crtc->pipe); 4064 4065 intel_dp->active_pipe = crtc->pipe; 4066 4067 if (!intel_dp_is_edp(intel_dp)) 4068 return; 4069 4070 /* now it's all ours */ 4071 intel_dp->pps_pipe = crtc->pipe; 4072 4073 drm_dbg_kms(&dev_priv->drm, 4074 "initializing pipe %c power sequencer for [ENCODER:%d:%s]\n", 4075 pipe_name(intel_dp->pps_pipe), encoder->base.base.id, 4076 encoder->base.name); 4077 4078 /* init power sequencer on this pipe and port */ 4079 intel_dp_init_panel_power_sequencer(intel_dp); 4080 intel_dp_init_panel_power_sequencer_registers(intel_dp, true); 4081 } 4082 4083 static void vlv_pre_enable_dp(struct intel_atomic_state *state, 4084 struct intel_encoder *encoder, 4085 const struct intel_crtc_state *pipe_config, 4086 const struct drm_connector_state *conn_state) 4087 { 4088 vlv_phy_pre_encoder_enable(encoder, pipe_config); 4089 4090 intel_enable_dp(state, encoder, pipe_config, conn_state); 4091 } 4092 4093 static void vlv_dp_pre_pll_enable(struct intel_atomic_state *state, 4094 struct intel_encoder *encoder, 4095 const struct intel_crtc_state *pipe_config, 4096 const struct drm_connector_state *conn_state) 4097 { 4098 intel_dp_prepare(encoder, pipe_config); 4099 4100 vlv_phy_pre_pll_enable(encoder, pipe_config); 4101 } 4102 4103 static void chv_pre_enable_dp(struct intel_atomic_state *state, 4104 struct intel_encoder *encoder, 4105 const struct intel_crtc_state *pipe_config, 4106 const struct drm_connector_state *conn_state) 4107 { 4108 chv_phy_pre_encoder_enable(encoder, pipe_config); 4109 4110 intel_enable_dp(state, encoder, pipe_config, conn_state); 4111 4112 /* Second common lane will stay alive on its own now */ 4113 chv_phy_release_cl2_override(encoder); 4114 } 4115 4116 static void chv_dp_pre_pll_enable(struct intel_atomic_state *state, 4117 struct intel_encoder *encoder, 4118 const struct intel_crtc_state *pipe_config, 4119 const struct drm_connector_state *conn_state) 4120 { 4121 intel_dp_prepare(encoder, pipe_config); 4122 4123 chv_phy_pre_pll_enable(encoder, pipe_config); 4124 } 4125 4126 static void chv_dp_post_pll_disable(struct intel_atomic_state *state, 4127 struct intel_encoder *encoder, 4128 const struct intel_crtc_state *old_crtc_state, 4129 const struct drm_connector_state *old_conn_state) 4130 { 4131 chv_phy_post_pll_disable(encoder, old_crtc_state); 4132 } 4133 4134 /* 4135 * Fetch AUX CH registers 0x202 - 0x207 which contain 4136 * link status information 4137 */ 4138 bool 4139 intel_dp_get_link_status(struct intel_dp *intel_dp, u8 *link_status) 4140 { 4141 return drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS, link_status, 4142 DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE; 4143 } 4144 4145 static u8 intel_dp_voltage_max_2(struct intel_dp *intel_dp) 4146 { 4147 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2; 4148 } 4149 4150 static u8 intel_dp_voltage_max_3(struct intel_dp *intel_dp) 4151 { 4152 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3; 4153 } 4154 4155 static u8 intel_dp_pre_empemph_max_2(struct intel_dp *intel_dp) 4156 { 4157 return DP_TRAIN_PRE_EMPH_LEVEL_2; 4158 } 4159 4160 static u8 intel_dp_pre_empemph_max_3(struct intel_dp *intel_dp) 4161 { 4162 return DP_TRAIN_PRE_EMPH_LEVEL_3; 4163 } 4164 4165 static void vlv_set_signal_levels(struct intel_dp *intel_dp) 4166 { 4167 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; 4168 unsigned long demph_reg_value, preemph_reg_value, 4169 uniqtranscale_reg_value; 4170 u8 train_set = intel_dp->train_set[0]; 4171 4172 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) { 4173 case DP_TRAIN_PRE_EMPH_LEVEL_0: 4174 preemph_reg_value = 0x0004000; 4175 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 4176 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 4177 demph_reg_value = 0x2B405555; 4178 uniqtranscale_reg_value = 0x552AB83A; 4179 break; 4180 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 4181 demph_reg_value = 0x2B404040; 4182 uniqtranscale_reg_value = 0x5548B83A; 4183 break; 4184 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: 4185 demph_reg_value = 0x2B245555; 4186 uniqtranscale_reg_value = 0x5560B83A; 4187 break; 4188 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3: 4189 demph_reg_value = 0x2B405555; 4190 uniqtranscale_reg_value = 0x5598DA3A; 4191 break; 4192 default: 4193 return; 4194 } 4195 break; 4196 case DP_TRAIN_PRE_EMPH_LEVEL_1: 4197 preemph_reg_value = 0x0002000; 4198 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 4199 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 4200 demph_reg_value = 0x2B404040; 4201 uniqtranscale_reg_value = 0x5552B83A; 4202 break; 4203 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 4204 demph_reg_value = 0x2B404848; 4205 uniqtranscale_reg_value = 0x5580B83A; 4206 break; 4207 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: 4208 demph_reg_value = 0x2B404040; 4209 uniqtranscale_reg_value = 0x55ADDA3A; 4210 break; 4211 default: 4212 return; 4213 } 4214 break; 4215 case DP_TRAIN_PRE_EMPH_LEVEL_2: 4216 preemph_reg_value = 0x0000000; 4217 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 4218 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 4219 demph_reg_value = 0x2B305555; 4220 uniqtranscale_reg_value = 0x5570B83A; 4221 break; 4222 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 4223 demph_reg_value = 0x2B2B4040; 4224 uniqtranscale_reg_value = 0x55ADDA3A; 4225 break; 4226 default: 4227 return; 4228 } 4229 break; 4230 case DP_TRAIN_PRE_EMPH_LEVEL_3: 4231 preemph_reg_value = 0x0006000; 4232 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 4233 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 4234 demph_reg_value = 0x1B405555; 4235 uniqtranscale_reg_value = 0x55ADDA3A; 4236 break; 4237 default: 4238 return; 4239 } 4240 break; 4241 default: 4242 return; 4243 } 4244 4245 vlv_set_phy_signal_level(encoder, demph_reg_value, preemph_reg_value, 4246 uniqtranscale_reg_value, 0); 4247 } 4248 4249 static void chv_set_signal_levels(struct intel_dp *intel_dp) 4250 { 4251 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; 4252 u32 deemph_reg_value, margin_reg_value; 4253 bool uniq_trans_scale = false; 4254 u8 train_set = intel_dp->train_set[0]; 4255 4256 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) { 4257 case DP_TRAIN_PRE_EMPH_LEVEL_0: 4258 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 4259 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 4260 deemph_reg_value = 128; 4261 margin_reg_value = 52; 4262 break; 4263 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 4264 deemph_reg_value = 128; 4265 margin_reg_value = 77; 4266 break; 4267 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: 4268 deemph_reg_value = 128; 4269 margin_reg_value = 102; 4270 break; 4271 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3: 4272 deemph_reg_value = 128; 4273 margin_reg_value = 154; 4274 uniq_trans_scale = true; 4275 break; 4276 default: 4277 return; 4278 } 4279 break; 4280 case DP_TRAIN_PRE_EMPH_LEVEL_1: 4281 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 4282 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 4283 deemph_reg_value = 85; 4284 margin_reg_value = 78; 4285 break; 4286 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 4287 deemph_reg_value = 85; 4288 margin_reg_value = 116; 4289 break; 4290 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: 4291 deemph_reg_value = 85; 4292 margin_reg_value = 154; 4293 break; 4294 default: 4295 return; 4296 } 4297 break; 4298 case DP_TRAIN_PRE_EMPH_LEVEL_2: 4299 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 4300 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 4301 deemph_reg_value = 64; 4302 margin_reg_value = 104; 4303 break; 4304 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 4305 deemph_reg_value = 64; 4306 margin_reg_value = 154; 4307 break; 4308 default: 4309 return; 4310 } 4311 break; 4312 case DP_TRAIN_PRE_EMPH_LEVEL_3: 4313 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 4314 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 4315 deemph_reg_value = 43; 4316 margin_reg_value = 154; 4317 break; 4318 default: 4319 return; 4320 } 4321 break; 4322 default: 4323 return; 4324 } 4325 4326 chv_set_phy_signal_level(encoder, deemph_reg_value, 4327 margin_reg_value, uniq_trans_scale); 4328 } 4329 4330 static u32 g4x_signal_levels(u8 train_set) 4331 { 4332 u32 signal_levels = 0; 4333 4334 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 4335 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 4336 default: 4337 signal_levels |= DP_VOLTAGE_0_4; 4338 break; 4339 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 4340 signal_levels |= DP_VOLTAGE_0_6; 4341 break; 4342 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: 4343 signal_levels |= DP_VOLTAGE_0_8; 4344 break; 4345 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3: 4346 signal_levels |= DP_VOLTAGE_1_2; 4347 break; 4348 } 4349 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) { 4350 case DP_TRAIN_PRE_EMPH_LEVEL_0: 4351 default: 4352 signal_levels |= DP_PRE_EMPHASIS_0; 4353 break; 4354 case DP_TRAIN_PRE_EMPH_LEVEL_1: 4355 signal_levels |= DP_PRE_EMPHASIS_3_5; 4356 break; 4357 case DP_TRAIN_PRE_EMPH_LEVEL_2: 4358 signal_levels |= DP_PRE_EMPHASIS_6; 4359 break; 4360 case DP_TRAIN_PRE_EMPH_LEVEL_3: 4361 signal_levels |= DP_PRE_EMPHASIS_9_5; 4362 break; 4363 } 4364 return signal_levels; 4365 } 4366 4367 static void 4368 g4x_set_signal_levels(struct intel_dp *intel_dp) 4369 { 4370 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 4371 u8 train_set = intel_dp->train_set[0]; 4372 u32 signal_levels; 4373 4374 signal_levels = g4x_signal_levels(train_set); 4375 4376 drm_dbg_kms(&dev_priv->drm, "Using signal levels %08x\n", 4377 signal_levels); 4378 4379 intel_dp->DP &= ~(DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK); 4380 intel_dp->DP |= signal_levels; 4381 4382 intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP); 4383 intel_de_posting_read(dev_priv, intel_dp->output_reg); 4384 } 4385 4386 /* SNB CPU eDP voltage swing and pre-emphasis control */ 4387 static u32 snb_cpu_edp_signal_levels(u8 train_set) 4388 { 4389 u8 signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK | 4390 DP_TRAIN_PRE_EMPHASIS_MASK); 4391 4392 switch (signal_levels) { 4393 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0: 4394 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0: 4395 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B; 4396 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1: 4397 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B; 4398 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2: 4399 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2: 4400 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B; 4401 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1: 4402 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1: 4403 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B; 4404 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0: 4405 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0: 4406 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B; 4407 default: 4408 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:" 4409 "0x%x\n", signal_levels); 4410 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B; 4411 } 4412 } 4413 4414 static void 4415 snb_cpu_edp_set_signal_levels(struct intel_dp *intel_dp) 4416 { 4417 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 4418 u8 train_set = intel_dp->train_set[0]; 4419 u32 signal_levels; 4420 4421 signal_levels = snb_cpu_edp_signal_levels(train_set); 4422 4423 drm_dbg_kms(&dev_priv->drm, "Using signal levels %08x\n", 4424 signal_levels); 4425 4426 intel_dp->DP &= ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB; 4427 intel_dp->DP |= signal_levels; 4428 4429 intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP); 4430 intel_de_posting_read(dev_priv, intel_dp->output_reg); 4431 } 4432 4433 /* IVB CPU eDP voltage swing and pre-emphasis control */ 4434 static u32 ivb_cpu_edp_signal_levels(u8 train_set) 4435 { 4436 u8 signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK | 4437 DP_TRAIN_PRE_EMPHASIS_MASK); 4438 4439 switch (signal_levels) { 4440 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0: 4441 return EDP_LINK_TRAIN_400MV_0DB_IVB; 4442 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1: 4443 return EDP_LINK_TRAIN_400MV_3_5DB_IVB; 4444 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2: 4445 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2: 4446 return EDP_LINK_TRAIN_400MV_6DB_IVB; 4447 4448 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0: 4449 return EDP_LINK_TRAIN_600MV_0DB_IVB; 4450 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1: 4451 return EDP_LINK_TRAIN_600MV_3_5DB_IVB; 4452 4453 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0: 4454 return EDP_LINK_TRAIN_800MV_0DB_IVB; 4455 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1: 4456 return EDP_LINK_TRAIN_800MV_3_5DB_IVB; 4457 4458 default: 4459 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:" 4460 "0x%x\n", signal_levels); 4461 return EDP_LINK_TRAIN_500MV_0DB_IVB; 4462 } 4463 } 4464 4465 static void 4466 ivb_cpu_edp_set_signal_levels(struct intel_dp *intel_dp) 4467 { 4468 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 4469 u8 train_set = intel_dp->train_set[0]; 4470 u32 signal_levels; 4471 4472 signal_levels = ivb_cpu_edp_signal_levels(train_set); 4473 4474 drm_dbg_kms(&dev_priv->drm, "Using signal levels %08x\n", 4475 signal_levels); 4476 4477 intel_dp->DP &= ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB; 4478 intel_dp->DP |= signal_levels; 4479 4480 intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP); 4481 intel_de_posting_read(dev_priv, intel_dp->output_reg); 4482 } 4483 4484 void intel_dp_set_signal_levels(struct intel_dp *intel_dp) 4485 { 4486 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 4487 u8 train_set = intel_dp->train_set[0]; 4488 4489 drm_dbg_kms(&dev_priv->drm, "Using vswing level %d%s\n", 4490 train_set & DP_TRAIN_VOLTAGE_SWING_MASK, 4491 train_set & DP_TRAIN_MAX_SWING_REACHED ? " (max)" : ""); 4492 drm_dbg_kms(&dev_priv->drm, "Using pre-emphasis level %d%s\n", 4493 (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >> 4494 DP_TRAIN_PRE_EMPHASIS_SHIFT, 4495 train_set & DP_TRAIN_MAX_PRE_EMPHASIS_REACHED ? 4496 " (max)" : ""); 4497 4498 intel_dp->set_signal_levels(intel_dp); 4499 } 4500 4501 void 4502 intel_dp_program_link_training_pattern(struct intel_dp *intel_dp, 4503 u8 dp_train_pat) 4504 { 4505 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 4506 u8 train_pat_mask = drm_dp_training_pattern_mask(intel_dp->dpcd); 4507 4508 if (dp_train_pat & train_pat_mask) 4509 drm_dbg_kms(&dev_priv->drm, 4510 "Using DP training pattern TPS%d\n", 4511 dp_train_pat & train_pat_mask); 4512 4513 intel_dp->set_link_train(intel_dp, dp_train_pat); 4514 } 4515 4516 void intel_dp_set_idle_link_train(struct intel_dp *intel_dp) 4517 { 4518 if (intel_dp->set_idle_link_train) 4519 intel_dp->set_idle_link_train(intel_dp); 4520 } 4521 4522 static void 4523 intel_dp_link_down(struct intel_encoder *encoder, 4524 const struct intel_crtc_state *old_crtc_state) 4525 { 4526 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 4527 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 4528 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); 4529 enum port port = encoder->port; 4530 u32 DP = intel_dp->DP; 4531 4532 if (drm_WARN_ON(&dev_priv->drm, 4533 (intel_de_read(dev_priv, intel_dp->output_reg) & 4534 DP_PORT_EN) == 0)) 4535 return; 4536 4537 drm_dbg_kms(&dev_priv->drm, "\n"); 4538 4539 if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) || 4540 (HAS_PCH_CPT(dev_priv) && port != PORT_A)) { 4541 DP &= ~DP_LINK_TRAIN_MASK_CPT; 4542 DP |= DP_LINK_TRAIN_PAT_IDLE_CPT; 4543 } else { 4544 DP &= ~DP_LINK_TRAIN_MASK; 4545 DP |= DP_LINK_TRAIN_PAT_IDLE; 4546 } 4547 intel_de_write(dev_priv, intel_dp->output_reg, DP); 4548 intel_de_posting_read(dev_priv, intel_dp->output_reg); 4549 4550 DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE); 4551 intel_de_write(dev_priv, intel_dp->output_reg, DP); 4552 intel_de_posting_read(dev_priv, intel_dp->output_reg); 4553 4554 /* 4555 * HW workaround for IBX, we need to move the port 4556 * to transcoder A after disabling it to allow the 4557 * matching HDMI port to be enabled on transcoder A. 4558 */ 4559 if (HAS_PCH_IBX(dev_priv) && crtc->pipe == PIPE_B && port != PORT_A) { 4560 /* 4561 * We get CPU/PCH FIFO underruns on the other pipe when 4562 * doing the workaround. Sweep them under the rug. 4563 */ 4564 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false); 4565 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false); 4566 4567 /* always enable with pattern 1 (as per spec) */ 4568 DP &= ~(DP_PIPE_SEL_MASK | DP_LINK_TRAIN_MASK); 4569 DP |= DP_PORT_EN | DP_PIPE_SEL(PIPE_A) | 4570 DP_LINK_TRAIN_PAT_1; 4571 intel_de_write(dev_priv, intel_dp->output_reg, DP); 4572 intel_de_posting_read(dev_priv, intel_dp->output_reg); 4573 4574 DP &= ~DP_PORT_EN; 4575 intel_de_write(dev_priv, intel_dp->output_reg, DP); 4576 intel_de_posting_read(dev_priv, intel_dp->output_reg); 4577 4578 intel_wait_for_vblank_if_active(dev_priv, PIPE_A); 4579 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true); 4580 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true); 4581 } 4582 4583 drm_msleep(intel_dp->panel_power_down_delay); 4584 4585 intel_dp->DP = DP; 4586 4587 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 4588 intel_wakeref_t wakeref; 4589 4590 with_pps_lock(intel_dp, wakeref) 4591 intel_dp->active_pipe = INVALID_PIPE; 4592 } 4593 } 4594 4595 bool intel_dp_get_colorimetry_status(struct intel_dp *intel_dp) 4596 { 4597 u8 dprx = 0; 4598 4599 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_DPRX_FEATURE_ENUMERATION_LIST, 4600 &dprx) != 1) 4601 return false; 4602 return dprx & DP_VSC_SDP_EXT_FOR_COLORIMETRY_SUPPORTED; 4603 } 4604 4605 static void intel_dp_get_dsc_sink_cap(struct intel_dp *intel_dp) 4606 { 4607 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 4608 4609 /* 4610 * Clear the cached register set to avoid using stale values 4611 * for the sinks that do not support DSC. 4612 */ 4613 memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd)); 4614 4615 /* Clear fec_capable to avoid using stale values */ 4616 intel_dp->fec_capable = 0; 4617 4618 /* Cache the DSC DPCD if eDP or DP rev >= 1.4 */ 4619 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x14 || 4620 intel_dp->edp_dpcd[0] >= DP_EDP_14) { 4621 if (drm_dp_dpcd_read(&intel_dp->aux, DP_DSC_SUPPORT, 4622 intel_dp->dsc_dpcd, 4623 sizeof(intel_dp->dsc_dpcd)) < 0) 4624 drm_err(&i915->drm, 4625 "Failed to read DPCD register 0x%x\n", 4626 DP_DSC_SUPPORT); 4627 4628 drm_dbg_kms(&i915->drm, "DSC DPCD: %*ph\n", 4629 (int)sizeof(intel_dp->dsc_dpcd), 4630 intel_dp->dsc_dpcd); 4631 4632 /* FEC is supported only on DP 1.4 */ 4633 if (!intel_dp_is_edp(intel_dp) && 4634 drm_dp_dpcd_readb(&intel_dp->aux, DP_FEC_CAPABILITY, 4635 &intel_dp->fec_capable) < 0) 4636 drm_err(&i915->drm, 4637 "Failed to read FEC DPCD register\n"); 4638 4639 drm_dbg_kms(&i915->drm, "FEC CAPABILITY: %x\n", 4640 intel_dp->fec_capable); 4641 } 4642 } 4643 4644 static bool 4645 intel_edp_init_dpcd(struct intel_dp *intel_dp) 4646 { 4647 struct drm_i915_private *dev_priv = 4648 to_i915(dp_to_dig_port(intel_dp)->base.base.dev); 4649 4650 /* this function is meant to be called only once */ 4651 drm_WARN_ON(&dev_priv->drm, intel_dp->dpcd[DP_DPCD_REV] != 0); 4652 4653 if (drm_dp_read_dpcd_caps(&intel_dp->aux, intel_dp->dpcd) != 0) 4654 return false; 4655 4656 drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc, 4657 drm_dp_is_branch(intel_dp->dpcd)); 4658 4659 /* 4660 * Read the eDP display control registers. 4661 * 4662 * Do this independent of DP_DPCD_DISPLAY_CONTROL_CAPABLE bit in 4663 * DP_EDP_CONFIGURATION_CAP, because some buggy displays do not have it 4664 * set, but require eDP 1.4+ detection (e.g. for supported link rates 4665 * method). The display control registers should read zero if they're 4666 * not supported anyway. 4667 */ 4668 if (drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV, 4669 intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd)) == 4670 sizeof(intel_dp->edp_dpcd)) 4671 drm_dbg_kms(&dev_priv->drm, "eDP DPCD: %*ph\n", 4672 (int)sizeof(intel_dp->edp_dpcd), 4673 intel_dp->edp_dpcd); 4674 4675 /* 4676 * This has to be called after intel_dp->edp_dpcd is filled, PSR checks 4677 * for SET_POWER_CAPABLE bit in intel_dp->edp_dpcd[1] 4678 */ 4679 intel_psr_init_dpcd(intel_dp); 4680 4681 /* Read the eDP 1.4+ supported link rates. */ 4682 if (intel_dp->edp_dpcd[0] >= DP_EDP_14) { 4683 __le16 sink_rates[DP_MAX_SUPPORTED_RATES]; 4684 int i; 4685 4686 drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES, 4687 sink_rates, sizeof(sink_rates)); 4688 4689 for (i = 0; i < ARRAY_SIZE(sink_rates); i++) { 4690 int val = le16_to_cpu(sink_rates[i]); 4691 4692 if (val == 0) 4693 break; 4694 4695 /* Value read multiplied by 200kHz gives the per-lane 4696 * link rate in kHz. The source rates are, however, 4697 * stored in terms of LS_Clk kHz. The full conversion 4698 * back to symbols is 4699 * (val * 200kHz)*(8/10 ch. encoding)*(1/8 bit to Byte) 4700 */ 4701 intel_dp->sink_rates[i] = (val * 200) / 10; 4702 } 4703 intel_dp->num_sink_rates = i; 4704 } 4705 4706 /* 4707 * Use DP_LINK_RATE_SET if DP_SUPPORTED_LINK_RATES are available, 4708 * default to DP_MAX_LINK_RATE and DP_LINK_BW_SET otherwise. 4709 */ 4710 if (intel_dp->num_sink_rates) 4711 intel_dp->use_rate_select = true; 4712 else 4713 intel_dp_set_sink_rates(intel_dp); 4714 4715 intel_dp_set_common_rates(intel_dp); 4716 4717 /* Read the eDP DSC DPCD registers */ 4718 if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) 4719 intel_dp_get_dsc_sink_cap(intel_dp); 4720 4721 return true; 4722 } 4723 4724 static bool 4725 intel_dp_has_sink_count(struct intel_dp *intel_dp) 4726 { 4727 if (!intel_dp->attached_connector) 4728 return false; 4729 4730 return drm_dp_read_sink_count_cap(&intel_dp->attached_connector->base, 4731 intel_dp->dpcd, 4732 &intel_dp->desc); 4733 } 4734 4735 static bool 4736 intel_dp_get_dpcd(struct intel_dp *intel_dp) 4737 { 4738 int ret; 4739 4740 if (drm_dp_read_dpcd_caps(&intel_dp->aux, intel_dp->dpcd)) 4741 return false; 4742 4743 /* 4744 * Don't clobber cached eDP rates. Also skip re-reading 4745 * the OUI/ID since we know it won't change. 4746 */ 4747 if (!intel_dp_is_edp(intel_dp)) { 4748 drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc, 4749 drm_dp_is_branch(intel_dp->dpcd)); 4750 4751 intel_dp_set_sink_rates(intel_dp); 4752 intel_dp_set_common_rates(intel_dp); 4753 } 4754 4755 if (intel_dp_has_sink_count(intel_dp)) { 4756 ret = drm_dp_read_sink_count(&intel_dp->aux); 4757 if (ret < 0) 4758 return false; 4759 4760 /* 4761 * Sink count can change between short pulse hpd hence 4762 * a member variable in intel_dp will track any changes 4763 * between short pulse interrupts. 4764 */ 4765 intel_dp->sink_count = ret; 4766 4767 /* 4768 * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that 4769 * a dongle is present but no display. Unless we require to know 4770 * if a dongle is present or not, we don't need to update 4771 * downstream port information. So, an early return here saves 4772 * time from performing other operations which are not required. 4773 */ 4774 if (!intel_dp->sink_count) 4775 return false; 4776 } 4777 4778 return drm_dp_read_downstream_info(&intel_dp->aux, intel_dp->dpcd, 4779 intel_dp->downstream_ports) == 0; 4780 } 4781 4782 static bool 4783 intel_dp_can_mst(struct intel_dp *intel_dp) 4784 { 4785 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 4786 4787 return i915->params.enable_dp_mst && 4788 intel_dp->can_mst && 4789 drm_dp_read_mst_cap(&intel_dp->aux, intel_dp->dpcd); 4790 } 4791 4792 static void 4793 intel_dp_configure_mst(struct intel_dp *intel_dp) 4794 { 4795 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 4796 struct intel_encoder *encoder = 4797 &dp_to_dig_port(intel_dp)->base; 4798 bool sink_can_mst = drm_dp_read_mst_cap(&intel_dp->aux, intel_dp->dpcd); 4799 4800 drm_dbg_kms(&i915->drm, 4801 "[ENCODER:%d:%s] MST support: port: %s, sink: %s, modparam: %s\n", 4802 encoder->base.base.id, encoder->base.name, 4803 yesno(intel_dp->can_mst), yesno(sink_can_mst), 4804 yesno(i915->params.enable_dp_mst)); 4805 4806 if (!intel_dp->can_mst) 4807 return; 4808 4809 intel_dp->is_mst = sink_can_mst && 4810 i915->params.enable_dp_mst; 4811 4812 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, 4813 intel_dp->is_mst); 4814 } 4815 4816 static bool 4817 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector) 4818 { 4819 return drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT_ESI, 4820 sink_irq_vector, DP_DPRX_ESI_LEN) == 4821 DP_DPRX_ESI_LEN; 4822 } 4823 4824 bool 4825 intel_dp_needs_vsc_sdp(const struct intel_crtc_state *crtc_state, 4826 const struct drm_connector_state *conn_state) 4827 { 4828 /* 4829 * As per DP 1.4a spec section 2.2.4.3 [MSA Field for Indication 4830 * of Color Encoding Format and Content Color Gamut], in order to 4831 * sending YCBCR 420 or HDR BT.2020 signals we should use DP VSC SDP. 4832 */ 4833 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420) 4834 return true; 4835 4836 switch (conn_state->colorspace) { 4837 case DRM_MODE_COLORIMETRY_SYCC_601: 4838 case DRM_MODE_COLORIMETRY_OPYCC_601: 4839 case DRM_MODE_COLORIMETRY_BT2020_YCC: 4840 case DRM_MODE_COLORIMETRY_BT2020_RGB: 4841 case DRM_MODE_COLORIMETRY_BT2020_CYCC: 4842 return true; 4843 default: 4844 break; 4845 } 4846 4847 return false; 4848 } 4849 4850 static ssize_t intel_dp_vsc_sdp_pack(const struct drm_dp_vsc_sdp *vsc, 4851 struct dp_sdp *sdp, size_t size) 4852 { 4853 size_t length = sizeof(struct dp_sdp); 4854 4855 if (size < length) 4856 return -ENOSPC; 4857 4858 memset(sdp, 0, size); 4859 4860 /* 4861 * Prepare VSC Header for SU as per DP 1.4a spec, Table 2-119 4862 * VSC SDP Header Bytes 4863 */ 4864 sdp->sdp_header.HB0 = 0; /* Secondary-Data Packet ID = 0 */ 4865 sdp->sdp_header.HB1 = vsc->sdp_type; /* Secondary-data Packet Type */ 4866 sdp->sdp_header.HB2 = vsc->revision; /* Revision Number */ 4867 sdp->sdp_header.HB3 = vsc->length; /* Number of Valid Data Bytes */ 4868 4869 /* 4870 * Only revision 0x5 supports Pixel Encoding/Colorimetry Format as 4871 * per DP 1.4a spec. 4872 */ 4873 if (vsc->revision != 0x5) 4874 goto out; 4875 4876 /* VSC SDP Payload for DB16 through DB18 */ 4877 /* Pixel Encoding and Colorimetry Formats */ 4878 sdp->db[16] = (vsc->pixelformat & 0xf) << 4; /* DB16[7:4] */ 4879 sdp->db[16] |= vsc->colorimetry & 0xf; /* DB16[3:0] */ 4880 4881 switch (vsc->bpc) { 4882 case 6: 4883 /* 6bpc: 0x0 */ 4884 break; 4885 case 8: 4886 sdp->db[17] = 0x1; /* DB17[3:0] */ 4887 break; 4888 case 10: 4889 sdp->db[17] = 0x2; 4890 break; 4891 case 12: 4892 sdp->db[17] = 0x3; 4893 break; 4894 case 16: 4895 sdp->db[17] = 0x4; 4896 break; 4897 default: 4898 MISSING_CASE(vsc->bpc); 4899 break; 4900 } 4901 /* Dynamic Range and Component Bit Depth */ 4902 if (vsc->dynamic_range == DP_DYNAMIC_RANGE_CTA) 4903 sdp->db[17] |= 0x80; /* DB17[7] */ 4904 4905 /* Content Type */ 4906 sdp->db[18] = vsc->content_type & 0x7; 4907 4908 out: 4909 return length; 4910 } 4911 4912 static ssize_t 4913 intel_dp_hdr_metadata_infoframe_sdp_pack(const struct hdmi_drm_infoframe *drm_infoframe, 4914 struct dp_sdp *sdp, 4915 size_t size) 4916 { 4917 size_t length = sizeof(struct dp_sdp); 4918 const int infoframe_size = HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE; 4919 unsigned char buf[HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE]; 4920 ssize_t len; 4921 4922 if (size < length) 4923 return -ENOSPC; 4924 4925 memset(sdp, 0, size); 4926 4927 len = hdmi_drm_infoframe_pack_only(drm_infoframe, buf, sizeof(buf)); 4928 if (len < 0) { 4929 DRM_DEBUG_KMS("buffer size is smaller than hdr metadata infoframe\n"); 4930 return -ENOSPC; 4931 } 4932 4933 if (len != infoframe_size) { 4934 DRM_DEBUG_KMS("wrong static hdr metadata size\n"); 4935 return -ENOSPC; 4936 } 4937 4938 /* 4939 * Set up the infoframe sdp packet for HDR static metadata. 4940 * Prepare VSC Header for SU as per DP 1.4a spec, 4941 * Table 2-100 and Table 2-101 4942 */ 4943 4944 /* Secondary-Data Packet ID, 00h for non-Audio INFOFRAME */ 4945 sdp->sdp_header.HB0 = 0; 4946 /* 4947 * Packet Type 80h + Non-audio INFOFRAME Type value 4948 * HDMI_INFOFRAME_TYPE_DRM: 0x87 4949 * - 80h + Non-audio INFOFRAME Type value 4950 * - InfoFrame Type: 0x07 4951 * [CTA-861-G Table-42 Dynamic Range and Mastering InfoFrame] 4952 */ 4953 sdp->sdp_header.HB1 = drm_infoframe->type; 4954 /* 4955 * Least Significant Eight Bits of (Data Byte Count – 1) 4956 * infoframe_size - 1 4957 */ 4958 sdp->sdp_header.HB2 = 0x1D; 4959 /* INFOFRAME SDP Version Number */ 4960 sdp->sdp_header.HB3 = (0x13 << 2); 4961 /* CTA Header Byte 2 (INFOFRAME Version Number) */ 4962 sdp->db[0] = drm_infoframe->version; 4963 /* CTA Header Byte 3 (Length of INFOFRAME): HDMI_DRM_INFOFRAME_SIZE */ 4964 sdp->db[1] = drm_infoframe->length; 4965 /* 4966 * Copy HDMI_DRM_INFOFRAME_SIZE size from a buffer after 4967 * HDMI_INFOFRAME_HEADER_SIZE 4968 */ 4969 BUILD_BUG_ON(sizeof(sdp->db) < HDMI_DRM_INFOFRAME_SIZE + 2); 4970 memcpy(&sdp->db[2], &buf[HDMI_INFOFRAME_HEADER_SIZE], 4971 HDMI_DRM_INFOFRAME_SIZE); 4972 4973 /* 4974 * Size of DP infoframe sdp packet for HDR static metadata consists of 4975 * - DP SDP Header(struct dp_sdp_header): 4 bytes 4976 * - Two Data Blocks: 2 bytes 4977 * CTA Header Byte2 (INFOFRAME Version Number) 4978 * CTA Header Byte3 (Length of INFOFRAME) 4979 * - HDMI_DRM_INFOFRAME_SIZE: 26 bytes 4980 * 4981 * Prior to GEN11's GMP register size is identical to DP HDR static metadata 4982 * infoframe size. But GEN11+ has larger than that size, write_infoframe 4983 * will pad rest of the size. 4984 */ 4985 return sizeof(struct dp_sdp_header) + 2 + HDMI_DRM_INFOFRAME_SIZE; 4986 } 4987 4988 static void intel_write_dp_sdp(struct intel_encoder *encoder, 4989 const struct intel_crtc_state *crtc_state, 4990 unsigned int type) 4991 { 4992 struct intel_digital_port *dig_port = enc_to_dig_port(encoder); 4993 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 4994 struct dp_sdp sdp = {}; 4995 ssize_t len; 4996 4997 if ((crtc_state->infoframes.enable & 4998 intel_hdmi_infoframe_enable(type)) == 0) 4999 return; 5000 5001 switch (type) { 5002 case DP_SDP_VSC: 5003 len = intel_dp_vsc_sdp_pack(&crtc_state->infoframes.vsc, &sdp, 5004 sizeof(sdp)); 5005 break; 5006 case HDMI_PACKET_TYPE_GAMUT_METADATA: 5007 len = intel_dp_hdr_metadata_infoframe_sdp_pack(&crtc_state->infoframes.drm.drm, 5008 &sdp, sizeof(sdp)); 5009 break; 5010 default: 5011 MISSING_CASE(type); 5012 return; 5013 } 5014 5015 if (drm_WARN_ON(&dev_priv->drm, len < 0)) 5016 return; 5017 5018 dig_port->write_infoframe(encoder, crtc_state, type, &sdp, len); 5019 } 5020 5021 void intel_write_dp_vsc_sdp(struct intel_encoder *encoder, 5022 const struct intel_crtc_state *crtc_state, 5023 struct drm_dp_vsc_sdp *vsc) 5024 { 5025 struct intel_digital_port *dig_port = enc_to_dig_port(encoder); 5026 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5027 struct dp_sdp sdp = {}; 5028 ssize_t len; 5029 5030 len = intel_dp_vsc_sdp_pack(vsc, &sdp, sizeof(sdp)); 5031 5032 if (drm_WARN_ON(&dev_priv->drm, len < 0)) 5033 return; 5034 5035 dig_port->write_infoframe(encoder, crtc_state, DP_SDP_VSC, 5036 &sdp, len); 5037 } 5038 5039 void intel_dp_set_infoframes(struct intel_encoder *encoder, 5040 bool enable, 5041 const struct intel_crtc_state *crtc_state, 5042 const struct drm_connector_state *conn_state) 5043 { 5044 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5045 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 5046 i915_reg_t reg = HSW_TVIDEO_DIP_CTL(crtc_state->cpu_transcoder); 5047 u32 dip_enable = VIDEO_DIP_ENABLE_AVI_HSW | VIDEO_DIP_ENABLE_GCP_HSW | 5048 VIDEO_DIP_ENABLE_VS_HSW | VIDEO_DIP_ENABLE_GMP_HSW | 5049 VIDEO_DIP_ENABLE_SPD_HSW | VIDEO_DIP_ENABLE_DRM_GLK; 5050 u32 val = intel_de_read(dev_priv, reg); 5051 5052 /* TODO: Add DSC case (DIP_ENABLE_PPS) */ 5053 /* When PSR is enabled, this routine doesn't disable VSC DIP */ 5054 if (intel_psr_enabled(intel_dp)) 5055 val &= ~dip_enable; 5056 else 5057 val &= ~(dip_enable | VIDEO_DIP_ENABLE_VSC_HSW); 5058 5059 if (!enable) { 5060 intel_de_write(dev_priv, reg, val); 5061 intel_de_posting_read(dev_priv, reg); 5062 return; 5063 } 5064 5065 intel_de_write(dev_priv, reg, val); 5066 intel_de_posting_read(dev_priv, reg); 5067 5068 /* When PSR is enabled, VSC SDP is handled by PSR routine */ 5069 if (!intel_psr_enabled(intel_dp)) 5070 intel_write_dp_sdp(encoder, crtc_state, DP_SDP_VSC); 5071 5072 intel_write_dp_sdp(encoder, crtc_state, HDMI_PACKET_TYPE_GAMUT_METADATA); 5073 } 5074 5075 static int intel_dp_vsc_sdp_unpack(struct drm_dp_vsc_sdp *vsc, 5076 const void *buffer, size_t size) 5077 { 5078 const struct dp_sdp *sdp = buffer; 5079 5080 if (size < sizeof(struct dp_sdp)) 5081 return -EINVAL; 5082 5083 memset(vsc, 0, sizeof(*vsc)); 5084 5085 if (sdp->sdp_header.HB0 != 0) 5086 return -EINVAL; 5087 5088 if (sdp->sdp_header.HB1 != DP_SDP_VSC) 5089 return -EINVAL; 5090 5091 vsc->sdp_type = sdp->sdp_header.HB1; 5092 vsc->revision = sdp->sdp_header.HB2; 5093 vsc->length = sdp->sdp_header.HB3; 5094 5095 if ((sdp->sdp_header.HB2 == 0x2 && sdp->sdp_header.HB3 == 0x8) || 5096 (sdp->sdp_header.HB2 == 0x4 && sdp->sdp_header.HB3 == 0xe)) { 5097 /* 5098 * - HB2 = 0x2, HB3 = 0x8 5099 * VSC SDP supporting 3D stereo + PSR 5100 * - HB2 = 0x4, HB3 = 0xe 5101 * VSC SDP supporting 3D stereo + PSR2 with Y-coordinate of 5102 * first scan line of the SU region (applies to eDP v1.4b 5103 * and higher). 5104 */ 5105 return 0; 5106 } else if (sdp->sdp_header.HB2 == 0x5 && sdp->sdp_header.HB3 == 0x13) { 5107 /* 5108 * - HB2 = 0x5, HB3 = 0x13 5109 * VSC SDP supporting 3D stereo + PSR2 + Pixel Encoding/Colorimetry 5110 * Format. 5111 */ 5112 vsc->pixelformat = (sdp->db[16] >> 4) & 0xf; 5113 vsc->colorimetry = sdp->db[16] & 0xf; 5114 vsc->dynamic_range = (sdp->db[17] >> 7) & 0x1; 5115 5116 switch (sdp->db[17] & 0x7) { 5117 case 0x0: 5118 vsc->bpc = 6; 5119 break; 5120 case 0x1: 5121 vsc->bpc = 8; 5122 break; 5123 case 0x2: 5124 vsc->bpc = 10; 5125 break; 5126 case 0x3: 5127 vsc->bpc = 12; 5128 break; 5129 case 0x4: 5130 vsc->bpc = 16; 5131 break; 5132 default: 5133 MISSING_CASE(sdp->db[17] & 0x7); 5134 return -EINVAL; 5135 } 5136 5137 vsc->content_type = sdp->db[18] & 0x7; 5138 } else { 5139 return -EINVAL; 5140 } 5141 5142 return 0; 5143 } 5144 5145 static int 5146 intel_dp_hdr_metadata_infoframe_sdp_unpack(struct hdmi_drm_infoframe *drm_infoframe, 5147 const void *buffer, size_t size) 5148 { 5149 int ret; 5150 5151 const struct dp_sdp *sdp = buffer; 5152 5153 if (size < sizeof(struct dp_sdp)) 5154 return -EINVAL; 5155 5156 if (sdp->sdp_header.HB0 != 0) 5157 return -EINVAL; 5158 5159 if (sdp->sdp_header.HB1 != HDMI_INFOFRAME_TYPE_DRM) 5160 return -EINVAL; 5161 5162 /* 5163 * Least Significant Eight Bits of (Data Byte Count – 1) 5164 * 1Dh (i.e., Data Byte Count = 30 bytes). 5165 */ 5166 if (sdp->sdp_header.HB2 != 0x1D) 5167 return -EINVAL; 5168 5169 /* Most Significant Two Bits of (Data Byte Count – 1), Clear to 00b. */ 5170 if ((sdp->sdp_header.HB3 & 0x3) != 0) 5171 return -EINVAL; 5172 5173 /* INFOFRAME SDP Version Number */ 5174 if (((sdp->sdp_header.HB3 >> 2) & 0x3f) != 0x13) 5175 return -EINVAL; 5176 5177 /* CTA Header Byte 2 (INFOFRAME Version Number) */ 5178 if (sdp->db[0] != 1) 5179 return -EINVAL; 5180 5181 /* CTA Header Byte 3 (Length of INFOFRAME): HDMI_DRM_INFOFRAME_SIZE */ 5182 if (sdp->db[1] != HDMI_DRM_INFOFRAME_SIZE) 5183 return -EINVAL; 5184 5185 ret = hdmi_drm_infoframe_unpack_only(drm_infoframe, &sdp->db[2], 5186 HDMI_DRM_INFOFRAME_SIZE); 5187 5188 return ret; 5189 } 5190 5191 static void intel_read_dp_vsc_sdp(struct intel_encoder *encoder, 5192 struct intel_crtc_state *crtc_state, 5193 struct drm_dp_vsc_sdp *vsc) 5194 { 5195 struct intel_digital_port *dig_port = enc_to_dig_port(encoder); 5196 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 5197 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5198 unsigned int type = DP_SDP_VSC; 5199 struct dp_sdp sdp = {}; 5200 int ret; 5201 5202 /* When PSR is enabled, VSC SDP is handled by PSR routine */ 5203 if (intel_psr_enabled(intel_dp)) 5204 return; 5205 5206 if ((crtc_state->infoframes.enable & 5207 intel_hdmi_infoframe_enable(type)) == 0) 5208 return; 5209 5210 dig_port->read_infoframe(encoder, crtc_state, type, &sdp, sizeof(sdp)); 5211 5212 ret = intel_dp_vsc_sdp_unpack(vsc, &sdp, sizeof(sdp)); 5213 5214 if (ret) 5215 drm_dbg_kms(&dev_priv->drm, "Failed to unpack DP VSC SDP\n"); 5216 } 5217 5218 static void intel_read_dp_hdr_metadata_infoframe_sdp(struct intel_encoder *encoder, 5219 struct intel_crtc_state *crtc_state, 5220 struct hdmi_drm_infoframe *drm_infoframe) 5221 { 5222 struct intel_digital_port *dig_port = enc_to_dig_port(encoder); 5223 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5224 unsigned int type = HDMI_PACKET_TYPE_GAMUT_METADATA; 5225 struct dp_sdp sdp = {}; 5226 int ret; 5227 5228 if ((crtc_state->infoframes.enable & 5229 intel_hdmi_infoframe_enable(type)) == 0) 5230 return; 5231 5232 dig_port->read_infoframe(encoder, crtc_state, type, &sdp, 5233 sizeof(sdp)); 5234 5235 ret = intel_dp_hdr_metadata_infoframe_sdp_unpack(drm_infoframe, &sdp, 5236 sizeof(sdp)); 5237 5238 if (ret) 5239 drm_dbg_kms(&dev_priv->drm, 5240 "Failed to unpack DP HDR Metadata Infoframe SDP\n"); 5241 } 5242 5243 void intel_read_dp_sdp(struct intel_encoder *encoder, 5244 struct intel_crtc_state *crtc_state, 5245 unsigned int type) 5246 { 5247 if (encoder->type != INTEL_OUTPUT_DDI) 5248 return; 5249 5250 switch (type) { 5251 case DP_SDP_VSC: 5252 intel_read_dp_vsc_sdp(encoder, crtc_state, 5253 &crtc_state->infoframes.vsc); 5254 break; 5255 case HDMI_PACKET_TYPE_GAMUT_METADATA: 5256 intel_read_dp_hdr_metadata_infoframe_sdp(encoder, crtc_state, 5257 &crtc_state->infoframes.drm.drm); 5258 break; 5259 default: 5260 MISSING_CASE(type); 5261 break; 5262 } 5263 } 5264 5265 static u8 intel_dp_autotest_link_training(struct intel_dp *intel_dp) 5266 { 5267 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 5268 int status = 0; 5269 int test_link_rate; 5270 u8 test_lane_count, test_link_bw; 5271 /* (DP CTS 1.2) 5272 * 4.3.1.11 5273 */ 5274 /* Read the TEST_LANE_COUNT and TEST_LINK_RTAE fields (DP CTS 3.1.4) */ 5275 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LANE_COUNT, 5276 &test_lane_count); 5277 5278 if (status <= 0) { 5279 drm_dbg_kms(&i915->drm, "Lane count read failed\n"); 5280 return DP_TEST_NAK; 5281 } 5282 test_lane_count &= DP_MAX_LANE_COUNT_MASK; 5283 5284 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LINK_RATE, 5285 &test_link_bw); 5286 if (status <= 0) { 5287 drm_dbg_kms(&i915->drm, "Link Rate read failed\n"); 5288 return DP_TEST_NAK; 5289 } 5290 test_link_rate = drm_dp_bw_code_to_link_rate(test_link_bw); 5291 5292 /* Validate the requested link rate and lane count */ 5293 if (!intel_dp_link_params_valid(intel_dp, test_link_rate, 5294 test_lane_count)) 5295 return DP_TEST_NAK; 5296 5297 intel_dp->compliance.test_lane_count = test_lane_count; 5298 intel_dp->compliance.test_link_rate = test_link_rate; 5299 5300 return DP_TEST_ACK; 5301 } 5302 5303 static u8 intel_dp_autotest_video_pattern(struct intel_dp *intel_dp) 5304 { 5305 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 5306 u8 test_pattern; 5307 u8 test_misc; 5308 __be16 h_width, v_height; 5309 int status = 0; 5310 5311 /* Read the TEST_PATTERN (DP CTS 3.1.5) */ 5312 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_PATTERN, 5313 &test_pattern); 5314 if (status <= 0) { 5315 drm_dbg_kms(&i915->drm, "Test pattern read failed\n"); 5316 return DP_TEST_NAK; 5317 } 5318 if (test_pattern != DP_COLOR_RAMP) 5319 return DP_TEST_NAK; 5320 5321 status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_H_WIDTH_HI, 5322 &h_width, 2); 5323 if (status <= 0) { 5324 drm_dbg_kms(&i915->drm, "H Width read failed\n"); 5325 return DP_TEST_NAK; 5326 } 5327 5328 status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_V_HEIGHT_HI, 5329 &v_height, 2); 5330 if (status <= 0) { 5331 drm_dbg_kms(&i915->drm, "V Height read failed\n"); 5332 return DP_TEST_NAK; 5333 } 5334 5335 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_MISC0, 5336 &test_misc); 5337 if (status <= 0) { 5338 drm_dbg_kms(&i915->drm, "TEST MISC read failed\n"); 5339 return DP_TEST_NAK; 5340 } 5341 if ((test_misc & DP_TEST_COLOR_FORMAT_MASK) != DP_COLOR_FORMAT_RGB) 5342 return DP_TEST_NAK; 5343 if (test_misc & DP_TEST_DYNAMIC_RANGE_CEA) 5344 return DP_TEST_NAK; 5345 switch (test_misc & DP_TEST_BIT_DEPTH_MASK) { 5346 case DP_TEST_BIT_DEPTH_6: 5347 intel_dp->compliance.test_data.bpc = 6; 5348 break; 5349 case DP_TEST_BIT_DEPTH_8: 5350 intel_dp->compliance.test_data.bpc = 8; 5351 break; 5352 default: 5353 return DP_TEST_NAK; 5354 } 5355 5356 intel_dp->compliance.test_data.video_pattern = test_pattern; 5357 intel_dp->compliance.test_data.hdisplay = be16_to_cpu(h_width); 5358 intel_dp->compliance.test_data.vdisplay = be16_to_cpu(v_height); 5359 /* Set test active flag here so userspace doesn't interrupt things */ 5360 intel_dp->compliance.test_active = true; 5361 5362 return DP_TEST_ACK; 5363 } 5364 5365 static u8 intel_dp_autotest_edid(struct intel_dp *intel_dp) 5366 { 5367 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 5368 u8 test_result = DP_TEST_ACK; 5369 struct intel_connector *intel_connector = intel_dp->attached_connector; 5370 struct drm_connector *connector = &intel_connector->base; 5371 5372 if (intel_connector->detect_edid == NULL || 5373 connector->edid_corrupt || 5374 intel_dp->aux.i2c_defer_count > 6) { 5375 /* Check EDID read for NACKs, DEFERs and corruption 5376 * (DP CTS 1.2 Core r1.1) 5377 * 4.2.2.4 : Failed EDID read, I2C_NAK 5378 * 4.2.2.5 : Failed EDID read, I2C_DEFER 5379 * 4.2.2.6 : EDID corruption detected 5380 * Use failsafe mode for all cases 5381 */ 5382 if (intel_dp->aux.i2c_nack_count > 0 || 5383 intel_dp->aux.i2c_defer_count > 0) 5384 drm_dbg_kms(&i915->drm, 5385 "EDID read had %d NACKs, %d DEFERs\n", 5386 intel_dp->aux.i2c_nack_count, 5387 intel_dp->aux.i2c_defer_count); 5388 intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_FAILSAFE; 5389 } else { 5390 struct edid *block = intel_connector->detect_edid; 5391 5392 /* We have to write the checksum 5393 * of the last block read 5394 */ 5395 block += intel_connector->detect_edid->extensions; 5396 5397 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_EDID_CHECKSUM, 5398 block->checksum) <= 0) 5399 drm_dbg_kms(&i915->drm, 5400 "Failed to write EDID checksum\n"); 5401 5402 test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE; 5403 intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_PREFERRED; 5404 } 5405 5406 /* Set test active flag here so userspace doesn't interrupt things */ 5407 intel_dp->compliance.test_active = true; 5408 5409 return test_result; 5410 } 5411 5412 static u8 intel_dp_prepare_phytest(struct intel_dp *intel_dp) 5413 { 5414 struct drm_dp_phy_test_params *data = 5415 &intel_dp->compliance.test_data.phytest; 5416 5417 if (drm_dp_get_phy_test_pattern(&intel_dp->aux, data)) { 5418 DRM_DEBUG_KMS("DP Phy Test pattern AUX read failure\n"); 5419 return DP_TEST_NAK; 5420 } 5421 5422 /* 5423 * link_mst is set to false to avoid executing mst related code 5424 * during compliance testing. 5425 */ 5426 intel_dp->link_mst = false; 5427 5428 return DP_TEST_ACK; 5429 } 5430 5431 static void intel_dp_phy_pattern_update(struct intel_dp *intel_dp) 5432 { 5433 struct drm_i915_private *dev_priv = 5434 to_i915(dp_to_dig_port(intel_dp)->base.base.dev); 5435 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 5436 struct drm_dp_phy_test_params *data = 5437 &intel_dp->compliance.test_data.phytest; 5438 struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc); 5439 enum pipe pipe = crtc->pipe; 5440 u32 pattern_val; 5441 5442 switch (data->phy_pattern) { 5443 case DP_PHY_TEST_PATTERN_NONE: 5444 DRM_DEBUG_KMS("Disable Phy Test Pattern\n"); 5445 intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe), 0x0); 5446 break; 5447 case DP_PHY_TEST_PATTERN_D10_2: 5448 DRM_DEBUG_KMS("Set D10.2 Phy Test Pattern\n"); 5449 intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe), 5450 DDI_DP_COMP_CTL_ENABLE | DDI_DP_COMP_CTL_D10_2); 5451 break; 5452 case DP_PHY_TEST_PATTERN_ERROR_COUNT: 5453 DRM_DEBUG_KMS("Set Error Count Phy Test Pattern\n"); 5454 intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe), 5455 DDI_DP_COMP_CTL_ENABLE | 5456 DDI_DP_COMP_CTL_SCRAMBLED_0); 5457 break; 5458 case DP_PHY_TEST_PATTERN_PRBS7: 5459 DRM_DEBUG_KMS("Set PRBS7 Phy Test Pattern\n"); 5460 intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe), 5461 DDI_DP_COMP_CTL_ENABLE | DDI_DP_COMP_CTL_PRBS7); 5462 break; 5463 case DP_PHY_TEST_PATTERN_80BIT_CUSTOM: 5464 /* 5465 * FIXME: Ideally pattern should come from DPCD 0x250. As 5466 * current firmware of DPR-100 could not set it, so hardcoding 5467 * now for complaince test. 5468 */ 5469 DRM_DEBUG_KMS("Set 80Bit Custom Phy Test Pattern 0x3e0f83e0 0x0f83e0f8 0x0000f83e\n"); 5470 pattern_val = 0x3e0f83e0; 5471 intel_de_write(dev_priv, DDI_DP_COMP_PAT(pipe, 0), pattern_val); 5472 pattern_val = 0x0f83e0f8; 5473 intel_de_write(dev_priv, DDI_DP_COMP_PAT(pipe, 1), pattern_val); 5474 pattern_val = 0x0000f83e; 5475 intel_de_write(dev_priv, DDI_DP_COMP_PAT(pipe, 2), pattern_val); 5476 intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe), 5477 DDI_DP_COMP_CTL_ENABLE | 5478 DDI_DP_COMP_CTL_CUSTOM80); 5479 break; 5480 case DP_PHY_TEST_PATTERN_CP2520: 5481 /* 5482 * FIXME: Ideally pattern should come from DPCD 0x24A. As 5483 * current firmware of DPR-100 could not set it, so hardcoding 5484 * now for complaince test. 5485 */ 5486 DRM_DEBUG_KMS("Set HBR2 compliance Phy Test Pattern\n"); 5487 pattern_val = 0xFB; 5488 intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe), 5489 DDI_DP_COMP_CTL_ENABLE | DDI_DP_COMP_CTL_HBR2 | 5490 pattern_val); 5491 break; 5492 default: 5493 WARN(1, "Invalid Phy Test Pattern\n"); 5494 } 5495 } 5496 5497 static void 5498 intel_dp_autotest_phy_ddi_disable(struct intel_dp *intel_dp) 5499 { 5500 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 5501 struct drm_device *dev = dig_port->base.base.dev; 5502 struct drm_i915_private *dev_priv = to_i915(dev); 5503 struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc); 5504 enum pipe pipe = crtc->pipe; 5505 u32 trans_ddi_func_ctl_value, trans_conf_value, dp_tp_ctl_value; 5506 5507 trans_ddi_func_ctl_value = intel_de_read(dev_priv, 5508 TRANS_DDI_FUNC_CTL(pipe)); 5509 trans_conf_value = intel_de_read(dev_priv, PIPECONF(pipe)); 5510 dp_tp_ctl_value = intel_de_read(dev_priv, TGL_DP_TP_CTL(pipe)); 5511 5512 trans_ddi_func_ctl_value &= ~(TRANS_DDI_FUNC_ENABLE | 5513 TGL_TRANS_DDI_PORT_MASK); 5514 trans_conf_value &= ~PIPECONF_ENABLE; 5515 dp_tp_ctl_value &= ~DP_TP_CTL_ENABLE; 5516 5517 intel_de_write(dev_priv, PIPECONF(pipe), trans_conf_value); 5518 intel_de_write(dev_priv, TRANS_DDI_FUNC_CTL(pipe), 5519 trans_ddi_func_ctl_value); 5520 intel_de_write(dev_priv, TGL_DP_TP_CTL(pipe), dp_tp_ctl_value); 5521 } 5522 5523 static void 5524 intel_dp_autotest_phy_ddi_enable(struct intel_dp *intel_dp, uint8_t lane_cnt) 5525 { 5526 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 5527 struct drm_device *dev = dig_port->base.base.dev; 5528 struct drm_i915_private *dev_priv = to_i915(dev); 5529 enum port port = dig_port->base.port; 5530 struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc); 5531 enum pipe pipe = crtc->pipe; 5532 u32 trans_ddi_func_ctl_value, trans_conf_value, dp_tp_ctl_value; 5533 5534 trans_ddi_func_ctl_value = intel_de_read(dev_priv, 5535 TRANS_DDI_FUNC_CTL(pipe)); 5536 trans_conf_value = intel_de_read(dev_priv, PIPECONF(pipe)); 5537 dp_tp_ctl_value = intel_de_read(dev_priv, TGL_DP_TP_CTL(pipe)); 5538 5539 trans_ddi_func_ctl_value |= TRANS_DDI_FUNC_ENABLE | 5540 TGL_TRANS_DDI_SELECT_PORT(port); 5541 trans_conf_value |= PIPECONF_ENABLE; 5542 dp_tp_ctl_value |= DP_TP_CTL_ENABLE; 5543 5544 intel_de_write(dev_priv, PIPECONF(pipe), trans_conf_value); 5545 intel_de_write(dev_priv, TGL_DP_TP_CTL(pipe), dp_tp_ctl_value); 5546 intel_de_write(dev_priv, TRANS_DDI_FUNC_CTL(pipe), 5547 trans_ddi_func_ctl_value); 5548 } 5549 5550 void intel_dp_process_phy_request(struct intel_dp *intel_dp) 5551 { 5552 struct drm_dp_phy_test_params *data = 5553 &intel_dp->compliance.test_data.phytest; 5554 u8 link_status[DP_LINK_STATUS_SIZE]; 5555 5556 if (!intel_dp_get_link_status(intel_dp, link_status)) { 5557 DRM_DEBUG_KMS("failed to get link status\n"); 5558 return; 5559 } 5560 5561 /* retrieve vswing & pre-emphasis setting */ 5562 intel_dp_get_adjust_train(intel_dp, link_status); 5563 5564 intel_dp_autotest_phy_ddi_disable(intel_dp); 5565 5566 intel_dp_set_signal_levels(intel_dp); 5567 5568 intel_dp_phy_pattern_update(intel_dp); 5569 5570 intel_dp_autotest_phy_ddi_enable(intel_dp, data->num_lanes); 5571 5572 drm_dp_set_phy_test_pattern(&intel_dp->aux, data, 5573 link_status[DP_DPCD_REV]); 5574 } 5575 5576 static u8 intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp) 5577 { 5578 u8 test_result; 5579 5580 test_result = intel_dp_prepare_phytest(intel_dp); 5581 if (test_result != DP_TEST_ACK) 5582 DRM_ERROR("Phy test preparation failed\n"); 5583 5584 intel_dp_process_phy_request(intel_dp); 5585 5586 return test_result; 5587 } 5588 5589 static void intel_dp_handle_test_request(struct intel_dp *intel_dp) 5590 { 5591 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 5592 u8 response = DP_TEST_NAK; 5593 u8 request = 0; 5594 int status; 5595 5596 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_REQUEST, &request); 5597 if (status <= 0) { 5598 drm_dbg_kms(&i915->drm, 5599 "Could not read test request from sink\n"); 5600 goto update_status; 5601 } 5602 5603 switch (request) { 5604 case DP_TEST_LINK_TRAINING: 5605 drm_dbg_kms(&i915->drm, "LINK_TRAINING test requested\n"); 5606 response = intel_dp_autotest_link_training(intel_dp); 5607 break; 5608 case DP_TEST_LINK_VIDEO_PATTERN: 5609 drm_dbg_kms(&i915->drm, "TEST_PATTERN test requested\n"); 5610 response = intel_dp_autotest_video_pattern(intel_dp); 5611 break; 5612 case DP_TEST_LINK_EDID_READ: 5613 drm_dbg_kms(&i915->drm, "EDID test requested\n"); 5614 response = intel_dp_autotest_edid(intel_dp); 5615 break; 5616 case DP_TEST_LINK_PHY_TEST_PATTERN: 5617 drm_dbg_kms(&i915->drm, "PHY_PATTERN test requested\n"); 5618 response = intel_dp_autotest_phy_pattern(intel_dp); 5619 break; 5620 default: 5621 drm_dbg_kms(&i915->drm, "Invalid test request '%02x'\n", 5622 request); 5623 break; 5624 } 5625 5626 if (response & DP_TEST_ACK) 5627 intel_dp->compliance.test_type = request; 5628 5629 update_status: 5630 status = drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, response); 5631 if (status <= 0) 5632 drm_dbg_kms(&i915->drm, 5633 "Could not write test response to sink\n"); 5634 } 5635 5636 /** 5637 * intel_dp_check_mst_status - service any pending MST interrupts, check link status 5638 * @intel_dp: Intel DP struct 5639 * 5640 * Read any pending MST interrupts, call MST core to handle these and ack the 5641 * interrupts. Check if the main and AUX link state is ok. 5642 * 5643 * Returns: 5644 * - %true if pending interrupts were serviced (or no interrupts were 5645 * pending) w/o detecting an error condition. 5646 * - %false if an error condition - like AUX failure or a loss of link - is 5647 * detected, which needs servicing from the hotplug work. 5648 */ 5649 static bool 5650 intel_dp_check_mst_status(struct intel_dp *intel_dp) 5651 { 5652 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 5653 bool link_ok = true; 5654 5655 drm_WARN_ON_ONCE(&i915->drm, intel_dp->active_mst_links < 0); 5656 5657 for (;;) { 5658 /* 5659 * The +2 is because DP_DPRX_ESI_LEN is 14, but we then 5660 * pass in "esi+10" to drm_dp_channel_eq_ok(), which 5661 * takes a 6-byte array. So we actually need 16 bytes 5662 * here. 5663 * 5664 * Somebody who knows what the limits actually are 5665 * should check this, but for now this is at least 5666 * harmless and avoids a valid compiler warning about 5667 * using more of the array than we have allocated. 5668 */ 5669 u8 esi[DP_DPRX_ESI_LEN+2] = {}; 5670 bool handled; 5671 int retry; 5672 5673 if (!intel_dp_get_sink_irq_esi(intel_dp, esi)) { 5674 drm_dbg_kms(&i915->drm, 5675 "failed to get ESI - device may have failed\n"); 5676 link_ok = false; 5677 5678 break; 5679 } 5680 5681 /* check link status - esi[10] = 0x200c */ 5682 if (intel_dp->active_mst_links > 0 && link_ok && 5683 !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) { 5684 drm_dbg_kms(&i915->drm, 5685 "channel EQ not ok, retraining\n"); 5686 link_ok = false; 5687 } 5688 5689 drm_dbg_kms(&i915->drm, "got esi %3ph\n", esi); 5690 5691 drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled); 5692 if (!handled) 5693 break; 5694 5695 for (retry = 0; retry < 3; retry++) { 5696 int wret; 5697 5698 wret = drm_dp_dpcd_write(&intel_dp->aux, 5699 DP_SINK_COUNT_ESI+1, 5700 &esi[1], 3); 5701 if (wret == 3) 5702 break; 5703 } 5704 } 5705 5706 return link_ok; 5707 } 5708 5709 static bool 5710 intel_dp_needs_link_retrain(struct intel_dp *intel_dp) 5711 { 5712 u8 link_status[DP_LINK_STATUS_SIZE]; 5713 5714 if (!intel_dp->link_trained) 5715 return false; 5716 5717 /* 5718 * While PSR source HW is enabled, it will control main-link sending 5719 * frames, enabling and disabling it so trying to do a retrain will fail 5720 * as the link would or not be on or it could mix training patterns 5721 * and frame data at the same time causing retrain to fail. 5722 * Also when exiting PSR, HW will retrain the link anyways fixing 5723 * any link status error. 5724 */ 5725 if (intel_psr_enabled(intel_dp)) 5726 return false; 5727 5728 if (!intel_dp_get_link_status(intel_dp, link_status)) 5729 return false; 5730 5731 /* 5732 * Validate the cached values of intel_dp->link_rate and 5733 * intel_dp->lane_count before attempting to retrain. 5734 */ 5735 if (!intel_dp_link_params_valid(intel_dp, intel_dp->link_rate, 5736 intel_dp->lane_count)) 5737 return false; 5738 5739 /* Retrain if Channel EQ or CR not ok */ 5740 return !drm_dp_channel_eq_ok(link_status, intel_dp->lane_count); 5741 } 5742 5743 static bool intel_dp_has_connector(struct intel_dp *intel_dp, 5744 const struct drm_connector_state *conn_state) 5745 { 5746 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 5747 struct intel_encoder *encoder; 5748 enum pipe pipe; 5749 5750 if (!conn_state->best_encoder) 5751 return false; 5752 5753 /* SST */ 5754 encoder = &dp_to_dig_port(intel_dp)->base; 5755 if (conn_state->best_encoder == &encoder->base) 5756 return true; 5757 5758 /* MST */ 5759 for_each_pipe(i915, pipe) { 5760 encoder = &intel_dp->mst_encoders[pipe]->base; 5761 if (conn_state->best_encoder == &encoder->base) 5762 return true; 5763 } 5764 5765 return false; 5766 } 5767 5768 static int intel_dp_prep_link_retrain(struct intel_dp *intel_dp, 5769 struct drm_modeset_acquire_ctx *ctx, 5770 u32 *crtc_mask) 5771 { 5772 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 5773 struct drm_connector_list_iter conn_iter; 5774 struct intel_connector *connector; 5775 int ret = 0; 5776 5777 *crtc_mask = 0; 5778 5779 if (!intel_dp_needs_link_retrain(intel_dp)) 5780 return 0; 5781 5782 drm_connector_list_iter_begin(&i915->drm, &conn_iter); 5783 for_each_intel_connector_iter(connector, &conn_iter) { 5784 struct drm_connector_state *conn_state = 5785 connector->base.state; 5786 struct intel_crtc_state *crtc_state; 5787 struct intel_crtc *crtc; 5788 5789 if (!intel_dp_has_connector(intel_dp, conn_state)) 5790 continue; 5791 5792 crtc = to_intel_crtc(conn_state->crtc); 5793 if (!crtc) 5794 continue; 5795 5796 ret = drm_modeset_lock(&crtc->base.mutex, ctx); 5797 if (ret) 5798 break; 5799 5800 crtc_state = to_intel_crtc_state(crtc->base.state); 5801 5802 drm_WARN_ON(&i915->drm, !intel_crtc_has_dp_encoder(crtc_state)); 5803 5804 if (!crtc_state->hw.active) 5805 continue; 5806 5807 if (conn_state->commit && 5808 !try_wait_for_completion(&conn_state->commit->hw_done)) 5809 continue; 5810 5811 *crtc_mask |= drm_crtc_mask(&crtc->base); 5812 } 5813 drm_connector_list_iter_end(&conn_iter); 5814 5815 if (!intel_dp_needs_link_retrain(intel_dp)) 5816 *crtc_mask = 0; 5817 5818 return ret; 5819 } 5820 5821 static bool intel_dp_is_connected(struct intel_dp *intel_dp) 5822 { 5823 struct intel_connector *connector = intel_dp->attached_connector; 5824 5825 return connector->base.status == connector_status_connected || 5826 intel_dp->is_mst; 5827 } 5828 5829 int intel_dp_retrain_link(struct intel_encoder *encoder, 5830 struct drm_modeset_acquire_ctx *ctx) 5831 { 5832 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5833 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 5834 struct intel_crtc *crtc; 5835 u32 crtc_mask; 5836 int ret; 5837 5838 if (!intel_dp_is_connected(intel_dp)) 5839 return 0; 5840 5841 ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex, 5842 ctx); 5843 if (ret) 5844 return ret; 5845 5846 ret = intel_dp_prep_link_retrain(intel_dp, ctx, &crtc_mask); 5847 if (ret) 5848 return ret; 5849 5850 if (crtc_mask == 0) 5851 return 0; 5852 5853 drm_dbg_kms(&dev_priv->drm, "[ENCODER:%d:%s] retraining link\n", 5854 encoder->base.base.id, encoder->base.name); 5855 5856 for_each_intel_crtc_mask(&dev_priv->drm, crtc, crtc_mask) { 5857 const struct intel_crtc_state *crtc_state = 5858 to_intel_crtc_state(crtc->base.state); 5859 5860 /* Suppress underruns caused by re-training */ 5861 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false); 5862 if (crtc_state->has_pch_encoder) 5863 intel_set_pch_fifo_underrun_reporting(dev_priv, 5864 intel_crtc_pch_transcoder(crtc), false); 5865 } 5866 5867 intel_dp_start_link_train(intel_dp); 5868 intel_dp_stop_link_train(intel_dp); 5869 5870 for_each_intel_crtc_mask(&dev_priv->drm, crtc, crtc_mask) { 5871 const struct intel_crtc_state *crtc_state = 5872 to_intel_crtc_state(crtc->base.state); 5873 5874 /* Keep underrun reporting disabled until things are stable */ 5875 intel_wait_for_vblank(dev_priv, crtc->pipe); 5876 5877 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true); 5878 if (crtc_state->has_pch_encoder) 5879 intel_set_pch_fifo_underrun_reporting(dev_priv, 5880 intel_crtc_pch_transcoder(crtc), true); 5881 } 5882 5883 return 0; 5884 } 5885 5886 /* 5887 * If display is now connected check links status, 5888 * there has been known issues of link loss triggering 5889 * long pulse. 5890 * 5891 * Some sinks (eg. ASUS PB287Q) seem to perform some 5892 * weird HPD ping pong during modesets. So we can apparently 5893 * end up with HPD going low during a modeset, and then 5894 * going back up soon after. And once that happens we must 5895 * retrain the link to get a picture. That's in case no 5896 * userspace component reacted to intermittent HPD dip. 5897 */ 5898 static enum intel_hotplug_state 5899 intel_dp_hotplug(struct intel_encoder *encoder, 5900 struct intel_connector *connector) 5901 { 5902 struct drm_modeset_acquire_ctx ctx; 5903 enum intel_hotplug_state state; 5904 int ret; 5905 5906 state = intel_encoder_hotplug(encoder, connector); 5907 5908 drm_modeset_acquire_init(&ctx, 0); 5909 5910 for (;;) { 5911 ret = intel_dp_retrain_link(encoder, &ctx); 5912 5913 if (ret == -EDEADLK) { 5914 drm_modeset_backoff(&ctx); 5915 continue; 5916 } 5917 5918 break; 5919 } 5920 5921 drm_modeset_drop_locks(&ctx); 5922 drm_modeset_acquire_fini(&ctx); 5923 drm_WARN(encoder->base.dev, ret, 5924 "Acquiring modeset locks failed with %i\n", ret); 5925 5926 /* 5927 * Keeping it consistent with intel_ddi_hotplug() and 5928 * intel_hdmi_hotplug(). 5929 */ 5930 if (state == INTEL_HOTPLUG_UNCHANGED && !connector->hotplug_retries) 5931 state = INTEL_HOTPLUG_RETRY; 5932 5933 return state; 5934 } 5935 5936 static void intel_dp_check_service_irq(struct intel_dp *intel_dp) 5937 { 5938 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 5939 u8 val; 5940 5941 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11) 5942 return; 5943 5944 if (drm_dp_dpcd_readb(&intel_dp->aux, 5945 DP_DEVICE_SERVICE_IRQ_VECTOR, &val) != 1 || !val) 5946 return; 5947 5948 drm_dp_dpcd_writeb(&intel_dp->aux, DP_DEVICE_SERVICE_IRQ_VECTOR, val); 5949 5950 if (val & DP_AUTOMATED_TEST_REQUEST) 5951 intel_dp_handle_test_request(intel_dp); 5952 5953 if (val & DP_CP_IRQ) 5954 intel_hdcp_handle_cp_irq(intel_dp->attached_connector); 5955 5956 if (val & DP_SINK_SPECIFIC_IRQ) 5957 drm_dbg_kms(&i915->drm, "Sink specific irq unhandled\n"); 5958 } 5959 5960 /* 5961 * According to DP spec 5962 * 5.1.2: 5963 * 1. Read DPCD 5964 * 2. Configure link according to Receiver Capabilities 5965 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3 5966 * 4. Check link status on receipt of hot-plug interrupt 5967 * 5968 * intel_dp_short_pulse - handles short pulse interrupts 5969 * when full detection is not required. 5970 * Returns %true if short pulse is handled and full detection 5971 * is NOT required and %false otherwise. 5972 */ 5973 static bool 5974 intel_dp_short_pulse(struct intel_dp *intel_dp) 5975 { 5976 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 5977 u8 old_sink_count = intel_dp->sink_count; 5978 bool ret; 5979 5980 /* 5981 * Clearing compliance test variables to allow capturing 5982 * of values for next automated test request. 5983 */ 5984 memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance)); 5985 5986 /* 5987 * Now read the DPCD to see if it's actually running 5988 * If the current value of sink count doesn't match with 5989 * the value that was stored earlier or dpcd read failed 5990 * we need to do full detection 5991 */ 5992 ret = intel_dp_get_dpcd(intel_dp); 5993 5994 if ((old_sink_count != intel_dp->sink_count) || !ret) { 5995 /* No need to proceed if we are going to do full detect */ 5996 return false; 5997 } 5998 5999 intel_dp_check_service_irq(intel_dp); 6000 6001 /* Handle CEC interrupts, if any */ 6002 drm_dp_cec_irq(&intel_dp->aux); 6003 6004 /* defer to the hotplug work for link retraining if needed */ 6005 if (intel_dp_needs_link_retrain(intel_dp)) 6006 return false; 6007 6008 intel_psr_short_pulse(intel_dp); 6009 6010 if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) { 6011 drm_dbg_kms(&dev_priv->drm, 6012 "Link Training Compliance Test requested\n"); 6013 /* Send a Hotplug Uevent to userspace to start modeset */ 6014 drm_kms_helper_hotplug_event(&dev_priv->drm); 6015 } 6016 6017 return true; 6018 } 6019 6020 /* XXX this is probably wrong for multiple downstream ports */ 6021 static enum drm_connector_status 6022 intel_dp_detect_dpcd(struct intel_dp *intel_dp) 6023 { 6024 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 6025 struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp); 6026 u8 *dpcd = intel_dp->dpcd; 6027 u8 type; 6028 6029 if (drm_WARN_ON(&i915->drm, intel_dp_is_edp(intel_dp))) 6030 return connector_status_connected; 6031 6032 if (lspcon->active) 6033 lspcon_resume(lspcon); 6034 6035 if (!intel_dp_get_dpcd(intel_dp)) 6036 return connector_status_disconnected; 6037 6038 /* if there's no downstream port, we're done */ 6039 if (!drm_dp_is_branch(dpcd)) 6040 return connector_status_connected; 6041 6042 /* If we're HPD-aware, SINK_COUNT changes dynamically */ 6043 if (intel_dp_has_sink_count(intel_dp) && 6044 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) { 6045 return intel_dp->sink_count ? 6046 connector_status_connected : connector_status_disconnected; 6047 } 6048 6049 if (intel_dp_can_mst(intel_dp)) 6050 return connector_status_connected; 6051 6052 /* If no HPD, poke DDC gently */ 6053 if (drm_probe_ddc(&intel_dp->aux.ddc)) 6054 return connector_status_connected; 6055 6056 /* Well we tried, say unknown for unreliable port types */ 6057 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) { 6058 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK; 6059 if (type == DP_DS_PORT_TYPE_VGA || 6060 type == DP_DS_PORT_TYPE_NON_EDID) 6061 return connector_status_unknown; 6062 } else { 6063 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] & 6064 DP_DWN_STRM_PORT_TYPE_MASK; 6065 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG || 6066 type == DP_DWN_STRM_PORT_TYPE_OTHER) 6067 return connector_status_unknown; 6068 } 6069 6070 /* Anything else is out of spec, warn and ignore */ 6071 drm_dbg_kms(&i915->drm, "Broken DP branch device, ignoring\n"); 6072 return connector_status_disconnected; 6073 } 6074 6075 static enum drm_connector_status 6076 edp_detect(struct intel_dp *intel_dp) 6077 { 6078 return connector_status_connected; 6079 } 6080 6081 static bool ibx_digital_port_connected(struct intel_encoder *encoder) 6082 { 6083 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 6084 u32 bit = dev_priv->hotplug.pch_hpd[encoder->hpd_pin]; 6085 6086 return intel_de_read(dev_priv, SDEISR) & bit; 6087 } 6088 6089 static bool g4x_digital_port_connected(struct intel_encoder *encoder) 6090 { 6091 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 6092 u32 bit; 6093 6094 switch (encoder->hpd_pin) { 6095 case HPD_PORT_B: 6096 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X; 6097 break; 6098 case HPD_PORT_C: 6099 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X; 6100 break; 6101 case HPD_PORT_D: 6102 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X; 6103 break; 6104 default: 6105 MISSING_CASE(encoder->hpd_pin); 6106 return false; 6107 } 6108 6109 return intel_de_read(dev_priv, PORT_HOTPLUG_STAT) & bit; 6110 } 6111 6112 static bool gm45_digital_port_connected(struct intel_encoder *encoder) 6113 { 6114 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 6115 u32 bit; 6116 6117 switch (encoder->hpd_pin) { 6118 case HPD_PORT_B: 6119 bit = PORTB_HOTPLUG_LIVE_STATUS_GM45; 6120 break; 6121 case HPD_PORT_C: 6122 bit = PORTC_HOTPLUG_LIVE_STATUS_GM45; 6123 break; 6124 case HPD_PORT_D: 6125 bit = PORTD_HOTPLUG_LIVE_STATUS_GM45; 6126 break; 6127 default: 6128 MISSING_CASE(encoder->hpd_pin); 6129 return false; 6130 } 6131 6132 return intel_de_read(dev_priv, PORT_HOTPLUG_STAT) & bit; 6133 } 6134 6135 static bool ilk_digital_port_connected(struct intel_encoder *encoder) 6136 { 6137 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 6138 u32 bit = dev_priv->hotplug.hpd[encoder->hpd_pin]; 6139 6140 return intel_de_read(dev_priv, DEISR) & bit; 6141 } 6142 6143 /* 6144 * intel_digital_port_connected - is the specified port connected? 6145 * @encoder: intel_encoder 6146 * 6147 * In cases where there's a connector physically connected but it can't be used 6148 * by our hardware we also return false, since the rest of the driver should 6149 * pretty much treat the port as disconnected. This is relevant for type-C 6150 * (starting on ICL) where there's ownership involved. 6151 * 6152 * Return %true if port is connected, %false otherwise. 6153 */ 6154 bool intel_digital_port_connected(struct intel_encoder *encoder) 6155 { 6156 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 6157 struct intel_digital_port *dig_port = enc_to_dig_port(encoder); 6158 bool is_connected = false; 6159 intel_wakeref_t wakeref; 6160 6161 with_intel_display_power(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref) 6162 is_connected = dig_port->connected(encoder); 6163 6164 return is_connected; 6165 } 6166 6167 static struct edid * 6168 intel_dp_get_edid(struct intel_dp *intel_dp) 6169 { 6170 struct intel_connector *intel_connector = intel_dp->attached_connector; 6171 6172 /* use cached edid if we have one */ 6173 if (intel_connector->edid) { 6174 /* invalid edid */ 6175 if (IS_ERR(intel_connector->edid)) 6176 return NULL; 6177 6178 return drm_edid_duplicate(intel_connector->edid); 6179 } else 6180 return drm_get_edid(&intel_connector->base, 6181 &intel_dp->aux.ddc); 6182 } 6183 6184 static void 6185 intel_dp_update_dfp(struct intel_dp *intel_dp, 6186 const struct edid *edid) 6187 { 6188 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 6189 struct intel_connector *connector = intel_dp->attached_connector; 6190 6191 intel_dp->dfp.max_bpc = 6192 drm_dp_downstream_max_bpc(intel_dp->dpcd, 6193 intel_dp->downstream_ports, edid); 6194 6195 intel_dp->dfp.max_dotclock = 6196 drm_dp_downstream_max_dotclock(intel_dp->dpcd, 6197 intel_dp->downstream_ports); 6198 6199 intel_dp->dfp.min_tmds_clock = 6200 drm_dp_downstream_min_tmds_clock(intel_dp->dpcd, 6201 intel_dp->downstream_ports, 6202 edid); 6203 intel_dp->dfp.max_tmds_clock = 6204 drm_dp_downstream_max_tmds_clock(intel_dp->dpcd, 6205 intel_dp->downstream_ports, 6206 edid); 6207 6208 drm_dbg_kms(&i915->drm, 6209 "[CONNECTOR:%d:%s] DFP max bpc %d, max dotclock %d, TMDS clock %d-%d\n", 6210 connector->base.base.id, connector->base.name, 6211 intel_dp->dfp.max_bpc, 6212 intel_dp->dfp.max_dotclock, 6213 intel_dp->dfp.min_tmds_clock, 6214 intel_dp->dfp.max_tmds_clock); 6215 } 6216 6217 static void 6218 intel_dp_update_420(struct intel_dp *intel_dp) 6219 { 6220 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 6221 struct intel_connector *connector = intel_dp->attached_connector; 6222 bool is_branch, ycbcr_420_passthrough, ycbcr_444_to_420; 6223 6224 /* No YCbCr output support on gmch platforms */ 6225 if (HAS_GMCH(i915)) 6226 return; 6227 6228 /* 6229 * ILK doesn't seem capable of DP YCbCr output. The 6230 * displayed image is severly corrupted. SNB+ is fine. 6231 */ 6232 if (IS_GEN(i915, 5)) 6233 return; 6234 6235 is_branch = drm_dp_is_branch(intel_dp->dpcd); 6236 ycbcr_420_passthrough = 6237 drm_dp_downstream_420_passthrough(intel_dp->dpcd, 6238 intel_dp->downstream_ports); 6239 ycbcr_444_to_420 = 6240 drm_dp_downstream_444_to_420_conversion(intel_dp->dpcd, 6241 intel_dp->downstream_ports); 6242 6243 if (INTEL_GEN(i915) >= 11) { 6244 /* Prefer 4:2:0 passthrough over 4:4:4->4:2:0 conversion */ 6245 intel_dp->dfp.ycbcr_444_to_420 = 6246 ycbcr_444_to_420 && !ycbcr_420_passthrough; 6247 6248 connector->base.ycbcr_420_allowed = 6249 !is_branch || ycbcr_444_to_420 || ycbcr_420_passthrough; 6250 } else { 6251 /* 4:4:4->4:2:0 conversion is the only way */ 6252 intel_dp->dfp.ycbcr_444_to_420 = ycbcr_444_to_420; 6253 6254 connector->base.ycbcr_420_allowed = ycbcr_444_to_420; 6255 } 6256 6257 drm_dbg_kms(&i915->drm, 6258 "[CONNECTOR:%d:%s] YCbCr 4:2:0 allowed? %s, YCbCr 4:4:4->4:2:0 conversion? %s\n", 6259 connector->base.base.id, connector->base.name, 6260 yesno(connector->base.ycbcr_420_allowed), 6261 yesno(intel_dp->dfp.ycbcr_444_to_420)); 6262 } 6263 6264 static void 6265 intel_dp_set_edid(struct intel_dp *intel_dp) 6266 { 6267 struct intel_connector *connector = intel_dp->attached_connector; 6268 struct edid *edid; 6269 6270 intel_dp_unset_edid(intel_dp); 6271 edid = intel_dp_get_edid(intel_dp); 6272 connector->detect_edid = edid; 6273 6274 intel_dp_update_dfp(intel_dp, edid); 6275 intel_dp_update_420(intel_dp); 6276 6277 if (edid && edid->input & DRM_EDID_INPUT_DIGITAL) { 6278 intel_dp->has_hdmi_sink = drm_detect_hdmi_monitor(edid); 6279 intel_dp->has_audio = drm_detect_monitor_audio(edid); 6280 } 6281 6282 drm_dp_cec_set_edid(&intel_dp->aux, edid); 6283 intel_dp->edid_quirks = drm_dp_get_edid_quirks(edid); 6284 } 6285 6286 static void 6287 intel_dp_unset_edid(struct intel_dp *intel_dp) 6288 { 6289 struct intel_connector *connector = intel_dp->attached_connector; 6290 6291 drm_dp_cec_unset_edid(&intel_dp->aux); 6292 kfree(connector->detect_edid); 6293 connector->detect_edid = NULL; 6294 6295 intel_dp->has_hdmi_sink = false; 6296 intel_dp->has_audio = false; 6297 intel_dp->edid_quirks = 0; 6298 6299 intel_dp->dfp.max_bpc = 0; 6300 intel_dp->dfp.max_dotclock = 0; 6301 intel_dp->dfp.min_tmds_clock = 0; 6302 intel_dp->dfp.max_tmds_clock = 0; 6303 6304 intel_dp->dfp.ycbcr_444_to_420 = false; 6305 connector->base.ycbcr_420_allowed = false; 6306 } 6307 6308 static int 6309 intel_dp_detect(struct drm_connector *connector, 6310 struct drm_modeset_acquire_ctx *ctx, 6311 bool force) 6312 { 6313 struct drm_i915_private *dev_priv = to_i915(connector->dev); 6314 struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector)); 6315 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 6316 struct intel_encoder *encoder = &dig_port->base; 6317 enum drm_connector_status status; 6318 6319 drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s]\n", 6320 connector->base.id, connector->name); 6321 drm_WARN_ON(&dev_priv->drm, 6322 !drm_modeset_is_locked(&dev_priv->drm.mode_config.connection_mutex)); 6323 6324 if (!INTEL_DISPLAY_ENABLED(dev_priv)) 6325 return connector_status_disconnected; 6326 6327 /* Can't disconnect eDP */ 6328 if (intel_dp_is_edp(intel_dp)) 6329 status = edp_detect(intel_dp); 6330 else if (intel_digital_port_connected(encoder)) 6331 status = intel_dp_detect_dpcd(intel_dp); 6332 else 6333 status = connector_status_disconnected; 6334 6335 if (status == connector_status_disconnected) { 6336 memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance)); 6337 memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd)); 6338 6339 if (intel_dp->is_mst) { 6340 drm_dbg_kms(&dev_priv->drm, 6341 "MST device may have disappeared %d vs %d\n", 6342 intel_dp->is_mst, 6343 intel_dp->mst_mgr.mst_state); 6344 intel_dp->is_mst = false; 6345 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, 6346 intel_dp->is_mst); 6347 } 6348 6349 goto out; 6350 } 6351 6352 /* Read DP Sink DSC Cap DPCD regs for DP v1.4 */ 6353 if (INTEL_GEN(dev_priv) >= 11) 6354 intel_dp_get_dsc_sink_cap(intel_dp); 6355 6356 intel_dp_configure_mst(intel_dp); 6357 6358 /* 6359 * TODO: Reset link params when switching to MST mode, until MST 6360 * supports link training fallback params. 6361 */ 6362 if (intel_dp->reset_link_params || intel_dp->is_mst) { 6363 /* Initial max link lane count */ 6364 intel_dp->max_link_lane_count = intel_dp_max_common_lane_count(intel_dp); 6365 6366 /* Initial max link rate */ 6367 intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp); 6368 6369 intel_dp->reset_link_params = false; 6370 } 6371 6372 intel_dp_print_rates(intel_dp); 6373 6374 if (intel_dp->is_mst) { 6375 /* 6376 * If we are in MST mode then this connector 6377 * won't appear connected or have anything 6378 * with EDID on it 6379 */ 6380 status = connector_status_disconnected; 6381 goto out; 6382 } 6383 6384 /* 6385 * Some external monitors do not signal loss of link synchronization 6386 * with an IRQ_HPD, so force a link status check. 6387 */ 6388 if (!intel_dp_is_edp(intel_dp)) { 6389 int ret; 6390 6391 ret = intel_dp_retrain_link(encoder, ctx); 6392 if (ret) 6393 return ret; 6394 } 6395 6396 /* 6397 * Clearing NACK and defer counts to get their exact values 6398 * while reading EDID which are required by Compliance tests 6399 * 4.2.2.4 and 4.2.2.5 6400 */ 6401 intel_dp->aux.i2c_nack_count = 0; 6402 intel_dp->aux.i2c_defer_count = 0; 6403 6404 intel_dp_set_edid(intel_dp); 6405 if (intel_dp_is_edp(intel_dp) || 6406 to_intel_connector(connector)->detect_edid) 6407 status = connector_status_connected; 6408 6409 intel_dp_check_service_irq(intel_dp); 6410 6411 out: 6412 if (status != connector_status_connected && !intel_dp->is_mst) 6413 intel_dp_unset_edid(intel_dp); 6414 6415 /* 6416 * Make sure the refs for power wells enabled during detect are 6417 * dropped to avoid a new detect cycle triggered by HPD polling. 6418 */ 6419 intel_display_power_flush_work(dev_priv); 6420 6421 if (!intel_dp_is_edp(intel_dp)) 6422 drm_dp_set_subconnector_property(connector, 6423 status, 6424 intel_dp->dpcd, 6425 intel_dp->downstream_ports); 6426 return status; 6427 } 6428 6429 static void 6430 intel_dp_force(struct drm_connector *connector) 6431 { 6432 struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector)); 6433 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 6434 struct intel_encoder *intel_encoder = &dig_port->base; 6435 struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev); 6436 enum intel_display_power_domain aux_domain = 6437 intel_aux_power_domain(dig_port); 6438 intel_wakeref_t wakeref; 6439 6440 drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s]\n", 6441 connector->base.id, connector->name); 6442 intel_dp_unset_edid(intel_dp); 6443 6444 if (connector->status != connector_status_connected) 6445 return; 6446 6447 wakeref = intel_display_power_get(dev_priv, aux_domain); 6448 6449 intel_dp_set_edid(intel_dp); 6450 6451 intel_display_power_put(dev_priv, aux_domain, wakeref); 6452 } 6453 6454 static int intel_dp_get_modes(struct drm_connector *connector) 6455 { 6456 struct intel_connector *intel_connector = to_intel_connector(connector); 6457 struct edid *edid; 6458 6459 edid = intel_connector->detect_edid; 6460 if (edid) { 6461 int ret = intel_connector_update_modes(connector, edid); 6462 if (ret) 6463 return ret; 6464 } 6465 6466 /* if eDP has no EDID, fall back to fixed mode */ 6467 if (intel_dp_is_edp(intel_attached_dp(intel_connector)) && 6468 intel_connector->panel.fixed_mode) { 6469 struct drm_display_mode *mode; 6470 6471 mode = drm_mode_duplicate(connector->dev, 6472 intel_connector->panel.fixed_mode); 6473 if (mode) { 6474 drm_mode_probed_add(connector, mode); 6475 return 1; 6476 } 6477 } 6478 6479 if (!edid) { 6480 struct intel_dp *intel_dp = intel_attached_dp(intel_connector); 6481 struct drm_display_mode *mode; 6482 6483 mode = drm_dp_downstream_mode(connector->dev, 6484 intel_dp->dpcd, 6485 intel_dp->downstream_ports); 6486 if (mode) { 6487 drm_mode_probed_add(connector, mode); 6488 return 1; 6489 } 6490 } 6491 6492 return 0; 6493 } 6494 6495 static int 6496 intel_dp_connector_register(struct drm_connector *connector) 6497 { 6498 struct drm_i915_private *i915 = to_i915(connector->dev); 6499 struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector)); 6500 int ret; 6501 6502 ret = intel_connector_register(connector); 6503 if (ret) 6504 return ret; 6505 6506 #ifdef notyet 6507 drm_dbg_kms(&i915->drm, "registering %s bus for %s\n", 6508 intel_dp->aux.name, connector->kdev->kobj.name); 6509 #endif 6510 6511 intel_dp->aux.dev = connector->kdev; 6512 ret = drm_dp_aux_register(&intel_dp->aux); 6513 if (!ret) 6514 drm_dp_cec_register_connector(&intel_dp->aux, connector); 6515 return ret; 6516 } 6517 6518 static void 6519 intel_dp_connector_unregister(struct drm_connector *connector) 6520 { 6521 struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector)); 6522 6523 drm_dp_cec_unregister_connector(&intel_dp->aux); 6524 drm_dp_aux_unregister(&intel_dp->aux); 6525 intel_connector_unregister(connector); 6526 } 6527 6528 void intel_dp_encoder_flush_work(struct drm_encoder *encoder) 6529 { 6530 struct intel_digital_port *dig_port = enc_to_dig_port(to_intel_encoder(encoder)); 6531 struct intel_dp *intel_dp = &dig_port->dp; 6532 6533 intel_dp_mst_encoder_cleanup(dig_port); 6534 if (intel_dp_is_edp(intel_dp)) { 6535 intel_wakeref_t wakeref; 6536 6537 cancel_delayed_work_sync(&intel_dp->panel_vdd_work); 6538 /* 6539 * vdd might still be enabled do to the delayed vdd off. 6540 * Make sure vdd is actually turned off here. 6541 */ 6542 with_pps_lock(intel_dp, wakeref) 6543 edp_panel_vdd_off_sync(intel_dp); 6544 6545 if (intel_dp->edp_notifier.notifier_call) { 6546 unregister_reboot_notifier(&intel_dp->edp_notifier); 6547 intel_dp->edp_notifier.notifier_call = NULL; 6548 } 6549 } 6550 6551 intel_dp_aux_fini(intel_dp); 6552 } 6553 6554 static void intel_dp_encoder_destroy(struct drm_encoder *encoder) 6555 { 6556 intel_dp_encoder_flush_work(encoder); 6557 6558 drm_encoder_cleanup(encoder); 6559 kfree(enc_to_dig_port(to_intel_encoder(encoder))); 6560 } 6561 6562 void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder) 6563 { 6564 struct intel_dp *intel_dp = enc_to_intel_dp(intel_encoder); 6565 intel_wakeref_t wakeref; 6566 6567 if (!intel_dp_is_edp(intel_dp)) 6568 return; 6569 6570 /* 6571 * vdd might still be enabled do to the delayed vdd off. 6572 * Make sure vdd is actually turned off here. 6573 */ 6574 cancel_delayed_work_sync(&intel_dp->panel_vdd_work); 6575 with_pps_lock(intel_dp, wakeref) 6576 edp_panel_vdd_off_sync(intel_dp); 6577 } 6578 6579 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp) 6580 { 6581 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 6582 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 6583 6584 lockdep_assert_held(&dev_priv->pps_mutex); 6585 6586 if (!edp_have_panel_vdd(intel_dp)) 6587 return; 6588 6589 /* 6590 * The VDD bit needs a power domain reference, so if the bit is 6591 * already enabled when we boot or resume, grab this reference and 6592 * schedule a vdd off, so we don't hold on to the reference 6593 * indefinitely. 6594 */ 6595 drm_dbg_kms(&dev_priv->drm, 6596 "VDD left on by BIOS, adjusting state tracking\n"); 6597 intel_display_power_get(dev_priv, intel_aux_power_domain(dig_port)); 6598 6599 edp_panel_vdd_schedule_off(intel_dp); 6600 } 6601 6602 static enum pipe vlv_active_pipe(struct intel_dp *intel_dp) 6603 { 6604 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 6605 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; 6606 enum pipe pipe; 6607 6608 if (intel_dp_port_enabled(dev_priv, intel_dp->output_reg, 6609 encoder->port, &pipe)) 6610 return pipe; 6611 6612 return INVALID_PIPE; 6613 } 6614 6615 void intel_dp_encoder_reset(struct drm_encoder *encoder) 6616 { 6617 struct drm_i915_private *dev_priv = to_i915(encoder->dev); 6618 struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(encoder)); 6619 struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp); 6620 intel_wakeref_t wakeref; 6621 6622 if (!HAS_DDI(dev_priv)) 6623 intel_dp->DP = intel_de_read(dev_priv, intel_dp->output_reg); 6624 6625 if (lspcon->active) 6626 lspcon_resume(lspcon); 6627 6628 intel_dp->reset_link_params = true; 6629 6630 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) && 6631 !intel_dp_is_edp(intel_dp)) 6632 return; 6633 6634 with_pps_lock(intel_dp, wakeref) { 6635 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 6636 intel_dp->active_pipe = vlv_active_pipe(intel_dp); 6637 6638 if (intel_dp_is_edp(intel_dp)) { 6639 /* 6640 * Reinit the power sequencer, in case BIOS did 6641 * something nasty with it. 6642 */ 6643 intel_dp_pps_init(intel_dp); 6644 intel_edp_panel_vdd_sanitize(intel_dp); 6645 } 6646 } 6647 } 6648 6649 static int intel_modeset_tile_group(struct intel_atomic_state *state, 6650 int tile_group_id) 6651 { 6652 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 6653 struct drm_connector_list_iter conn_iter; 6654 struct drm_connector *connector; 6655 int ret = 0; 6656 6657 drm_connector_list_iter_begin(&dev_priv->drm, &conn_iter); 6658 drm_for_each_connector_iter(connector, &conn_iter) { 6659 struct drm_connector_state *conn_state; 6660 struct intel_crtc_state *crtc_state; 6661 struct intel_crtc *crtc; 6662 6663 if (!connector->has_tile || 6664 connector->tile_group->id != tile_group_id) 6665 continue; 6666 6667 conn_state = drm_atomic_get_connector_state(&state->base, 6668 connector); 6669 if (IS_ERR(conn_state)) { 6670 ret = PTR_ERR(conn_state); 6671 break; 6672 } 6673 6674 crtc = to_intel_crtc(conn_state->crtc); 6675 6676 if (!crtc) 6677 continue; 6678 6679 crtc_state = intel_atomic_get_new_crtc_state(state, crtc); 6680 crtc_state->uapi.mode_changed = true; 6681 6682 ret = drm_atomic_add_affected_planes(&state->base, &crtc->base); 6683 if (ret) 6684 break; 6685 } 6686 drm_connector_list_iter_end(&conn_iter); 6687 6688 return ret; 6689 } 6690 6691 static int intel_modeset_affected_transcoders(struct intel_atomic_state *state, u8 transcoders) 6692 { 6693 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 6694 struct intel_crtc *crtc; 6695 6696 if (transcoders == 0) 6697 return 0; 6698 6699 for_each_intel_crtc(&dev_priv->drm, crtc) { 6700 struct intel_crtc_state *crtc_state; 6701 int ret; 6702 6703 crtc_state = intel_atomic_get_crtc_state(&state->base, crtc); 6704 if (IS_ERR(crtc_state)) 6705 return PTR_ERR(crtc_state); 6706 6707 if (!crtc_state->hw.enable) 6708 continue; 6709 6710 if (!(transcoders & BIT(crtc_state->cpu_transcoder))) 6711 continue; 6712 6713 crtc_state->uapi.mode_changed = true; 6714 6715 ret = drm_atomic_add_affected_connectors(&state->base, &crtc->base); 6716 if (ret) 6717 return ret; 6718 6719 ret = drm_atomic_add_affected_planes(&state->base, &crtc->base); 6720 if (ret) 6721 return ret; 6722 6723 transcoders &= ~BIT(crtc_state->cpu_transcoder); 6724 } 6725 6726 drm_WARN_ON(&dev_priv->drm, transcoders != 0); 6727 6728 return 0; 6729 } 6730 6731 static int intel_modeset_synced_crtcs(struct intel_atomic_state *state, 6732 struct drm_connector *connector) 6733 { 6734 const struct drm_connector_state *old_conn_state = 6735 drm_atomic_get_old_connector_state(&state->base, connector); 6736 const struct intel_crtc_state *old_crtc_state; 6737 struct intel_crtc *crtc; 6738 u8 transcoders; 6739 6740 crtc = to_intel_crtc(old_conn_state->crtc); 6741 if (!crtc) 6742 return 0; 6743 6744 old_crtc_state = intel_atomic_get_old_crtc_state(state, crtc); 6745 6746 if (!old_crtc_state->hw.active) 6747 return 0; 6748 6749 transcoders = old_crtc_state->sync_mode_slaves_mask; 6750 if (old_crtc_state->master_transcoder != INVALID_TRANSCODER) 6751 transcoders |= BIT(old_crtc_state->master_transcoder); 6752 6753 return intel_modeset_affected_transcoders(state, 6754 transcoders); 6755 } 6756 6757 static int intel_dp_connector_atomic_check(struct drm_connector *conn, 6758 struct drm_atomic_state *_state) 6759 { 6760 struct drm_i915_private *dev_priv = to_i915(conn->dev); 6761 struct intel_atomic_state *state = to_intel_atomic_state(_state); 6762 int ret; 6763 6764 ret = intel_digital_connector_atomic_check(conn, &state->base); 6765 if (ret) 6766 return ret; 6767 6768 /* 6769 * We don't enable port sync on BDW due to missing w/as and 6770 * due to not having adjusted the modeset sequence appropriately. 6771 */ 6772 if (INTEL_GEN(dev_priv) < 9) 6773 return 0; 6774 6775 if (!intel_connector_needs_modeset(state, conn)) 6776 return 0; 6777 6778 if (conn->has_tile) { 6779 ret = intel_modeset_tile_group(state, conn->tile_group->id); 6780 if (ret) 6781 return ret; 6782 } 6783 6784 return intel_modeset_synced_crtcs(state, conn); 6785 } 6786 6787 static const struct drm_connector_funcs intel_dp_connector_funcs = { 6788 .force = intel_dp_force, 6789 .fill_modes = drm_helper_probe_single_connector_modes, 6790 .atomic_get_property = intel_digital_connector_atomic_get_property, 6791 .atomic_set_property = intel_digital_connector_atomic_set_property, 6792 .late_register = intel_dp_connector_register, 6793 .early_unregister = intel_dp_connector_unregister, 6794 .destroy = intel_connector_destroy, 6795 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state, 6796 .atomic_duplicate_state = intel_digital_connector_duplicate_state, 6797 }; 6798 6799 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = { 6800 .detect_ctx = intel_dp_detect, 6801 .get_modes = intel_dp_get_modes, 6802 .mode_valid = intel_dp_mode_valid, 6803 .atomic_check = intel_dp_connector_atomic_check, 6804 }; 6805 6806 static const struct drm_encoder_funcs intel_dp_enc_funcs = { 6807 .reset = intel_dp_encoder_reset, 6808 .destroy = intel_dp_encoder_destroy, 6809 }; 6810 6811 static bool intel_edp_have_power(struct intel_dp *intel_dp) 6812 { 6813 intel_wakeref_t wakeref; 6814 bool have_power = false; 6815 6816 with_pps_lock(intel_dp, wakeref) { 6817 have_power = edp_have_panel_power(intel_dp) && 6818 edp_have_panel_vdd(intel_dp); 6819 } 6820 6821 return have_power; 6822 } 6823 6824 enum irqreturn 6825 intel_dp_hpd_pulse(struct intel_digital_port *dig_port, bool long_hpd) 6826 { 6827 struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev); 6828 struct intel_dp *intel_dp = &dig_port->dp; 6829 6830 if (dig_port->base.type == INTEL_OUTPUT_EDP && 6831 (long_hpd || !intel_edp_have_power(intel_dp))) { 6832 /* 6833 * vdd off can generate a long/short pulse on eDP which 6834 * would require vdd on to handle it, and thus we 6835 * would end up in an endless cycle of 6836 * "vdd off -> long/short hpd -> vdd on -> detect -> vdd off -> ..." 6837 */ 6838 drm_dbg_kms(&i915->drm, 6839 "ignoring %s hpd on eDP [ENCODER:%d:%s]\n", 6840 long_hpd ? "long" : "short", 6841 dig_port->base.base.base.id, 6842 dig_port->base.base.name); 6843 return IRQ_HANDLED; 6844 } 6845 6846 drm_dbg_kms(&i915->drm, "got hpd irq on [ENCODER:%d:%s] - %s\n", 6847 dig_port->base.base.base.id, 6848 dig_port->base.base.name, 6849 long_hpd ? "long" : "short"); 6850 6851 if (long_hpd) { 6852 intel_dp->reset_link_params = true; 6853 return IRQ_NONE; 6854 } 6855 6856 if (intel_dp->is_mst) { 6857 if (!intel_dp_check_mst_status(intel_dp)) 6858 return IRQ_NONE; 6859 } else if (!intel_dp_short_pulse(intel_dp)) { 6860 return IRQ_NONE; 6861 } 6862 6863 return IRQ_HANDLED; 6864 } 6865 6866 /* check the VBT to see whether the eDP is on another port */ 6867 bool intel_dp_is_port_edp(struct drm_i915_private *dev_priv, enum port port) 6868 { 6869 /* 6870 * eDP not supported on g4x. so bail out early just 6871 * for a bit extra safety in case the VBT is bonkers. 6872 */ 6873 if (INTEL_GEN(dev_priv) < 5) 6874 return false; 6875 6876 if (INTEL_GEN(dev_priv) < 9 && port == PORT_A) 6877 return true; 6878 6879 return intel_bios_is_port_edp(dev_priv, port); 6880 } 6881 6882 static void 6883 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector) 6884 { 6885 struct drm_i915_private *dev_priv = to_i915(connector->dev); 6886 enum port port = dp_to_dig_port(intel_dp)->base.port; 6887 6888 if (!intel_dp_is_edp(intel_dp)) 6889 drm_connector_attach_dp_subconnector_property(connector); 6890 6891 if (!IS_G4X(dev_priv) && port != PORT_A) 6892 intel_attach_force_audio_property(connector); 6893 6894 intel_attach_broadcast_rgb_property(connector); 6895 if (HAS_GMCH(dev_priv)) 6896 drm_connector_attach_max_bpc_property(connector, 6, 10); 6897 else if (INTEL_GEN(dev_priv) >= 5) 6898 drm_connector_attach_max_bpc_property(connector, 6, 12); 6899 6900 intel_attach_colorspace_property(connector); 6901 6902 if (IS_GEMINILAKE(dev_priv) || INTEL_GEN(dev_priv) >= 11) 6903 drm_object_attach_property(&connector->base, 6904 connector->dev->mode_config.hdr_output_metadata_property, 6905 0); 6906 6907 if (intel_dp_is_edp(intel_dp)) { 6908 u32 allowed_scalers; 6909 6910 allowed_scalers = BIT(DRM_MODE_SCALE_ASPECT) | BIT(DRM_MODE_SCALE_FULLSCREEN); 6911 if (!HAS_GMCH(dev_priv)) 6912 allowed_scalers |= BIT(DRM_MODE_SCALE_CENTER); 6913 6914 drm_connector_attach_scaling_mode_property(connector, allowed_scalers); 6915 6916 connector->state->scaling_mode = DRM_MODE_SCALE_ASPECT; 6917 6918 } 6919 } 6920 6921 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp) 6922 { 6923 intel_dp->panel_power_off_time = ktime_get_boottime(); 6924 intel_dp->last_power_on = jiffies; 6925 intel_dp->last_backlight_off = jiffies; 6926 } 6927 6928 static void 6929 intel_pps_readout_hw_state(struct intel_dp *intel_dp, struct edp_power_seq *seq) 6930 { 6931 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 6932 u32 pp_on, pp_off, pp_ctl; 6933 struct pps_registers regs; 6934 6935 intel_pps_get_registers(intel_dp, ®s); 6936 6937 pp_ctl = ilk_get_pp_control(intel_dp); 6938 6939 /* Ensure PPS is unlocked */ 6940 if (!HAS_DDI(dev_priv)) 6941 intel_de_write(dev_priv, regs.pp_ctrl, pp_ctl); 6942 6943 pp_on = intel_de_read(dev_priv, regs.pp_on); 6944 pp_off = intel_de_read(dev_priv, regs.pp_off); 6945 6946 /* Pull timing values out of registers */ 6947 seq->t1_t3 = REG_FIELD_GET(PANEL_POWER_UP_DELAY_MASK, pp_on); 6948 seq->t8 = REG_FIELD_GET(PANEL_LIGHT_ON_DELAY_MASK, pp_on); 6949 seq->t9 = REG_FIELD_GET(PANEL_LIGHT_OFF_DELAY_MASK, pp_off); 6950 seq->t10 = REG_FIELD_GET(PANEL_POWER_DOWN_DELAY_MASK, pp_off); 6951 6952 if (i915_mmio_reg_valid(regs.pp_div)) { 6953 u32 pp_div; 6954 6955 pp_div = intel_de_read(dev_priv, regs.pp_div); 6956 6957 seq->t11_t12 = REG_FIELD_GET(PANEL_POWER_CYCLE_DELAY_MASK, pp_div) * 1000; 6958 } else { 6959 seq->t11_t12 = REG_FIELD_GET(BXT_POWER_CYCLE_DELAY_MASK, pp_ctl) * 1000; 6960 } 6961 } 6962 6963 static void 6964 intel_pps_dump_state(const char *state_name, const struct edp_power_seq *seq) 6965 { 6966 DRM_DEBUG_KMS("%s t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n", 6967 state_name, 6968 seq->t1_t3, seq->t8, seq->t9, seq->t10, seq->t11_t12); 6969 } 6970 6971 static void 6972 intel_pps_verify_state(struct intel_dp *intel_dp) 6973 { 6974 struct edp_power_seq hw; 6975 struct edp_power_seq *sw = &intel_dp->pps_delays; 6976 6977 intel_pps_readout_hw_state(intel_dp, &hw); 6978 6979 if (hw.t1_t3 != sw->t1_t3 || hw.t8 != sw->t8 || hw.t9 != sw->t9 || 6980 hw.t10 != sw->t10 || hw.t11_t12 != sw->t11_t12) { 6981 DRM_ERROR("PPS state mismatch\n"); 6982 intel_pps_dump_state("sw", sw); 6983 intel_pps_dump_state("hw", &hw); 6984 } 6985 } 6986 6987 static void 6988 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp) 6989 { 6990 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 6991 struct edp_power_seq cur, vbt, spec, 6992 *final = &intel_dp->pps_delays; 6993 6994 lockdep_assert_held(&dev_priv->pps_mutex); 6995 6996 /* already initialized? */ 6997 if (final->t11_t12 != 0) 6998 return; 6999 7000 intel_pps_readout_hw_state(intel_dp, &cur); 7001 7002 intel_pps_dump_state("cur", &cur); 7003 7004 vbt = dev_priv->vbt.edp.pps; 7005 /* On Toshiba Satellite P50-C-18C system the VBT T12 delay 7006 * of 500ms appears to be too short. Ocassionally the panel 7007 * just fails to power back on. Increasing the delay to 800ms 7008 * seems sufficient to avoid this problem. 7009 */ 7010 if (dev_priv->quirks & QUIRK_INCREASE_T12_DELAY) { 7011 vbt.t11_t12 = max_t(u16, vbt.t11_t12, 1300 * 10); 7012 drm_dbg_kms(&dev_priv->drm, 7013 "Increasing T12 panel delay as per the quirk to %d\n", 7014 vbt.t11_t12); 7015 } 7016 /* T11_T12 delay is special and actually in units of 100ms, but zero 7017 * based in the hw (so we need to add 100 ms). But the sw vbt 7018 * table multiplies it with 1000 to make it in units of 100usec, 7019 * too. */ 7020 vbt.t11_t12 += 100 * 10; 7021 7022 /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of 7023 * our hw here, which are all in 100usec. */ 7024 spec.t1_t3 = 210 * 10; 7025 spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */ 7026 spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */ 7027 spec.t10 = 500 * 10; 7028 /* This one is special and actually in units of 100ms, but zero 7029 * based in the hw (so we need to add 100 ms). But the sw vbt 7030 * table multiplies it with 1000 to make it in units of 100usec, 7031 * too. */ 7032 spec.t11_t12 = (510 + 100) * 10; 7033 7034 intel_pps_dump_state("vbt", &vbt); 7035 7036 /* Use the max of the register settings and vbt. If both are 7037 * unset, fall back to the spec limits. */ 7038 #define assign_final(field) final->field = (max(cur.field, vbt.field) == 0 ? \ 7039 spec.field : \ 7040 max(cur.field, vbt.field)) 7041 assign_final(t1_t3); 7042 assign_final(t8); 7043 assign_final(t9); 7044 assign_final(t10); 7045 assign_final(t11_t12); 7046 #undef assign_final 7047 7048 #define get_delay(field) (DIV_ROUND_UP(final->field, 10)) 7049 intel_dp->panel_power_up_delay = get_delay(t1_t3); 7050 intel_dp->backlight_on_delay = get_delay(t8); 7051 intel_dp->backlight_off_delay = get_delay(t9); 7052 intel_dp->panel_power_down_delay = get_delay(t10); 7053 intel_dp->panel_power_cycle_delay = get_delay(t11_t12); 7054 #undef get_delay 7055 7056 drm_dbg_kms(&dev_priv->drm, 7057 "panel power up delay %d, power down delay %d, power cycle delay %d\n", 7058 intel_dp->panel_power_up_delay, 7059 intel_dp->panel_power_down_delay, 7060 intel_dp->panel_power_cycle_delay); 7061 7062 drm_dbg_kms(&dev_priv->drm, "backlight on delay %d, off delay %d\n", 7063 intel_dp->backlight_on_delay, 7064 intel_dp->backlight_off_delay); 7065 7066 /* 7067 * We override the HW backlight delays to 1 because we do manual waits 7068 * on them. For T8, even BSpec recommends doing it. For T9, if we 7069 * don't do this, we'll end up waiting for the backlight off delay 7070 * twice: once when we do the manual sleep, and once when we disable 7071 * the panel and wait for the PP_STATUS bit to become zero. 7072 */ 7073 final->t8 = 1; 7074 final->t9 = 1; 7075 7076 /* 7077 * HW has only a 100msec granularity for t11_t12 so round it up 7078 * accordingly. 7079 */ 7080 final->t11_t12 = roundup(final->t11_t12, 100 * 10); 7081 } 7082 7083 static void 7084 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp, 7085 bool force_disable_vdd) 7086 { 7087 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 7088 u32 pp_on, pp_off, port_sel = 0; 7089 int div = RUNTIME_INFO(dev_priv)->rawclk_freq / 1000; 7090 struct pps_registers regs; 7091 enum port port = dp_to_dig_port(intel_dp)->base.port; 7092 const struct edp_power_seq *seq = &intel_dp->pps_delays; 7093 7094 lockdep_assert_held(&dev_priv->pps_mutex); 7095 7096 intel_pps_get_registers(intel_dp, ®s); 7097 7098 /* 7099 * On some VLV machines the BIOS can leave the VDD 7100 * enabled even on power sequencers which aren't 7101 * hooked up to any port. This would mess up the 7102 * power domain tracking the first time we pick 7103 * one of these power sequencers for use since 7104 * edp_panel_vdd_on() would notice that the VDD was 7105 * already on and therefore wouldn't grab the power 7106 * domain reference. Disable VDD first to avoid this. 7107 * This also avoids spuriously turning the VDD on as 7108 * soon as the new power sequencer gets initialized. 7109 */ 7110 if (force_disable_vdd) { 7111 u32 pp = ilk_get_pp_control(intel_dp); 7112 7113 drm_WARN(&dev_priv->drm, pp & PANEL_POWER_ON, 7114 "Panel power already on\n"); 7115 7116 if (pp & EDP_FORCE_VDD) 7117 drm_dbg_kms(&dev_priv->drm, 7118 "VDD already on, disabling first\n"); 7119 7120 pp &= ~EDP_FORCE_VDD; 7121 7122 intel_de_write(dev_priv, regs.pp_ctrl, pp); 7123 } 7124 7125 pp_on = REG_FIELD_PREP(PANEL_POWER_UP_DELAY_MASK, seq->t1_t3) | 7126 REG_FIELD_PREP(PANEL_LIGHT_ON_DELAY_MASK, seq->t8); 7127 pp_off = REG_FIELD_PREP(PANEL_LIGHT_OFF_DELAY_MASK, seq->t9) | 7128 REG_FIELD_PREP(PANEL_POWER_DOWN_DELAY_MASK, seq->t10); 7129 7130 /* Haswell doesn't have any port selection bits for the panel 7131 * power sequencer any more. */ 7132 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 7133 port_sel = PANEL_PORT_SELECT_VLV(port); 7134 } else if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) { 7135 switch (port) { 7136 case PORT_A: 7137 port_sel = PANEL_PORT_SELECT_DPA; 7138 break; 7139 case PORT_C: 7140 port_sel = PANEL_PORT_SELECT_DPC; 7141 break; 7142 case PORT_D: 7143 port_sel = PANEL_PORT_SELECT_DPD; 7144 break; 7145 default: 7146 MISSING_CASE(port); 7147 break; 7148 } 7149 } 7150 7151 pp_on |= port_sel; 7152 7153 intel_de_write(dev_priv, regs.pp_on, pp_on); 7154 intel_de_write(dev_priv, regs.pp_off, pp_off); 7155 7156 /* 7157 * Compute the divisor for the pp clock, simply match the Bspec formula. 7158 */ 7159 if (i915_mmio_reg_valid(regs.pp_div)) { 7160 intel_de_write(dev_priv, regs.pp_div, 7161 REG_FIELD_PREP(PP_REFERENCE_DIVIDER_MASK, (100 * div) / 2 - 1) | REG_FIELD_PREP(PANEL_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000))); 7162 } else { 7163 u32 pp_ctl; 7164 7165 pp_ctl = intel_de_read(dev_priv, regs.pp_ctrl); 7166 pp_ctl &= ~BXT_POWER_CYCLE_DELAY_MASK; 7167 pp_ctl |= REG_FIELD_PREP(BXT_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000)); 7168 intel_de_write(dev_priv, regs.pp_ctrl, pp_ctl); 7169 } 7170 7171 drm_dbg_kms(&dev_priv->drm, 7172 "panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n", 7173 intel_de_read(dev_priv, regs.pp_on), 7174 intel_de_read(dev_priv, regs.pp_off), 7175 i915_mmio_reg_valid(regs.pp_div) ? 7176 intel_de_read(dev_priv, regs.pp_div) : 7177 (intel_de_read(dev_priv, regs.pp_ctrl) & BXT_POWER_CYCLE_DELAY_MASK)); 7178 } 7179 7180 static void intel_dp_pps_init(struct intel_dp *intel_dp) 7181 { 7182 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 7183 7184 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 7185 vlv_initial_power_sequencer_setup(intel_dp); 7186 } else { 7187 intel_dp_init_panel_power_sequencer(intel_dp); 7188 intel_dp_init_panel_power_sequencer_registers(intel_dp, false); 7189 } 7190 } 7191 7192 /** 7193 * intel_dp_set_drrs_state - program registers for RR switch to take effect 7194 * @dev_priv: i915 device 7195 * @crtc_state: a pointer to the active intel_crtc_state 7196 * @refresh_rate: RR to be programmed 7197 * 7198 * This function gets called when refresh rate (RR) has to be changed from 7199 * one frequency to another. Switches can be between high and low RR 7200 * supported by the panel or to any other RR based on media playback (in 7201 * this case, RR value needs to be passed from user space). 7202 * 7203 * The caller of this function needs to take a lock on dev_priv->drrs. 7204 */ 7205 static void intel_dp_set_drrs_state(struct drm_i915_private *dev_priv, 7206 const struct intel_crtc_state *crtc_state, 7207 int refresh_rate) 7208 { 7209 struct intel_dp *intel_dp = dev_priv->drrs.dp; 7210 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc); 7211 enum drrs_refresh_rate_type index = DRRS_HIGH_RR; 7212 7213 if (refresh_rate <= 0) { 7214 drm_dbg_kms(&dev_priv->drm, 7215 "Refresh rate should be positive non-zero.\n"); 7216 return; 7217 } 7218 7219 if (intel_dp == NULL) { 7220 drm_dbg_kms(&dev_priv->drm, "DRRS not supported.\n"); 7221 return; 7222 } 7223 7224 if (!intel_crtc) { 7225 drm_dbg_kms(&dev_priv->drm, 7226 "DRRS: intel_crtc not initialized\n"); 7227 return; 7228 } 7229 7230 if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) { 7231 drm_dbg_kms(&dev_priv->drm, "Only Seamless DRRS supported.\n"); 7232 return; 7233 } 7234 7235 if (drm_mode_vrefresh(intel_dp->attached_connector->panel.downclock_mode) == 7236 refresh_rate) 7237 index = DRRS_LOW_RR; 7238 7239 if (index == dev_priv->drrs.refresh_rate_type) { 7240 drm_dbg_kms(&dev_priv->drm, 7241 "DRRS requested for previously set RR...ignoring\n"); 7242 return; 7243 } 7244 7245 if (!crtc_state->hw.active) { 7246 drm_dbg_kms(&dev_priv->drm, 7247 "eDP encoder disabled. CRTC not Active\n"); 7248 return; 7249 } 7250 7251 if (INTEL_GEN(dev_priv) >= 8 && !IS_CHERRYVIEW(dev_priv)) { 7252 switch (index) { 7253 case DRRS_HIGH_RR: 7254 intel_dp_set_m_n(crtc_state, M1_N1); 7255 break; 7256 case DRRS_LOW_RR: 7257 intel_dp_set_m_n(crtc_state, M2_N2); 7258 break; 7259 case DRRS_MAX_RR: 7260 default: 7261 drm_err(&dev_priv->drm, 7262 "Unsupported refreshrate type\n"); 7263 } 7264 } else if (INTEL_GEN(dev_priv) > 6) { 7265 i915_reg_t reg = PIPECONF(crtc_state->cpu_transcoder); 7266 u32 val; 7267 7268 val = intel_de_read(dev_priv, reg); 7269 if (index > DRRS_HIGH_RR) { 7270 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 7271 val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV; 7272 else 7273 val |= PIPECONF_EDP_RR_MODE_SWITCH; 7274 } else { 7275 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 7276 val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV; 7277 else 7278 val &= ~PIPECONF_EDP_RR_MODE_SWITCH; 7279 } 7280 intel_de_write(dev_priv, reg, val); 7281 } 7282 7283 dev_priv->drrs.refresh_rate_type = index; 7284 7285 drm_dbg_kms(&dev_priv->drm, "eDP Refresh Rate set to : %dHz\n", 7286 refresh_rate); 7287 } 7288 7289 static void 7290 intel_edp_drrs_enable_locked(struct intel_dp *intel_dp) 7291 { 7292 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 7293 7294 dev_priv->drrs.busy_frontbuffer_bits = 0; 7295 dev_priv->drrs.dp = intel_dp; 7296 } 7297 7298 /** 7299 * intel_edp_drrs_enable - init drrs struct if supported 7300 * @intel_dp: DP struct 7301 * @crtc_state: A pointer to the active crtc state. 7302 * 7303 * Initializes frontbuffer_bits and drrs.dp 7304 */ 7305 void intel_edp_drrs_enable(struct intel_dp *intel_dp, 7306 const struct intel_crtc_state *crtc_state) 7307 { 7308 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 7309 7310 if (!crtc_state->has_drrs) 7311 return; 7312 7313 drm_dbg_kms(&dev_priv->drm, "Enabling DRRS\n"); 7314 7315 mutex_lock(&dev_priv->drrs.mutex); 7316 7317 if (dev_priv->drrs.dp) { 7318 drm_warn(&dev_priv->drm, "DRRS already enabled\n"); 7319 goto unlock; 7320 } 7321 7322 intel_edp_drrs_enable_locked(intel_dp); 7323 7324 unlock: 7325 mutex_unlock(&dev_priv->drrs.mutex); 7326 } 7327 7328 static void 7329 intel_edp_drrs_disable_locked(struct intel_dp *intel_dp, 7330 const struct intel_crtc_state *crtc_state) 7331 { 7332 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 7333 7334 if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR) { 7335 int refresh; 7336 7337 refresh = drm_mode_vrefresh(intel_dp->attached_connector->panel.fixed_mode); 7338 intel_dp_set_drrs_state(dev_priv, crtc_state, refresh); 7339 } 7340 7341 dev_priv->drrs.dp = NULL; 7342 } 7343 7344 /** 7345 * intel_edp_drrs_disable - Disable DRRS 7346 * @intel_dp: DP struct 7347 * @old_crtc_state: Pointer to old crtc_state. 7348 * 7349 */ 7350 void intel_edp_drrs_disable(struct intel_dp *intel_dp, 7351 const struct intel_crtc_state *old_crtc_state) 7352 { 7353 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 7354 7355 if (!old_crtc_state->has_drrs) 7356 return; 7357 7358 mutex_lock(&dev_priv->drrs.mutex); 7359 if (!dev_priv->drrs.dp) { 7360 mutex_unlock(&dev_priv->drrs.mutex); 7361 return; 7362 } 7363 7364 intel_edp_drrs_disable_locked(intel_dp, old_crtc_state); 7365 mutex_unlock(&dev_priv->drrs.mutex); 7366 7367 cancel_delayed_work_sync(&dev_priv->drrs.work); 7368 } 7369 7370 /** 7371 * intel_edp_drrs_update - Update DRRS state 7372 * @intel_dp: Intel DP 7373 * @crtc_state: new CRTC state 7374 * 7375 * This function will update DRRS states, disabling or enabling DRRS when 7376 * executing fastsets. For full modeset, intel_edp_drrs_disable() and 7377 * intel_edp_drrs_enable() should be called instead. 7378 */ 7379 void 7380 intel_edp_drrs_update(struct intel_dp *intel_dp, 7381 const struct intel_crtc_state *crtc_state) 7382 { 7383 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 7384 7385 if (dev_priv->drrs.type != SEAMLESS_DRRS_SUPPORT) 7386 return; 7387 7388 mutex_lock(&dev_priv->drrs.mutex); 7389 7390 /* New state matches current one? */ 7391 if (crtc_state->has_drrs == !!dev_priv->drrs.dp) 7392 goto unlock; 7393 7394 if (crtc_state->has_drrs) 7395 intel_edp_drrs_enable_locked(intel_dp); 7396 else 7397 intel_edp_drrs_disable_locked(intel_dp, crtc_state); 7398 7399 unlock: 7400 mutex_unlock(&dev_priv->drrs.mutex); 7401 } 7402 7403 static void intel_edp_drrs_downclock_work(struct work_struct *work) 7404 { 7405 struct drm_i915_private *dev_priv = 7406 container_of(work, typeof(*dev_priv), drrs.work.work); 7407 struct intel_dp *intel_dp; 7408 7409 mutex_lock(&dev_priv->drrs.mutex); 7410 7411 intel_dp = dev_priv->drrs.dp; 7412 7413 if (!intel_dp) 7414 goto unlock; 7415 7416 /* 7417 * The delayed work can race with an invalidate hence we need to 7418 * recheck. 7419 */ 7420 7421 if (dev_priv->drrs.busy_frontbuffer_bits) 7422 goto unlock; 7423 7424 if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR) { 7425 struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc; 7426 7427 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config, 7428 drm_mode_vrefresh(intel_dp->attached_connector->panel.downclock_mode)); 7429 } 7430 7431 unlock: 7432 mutex_unlock(&dev_priv->drrs.mutex); 7433 } 7434 7435 /** 7436 * intel_edp_drrs_invalidate - Disable Idleness DRRS 7437 * @dev_priv: i915 device 7438 * @frontbuffer_bits: frontbuffer plane tracking bits 7439 * 7440 * This function gets called everytime rendering on the given planes start. 7441 * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR). 7442 * 7443 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits. 7444 */ 7445 void intel_edp_drrs_invalidate(struct drm_i915_private *dev_priv, 7446 unsigned int frontbuffer_bits) 7447 { 7448 struct intel_dp *intel_dp; 7449 struct drm_crtc *crtc; 7450 enum pipe pipe; 7451 7452 if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED) 7453 return; 7454 7455 cancel_delayed_work(&dev_priv->drrs.work); 7456 7457 mutex_lock(&dev_priv->drrs.mutex); 7458 7459 intel_dp = dev_priv->drrs.dp; 7460 if (!intel_dp) { 7461 mutex_unlock(&dev_priv->drrs.mutex); 7462 return; 7463 } 7464 7465 crtc = dp_to_dig_port(intel_dp)->base.base.crtc; 7466 pipe = to_intel_crtc(crtc)->pipe; 7467 7468 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe); 7469 dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits; 7470 7471 /* invalidate means busy screen hence upclock */ 7472 if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR) 7473 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config, 7474 drm_mode_vrefresh(intel_dp->attached_connector->panel.fixed_mode)); 7475 7476 mutex_unlock(&dev_priv->drrs.mutex); 7477 } 7478 7479 /** 7480 * intel_edp_drrs_flush - Restart Idleness DRRS 7481 * @dev_priv: i915 device 7482 * @frontbuffer_bits: frontbuffer plane tracking bits 7483 * 7484 * This function gets called every time rendering on the given planes has 7485 * completed or flip on a crtc is completed. So DRRS should be upclocked 7486 * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again, 7487 * if no other planes are dirty. 7488 * 7489 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits. 7490 */ 7491 void intel_edp_drrs_flush(struct drm_i915_private *dev_priv, 7492 unsigned int frontbuffer_bits) 7493 { 7494 struct intel_dp *intel_dp; 7495 struct drm_crtc *crtc; 7496 enum pipe pipe; 7497 7498 if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED) 7499 return; 7500 7501 cancel_delayed_work(&dev_priv->drrs.work); 7502 7503 mutex_lock(&dev_priv->drrs.mutex); 7504 7505 intel_dp = dev_priv->drrs.dp; 7506 if (!intel_dp) { 7507 mutex_unlock(&dev_priv->drrs.mutex); 7508 return; 7509 } 7510 7511 crtc = dp_to_dig_port(intel_dp)->base.base.crtc; 7512 pipe = to_intel_crtc(crtc)->pipe; 7513 7514 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe); 7515 dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits; 7516 7517 /* flush means busy screen hence upclock */ 7518 if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR) 7519 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config, 7520 drm_mode_vrefresh(intel_dp->attached_connector->panel.fixed_mode)); 7521 7522 /* 7523 * flush also means no more activity hence schedule downclock, if all 7524 * other fbs are quiescent too 7525 */ 7526 if (!dev_priv->drrs.busy_frontbuffer_bits) 7527 schedule_delayed_work(&dev_priv->drrs.work, 7528 msecs_to_jiffies(1000)); 7529 mutex_unlock(&dev_priv->drrs.mutex); 7530 } 7531 7532 /** 7533 * DOC: Display Refresh Rate Switching (DRRS) 7534 * 7535 * Display Refresh Rate Switching (DRRS) is a power conservation feature 7536 * which enables swtching between low and high refresh rates, 7537 * dynamically, based on the usage scenario. This feature is applicable 7538 * for internal panels. 7539 * 7540 * Indication that the panel supports DRRS is given by the panel EDID, which 7541 * would list multiple refresh rates for one resolution. 7542 * 7543 * DRRS is of 2 types - static and seamless. 7544 * Static DRRS involves changing refresh rate (RR) by doing a full modeset 7545 * (may appear as a blink on screen) and is used in dock-undock scenario. 7546 * Seamless DRRS involves changing RR without any visual effect to the user 7547 * and can be used during normal system usage. This is done by programming 7548 * certain registers. 7549 * 7550 * Support for static/seamless DRRS may be indicated in the VBT based on 7551 * inputs from the panel spec. 7552 * 7553 * DRRS saves power by switching to low RR based on usage scenarios. 7554 * 7555 * The implementation is based on frontbuffer tracking implementation. When 7556 * there is a disturbance on the screen triggered by user activity or a periodic 7557 * system activity, DRRS is disabled (RR is changed to high RR). When there is 7558 * no movement on screen, after a timeout of 1 second, a switch to low RR is 7559 * made. 7560 * 7561 * For integration with frontbuffer tracking code, intel_edp_drrs_invalidate() 7562 * and intel_edp_drrs_flush() are called. 7563 * 7564 * DRRS can be further extended to support other internal panels and also 7565 * the scenario of video playback wherein RR is set based on the rate 7566 * requested by userspace. 7567 */ 7568 7569 /** 7570 * intel_dp_drrs_init - Init basic DRRS work and mutex. 7571 * @connector: eDP connector 7572 * @fixed_mode: preferred mode of panel 7573 * 7574 * This function is called only once at driver load to initialize basic 7575 * DRRS stuff. 7576 * 7577 * Returns: 7578 * Downclock mode if panel supports it, else return NULL. 7579 * DRRS support is determined by the presence of downclock mode (apart 7580 * from VBT setting). 7581 */ 7582 static struct drm_display_mode * 7583 intel_dp_drrs_init(struct intel_connector *connector, 7584 struct drm_display_mode *fixed_mode) 7585 { 7586 struct drm_i915_private *dev_priv = to_i915(connector->base.dev); 7587 struct drm_display_mode *downclock_mode = NULL; 7588 7589 INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work); 7590 rw_init(&dev_priv->drrs.mutex, "drrs"); 7591 7592 if (INTEL_GEN(dev_priv) <= 6) { 7593 drm_dbg_kms(&dev_priv->drm, 7594 "DRRS supported for Gen7 and above\n"); 7595 return NULL; 7596 } 7597 7598 if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) { 7599 drm_dbg_kms(&dev_priv->drm, "VBT doesn't support DRRS\n"); 7600 return NULL; 7601 } 7602 7603 downclock_mode = intel_panel_edid_downclock_mode(connector, fixed_mode); 7604 if (!downclock_mode) { 7605 drm_dbg_kms(&dev_priv->drm, 7606 "Downclock mode is not found. DRRS not supported\n"); 7607 return NULL; 7608 } 7609 7610 dev_priv->drrs.type = dev_priv->vbt.drrs_type; 7611 7612 dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR; 7613 drm_dbg_kms(&dev_priv->drm, 7614 "seamless DRRS supported for eDP panel.\n"); 7615 return downclock_mode; 7616 } 7617 7618 static bool intel_edp_init_connector(struct intel_dp *intel_dp, 7619 struct intel_connector *intel_connector) 7620 { 7621 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 7622 struct drm_device *dev = &dev_priv->drm; 7623 struct drm_connector *connector = &intel_connector->base; 7624 struct drm_display_mode *fixed_mode = NULL; 7625 struct drm_display_mode *downclock_mode = NULL; 7626 bool has_dpcd; 7627 enum pipe pipe = INVALID_PIPE; 7628 intel_wakeref_t wakeref; 7629 struct edid *edid; 7630 7631 if (!intel_dp_is_edp(intel_dp)) 7632 return true; 7633 7634 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work, edp_panel_vdd_work); 7635 7636 /* 7637 * On IBX/CPT we may get here with LVDS already registered. Since the 7638 * driver uses the only internal power sequencer available for both 7639 * eDP and LVDS bail out early in this case to prevent interfering 7640 * with an already powered-on LVDS power sequencer. 7641 */ 7642 if (intel_get_lvds_encoder(dev_priv)) { 7643 drm_WARN_ON(dev, 7644 !(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv))); 7645 drm_info(&dev_priv->drm, 7646 "LVDS was detected, not registering eDP\n"); 7647 7648 return false; 7649 } 7650 7651 with_pps_lock(intel_dp, wakeref) { 7652 intel_dp_init_panel_power_timestamps(intel_dp); 7653 intel_dp_pps_init(intel_dp); 7654 intel_edp_panel_vdd_sanitize(intel_dp); 7655 } 7656 7657 /* Cache DPCD and EDID for edp. */ 7658 has_dpcd = intel_edp_init_dpcd(intel_dp); 7659 7660 if (!has_dpcd) { 7661 /* if this fails, presume the device is a ghost */ 7662 drm_info(&dev_priv->drm, 7663 "failed to retrieve link info, disabling eDP\n"); 7664 goto out_vdd_off; 7665 } 7666 7667 mutex_lock(&dev->mode_config.mutex); 7668 edid = drm_get_edid(connector, &intel_dp->aux.ddc); 7669 if (edid) { 7670 if (drm_add_edid_modes(connector, edid)) { 7671 drm_connector_update_edid_property(connector, edid); 7672 intel_dp->edid_quirks = drm_dp_get_edid_quirks(edid); 7673 } else { 7674 kfree(edid); 7675 edid = ERR_PTR(-EINVAL); 7676 } 7677 } else { 7678 edid = ERR_PTR(-ENOENT); 7679 } 7680 intel_connector->edid = edid; 7681 7682 fixed_mode = intel_panel_edid_fixed_mode(intel_connector); 7683 if (fixed_mode) 7684 downclock_mode = intel_dp_drrs_init(intel_connector, fixed_mode); 7685 7686 /* fallback to VBT if available for eDP */ 7687 if (!fixed_mode) 7688 fixed_mode = intel_panel_vbt_fixed_mode(intel_connector); 7689 mutex_unlock(&dev->mode_config.mutex); 7690 7691 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 7692 intel_dp->edp_notifier.notifier_call = edp_notify_handler; 7693 register_reboot_notifier(&intel_dp->edp_notifier); 7694 7695 /* 7696 * Figure out the current pipe for the initial backlight setup. 7697 * If the current pipe isn't valid, try the PPS pipe, and if that 7698 * fails just assume pipe A. 7699 */ 7700 pipe = vlv_active_pipe(intel_dp); 7701 7702 if (pipe != PIPE_A && pipe != PIPE_B) 7703 pipe = intel_dp->pps_pipe; 7704 7705 if (pipe != PIPE_A && pipe != PIPE_B) 7706 pipe = PIPE_A; 7707 7708 drm_dbg_kms(&dev_priv->drm, 7709 "using pipe %c for initial backlight setup\n", 7710 pipe_name(pipe)); 7711 } 7712 7713 intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode); 7714 intel_connector->panel.backlight.power = intel_edp_backlight_power; 7715 intel_panel_setup_backlight(connector, pipe); 7716 7717 if (fixed_mode) { 7718 drm_connector_set_panel_orientation_with_quirk(connector, 7719 dev_priv->vbt.orientation, 7720 fixed_mode->hdisplay, fixed_mode->vdisplay); 7721 } 7722 7723 return true; 7724 7725 out_vdd_off: 7726 cancel_delayed_work_sync(&intel_dp->panel_vdd_work); 7727 /* 7728 * vdd might still be enabled do to the delayed vdd off. 7729 * Make sure vdd is actually turned off here. 7730 */ 7731 with_pps_lock(intel_dp, wakeref) 7732 edp_panel_vdd_off_sync(intel_dp); 7733 7734 return false; 7735 } 7736 7737 static void intel_dp_modeset_retry_work_fn(struct work_struct *work) 7738 { 7739 struct intel_connector *intel_connector; 7740 struct drm_connector *connector; 7741 7742 intel_connector = container_of(work, typeof(*intel_connector), 7743 modeset_retry_work); 7744 connector = &intel_connector->base; 7745 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", connector->base.id, 7746 connector->name); 7747 7748 /* Grab the locks before changing connector property*/ 7749 mutex_lock(&connector->dev->mode_config.mutex); 7750 /* Set connector link status to BAD and send a Uevent to notify 7751 * userspace to do a modeset. 7752 */ 7753 drm_connector_set_link_status_property(connector, 7754 DRM_MODE_LINK_STATUS_BAD); 7755 mutex_unlock(&connector->dev->mode_config.mutex); 7756 /* Send Hotplug uevent so userspace can reprobe */ 7757 drm_kms_helper_hotplug_event(connector->dev); 7758 } 7759 7760 bool 7761 intel_dp_init_connector(struct intel_digital_port *dig_port, 7762 struct intel_connector *intel_connector) 7763 { 7764 struct drm_connector *connector = &intel_connector->base; 7765 struct intel_dp *intel_dp = &dig_port->dp; 7766 struct intel_encoder *intel_encoder = &dig_port->base; 7767 struct drm_device *dev = intel_encoder->base.dev; 7768 struct drm_i915_private *dev_priv = to_i915(dev); 7769 enum port port = intel_encoder->port; 7770 enum phy phy = intel_port_to_phy(dev_priv, port); 7771 int type; 7772 7773 /* Initialize the work for modeset in case of link train failure */ 7774 INIT_WORK(&intel_connector->modeset_retry_work, 7775 intel_dp_modeset_retry_work_fn); 7776 7777 if (drm_WARN(dev, dig_port->max_lanes < 1, 7778 "Not enough lanes (%d) for DP on [ENCODER:%d:%s]\n", 7779 dig_port->max_lanes, intel_encoder->base.base.id, 7780 intel_encoder->base.name)) 7781 return false; 7782 7783 intel_dp_set_source_rates(intel_dp); 7784 7785 intel_dp->reset_link_params = true; 7786 intel_dp->pps_pipe = INVALID_PIPE; 7787 intel_dp->active_pipe = INVALID_PIPE; 7788 7789 /* Preserve the current hw state. */ 7790 intel_dp->DP = intel_de_read(dev_priv, intel_dp->output_reg); 7791 intel_dp->attached_connector = intel_connector; 7792 7793 if (intel_dp_is_port_edp(dev_priv, port)) { 7794 /* 7795 * Currently we don't support eDP on TypeC ports, although in 7796 * theory it could work on TypeC legacy ports. 7797 */ 7798 drm_WARN_ON(dev, intel_phy_is_tc(dev_priv, phy)); 7799 type = DRM_MODE_CONNECTOR_eDP; 7800 } else { 7801 type = DRM_MODE_CONNECTOR_DisplayPort; 7802 } 7803 7804 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 7805 intel_dp->active_pipe = vlv_active_pipe(intel_dp); 7806 7807 /* 7808 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but 7809 * for DP the encoder type can be set by the caller to 7810 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it. 7811 */ 7812 if (type == DRM_MODE_CONNECTOR_eDP) 7813 intel_encoder->type = INTEL_OUTPUT_EDP; 7814 7815 /* eDP only on port B and/or C on vlv/chv */ 7816 if (drm_WARN_ON(dev, (IS_VALLEYVIEW(dev_priv) || 7817 IS_CHERRYVIEW(dev_priv)) && 7818 intel_dp_is_edp(intel_dp) && 7819 port != PORT_B && port != PORT_C)) 7820 return false; 7821 7822 drm_dbg_kms(&dev_priv->drm, 7823 "Adding %s connector on [ENCODER:%d:%s]\n", 7824 type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP", 7825 intel_encoder->base.base.id, intel_encoder->base.name); 7826 7827 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type); 7828 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs); 7829 7830 if (!HAS_GMCH(dev_priv)) 7831 connector->interlace_allowed = true; 7832 connector->doublescan_allowed = 0; 7833 7834 intel_connector->polled = DRM_CONNECTOR_POLL_HPD; 7835 7836 intel_dp_aux_init(intel_dp); 7837 7838 intel_connector_attach_encoder(intel_connector, intel_encoder); 7839 7840 if (HAS_DDI(dev_priv)) 7841 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state; 7842 else 7843 intel_connector->get_hw_state = intel_connector_get_hw_state; 7844 7845 /* init MST on ports that can support it */ 7846 intel_dp_mst_encoder_init(dig_port, 7847 intel_connector->base.base.id); 7848 7849 if (!intel_edp_init_connector(intel_dp, intel_connector)) { 7850 intel_dp_aux_fini(intel_dp); 7851 intel_dp_mst_encoder_cleanup(dig_port); 7852 goto fail; 7853 } 7854 7855 intel_dp_add_properties(intel_dp, connector); 7856 7857 if (is_hdcp_supported(dev_priv, port) && !intel_dp_is_edp(intel_dp)) { 7858 int ret = intel_dp_init_hdcp(dig_port, intel_connector); 7859 if (ret) 7860 drm_dbg_kms(&dev_priv->drm, 7861 "HDCP init failed, skipping.\n"); 7862 } 7863 7864 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written 7865 * 0xd. Failure to do so will result in spurious interrupts being 7866 * generated on the port when a cable is not attached. 7867 */ 7868 if (IS_G45(dev_priv)) { 7869 u32 temp = intel_de_read(dev_priv, PEG_BAND_GAP_DATA); 7870 intel_de_write(dev_priv, PEG_BAND_GAP_DATA, 7871 (temp & ~0xf) | 0xd); 7872 } 7873 7874 return true; 7875 7876 fail: 7877 drm_connector_cleanup(connector); 7878 7879 return false; 7880 } 7881 7882 bool intel_dp_init(struct drm_i915_private *dev_priv, 7883 i915_reg_t output_reg, 7884 enum port port) 7885 { 7886 struct intel_digital_port *dig_port; 7887 struct intel_encoder *intel_encoder; 7888 struct drm_encoder *encoder; 7889 struct intel_connector *intel_connector; 7890 7891 dig_port = kzalloc(sizeof(*dig_port), GFP_KERNEL); 7892 if (!dig_port) 7893 return false; 7894 7895 intel_connector = intel_connector_alloc(); 7896 if (!intel_connector) 7897 goto err_connector_alloc; 7898 7899 intel_encoder = &dig_port->base; 7900 encoder = &intel_encoder->base; 7901 7902 rw_init(&dig_port->hdcp_mutex, "dphdcp"); 7903 7904 if (drm_encoder_init(&dev_priv->drm, &intel_encoder->base, 7905 &intel_dp_enc_funcs, DRM_MODE_ENCODER_TMDS, 7906 "DP %c", port_name(port))) 7907 goto err_encoder_init; 7908 7909 intel_encoder->hotplug = intel_dp_hotplug; 7910 intel_encoder->compute_config = intel_dp_compute_config; 7911 intel_encoder->get_hw_state = intel_dp_get_hw_state; 7912 intel_encoder->get_config = intel_dp_get_config; 7913 intel_encoder->update_pipe = intel_panel_update_backlight; 7914 intel_encoder->suspend = intel_dp_encoder_suspend; 7915 if (IS_CHERRYVIEW(dev_priv)) { 7916 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable; 7917 intel_encoder->pre_enable = chv_pre_enable_dp; 7918 intel_encoder->enable = vlv_enable_dp; 7919 intel_encoder->disable = vlv_disable_dp; 7920 intel_encoder->post_disable = chv_post_disable_dp; 7921 intel_encoder->post_pll_disable = chv_dp_post_pll_disable; 7922 } else if (IS_VALLEYVIEW(dev_priv)) { 7923 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable; 7924 intel_encoder->pre_enable = vlv_pre_enable_dp; 7925 intel_encoder->enable = vlv_enable_dp; 7926 intel_encoder->disable = vlv_disable_dp; 7927 intel_encoder->post_disable = vlv_post_disable_dp; 7928 } else { 7929 intel_encoder->pre_enable = g4x_pre_enable_dp; 7930 intel_encoder->enable = g4x_enable_dp; 7931 intel_encoder->disable = g4x_disable_dp; 7932 intel_encoder->post_disable = g4x_post_disable_dp; 7933 } 7934 7935 if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) || 7936 (HAS_PCH_CPT(dev_priv) && port != PORT_A)) 7937 dig_port->dp.set_link_train = cpt_set_link_train; 7938 else 7939 dig_port->dp.set_link_train = g4x_set_link_train; 7940 7941 if (IS_CHERRYVIEW(dev_priv)) 7942 dig_port->dp.set_signal_levels = chv_set_signal_levels; 7943 else if (IS_VALLEYVIEW(dev_priv)) 7944 dig_port->dp.set_signal_levels = vlv_set_signal_levels; 7945 else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) 7946 dig_port->dp.set_signal_levels = ivb_cpu_edp_set_signal_levels; 7947 else if (IS_GEN(dev_priv, 6) && port == PORT_A) 7948 dig_port->dp.set_signal_levels = snb_cpu_edp_set_signal_levels; 7949 else 7950 dig_port->dp.set_signal_levels = g4x_set_signal_levels; 7951 7952 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv) || 7953 (HAS_PCH_SPLIT(dev_priv) && port != PORT_A)) { 7954 dig_port->dp.preemph_max = intel_dp_pre_empemph_max_3; 7955 dig_port->dp.voltage_max = intel_dp_voltage_max_3; 7956 } else { 7957 dig_port->dp.preemph_max = intel_dp_pre_empemph_max_2; 7958 dig_port->dp.voltage_max = intel_dp_voltage_max_2; 7959 } 7960 7961 dig_port->dp.output_reg = output_reg; 7962 dig_port->max_lanes = 4; 7963 dig_port->dp.regs.dp_tp_ctl = DP_TP_CTL(port); 7964 dig_port->dp.regs.dp_tp_status = DP_TP_STATUS(port); 7965 7966 intel_encoder->type = INTEL_OUTPUT_DP; 7967 intel_encoder->power_domain = intel_port_to_power_domain(port); 7968 if (IS_CHERRYVIEW(dev_priv)) { 7969 if (port == PORT_D) 7970 intel_encoder->pipe_mask = BIT(PIPE_C); 7971 else 7972 intel_encoder->pipe_mask = BIT(PIPE_A) | BIT(PIPE_B); 7973 } else { 7974 intel_encoder->pipe_mask = ~0; 7975 } 7976 intel_encoder->cloneable = 0; 7977 intel_encoder->port = port; 7978 intel_encoder->hpd_pin = intel_hpd_pin_default(dev_priv, port); 7979 7980 dig_port->hpd_pulse = intel_dp_hpd_pulse; 7981 7982 if (HAS_GMCH(dev_priv)) { 7983 if (IS_GM45(dev_priv)) 7984 dig_port->connected = gm45_digital_port_connected; 7985 else 7986 dig_port->connected = g4x_digital_port_connected; 7987 } else { 7988 if (port == PORT_A) 7989 dig_port->connected = ilk_digital_port_connected; 7990 else 7991 dig_port->connected = ibx_digital_port_connected; 7992 } 7993 7994 if (port != PORT_A) 7995 intel_infoframe_init(dig_port); 7996 7997 dig_port->aux_ch = intel_bios_port_aux_ch(dev_priv, port); 7998 if (!intel_dp_init_connector(dig_port, intel_connector)) 7999 goto err_init_connector; 8000 8001 return true; 8002 8003 err_init_connector: 8004 drm_encoder_cleanup(encoder); 8005 err_encoder_init: 8006 kfree(intel_connector); 8007 err_connector_alloc: 8008 kfree(dig_port); 8009 return false; 8010 } 8011 8012 void intel_dp_mst_suspend(struct drm_i915_private *dev_priv) 8013 { 8014 struct intel_encoder *encoder; 8015 8016 for_each_intel_encoder(&dev_priv->drm, encoder) { 8017 struct intel_dp *intel_dp; 8018 8019 if (encoder->type != INTEL_OUTPUT_DDI) 8020 continue; 8021 8022 intel_dp = enc_to_intel_dp(encoder); 8023 8024 if (!intel_dp->can_mst) 8025 continue; 8026 8027 if (intel_dp->is_mst) 8028 drm_dp_mst_topology_mgr_suspend(&intel_dp->mst_mgr); 8029 } 8030 } 8031 8032 void intel_dp_mst_resume(struct drm_i915_private *dev_priv) 8033 { 8034 struct intel_encoder *encoder; 8035 8036 for_each_intel_encoder(&dev_priv->drm, encoder) { 8037 struct intel_dp *intel_dp; 8038 int ret; 8039 8040 if (encoder->type != INTEL_OUTPUT_DDI) 8041 continue; 8042 8043 intel_dp = enc_to_intel_dp(encoder); 8044 8045 if (!intel_dp->can_mst) 8046 continue; 8047 8048 ret = drm_dp_mst_topology_mgr_resume(&intel_dp->mst_mgr, 8049 true); 8050 if (ret) { 8051 intel_dp->is_mst = false; 8052 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, 8053 false); 8054 } 8055 } 8056 } 8057