1 /* 2 * Copyright © 2006-2007 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 21 * DEALINGS IN THE SOFTWARE. 22 * 23 * Authors: 24 * Eric Anholt <eric@anholt.net> 25 */ 26 27 #include <acpi/video.h> 28 #include <linux/i2c.h> 29 #include <linux/input.h> 30 #include <linux/intel-iommu.h> 31 #include <linux/kernel.h> 32 #include <linux/module.h> 33 #include <linux/dma-resv.h> 34 #include <linux/slab.h> 35 36 #include <drm/drm_atomic.h> 37 #include <drm/drm_atomic_helper.h> 38 #include <drm/drm_atomic_uapi.h> 39 #include <drm/drm_damage_helper.h> 40 #include <drm/drm_dp_helper.h> 41 #include <drm/drm_edid.h> 42 #include <drm/drm_fourcc.h> 43 #include <drm/drm_plane_helper.h> 44 #include <drm/drm_probe_helper.h> 45 #include <drm/drm_rect.h> 46 47 #include "display/intel_audio.h" 48 #include "display/intel_crt.h" 49 #include "display/intel_ddi.h" 50 #include "display/intel_display_debugfs.h" 51 #include "display/intel_dp.h" 52 #include "display/intel_dp_mst.h" 53 #include "display/intel_dpll.h" 54 #include "display/intel_dpll_mgr.h" 55 #include "display/intel_dsi.h" 56 #include "display/intel_dvo.h" 57 #include "display/intel_fb.h" 58 #include "display/intel_gmbus.h" 59 #include "display/intel_hdmi.h" 60 #include "display/intel_lvds.h" 61 #include "display/intel_sdvo.h" 62 #include "display/intel_snps_phy.h" 63 #include "display/intel_tv.h" 64 #include "display/intel_vdsc.h" 65 #include "display/intel_vrr.h" 66 67 #include "gem/i915_gem_lmem.h" 68 #include "gem/i915_gem_object.h" 69 70 #include "gt/intel_rps.h" 71 #include "gt/gen8_ppgtt.h" 72 73 #include "g4x_dp.h" 74 #include "g4x_hdmi.h" 75 #include "i915_drv.h" 76 #include "intel_acpi.h" 77 #include "intel_atomic.h" 78 #include "intel_atomic_plane.h" 79 #include "intel_bw.h" 80 #include "intel_cdclk.h" 81 #include "intel_color.h" 82 #include "intel_crtc.h" 83 #include "intel_de.h" 84 #include "intel_display_types.h" 85 #include "intel_dmc.h" 86 #include "intel_dp_link_training.h" 87 #include "intel_dpt.h" 88 #include "intel_fbc.h" 89 #include "intel_fdi.h" 90 #include "intel_fbdev.h" 91 #include "intel_fifo_underrun.h" 92 #include "intel_frontbuffer.h" 93 #include "intel_hdcp.h" 94 #include "intel_hotplug.h" 95 #include "intel_overlay.h" 96 #include "intel_pipe_crc.h" 97 #include "intel_pm.h" 98 #include "intel_pps.h" 99 #include "intel_psr.h" 100 #include "intel_quirks.h" 101 #include "intel_sideband.h" 102 #include "intel_sprite.h" 103 #include "intel_tc.h" 104 #include "intel_vga.h" 105 #include "i9xx_plane.h" 106 #include "skl_scaler.h" 107 #include "skl_universal_plane.h" 108 109 static void i9xx_crtc_clock_get(struct intel_crtc *crtc, 110 struct intel_crtc_state *pipe_config); 111 static void ilk_pch_clock_get(struct intel_crtc *crtc, 112 struct intel_crtc_state *pipe_config); 113 114 static int intel_framebuffer_init(struct intel_framebuffer *ifb, 115 struct drm_i915_gem_object *obj, 116 struct drm_mode_fb_cmd2 *mode_cmd); 117 static void intel_set_transcoder_timings(const struct intel_crtc_state *crtc_state); 118 static void intel_set_pipe_src_size(const struct intel_crtc_state *crtc_state); 119 static void intel_cpu_transcoder_set_m_n(const struct intel_crtc_state *crtc_state, 120 const struct intel_link_m_n *m_n, 121 const struct intel_link_m_n *m2_n2); 122 static void i9xx_set_pipeconf(const struct intel_crtc_state *crtc_state); 123 static void ilk_set_pipeconf(const struct intel_crtc_state *crtc_state); 124 static void hsw_set_pipeconf(const struct intel_crtc_state *crtc_state); 125 static void bdw_set_pipemisc(const struct intel_crtc_state *crtc_state); 126 static void ilk_pfit_enable(const struct intel_crtc_state *crtc_state); 127 static void intel_modeset_setup_hw_state(struct drm_device *dev, 128 struct drm_modeset_acquire_ctx *ctx); 129 130 /* returns HPLL frequency in kHz */ 131 int vlv_get_hpll_vco(struct drm_i915_private *dev_priv) 132 { 133 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 }; 134 135 /* Obtain SKU information */ 136 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) & 137 CCK_FUSE_HPLL_FREQ_MASK; 138 139 return vco_freq[hpll_freq] * 1000; 140 } 141 142 int vlv_get_cck_clock(struct drm_i915_private *dev_priv, 143 const char *name, u32 reg, int ref_freq) 144 { 145 u32 val; 146 int divider; 147 148 val = vlv_cck_read(dev_priv, reg); 149 divider = val & CCK_FREQUENCY_VALUES; 150 151 drm_WARN(&dev_priv->drm, (val & CCK_FREQUENCY_STATUS) != 152 (divider << CCK_FREQUENCY_STATUS_SHIFT), 153 "%s change in progress\n", name); 154 155 return DIV_ROUND_CLOSEST(ref_freq << 1, divider + 1); 156 } 157 158 int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv, 159 const char *name, u32 reg) 160 { 161 int hpll; 162 163 vlv_cck_get(dev_priv); 164 165 if (dev_priv->hpll_freq == 0) 166 dev_priv->hpll_freq = vlv_get_hpll_vco(dev_priv); 167 168 hpll = vlv_get_cck_clock(dev_priv, name, reg, dev_priv->hpll_freq); 169 170 vlv_cck_put(dev_priv); 171 172 return hpll; 173 } 174 175 static void intel_update_czclk(struct drm_i915_private *dev_priv) 176 { 177 if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))) 178 return; 179 180 dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk", 181 CCK_CZ_CLOCK_CONTROL); 182 183 drm_dbg(&dev_priv->drm, "CZ clock rate: %d kHz\n", 184 dev_priv->czclk_freq); 185 } 186 187 /* WA Display #0827: Gen9:all */ 188 static void 189 skl_wa_827(struct drm_i915_private *dev_priv, enum pipe pipe, bool enable) 190 { 191 if (enable) 192 intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe), 193 intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) | DUPS1_GATING_DIS | DUPS2_GATING_DIS); 194 else 195 intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe), 196 intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) & ~(DUPS1_GATING_DIS | DUPS2_GATING_DIS)); 197 } 198 199 /* Wa_2006604312:icl,ehl */ 200 static void 201 icl_wa_scalerclkgating(struct drm_i915_private *dev_priv, enum pipe pipe, 202 bool enable) 203 { 204 if (enable) 205 intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe), 206 intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) | DPFR_GATING_DIS); 207 else 208 intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe), 209 intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) & ~DPFR_GATING_DIS); 210 } 211 212 static bool 213 is_trans_port_sync_slave(const struct intel_crtc_state *crtc_state) 214 { 215 return crtc_state->master_transcoder != INVALID_TRANSCODER; 216 } 217 218 static bool 219 is_trans_port_sync_master(const struct intel_crtc_state *crtc_state) 220 { 221 return crtc_state->sync_mode_slaves_mask != 0; 222 } 223 224 bool 225 is_trans_port_sync_mode(const struct intel_crtc_state *crtc_state) 226 { 227 return is_trans_port_sync_master(crtc_state) || 228 is_trans_port_sync_slave(crtc_state); 229 } 230 231 static bool pipe_scanline_is_moving(struct drm_i915_private *dev_priv, 232 enum pipe pipe) 233 { 234 i915_reg_t reg = PIPEDSL(pipe); 235 u32 line1, line2; 236 u32 line_mask; 237 238 if (DISPLAY_VER(dev_priv) == 2) 239 line_mask = DSL_LINEMASK_GEN2; 240 else 241 line_mask = DSL_LINEMASK_GEN3; 242 243 line1 = intel_de_read(dev_priv, reg) & line_mask; 244 drm_msleep(5); 245 line2 = intel_de_read(dev_priv, reg) & line_mask; 246 247 return line1 != line2; 248 } 249 250 static void wait_for_pipe_scanline_moving(struct intel_crtc *crtc, bool state) 251 { 252 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 253 enum pipe pipe = crtc->pipe; 254 255 /* Wait for the display line to settle/start moving */ 256 if (wait_for(pipe_scanline_is_moving(dev_priv, pipe) == state, 100)) 257 drm_err(&dev_priv->drm, 258 "pipe %c scanline %s wait timed out\n", 259 pipe_name(pipe), onoff(state)); 260 } 261 262 static void intel_wait_for_pipe_scanline_stopped(struct intel_crtc *crtc) 263 { 264 wait_for_pipe_scanline_moving(crtc, false); 265 } 266 267 static void intel_wait_for_pipe_scanline_moving(struct intel_crtc *crtc) 268 { 269 wait_for_pipe_scanline_moving(crtc, true); 270 } 271 272 static void 273 intel_wait_for_pipe_off(const struct intel_crtc_state *old_crtc_state) 274 { 275 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); 276 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 277 278 if (DISPLAY_VER(dev_priv) >= 4) { 279 enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder; 280 i915_reg_t reg = PIPECONF(cpu_transcoder); 281 282 /* Wait for the Pipe State to go off */ 283 if (intel_de_wait_for_clear(dev_priv, reg, 284 I965_PIPECONF_ACTIVE, 100)) 285 drm_WARN(&dev_priv->drm, 1, 286 "pipe_off wait timed out\n"); 287 } else { 288 intel_wait_for_pipe_scanline_stopped(crtc); 289 } 290 } 291 292 /* Only for pre-ILK configs */ 293 void assert_pll(struct drm_i915_private *dev_priv, 294 enum pipe pipe, bool state) 295 { 296 u32 val; 297 bool cur_state; 298 299 val = intel_de_read(dev_priv, DPLL(pipe)); 300 cur_state = !!(val & DPLL_VCO_ENABLE); 301 I915_STATE_WARN(cur_state != state, 302 "PLL state assertion failure (expected %s, current %s)\n", 303 onoff(state), onoff(cur_state)); 304 } 305 306 /* XXX: the dsi pll is shared between MIPI DSI ports */ 307 void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state) 308 { 309 u32 val; 310 bool cur_state; 311 312 vlv_cck_get(dev_priv); 313 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL); 314 vlv_cck_put(dev_priv); 315 316 cur_state = val & DSI_PLL_VCO_EN; 317 I915_STATE_WARN(cur_state != state, 318 "DSI PLL state assertion failure (expected %s, current %s)\n", 319 onoff(state), onoff(cur_state)); 320 } 321 322 static void assert_fdi_tx(struct drm_i915_private *dev_priv, 323 enum pipe pipe, bool state) 324 { 325 bool cur_state; 326 327 if (HAS_DDI(dev_priv)) { 328 /* 329 * DDI does not have a specific FDI_TX register. 330 * 331 * FDI is never fed from EDP transcoder 332 * so pipe->transcoder cast is fine here. 333 */ 334 enum transcoder cpu_transcoder = (enum transcoder)pipe; 335 u32 val = intel_de_read(dev_priv, 336 TRANS_DDI_FUNC_CTL(cpu_transcoder)); 337 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE); 338 } else { 339 u32 val = intel_de_read(dev_priv, FDI_TX_CTL(pipe)); 340 cur_state = !!(val & FDI_TX_ENABLE); 341 } 342 I915_STATE_WARN(cur_state != state, 343 "FDI TX state assertion failure (expected %s, current %s)\n", 344 onoff(state), onoff(cur_state)); 345 } 346 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true) 347 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false) 348 349 static void assert_fdi_rx(struct drm_i915_private *dev_priv, 350 enum pipe pipe, bool state) 351 { 352 u32 val; 353 bool cur_state; 354 355 val = intel_de_read(dev_priv, FDI_RX_CTL(pipe)); 356 cur_state = !!(val & FDI_RX_ENABLE); 357 I915_STATE_WARN(cur_state != state, 358 "FDI RX state assertion failure (expected %s, current %s)\n", 359 onoff(state), onoff(cur_state)); 360 } 361 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true) 362 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false) 363 364 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv, 365 enum pipe pipe) 366 { 367 u32 val; 368 369 /* ILK FDI PLL is always enabled */ 370 if (IS_IRONLAKE(dev_priv)) 371 return; 372 373 /* On Haswell, DDI ports are responsible for the FDI PLL setup */ 374 if (HAS_DDI(dev_priv)) 375 return; 376 377 val = intel_de_read(dev_priv, FDI_TX_CTL(pipe)); 378 I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n"); 379 } 380 381 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv, 382 enum pipe pipe, bool state) 383 { 384 u32 val; 385 bool cur_state; 386 387 val = intel_de_read(dev_priv, FDI_RX_CTL(pipe)); 388 cur_state = !!(val & FDI_RX_PLL_ENABLE); 389 I915_STATE_WARN(cur_state != state, 390 "FDI RX PLL assertion failure (expected %s, current %s)\n", 391 onoff(state), onoff(cur_state)); 392 } 393 394 void assert_panel_unlocked(struct drm_i915_private *dev_priv, enum pipe pipe) 395 { 396 i915_reg_t pp_reg; 397 u32 val; 398 enum pipe panel_pipe = INVALID_PIPE; 399 bool locked = true; 400 401 if (drm_WARN_ON(&dev_priv->drm, HAS_DDI(dev_priv))) 402 return; 403 404 if (HAS_PCH_SPLIT(dev_priv)) { 405 u32 port_sel; 406 407 pp_reg = PP_CONTROL(0); 408 port_sel = intel_de_read(dev_priv, PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK; 409 410 switch (port_sel) { 411 case PANEL_PORT_SELECT_LVDS: 412 intel_lvds_port_enabled(dev_priv, PCH_LVDS, &panel_pipe); 413 break; 414 case PANEL_PORT_SELECT_DPA: 415 g4x_dp_port_enabled(dev_priv, DP_A, PORT_A, &panel_pipe); 416 break; 417 case PANEL_PORT_SELECT_DPC: 418 g4x_dp_port_enabled(dev_priv, PCH_DP_C, PORT_C, &panel_pipe); 419 break; 420 case PANEL_PORT_SELECT_DPD: 421 g4x_dp_port_enabled(dev_priv, PCH_DP_D, PORT_D, &panel_pipe); 422 break; 423 default: 424 MISSING_CASE(port_sel); 425 break; 426 } 427 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 428 /* presumably write lock depends on pipe, not port select */ 429 pp_reg = PP_CONTROL(pipe); 430 panel_pipe = pipe; 431 } else { 432 u32 port_sel; 433 434 pp_reg = PP_CONTROL(0); 435 port_sel = intel_de_read(dev_priv, PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK; 436 437 drm_WARN_ON(&dev_priv->drm, 438 port_sel != PANEL_PORT_SELECT_LVDS); 439 intel_lvds_port_enabled(dev_priv, LVDS, &panel_pipe); 440 } 441 442 val = intel_de_read(dev_priv, pp_reg); 443 if (!(val & PANEL_POWER_ON) || 444 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS)) 445 locked = false; 446 447 I915_STATE_WARN(panel_pipe == pipe && locked, 448 "panel assertion failure, pipe %c regs locked\n", 449 pipe_name(pipe)); 450 } 451 452 void assert_pipe(struct drm_i915_private *dev_priv, 453 enum transcoder cpu_transcoder, bool state) 454 { 455 bool cur_state; 456 enum intel_display_power_domain power_domain; 457 intel_wakeref_t wakeref; 458 459 /* we keep both pipes enabled on 830 */ 460 if (IS_I830(dev_priv)) 461 state = true; 462 463 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder); 464 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain); 465 if (wakeref) { 466 u32 val = intel_de_read(dev_priv, PIPECONF(cpu_transcoder)); 467 cur_state = !!(val & PIPECONF_ENABLE); 468 469 intel_display_power_put(dev_priv, power_domain, wakeref); 470 } else { 471 cur_state = false; 472 } 473 474 I915_STATE_WARN(cur_state != state, 475 "transcoder %s assertion failure (expected %s, current %s)\n", 476 transcoder_name(cpu_transcoder), 477 onoff(state), onoff(cur_state)); 478 } 479 480 static void assert_plane(struct intel_plane *plane, bool state) 481 { 482 enum pipe pipe; 483 bool cur_state; 484 485 cur_state = plane->get_hw_state(plane, &pipe); 486 487 I915_STATE_WARN(cur_state != state, 488 "%s assertion failure (expected %s, current %s)\n", 489 plane->base.name, onoff(state), onoff(cur_state)); 490 } 491 492 #define assert_plane_enabled(p) assert_plane(p, true) 493 #define assert_plane_disabled(p) assert_plane(p, false) 494 495 static void assert_planes_disabled(struct intel_crtc *crtc) 496 { 497 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 498 struct intel_plane *plane; 499 500 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) 501 assert_plane_disabled(plane); 502 } 503 504 void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv, 505 enum pipe pipe) 506 { 507 u32 val; 508 bool enabled; 509 510 val = intel_de_read(dev_priv, PCH_TRANSCONF(pipe)); 511 enabled = !!(val & TRANS_ENABLE); 512 I915_STATE_WARN(enabled, 513 "transcoder assertion failed, should be off on pipe %c but is still active\n", 514 pipe_name(pipe)); 515 } 516 517 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv, 518 enum pipe pipe, enum port port, 519 i915_reg_t dp_reg) 520 { 521 enum pipe port_pipe; 522 bool state; 523 524 state = g4x_dp_port_enabled(dev_priv, dp_reg, port, &port_pipe); 525 526 I915_STATE_WARN(state && port_pipe == pipe, 527 "PCH DP %c enabled on transcoder %c, should be disabled\n", 528 port_name(port), pipe_name(pipe)); 529 530 I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && !state && port_pipe == PIPE_B, 531 "IBX PCH DP %c still using transcoder B\n", 532 port_name(port)); 533 } 534 535 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv, 536 enum pipe pipe, enum port port, 537 i915_reg_t hdmi_reg) 538 { 539 enum pipe port_pipe; 540 bool state; 541 542 state = intel_sdvo_port_enabled(dev_priv, hdmi_reg, &port_pipe); 543 544 I915_STATE_WARN(state && port_pipe == pipe, 545 "PCH HDMI %c enabled on transcoder %c, should be disabled\n", 546 port_name(port), pipe_name(pipe)); 547 548 I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && !state && port_pipe == PIPE_B, 549 "IBX PCH HDMI %c still using transcoder B\n", 550 port_name(port)); 551 } 552 553 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv, 554 enum pipe pipe) 555 { 556 enum pipe port_pipe; 557 558 assert_pch_dp_disabled(dev_priv, pipe, PORT_B, PCH_DP_B); 559 assert_pch_dp_disabled(dev_priv, pipe, PORT_C, PCH_DP_C); 560 assert_pch_dp_disabled(dev_priv, pipe, PORT_D, PCH_DP_D); 561 562 I915_STATE_WARN(intel_crt_port_enabled(dev_priv, PCH_ADPA, &port_pipe) && 563 port_pipe == pipe, 564 "PCH VGA enabled on transcoder %c, should be disabled\n", 565 pipe_name(pipe)); 566 567 I915_STATE_WARN(intel_lvds_port_enabled(dev_priv, PCH_LVDS, &port_pipe) && 568 port_pipe == pipe, 569 "PCH LVDS enabled on transcoder %c, should be disabled\n", 570 pipe_name(pipe)); 571 572 /* PCH SDVOB multiplex with HDMIB */ 573 assert_pch_hdmi_disabled(dev_priv, pipe, PORT_B, PCH_HDMIB); 574 assert_pch_hdmi_disabled(dev_priv, pipe, PORT_C, PCH_HDMIC); 575 assert_pch_hdmi_disabled(dev_priv, pipe, PORT_D, PCH_HDMID); 576 } 577 578 void vlv_wait_port_ready(struct drm_i915_private *dev_priv, 579 struct intel_digital_port *dig_port, 580 unsigned int expected_mask) 581 { 582 u32 port_mask; 583 i915_reg_t dpll_reg; 584 585 switch (dig_port->base.port) { 586 case PORT_B: 587 port_mask = DPLL_PORTB_READY_MASK; 588 dpll_reg = DPLL(0); 589 break; 590 case PORT_C: 591 port_mask = DPLL_PORTC_READY_MASK; 592 dpll_reg = DPLL(0); 593 expected_mask <<= 4; 594 break; 595 case PORT_D: 596 port_mask = DPLL_PORTD_READY_MASK; 597 dpll_reg = DPIO_PHY_STATUS; 598 break; 599 default: 600 BUG(); 601 } 602 603 if (intel_de_wait_for_register(dev_priv, dpll_reg, 604 port_mask, expected_mask, 1000)) 605 drm_WARN(&dev_priv->drm, 1, 606 "timed out waiting for [ENCODER:%d:%s] port ready: got 0x%x, expected 0x%x\n", 607 dig_port->base.base.base.id, dig_port->base.base.name, 608 intel_de_read(dev_priv, dpll_reg) & port_mask, 609 expected_mask); 610 } 611 612 static void ilk_enable_pch_transcoder(const struct intel_crtc_state *crtc_state) 613 { 614 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 615 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 616 enum pipe pipe = crtc->pipe; 617 i915_reg_t reg; 618 u32 val, pipeconf_val; 619 620 /* Make sure PCH DPLL is enabled */ 621 assert_shared_dpll_enabled(dev_priv, crtc_state->shared_dpll); 622 623 /* FDI must be feeding us bits for PCH ports */ 624 assert_fdi_tx_enabled(dev_priv, pipe); 625 assert_fdi_rx_enabled(dev_priv, pipe); 626 627 if (HAS_PCH_CPT(dev_priv)) { 628 reg = TRANS_CHICKEN2(pipe); 629 val = intel_de_read(dev_priv, reg); 630 /* 631 * Workaround: Set the timing override bit 632 * before enabling the pch transcoder. 633 */ 634 val |= TRANS_CHICKEN2_TIMING_OVERRIDE; 635 /* Configure frame start delay to match the CPU */ 636 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK; 637 val |= TRANS_CHICKEN2_FRAME_START_DELAY(dev_priv->framestart_delay - 1); 638 intel_de_write(dev_priv, reg, val); 639 } 640 641 reg = PCH_TRANSCONF(pipe); 642 val = intel_de_read(dev_priv, reg); 643 pipeconf_val = intel_de_read(dev_priv, PIPECONF(pipe)); 644 645 if (HAS_PCH_IBX(dev_priv)) { 646 /* Configure frame start delay to match the CPU */ 647 val &= ~TRANS_FRAME_START_DELAY_MASK; 648 val |= TRANS_FRAME_START_DELAY(dev_priv->framestart_delay - 1); 649 650 /* 651 * Make the BPC in transcoder be consistent with 652 * that in pipeconf reg. For HDMI we must use 8bpc 653 * here for both 8bpc and 12bpc. 654 */ 655 val &= ~PIPECONF_BPC_MASK; 656 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) 657 val |= PIPECONF_8BPC; 658 else 659 val |= pipeconf_val & PIPECONF_BPC_MASK; 660 } 661 662 val &= ~TRANS_INTERLACE_MASK; 663 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK) { 664 if (HAS_PCH_IBX(dev_priv) && 665 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) 666 val |= TRANS_LEGACY_INTERLACED_ILK; 667 else 668 val |= TRANS_INTERLACED; 669 } else { 670 val |= TRANS_PROGRESSIVE; 671 } 672 673 intel_de_write(dev_priv, reg, val | TRANS_ENABLE); 674 if (intel_de_wait_for_set(dev_priv, reg, TRANS_STATE_ENABLE, 100)) 675 drm_err(&dev_priv->drm, "failed to enable transcoder %c\n", 676 pipe_name(pipe)); 677 } 678 679 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv, 680 enum transcoder cpu_transcoder) 681 { 682 u32 val, pipeconf_val; 683 684 /* FDI must be feeding us bits for PCH ports */ 685 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder); 686 assert_fdi_rx_enabled(dev_priv, PIPE_A); 687 688 val = intel_de_read(dev_priv, TRANS_CHICKEN2(PIPE_A)); 689 /* Workaround: set timing override bit. */ 690 val |= TRANS_CHICKEN2_TIMING_OVERRIDE; 691 /* Configure frame start delay to match the CPU */ 692 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK; 693 val |= TRANS_CHICKEN2_FRAME_START_DELAY(dev_priv->framestart_delay - 1); 694 intel_de_write(dev_priv, TRANS_CHICKEN2(PIPE_A), val); 695 696 val = TRANS_ENABLE; 697 pipeconf_val = intel_de_read(dev_priv, PIPECONF(cpu_transcoder)); 698 699 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) == 700 PIPECONF_INTERLACED_ILK) 701 val |= TRANS_INTERLACED; 702 else 703 val |= TRANS_PROGRESSIVE; 704 705 intel_de_write(dev_priv, LPT_TRANSCONF, val); 706 if (intel_de_wait_for_set(dev_priv, LPT_TRANSCONF, 707 TRANS_STATE_ENABLE, 100)) 708 drm_err(&dev_priv->drm, "Failed to enable PCH transcoder\n"); 709 } 710 711 static void ilk_disable_pch_transcoder(struct drm_i915_private *dev_priv, 712 enum pipe pipe) 713 { 714 i915_reg_t reg; 715 u32 val; 716 717 /* FDI relies on the transcoder */ 718 assert_fdi_tx_disabled(dev_priv, pipe); 719 assert_fdi_rx_disabled(dev_priv, pipe); 720 721 /* Ports must be off as well */ 722 assert_pch_ports_disabled(dev_priv, pipe); 723 724 reg = PCH_TRANSCONF(pipe); 725 val = intel_de_read(dev_priv, reg); 726 val &= ~TRANS_ENABLE; 727 intel_de_write(dev_priv, reg, val); 728 /* wait for PCH transcoder off, transcoder state */ 729 if (intel_de_wait_for_clear(dev_priv, reg, TRANS_STATE_ENABLE, 50)) 730 drm_err(&dev_priv->drm, "failed to disable transcoder %c\n", 731 pipe_name(pipe)); 732 733 if (HAS_PCH_CPT(dev_priv)) { 734 /* Workaround: Clear the timing override chicken bit again. */ 735 reg = TRANS_CHICKEN2(pipe); 736 val = intel_de_read(dev_priv, reg); 737 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE; 738 intel_de_write(dev_priv, reg, val); 739 } 740 } 741 742 void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv) 743 { 744 u32 val; 745 746 val = intel_de_read(dev_priv, LPT_TRANSCONF); 747 val &= ~TRANS_ENABLE; 748 intel_de_write(dev_priv, LPT_TRANSCONF, val); 749 /* wait for PCH transcoder off, transcoder state */ 750 if (intel_de_wait_for_clear(dev_priv, LPT_TRANSCONF, 751 TRANS_STATE_ENABLE, 50)) 752 drm_err(&dev_priv->drm, "Failed to disable PCH transcoder\n"); 753 754 /* Workaround: clear timing override bit. */ 755 val = intel_de_read(dev_priv, TRANS_CHICKEN2(PIPE_A)); 756 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE; 757 intel_de_write(dev_priv, TRANS_CHICKEN2(PIPE_A), val); 758 } 759 760 enum pipe intel_crtc_pch_transcoder(struct intel_crtc *crtc) 761 { 762 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 763 764 if (HAS_PCH_LPT(dev_priv)) 765 return PIPE_A; 766 else 767 return crtc->pipe; 768 } 769 770 void intel_enable_pipe(const struct intel_crtc_state *new_crtc_state) 771 { 772 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); 773 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 774 enum transcoder cpu_transcoder = new_crtc_state->cpu_transcoder; 775 enum pipe pipe = crtc->pipe; 776 i915_reg_t reg; 777 u32 val; 778 779 drm_dbg_kms(&dev_priv->drm, "enabling pipe %c\n", pipe_name(pipe)); 780 781 assert_planes_disabled(crtc); 782 783 /* 784 * A pipe without a PLL won't actually be able to drive bits from 785 * a plane. On ILK+ the pipe PLLs are integrated, so we don't 786 * need the check. 787 */ 788 if (HAS_GMCH(dev_priv)) { 789 if (intel_crtc_has_type(new_crtc_state, INTEL_OUTPUT_DSI)) 790 assert_dsi_pll_enabled(dev_priv); 791 else 792 assert_pll_enabled(dev_priv, pipe); 793 } else { 794 if (new_crtc_state->has_pch_encoder) { 795 /* if driving the PCH, we need FDI enabled */ 796 assert_fdi_rx_pll_enabled(dev_priv, 797 intel_crtc_pch_transcoder(crtc)); 798 assert_fdi_tx_pll_enabled(dev_priv, 799 (enum pipe) cpu_transcoder); 800 } 801 /* FIXME: assert CPU port conditions for SNB+ */ 802 } 803 804 /* Wa_22012358565:adl-p */ 805 if (DISPLAY_VER(dev_priv) == 13) 806 intel_de_rmw(dev_priv, PIPE_ARB_CTL(pipe), 807 0, PIPE_ARB_USE_PROG_SLOTS); 808 809 reg = PIPECONF(cpu_transcoder); 810 val = intel_de_read(dev_priv, reg); 811 if (val & PIPECONF_ENABLE) { 812 /* we keep both pipes enabled on 830 */ 813 drm_WARN_ON(&dev_priv->drm, !IS_I830(dev_priv)); 814 return; 815 } 816 817 intel_de_write(dev_priv, reg, val | PIPECONF_ENABLE); 818 intel_de_posting_read(dev_priv, reg); 819 820 /* 821 * Until the pipe starts PIPEDSL reads will return a stale value, 822 * which causes an apparent vblank timestamp jump when PIPEDSL 823 * resets to its proper value. That also messes up the frame count 824 * when it's derived from the timestamps. So let's wait for the 825 * pipe to start properly before we call drm_crtc_vblank_on() 826 */ 827 if (intel_crtc_max_vblank_count(new_crtc_state) == 0) 828 intel_wait_for_pipe_scanline_moving(crtc); 829 } 830 831 void intel_disable_pipe(const struct intel_crtc_state *old_crtc_state) 832 { 833 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); 834 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 835 enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder; 836 enum pipe pipe = crtc->pipe; 837 i915_reg_t reg; 838 u32 val; 839 840 drm_dbg_kms(&dev_priv->drm, "disabling pipe %c\n", pipe_name(pipe)); 841 842 /* 843 * Make sure planes won't keep trying to pump pixels to us, 844 * or we might hang the display. 845 */ 846 assert_planes_disabled(crtc); 847 848 reg = PIPECONF(cpu_transcoder); 849 val = intel_de_read(dev_priv, reg); 850 if ((val & PIPECONF_ENABLE) == 0) 851 return; 852 853 /* 854 * Double wide has implications for planes 855 * so best keep it disabled when not needed. 856 */ 857 if (old_crtc_state->double_wide) 858 val &= ~PIPECONF_DOUBLE_WIDE; 859 860 /* Don't disable pipe or pipe PLLs if needed */ 861 if (!IS_I830(dev_priv)) 862 val &= ~PIPECONF_ENABLE; 863 864 if (DISPLAY_VER(dev_priv) >= 12) 865 intel_de_rmw(dev_priv, CHICKEN_TRANS(cpu_transcoder), 866 FECSTALL_DIS_DPTSTREAM_DPTTG, 0); 867 868 intel_de_write(dev_priv, reg, val); 869 if ((val & PIPECONF_ENABLE) == 0) 870 intel_wait_for_pipe_off(old_crtc_state); 871 } 872 873 bool 874 intel_format_info_is_yuv_semiplanar(const struct drm_format_info *info, 875 u64 modifier) 876 { 877 return info->is_yuv && 878 info->num_planes == (is_ccs_modifier(modifier) ? 4 : 2); 879 } 880 881 unsigned int 882 intel_tile_width_bytes(const struct drm_framebuffer *fb, int color_plane) 883 { 884 struct drm_i915_private *dev_priv = to_i915(fb->dev); 885 unsigned int cpp = fb->format->cpp[color_plane]; 886 887 switch (fb->modifier) { 888 case DRM_FORMAT_MOD_LINEAR: 889 return intel_tile_size(dev_priv); 890 case I915_FORMAT_MOD_X_TILED: 891 if (DISPLAY_VER(dev_priv) == 2) 892 return 128; 893 else 894 return 512; 895 case I915_FORMAT_MOD_Y_TILED_CCS: 896 if (is_ccs_plane(fb, color_plane)) 897 return 128; 898 fallthrough; 899 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS: 900 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC: 901 case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS: 902 if (is_ccs_plane(fb, color_plane)) 903 return 64; 904 fallthrough; 905 case I915_FORMAT_MOD_Y_TILED: 906 if (DISPLAY_VER(dev_priv) == 2 || HAS_128_BYTE_Y_TILING(dev_priv)) 907 return 128; 908 else 909 return 512; 910 case I915_FORMAT_MOD_Yf_TILED_CCS: 911 if (is_ccs_plane(fb, color_plane)) 912 return 128; 913 fallthrough; 914 case I915_FORMAT_MOD_Yf_TILED: 915 switch (cpp) { 916 case 1: 917 return 64; 918 case 2: 919 case 4: 920 return 128; 921 case 8: 922 case 16: 923 return 256; 924 default: 925 MISSING_CASE(cpp); 926 return cpp; 927 } 928 break; 929 default: 930 MISSING_CASE(fb->modifier); 931 return cpp; 932 } 933 } 934 935 unsigned int 936 intel_fb_align_height(const struct drm_framebuffer *fb, 937 int color_plane, unsigned int height) 938 { 939 unsigned int tile_height = intel_tile_height(fb, color_plane); 940 941 return roundup2(height, tile_height); 942 } 943 944 unsigned int intel_rotation_info_size(const struct intel_rotation_info *rot_info) 945 { 946 unsigned int size = 0; 947 int i; 948 949 for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) 950 size += rot_info->plane[i].dst_stride * rot_info->plane[i].width; 951 952 return size; 953 } 954 955 unsigned int intel_remapped_info_size(const struct intel_remapped_info *rem_info) 956 { 957 unsigned int size = 0; 958 int i; 959 960 for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++) 961 size += rem_info->plane[i].dst_stride * rem_info->plane[i].height; 962 963 return size; 964 } 965 966 static unsigned int intel_linear_alignment(const struct drm_i915_private *dev_priv) 967 { 968 if (DISPLAY_VER(dev_priv) >= 9) 969 return 256 * 1024; 970 else if (IS_I965G(dev_priv) || IS_I965GM(dev_priv) || 971 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 972 return 128 * 1024; 973 else if (DISPLAY_VER(dev_priv) >= 4) 974 return 4 * 1024; 975 else 976 return 0; 977 } 978 979 static bool has_async_flips(struct drm_i915_private *i915) 980 { 981 return DISPLAY_VER(i915) >= 5; 982 } 983 984 unsigned int intel_surf_alignment(const struct drm_framebuffer *fb, 985 int color_plane) 986 { 987 struct drm_i915_private *dev_priv = to_i915(fb->dev); 988 989 if (intel_fb_uses_dpt(fb)) 990 return 512 * 4096; 991 992 /* AUX_DIST needs only 4K alignment */ 993 if (is_ccs_plane(fb, color_plane)) 994 return 4096; 995 996 if (is_semiplanar_uv_plane(fb, color_plane)) { 997 /* 998 * TODO: cross-check wrt. the bspec stride in bytes * 64 bytes 999 * alignment for linear UV planes on all platforms. 1000 */ 1001 if (DISPLAY_VER(dev_priv) >= 12) { 1002 if (fb->modifier == DRM_FORMAT_MOD_LINEAR) 1003 return intel_linear_alignment(dev_priv); 1004 1005 return intel_tile_row_size(fb, color_plane); 1006 } 1007 1008 return 4096; 1009 } 1010 1011 drm_WARN_ON(&dev_priv->drm, color_plane != 0); 1012 1013 switch (fb->modifier) { 1014 case DRM_FORMAT_MOD_LINEAR: 1015 return intel_linear_alignment(dev_priv); 1016 case I915_FORMAT_MOD_X_TILED: 1017 if (has_async_flips(dev_priv)) 1018 return 256 * 1024; 1019 return 0; 1020 case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS: 1021 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS: 1022 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC: 1023 return 16 * 1024; 1024 case I915_FORMAT_MOD_Y_TILED_CCS: 1025 case I915_FORMAT_MOD_Yf_TILED_CCS: 1026 case I915_FORMAT_MOD_Y_TILED: 1027 case I915_FORMAT_MOD_Yf_TILED: 1028 return 1 * 1024 * 1024; 1029 default: 1030 MISSING_CASE(fb->modifier); 1031 return 0; 1032 } 1033 } 1034 1035 static bool intel_plane_uses_fence(const struct intel_plane_state *plane_state) 1036 { 1037 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 1038 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 1039 1040 return DISPLAY_VER(dev_priv) < 4 || 1041 (plane->has_fbc && 1042 plane_state->view.gtt.type == I915_GGTT_VIEW_NORMAL); 1043 } 1044 1045 static struct i915_vma * 1046 intel_pin_fb_obj_dpt(struct drm_framebuffer *fb, 1047 const struct i915_ggtt_view *view, 1048 bool uses_fence, 1049 unsigned long *out_flags, 1050 struct i915_address_space *vm) 1051 { 1052 struct drm_device *dev = fb->dev; 1053 struct drm_i915_private *dev_priv = to_i915(dev); 1054 struct drm_i915_gem_object *obj = intel_fb_obj(fb); 1055 struct i915_vma *vma; 1056 u32 alignment; 1057 int ret; 1058 1059 if (WARN_ON(!i915_gem_object_is_framebuffer(obj))) 1060 return ERR_PTR(-EINVAL); 1061 1062 alignment = 4096 * 512; 1063 1064 atomic_inc(&dev_priv->gpu_error.pending_fb_pin); 1065 1066 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE); 1067 if (ret) { 1068 vma = ERR_PTR(ret); 1069 goto err; 1070 } 1071 1072 vma = i915_vma_instance(obj, vm, view); 1073 if (IS_ERR(vma)) 1074 goto err; 1075 1076 if (i915_vma_misplaced(vma, 0, alignment, 0)) { 1077 ret = i915_vma_unbind(vma); 1078 if (ret) { 1079 vma = ERR_PTR(ret); 1080 goto err; 1081 } 1082 } 1083 1084 ret = i915_vma_pin(vma, 0, alignment, PIN_GLOBAL); 1085 if (ret) { 1086 vma = ERR_PTR(ret); 1087 goto err; 1088 } 1089 1090 vma->display_alignment = max_t(u64, vma->display_alignment, alignment); 1091 1092 i915_gem_object_flush_if_display(obj); 1093 1094 i915_vma_get(vma); 1095 err: 1096 atomic_dec(&dev_priv->gpu_error.pending_fb_pin); 1097 1098 return vma; 1099 } 1100 1101 struct i915_vma * 1102 intel_pin_and_fence_fb_obj(struct drm_framebuffer *fb, 1103 bool phys_cursor, 1104 const struct i915_ggtt_view *view, 1105 bool uses_fence, 1106 unsigned long *out_flags) 1107 { 1108 struct drm_device *dev = fb->dev; 1109 struct drm_i915_private *dev_priv = to_i915(dev); 1110 struct drm_i915_gem_object *obj = intel_fb_obj(fb); 1111 intel_wakeref_t wakeref; 1112 struct i915_gem_ww_ctx ww; 1113 struct i915_vma *vma; 1114 unsigned int pinctl; 1115 u32 alignment; 1116 int ret; 1117 1118 if (drm_WARN_ON(dev, !i915_gem_object_is_framebuffer(obj))) 1119 return ERR_PTR(-EINVAL); 1120 1121 if (phys_cursor) 1122 alignment = intel_cursor_alignment(dev_priv); 1123 else 1124 alignment = intel_surf_alignment(fb, 0); 1125 if (drm_WARN_ON(dev, alignment && !is_power_of_2(alignment))) 1126 return ERR_PTR(-EINVAL); 1127 1128 /* Note that the w/a also requires 64 PTE of padding following the 1129 * bo. We currently fill all unused PTE with the shadow page and so 1130 * we should always have valid PTE following the scanout preventing 1131 * the VT-d warning. 1132 */ 1133 if (intel_scanout_needs_vtd_wa(dev_priv) && alignment < 256 * 1024) 1134 alignment = 256 * 1024; 1135 1136 /* 1137 * Global gtt pte registers are special registers which actually forward 1138 * writes to a chunk of system memory. Which means that there is no risk 1139 * that the register values disappear as soon as we call 1140 * intel_runtime_pm_put(), so it is correct to wrap only the 1141 * pin/unpin/fence and not more. 1142 */ 1143 wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm); 1144 1145 atomic_inc(&dev_priv->gpu_error.pending_fb_pin); 1146 1147 /* 1148 * Valleyview is definitely limited to scanning out the first 1149 * 512MiB. Lets presume this behaviour was inherited from the 1150 * g4x display engine and that all earlier gen are similarly 1151 * limited. Testing suggests that it is a little more 1152 * complicated than this. For example, Cherryview appears quite 1153 * happy to scanout from anywhere within its global aperture. 1154 */ 1155 pinctl = 0; 1156 if (HAS_GMCH(dev_priv)) 1157 pinctl |= PIN_MAPPABLE; 1158 1159 i915_gem_ww_ctx_init(&ww, true); 1160 retry: 1161 ret = i915_gem_object_lock(obj, &ww); 1162 if (!ret && phys_cursor) 1163 ret = i915_gem_object_attach_phys(obj, alignment); 1164 else if (!ret && HAS_LMEM(dev_priv)) 1165 ret = i915_gem_object_migrate(obj, &ww, INTEL_REGION_LMEM); 1166 /* TODO: Do we need to sync when migration becomes async? */ 1167 if (!ret) 1168 ret = i915_gem_object_pin_pages(obj); 1169 if (ret) 1170 goto err; 1171 1172 if (!ret) { 1173 vma = i915_gem_object_pin_to_display_plane(obj, &ww, alignment, 1174 view, pinctl); 1175 if (IS_ERR(vma)) { 1176 ret = PTR_ERR(vma); 1177 goto err_unpin; 1178 } 1179 } 1180 1181 if (uses_fence && i915_vma_is_map_and_fenceable(vma)) { 1182 /* 1183 * Install a fence for tiled scan-out. Pre-i965 always needs a 1184 * fence, whereas 965+ only requires a fence if using 1185 * framebuffer compression. For simplicity, we always, when 1186 * possible, install a fence as the cost is not that onerous. 1187 * 1188 * If we fail to fence the tiled scanout, then either the 1189 * modeset will reject the change (which is highly unlikely as 1190 * the affected systems, all but one, do not have unmappable 1191 * space) or we will not be able to enable full powersaving 1192 * techniques (also likely not to apply due to various limits 1193 * FBC and the like impose on the size of the buffer, which 1194 * presumably we violated anyway with this unmappable buffer). 1195 * Anyway, it is presumably better to stumble onwards with 1196 * something and try to run the system in a "less than optimal" 1197 * mode that matches the user configuration. 1198 */ 1199 ret = i915_vma_pin_fence(vma); 1200 if (ret != 0 && DISPLAY_VER(dev_priv) < 4) { 1201 i915_vma_unpin(vma); 1202 goto err_unpin; 1203 } 1204 ret = 0; 1205 1206 if (vma->fence) 1207 *out_flags |= PLANE_HAS_FENCE; 1208 } 1209 1210 i915_vma_get(vma); 1211 1212 err_unpin: 1213 i915_gem_object_unpin_pages(obj); 1214 err: 1215 if (ret == -EDEADLK) { 1216 ret = i915_gem_ww_ctx_backoff(&ww); 1217 if (!ret) 1218 goto retry; 1219 } 1220 i915_gem_ww_ctx_fini(&ww); 1221 if (ret) 1222 vma = ERR_PTR(ret); 1223 1224 atomic_dec(&dev_priv->gpu_error.pending_fb_pin); 1225 intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref); 1226 return vma; 1227 } 1228 1229 void intel_unpin_fb_vma(struct i915_vma *vma, unsigned long flags) 1230 { 1231 if (flags & PLANE_HAS_FENCE) 1232 i915_vma_unpin_fence(vma); 1233 i915_vma_unpin(vma); 1234 i915_vma_put(vma); 1235 } 1236 1237 /* 1238 * Convert the x/y offsets into a linear offset. 1239 * Only valid with 0/180 degree rotation, which is fine since linear 1240 * offset is only used with linear buffers on pre-hsw and tiled buffers 1241 * with gen2/3, and 90/270 degree rotations isn't supported on any of them. 1242 */ 1243 u32 intel_fb_xy_to_linear(int x, int y, 1244 const struct intel_plane_state *state, 1245 int color_plane) 1246 { 1247 const struct drm_framebuffer *fb = state->hw.fb; 1248 unsigned int cpp = fb->format->cpp[color_plane]; 1249 unsigned int pitch = state->view.color_plane[color_plane].stride; 1250 1251 return y * pitch + x * cpp; 1252 } 1253 1254 /* 1255 * Add the x/y offsets derived from fb->offsets[] to the user 1256 * specified plane src x/y offsets. The resulting x/y offsets 1257 * specify the start of scanout from the beginning of the gtt mapping. 1258 */ 1259 void intel_add_fb_offsets(int *x, int *y, 1260 const struct intel_plane_state *state, 1261 int color_plane) 1262 1263 { 1264 *x += state->view.color_plane[color_plane].x; 1265 *y += state->view.color_plane[color_plane].y; 1266 } 1267 1268 static unsigned int intel_fb_modifier_to_tiling(u64 fb_modifier) 1269 { 1270 switch (fb_modifier) { 1271 case I915_FORMAT_MOD_X_TILED: 1272 return I915_TILING_X; 1273 case I915_FORMAT_MOD_Y_TILED: 1274 case I915_FORMAT_MOD_Y_TILED_CCS: 1275 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS: 1276 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC: 1277 case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS: 1278 return I915_TILING_Y; 1279 default: 1280 return I915_TILING_NONE; 1281 } 1282 } 1283 1284 /* 1285 * From the Sky Lake PRM: 1286 * "The Color Control Surface (CCS) contains the compression status of 1287 * the cache-line pairs. The compression state of the cache-line pair 1288 * is specified by 2 bits in the CCS. Each CCS cache-line represents 1289 * an area on the main surface of 16 x16 sets of 128 byte Y-tiled 1290 * cache-line-pairs. CCS is always Y tiled." 1291 * 1292 * Since cache line pairs refers to horizontally adjacent cache lines, 1293 * each cache line in the CCS corresponds to an area of 32x16 cache 1294 * lines on the main surface. Since each pixel is 4 bytes, this gives 1295 * us a ratio of one byte in the CCS for each 8x16 pixels in the 1296 * main surface. 1297 */ 1298 static const struct drm_format_info skl_ccs_formats[] = { 1299 { .format = DRM_FORMAT_XRGB8888, .depth = 24, .num_planes = 2, 1300 .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, }, 1301 { .format = DRM_FORMAT_XBGR8888, .depth = 24, .num_planes = 2, 1302 .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, }, 1303 { .format = DRM_FORMAT_ARGB8888, .depth = 32, .num_planes = 2, 1304 .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, .has_alpha = true, }, 1305 { .format = DRM_FORMAT_ABGR8888, .depth = 32, .num_planes = 2, 1306 .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, .has_alpha = true, }, 1307 }; 1308 1309 /* 1310 * Gen-12 compression uses 4 bits of CCS data for each cache line pair in the 1311 * main surface. And each 64B CCS cache line represents an area of 4x1 Y-tiles 1312 * in the main surface. With 4 byte pixels and each Y-tile having dimensions of 1313 * 32x32 pixels, the ratio turns out to 1B in the CCS for every 2x32 pixels in 1314 * the main surface. 1315 */ 1316 static const struct drm_format_info gen12_ccs_formats[] = { 1317 { .format = DRM_FORMAT_XRGB8888, .depth = 24, .num_planes = 2, 1318 .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 1319 .hsub = 1, .vsub = 1, }, 1320 { .format = DRM_FORMAT_XBGR8888, .depth = 24, .num_planes = 2, 1321 .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 1322 .hsub = 1, .vsub = 1, }, 1323 { .format = DRM_FORMAT_ARGB8888, .depth = 32, .num_planes = 2, 1324 .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 1325 .hsub = 1, .vsub = 1, .has_alpha = true }, 1326 { .format = DRM_FORMAT_ABGR8888, .depth = 32, .num_planes = 2, 1327 .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 1328 .hsub = 1, .vsub = 1, .has_alpha = true }, 1329 { .format = DRM_FORMAT_YUYV, .num_planes = 2, 1330 .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 1331 .hsub = 2, .vsub = 1, .is_yuv = true }, 1332 { .format = DRM_FORMAT_YVYU, .num_planes = 2, 1333 .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 1334 .hsub = 2, .vsub = 1, .is_yuv = true }, 1335 { .format = DRM_FORMAT_UYVY, .num_planes = 2, 1336 .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 1337 .hsub = 2, .vsub = 1, .is_yuv = true }, 1338 { .format = DRM_FORMAT_VYUY, .num_planes = 2, 1339 .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 1340 .hsub = 2, .vsub = 1, .is_yuv = true }, 1341 { .format = DRM_FORMAT_XYUV8888, .num_planes = 2, 1342 .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 1343 .hsub = 1, .vsub = 1, .is_yuv = true }, 1344 { .format = DRM_FORMAT_NV12, .num_planes = 4, 1345 .char_per_block = { 1, 2, 1, 1 }, .block_w = { 1, 1, 4, 4 }, .block_h = { 1, 1, 1, 1 }, 1346 .hsub = 2, .vsub = 2, .is_yuv = true }, 1347 { .format = DRM_FORMAT_P010, .num_planes = 4, 1348 .char_per_block = { 2, 4, 1, 1 }, .block_w = { 1, 1, 2, 2 }, .block_h = { 1, 1, 1, 1 }, 1349 .hsub = 2, .vsub = 2, .is_yuv = true }, 1350 { .format = DRM_FORMAT_P012, .num_planes = 4, 1351 .char_per_block = { 2, 4, 1, 1 }, .block_w = { 1, 1, 2, 2 }, .block_h = { 1, 1, 1, 1 }, 1352 .hsub = 2, .vsub = 2, .is_yuv = true }, 1353 { .format = DRM_FORMAT_P016, .num_planes = 4, 1354 .char_per_block = { 2, 4, 1, 1 }, .block_w = { 1, 1, 2, 2 }, .block_h = { 1, 1, 1, 1 }, 1355 .hsub = 2, .vsub = 2, .is_yuv = true }, 1356 }; 1357 1358 /* 1359 * Same as gen12_ccs_formats[] above, but with additional surface used 1360 * to pass Clear Color information in plane 2 with 64 bits of data. 1361 */ 1362 static const struct drm_format_info gen12_ccs_cc_formats[] = { 1363 { .format = DRM_FORMAT_XRGB8888, .depth = 24, .num_planes = 3, 1364 .char_per_block = { 4, 1, 0 }, .block_w = { 1, 2, 2 }, .block_h = { 1, 1, 1 }, 1365 .hsub = 1, .vsub = 1, }, 1366 { .format = DRM_FORMAT_XBGR8888, .depth = 24, .num_planes = 3, 1367 .char_per_block = { 4, 1, 0 }, .block_w = { 1, 2, 2 }, .block_h = { 1, 1, 1 }, 1368 .hsub = 1, .vsub = 1, }, 1369 { .format = DRM_FORMAT_ARGB8888, .depth = 32, .num_planes = 3, 1370 .char_per_block = { 4, 1, 0 }, .block_w = { 1, 2, 2 }, .block_h = { 1, 1, 1 }, 1371 .hsub = 1, .vsub = 1, .has_alpha = true }, 1372 { .format = DRM_FORMAT_ABGR8888, .depth = 32, .num_planes = 3, 1373 .char_per_block = { 4, 1, 0 }, .block_w = { 1, 2, 2 }, .block_h = { 1, 1, 1 }, 1374 .hsub = 1, .vsub = 1, .has_alpha = true }, 1375 }; 1376 1377 static const struct drm_format_info * 1378 lookup_format_info(const struct drm_format_info formats[], 1379 int num_formats, u32 format) 1380 { 1381 int i; 1382 1383 for (i = 0; i < num_formats; i++) { 1384 if (formats[i].format == format) 1385 return &formats[i]; 1386 } 1387 1388 return NULL; 1389 } 1390 1391 static const struct drm_format_info * 1392 intel_get_format_info(const struct drm_mode_fb_cmd2 *cmd) 1393 { 1394 switch (cmd->modifier[0]) { 1395 case I915_FORMAT_MOD_Y_TILED_CCS: 1396 case I915_FORMAT_MOD_Yf_TILED_CCS: 1397 return lookup_format_info(skl_ccs_formats, 1398 ARRAY_SIZE(skl_ccs_formats), 1399 cmd->pixel_format); 1400 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS: 1401 case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS: 1402 return lookup_format_info(gen12_ccs_formats, 1403 ARRAY_SIZE(gen12_ccs_formats), 1404 cmd->pixel_format); 1405 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC: 1406 return lookup_format_info(gen12_ccs_cc_formats, 1407 ARRAY_SIZE(gen12_ccs_cc_formats), 1408 cmd->pixel_format); 1409 default: 1410 return NULL; 1411 } 1412 } 1413 1414 static int gen12_ccs_aux_stride(struct drm_framebuffer *fb, int ccs_plane) 1415 { 1416 return DIV_ROUND_UP(fb->pitches[skl_ccs_to_main_plane(fb, ccs_plane)], 1417 512) * 64; 1418 } 1419 1420 u32 intel_plane_fb_max_stride(struct drm_i915_private *dev_priv, 1421 u32 pixel_format, u64 modifier) 1422 { 1423 struct intel_crtc *crtc; 1424 struct intel_plane *plane; 1425 1426 if (!HAS_DISPLAY(dev_priv)) 1427 return 0; 1428 1429 /* 1430 * We assume the primary plane for pipe A has 1431 * the highest stride limits of them all, 1432 * if in case pipe A is disabled, use the first pipe from pipe_mask. 1433 */ 1434 crtc = intel_get_first_crtc(dev_priv); 1435 if (!crtc) 1436 return 0; 1437 1438 plane = to_intel_plane(crtc->base.primary); 1439 1440 return plane->max_stride(plane, pixel_format, modifier, 1441 DRM_MODE_ROTATE_0); 1442 } 1443 1444 static 1445 u32 intel_fb_max_stride(struct drm_i915_private *dev_priv, 1446 u32 pixel_format, u64 modifier) 1447 { 1448 /* 1449 * Arbitrary limit for gen4+ chosen to match the 1450 * render engine max stride. 1451 * 1452 * The new CCS hash mode makes remapping impossible 1453 */ 1454 if (DISPLAY_VER(dev_priv) < 4 || is_ccs_modifier(modifier) || 1455 intel_modifier_uses_dpt(dev_priv, modifier)) 1456 return intel_plane_fb_max_stride(dev_priv, pixel_format, modifier); 1457 else if (DISPLAY_VER(dev_priv) >= 7) 1458 return 256 * 1024; 1459 else 1460 return 128 * 1024; 1461 } 1462 1463 static u32 1464 intel_fb_stride_alignment(const struct drm_framebuffer *fb, int color_plane) 1465 { 1466 struct drm_i915_private *dev_priv = to_i915(fb->dev); 1467 u32 tile_width; 1468 1469 if (is_surface_linear(fb, color_plane)) { 1470 u32 max_stride = intel_plane_fb_max_stride(dev_priv, 1471 fb->format->format, 1472 fb->modifier); 1473 1474 /* 1475 * To make remapping with linear generally feasible 1476 * we need the stride to be page aligned. 1477 */ 1478 if (fb->pitches[color_plane] > max_stride && 1479 !is_ccs_modifier(fb->modifier)) 1480 return intel_tile_size(dev_priv); 1481 else 1482 return 64; 1483 } 1484 1485 tile_width = intel_tile_width_bytes(fb, color_plane); 1486 if (is_ccs_modifier(fb->modifier)) { 1487 /* 1488 * Display WA #0531: skl,bxt,kbl,glk 1489 * 1490 * Render decompression and plane width > 3840 1491 * combined with horizontal panning requires the 1492 * plane stride to be a multiple of 4. We'll just 1493 * require the entire fb to accommodate that to avoid 1494 * potential runtime errors at plane configuration time. 1495 */ 1496 if ((DISPLAY_VER(dev_priv) == 9 || IS_GEMINILAKE(dev_priv)) && 1497 color_plane == 0 && fb->width > 3840) 1498 tile_width *= 4; 1499 /* 1500 * The main surface pitch must be padded to a multiple of four 1501 * tile widths. 1502 */ 1503 else if (DISPLAY_VER(dev_priv) >= 12) 1504 tile_width *= 4; 1505 } 1506 return tile_width; 1507 } 1508 1509 static struct i915_vma * 1510 initial_plane_vma(struct drm_i915_private *i915, 1511 struct intel_initial_plane_config *plane_config) 1512 { 1513 struct drm_i915_gem_object *obj; 1514 struct i915_vma *vma; 1515 u32 base, size; 1516 1517 if (plane_config->size == 0) 1518 return NULL; 1519 1520 base = round_down(plane_config->base, 1521 I915_GTT_MIN_ALIGNMENT); 1522 size = round_up(plane_config->base + plane_config->size, 1523 I915_GTT_MIN_ALIGNMENT); 1524 size -= base; 1525 1526 /* 1527 * If the FB is too big, just don't use it since fbdev is not very 1528 * important and we should probably use that space with FBC or other 1529 * features. 1530 */ 1531 if (IS_ENABLED(CONFIG_FRAMEBUFFER_CONSOLE) && 1532 size * 2 > i915->stolen_usable_size) 1533 return NULL; 1534 1535 obj = i915_gem_object_create_stolen_for_preallocated(i915, base, size); 1536 if (IS_ERR(obj)) 1537 return NULL; 1538 1539 /* 1540 * Mark it WT ahead of time to avoid changing the 1541 * cache_level during fbdev initialization. The 1542 * unbind there would get stuck waiting for rcu. 1543 */ 1544 i915_gem_object_set_cache_coherency(obj, HAS_WT(i915) ? 1545 I915_CACHE_WT : I915_CACHE_NONE); 1546 1547 switch (plane_config->tiling) { 1548 case I915_TILING_NONE: 1549 break; 1550 case I915_TILING_X: 1551 case I915_TILING_Y: 1552 obj->tiling_and_stride = 1553 plane_config->fb->base.pitches[0] | 1554 plane_config->tiling; 1555 break; 1556 default: 1557 MISSING_CASE(plane_config->tiling); 1558 goto err_obj; 1559 } 1560 1561 vma = i915_vma_instance(obj, &i915->ggtt.vm, NULL); 1562 if (IS_ERR(vma)) 1563 goto err_obj; 1564 1565 if (i915_ggtt_pin(vma, NULL, 0, PIN_MAPPABLE | PIN_OFFSET_FIXED | base)) 1566 goto err_obj; 1567 1568 if (i915_gem_object_is_tiled(obj) && 1569 !i915_vma_is_map_and_fenceable(vma)) 1570 goto err_obj; 1571 1572 return vma; 1573 1574 err_obj: 1575 i915_gem_object_put(obj); 1576 return NULL; 1577 } 1578 1579 static bool 1580 intel_alloc_initial_plane_obj(struct intel_crtc *crtc, 1581 struct intel_initial_plane_config *plane_config) 1582 { 1583 struct drm_device *dev = crtc->base.dev; 1584 struct drm_i915_private *dev_priv = to_i915(dev); 1585 struct drm_mode_fb_cmd2 mode_cmd = { 0 }; 1586 struct drm_framebuffer *fb = &plane_config->fb->base; 1587 struct i915_vma *vma; 1588 1589 switch (fb->modifier) { 1590 case DRM_FORMAT_MOD_LINEAR: 1591 case I915_FORMAT_MOD_X_TILED: 1592 case I915_FORMAT_MOD_Y_TILED: 1593 break; 1594 default: 1595 drm_dbg(&dev_priv->drm, 1596 "Unsupported modifier for initial FB: 0x%llx\n", 1597 fb->modifier); 1598 return false; 1599 } 1600 1601 vma = initial_plane_vma(dev_priv, plane_config); 1602 if (!vma) 1603 return false; 1604 1605 mode_cmd.pixel_format = fb->format->format; 1606 mode_cmd.width = fb->width; 1607 mode_cmd.height = fb->height; 1608 mode_cmd.pitches[0] = fb->pitches[0]; 1609 mode_cmd.modifier[0] = fb->modifier; 1610 mode_cmd.flags = DRM_MODE_FB_MODIFIERS; 1611 1612 if (intel_framebuffer_init(to_intel_framebuffer(fb), 1613 vma->obj, &mode_cmd)) { 1614 drm_dbg_kms(&dev_priv->drm, "intel fb init failed\n"); 1615 goto err_vma; 1616 } 1617 1618 plane_config->vma = vma; 1619 return true; 1620 1621 err_vma: 1622 i915_vma_put(vma); 1623 return false; 1624 } 1625 1626 static void 1627 intel_set_plane_visible(struct intel_crtc_state *crtc_state, 1628 struct intel_plane_state *plane_state, 1629 bool visible) 1630 { 1631 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 1632 1633 plane_state->uapi.visible = visible; 1634 1635 if (visible) 1636 crtc_state->uapi.plane_mask |= drm_plane_mask(&plane->base); 1637 else 1638 crtc_state->uapi.plane_mask &= ~drm_plane_mask(&plane->base); 1639 } 1640 1641 static void fixup_plane_bitmasks(struct intel_crtc_state *crtc_state) 1642 { 1643 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 1644 struct drm_plane *plane; 1645 1646 /* 1647 * Active_planes aliases if multiple "primary" or cursor planes 1648 * have been used on the same (or wrong) pipe. plane_mask uses 1649 * unique ids, hence we can use that to reconstruct active_planes. 1650 */ 1651 crtc_state->enabled_planes = 0; 1652 crtc_state->active_planes = 0; 1653 1654 drm_for_each_plane_mask(plane, &dev_priv->drm, 1655 crtc_state->uapi.plane_mask) { 1656 crtc_state->enabled_planes |= BIT(to_intel_plane(plane)->id); 1657 crtc_state->active_planes |= BIT(to_intel_plane(plane)->id); 1658 } 1659 } 1660 1661 void intel_plane_disable_noatomic(struct intel_crtc *crtc, 1662 struct intel_plane *plane) 1663 { 1664 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1665 struct intel_crtc_state *crtc_state = 1666 to_intel_crtc_state(crtc->base.state); 1667 struct intel_plane_state *plane_state = 1668 to_intel_plane_state(plane->base.state); 1669 1670 drm_dbg_kms(&dev_priv->drm, 1671 "Disabling [PLANE:%d:%s] on [CRTC:%d:%s]\n", 1672 plane->base.base.id, plane->base.name, 1673 crtc->base.base.id, crtc->base.name); 1674 1675 intel_set_plane_visible(crtc_state, plane_state, false); 1676 fixup_plane_bitmasks(crtc_state); 1677 crtc_state->data_rate[plane->id] = 0; 1678 crtc_state->min_cdclk[plane->id] = 0; 1679 1680 if (plane->id == PLANE_PRIMARY) 1681 hsw_disable_ips(crtc_state); 1682 1683 /* 1684 * Vblank time updates from the shadow to live plane control register 1685 * are blocked if the memory self-refresh mode is active at that 1686 * moment. So to make sure the plane gets truly disabled, disable 1687 * first the self-refresh mode. The self-refresh enable bit in turn 1688 * will be checked/applied by the HW only at the next frame start 1689 * event which is after the vblank start event, so we need to have a 1690 * wait-for-vblank between disabling the plane and the pipe. 1691 */ 1692 if (HAS_GMCH(dev_priv) && 1693 intel_set_memory_cxsr(dev_priv, false)) 1694 intel_wait_for_vblank(dev_priv, crtc->pipe); 1695 1696 /* 1697 * Gen2 reports pipe underruns whenever all planes are disabled. 1698 * So disable underrun reporting before all the planes get disabled. 1699 */ 1700 if (DISPLAY_VER(dev_priv) == 2 && !crtc_state->active_planes) 1701 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false); 1702 1703 intel_disable_plane(plane, crtc_state); 1704 intel_wait_for_vblank(dev_priv, crtc->pipe); 1705 } 1706 1707 static bool 1708 intel_reuse_initial_plane_obj(struct drm_i915_private *i915, 1709 const struct intel_initial_plane_config *plane_config, 1710 struct drm_framebuffer **fb, 1711 struct i915_vma **vma) 1712 { 1713 struct intel_crtc *crtc; 1714 1715 for_each_intel_crtc(&i915->drm, crtc) { 1716 struct intel_crtc_state *crtc_state = 1717 to_intel_crtc_state(crtc->base.state); 1718 struct intel_plane *plane = 1719 to_intel_plane(crtc->base.primary); 1720 struct intel_plane_state *plane_state = 1721 to_intel_plane_state(plane->base.state); 1722 1723 if (!crtc_state->uapi.active) 1724 continue; 1725 1726 if (!plane_state->ggtt_vma) 1727 continue; 1728 1729 if (intel_plane_ggtt_offset(plane_state) == plane_config->base) { 1730 *fb = plane_state->hw.fb; 1731 *vma = plane_state->ggtt_vma; 1732 return true; 1733 } 1734 } 1735 1736 return false; 1737 } 1738 1739 static void 1740 intel_find_initial_plane_obj(struct intel_crtc *crtc, 1741 struct intel_initial_plane_config *plane_config) 1742 { 1743 struct drm_device *dev = crtc->base.dev; 1744 struct drm_i915_private *dev_priv = to_i915(dev); 1745 struct intel_crtc_state *crtc_state = 1746 to_intel_crtc_state(crtc->base.state); 1747 struct intel_plane *plane = 1748 to_intel_plane(crtc->base.primary); 1749 struct intel_plane_state *plane_state = 1750 to_intel_plane_state(plane->base.state); 1751 struct drm_framebuffer *fb; 1752 struct i915_vma *vma; 1753 1754 /* 1755 * TODO: 1756 * Disable planes if get_initial_plane_config() failed. 1757 * Make sure things work if the surface base is not page aligned. 1758 */ 1759 if (!plane_config->fb) 1760 return; 1761 1762 if (intel_alloc_initial_plane_obj(crtc, plane_config)) { 1763 fb = &plane_config->fb->base; 1764 vma = plane_config->vma; 1765 goto valid_fb; 1766 } 1767 1768 /* 1769 * Failed to alloc the obj, check to see if we should share 1770 * an fb with another CRTC instead 1771 */ 1772 if (intel_reuse_initial_plane_obj(dev_priv, plane_config, &fb, &vma)) 1773 goto valid_fb; 1774 1775 /* 1776 * We've failed to reconstruct the BIOS FB. Current display state 1777 * indicates that the primary plane is visible, but has a NULL FB, 1778 * which will lead to problems later if we don't fix it up. The 1779 * simplest solution is to just disable the primary plane now and 1780 * pretend the BIOS never had it enabled. 1781 */ 1782 intel_plane_disable_noatomic(crtc, plane); 1783 if (crtc_state->bigjoiner) { 1784 struct intel_crtc *slave = 1785 crtc_state->bigjoiner_linked_crtc; 1786 intel_plane_disable_noatomic(slave, to_intel_plane(slave->base.primary)); 1787 } 1788 1789 return; 1790 1791 valid_fb: 1792 plane_state->uapi.rotation = plane_config->rotation; 1793 intel_fb_fill_view(to_intel_framebuffer(fb), 1794 plane_state->uapi.rotation, &plane_state->view); 1795 1796 __i915_vma_pin(vma); 1797 plane_state->ggtt_vma = i915_vma_get(vma); 1798 if (intel_plane_uses_fence(plane_state) && 1799 i915_vma_pin_fence(vma) == 0 && vma->fence) 1800 plane_state->flags |= PLANE_HAS_FENCE; 1801 1802 plane_state->uapi.src_x = 0; 1803 plane_state->uapi.src_y = 0; 1804 plane_state->uapi.src_w = fb->width << 16; 1805 plane_state->uapi.src_h = fb->height << 16; 1806 1807 plane_state->uapi.crtc_x = 0; 1808 plane_state->uapi.crtc_y = 0; 1809 plane_state->uapi.crtc_w = fb->width; 1810 plane_state->uapi.crtc_h = fb->height; 1811 1812 if (plane_config->tiling) 1813 dev_priv->preserve_bios_swizzle = true; 1814 1815 plane_state->uapi.fb = fb; 1816 drm_framebuffer_get(fb); 1817 1818 plane_state->uapi.crtc = &crtc->base; 1819 intel_plane_copy_uapi_to_hw_state(plane_state, plane_state, crtc); 1820 1821 intel_frontbuffer_flush(to_intel_frontbuffer(fb), ORIGIN_DIRTYFB); 1822 1823 atomic_or(plane->frontbuffer_bit, &to_intel_frontbuffer(fb)->bits); 1824 } 1825 1826 unsigned int 1827 intel_plane_fence_y_offset(const struct intel_plane_state *plane_state) 1828 { 1829 int x = 0, y = 0; 1830 1831 intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0, 1832 plane_state->view.color_plane[0].offset, 0); 1833 1834 return y; 1835 } 1836 1837 static int 1838 __intel_display_resume(struct drm_device *dev, 1839 struct drm_atomic_state *state, 1840 struct drm_modeset_acquire_ctx *ctx) 1841 { 1842 struct drm_crtc_state *crtc_state; 1843 struct drm_crtc *crtc; 1844 int i, ret; 1845 1846 intel_modeset_setup_hw_state(dev, ctx); 1847 intel_vga_redisable(to_i915(dev)); 1848 1849 if (!state) 1850 return 0; 1851 1852 /* 1853 * We've duplicated the state, pointers to the old state are invalid. 1854 * 1855 * Don't attempt to use the old state until we commit the duplicated state. 1856 */ 1857 for_each_new_crtc_in_state(state, crtc, crtc_state, i) { 1858 /* 1859 * Force recalculation even if we restore 1860 * current state. With fast modeset this may not result 1861 * in a modeset when the state is compatible. 1862 */ 1863 crtc_state->mode_changed = true; 1864 } 1865 1866 /* ignore any reset values/BIOS leftovers in the WM registers */ 1867 if (!HAS_GMCH(to_i915(dev))) 1868 to_intel_atomic_state(state)->skip_intermediate_wm = true; 1869 1870 ret = drm_atomic_helper_commit_duplicated_state(state, ctx); 1871 1872 drm_WARN_ON(dev, ret == -EDEADLK); 1873 return ret; 1874 } 1875 1876 static bool gpu_reset_clobbers_display(struct drm_i915_private *dev_priv) 1877 { 1878 return (INTEL_INFO(dev_priv)->gpu_reset_clobbers_display && 1879 intel_has_gpu_reset(&dev_priv->gt)); 1880 } 1881 1882 void intel_display_prepare_reset(struct drm_i915_private *dev_priv) 1883 { 1884 struct drm_device *dev = &dev_priv->drm; 1885 struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx; 1886 struct drm_atomic_state *state; 1887 int ret; 1888 1889 if (!HAS_DISPLAY(dev_priv)) 1890 return; 1891 1892 /* reset doesn't touch the display */ 1893 if (!dev_priv->params.force_reset_modeset_test && 1894 !gpu_reset_clobbers_display(dev_priv)) 1895 return; 1896 1897 /* We have a modeset vs reset deadlock, defensively unbreak it. */ 1898 set_bit(I915_RESET_MODESET, &dev_priv->gt.reset.flags); 1899 smp_mb__after_atomic(); 1900 wake_up_bit(&dev_priv->gt.reset.flags, I915_RESET_MODESET); 1901 1902 if (atomic_read(&dev_priv->gpu_error.pending_fb_pin)) { 1903 drm_dbg_kms(&dev_priv->drm, 1904 "Modeset potentially stuck, unbreaking through wedging\n"); 1905 intel_gt_set_wedged(&dev_priv->gt); 1906 } 1907 1908 /* 1909 * Need mode_config.mutex so that we don't 1910 * trample ongoing ->detect() and whatnot. 1911 */ 1912 mutex_lock(&dev->mode_config.mutex); 1913 drm_modeset_acquire_init(ctx, 0); 1914 while (1) { 1915 ret = drm_modeset_lock_all_ctx(dev, ctx); 1916 if (ret != -EDEADLK) 1917 break; 1918 1919 drm_modeset_backoff(ctx); 1920 } 1921 /* 1922 * Disabling the crtcs gracefully seems nicer. Also the 1923 * g33 docs say we should at least disable all the planes. 1924 */ 1925 state = drm_atomic_helper_duplicate_state(dev, ctx); 1926 if (IS_ERR(state)) { 1927 ret = PTR_ERR(state); 1928 drm_err(&dev_priv->drm, "Duplicating state failed with %i\n", 1929 ret); 1930 return; 1931 } 1932 1933 ret = drm_atomic_helper_disable_all(dev, ctx); 1934 if (ret) { 1935 drm_err(&dev_priv->drm, "Suspending crtc's failed with %i\n", 1936 ret); 1937 drm_atomic_state_put(state); 1938 return; 1939 } 1940 1941 dev_priv->modeset_restore_state = state; 1942 state->acquire_ctx = ctx; 1943 } 1944 1945 void intel_display_finish_reset(struct drm_i915_private *dev_priv) 1946 { 1947 struct drm_device *dev = &dev_priv->drm; 1948 struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx; 1949 struct drm_atomic_state *state; 1950 int ret; 1951 1952 if (!HAS_DISPLAY(dev_priv)) 1953 return; 1954 1955 /* reset doesn't touch the display */ 1956 if (!test_bit(I915_RESET_MODESET, &dev_priv->gt.reset.flags)) 1957 return; 1958 1959 state = fetch_and_zero(&dev_priv->modeset_restore_state); 1960 if (!state) 1961 goto unlock; 1962 1963 /* reset doesn't touch the display */ 1964 if (!gpu_reset_clobbers_display(dev_priv)) { 1965 /* for testing only restore the display */ 1966 ret = __intel_display_resume(dev, state, ctx); 1967 if (ret) 1968 drm_err(&dev_priv->drm, 1969 "Restoring old state failed with %i\n", ret); 1970 } else { 1971 /* 1972 * The display has been reset as well, 1973 * so need a full re-initialization. 1974 */ 1975 intel_pps_unlock_regs_wa(dev_priv); 1976 intel_modeset_init_hw(dev_priv); 1977 intel_init_clock_gating(dev_priv); 1978 intel_hpd_init(dev_priv); 1979 1980 ret = __intel_display_resume(dev, state, ctx); 1981 if (ret) 1982 drm_err(&dev_priv->drm, 1983 "Restoring old state failed with %i\n", ret); 1984 1985 intel_hpd_poll_disable(dev_priv); 1986 } 1987 1988 drm_atomic_state_put(state); 1989 unlock: 1990 drm_modeset_drop_locks(ctx); 1991 drm_modeset_acquire_fini(ctx); 1992 mutex_unlock(&dev->mode_config.mutex); 1993 1994 clear_bit_unlock(I915_RESET_MODESET, &dev_priv->gt.reset.flags); 1995 } 1996 1997 static bool underrun_recovery_supported(const struct intel_crtc_state *crtc_state) 1998 { 1999 if (crtc_state->pch_pfit.enabled && 2000 (crtc_state->pipe_src_w > drm_rect_width(&crtc_state->pch_pfit.dst) || 2001 crtc_state->pipe_src_h > drm_rect_height(&crtc_state->pch_pfit.dst) || 2002 crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)) 2003 return false; 2004 2005 if (crtc_state->dsc.compression_enable) 2006 return false; 2007 2008 if (crtc_state->has_psr2) 2009 return false; 2010 2011 if (crtc_state->splitter.enable) 2012 return false; 2013 2014 return true; 2015 } 2016 2017 static void icl_set_pipe_chicken(const struct intel_crtc_state *crtc_state) 2018 { 2019 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2020 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2021 enum pipe pipe = crtc->pipe; 2022 u32 tmp; 2023 2024 tmp = intel_de_read(dev_priv, PIPE_CHICKEN(pipe)); 2025 2026 /* 2027 * Display WA #1153: icl 2028 * enable hardware to bypass the alpha math 2029 * and rounding for per-pixel values 00 and 0xff 2030 */ 2031 tmp |= PER_PIXEL_ALPHA_BYPASS_EN; 2032 /* 2033 * Display WA # 1605353570: icl 2034 * Set the pixel rounding bit to 1 for allowing 2035 * passthrough of Frame buffer pixels unmodified 2036 * across pipe 2037 */ 2038 tmp |= PIXEL_ROUNDING_TRUNC_FB_PASSTHRU; 2039 2040 if (IS_DG2(dev_priv)) { 2041 /* 2042 * Underrun recovery must always be disabled on DG2. However 2043 * the chicken bit meaning is inverted compared to other 2044 * platforms. 2045 */ 2046 tmp &= ~UNDERRUN_RECOVERY_ENABLE_DG2; 2047 } else if (DISPLAY_VER(dev_priv) >= 13) { 2048 if (underrun_recovery_supported(crtc_state)) 2049 tmp &= ~UNDERRUN_RECOVERY_DISABLE_ADLP; 2050 else 2051 tmp |= UNDERRUN_RECOVERY_DISABLE_ADLP; 2052 } 2053 2054 intel_de_write(dev_priv, PIPE_CHICKEN(pipe), tmp); 2055 } 2056 2057 bool intel_has_pending_fb_unpin(struct drm_i915_private *dev_priv) 2058 { 2059 struct drm_crtc *crtc; 2060 bool cleanup_done; 2061 2062 drm_for_each_crtc(crtc, &dev_priv->drm) { 2063 struct drm_crtc_commit *commit; 2064 spin_lock(&crtc->commit_lock); 2065 commit = list_first_entry_or_null(&crtc->commit_list, 2066 struct drm_crtc_commit, commit_entry); 2067 cleanup_done = commit ? 2068 try_wait_for_completion(&commit->cleanup_done) : true; 2069 spin_unlock(&crtc->commit_lock); 2070 2071 if (cleanup_done) 2072 continue; 2073 2074 drm_crtc_wait_one_vblank(crtc); 2075 2076 return true; 2077 } 2078 2079 return false; 2080 } 2081 2082 void lpt_disable_iclkip(struct drm_i915_private *dev_priv) 2083 { 2084 u32 temp; 2085 2086 intel_de_write(dev_priv, PIXCLK_GATE, PIXCLK_GATE_GATE); 2087 2088 mutex_lock(&dev_priv->sb_lock); 2089 2090 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK); 2091 temp |= SBI_SSCCTL_DISABLE; 2092 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK); 2093 2094 mutex_unlock(&dev_priv->sb_lock); 2095 } 2096 2097 /* Program iCLKIP clock to the desired frequency */ 2098 static void lpt_program_iclkip(const struct intel_crtc_state *crtc_state) 2099 { 2100 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2101 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2102 int clock = crtc_state->hw.adjusted_mode.crtc_clock; 2103 u32 divsel, phaseinc, auxdiv, phasedir = 0; 2104 u32 temp; 2105 2106 lpt_disable_iclkip(dev_priv); 2107 2108 /* The iCLK virtual clock root frequency is in MHz, 2109 * but the adjusted_mode->crtc_clock in in KHz. To get the 2110 * divisors, it is necessary to divide one by another, so we 2111 * convert the virtual clock precision to KHz here for higher 2112 * precision. 2113 */ 2114 for (auxdiv = 0; auxdiv < 2; auxdiv++) { 2115 u32 iclk_virtual_root_freq = 172800 * 1000; 2116 u32 iclk_pi_range = 64; 2117 u32 desired_divisor; 2118 2119 desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq, 2120 clock << auxdiv); 2121 divsel = (desired_divisor / iclk_pi_range) - 2; 2122 phaseinc = desired_divisor % iclk_pi_range; 2123 2124 /* 2125 * Near 20MHz is a corner case which is 2126 * out of range for the 7-bit divisor 2127 */ 2128 if (divsel <= 0x7f) 2129 break; 2130 } 2131 2132 /* This should not happen with any sane values */ 2133 drm_WARN_ON(&dev_priv->drm, SBI_SSCDIVINTPHASE_DIVSEL(divsel) & 2134 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK); 2135 drm_WARN_ON(&dev_priv->drm, SBI_SSCDIVINTPHASE_DIR(phasedir) & 2136 ~SBI_SSCDIVINTPHASE_INCVAL_MASK); 2137 2138 drm_dbg_kms(&dev_priv->drm, 2139 "iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n", 2140 clock, auxdiv, divsel, phasedir, phaseinc); 2141 2142 mutex_lock(&dev_priv->sb_lock); 2143 2144 /* Program SSCDIVINTPHASE6 */ 2145 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK); 2146 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK; 2147 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel); 2148 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK; 2149 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc); 2150 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir); 2151 temp |= SBI_SSCDIVINTPHASE_PROPAGATE; 2152 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK); 2153 2154 /* Program SSCAUXDIV */ 2155 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK); 2156 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1); 2157 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv); 2158 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK); 2159 2160 /* Enable modulator and associated divider */ 2161 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK); 2162 temp &= ~SBI_SSCCTL_DISABLE; 2163 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK); 2164 2165 mutex_unlock(&dev_priv->sb_lock); 2166 2167 /* Wait for initialization time */ 2168 udelay(24); 2169 2170 intel_de_write(dev_priv, PIXCLK_GATE, PIXCLK_GATE_UNGATE); 2171 } 2172 2173 int lpt_get_iclkip(struct drm_i915_private *dev_priv) 2174 { 2175 u32 divsel, phaseinc, auxdiv; 2176 u32 iclk_virtual_root_freq = 172800 * 1000; 2177 u32 iclk_pi_range = 64; 2178 u32 desired_divisor; 2179 u32 temp; 2180 2181 if ((intel_de_read(dev_priv, PIXCLK_GATE) & PIXCLK_GATE_UNGATE) == 0) 2182 return 0; 2183 2184 mutex_lock(&dev_priv->sb_lock); 2185 2186 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK); 2187 if (temp & SBI_SSCCTL_DISABLE) { 2188 mutex_unlock(&dev_priv->sb_lock); 2189 return 0; 2190 } 2191 2192 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK); 2193 divsel = (temp & SBI_SSCDIVINTPHASE_DIVSEL_MASK) >> 2194 SBI_SSCDIVINTPHASE_DIVSEL_SHIFT; 2195 phaseinc = (temp & SBI_SSCDIVINTPHASE_INCVAL_MASK) >> 2196 SBI_SSCDIVINTPHASE_INCVAL_SHIFT; 2197 2198 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK); 2199 auxdiv = (temp & SBI_SSCAUXDIV_FINALDIV2SEL_MASK) >> 2200 SBI_SSCAUXDIV_FINALDIV2SEL_SHIFT; 2201 2202 mutex_unlock(&dev_priv->sb_lock); 2203 2204 desired_divisor = (divsel + 2) * iclk_pi_range + phaseinc; 2205 2206 return DIV_ROUND_CLOSEST(iclk_virtual_root_freq, 2207 desired_divisor << auxdiv); 2208 } 2209 2210 static void ilk_pch_transcoder_set_timings(const struct intel_crtc_state *crtc_state, 2211 enum pipe pch_transcoder) 2212 { 2213 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2214 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2215 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 2216 2217 intel_de_write(dev_priv, PCH_TRANS_HTOTAL(pch_transcoder), 2218 intel_de_read(dev_priv, HTOTAL(cpu_transcoder))); 2219 intel_de_write(dev_priv, PCH_TRANS_HBLANK(pch_transcoder), 2220 intel_de_read(dev_priv, HBLANK(cpu_transcoder))); 2221 intel_de_write(dev_priv, PCH_TRANS_HSYNC(pch_transcoder), 2222 intel_de_read(dev_priv, HSYNC(cpu_transcoder))); 2223 2224 intel_de_write(dev_priv, PCH_TRANS_VTOTAL(pch_transcoder), 2225 intel_de_read(dev_priv, VTOTAL(cpu_transcoder))); 2226 intel_de_write(dev_priv, PCH_TRANS_VBLANK(pch_transcoder), 2227 intel_de_read(dev_priv, VBLANK(cpu_transcoder))); 2228 intel_de_write(dev_priv, PCH_TRANS_VSYNC(pch_transcoder), 2229 intel_de_read(dev_priv, VSYNC(cpu_transcoder))); 2230 intel_de_write(dev_priv, PCH_TRANS_VSYNCSHIFT(pch_transcoder), 2231 intel_de_read(dev_priv, VSYNCSHIFT(cpu_transcoder))); 2232 } 2233 2234 static void cpt_set_fdi_bc_bifurcation(struct drm_i915_private *dev_priv, bool enable) 2235 { 2236 u32 temp; 2237 2238 temp = intel_de_read(dev_priv, SOUTH_CHICKEN1); 2239 if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable) 2240 return; 2241 2242 drm_WARN_ON(&dev_priv->drm, 2243 intel_de_read(dev_priv, FDI_RX_CTL(PIPE_B)) & 2244 FDI_RX_ENABLE); 2245 drm_WARN_ON(&dev_priv->drm, 2246 intel_de_read(dev_priv, FDI_RX_CTL(PIPE_C)) & 2247 FDI_RX_ENABLE); 2248 2249 temp &= ~FDI_BC_BIFURCATION_SELECT; 2250 if (enable) 2251 temp |= FDI_BC_BIFURCATION_SELECT; 2252 2253 drm_dbg_kms(&dev_priv->drm, "%sabling fdi C rx\n", 2254 enable ? "en" : "dis"); 2255 intel_de_write(dev_priv, SOUTH_CHICKEN1, temp); 2256 intel_de_posting_read(dev_priv, SOUTH_CHICKEN1); 2257 } 2258 2259 static void ivb_update_fdi_bc_bifurcation(const struct intel_crtc_state *crtc_state) 2260 { 2261 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2262 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2263 2264 switch (crtc->pipe) { 2265 case PIPE_A: 2266 break; 2267 case PIPE_B: 2268 if (crtc_state->fdi_lanes > 2) 2269 cpt_set_fdi_bc_bifurcation(dev_priv, false); 2270 else 2271 cpt_set_fdi_bc_bifurcation(dev_priv, true); 2272 2273 break; 2274 case PIPE_C: 2275 cpt_set_fdi_bc_bifurcation(dev_priv, true); 2276 2277 break; 2278 default: 2279 BUG(); 2280 } 2281 } 2282 2283 /* 2284 * Finds the encoder associated with the given CRTC. This can only be 2285 * used when we know that the CRTC isn't feeding multiple encoders! 2286 */ 2287 struct intel_encoder * 2288 intel_get_crtc_new_encoder(const struct intel_atomic_state *state, 2289 const struct intel_crtc_state *crtc_state) 2290 { 2291 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2292 const struct drm_connector_state *connector_state; 2293 const struct drm_connector *connector; 2294 struct intel_encoder *encoder = NULL; 2295 int num_encoders = 0; 2296 int i; 2297 2298 for_each_new_connector_in_state(&state->base, connector, connector_state, i) { 2299 if (connector_state->crtc != &crtc->base) 2300 continue; 2301 2302 encoder = to_intel_encoder(connector_state->best_encoder); 2303 num_encoders++; 2304 } 2305 2306 drm_WARN(encoder->base.dev, num_encoders != 1, 2307 "%d encoders for pipe %c\n", 2308 num_encoders, pipe_name(crtc->pipe)); 2309 2310 return encoder; 2311 } 2312 2313 /* 2314 * Enable PCH resources required for PCH ports: 2315 * - PCH PLLs 2316 * - FDI training & RX/TX 2317 * - update transcoder timings 2318 * - DP transcoding bits 2319 * - transcoder 2320 */ 2321 static void ilk_pch_enable(const struct intel_atomic_state *state, 2322 const struct intel_crtc_state *crtc_state) 2323 { 2324 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2325 struct drm_device *dev = crtc->base.dev; 2326 struct drm_i915_private *dev_priv = to_i915(dev); 2327 enum pipe pipe = crtc->pipe; 2328 u32 temp; 2329 2330 assert_pch_transcoder_disabled(dev_priv, pipe); 2331 2332 if (IS_IVYBRIDGE(dev_priv)) 2333 ivb_update_fdi_bc_bifurcation(crtc_state); 2334 2335 /* Write the TU size bits before fdi link training, so that error 2336 * detection works. */ 2337 intel_de_write(dev_priv, FDI_RX_TUSIZE1(pipe), 2338 intel_de_read(dev_priv, PIPE_DATA_M1(pipe)) & TU_SIZE_MASK); 2339 2340 /* For PCH output, training FDI link */ 2341 dev_priv->display.fdi_link_train(crtc, crtc_state); 2342 2343 /* We need to program the right clock selection before writing the pixel 2344 * mutliplier into the DPLL. */ 2345 if (HAS_PCH_CPT(dev_priv)) { 2346 u32 sel; 2347 2348 temp = intel_de_read(dev_priv, PCH_DPLL_SEL); 2349 temp |= TRANS_DPLL_ENABLE(pipe); 2350 sel = TRANS_DPLLB_SEL(pipe); 2351 if (crtc_state->shared_dpll == 2352 intel_get_shared_dpll_by_id(dev_priv, DPLL_ID_PCH_PLL_B)) 2353 temp |= sel; 2354 else 2355 temp &= ~sel; 2356 intel_de_write(dev_priv, PCH_DPLL_SEL, temp); 2357 } 2358 2359 /* XXX: pch pll's can be enabled any time before we enable the PCH 2360 * transcoder, and we actually should do this to not upset any PCH 2361 * transcoder that already use the clock when we share it. 2362 * 2363 * Note that enable_shared_dpll tries to do the right thing, but 2364 * get_shared_dpll unconditionally resets the pll - we need that to have 2365 * the right LVDS enable sequence. */ 2366 intel_enable_shared_dpll(crtc_state); 2367 2368 /* set transcoder timing, panel must allow it */ 2369 assert_panel_unlocked(dev_priv, pipe); 2370 ilk_pch_transcoder_set_timings(crtc_state, pipe); 2371 2372 intel_fdi_normal_train(crtc); 2373 2374 /* For PCH DP, enable TRANS_DP_CTL */ 2375 if (HAS_PCH_CPT(dev_priv) && 2376 intel_crtc_has_dp_encoder(crtc_state)) { 2377 const struct drm_display_mode *adjusted_mode = 2378 &crtc_state->hw.adjusted_mode; 2379 u32 bpc = (intel_de_read(dev_priv, PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5; 2380 i915_reg_t reg = TRANS_DP_CTL(pipe); 2381 enum port port; 2382 2383 temp = intel_de_read(dev_priv, reg); 2384 temp &= ~(TRANS_DP_PORT_SEL_MASK | 2385 TRANS_DP_SYNC_MASK | 2386 TRANS_DP_BPC_MASK); 2387 temp |= TRANS_DP_OUTPUT_ENABLE; 2388 temp |= bpc << 9; /* same format but at 11:9 */ 2389 2390 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) 2391 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH; 2392 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) 2393 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH; 2394 2395 port = intel_get_crtc_new_encoder(state, crtc_state)->port; 2396 drm_WARN_ON(dev, port < PORT_B || port > PORT_D); 2397 temp |= TRANS_DP_PORT_SEL(port); 2398 2399 intel_de_write(dev_priv, reg, temp); 2400 } 2401 2402 ilk_enable_pch_transcoder(crtc_state); 2403 } 2404 2405 void lpt_pch_enable(const struct intel_crtc_state *crtc_state) 2406 { 2407 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2408 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2409 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 2410 2411 assert_pch_transcoder_disabled(dev_priv, PIPE_A); 2412 2413 lpt_program_iclkip(crtc_state); 2414 2415 /* Set transcoder timing. */ 2416 ilk_pch_transcoder_set_timings(crtc_state, PIPE_A); 2417 2418 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder); 2419 } 2420 2421 static void cpt_verify_modeset(struct drm_i915_private *dev_priv, 2422 enum pipe pipe) 2423 { 2424 i915_reg_t dslreg = PIPEDSL(pipe); 2425 u32 temp; 2426 2427 temp = intel_de_read(dev_priv, dslreg); 2428 udelay(500); 2429 if (wait_for(intel_de_read(dev_priv, dslreg) != temp, 5)) { 2430 if (wait_for(intel_de_read(dev_priv, dslreg) != temp, 5)) 2431 drm_err(&dev_priv->drm, 2432 "mode set failed: pipe %c stuck\n", 2433 pipe_name(pipe)); 2434 } 2435 } 2436 2437 static void ilk_pfit_enable(const struct intel_crtc_state *crtc_state) 2438 { 2439 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2440 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2441 const struct drm_rect *dst = &crtc_state->pch_pfit.dst; 2442 enum pipe pipe = crtc->pipe; 2443 int width = drm_rect_width(dst); 2444 int height = drm_rect_height(dst); 2445 int x = dst->x1; 2446 int y = dst->y1; 2447 2448 if (!crtc_state->pch_pfit.enabled) 2449 return; 2450 2451 /* Force use of hard-coded filter coefficients 2452 * as some pre-programmed values are broken, 2453 * e.g. x201. 2454 */ 2455 if (IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) 2456 intel_de_write(dev_priv, PF_CTL(pipe), PF_ENABLE | 2457 PF_FILTER_MED_3x3 | PF_PIPE_SEL_IVB(pipe)); 2458 else 2459 intel_de_write(dev_priv, PF_CTL(pipe), PF_ENABLE | 2460 PF_FILTER_MED_3x3); 2461 intel_de_write(dev_priv, PF_WIN_POS(pipe), x << 16 | y); 2462 intel_de_write(dev_priv, PF_WIN_SZ(pipe), width << 16 | height); 2463 } 2464 2465 void hsw_enable_ips(const struct intel_crtc_state *crtc_state) 2466 { 2467 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2468 struct drm_device *dev = crtc->base.dev; 2469 struct drm_i915_private *dev_priv = to_i915(dev); 2470 2471 if (!crtc_state->ips_enabled) 2472 return; 2473 2474 /* 2475 * We can only enable IPS after we enable a plane and wait for a vblank 2476 * This function is called from post_plane_update, which is run after 2477 * a vblank wait. 2478 */ 2479 drm_WARN_ON(dev, !(crtc_state->active_planes & ~BIT(PLANE_CURSOR))); 2480 2481 if (IS_BROADWELL(dev_priv)) { 2482 drm_WARN_ON(dev, sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 2483 IPS_ENABLE | IPS_PCODE_CONTROL)); 2484 /* Quoting Art Runyan: "its not safe to expect any particular 2485 * value in IPS_CTL bit 31 after enabling IPS through the 2486 * mailbox." Moreover, the mailbox may return a bogus state, 2487 * so we need to just enable it and continue on. 2488 */ 2489 } else { 2490 intel_de_write(dev_priv, IPS_CTL, IPS_ENABLE); 2491 /* The bit only becomes 1 in the next vblank, so this wait here 2492 * is essentially intel_wait_for_vblank. If we don't have this 2493 * and don't wait for vblanks until the end of crtc_enable, then 2494 * the HW state readout code will complain that the expected 2495 * IPS_CTL value is not the one we read. */ 2496 if (intel_de_wait_for_set(dev_priv, IPS_CTL, IPS_ENABLE, 50)) 2497 drm_err(&dev_priv->drm, 2498 "Timed out waiting for IPS enable\n"); 2499 } 2500 } 2501 2502 void hsw_disable_ips(const struct intel_crtc_state *crtc_state) 2503 { 2504 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2505 struct drm_device *dev = crtc->base.dev; 2506 struct drm_i915_private *dev_priv = to_i915(dev); 2507 2508 if (!crtc_state->ips_enabled) 2509 return; 2510 2511 if (IS_BROADWELL(dev_priv)) { 2512 drm_WARN_ON(dev, 2513 sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0)); 2514 /* 2515 * Wait for PCODE to finish disabling IPS. The BSpec specified 2516 * 42ms timeout value leads to occasional timeouts so use 100ms 2517 * instead. 2518 */ 2519 if (intel_de_wait_for_clear(dev_priv, IPS_CTL, IPS_ENABLE, 100)) 2520 drm_err(&dev_priv->drm, 2521 "Timed out waiting for IPS disable\n"); 2522 } else { 2523 intel_de_write(dev_priv, IPS_CTL, 0); 2524 intel_de_posting_read(dev_priv, IPS_CTL); 2525 } 2526 2527 /* We need to wait for a vblank before we can disable the plane. */ 2528 intel_wait_for_vblank(dev_priv, crtc->pipe); 2529 } 2530 2531 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *crtc) 2532 { 2533 if (crtc->overlay) 2534 (void) intel_overlay_switch_off(crtc->overlay); 2535 2536 /* Let userspace switch the overlay on again. In most cases userspace 2537 * has to recompute where to put it anyway. 2538 */ 2539 } 2540 2541 static bool hsw_pre_update_disable_ips(const struct intel_crtc_state *old_crtc_state, 2542 const struct intel_crtc_state *new_crtc_state) 2543 { 2544 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); 2545 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2546 2547 if (!old_crtc_state->ips_enabled) 2548 return false; 2549 2550 if (intel_crtc_needs_modeset(new_crtc_state)) 2551 return true; 2552 2553 /* 2554 * Workaround : Do not read or write the pipe palette/gamma data while 2555 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled. 2556 * 2557 * Disable IPS before we program the LUT. 2558 */ 2559 if (IS_HASWELL(dev_priv) && 2560 (new_crtc_state->uapi.color_mgmt_changed || 2561 new_crtc_state->update_pipe) && 2562 new_crtc_state->gamma_mode == GAMMA_MODE_MODE_SPLIT) 2563 return true; 2564 2565 return !new_crtc_state->ips_enabled; 2566 } 2567 2568 static bool hsw_post_update_enable_ips(const struct intel_crtc_state *old_crtc_state, 2569 const struct intel_crtc_state *new_crtc_state) 2570 { 2571 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); 2572 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2573 2574 if (!new_crtc_state->ips_enabled) 2575 return false; 2576 2577 if (intel_crtc_needs_modeset(new_crtc_state)) 2578 return true; 2579 2580 /* 2581 * Workaround : Do not read or write the pipe palette/gamma data while 2582 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled. 2583 * 2584 * Re-enable IPS after the LUT has been programmed. 2585 */ 2586 if (IS_HASWELL(dev_priv) && 2587 (new_crtc_state->uapi.color_mgmt_changed || 2588 new_crtc_state->update_pipe) && 2589 new_crtc_state->gamma_mode == GAMMA_MODE_MODE_SPLIT) 2590 return true; 2591 2592 /* 2593 * We can't read out IPS on broadwell, assume the worst and 2594 * forcibly enable IPS on the first fastset. 2595 */ 2596 if (new_crtc_state->update_pipe && old_crtc_state->inherited) 2597 return true; 2598 2599 return !old_crtc_state->ips_enabled; 2600 } 2601 2602 static bool needs_nv12_wa(const struct intel_crtc_state *crtc_state) 2603 { 2604 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 2605 2606 if (!crtc_state->nv12_planes) 2607 return false; 2608 2609 /* WA Display #0827: Gen9:all */ 2610 if (DISPLAY_VER(dev_priv) == 9) 2611 return true; 2612 2613 return false; 2614 } 2615 2616 static bool needs_scalerclk_wa(const struct intel_crtc_state *crtc_state) 2617 { 2618 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 2619 2620 /* Wa_2006604312:icl,ehl */ 2621 if (crtc_state->scaler_state.scaler_users > 0 && DISPLAY_VER(dev_priv) == 11) 2622 return true; 2623 2624 return false; 2625 } 2626 2627 static bool planes_enabling(const struct intel_crtc_state *old_crtc_state, 2628 const struct intel_crtc_state *new_crtc_state) 2629 { 2630 return (!old_crtc_state->active_planes || intel_crtc_needs_modeset(new_crtc_state)) && 2631 new_crtc_state->active_planes; 2632 } 2633 2634 static bool planes_disabling(const struct intel_crtc_state *old_crtc_state, 2635 const struct intel_crtc_state *new_crtc_state) 2636 { 2637 return old_crtc_state->active_planes && 2638 (!new_crtc_state->active_planes || intel_crtc_needs_modeset(new_crtc_state)); 2639 } 2640 2641 static void intel_post_plane_update(struct intel_atomic_state *state, 2642 struct intel_crtc *crtc) 2643 { 2644 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 2645 const struct intel_crtc_state *old_crtc_state = 2646 intel_atomic_get_old_crtc_state(state, crtc); 2647 const struct intel_crtc_state *new_crtc_state = 2648 intel_atomic_get_new_crtc_state(state, crtc); 2649 enum pipe pipe = crtc->pipe; 2650 2651 intel_frontbuffer_flip(dev_priv, new_crtc_state->fb_bits); 2652 2653 if (new_crtc_state->update_wm_post && new_crtc_state->hw.active) 2654 intel_update_watermarks(crtc); 2655 2656 if (hsw_post_update_enable_ips(old_crtc_state, new_crtc_state)) 2657 hsw_enable_ips(new_crtc_state); 2658 2659 intel_fbc_post_update(state, crtc); 2660 2661 if (needs_nv12_wa(old_crtc_state) && 2662 !needs_nv12_wa(new_crtc_state)) 2663 skl_wa_827(dev_priv, pipe, false); 2664 2665 if (needs_scalerclk_wa(old_crtc_state) && 2666 !needs_scalerclk_wa(new_crtc_state)) 2667 icl_wa_scalerclkgating(dev_priv, pipe, false); 2668 } 2669 2670 static void intel_crtc_enable_flip_done(struct intel_atomic_state *state, 2671 struct intel_crtc *crtc) 2672 { 2673 const struct intel_crtc_state *crtc_state = 2674 intel_atomic_get_new_crtc_state(state, crtc); 2675 u8 update_planes = crtc_state->update_planes; 2676 const struct intel_plane_state *plane_state; 2677 struct intel_plane *plane; 2678 int i; 2679 2680 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 2681 if (plane->enable_flip_done && 2682 plane->pipe == crtc->pipe && 2683 update_planes & BIT(plane->id)) 2684 plane->enable_flip_done(plane); 2685 } 2686 } 2687 2688 static void intel_crtc_disable_flip_done(struct intel_atomic_state *state, 2689 struct intel_crtc *crtc) 2690 { 2691 const struct intel_crtc_state *crtc_state = 2692 intel_atomic_get_new_crtc_state(state, crtc); 2693 u8 update_planes = crtc_state->update_planes; 2694 const struct intel_plane_state *plane_state; 2695 struct intel_plane *plane; 2696 int i; 2697 2698 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 2699 if (plane->disable_flip_done && 2700 plane->pipe == crtc->pipe && 2701 update_planes & BIT(plane->id)) 2702 plane->disable_flip_done(plane); 2703 } 2704 } 2705 2706 static void intel_crtc_async_flip_disable_wa(struct intel_atomic_state *state, 2707 struct intel_crtc *crtc) 2708 { 2709 struct drm_i915_private *i915 = to_i915(state->base.dev); 2710 const struct intel_crtc_state *old_crtc_state = 2711 intel_atomic_get_old_crtc_state(state, crtc); 2712 const struct intel_crtc_state *new_crtc_state = 2713 intel_atomic_get_new_crtc_state(state, crtc); 2714 u8 update_planes = new_crtc_state->update_planes; 2715 const struct intel_plane_state *old_plane_state; 2716 struct intel_plane *plane; 2717 bool need_vbl_wait = false; 2718 int i; 2719 2720 for_each_old_intel_plane_in_state(state, plane, old_plane_state, i) { 2721 if (plane->need_async_flip_disable_wa && 2722 plane->pipe == crtc->pipe && 2723 update_planes & BIT(plane->id)) { 2724 /* 2725 * Apart from the async flip bit we want to 2726 * preserve the old state for the plane. 2727 */ 2728 plane->async_flip(plane, old_crtc_state, 2729 old_plane_state, false); 2730 need_vbl_wait = true; 2731 } 2732 } 2733 2734 if (need_vbl_wait) 2735 intel_wait_for_vblank(i915, crtc->pipe); 2736 } 2737 2738 static void intel_pre_plane_update(struct intel_atomic_state *state, 2739 struct intel_crtc *crtc) 2740 { 2741 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 2742 const struct intel_crtc_state *old_crtc_state = 2743 intel_atomic_get_old_crtc_state(state, crtc); 2744 const struct intel_crtc_state *new_crtc_state = 2745 intel_atomic_get_new_crtc_state(state, crtc); 2746 enum pipe pipe = crtc->pipe; 2747 2748 if (hsw_pre_update_disable_ips(old_crtc_state, new_crtc_state)) 2749 hsw_disable_ips(old_crtc_state); 2750 2751 if (intel_fbc_pre_update(state, crtc)) 2752 intel_wait_for_vblank(dev_priv, pipe); 2753 2754 /* Display WA 827 */ 2755 if (!needs_nv12_wa(old_crtc_state) && 2756 needs_nv12_wa(new_crtc_state)) 2757 skl_wa_827(dev_priv, pipe, true); 2758 2759 /* Wa_2006604312:icl,ehl */ 2760 if (!needs_scalerclk_wa(old_crtc_state) && 2761 needs_scalerclk_wa(new_crtc_state)) 2762 icl_wa_scalerclkgating(dev_priv, pipe, true); 2763 2764 /* 2765 * Vblank time updates from the shadow to live plane control register 2766 * are blocked if the memory self-refresh mode is active at that 2767 * moment. So to make sure the plane gets truly disabled, disable 2768 * first the self-refresh mode. The self-refresh enable bit in turn 2769 * will be checked/applied by the HW only at the next frame start 2770 * event which is after the vblank start event, so we need to have a 2771 * wait-for-vblank between disabling the plane and the pipe. 2772 */ 2773 if (HAS_GMCH(dev_priv) && old_crtc_state->hw.active && 2774 new_crtc_state->disable_cxsr && intel_set_memory_cxsr(dev_priv, false)) 2775 intel_wait_for_vblank(dev_priv, pipe); 2776 2777 /* 2778 * IVB workaround: must disable low power watermarks for at least 2779 * one frame before enabling scaling. LP watermarks can be re-enabled 2780 * when scaling is disabled. 2781 * 2782 * WaCxSRDisabledForSpriteScaling:ivb 2783 */ 2784 if (old_crtc_state->hw.active && 2785 new_crtc_state->disable_lp_wm && ilk_disable_lp_wm(dev_priv)) 2786 intel_wait_for_vblank(dev_priv, pipe); 2787 2788 /* 2789 * If we're doing a modeset we don't need to do any 2790 * pre-vblank watermark programming here. 2791 */ 2792 if (!intel_crtc_needs_modeset(new_crtc_state)) { 2793 /* 2794 * For platforms that support atomic watermarks, program the 2795 * 'intermediate' watermarks immediately. On pre-gen9 platforms, these 2796 * will be the intermediate values that are safe for both pre- and 2797 * post- vblank; when vblank happens, the 'active' values will be set 2798 * to the final 'target' values and we'll do this again to get the 2799 * optimal watermarks. For gen9+ platforms, the values we program here 2800 * will be the final target values which will get automatically latched 2801 * at vblank time; no further programming will be necessary. 2802 * 2803 * If a platform hasn't been transitioned to atomic watermarks yet, 2804 * we'll continue to update watermarks the old way, if flags tell 2805 * us to. 2806 */ 2807 if (dev_priv->display.initial_watermarks) 2808 dev_priv->display.initial_watermarks(state, crtc); 2809 else if (new_crtc_state->update_wm_pre) 2810 intel_update_watermarks(crtc); 2811 } 2812 2813 /* 2814 * Gen2 reports pipe underruns whenever all planes are disabled. 2815 * So disable underrun reporting before all the planes get disabled. 2816 * 2817 * We do this after .initial_watermarks() so that we have a 2818 * chance of catching underruns with the intermediate watermarks 2819 * vs. the old plane configuration. 2820 */ 2821 if (DISPLAY_VER(dev_priv) == 2 && planes_disabling(old_crtc_state, new_crtc_state)) 2822 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false); 2823 2824 /* 2825 * WA for platforms where async address update enable bit 2826 * is double buffered and only latched at start of vblank. 2827 */ 2828 if (old_crtc_state->uapi.async_flip && !new_crtc_state->uapi.async_flip) 2829 intel_crtc_async_flip_disable_wa(state, crtc); 2830 } 2831 2832 static void intel_crtc_disable_planes(struct intel_atomic_state *state, 2833 struct intel_crtc *crtc) 2834 { 2835 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2836 const struct intel_crtc_state *new_crtc_state = 2837 intel_atomic_get_new_crtc_state(state, crtc); 2838 unsigned int update_mask = new_crtc_state->update_planes; 2839 const struct intel_plane_state *old_plane_state; 2840 struct intel_plane *plane; 2841 unsigned fb_bits = 0; 2842 int i; 2843 2844 intel_crtc_dpms_overlay_disable(crtc); 2845 2846 for_each_old_intel_plane_in_state(state, plane, old_plane_state, i) { 2847 if (crtc->pipe != plane->pipe || 2848 !(update_mask & BIT(plane->id))) 2849 continue; 2850 2851 intel_disable_plane(plane, new_crtc_state); 2852 2853 if (old_plane_state->uapi.visible) 2854 fb_bits |= plane->frontbuffer_bit; 2855 } 2856 2857 intel_frontbuffer_flip(dev_priv, fb_bits); 2858 } 2859 2860 /* 2861 * intel_connector_primary_encoder - get the primary encoder for a connector 2862 * @connector: connector for which to return the encoder 2863 * 2864 * Returns the primary encoder for a connector. There is a 1:1 mapping from 2865 * all connectors to their encoder, except for DP-MST connectors which have 2866 * both a virtual and a primary encoder. These DP-MST primary encoders can be 2867 * pointed to by as many DP-MST connectors as there are pipes. 2868 */ 2869 static struct intel_encoder * 2870 intel_connector_primary_encoder(struct intel_connector *connector) 2871 { 2872 struct intel_encoder *encoder; 2873 2874 if (connector->mst_port) 2875 return &dp_to_dig_port(connector->mst_port)->base; 2876 2877 encoder = intel_attached_encoder(connector); 2878 drm_WARN_ON(connector->base.dev, !encoder); 2879 2880 return encoder; 2881 } 2882 2883 static void intel_encoders_update_prepare(struct intel_atomic_state *state) 2884 { 2885 struct drm_connector_state *new_conn_state; 2886 struct drm_connector *connector; 2887 int i; 2888 2889 for_each_new_connector_in_state(&state->base, connector, new_conn_state, 2890 i) { 2891 struct intel_connector *intel_connector; 2892 struct intel_encoder *encoder; 2893 struct intel_crtc *crtc; 2894 2895 if (!intel_connector_needs_modeset(state, connector)) 2896 continue; 2897 2898 intel_connector = to_intel_connector(connector); 2899 encoder = intel_connector_primary_encoder(intel_connector); 2900 if (!encoder->update_prepare) 2901 continue; 2902 2903 crtc = new_conn_state->crtc ? 2904 to_intel_crtc(new_conn_state->crtc) : NULL; 2905 encoder->update_prepare(state, encoder, crtc); 2906 } 2907 } 2908 2909 static void intel_encoders_update_complete(struct intel_atomic_state *state) 2910 { 2911 struct drm_connector_state *new_conn_state; 2912 struct drm_connector *connector; 2913 int i; 2914 2915 for_each_new_connector_in_state(&state->base, connector, new_conn_state, 2916 i) { 2917 struct intel_connector *intel_connector; 2918 struct intel_encoder *encoder; 2919 struct intel_crtc *crtc; 2920 2921 if (!intel_connector_needs_modeset(state, connector)) 2922 continue; 2923 2924 intel_connector = to_intel_connector(connector); 2925 encoder = intel_connector_primary_encoder(intel_connector); 2926 if (!encoder->update_complete) 2927 continue; 2928 2929 crtc = new_conn_state->crtc ? 2930 to_intel_crtc(new_conn_state->crtc) : NULL; 2931 encoder->update_complete(state, encoder, crtc); 2932 } 2933 } 2934 2935 static void intel_encoders_pre_pll_enable(struct intel_atomic_state *state, 2936 struct intel_crtc *crtc) 2937 { 2938 const struct intel_crtc_state *crtc_state = 2939 intel_atomic_get_new_crtc_state(state, crtc); 2940 const struct drm_connector_state *conn_state; 2941 struct drm_connector *conn; 2942 int i; 2943 2944 for_each_new_connector_in_state(&state->base, conn, conn_state, i) { 2945 struct intel_encoder *encoder = 2946 to_intel_encoder(conn_state->best_encoder); 2947 2948 if (conn_state->crtc != &crtc->base) 2949 continue; 2950 2951 if (encoder->pre_pll_enable) 2952 encoder->pre_pll_enable(state, encoder, 2953 crtc_state, conn_state); 2954 } 2955 } 2956 2957 static void intel_encoders_pre_enable(struct intel_atomic_state *state, 2958 struct intel_crtc *crtc) 2959 { 2960 const struct intel_crtc_state *crtc_state = 2961 intel_atomic_get_new_crtc_state(state, crtc); 2962 const struct drm_connector_state *conn_state; 2963 struct drm_connector *conn; 2964 int i; 2965 2966 for_each_new_connector_in_state(&state->base, conn, conn_state, i) { 2967 struct intel_encoder *encoder = 2968 to_intel_encoder(conn_state->best_encoder); 2969 2970 if (conn_state->crtc != &crtc->base) 2971 continue; 2972 2973 if (encoder->pre_enable) 2974 encoder->pre_enable(state, encoder, 2975 crtc_state, conn_state); 2976 } 2977 } 2978 2979 static void intel_encoders_enable(struct intel_atomic_state *state, 2980 struct intel_crtc *crtc) 2981 { 2982 const struct intel_crtc_state *crtc_state = 2983 intel_atomic_get_new_crtc_state(state, crtc); 2984 const struct drm_connector_state *conn_state; 2985 struct drm_connector *conn; 2986 int i; 2987 2988 for_each_new_connector_in_state(&state->base, conn, conn_state, i) { 2989 struct intel_encoder *encoder = 2990 to_intel_encoder(conn_state->best_encoder); 2991 2992 if (conn_state->crtc != &crtc->base) 2993 continue; 2994 2995 if (encoder->enable) 2996 encoder->enable(state, encoder, 2997 crtc_state, conn_state); 2998 intel_opregion_notify_encoder(encoder, true); 2999 } 3000 } 3001 3002 static void intel_encoders_pre_disable(struct intel_atomic_state *state, 3003 struct intel_crtc *crtc) 3004 { 3005 const struct intel_crtc_state *old_crtc_state = 3006 intel_atomic_get_old_crtc_state(state, crtc); 3007 const struct drm_connector_state *old_conn_state; 3008 struct drm_connector *conn; 3009 int i; 3010 3011 for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) { 3012 struct intel_encoder *encoder = 3013 to_intel_encoder(old_conn_state->best_encoder); 3014 3015 if (old_conn_state->crtc != &crtc->base) 3016 continue; 3017 3018 if (encoder->pre_disable) 3019 encoder->pre_disable(state, encoder, old_crtc_state, 3020 old_conn_state); 3021 } 3022 } 3023 3024 static void intel_encoders_disable(struct intel_atomic_state *state, 3025 struct intel_crtc *crtc) 3026 { 3027 const struct intel_crtc_state *old_crtc_state = 3028 intel_atomic_get_old_crtc_state(state, crtc); 3029 const struct drm_connector_state *old_conn_state; 3030 struct drm_connector *conn; 3031 int i; 3032 3033 for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) { 3034 struct intel_encoder *encoder = 3035 to_intel_encoder(old_conn_state->best_encoder); 3036 3037 if (old_conn_state->crtc != &crtc->base) 3038 continue; 3039 3040 intel_opregion_notify_encoder(encoder, false); 3041 if (encoder->disable) 3042 encoder->disable(state, encoder, 3043 old_crtc_state, old_conn_state); 3044 } 3045 } 3046 3047 static void intel_encoders_post_disable(struct intel_atomic_state *state, 3048 struct intel_crtc *crtc) 3049 { 3050 const struct intel_crtc_state *old_crtc_state = 3051 intel_atomic_get_old_crtc_state(state, crtc); 3052 const struct drm_connector_state *old_conn_state; 3053 struct drm_connector *conn; 3054 int i; 3055 3056 for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) { 3057 struct intel_encoder *encoder = 3058 to_intel_encoder(old_conn_state->best_encoder); 3059 3060 if (old_conn_state->crtc != &crtc->base) 3061 continue; 3062 3063 if (encoder->post_disable) 3064 encoder->post_disable(state, encoder, 3065 old_crtc_state, old_conn_state); 3066 } 3067 } 3068 3069 static void intel_encoders_post_pll_disable(struct intel_atomic_state *state, 3070 struct intel_crtc *crtc) 3071 { 3072 const struct intel_crtc_state *old_crtc_state = 3073 intel_atomic_get_old_crtc_state(state, crtc); 3074 const struct drm_connector_state *old_conn_state; 3075 struct drm_connector *conn; 3076 int i; 3077 3078 for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) { 3079 struct intel_encoder *encoder = 3080 to_intel_encoder(old_conn_state->best_encoder); 3081 3082 if (old_conn_state->crtc != &crtc->base) 3083 continue; 3084 3085 if (encoder->post_pll_disable) 3086 encoder->post_pll_disable(state, encoder, 3087 old_crtc_state, old_conn_state); 3088 } 3089 } 3090 3091 static void intel_encoders_update_pipe(struct intel_atomic_state *state, 3092 struct intel_crtc *crtc) 3093 { 3094 const struct intel_crtc_state *crtc_state = 3095 intel_atomic_get_new_crtc_state(state, crtc); 3096 const struct drm_connector_state *conn_state; 3097 struct drm_connector *conn; 3098 int i; 3099 3100 for_each_new_connector_in_state(&state->base, conn, conn_state, i) { 3101 struct intel_encoder *encoder = 3102 to_intel_encoder(conn_state->best_encoder); 3103 3104 if (conn_state->crtc != &crtc->base) 3105 continue; 3106 3107 if (encoder->update_pipe) 3108 encoder->update_pipe(state, encoder, 3109 crtc_state, conn_state); 3110 } 3111 } 3112 3113 static void intel_disable_primary_plane(const struct intel_crtc_state *crtc_state) 3114 { 3115 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 3116 struct intel_plane *plane = to_intel_plane(crtc->base.primary); 3117 3118 plane->disable_plane(plane, crtc_state); 3119 } 3120 3121 static void ilk_crtc_enable(struct intel_atomic_state *state, 3122 struct intel_crtc *crtc) 3123 { 3124 const struct intel_crtc_state *new_crtc_state = 3125 intel_atomic_get_new_crtc_state(state, crtc); 3126 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3127 enum pipe pipe = crtc->pipe; 3128 3129 if (drm_WARN_ON(&dev_priv->drm, crtc->active)) 3130 return; 3131 3132 /* 3133 * Sometimes spurious CPU pipe underruns happen during FDI 3134 * training, at least with VGA+HDMI cloning. Suppress them. 3135 * 3136 * On ILK we get an occasional spurious CPU pipe underruns 3137 * between eDP port A enable and vdd enable. Also PCH port 3138 * enable seems to result in the occasional CPU pipe underrun. 3139 * 3140 * Spurious PCH underruns also occur during PCH enabling. 3141 */ 3142 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false); 3143 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false); 3144 3145 if (new_crtc_state->has_pch_encoder) 3146 intel_prepare_shared_dpll(new_crtc_state); 3147 3148 if (intel_crtc_has_dp_encoder(new_crtc_state)) 3149 intel_dp_set_m_n(new_crtc_state, M1_N1); 3150 3151 intel_set_transcoder_timings(new_crtc_state); 3152 intel_set_pipe_src_size(new_crtc_state); 3153 3154 if (new_crtc_state->has_pch_encoder) 3155 intel_cpu_transcoder_set_m_n(new_crtc_state, 3156 &new_crtc_state->fdi_m_n, NULL); 3157 3158 ilk_set_pipeconf(new_crtc_state); 3159 3160 crtc->active = true; 3161 3162 intel_encoders_pre_enable(state, crtc); 3163 3164 if (new_crtc_state->has_pch_encoder) { 3165 /* Note: FDI PLL enabling _must_ be done before we enable the 3166 * cpu pipes, hence this is separate from all the other fdi/pch 3167 * enabling. */ 3168 ilk_fdi_pll_enable(new_crtc_state); 3169 } else { 3170 assert_fdi_tx_disabled(dev_priv, pipe); 3171 assert_fdi_rx_disabled(dev_priv, pipe); 3172 } 3173 3174 ilk_pfit_enable(new_crtc_state); 3175 3176 /* 3177 * On ILK+ LUT must be loaded before the pipe is running but with 3178 * clocks enabled 3179 */ 3180 intel_color_load_luts(new_crtc_state); 3181 intel_color_commit(new_crtc_state); 3182 /* update DSPCNTR to configure gamma for pipe bottom color */ 3183 intel_disable_primary_plane(new_crtc_state); 3184 3185 if (dev_priv->display.initial_watermarks) 3186 dev_priv->display.initial_watermarks(state, crtc); 3187 intel_enable_pipe(new_crtc_state); 3188 3189 if (new_crtc_state->has_pch_encoder) 3190 ilk_pch_enable(state, new_crtc_state); 3191 3192 intel_crtc_vblank_on(new_crtc_state); 3193 3194 intel_encoders_enable(state, crtc); 3195 3196 if (HAS_PCH_CPT(dev_priv)) 3197 cpt_verify_modeset(dev_priv, pipe); 3198 3199 /* 3200 * Must wait for vblank to avoid spurious PCH FIFO underruns. 3201 * And a second vblank wait is needed at least on ILK with 3202 * some interlaced HDMI modes. Let's do the double wait always 3203 * in case there are more corner cases we don't know about. 3204 */ 3205 if (new_crtc_state->has_pch_encoder) { 3206 intel_wait_for_vblank(dev_priv, pipe); 3207 intel_wait_for_vblank(dev_priv, pipe); 3208 } 3209 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); 3210 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true); 3211 } 3212 3213 /* IPS only exists on ULT machines and is tied to pipe A. */ 3214 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc) 3215 { 3216 return HAS_IPS(to_i915(crtc->base.dev)) && crtc->pipe == PIPE_A; 3217 } 3218 3219 static void glk_pipe_scaler_clock_gating_wa(struct drm_i915_private *dev_priv, 3220 enum pipe pipe, bool apply) 3221 { 3222 u32 val = intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)); 3223 u32 mask = DPF_GATING_DIS | DPF_RAM_GATING_DIS | DPFR_GATING_DIS; 3224 3225 if (apply) 3226 val |= mask; 3227 else 3228 val &= ~mask; 3229 3230 intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe), val); 3231 } 3232 3233 static void icl_pipe_mbus_enable(struct intel_crtc *crtc, bool joined_mbus) 3234 { 3235 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3236 enum pipe pipe = crtc->pipe; 3237 u32 val; 3238 3239 /* Wa_22010947358:adl-p */ 3240 if (IS_ALDERLAKE_P(dev_priv)) 3241 val = joined_mbus ? MBUS_DBOX_A_CREDIT(6) : MBUS_DBOX_A_CREDIT(4); 3242 else 3243 val = MBUS_DBOX_A_CREDIT(2); 3244 3245 if (DISPLAY_VER(dev_priv) >= 12) { 3246 val |= MBUS_DBOX_BW_CREDIT(2); 3247 val |= MBUS_DBOX_B_CREDIT(12); 3248 } else { 3249 val |= MBUS_DBOX_BW_CREDIT(1); 3250 val |= MBUS_DBOX_B_CREDIT(8); 3251 } 3252 3253 intel_de_write(dev_priv, PIPE_MBUS_DBOX_CTL(pipe), val); 3254 } 3255 3256 static void hsw_set_linetime_wm(const struct intel_crtc_state *crtc_state) 3257 { 3258 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 3259 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3260 3261 intel_de_write(dev_priv, WM_LINETIME(crtc->pipe), 3262 HSW_LINETIME(crtc_state->linetime) | 3263 HSW_IPS_LINETIME(crtc_state->ips_linetime)); 3264 } 3265 3266 static void hsw_set_frame_start_delay(const struct intel_crtc_state *crtc_state) 3267 { 3268 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 3269 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3270 i915_reg_t reg = CHICKEN_TRANS(crtc_state->cpu_transcoder); 3271 u32 val; 3272 3273 val = intel_de_read(dev_priv, reg); 3274 val &= ~HSW_FRAME_START_DELAY_MASK; 3275 val |= HSW_FRAME_START_DELAY(dev_priv->framestart_delay - 1); 3276 intel_de_write(dev_priv, reg, val); 3277 } 3278 3279 static void icl_ddi_bigjoiner_pre_enable(struct intel_atomic_state *state, 3280 const struct intel_crtc_state *crtc_state) 3281 { 3282 struct intel_crtc *master = to_intel_crtc(crtc_state->uapi.crtc); 3283 struct drm_i915_private *dev_priv = to_i915(master->base.dev); 3284 struct intel_crtc_state *master_crtc_state; 3285 struct drm_connector_state *conn_state; 3286 struct drm_connector *conn; 3287 struct intel_encoder *encoder = NULL; 3288 int i; 3289 3290 if (crtc_state->bigjoiner_slave) 3291 master = crtc_state->bigjoiner_linked_crtc; 3292 3293 master_crtc_state = intel_atomic_get_new_crtc_state(state, master); 3294 3295 for_each_new_connector_in_state(&state->base, conn, conn_state, i) { 3296 if (conn_state->crtc != &master->base) 3297 continue; 3298 3299 encoder = to_intel_encoder(conn_state->best_encoder); 3300 break; 3301 } 3302 3303 if (!crtc_state->bigjoiner_slave) { 3304 /* need to enable VDSC, which we skipped in pre-enable */ 3305 intel_dsc_enable(encoder, crtc_state); 3306 } else { 3307 /* 3308 * Enable sequence steps 1-7 on bigjoiner master 3309 */ 3310 intel_encoders_pre_pll_enable(state, master); 3311 if (master_crtc_state->shared_dpll) 3312 intel_enable_shared_dpll(master_crtc_state); 3313 intel_encoders_pre_enable(state, master); 3314 3315 /* and DSC on slave */ 3316 intel_dsc_enable(NULL, crtc_state); 3317 } 3318 3319 if (DISPLAY_VER(dev_priv) >= 13) 3320 intel_uncompressed_joiner_enable(crtc_state); 3321 } 3322 3323 static void hsw_crtc_enable(struct intel_atomic_state *state, 3324 struct intel_crtc *crtc) 3325 { 3326 const struct intel_crtc_state *new_crtc_state = 3327 intel_atomic_get_new_crtc_state(state, crtc); 3328 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3329 enum pipe pipe = crtc->pipe, hsw_workaround_pipe; 3330 enum transcoder cpu_transcoder = new_crtc_state->cpu_transcoder; 3331 bool psl_clkgate_wa; 3332 3333 if (drm_WARN_ON(&dev_priv->drm, crtc->active)) 3334 return; 3335 3336 if (!new_crtc_state->bigjoiner) { 3337 intel_encoders_pre_pll_enable(state, crtc); 3338 3339 if (new_crtc_state->shared_dpll) 3340 intel_enable_shared_dpll(new_crtc_state); 3341 3342 intel_encoders_pre_enable(state, crtc); 3343 } else { 3344 icl_ddi_bigjoiner_pre_enable(state, new_crtc_state); 3345 } 3346 3347 intel_set_pipe_src_size(new_crtc_state); 3348 if (DISPLAY_VER(dev_priv) >= 9 || IS_BROADWELL(dev_priv)) 3349 bdw_set_pipemisc(new_crtc_state); 3350 3351 if (!new_crtc_state->bigjoiner_slave && !transcoder_is_dsi(cpu_transcoder)) { 3352 intel_set_transcoder_timings(new_crtc_state); 3353 3354 if (cpu_transcoder != TRANSCODER_EDP) 3355 intel_de_write(dev_priv, PIPE_MULT(cpu_transcoder), 3356 new_crtc_state->pixel_multiplier - 1); 3357 3358 if (new_crtc_state->has_pch_encoder) 3359 intel_cpu_transcoder_set_m_n(new_crtc_state, 3360 &new_crtc_state->fdi_m_n, NULL); 3361 3362 hsw_set_frame_start_delay(new_crtc_state); 3363 } 3364 3365 if (!transcoder_is_dsi(cpu_transcoder)) 3366 hsw_set_pipeconf(new_crtc_state); 3367 3368 crtc->active = true; 3369 3370 /* Display WA #1180: WaDisableScalarClockGating: glk */ 3371 psl_clkgate_wa = DISPLAY_VER(dev_priv) == 10 && 3372 new_crtc_state->pch_pfit.enabled; 3373 if (psl_clkgate_wa) 3374 glk_pipe_scaler_clock_gating_wa(dev_priv, pipe, true); 3375 3376 if (DISPLAY_VER(dev_priv) >= 9) 3377 skl_pfit_enable(new_crtc_state); 3378 else 3379 ilk_pfit_enable(new_crtc_state); 3380 3381 /* 3382 * On ILK+ LUT must be loaded before the pipe is running but with 3383 * clocks enabled 3384 */ 3385 intel_color_load_luts(new_crtc_state); 3386 intel_color_commit(new_crtc_state); 3387 /* update DSPCNTR to configure gamma/csc for pipe bottom color */ 3388 if (DISPLAY_VER(dev_priv) < 9) 3389 intel_disable_primary_plane(new_crtc_state); 3390 3391 hsw_set_linetime_wm(new_crtc_state); 3392 3393 if (DISPLAY_VER(dev_priv) >= 11) 3394 icl_set_pipe_chicken(new_crtc_state); 3395 3396 if (dev_priv->display.initial_watermarks) 3397 dev_priv->display.initial_watermarks(state, crtc); 3398 3399 if (DISPLAY_VER(dev_priv) >= 11) { 3400 const struct intel_dbuf_state *dbuf_state = 3401 intel_atomic_get_new_dbuf_state(state); 3402 3403 icl_pipe_mbus_enable(crtc, dbuf_state->joined_mbus); 3404 } 3405 3406 if (new_crtc_state->bigjoiner_slave) 3407 intel_crtc_vblank_on(new_crtc_state); 3408 3409 intel_encoders_enable(state, crtc); 3410 3411 if (psl_clkgate_wa) { 3412 intel_wait_for_vblank(dev_priv, pipe); 3413 glk_pipe_scaler_clock_gating_wa(dev_priv, pipe, false); 3414 } 3415 3416 /* If we change the relative order between pipe/planes enabling, we need 3417 * to change the workaround. */ 3418 hsw_workaround_pipe = new_crtc_state->hsw_workaround_pipe; 3419 if (IS_HASWELL(dev_priv) && hsw_workaround_pipe != INVALID_PIPE) { 3420 intel_wait_for_vblank(dev_priv, hsw_workaround_pipe); 3421 intel_wait_for_vblank(dev_priv, hsw_workaround_pipe); 3422 } 3423 } 3424 3425 void ilk_pfit_disable(const struct intel_crtc_state *old_crtc_state) 3426 { 3427 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); 3428 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3429 enum pipe pipe = crtc->pipe; 3430 3431 /* To avoid upsetting the power well on haswell only disable the pfit if 3432 * it's in use. The hw state code will make sure we get this right. */ 3433 if (!old_crtc_state->pch_pfit.enabled) 3434 return; 3435 3436 intel_de_write(dev_priv, PF_CTL(pipe), 0); 3437 intel_de_write(dev_priv, PF_WIN_POS(pipe), 0); 3438 intel_de_write(dev_priv, PF_WIN_SZ(pipe), 0); 3439 } 3440 3441 static void ilk_crtc_disable(struct intel_atomic_state *state, 3442 struct intel_crtc *crtc) 3443 { 3444 const struct intel_crtc_state *old_crtc_state = 3445 intel_atomic_get_old_crtc_state(state, crtc); 3446 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3447 enum pipe pipe = crtc->pipe; 3448 3449 /* 3450 * Sometimes spurious CPU pipe underruns happen when the 3451 * pipe is already disabled, but FDI RX/TX is still enabled. 3452 * Happens at least with VGA+HDMI cloning. Suppress them. 3453 */ 3454 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false); 3455 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false); 3456 3457 intel_encoders_disable(state, crtc); 3458 3459 intel_crtc_vblank_off(old_crtc_state); 3460 3461 intel_disable_pipe(old_crtc_state); 3462 3463 ilk_pfit_disable(old_crtc_state); 3464 3465 if (old_crtc_state->has_pch_encoder) 3466 ilk_fdi_disable(crtc); 3467 3468 intel_encoders_post_disable(state, crtc); 3469 3470 if (old_crtc_state->has_pch_encoder) { 3471 ilk_disable_pch_transcoder(dev_priv, pipe); 3472 3473 if (HAS_PCH_CPT(dev_priv)) { 3474 i915_reg_t reg; 3475 u32 temp; 3476 3477 /* disable TRANS_DP_CTL */ 3478 reg = TRANS_DP_CTL(pipe); 3479 temp = intel_de_read(dev_priv, reg); 3480 temp &= ~(TRANS_DP_OUTPUT_ENABLE | 3481 TRANS_DP_PORT_SEL_MASK); 3482 temp |= TRANS_DP_PORT_SEL_NONE; 3483 intel_de_write(dev_priv, reg, temp); 3484 3485 /* disable DPLL_SEL */ 3486 temp = intel_de_read(dev_priv, PCH_DPLL_SEL); 3487 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe)); 3488 intel_de_write(dev_priv, PCH_DPLL_SEL, temp); 3489 } 3490 3491 ilk_fdi_pll_disable(crtc); 3492 } 3493 3494 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); 3495 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true); 3496 } 3497 3498 static void hsw_crtc_disable(struct intel_atomic_state *state, 3499 struct intel_crtc *crtc) 3500 { 3501 /* 3502 * FIXME collapse everything to one hook. 3503 * Need care with mst->ddi interactions. 3504 */ 3505 intel_encoders_disable(state, crtc); 3506 intel_encoders_post_disable(state, crtc); 3507 } 3508 3509 static void i9xx_pfit_enable(const struct intel_crtc_state *crtc_state) 3510 { 3511 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 3512 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3513 3514 if (!crtc_state->gmch_pfit.control) 3515 return; 3516 3517 /* 3518 * The panel fitter should only be adjusted whilst the pipe is disabled, 3519 * according to register description and PRM. 3520 */ 3521 drm_WARN_ON(&dev_priv->drm, 3522 intel_de_read(dev_priv, PFIT_CONTROL) & PFIT_ENABLE); 3523 assert_pipe_disabled(dev_priv, crtc_state->cpu_transcoder); 3524 3525 intel_de_write(dev_priv, PFIT_PGM_RATIOS, 3526 crtc_state->gmch_pfit.pgm_ratios); 3527 intel_de_write(dev_priv, PFIT_CONTROL, crtc_state->gmch_pfit.control); 3528 3529 /* Border color in case we don't scale up to the full screen. Black by 3530 * default, change to something else for debugging. */ 3531 intel_de_write(dev_priv, BCLRPAT(crtc->pipe), 0); 3532 } 3533 3534 bool intel_phy_is_combo(struct drm_i915_private *dev_priv, enum phy phy) 3535 { 3536 if (phy == PHY_NONE) 3537 return false; 3538 else if (IS_DG2(dev_priv)) 3539 /* 3540 * DG2 outputs labelled as "combo PHY" in the bspec use 3541 * SNPS PHYs with completely different programming, 3542 * hence we always return false here. 3543 */ 3544 return false; 3545 else if (IS_ALDERLAKE_S(dev_priv)) 3546 return phy <= PHY_E; 3547 else if (IS_DG1(dev_priv) || IS_ROCKETLAKE(dev_priv)) 3548 return phy <= PHY_D; 3549 else if (IS_JSL_EHL(dev_priv)) 3550 return phy <= PHY_C; 3551 else if (DISPLAY_VER(dev_priv) >= 11) 3552 return phy <= PHY_B; 3553 else 3554 return false; 3555 } 3556 3557 bool intel_phy_is_tc(struct drm_i915_private *dev_priv, enum phy phy) 3558 { 3559 if (IS_DG2(dev_priv)) 3560 /* DG2's "TC1" output uses a SNPS PHY */ 3561 return false; 3562 else if (IS_ALDERLAKE_P(dev_priv)) 3563 return phy >= PHY_F && phy <= PHY_I; 3564 else if (IS_TIGERLAKE(dev_priv)) 3565 return phy >= PHY_D && phy <= PHY_I; 3566 else if (IS_ICELAKE(dev_priv)) 3567 return phy >= PHY_C && phy <= PHY_F; 3568 else 3569 return false; 3570 } 3571 3572 bool intel_phy_is_snps(struct drm_i915_private *dev_priv, enum phy phy) 3573 { 3574 if (phy == PHY_NONE) 3575 return false; 3576 else if (IS_DG2(dev_priv)) 3577 /* 3578 * All four "combo" ports and the TC1 port (PHY E) use 3579 * Synopsis PHYs. 3580 */ 3581 return phy <= PHY_E; 3582 3583 return false; 3584 } 3585 3586 enum phy intel_port_to_phy(struct drm_i915_private *i915, enum port port) 3587 { 3588 if (DISPLAY_VER(i915) >= 13 && port >= PORT_D_XELPD) 3589 return PHY_D + port - PORT_D_XELPD; 3590 else if (DISPLAY_VER(i915) >= 13 && port >= PORT_TC1) 3591 return PHY_F + port - PORT_TC1; 3592 else if (IS_ALDERLAKE_S(i915) && port >= PORT_TC1) 3593 return PHY_B + port - PORT_TC1; 3594 else if ((IS_DG1(i915) || IS_ROCKETLAKE(i915)) && port >= PORT_TC1) 3595 return PHY_C + port - PORT_TC1; 3596 else if (IS_JSL_EHL(i915) && port == PORT_D) 3597 return PHY_A; 3598 3599 return PHY_A + port - PORT_A; 3600 } 3601 3602 enum tc_port intel_port_to_tc(struct drm_i915_private *dev_priv, enum port port) 3603 { 3604 if (!intel_phy_is_tc(dev_priv, intel_port_to_phy(dev_priv, port))) 3605 return TC_PORT_NONE; 3606 3607 if (DISPLAY_VER(dev_priv) >= 12) 3608 return TC_PORT_1 + port - PORT_TC1; 3609 else 3610 return TC_PORT_1 + port - PORT_C; 3611 } 3612 3613 enum intel_display_power_domain intel_port_to_power_domain(enum port port) 3614 { 3615 switch (port) { 3616 case PORT_A: 3617 return POWER_DOMAIN_PORT_DDI_A_LANES; 3618 case PORT_B: 3619 return POWER_DOMAIN_PORT_DDI_B_LANES; 3620 case PORT_C: 3621 return POWER_DOMAIN_PORT_DDI_C_LANES; 3622 case PORT_D: 3623 return POWER_DOMAIN_PORT_DDI_D_LANES; 3624 case PORT_E: 3625 return POWER_DOMAIN_PORT_DDI_E_LANES; 3626 case PORT_F: 3627 return POWER_DOMAIN_PORT_DDI_F_LANES; 3628 case PORT_G: 3629 return POWER_DOMAIN_PORT_DDI_G_LANES; 3630 case PORT_H: 3631 return POWER_DOMAIN_PORT_DDI_H_LANES; 3632 case PORT_I: 3633 return POWER_DOMAIN_PORT_DDI_I_LANES; 3634 default: 3635 MISSING_CASE(port); 3636 return POWER_DOMAIN_PORT_OTHER; 3637 } 3638 } 3639 3640 enum intel_display_power_domain 3641 intel_aux_power_domain(struct intel_digital_port *dig_port) 3642 { 3643 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); 3644 enum phy phy = intel_port_to_phy(dev_priv, dig_port->base.port); 3645 3646 if (intel_phy_is_tc(dev_priv, phy) && 3647 dig_port->tc_mode == TC_PORT_TBT_ALT) { 3648 switch (dig_port->aux_ch) { 3649 case AUX_CH_C: 3650 return POWER_DOMAIN_AUX_C_TBT; 3651 case AUX_CH_D: 3652 return POWER_DOMAIN_AUX_D_TBT; 3653 case AUX_CH_E: 3654 return POWER_DOMAIN_AUX_E_TBT; 3655 case AUX_CH_F: 3656 return POWER_DOMAIN_AUX_F_TBT; 3657 case AUX_CH_G: 3658 return POWER_DOMAIN_AUX_G_TBT; 3659 case AUX_CH_H: 3660 return POWER_DOMAIN_AUX_H_TBT; 3661 case AUX_CH_I: 3662 return POWER_DOMAIN_AUX_I_TBT; 3663 default: 3664 MISSING_CASE(dig_port->aux_ch); 3665 return POWER_DOMAIN_AUX_C_TBT; 3666 } 3667 } 3668 3669 return intel_legacy_aux_to_power_domain(dig_port->aux_ch); 3670 } 3671 3672 /* 3673 * Converts aux_ch to power_domain without caring about TBT ports for that use 3674 * intel_aux_power_domain() 3675 */ 3676 enum intel_display_power_domain 3677 intel_legacy_aux_to_power_domain(enum aux_ch aux_ch) 3678 { 3679 switch (aux_ch) { 3680 case AUX_CH_A: 3681 return POWER_DOMAIN_AUX_A; 3682 case AUX_CH_B: 3683 return POWER_DOMAIN_AUX_B; 3684 case AUX_CH_C: 3685 return POWER_DOMAIN_AUX_C; 3686 case AUX_CH_D: 3687 return POWER_DOMAIN_AUX_D; 3688 case AUX_CH_E: 3689 return POWER_DOMAIN_AUX_E; 3690 case AUX_CH_F: 3691 return POWER_DOMAIN_AUX_F; 3692 case AUX_CH_G: 3693 return POWER_DOMAIN_AUX_G; 3694 case AUX_CH_H: 3695 return POWER_DOMAIN_AUX_H; 3696 case AUX_CH_I: 3697 return POWER_DOMAIN_AUX_I; 3698 default: 3699 MISSING_CASE(aux_ch); 3700 return POWER_DOMAIN_AUX_A; 3701 } 3702 } 3703 3704 static u64 get_crtc_power_domains(struct intel_crtc_state *crtc_state) 3705 { 3706 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 3707 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3708 struct drm_encoder *encoder; 3709 enum pipe pipe = crtc->pipe; 3710 u64 mask; 3711 enum transcoder transcoder = crtc_state->cpu_transcoder; 3712 3713 if (!crtc_state->hw.active) 3714 return 0; 3715 3716 mask = BIT_ULL(POWER_DOMAIN_PIPE(pipe)); 3717 mask |= BIT_ULL(POWER_DOMAIN_TRANSCODER(transcoder)); 3718 if (crtc_state->pch_pfit.enabled || 3719 crtc_state->pch_pfit.force_thru) 3720 mask |= BIT_ULL(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe)); 3721 3722 drm_for_each_encoder_mask(encoder, &dev_priv->drm, 3723 crtc_state->uapi.encoder_mask) { 3724 struct intel_encoder *intel_encoder = to_intel_encoder(encoder); 3725 3726 mask |= BIT_ULL(intel_encoder->power_domain); 3727 } 3728 3729 if (HAS_DDI(dev_priv) && crtc_state->has_audio) 3730 mask |= BIT_ULL(POWER_DOMAIN_AUDIO_MMIO); 3731 3732 if (crtc_state->shared_dpll) 3733 mask |= BIT_ULL(POWER_DOMAIN_DISPLAY_CORE); 3734 3735 if (crtc_state->dsc.compression_enable) 3736 mask |= BIT_ULL(intel_dsc_power_domain(crtc_state)); 3737 3738 return mask; 3739 } 3740 3741 static u64 3742 modeset_get_crtc_power_domains(struct intel_crtc_state *crtc_state) 3743 { 3744 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 3745 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3746 enum intel_display_power_domain domain; 3747 u64 domains, new_domains, old_domains; 3748 3749 domains = get_crtc_power_domains(crtc_state); 3750 3751 new_domains = domains & ~crtc->enabled_power_domains.mask; 3752 old_domains = crtc->enabled_power_domains.mask & ~domains; 3753 3754 for_each_power_domain(domain, new_domains) 3755 intel_display_power_get_in_set(dev_priv, 3756 &crtc->enabled_power_domains, 3757 domain); 3758 3759 return old_domains; 3760 } 3761 3762 static void modeset_put_crtc_power_domains(struct intel_crtc *crtc, 3763 u64 domains) 3764 { 3765 intel_display_power_put_mask_in_set(to_i915(crtc->base.dev), 3766 &crtc->enabled_power_domains, 3767 domains); 3768 } 3769 3770 static void valleyview_crtc_enable(struct intel_atomic_state *state, 3771 struct intel_crtc *crtc) 3772 { 3773 const struct intel_crtc_state *new_crtc_state = 3774 intel_atomic_get_new_crtc_state(state, crtc); 3775 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3776 enum pipe pipe = crtc->pipe; 3777 3778 if (drm_WARN_ON(&dev_priv->drm, crtc->active)) 3779 return; 3780 3781 if (intel_crtc_has_dp_encoder(new_crtc_state)) 3782 intel_dp_set_m_n(new_crtc_state, M1_N1); 3783 3784 intel_set_transcoder_timings(new_crtc_state); 3785 intel_set_pipe_src_size(new_crtc_state); 3786 3787 if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) { 3788 intel_de_write(dev_priv, CHV_BLEND(pipe), CHV_BLEND_LEGACY); 3789 intel_de_write(dev_priv, CHV_CANVAS(pipe), 0); 3790 } 3791 3792 i9xx_set_pipeconf(new_crtc_state); 3793 3794 crtc->active = true; 3795 3796 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); 3797 3798 intel_encoders_pre_pll_enable(state, crtc); 3799 3800 if (IS_CHERRYVIEW(dev_priv)) { 3801 chv_prepare_pll(crtc, new_crtc_state); 3802 chv_enable_pll(crtc, new_crtc_state); 3803 } else { 3804 vlv_prepare_pll(crtc, new_crtc_state); 3805 vlv_enable_pll(crtc, new_crtc_state); 3806 } 3807 3808 intel_encoders_pre_enable(state, crtc); 3809 3810 i9xx_pfit_enable(new_crtc_state); 3811 3812 intel_color_load_luts(new_crtc_state); 3813 intel_color_commit(new_crtc_state); 3814 /* update DSPCNTR to configure gamma for pipe bottom color */ 3815 intel_disable_primary_plane(new_crtc_state); 3816 3817 dev_priv->display.initial_watermarks(state, crtc); 3818 intel_enable_pipe(new_crtc_state); 3819 3820 intel_crtc_vblank_on(new_crtc_state); 3821 3822 intel_encoders_enable(state, crtc); 3823 } 3824 3825 static void i9xx_set_pll_dividers(const struct intel_crtc_state *crtc_state) 3826 { 3827 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 3828 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3829 3830 intel_de_write(dev_priv, FP0(crtc->pipe), 3831 crtc_state->dpll_hw_state.fp0); 3832 intel_de_write(dev_priv, FP1(crtc->pipe), 3833 crtc_state->dpll_hw_state.fp1); 3834 } 3835 3836 static void i9xx_crtc_enable(struct intel_atomic_state *state, 3837 struct intel_crtc *crtc) 3838 { 3839 const struct intel_crtc_state *new_crtc_state = 3840 intel_atomic_get_new_crtc_state(state, crtc); 3841 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3842 enum pipe pipe = crtc->pipe; 3843 3844 if (drm_WARN_ON(&dev_priv->drm, crtc->active)) 3845 return; 3846 3847 i9xx_set_pll_dividers(new_crtc_state); 3848 3849 if (intel_crtc_has_dp_encoder(new_crtc_state)) 3850 intel_dp_set_m_n(new_crtc_state, M1_N1); 3851 3852 intel_set_transcoder_timings(new_crtc_state); 3853 intel_set_pipe_src_size(new_crtc_state); 3854 3855 i9xx_set_pipeconf(new_crtc_state); 3856 3857 crtc->active = true; 3858 3859 if (DISPLAY_VER(dev_priv) != 2) 3860 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); 3861 3862 intel_encoders_pre_enable(state, crtc); 3863 3864 i9xx_enable_pll(crtc, new_crtc_state); 3865 3866 i9xx_pfit_enable(new_crtc_state); 3867 3868 intel_color_load_luts(new_crtc_state); 3869 intel_color_commit(new_crtc_state); 3870 /* update DSPCNTR to configure gamma for pipe bottom color */ 3871 intel_disable_primary_plane(new_crtc_state); 3872 3873 if (dev_priv->display.initial_watermarks) 3874 dev_priv->display.initial_watermarks(state, crtc); 3875 else 3876 intel_update_watermarks(crtc); 3877 intel_enable_pipe(new_crtc_state); 3878 3879 intel_crtc_vblank_on(new_crtc_state); 3880 3881 intel_encoders_enable(state, crtc); 3882 3883 /* prevents spurious underruns */ 3884 if (DISPLAY_VER(dev_priv) == 2) 3885 intel_wait_for_vblank(dev_priv, pipe); 3886 } 3887 3888 static void i9xx_pfit_disable(const struct intel_crtc_state *old_crtc_state) 3889 { 3890 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); 3891 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3892 3893 if (!old_crtc_state->gmch_pfit.control) 3894 return; 3895 3896 assert_pipe_disabled(dev_priv, old_crtc_state->cpu_transcoder); 3897 3898 drm_dbg_kms(&dev_priv->drm, "disabling pfit, current: 0x%08x\n", 3899 intel_de_read(dev_priv, PFIT_CONTROL)); 3900 intel_de_write(dev_priv, PFIT_CONTROL, 0); 3901 } 3902 3903 static void i9xx_crtc_disable(struct intel_atomic_state *state, 3904 struct intel_crtc *crtc) 3905 { 3906 struct intel_crtc_state *old_crtc_state = 3907 intel_atomic_get_old_crtc_state(state, crtc); 3908 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3909 enum pipe pipe = crtc->pipe; 3910 3911 /* 3912 * On gen2 planes are double buffered but the pipe isn't, so we must 3913 * wait for planes to fully turn off before disabling the pipe. 3914 */ 3915 if (DISPLAY_VER(dev_priv) == 2) 3916 intel_wait_for_vblank(dev_priv, pipe); 3917 3918 intel_encoders_disable(state, crtc); 3919 3920 intel_crtc_vblank_off(old_crtc_state); 3921 3922 intel_disable_pipe(old_crtc_state); 3923 3924 i9xx_pfit_disable(old_crtc_state); 3925 3926 intel_encoders_post_disable(state, crtc); 3927 3928 if (!intel_crtc_has_type(old_crtc_state, INTEL_OUTPUT_DSI)) { 3929 if (IS_CHERRYVIEW(dev_priv)) 3930 chv_disable_pll(dev_priv, pipe); 3931 else if (IS_VALLEYVIEW(dev_priv)) 3932 vlv_disable_pll(dev_priv, pipe); 3933 else 3934 i9xx_disable_pll(old_crtc_state); 3935 } 3936 3937 intel_encoders_post_pll_disable(state, crtc); 3938 3939 if (DISPLAY_VER(dev_priv) != 2) 3940 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false); 3941 3942 if (!dev_priv->display.initial_watermarks) 3943 intel_update_watermarks(crtc); 3944 3945 /* clock the pipe down to 640x480@60 to potentially save power */ 3946 if (IS_I830(dev_priv)) 3947 i830_enable_pipe(dev_priv, pipe); 3948 } 3949 3950 static void intel_crtc_disable_noatomic(struct intel_crtc *crtc, 3951 struct drm_modeset_acquire_ctx *ctx) 3952 { 3953 struct intel_encoder *encoder; 3954 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3955 struct intel_bw_state *bw_state = 3956 to_intel_bw_state(dev_priv->bw_obj.state); 3957 struct intel_cdclk_state *cdclk_state = 3958 to_intel_cdclk_state(dev_priv->cdclk.obj.state); 3959 struct intel_dbuf_state *dbuf_state = 3960 to_intel_dbuf_state(dev_priv->dbuf.obj.state); 3961 struct intel_crtc_state *crtc_state = 3962 to_intel_crtc_state(crtc->base.state); 3963 struct intel_plane *plane; 3964 struct drm_atomic_state *state; 3965 struct intel_crtc_state *temp_crtc_state; 3966 enum pipe pipe = crtc->pipe; 3967 int ret; 3968 3969 if (!crtc_state->hw.active) 3970 return; 3971 3972 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) { 3973 const struct intel_plane_state *plane_state = 3974 to_intel_plane_state(plane->base.state); 3975 3976 if (plane_state->uapi.visible) 3977 intel_plane_disable_noatomic(crtc, plane); 3978 } 3979 3980 state = drm_atomic_state_alloc(&dev_priv->drm); 3981 if (!state) { 3982 drm_dbg_kms(&dev_priv->drm, 3983 "failed to disable [CRTC:%d:%s], out of memory", 3984 crtc->base.base.id, crtc->base.name); 3985 return; 3986 } 3987 3988 state->acquire_ctx = ctx; 3989 3990 /* Everything's already locked, -EDEADLK can't happen. */ 3991 temp_crtc_state = intel_atomic_get_crtc_state(state, crtc); 3992 ret = drm_atomic_add_affected_connectors(state, &crtc->base); 3993 3994 drm_WARN_ON(&dev_priv->drm, IS_ERR(temp_crtc_state) || ret); 3995 3996 dev_priv->display.crtc_disable(to_intel_atomic_state(state), crtc); 3997 3998 drm_atomic_state_put(state); 3999 4000 drm_dbg_kms(&dev_priv->drm, 4001 "[CRTC:%d:%s] hw state adjusted, was enabled, now disabled\n", 4002 crtc->base.base.id, crtc->base.name); 4003 4004 crtc->active = false; 4005 crtc->base.enabled = false; 4006 4007 drm_WARN_ON(&dev_priv->drm, 4008 drm_atomic_set_mode_for_crtc(&crtc_state->uapi, NULL) < 0); 4009 crtc_state->uapi.active = false; 4010 crtc_state->uapi.connector_mask = 0; 4011 crtc_state->uapi.encoder_mask = 0; 4012 intel_crtc_free_hw_state(crtc_state); 4013 memset(&crtc_state->hw, 0, sizeof(crtc_state->hw)); 4014 4015 for_each_encoder_on_crtc(&dev_priv->drm, &crtc->base, encoder) 4016 encoder->base.crtc = NULL; 4017 4018 intel_fbc_disable(crtc); 4019 intel_update_watermarks(crtc); 4020 intel_disable_shared_dpll(crtc_state); 4021 4022 intel_display_power_put_all_in_set(dev_priv, &crtc->enabled_power_domains); 4023 4024 dev_priv->active_pipes &= ~BIT(pipe); 4025 cdclk_state->min_cdclk[pipe] = 0; 4026 cdclk_state->min_voltage_level[pipe] = 0; 4027 cdclk_state->active_pipes &= ~BIT(pipe); 4028 4029 dbuf_state->active_pipes &= ~BIT(pipe); 4030 4031 bw_state->data_rate[pipe] = 0; 4032 bw_state->num_active_planes[pipe] = 0; 4033 } 4034 4035 /* 4036 * turn all crtc's off, but do not adjust state 4037 * This has to be paired with a call to intel_modeset_setup_hw_state. 4038 */ 4039 int intel_display_suspend(struct drm_device *dev) 4040 { 4041 struct drm_i915_private *dev_priv = to_i915(dev); 4042 struct drm_atomic_state *state; 4043 int ret; 4044 4045 if (!HAS_DISPLAY(dev_priv)) 4046 return 0; 4047 4048 state = drm_atomic_helper_suspend(dev); 4049 ret = PTR_ERR_OR_ZERO(state); 4050 if (ret) 4051 drm_err(&dev_priv->drm, "Suspending crtc's failed with %i\n", 4052 ret); 4053 else 4054 dev_priv->modeset_restore_state = state; 4055 return ret; 4056 } 4057 4058 void intel_encoder_destroy(struct drm_encoder *encoder) 4059 { 4060 struct intel_encoder *intel_encoder = to_intel_encoder(encoder); 4061 4062 drm_encoder_cleanup(encoder); 4063 kfree(intel_encoder); 4064 } 4065 4066 /* Cross check the actual hw state with our own modeset state tracking (and it's 4067 * internal consistency). */ 4068 static void intel_connector_verify_state(struct intel_crtc_state *crtc_state, 4069 struct drm_connector_state *conn_state) 4070 { 4071 struct intel_connector *connector = to_intel_connector(conn_state->connector); 4072 struct drm_i915_private *i915 = to_i915(connector->base.dev); 4073 4074 drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s]\n", 4075 connector->base.base.id, connector->base.name); 4076 4077 if (connector->get_hw_state(connector)) { 4078 struct intel_encoder *encoder = intel_attached_encoder(connector); 4079 4080 I915_STATE_WARN(!crtc_state, 4081 "connector enabled without attached crtc\n"); 4082 4083 if (!crtc_state) 4084 return; 4085 4086 I915_STATE_WARN(!crtc_state->hw.active, 4087 "connector is active, but attached crtc isn't\n"); 4088 4089 if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST) 4090 return; 4091 4092 I915_STATE_WARN(conn_state->best_encoder != &encoder->base, 4093 "atomic encoder doesn't match attached encoder\n"); 4094 4095 I915_STATE_WARN(conn_state->crtc != encoder->base.crtc, 4096 "attached encoder crtc differs from connector crtc\n"); 4097 } else { 4098 I915_STATE_WARN(crtc_state && crtc_state->hw.active, 4099 "attached crtc is active, but connector isn't\n"); 4100 I915_STATE_WARN(!crtc_state && conn_state->best_encoder, 4101 "best encoder set without crtc!\n"); 4102 } 4103 } 4104 4105 bool hsw_crtc_state_ips_capable(const struct intel_crtc_state *crtc_state) 4106 { 4107 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 4108 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4109 4110 /* IPS only exists on ULT machines and is tied to pipe A. */ 4111 if (!hsw_crtc_supports_ips(crtc)) 4112 return false; 4113 4114 if (!dev_priv->params.enable_ips) 4115 return false; 4116 4117 if (crtc_state->pipe_bpp > 24) 4118 return false; 4119 4120 /* 4121 * We compare against max which means we must take 4122 * the increased cdclk requirement into account when 4123 * calculating the new cdclk. 4124 * 4125 * Should measure whether using a lower cdclk w/o IPS 4126 */ 4127 if (IS_BROADWELL(dev_priv) && 4128 crtc_state->pixel_rate > dev_priv->max_cdclk_freq * 95 / 100) 4129 return false; 4130 4131 return true; 4132 } 4133 4134 static int hsw_compute_ips_config(struct intel_crtc_state *crtc_state) 4135 { 4136 struct drm_i915_private *dev_priv = 4137 to_i915(crtc_state->uapi.crtc->dev); 4138 struct intel_atomic_state *state = 4139 to_intel_atomic_state(crtc_state->uapi.state); 4140 4141 crtc_state->ips_enabled = false; 4142 4143 if (!hsw_crtc_state_ips_capable(crtc_state)) 4144 return 0; 4145 4146 /* 4147 * When IPS gets enabled, the pipe CRC changes. Since IPS gets 4148 * enabled and disabled dynamically based on package C states, 4149 * user space can't make reliable use of the CRCs, so let's just 4150 * completely disable it. 4151 */ 4152 if (crtc_state->crc_enabled) 4153 return 0; 4154 4155 /* IPS should be fine as long as at least one plane is enabled. */ 4156 if (!(crtc_state->active_planes & ~BIT(PLANE_CURSOR))) 4157 return 0; 4158 4159 if (IS_BROADWELL(dev_priv)) { 4160 const struct intel_cdclk_state *cdclk_state; 4161 4162 cdclk_state = intel_atomic_get_cdclk_state(state); 4163 if (IS_ERR(cdclk_state)) 4164 return PTR_ERR(cdclk_state); 4165 4166 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */ 4167 if (crtc_state->pixel_rate > cdclk_state->logical.cdclk * 95 / 100) 4168 return 0; 4169 } 4170 4171 crtc_state->ips_enabled = true; 4172 4173 return 0; 4174 } 4175 4176 static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc) 4177 { 4178 const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4179 4180 /* GDG double wide on either pipe, otherwise pipe A only */ 4181 return DISPLAY_VER(dev_priv) < 4 && 4182 (crtc->pipe == PIPE_A || IS_I915G(dev_priv)); 4183 } 4184 4185 static u32 ilk_pipe_pixel_rate(const struct intel_crtc_state *crtc_state) 4186 { 4187 u32 pixel_rate = crtc_state->hw.pipe_mode.crtc_clock; 4188 struct drm_rect src; 4189 4190 /* 4191 * We only use IF-ID interlacing. If we ever use 4192 * PF-ID we'll need to adjust the pixel_rate here. 4193 */ 4194 4195 if (!crtc_state->pch_pfit.enabled) 4196 return pixel_rate; 4197 4198 drm_rect_init(&src, 0, 0, 4199 crtc_state->pipe_src_w << 16, 4200 crtc_state->pipe_src_h << 16); 4201 4202 return intel_adjusted_rate(&src, &crtc_state->pch_pfit.dst, 4203 pixel_rate); 4204 } 4205 4206 static void intel_mode_from_crtc_timings(struct drm_display_mode *mode, 4207 const struct drm_display_mode *timings) 4208 { 4209 mode->hdisplay = timings->crtc_hdisplay; 4210 mode->htotal = timings->crtc_htotal; 4211 mode->hsync_start = timings->crtc_hsync_start; 4212 mode->hsync_end = timings->crtc_hsync_end; 4213 4214 mode->vdisplay = timings->crtc_vdisplay; 4215 mode->vtotal = timings->crtc_vtotal; 4216 mode->vsync_start = timings->crtc_vsync_start; 4217 mode->vsync_end = timings->crtc_vsync_end; 4218 4219 mode->flags = timings->flags; 4220 mode->type = DRM_MODE_TYPE_DRIVER; 4221 4222 mode->clock = timings->crtc_clock; 4223 4224 drm_mode_set_name(mode); 4225 } 4226 4227 static void intel_crtc_compute_pixel_rate(struct intel_crtc_state *crtc_state) 4228 { 4229 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 4230 4231 if (HAS_GMCH(dev_priv)) 4232 /* FIXME calculate proper pipe pixel rate for GMCH pfit */ 4233 crtc_state->pixel_rate = 4234 crtc_state->hw.pipe_mode.crtc_clock; 4235 else 4236 crtc_state->pixel_rate = 4237 ilk_pipe_pixel_rate(crtc_state); 4238 } 4239 4240 static void intel_crtc_readout_derived_state(struct intel_crtc_state *crtc_state) 4241 { 4242 struct drm_display_mode *mode = &crtc_state->hw.mode; 4243 struct drm_display_mode *pipe_mode = &crtc_state->hw.pipe_mode; 4244 struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode; 4245 4246 drm_mode_copy(pipe_mode, adjusted_mode); 4247 4248 if (crtc_state->bigjoiner) { 4249 /* 4250 * transcoder is programmed to the full mode, 4251 * but pipe timings are half of the transcoder mode 4252 */ 4253 pipe_mode->crtc_hdisplay /= 2; 4254 pipe_mode->crtc_hblank_start /= 2; 4255 pipe_mode->crtc_hblank_end /= 2; 4256 pipe_mode->crtc_hsync_start /= 2; 4257 pipe_mode->crtc_hsync_end /= 2; 4258 pipe_mode->crtc_htotal /= 2; 4259 pipe_mode->crtc_clock /= 2; 4260 } 4261 4262 if (crtc_state->splitter.enable) { 4263 int n = crtc_state->splitter.link_count; 4264 int overlap = crtc_state->splitter.pixel_overlap; 4265 4266 /* 4267 * eDP MSO uses segment timings from EDID for transcoder 4268 * timings, but full mode for everything else. 4269 * 4270 * h_full = (h_segment - pixel_overlap) * link_count 4271 */ 4272 pipe_mode->crtc_hdisplay = (pipe_mode->crtc_hdisplay - overlap) * n; 4273 pipe_mode->crtc_hblank_start = (pipe_mode->crtc_hblank_start - overlap) * n; 4274 pipe_mode->crtc_hblank_end = (pipe_mode->crtc_hblank_end - overlap) * n; 4275 pipe_mode->crtc_hsync_start = (pipe_mode->crtc_hsync_start - overlap) * n; 4276 pipe_mode->crtc_hsync_end = (pipe_mode->crtc_hsync_end - overlap) * n; 4277 pipe_mode->crtc_htotal = (pipe_mode->crtc_htotal - overlap) * n; 4278 pipe_mode->crtc_clock *= n; 4279 4280 intel_mode_from_crtc_timings(pipe_mode, pipe_mode); 4281 intel_mode_from_crtc_timings(adjusted_mode, pipe_mode); 4282 } else { 4283 intel_mode_from_crtc_timings(pipe_mode, pipe_mode); 4284 intel_mode_from_crtc_timings(adjusted_mode, adjusted_mode); 4285 } 4286 4287 intel_crtc_compute_pixel_rate(crtc_state); 4288 4289 drm_mode_copy(mode, adjusted_mode); 4290 mode->hdisplay = crtc_state->pipe_src_w << crtc_state->bigjoiner; 4291 mode->vdisplay = crtc_state->pipe_src_h; 4292 } 4293 4294 static void intel_encoder_get_config(struct intel_encoder *encoder, 4295 struct intel_crtc_state *crtc_state) 4296 { 4297 encoder->get_config(encoder, crtc_state); 4298 4299 intel_crtc_readout_derived_state(crtc_state); 4300 } 4301 4302 static int intel_crtc_compute_config(struct intel_crtc *crtc, 4303 struct intel_crtc_state *pipe_config) 4304 { 4305 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4306 struct drm_display_mode *pipe_mode = &pipe_config->hw.pipe_mode; 4307 int clock_limit = dev_priv->max_dotclk_freq; 4308 4309 drm_mode_copy(pipe_mode, &pipe_config->hw.adjusted_mode); 4310 4311 /* Adjust pipe_mode for bigjoiner, with half the horizontal mode */ 4312 if (pipe_config->bigjoiner) { 4313 pipe_mode->crtc_clock /= 2; 4314 pipe_mode->crtc_hdisplay /= 2; 4315 pipe_mode->crtc_hblank_start /= 2; 4316 pipe_mode->crtc_hblank_end /= 2; 4317 pipe_mode->crtc_hsync_start /= 2; 4318 pipe_mode->crtc_hsync_end /= 2; 4319 pipe_mode->crtc_htotal /= 2; 4320 pipe_config->pipe_src_w /= 2; 4321 } 4322 4323 if (pipe_config->splitter.enable) { 4324 int n = pipe_config->splitter.link_count; 4325 int overlap = pipe_config->splitter.pixel_overlap; 4326 4327 pipe_mode->crtc_hdisplay = (pipe_mode->crtc_hdisplay - overlap) * n; 4328 pipe_mode->crtc_hblank_start = (pipe_mode->crtc_hblank_start - overlap) * n; 4329 pipe_mode->crtc_hblank_end = (pipe_mode->crtc_hblank_end - overlap) * n; 4330 pipe_mode->crtc_hsync_start = (pipe_mode->crtc_hsync_start - overlap) * n; 4331 pipe_mode->crtc_hsync_end = (pipe_mode->crtc_hsync_end - overlap) * n; 4332 pipe_mode->crtc_htotal = (pipe_mode->crtc_htotal - overlap) * n; 4333 pipe_mode->crtc_clock *= n; 4334 } 4335 4336 intel_mode_from_crtc_timings(pipe_mode, pipe_mode); 4337 4338 if (DISPLAY_VER(dev_priv) < 4) { 4339 clock_limit = dev_priv->max_cdclk_freq * 9 / 10; 4340 4341 /* 4342 * Enable double wide mode when the dot clock 4343 * is > 90% of the (display) core speed. 4344 */ 4345 if (intel_crtc_supports_double_wide(crtc) && 4346 pipe_mode->crtc_clock > clock_limit) { 4347 clock_limit = dev_priv->max_dotclk_freq; 4348 pipe_config->double_wide = true; 4349 } 4350 } 4351 4352 if (pipe_mode->crtc_clock > clock_limit) { 4353 drm_dbg_kms(&dev_priv->drm, 4354 "requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n", 4355 pipe_mode->crtc_clock, clock_limit, 4356 yesno(pipe_config->double_wide)); 4357 return -EINVAL; 4358 } 4359 4360 /* 4361 * Pipe horizontal size must be even in: 4362 * - DVO ganged mode 4363 * - LVDS dual channel mode 4364 * - Double wide pipe 4365 */ 4366 if (pipe_config->pipe_src_w & 1) { 4367 if (pipe_config->double_wide) { 4368 drm_dbg_kms(&dev_priv->drm, 4369 "Odd pipe source width not supported with double wide pipe\n"); 4370 return -EINVAL; 4371 } 4372 4373 if (intel_crtc_has_type(pipe_config, INTEL_OUTPUT_LVDS) && 4374 intel_is_dual_link_lvds(dev_priv)) { 4375 drm_dbg_kms(&dev_priv->drm, 4376 "Odd pipe source width not supported with dual link LVDS\n"); 4377 return -EINVAL; 4378 } 4379 } 4380 4381 /* Cantiga+ cannot handle modes with a hsync front porch of 0. 4382 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw. 4383 */ 4384 if ((DISPLAY_VER(dev_priv) > 4 || IS_G4X(dev_priv)) && 4385 pipe_mode->crtc_hsync_start == pipe_mode->crtc_hdisplay) 4386 return -EINVAL; 4387 4388 intel_crtc_compute_pixel_rate(pipe_config); 4389 4390 if (pipe_config->has_pch_encoder) 4391 return ilk_fdi_compute_config(crtc, pipe_config); 4392 4393 return 0; 4394 } 4395 4396 static void 4397 intel_reduce_m_n_ratio(u32 *num, u32 *den) 4398 { 4399 while (*num > DATA_LINK_M_N_MASK || 4400 *den > DATA_LINK_M_N_MASK) { 4401 *num >>= 1; 4402 *den >>= 1; 4403 } 4404 } 4405 4406 static void compute_m_n(unsigned int m, unsigned int n, 4407 u32 *ret_m, u32 *ret_n, 4408 bool constant_n) 4409 { 4410 /* 4411 * Several DP dongles in particular seem to be fussy about 4412 * too large link M/N values. Give N value as 0x8000 that 4413 * should be acceptable by specific devices. 0x8000 is the 4414 * specified fixed N value for asynchronous clock mode, 4415 * which the devices expect also in synchronous clock mode. 4416 */ 4417 if (constant_n) 4418 *ret_n = DP_LINK_CONSTANT_N_VALUE; 4419 else 4420 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX); 4421 4422 *ret_m = div_u64(mul_u32_u32(m, *ret_n), n); 4423 intel_reduce_m_n_ratio(ret_m, ret_n); 4424 } 4425 4426 void 4427 intel_link_compute_m_n(u16 bits_per_pixel, int nlanes, 4428 int pixel_clock, int link_clock, 4429 struct intel_link_m_n *m_n, 4430 bool constant_n, bool fec_enable) 4431 { 4432 u32 data_clock = bits_per_pixel * pixel_clock; 4433 4434 if (fec_enable) 4435 data_clock = intel_dp_mode_to_fec_clock(data_clock); 4436 4437 m_n->tu = 64; 4438 compute_m_n(data_clock, 4439 link_clock * nlanes * 8, 4440 &m_n->gmch_m, &m_n->gmch_n, 4441 constant_n); 4442 4443 compute_m_n(pixel_clock, link_clock, 4444 &m_n->link_m, &m_n->link_n, 4445 constant_n); 4446 } 4447 4448 static void intel_panel_sanitize_ssc(struct drm_i915_private *dev_priv) 4449 { 4450 /* 4451 * There may be no VBT; and if the BIOS enabled SSC we can 4452 * just keep using it to avoid unnecessary flicker. Whereas if the 4453 * BIOS isn't using it, don't assume it will work even if the VBT 4454 * indicates as much. 4455 */ 4456 if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) { 4457 bool bios_lvds_use_ssc = intel_de_read(dev_priv, 4458 PCH_DREF_CONTROL) & 4459 DREF_SSC1_ENABLE; 4460 4461 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) { 4462 drm_dbg_kms(&dev_priv->drm, 4463 "SSC %s by BIOS, overriding VBT which says %s\n", 4464 enableddisabled(bios_lvds_use_ssc), 4465 enableddisabled(dev_priv->vbt.lvds_use_ssc)); 4466 dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc; 4467 } 4468 } 4469 } 4470 4471 static void intel_pch_transcoder_set_m_n(const struct intel_crtc_state *crtc_state, 4472 const struct intel_link_m_n *m_n) 4473 { 4474 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 4475 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4476 enum pipe pipe = crtc->pipe; 4477 4478 intel_de_write(dev_priv, PCH_TRANS_DATA_M1(pipe), 4479 TU_SIZE(m_n->tu) | m_n->gmch_m); 4480 intel_de_write(dev_priv, PCH_TRANS_DATA_N1(pipe), m_n->gmch_n); 4481 intel_de_write(dev_priv, PCH_TRANS_LINK_M1(pipe), m_n->link_m); 4482 intel_de_write(dev_priv, PCH_TRANS_LINK_N1(pipe), m_n->link_n); 4483 } 4484 4485 static bool transcoder_has_m2_n2(struct drm_i915_private *dev_priv, 4486 enum transcoder transcoder) 4487 { 4488 if (IS_HASWELL(dev_priv)) 4489 return transcoder == TRANSCODER_EDP; 4490 4491 /* 4492 * Strictly speaking some registers are available before 4493 * gen7, but we only support DRRS on gen7+ 4494 */ 4495 return DISPLAY_VER(dev_priv) == 7 || IS_CHERRYVIEW(dev_priv); 4496 } 4497 4498 static void intel_cpu_transcoder_set_m_n(const struct intel_crtc_state *crtc_state, 4499 const struct intel_link_m_n *m_n, 4500 const struct intel_link_m_n *m2_n2) 4501 { 4502 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 4503 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4504 enum pipe pipe = crtc->pipe; 4505 enum transcoder transcoder = crtc_state->cpu_transcoder; 4506 4507 if (DISPLAY_VER(dev_priv) >= 5) { 4508 intel_de_write(dev_priv, PIPE_DATA_M1(transcoder), 4509 TU_SIZE(m_n->tu) | m_n->gmch_m); 4510 intel_de_write(dev_priv, PIPE_DATA_N1(transcoder), 4511 m_n->gmch_n); 4512 intel_de_write(dev_priv, PIPE_LINK_M1(transcoder), 4513 m_n->link_m); 4514 intel_de_write(dev_priv, PIPE_LINK_N1(transcoder), 4515 m_n->link_n); 4516 /* 4517 * M2_N2 registers are set only if DRRS is supported 4518 * (to make sure the registers are not unnecessarily accessed). 4519 */ 4520 if (m2_n2 && crtc_state->has_drrs && 4521 transcoder_has_m2_n2(dev_priv, transcoder)) { 4522 intel_de_write(dev_priv, PIPE_DATA_M2(transcoder), 4523 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m); 4524 intel_de_write(dev_priv, PIPE_DATA_N2(transcoder), 4525 m2_n2->gmch_n); 4526 intel_de_write(dev_priv, PIPE_LINK_M2(transcoder), 4527 m2_n2->link_m); 4528 intel_de_write(dev_priv, PIPE_LINK_N2(transcoder), 4529 m2_n2->link_n); 4530 } 4531 } else { 4532 intel_de_write(dev_priv, PIPE_DATA_M_G4X(pipe), 4533 TU_SIZE(m_n->tu) | m_n->gmch_m); 4534 intel_de_write(dev_priv, PIPE_DATA_N_G4X(pipe), m_n->gmch_n); 4535 intel_de_write(dev_priv, PIPE_LINK_M_G4X(pipe), m_n->link_m); 4536 intel_de_write(dev_priv, PIPE_LINK_N_G4X(pipe), m_n->link_n); 4537 } 4538 } 4539 4540 void intel_dp_set_m_n(const struct intel_crtc_state *crtc_state, enum link_m_n_set m_n) 4541 { 4542 const struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL; 4543 struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); 4544 4545 if (m_n == M1_N1) { 4546 dp_m_n = &crtc_state->dp_m_n; 4547 dp_m2_n2 = &crtc_state->dp_m2_n2; 4548 } else if (m_n == M2_N2) { 4549 4550 /* 4551 * M2_N2 registers are not supported. Hence m2_n2 divider value 4552 * needs to be programmed into M1_N1. 4553 */ 4554 dp_m_n = &crtc_state->dp_m2_n2; 4555 } else { 4556 drm_err(&i915->drm, "Unsupported divider value\n"); 4557 return; 4558 } 4559 4560 if (crtc_state->has_pch_encoder) 4561 intel_pch_transcoder_set_m_n(crtc_state, &crtc_state->dp_m_n); 4562 else 4563 intel_cpu_transcoder_set_m_n(crtc_state, dp_m_n, dp_m2_n2); 4564 } 4565 4566 static void intel_set_transcoder_timings(const struct intel_crtc_state *crtc_state) 4567 { 4568 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 4569 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4570 enum pipe pipe = crtc->pipe; 4571 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 4572 const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode; 4573 u32 crtc_vtotal, crtc_vblank_end; 4574 int vsyncshift = 0; 4575 4576 /* We need to be careful not to changed the adjusted mode, for otherwise 4577 * the hw state checker will get angry at the mismatch. */ 4578 crtc_vtotal = adjusted_mode->crtc_vtotal; 4579 crtc_vblank_end = adjusted_mode->crtc_vblank_end; 4580 4581 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) { 4582 /* the chip adds 2 halflines automatically */ 4583 crtc_vtotal -= 1; 4584 crtc_vblank_end -= 1; 4585 4586 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) 4587 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2; 4588 else 4589 vsyncshift = adjusted_mode->crtc_hsync_start - 4590 adjusted_mode->crtc_htotal / 2; 4591 if (vsyncshift < 0) 4592 vsyncshift += adjusted_mode->crtc_htotal; 4593 } 4594 4595 if (DISPLAY_VER(dev_priv) > 3) 4596 intel_de_write(dev_priv, VSYNCSHIFT(cpu_transcoder), 4597 vsyncshift); 4598 4599 intel_de_write(dev_priv, HTOTAL(cpu_transcoder), 4600 (adjusted_mode->crtc_hdisplay - 1) | ((adjusted_mode->crtc_htotal - 1) << 16)); 4601 intel_de_write(dev_priv, HBLANK(cpu_transcoder), 4602 (adjusted_mode->crtc_hblank_start - 1) | ((adjusted_mode->crtc_hblank_end - 1) << 16)); 4603 intel_de_write(dev_priv, HSYNC(cpu_transcoder), 4604 (adjusted_mode->crtc_hsync_start - 1) | ((adjusted_mode->crtc_hsync_end - 1) << 16)); 4605 4606 intel_de_write(dev_priv, VTOTAL(cpu_transcoder), 4607 (adjusted_mode->crtc_vdisplay - 1) | ((crtc_vtotal - 1) << 16)); 4608 intel_de_write(dev_priv, VBLANK(cpu_transcoder), 4609 (adjusted_mode->crtc_vblank_start - 1) | ((crtc_vblank_end - 1) << 16)); 4610 intel_de_write(dev_priv, VSYNC(cpu_transcoder), 4611 (adjusted_mode->crtc_vsync_start - 1) | ((adjusted_mode->crtc_vsync_end - 1) << 16)); 4612 4613 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be 4614 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is 4615 * documented on the DDI_FUNC_CTL register description, EDP Input Select 4616 * bits. */ 4617 if (IS_HASWELL(dev_priv) && cpu_transcoder == TRANSCODER_EDP && 4618 (pipe == PIPE_B || pipe == PIPE_C)) 4619 intel_de_write(dev_priv, VTOTAL(pipe), 4620 intel_de_read(dev_priv, VTOTAL(cpu_transcoder))); 4621 4622 } 4623 4624 static void intel_set_pipe_src_size(const struct intel_crtc_state *crtc_state) 4625 { 4626 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 4627 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4628 enum pipe pipe = crtc->pipe; 4629 4630 /* pipesrc controls the size that is scaled from, which should 4631 * always be the user's requested size. 4632 */ 4633 intel_de_write(dev_priv, PIPESRC(pipe), 4634 ((crtc_state->pipe_src_w - 1) << 16) | (crtc_state->pipe_src_h - 1)); 4635 } 4636 4637 static bool intel_pipe_is_interlaced(const struct intel_crtc_state *crtc_state) 4638 { 4639 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 4640 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 4641 4642 if (DISPLAY_VER(dev_priv) == 2) 4643 return false; 4644 4645 if (DISPLAY_VER(dev_priv) >= 9 || 4646 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) 4647 return intel_de_read(dev_priv, PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK_HSW; 4648 else 4649 return intel_de_read(dev_priv, PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK; 4650 } 4651 4652 static void intel_get_transcoder_timings(struct intel_crtc *crtc, 4653 struct intel_crtc_state *pipe_config) 4654 { 4655 struct drm_device *dev = crtc->base.dev; 4656 struct drm_i915_private *dev_priv = to_i915(dev); 4657 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder; 4658 u32 tmp; 4659 4660 tmp = intel_de_read(dev_priv, HTOTAL(cpu_transcoder)); 4661 pipe_config->hw.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1; 4662 pipe_config->hw.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1; 4663 4664 if (!transcoder_is_dsi(cpu_transcoder)) { 4665 tmp = intel_de_read(dev_priv, HBLANK(cpu_transcoder)); 4666 pipe_config->hw.adjusted_mode.crtc_hblank_start = 4667 (tmp & 0xffff) + 1; 4668 pipe_config->hw.adjusted_mode.crtc_hblank_end = 4669 ((tmp >> 16) & 0xffff) + 1; 4670 } 4671 tmp = intel_de_read(dev_priv, HSYNC(cpu_transcoder)); 4672 pipe_config->hw.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1; 4673 pipe_config->hw.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1; 4674 4675 tmp = intel_de_read(dev_priv, VTOTAL(cpu_transcoder)); 4676 pipe_config->hw.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1; 4677 pipe_config->hw.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1; 4678 4679 if (!transcoder_is_dsi(cpu_transcoder)) { 4680 tmp = intel_de_read(dev_priv, VBLANK(cpu_transcoder)); 4681 pipe_config->hw.adjusted_mode.crtc_vblank_start = 4682 (tmp & 0xffff) + 1; 4683 pipe_config->hw.adjusted_mode.crtc_vblank_end = 4684 ((tmp >> 16) & 0xffff) + 1; 4685 } 4686 tmp = intel_de_read(dev_priv, VSYNC(cpu_transcoder)); 4687 pipe_config->hw.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1; 4688 pipe_config->hw.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1; 4689 4690 if (intel_pipe_is_interlaced(pipe_config)) { 4691 pipe_config->hw.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE; 4692 pipe_config->hw.adjusted_mode.crtc_vtotal += 1; 4693 pipe_config->hw.adjusted_mode.crtc_vblank_end += 1; 4694 } 4695 } 4696 4697 static void intel_get_pipe_src_size(struct intel_crtc *crtc, 4698 struct intel_crtc_state *pipe_config) 4699 { 4700 struct drm_device *dev = crtc->base.dev; 4701 struct drm_i915_private *dev_priv = to_i915(dev); 4702 u32 tmp; 4703 4704 tmp = intel_de_read(dev_priv, PIPESRC(crtc->pipe)); 4705 pipe_config->pipe_src_h = (tmp & 0xffff) + 1; 4706 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1; 4707 } 4708 4709 static void i9xx_set_pipeconf(const struct intel_crtc_state *crtc_state) 4710 { 4711 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 4712 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4713 u32 pipeconf; 4714 4715 pipeconf = 0; 4716 4717 /* we keep both pipes enabled on 830 */ 4718 if (IS_I830(dev_priv)) 4719 pipeconf |= intel_de_read(dev_priv, PIPECONF(crtc->pipe)) & PIPECONF_ENABLE; 4720 4721 if (crtc_state->double_wide) 4722 pipeconf |= PIPECONF_DOUBLE_WIDE; 4723 4724 /* only g4x and later have fancy bpc/dither controls */ 4725 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) || 4726 IS_CHERRYVIEW(dev_priv)) { 4727 /* Bspec claims that we can't use dithering for 30bpp pipes. */ 4728 if (crtc_state->dither && crtc_state->pipe_bpp != 30) 4729 pipeconf |= PIPECONF_DITHER_EN | 4730 PIPECONF_DITHER_TYPE_SP; 4731 4732 switch (crtc_state->pipe_bpp) { 4733 case 18: 4734 pipeconf |= PIPECONF_6BPC; 4735 break; 4736 case 24: 4737 pipeconf |= PIPECONF_8BPC; 4738 break; 4739 case 30: 4740 pipeconf |= PIPECONF_10BPC; 4741 break; 4742 default: 4743 /* Case prevented by intel_choose_pipe_bpp_dither. */ 4744 BUG(); 4745 } 4746 } 4747 4748 if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) { 4749 if (DISPLAY_VER(dev_priv) < 4 || 4750 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) 4751 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION; 4752 else 4753 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT; 4754 } else { 4755 pipeconf |= PIPECONF_PROGRESSIVE; 4756 } 4757 4758 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) && 4759 crtc_state->limited_color_range) 4760 pipeconf |= PIPECONF_COLOR_RANGE_SELECT; 4761 4762 pipeconf |= PIPECONF_GAMMA_MODE(crtc_state->gamma_mode); 4763 4764 pipeconf |= PIPECONF_FRAME_START_DELAY(dev_priv->framestart_delay - 1); 4765 4766 intel_de_write(dev_priv, PIPECONF(crtc->pipe), pipeconf); 4767 intel_de_posting_read(dev_priv, PIPECONF(crtc->pipe)); 4768 } 4769 4770 static bool i9xx_has_pfit(struct drm_i915_private *dev_priv) 4771 { 4772 if (IS_I830(dev_priv)) 4773 return false; 4774 4775 return DISPLAY_VER(dev_priv) >= 4 || 4776 IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv); 4777 } 4778 4779 static void i9xx_get_pfit_config(struct intel_crtc_state *crtc_state) 4780 { 4781 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 4782 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4783 u32 tmp; 4784 4785 if (!i9xx_has_pfit(dev_priv)) 4786 return; 4787 4788 tmp = intel_de_read(dev_priv, PFIT_CONTROL); 4789 if (!(tmp & PFIT_ENABLE)) 4790 return; 4791 4792 /* Check whether the pfit is attached to our pipe. */ 4793 if (DISPLAY_VER(dev_priv) < 4) { 4794 if (crtc->pipe != PIPE_B) 4795 return; 4796 } else { 4797 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT)) 4798 return; 4799 } 4800 4801 crtc_state->gmch_pfit.control = tmp; 4802 crtc_state->gmch_pfit.pgm_ratios = 4803 intel_de_read(dev_priv, PFIT_PGM_RATIOS); 4804 } 4805 4806 static void vlv_crtc_clock_get(struct intel_crtc *crtc, 4807 struct intel_crtc_state *pipe_config) 4808 { 4809 struct drm_device *dev = crtc->base.dev; 4810 struct drm_i915_private *dev_priv = to_i915(dev); 4811 enum pipe pipe = crtc->pipe; 4812 struct dpll clock; 4813 u32 mdiv; 4814 int refclk = 100000; 4815 4816 /* In case of DSI, DPLL will not be used */ 4817 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0) 4818 return; 4819 4820 vlv_dpio_get(dev_priv); 4821 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe)); 4822 vlv_dpio_put(dev_priv); 4823 4824 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7; 4825 clock.m2 = mdiv & DPIO_M2DIV_MASK; 4826 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf; 4827 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7; 4828 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f; 4829 4830 pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock); 4831 } 4832 4833 static void chv_crtc_clock_get(struct intel_crtc *crtc, 4834 struct intel_crtc_state *pipe_config) 4835 { 4836 struct drm_device *dev = crtc->base.dev; 4837 struct drm_i915_private *dev_priv = to_i915(dev); 4838 enum pipe pipe = crtc->pipe; 4839 enum dpio_channel port = vlv_pipe_to_channel(pipe); 4840 struct dpll clock; 4841 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3; 4842 int refclk = 100000; 4843 4844 /* In case of DSI, DPLL will not be used */ 4845 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0) 4846 return; 4847 4848 vlv_dpio_get(dev_priv); 4849 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port)); 4850 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port)); 4851 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port)); 4852 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port)); 4853 pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port)); 4854 vlv_dpio_put(dev_priv); 4855 4856 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0; 4857 clock.m2 = (pll_dw0 & 0xff) << 22; 4858 if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN) 4859 clock.m2 |= pll_dw2 & 0x3fffff; 4860 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf; 4861 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7; 4862 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f; 4863 4864 pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock); 4865 } 4866 4867 static enum intel_output_format 4868 bdw_get_pipemisc_output_format(struct intel_crtc *crtc) 4869 { 4870 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4871 u32 tmp; 4872 4873 tmp = intel_de_read(dev_priv, PIPEMISC(crtc->pipe)); 4874 4875 if (tmp & PIPEMISC_YUV420_ENABLE) { 4876 /* We support 4:2:0 in full blend mode only */ 4877 drm_WARN_ON(&dev_priv->drm, 4878 (tmp & PIPEMISC_YUV420_MODE_FULL_BLEND) == 0); 4879 4880 return INTEL_OUTPUT_FORMAT_YCBCR420; 4881 } else if (tmp & PIPEMISC_OUTPUT_COLORSPACE_YUV) { 4882 return INTEL_OUTPUT_FORMAT_YCBCR444; 4883 } else { 4884 return INTEL_OUTPUT_FORMAT_RGB; 4885 } 4886 } 4887 4888 static void i9xx_get_pipe_color_config(struct intel_crtc_state *crtc_state) 4889 { 4890 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 4891 struct intel_plane *plane = to_intel_plane(crtc->base.primary); 4892 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4893 enum i9xx_plane_id i9xx_plane = plane->i9xx_plane; 4894 u32 tmp; 4895 4896 tmp = intel_de_read(dev_priv, DSPCNTR(i9xx_plane)); 4897 4898 if (tmp & DISPPLANE_GAMMA_ENABLE) 4899 crtc_state->gamma_enable = true; 4900 4901 if (!HAS_GMCH(dev_priv) && 4902 tmp & DISPPLANE_PIPE_CSC_ENABLE) 4903 crtc_state->csc_enable = true; 4904 } 4905 4906 static bool i9xx_get_pipe_config(struct intel_crtc *crtc, 4907 struct intel_crtc_state *pipe_config) 4908 { 4909 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4910 enum intel_display_power_domain power_domain; 4911 intel_wakeref_t wakeref; 4912 u32 tmp; 4913 bool ret; 4914 4915 power_domain = POWER_DOMAIN_PIPE(crtc->pipe); 4916 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain); 4917 if (!wakeref) 4918 return false; 4919 4920 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB; 4921 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe; 4922 pipe_config->shared_dpll = NULL; 4923 4924 ret = false; 4925 4926 tmp = intel_de_read(dev_priv, PIPECONF(crtc->pipe)); 4927 if (!(tmp & PIPECONF_ENABLE)) 4928 goto out; 4929 4930 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) || 4931 IS_CHERRYVIEW(dev_priv)) { 4932 switch (tmp & PIPECONF_BPC_MASK) { 4933 case PIPECONF_6BPC: 4934 pipe_config->pipe_bpp = 18; 4935 break; 4936 case PIPECONF_8BPC: 4937 pipe_config->pipe_bpp = 24; 4938 break; 4939 case PIPECONF_10BPC: 4940 pipe_config->pipe_bpp = 30; 4941 break; 4942 default: 4943 break; 4944 } 4945 } 4946 4947 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) && 4948 (tmp & PIPECONF_COLOR_RANGE_SELECT)) 4949 pipe_config->limited_color_range = true; 4950 4951 pipe_config->gamma_mode = (tmp & PIPECONF_GAMMA_MODE_MASK_I9XX) >> 4952 PIPECONF_GAMMA_MODE_SHIFT; 4953 4954 if (IS_CHERRYVIEW(dev_priv)) 4955 pipe_config->cgm_mode = intel_de_read(dev_priv, 4956 CGM_PIPE_MODE(crtc->pipe)); 4957 4958 i9xx_get_pipe_color_config(pipe_config); 4959 intel_color_get_config(pipe_config); 4960 4961 if (DISPLAY_VER(dev_priv) < 4) 4962 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE; 4963 4964 intel_get_transcoder_timings(crtc, pipe_config); 4965 intel_get_pipe_src_size(crtc, pipe_config); 4966 4967 i9xx_get_pfit_config(pipe_config); 4968 4969 if (DISPLAY_VER(dev_priv) >= 4) { 4970 /* No way to read it out on pipes B and C */ 4971 if (IS_CHERRYVIEW(dev_priv) && crtc->pipe != PIPE_A) 4972 tmp = dev_priv->chv_dpll_md[crtc->pipe]; 4973 else 4974 tmp = intel_de_read(dev_priv, DPLL_MD(crtc->pipe)); 4975 pipe_config->pixel_multiplier = 4976 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK) 4977 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1; 4978 pipe_config->dpll_hw_state.dpll_md = tmp; 4979 } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) || 4980 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) { 4981 tmp = intel_de_read(dev_priv, DPLL(crtc->pipe)); 4982 pipe_config->pixel_multiplier = 4983 ((tmp & SDVO_MULTIPLIER_MASK) 4984 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1; 4985 } else { 4986 /* Note that on i915G/GM the pixel multiplier is in the sdvo 4987 * port and will be fixed up in the encoder->get_config 4988 * function. */ 4989 pipe_config->pixel_multiplier = 1; 4990 } 4991 pipe_config->dpll_hw_state.dpll = intel_de_read(dev_priv, 4992 DPLL(crtc->pipe)); 4993 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) { 4994 pipe_config->dpll_hw_state.fp0 = intel_de_read(dev_priv, 4995 FP0(crtc->pipe)); 4996 pipe_config->dpll_hw_state.fp1 = intel_de_read(dev_priv, 4997 FP1(crtc->pipe)); 4998 } else { 4999 /* Mask out read-only status bits. */ 5000 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV | 5001 DPLL_PORTC_READY_MASK | 5002 DPLL_PORTB_READY_MASK); 5003 } 5004 5005 if (IS_CHERRYVIEW(dev_priv)) 5006 chv_crtc_clock_get(crtc, pipe_config); 5007 else if (IS_VALLEYVIEW(dev_priv)) 5008 vlv_crtc_clock_get(crtc, pipe_config); 5009 else 5010 i9xx_crtc_clock_get(crtc, pipe_config); 5011 5012 /* 5013 * Normally the dotclock is filled in by the encoder .get_config() 5014 * but in case the pipe is enabled w/o any ports we need a sane 5015 * default. 5016 */ 5017 pipe_config->hw.adjusted_mode.crtc_clock = 5018 pipe_config->port_clock / pipe_config->pixel_multiplier; 5019 5020 ret = true; 5021 5022 out: 5023 intel_display_power_put(dev_priv, power_domain, wakeref); 5024 5025 return ret; 5026 } 5027 5028 static void ilk_init_pch_refclk(struct drm_i915_private *dev_priv) 5029 { 5030 struct intel_encoder *encoder; 5031 int i; 5032 u32 val, final; 5033 bool has_lvds = false; 5034 bool has_cpu_edp = false; 5035 bool has_panel = false; 5036 bool has_ck505 = false; 5037 bool can_ssc = false; 5038 bool using_ssc_source = false; 5039 5040 /* We need to take the global config into account */ 5041 for_each_intel_encoder(&dev_priv->drm, encoder) { 5042 switch (encoder->type) { 5043 case INTEL_OUTPUT_LVDS: 5044 has_panel = true; 5045 has_lvds = true; 5046 break; 5047 case INTEL_OUTPUT_EDP: 5048 has_panel = true; 5049 if (encoder->port == PORT_A) 5050 has_cpu_edp = true; 5051 break; 5052 default: 5053 break; 5054 } 5055 } 5056 5057 if (HAS_PCH_IBX(dev_priv)) { 5058 has_ck505 = dev_priv->vbt.display_clock_mode; 5059 can_ssc = has_ck505; 5060 } else { 5061 has_ck505 = false; 5062 can_ssc = true; 5063 } 5064 5065 /* Check if any DPLLs are using the SSC source */ 5066 for (i = 0; i < dev_priv->dpll.num_shared_dpll; i++) { 5067 u32 temp = intel_de_read(dev_priv, PCH_DPLL(i)); 5068 5069 if (!(temp & DPLL_VCO_ENABLE)) 5070 continue; 5071 5072 if ((temp & PLL_REF_INPUT_MASK) == 5073 PLLB_REF_INPUT_SPREADSPECTRUMIN) { 5074 using_ssc_source = true; 5075 break; 5076 } 5077 } 5078 5079 drm_dbg_kms(&dev_priv->drm, 5080 "has_panel %d has_lvds %d has_ck505 %d using_ssc_source %d\n", 5081 has_panel, has_lvds, has_ck505, using_ssc_source); 5082 5083 /* Ironlake: try to setup display ref clock before DPLL 5084 * enabling. This is only under driver's control after 5085 * PCH B stepping, previous chipset stepping should be 5086 * ignoring this setting. 5087 */ 5088 val = intel_de_read(dev_priv, PCH_DREF_CONTROL); 5089 5090 /* As we must carefully and slowly disable/enable each source in turn, 5091 * compute the final state we want first and check if we need to 5092 * make any changes at all. 5093 */ 5094 final = val; 5095 final &= ~DREF_NONSPREAD_SOURCE_MASK; 5096 if (has_ck505) 5097 final |= DREF_NONSPREAD_CK505_ENABLE; 5098 else 5099 final |= DREF_NONSPREAD_SOURCE_ENABLE; 5100 5101 final &= ~DREF_SSC_SOURCE_MASK; 5102 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK; 5103 final &= ~DREF_SSC1_ENABLE; 5104 5105 if (has_panel) { 5106 final |= DREF_SSC_SOURCE_ENABLE; 5107 5108 if (intel_panel_use_ssc(dev_priv) && can_ssc) 5109 final |= DREF_SSC1_ENABLE; 5110 5111 if (has_cpu_edp) { 5112 if (intel_panel_use_ssc(dev_priv) && can_ssc) 5113 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD; 5114 else 5115 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD; 5116 } else 5117 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE; 5118 } else if (using_ssc_source) { 5119 final |= DREF_SSC_SOURCE_ENABLE; 5120 final |= DREF_SSC1_ENABLE; 5121 } 5122 5123 if (final == val) 5124 return; 5125 5126 /* Always enable nonspread source */ 5127 val &= ~DREF_NONSPREAD_SOURCE_MASK; 5128 5129 if (has_ck505) 5130 val |= DREF_NONSPREAD_CK505_ENABLE; 5131 else 5132 val |= DREF_NONSPREAD_SOURCE_ENABLE; 5133 5134 if (has_panel) { 5135 val &= ~DREF_SSC_SOURCE_MASK; 5136 val |= DREF_SSC_SOURCE_ENABLE; 5137 5138 /* SSC must be turned on before enabling the CPU output */ 5139 if (intel_panel_use_ssc(dev_priv) && can_ssc) { 5140 drm_dbg_kms(&dev_priv->drm, "Using SSC on panel\n"); 5141 val |= DREF_SSC1_ENABLE; 5142 } else 5143 val &= ~DREF_SSC1_ENABLE; 5144 5145 /* Get SSC going before enabling the outputs */ 5146 intel_de_write(dev_priv, PCH_DREF_CONTROL, val); 5147 intel_de_posting_read(dev_priv, PCH_DREF_CONTROL); 5148 udelay(200); 5149 5150 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK; 5151 5152 /* Enable CPU source on CPU attached eDP */ 5153 if (has_cpu_edp) { 5154 if (intel_panel_use_ssc(dev_priv) && can_ssc) { 5155 drm_dbg_kms(&dev_priv->drm, 5156 "Using SSC on eDP\n"); 5157 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD; 5158 } else 5159 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD; 5160 } else 5161 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE; 5162 5163 intel_de_write(dev_priv, PCH_DREF_CONTROL, val); 5164 intel_de_posting_read(dev_priv, PCH_DREF_CONTROL); 5165 udelay(200); 5166 } else { 5167 drm_dbg_kms(&dev_priv->drm, "Disabling CPU source output\n"); 5168 5169 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK; 5170 5171 /* Turn off CPU output */ 5172 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE; 5173 5174 intel_de_write(dev_priv, PCH_DREF_CONTROL, val); 5175 intel_de_posting_read(dev_priv, PCH_DREF_CONTROL); 5176 udelay(200); 5177 5178 if (!using_ssc_source) { 5179 drm_dbg_kms(&dev_priv->drm, "Disabling SSC source\n"); 5180 5181 /* Turn off the SSC source */ 5182 val &= ~DREF_SSC_SOURCE_MASK; 5183 val |= DREF_SSC_SOURCE_DISABLE; 5184 5185 /* Turn off SSC1 */ 5186 val &= ~DREF_SSC1_ENABLE; 5187 5188 intel_de_write(dev_priv, PCH_DREF_CONTROL, val); 5189 intel_de_posting_read(dev_priv, PCH_DREF_CONTROL); 5190 udelay(200); 5191 } 5192 } 5193 5194 BUG_ON(val != final); 5195 } 5196 5197 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv) 5198 { 5199 u32 tmp; 5200 5201 tmp = intel_de_read(dev_priv, SOUTH_CHICKEN2); 5202 tmp |= FDI_MPHY_IOSFSB_RESET_CTL; 5203 intel_de_write(dev_priv, SOUTH_CHICKEN2, tmp); 5204 5205 if (wait_for_us(intel_de_read(dev_priv, SOUTH_CHICKEN2) & 5206 FDI_MPHY_IOSFSB_RESET_STATUS, 100)) 5207 drm_err(&dev_priv->drm, "FDI mPHY reset assert timeout\n"); 5208 5209 tmp = intel_de_read(dev_priv, SOUTH_CHICKEN2); 5210 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL; 5211 intel_de_write(dev_priv, SOUTH_CHICKEN2, tmp); 5212 5213 if (wait_for_us((intel_de_read(dev_priv, SOUTH_CHICKEN2) & 5214 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100)) 5215 drm_err(&dev_priv->drm, "FDI mPHY reset de-assert timeout\n"); 5216 } 5217 5218 /* WaMPhyProgramming:hsw */ 5219 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv) 5220 { 5221 u32 tmp; 5222 5223 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY); 5224 tmp &= ~(0xFF << 24); 5225 tmp |= (0x12 << 24); 5226 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY); 5227 5228 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY); 5229 tmp |= (1 << 11); 5230 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY); 5231 5232 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY); 5233 tmp |= (1 << 11); 5234 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY); 5235 5236 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY); 5237 tmp |= (1 << 24) | (1 << 21) | (1 << 18); 5238 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY); 5239 5240 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY); 5241 tmp |= (1 << 24) | (1 << 21) | (1 << 18); 5242 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY); 5243 5244 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY); 5245 tmp &= ~(7 << 13); 5246 tmp |= (5 << 13); 5247 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY); 5248 5249 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY); 5250 tmp &= ~(7 << 13); 5251 tmp |= (5 << 13); 5252 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY); 5253 5254 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY); 5255 tmp &= ~0xFF; 5256 tmp |= 0x1C; 5257 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY); 5258 5259 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY); 5260 tmp &= ~0xFF; 5261 tmp |= 0x1C; 5262 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY); 5263 5264 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY); 5265 tmp &= ~(0xFF << 16); 5266 tmp |= (0x1C << 16); 5267 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY); 5268 5269 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY); 5270 tmp &= ~(0xFF << 16); 5271 tmp |= (0x1C << 16); 5272 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY); 5273 5274 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY); 5275 tmp |= (1 << 27); 5276 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY); 5277 5278 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY); 5279 tmp |= (1 << 27); 5280 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY); 5281 5282 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY); 5283 tmp &= ~(0xF << 28); 5284 tmp |= (4 << 28); 5285 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY); 5286 5287 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY); 5288 tmp &= ~(0xF << 28); 5289 tmp |= (4 << 28); 5290 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY); 5291 } 5292 5293 /* Implements 3 different sequences from BSpec chapter "Display iCLK 5294 * Programming" based on the parameters passed: 5295 * - Sequence to enable CLKOUT_DP 5296 * - Sequence to enable CLKOUT_DP without spread 5297 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O 5298 */ 5299 static void lpt_enable_clkout_dp(struct drm_i915_private *dev_priv, 5300 bool with_spread, bool with_fdi) 5301 { 5302 u32 reg, tmp; 5303 5304 if (drm_WARN(&dev_priv->drm, with_fdi && !with_spread, 5305 "FDI requires downspread\n")) 5306 with_spread = true; 5307 if (drm_WARN(&dev_priv->drm, HAS_PCH_LPT_LP(dev_priv) && 5308 with_fdi, "LP PCH doesn't have FDI\n")) 5309 with_fdi = false; 5310 5311 mutex_lock(&dev_priv->sb_lock); 5312 5313 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK); 5314 tmp &= ~SBI_SSCCTL_DISABLE; 5315 tmp |= SBI_SSCCTL_PATHALT; 5316 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); 5317 5318 udelay(24); 5319 5320 if (with_spread) { 5321 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK); 5322 tmp &= ~SBI_SSCCTL_PATHALT; 5323 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); 5324 5325 if (with_fdi) { 5326 lpt_reset_fdi_mphy(dev_priv); 5327 lpt_program_fdi_mphy(dev_priv); 5328 } 5329 } 5330 5331 reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0; 5332 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK); 5333 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE; 5334 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK); 5335 5336 mutex_unlock(&dev_priv->sb_lock); 5337 } 5338 5339 /* Sequence to disable CLKOUT_DP */ 5340 void lpt_disable_clkout_dp(struct drm_i915_private *dev_priv) 5341 { 5342 u32 reg, tmp; 5343 5344 mutex_lock(&dev_priv->sb_lock); 5345 5346 reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0; 5347 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK); 5348 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE; 5349 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK); 5350 5351 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK); 5352 if (!(tmp & SBI_SSCCTL_DISABLE)) { 5353 if (!(tmp & SBI_SSCCTL_PATHALT)) { 5354 tmp |= SBI_SSCCTL_PATHALT; 5355 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); 5356 udelay(32); 5357 } 5358 tmp |= SBI_SSCCTL_DISABLE; 5359 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); 5360 } 5361 5362 mutex_unlock(&dev_priv->sb_lock); 5363 } 5364 5365 #define BEND_IDX(steps) ((50 + (steps)) / 5) 5366 5367 static const u16 sscdivintphase[] = { 5368 [BEND_IDX( 50)] = 0x3B23, 5369 [BEND_IDX( 45)] = 0x3B23, 5370 [BEND_IDX( 40)] = 0x3C23, 5371 [BEND_IDX( 35)] = 0x3C23, 5372 [BEND_IDX( 30)] = 0x3D23, 5373 [BEND_IDX( 25)] = 0x3D23, 5374 [BEND_IDX( 20)] = 0x3E23, 5375 [BEND_IDX( 15)] = 0x3E23, 5376 [BEND_IDX( 10)] = 0x3F23, 5377 [BEND_IDX( 5)] = 0x3F23, 5378 [BEND_IDX( 0)] = 0x0025, 5379 [BEND_IDX( -5)] = 0x0025, 5380 [BEND_IDX(-10)] = 0x0125, 5381 [BEND_IDX(-15)] = 0x0125, 5382 [BEND_IDX(-20)] = 0x0225, 5383 [BEND_IDX(-25)] = 0x0225, 5384 [BEND_IDX(-30)] = 0x0325, 5385 [BEND_IDX(-35)] = 0x0325, 5386 [BEND_IDX(-40)] = 0x0425, 5387 [BEND_IDX(-45)] = 0x0425, 5388 [BEND_IDX(-50)] = 0x0525, 5389 }; 5390 5391 /* 5392 * Bend CLKOUT_DP 5393 * steps -50 to 50 inclusive, in steps of 5 5394 * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz) 5395 * change in clock period = -(steps / 10) * 5.787 ps 5396 */ 5397 static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps) 5398 { 5399 u32 tmp; 5400 int idx = BEND_IDX(steps); 5401 5402 if (drm_WARN_ON(&dev_priv->drm, steps % 5 != 0)) 5403 return; 5404 5405 if (drm_WARN_ON(&dev_priv->drm, idx >= ARRAY_SIZE(sscdivintphase))) 5406 return; 5407 5408 mutex_lock(&dev_priv->sb_lock); 5409 5410 if (steps % 10 != 0) 5411 tmp = 0xAAAAAAAB; 5412 else 5413 tmp = 0x00000000; 5414 intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK); 5415 5416 tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK); 5417 tmp &= 0xffff0000; 5418 tmp |= sscdivintphase[idx]; 5419 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK); 5420 5421 mutex_unlock(&dev_priv->sb_lock); 5422 } 5423 5424 #undef BEND_IDX 5425 5426 static bool spll_uses_pch_ssc(struct drm_i915_private *dev_priv) 5427 { 5428 u32 fuse_strap = intel_de_read(dev_priv, FUSE_STRAP); 5429 u32 ctl = intel_de_read(dev_priv, SPLL_CTL); 5430 5431 if ((ctl & SPLL_PLL_ENABLE) == 0) 5432 return false; 5433 5434 if ((ctl & SPLL_REF_MASK) == SPLL_REF_MUXED_SSC && 5435 (fuse_strap & HSW_CPU_SSC_ENABLE) == 0) 5436 return true; 5437 5438 if (IS_BROADWELL(dev_priv) && 5439 (ctl & SPLL_REF_MASK) == SPLL_REF_PCH_SSC_BDW) 5440 return true; 5441 5442 return false; 5443 } 5444 5445 static bool wrpll_uses_pch_ssc(struct drm_i915_private *dev_priv, 5446 enum intel_dpll_id id) 5447 { 5448 u32 fuse_strap = intel_de_read(dev_priv, FUSE_STRAP); 5449 u32 ctl = intel_de_read(dev_priv, WRPLL_CTL(id)); 5450 5451 if ((ctl & WRPLL_PLL_ENABLE) == 0) 5452 return false; 5453 5454 if ((ctl & WRPLL_REF_MASK) == WRPLL_REF_PCH_SSC) 5455 return true; 5456 5457 if ((IS_BROADWELL(dev_priv) || IS_HSW_ULT(dev_priv)) && 5458 (ctl & WRPLL_REF_MASK) == WRPLL_REF_MUXED_SSC_BDW && 5459 (fuse_strap & HSW_CPU_SSC_ENABLE) == 0) 5460 return true; 5461 5462 return false; 5463 } 5464 5465 static void lpt_init_pch_refclk(struct drm_i915_private *dev_priv) 5466 { 5467 struct intel_encoder *encoder; 5468 bool has_fdi = false; 5469 5470 for_each_intel_encoder(&dev_priv->drm, encoder) { 5471 switch (encoder->type) { 5472 case INTEL_OUTPUT_ANALOG: 5473 has_fdi = true; 5474 break; 5475 default: 5476 break; 5477 } 5478 } 5479 5480 /* 5481 * The BIOS may have decided to use the PCH SSC 5482 * reference so we must not disable it until the 5483 * relevant PLLs have stopped relying on it. We'll 5484 * just leave the PCH SSC reference enabled in case 5485 * any active PLL is using it. It will get disabled 5486 * after runtime suspend if we don't have FDI. 5487 * 5488 * TODO: Move the whole reference clock handling 5489 * to the modeset sequence proper so that we can 5490 * actually enable/disable/reconfigure these things 5491 * safely. To do that we need to introduce a real 5492 * clock hierarchy. That would also allow us to do 5493 * clock bending finally. 5494 */ 5495 dev_priv->pch_ssc_use = 0; 5496 5497 if (spll_uses_pch_ssc(dev_priv)) { 5498 drm_dbg_kms(&dev_priv->drm, "SPLL using PCH SSC\n"); 5499 dev_priv->pch_ssc_use |= BIT(DPLL_ID_SPLL); 5500 } 5501 5502 if (wrpll_uses_pch_ssc(dev_priv, DPLL_ID_WRPLL1)) { 5503 drm_dbg_kms(&dev_priv->drm, "WRPLL1 using PCH SSC\n"); 5504 dev_priv->pch_ssc_use |= BIT(DPLL_ID_WRPLL1); 5505 } 5506 5507 if (wrpll_uses_pch_ssc(dev_priv, DPLL_ID_WRPLL2)) { 5508 drm_dbg_kms(&dev_priv->drm, "WRPLL2 using PCH SSC\n"); 5509 dev_priv->pch_ssc_use |= BIT(DPLL_ID_WRPLL2); 5510 } 5511 5512 if (dev_priv->pch_ssc_use) 5513 return; 5514 5515 if (has_fdi) { 5516 lpt_bend_clkout_dp(dev_priv, 0); 5517 lpt_enable_clkout_dp(dev_priv, true, true); 5518 } else { 5519 lpt_disable_clkout_dp(dev_priv); 5520 } 5521 } 5522 5523 /* 5524 * Initialize reference clocks when the driver loads 5525 */ 5526 void intel_init_pch_refclk(struct drm_i915_private *dev_priv) 5527 { 5528 if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) 5529 ilk_init_pch_refclk(dev_priv); 5530 else if (HAS_PCH_LPT(dev_priv)) 5531 lpt_init_pch_refclk(dev_priv); 5532 } 5533 5534 static void ilk_set_pipeconf(const struct intel_crtc_state *crtc_state) 5535 { 5536 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 5537 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5538 enum pipe pipe = crtc->pipe; 5539 u32 val; 5540 5541 val = 0; 5542 5543 switch (crtc_state->pipe_bpp) { 5544 case 18: 5545 val |= PIPECONF_6BPC; 5546 break; 5547 case 24: 5548 val |= PIPECONF_8BPC; 5549 break; 5550 case 30: 5551 val |= PIPECONF_10BPC; 5552 break; 5553 case 36: 5554 val |= PIPECONF_12BPC; 5555 break; 5556 default: 5557 /* Case prevented by intel_choose_pipe_bpp_dither. */ 5558 BUG(); 5559 } 5560 5561 if (crtc_state->dither) 5562 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP); 5563 5564 if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) 5565 val |= PIPECONF_INTERLACED_ILK; 5566 else 5567 val |= PIPECONF_PROGRESSIVE; 5568 5569 /* 5570 * This would end up with an odd purple hue over 5571 * the entire display. Make sure we don't do it. 5572 */ 5573 drm_WARN_ON(&dev_priv->drm, crtc_state->limited_color_range && 5574 crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB); 5575 5576 if (crtc_state->limited_color_range && 5577 !intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) 5578 val |= PIPECONF_COLOR_RANGE_SELECT; 5579 5580 if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB) 5581 val |= PIPECONF_OUTPUT_COLORSPACE_YUV709; 5582 5583 val |= PIPECONF_GAMMA_MODE(crtc_state->gamma_mode); 5584 5585 val |= PIPECONF_FRAME_START_DELAY(dev_priv->framestart_delay - 1); 5586 5587 intel_de_write(dev_priv, PIPECONF(pipe), val); 5588 intel_de_posting_read(dev_priv, PIPECONF(pipe)); 5589 } 5590 5591 static void hsw_set_pipeconf(const struct intel_crtc_state *crtc_state) 5592 { 5593 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 5594 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5595 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 5596 u32 val = 0; 5597 5598 if (IS_HASWELL(dev_priv) && crtc_state->dither) 5599 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP); 5600 5601 if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) 5602 val |= PIPECONF_INTERLACED_ILK; 5603 else 5604 val |= PIPECONF_PROGRESSIVE; 5605 5606 if (IS_HASWELL(dev_priv) && 5607 crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB) 5608 val |= PIPECONF_OUTPUT_COLORSPACE_YUV_HSW; 5609 5610 intel_de_write(dev_priv, PIPECONF(cpu_transcoder), val); 5611 intel_de_posting_read(dev_priv, PIPECONF(cpu_transcoder)); 5612 } 5613 5614 static void bdw_set_pipemisc(const struct intel_crtc_state *crtc_state) 5615 { 5616 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 5617 const struct intel_crtc_scaler_state *scaler_state = 5618 &crtc_state->scaler_state; 5619 5620 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5621 u32 val = 0; 5622 int i; 5623 5624 switch (crtc_state->pipe_bpp) { 5625 case 18: 5626 val |= PIPEMISC_6_BPC; 5627 break; 5628 case 24: 5629 val |= PIPEMISC_8_BPC; 5630 break; 5631 case 30: 5632 val |= PIPEMISC_10_BPC; 5633 break; 5634 case 36: 5635 /* Port output 12BPC defined for ADLP+ */ 5636 if (DISPLAY_VER(dev_priv) > 12) 5637 val |= PIPEMISC_12_BPC_ADLP; 5638 break; 5639 default: 5640 MISSING_CASE(crtc_state->pipe_bpp); 5641 break; 5642 } 5643 5644 if (crtc_state->dither) 5645 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP; 5646 5647 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420 || 5648 crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444) 5649 val |= PIPEMISC_OUTPUT_COLORSPACE_YUV; 5650 5651 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420) 5652 val |= PIPEMISC_YUV420_ENABLE | 5653 PIPEMISC_YUV420_MODE_FULL_BLEND; 5654 5655 if (DISPLAY_VER(dev_priv) >= 11 && 5656 (crtc_state->active_planes & ~(icl_hdr_plane_mask() | 5657 BIT(PLANE_CURSOR))) == 0) 5658 val |= PIPEMISC_HDR_MODE_PRECISION; 5659 5660 if (DISPLAY_VER(dev_priv) >= 12) 5661 val |= PIPEMISC_PIXEL_ROUNDING_TRUNC; 5662 5663 if (IS_ALDERLAKE_P(dev_priv)) { 5664 bool scaler_in_use = false; 5665 5666 for (i = 0; i < crtc->num_scalers; i++) { 5667 if (!scaler_state->scalers[i].in_use) 5668 continue; 5669 5670 scaler_in_use = true; 5671 break; 5672 } 5673 5674 intel_de_rmw(dev_priv, PIPE_MISC2(crtc->pipe), 5675 PIPE_MISC2_UNDERRUN_BUBBLE_COUNTER_MASK, 5676 scaler_in_use ? PIPE_MISC2_BUBBLE_COUNTER_SCALER_EN : 5677 PIPE_MISC2_BUBBLE_COUNTER_SCALER_DIS); 5678 } 5679 5680 intel_de_write(dev_priv, PIPEMISC(crtc->pipe), val); 5681 } 5682 5683 int bdw_get_pipemisc_bpp(struct intel_crtc *crtc) 5684 { 5685 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5686 u32 tmp; 5687 5688 tmp = intel_de_read(dev_priv, PIPEMISC(crtc->pipe)); 5689 5690 switch (tmp & PIPEMISC_BPC_MASK) { 5691 case PIPEMISC_6_BPC: 5692 return 18; 5693 case PIPEMISC_8_BPC: 5694 return 24; 5695 case PIPEMISC_10_BPC: 5696 return 30; 5697 /* 5698 * PORT OUTPUT 12 BPC defined for ADLP+. 5699 * 5700 * TODO: 5701 * For previous platforms with DSI interface, bits 5:7 5702 * are used for storing pipe_bpp irrespective of dithering. 5703 * Since the value of 12 BPC is not defined for these bits 5704 * on older platforms, need to find a workaround for 12 BPC 5705 * MIPI DSI HW readout. 5706 */ 5707 case PIPEMISC_12_BPC_ADLP: 5708 if (DISPLAY_VER(dev_priv) > 12) 5709 return 36; 5710 fallthrough; 5711 default: 5712 MISSING_CASE(tmp); 5713 return 0; 5714 } 5715 } 5716 5717 int ilk_get_lanes_required(int target_clock, int link_bw, int bpp) 5718 { 5719 /* 5720 * Account for spread spectrum to avoid 5721 * oversubscribing the link. Max center spread 5722 * is 2.5%; use 5% for safety's sake. 5723 */ 5724 u32 bps = target_clock * bpp * 21 / 20; 5725 return DIV_ROUND_UP(bps, link_bw * 8); 5726 } 5727 5728 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc, 5729 struct intel_link_m_n *m_n) 5730 { 5731 struct drm_device *dev = crtc->base.dev; 5732 struct drm_i915_private *dev_priv = to_i915(dev); 5733 enum pipe pipe = crtc->pipe; 5734 5735 m_n->link_m = intel_de_read(dev_priv, PCH_TRANS_LINK_M1(pipe)); 5736 m_n->link_n = intel_de_read(dev_priv, PCH_TRANS_LINK_N1(pipe)); 5737 m_n->gmch_m = intel_de_read(dev_priv, PCH_TRANS_DATA_M1(pipe)) 5738 & ~TU_SIZE_MASK; 5739 m_n->gmch_n = intel_de_read(dev_priv, PCH_TRANS_DATA_N1(pipe)); 5740 m_n->tu = ((intel_de_read(dev_priv, PCH_TRANS_DATA_M1(pipe)) 5741 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; 5742 } 5743 5744 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc, 5745 enum transcoder transcoder, 5746 struct intel_link_m_n *m_n, 5747 struct intel_link_m_n *m2_n2) 5748 { 5749 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5750 enum pipe pipe = crtc->pipe; 5751 5752 if (DISPLAY_VER(dev_priv) >= 5) { 5753 m_n->link_m = intel_de_read(dev_priv, 5754 PIPE_LINK_M1(transcoder)); 5755 m_n->link_n = intel_de_read(dev_priv, 5756 PIPE_LINK_N1(transcoder)); 5757 m_n->gmch_m = intel_de_read(dev_priv, 5758 PIPE_DATA_M1(transcoder)) 5759 & ~TU_SIZE_MASK; 5760 m_n->gmch_n = intel_de_read(dev_priv, 5761 PIPE_DATA_N1(transcoder)); 5762 m_n->tu = ((intel_de_read(dev_priv, PIPE_DATA_M1(transcoder)) 5763 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; 5764 5765 if (m2_n2 && transcoder_has_m2_n2(dev_priv, transcoder)) { 5766 m2_n2->link_m = intel_de_read(dev_priv, 5767 PIPE_LINK_M2(transcoder)); 5768 m2_n2->link_n = intel_de_read(dev_priv, 5769 PIPE_LINK_N2(transcoder)); 5770 m2_n2->gmch_m = intel_de_read(dev_priv, 5771 PIPE_DATA_M2(transcoder)) 5772 & ~TU_SIZE_MASK; 5773 m2_n2->gmch_n = intel_de_read(dev_priv, 5774 PIPE_DATA_N2(transcoder)); 5775 m2_n2->tu = ((intel_de_read(dev_priv, PIPE_DATA_M2(transcoder)) 5776 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; 5777 } 5778 } else { 5779 m_n->link_m = intel_de_read(dev_priv, PIPE_LINK_M_G4X(pipe)); 5780 m_n->link_n = intel_de_read(dev_priv, PIPE_LINK_N_G4X(pipe)); 5781 m_n->gmch_m = intel_de_read(dev_priv, PIPE_DATA_M_G4X(pipe)) 5782 & ~TU_SIZE_MASK; 5783 m_n->gmch_n = intel_de_read(dev_priv, PIPE_DATA_N_G4X(pipe)); 5784 m_n->tu = ((intel_de_read(dev_priv, PIPE_DATA_M_G4X(pipe)) 5785 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; 5786 } 5787 } 5788 5789 void intel_dp_get_m_n(struct intel_crtc *crtc, 5790 struct intel_crtc_state *pipe_config) 5791 { 5792 if (pipe_config->has_pch_encoder) 5793 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n); 5794 else 5795 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder, 5796 &pipe_config->dp_m_n, 5797 &pipe_config->dp_m2_n2); 5798 } 5799 5800 static void ilk_get_fdi_m_n_config(struct intel_crtc *crtc, 5801 struct intel_crtc_state *pipe_config) 5802 { 5803 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder, 5804 &pipe_config->fdi_m_n, NULL); 5805 } 5806 5807 static void ilk_get_pfit_pos_size(struct intel_crtc_state *crtc_state, 5808 u32 pos, u32 size) 5809 { 5810 drm_rect_init(&crtc_state->pch_pfit.dst, 5811 pos >> 16, pos & 0xffff, 5812 size >> 16, size & 0xffff); 5813 } 5814 5815 static void skl_get_pfit_config(struct intel_crtc_state *crtc_state) 5816 { 5817 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 5818 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5819 struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state; 5820 int id = -1; 5821 int i; 5822 5823 /* find scaler attached to this pipe */ 5824 for (i = 0; i < crtc->num_scalers; i++) { 5825 u32 ctl, pos, size; 5826 5827 ctl = intel_de_read(dev_priv, SKL_PS_CTRL(crtc->pipe, i)); 5828 if ((ctl & (PS_SCALER_EN | PS_PLANE_SEL_MASK)) != PS_SCALER_EN) 5829 continue; 5830 5831 id = i; 5832 crtc_state->pch_pfit.enabled = true; 5833 5834 pos = intel_de_read(dev_priv, SKL_PS_WIN_POS(crtc->pipe, i)); 5835 size = intel_de_read(dev_priv, SKL_PS_WIN_SZ(crtc->pipe, i)); 5836 5837 ilk_get_pfit_pos_size(crtc_state, pos, size); 5838 5839 scaler_state->scalers[i].in_use = true; 5840 break; 5841 } 5842 5843 scaler_state->scaler_id = id; 5844 if (id >= 0) 5845 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX); 5846 else 5847 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX); 5848 } 5849 5850 static void ilk_get_pfit_config(struct intel_crtc_state *crtc_state) 5851 { 5852 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 5853 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5854 u32 ctl, pos, size; 5855 5856 ctl = intel_de_read(dev_priv, PF_CTL(crtc->pipe)); 5857 if ((ctl & PF_ENABLE) == 0) 5858 return; 5859 5860 crtc_state->pch_pfit.enabled = true; 5861 5862 pos = intel_de_read(dev_priv, PF_WIN_POS(crtc->pipe)); 5863 size = intel_de_read(dev_priv, PF_WIN_SZ(crtc->pipe)); 5864 5865 ilk_get_pfit_pos_size(crtc_state, pos, size); 5866 5867 /* 5868 * We currently do not free assignements of panel fitters on 5869 * ivb/hsw (since we don't use the higher upscaling modes which 5870 * differentiates them) so just WARN about this case for now. 5871 */ 5872 drm_WARN_ON(&dev_priv->drm, DISPLAY_VER(dev_priv) == 7 && 5873 (ctl & PF_PIPE_SEL_MASK_IVB) != PF_PIPE_SEL_IVB(crtc->pipe)); 5874 } 5875 5876 static bool ilk_get_pipe_config(struct intel_crtc *crtc, 5877 struct intel_crtc_state *pipe_config) 5878 { 5879 struct drm_device *dev = crtc->base.dev; 5880 struct drm_i915_private *dev_priv = to_i915(dev); 5881 enum intel_display_power_domain power_domain; 5882 intel_wakeref_t wakeref; 5883 u32 tmp; 5884 bool ret; 5885 5886 power_domain = POWER_DOMAIN_PIPE(crtc->pipe); 5887 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain); 5888 if (!wakeref) 5889 return false; 5890 5891 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe; 5892 pipe_config->shared_dpll = NULL; 5893 5894 ret = false; 5895 tmp = intel_de_read(dev_priv, PIPECONF(crtc->pipe)); 5896 if (!(tmp & PIPECONF_ENABLE)) 5897 goto out; 5898 5899 switch (tmp & PIPECONF_BPC_MASK) { 5900 case PIPECONF_6BPC: 5901 pipe_config->pipe_bpp = 18; 5902 break; 5903 case PIPECONF_8BPC: 5904 pipe_config->pipe_bpp = 24; 5905 break; 5906 case PIPECONF_10BPC: 5907 pipe_config->pipe_bpp = 30; 5908 break; 5909 case PIPECONF_12BPC: 5910 pipe_config->pipe_bpp = 36; 5911 break; 5912 default: 5913 break; 5914 } 5915 5916 if (tmp & PIPECONF_COLOR_RANGE_SELECT) 5917 pipe_config->limited_color_range = true; 5918 5919 switch (tmp & PIPECONF_OUTPUT_COLORSPACE_MASK) { 5920 case PIPECONF_OUTPUT_COLORSPACE_YUV601: 5921 case PIPECONF_OUTPUT_COLORSPACE_YUV709: 5922 pipe_config->output_format = INTEL_OUTPUT_FORMAT_YCBCR444; 5923 break; 5924 default: 5925 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB; 5926 break; 5927 } 5928 5929 pipe_config->gamma_mode = (tmp & PIPECONF_GAMMA_MODE_MASK_ILK) >> 5930 PIPECONF_GAMMA_MODE_SHIFT; 5931 5932 pipe_config->csc_mode = intel_de_read(dev_priv, 5933 PIPE_CSC_MODE(crtc->pipe)); 5934 5935 i9xx_get_pipe_color_config(pipe_config); 5936 intel_color_get_config(pipe_config); 5937 5938 if (intel_de_read(dev_priv, PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) { 5939 struct intel_shared_dpll *pll; 5940 enum intel_dpll_id pll_id; 5941 bool pll_active; 5942 5943 pipe_config->has_pch_encoder = true; 5944 5945 tmp = intel_de_read(dev_priv, FDI_RX_CTL(crtc->pipe)); 5946 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >> 5947 FDI_DP_PORT_WIDTH_SHIFT) + 1; 5948 5949 ilk_get_fdi_m_n_config(crtc, pipe_config); 5950 5951 if (HAS_PCH_IBX(dev_priv)) { 5952 /* 5953 * The pipe->pch transcoder and pch transcoder->pll 5954 * mapping is fixed. 5955 */ 5956 pll_id = (enum intel_dpll_id) crtc->pipe; 5957 } else { 5958 tmp = intel_de_read(dev_priv, PCH_DPLL_SEL); 5959 if (tmp & TRANS_DPLLB_SEL(crtc->pipe)) 5960 pll_id = DPLL_ID_PCH_PLL_B; 5961 else 5962 pll_id= DPLL_ID_PCH_PLL_A; 5963 } 5964 5965 pipe_config->shared_dpll = 5966 intel_get_shared_dpll_by_id(dev_priv, pll_id); 5967 pll = pipe_config->shared_dpll; 5968 5969 pll_active = intel_dpll_get_hw_state(dev_priv, pll, 5970 &pipe_config->dpll_hw_state); 5971 drm_WARN_ON(dev, !pll_active); 5972 5973 tmp = pipe_config->dpll_hw_state.dpll; 5974 pipe_config->pixel_multiplier = 5975 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK) 5976 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1; 5977 5978 ilk_pch_clock_get(crtc, pipe_config); 5979 } else { 5980 pipe_config->pixel_multiplier = 1; 5981 } 5982 5983 intel_get_transcoder_timings(crtc, pipe_config); 5984 intel_get_pipe_src_size(crtc, pipe_config); 5985 5986 ilk_get_pfit_config(pipe_config); 5987 5988 ret = true; 5989 5990 out: 5991 intel_display_power_put(dev_priv, power_domain, wakeref); 5992 5993 return ret; 5994 } 5995 5996 static bool hsw_get_transcoder_state(struct intel_crtc *crtc, 5997 struct intel_crtc_state *pipe_config, 5998 struct intel_display_power_domain_set *power_domain_set) 5999 { 6000 struct drm_device *dev = crtc->base.dev; 6001 struct drm_i915_private *dev_priv = to_i915(dev); 6002 unsigned long panel_transcoder_mask = BIT(TRANSCODER_EDP); 6003 unsigned long enabled_panel_transcoders = 0; 6004 enum transcoder panel_transcoder; 6005 u32 tmp; 6006 6007 if (DISPLAY_VER(dev_priv) >= 11) 6008 panel_transcoder_mask |= 6009 BIT(TRANSCODER_DSI_0) | BIT(TRANSCODER_DSI_1); 6010 6011 /* 6012 * The pipe->transcoder mapping is fixed with the exception of the eDP 6013 * and DSI transcoders handled below. 6014 */ 6015 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe; 6016 6017 /* 6018 * XXX: Do intel_display_power_get_if_enabled before reading this (for 6019 * consistency and less surprising code; it's in always on power). 6020 */ 6021 for_each_cpu_transcoder_masked(dev_priv, panel_transcoder, 6022 panel_transcoder_mask) { 6023 bool force_thru = false; 6024 enum pipe trans_pipe; 6025 6026 tmp = intel_de_read(dev_priv, 6027 TRANS_DDI_FUNC_CTL(panel_transcoder)); 6028 if (!(tmp & TRANS_DDI_FUNC_ENABLE)) 6029 continue; 6030 6031 /* 6032 * Log all enabled ones, only use the first one. 6033 * 6034 * FIXME: This won't work for two separate DSI displays. 6035 */ 6036 enabled_panel_transcoders |= BIT(panel_transcoder); 6037 if (enabled_panel_transcoders != BIT(panel_transcoder)) 6038 continue; 6039 6040 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) { 6041 default: 6042 drm_WARN(dev, 1, 6043 "unknown pipe linked to transcoder %s\n", 6044 transcoder_name(panel_transcoder)); 6045 fallthrough; 6046 case TRANS_DDI_EDP_INPUT_A_ONOFF: 6047 force_thru = true; 6048 fallthrough; 6049 case TRANS_DDI_EDP_INPUT_A_ON: 6050 trans_pipe = PIPE_A; 6051 break; 6052 case TRANS_DDI_EDP_INPUT_B_ONOFF: 6053 trans_pipe = PIPE_B; 6054 break; 6055 case TRANS_DDI_EDP_INPUT_C_ONOFF: 6056 trans_pipe = PIPE_C; 6057 break; 6058 case TRANS_DDI_EDP_INPUT_D_ONOFF: 6059 trans_pipe = PIPE_D; 6060 break; 6061 } 6062 6063 if (trans_pipe == crtc->pipe) { 6064 pipe_config->cpu_transcoder = panel_transcoder; 6065 pipe_config->pch_pfit.force_thru = force_thru; 6066 } 6067 } 6068 6069 /* 6070 * Valid combos: none, eDP, DSI0, DSI1, DSI0+DSI1 6071 */ 6072 drm_WARN_ON(dev, (enabled_panel_transcoders & BIT(TRANSCODER_EDP)) && 6073 enabled_panel_transcoders != BIT(TRANSCODER_EDP)); 6074 6075 if (!intel_display_power_get_in_set_if_enabled(dev_priv, power_domain_set, 6076 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder))) 6077 return false; 6078 6079 tmp = intel_de_read(dev_priv, PIPECONF(pipe_config->cpu_transcoder)); 6080 6081 return tmp & PIPECONF_ENABLE; 6082 } 6083 6084 static bool bxt_get_dsi_transcoder_state(struct intel_crtc *crtc, 6085 struct intel_crtc_state *pipe_config, 6086 struct intel_display_power_domain_set *power_domain_set) 6087 { 6088 struct drm_device *dev = crtc->base.dev; 6089 struct drm_i915_private *dev_priv = to_i915(dev); 6090 enum transcoder cpu_transcoder; 6091 enum port port; 6092 u32 tmp; 6093 6094 for_each_port_masked(port, BIT(PORT_A) | BIT(PORT_C)) { 6095 if (port == PORT_A) 6096 cpu_transcoder = TRANSCODER_DSI_A; 6097 else 6098 cpu_transcoder = TRANSCODER_DSI_C; 6099 6100 if (!intel_display_power_get_in_set_if_enabled(dev_priv, power_domain_set, 6101 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) 6102 continue; 6103 6104 /* 6105 * The PLL needs to be enabled with a valid divider 6106 * configuration, otherwise accessing DSI registers will hang 6107 * the machine. See BSpec North Display Engine 6108 * registers/MIPI[BXT]. We can break out here early, since we 6109 * need the same DSI PLL to be enabled for both DSI ports. 6110 */ 6111 if (!bxt_dsi_pll_is_enabled(dev_priv)) 6112 break; 6113 6114 /* XXX: this works for video mode only */ 6115 tmp = intel_de_read(dev_priv, BXT_MIPI_PORT_CTRL(port)); 6116 if (!(tmp & DPI_ENABLE)) 6117 continue; 6118 6119 tmp = intel_de_read(dev_priv, MIPI_CTRL(port)); 6120 if ((tmp & BXT_PIPE_SELECT_MASK) != BXT_PIPE_SELECT(crtc->pipe)) 6121 continue; 6122 6123 pipe_config->cpu_transcoder = cpu_transcoder; 6124 break; 6125 } 6126 6127 return transcoder_is_dsi(pipe_config->cpu_transcoder); 6128 } 6129 6130 static void hsw_get_ddi_port_state(struct intel_crtc *crtc, 6131 struct intel_crtc_state *pipe_config) 6132 { 6133 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6134 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder; 6135 enum port port; 6136 u32 tmp; 6137 6138 if (transcoder_is_dsi(cpu_transcoder)) { 6139 port = (cpu_transcoder == TRANSCODER_DSI_A) ? 6140 PORT_A : PORT_B; 6141 } else { 6142 tmp = intel_de_read(dev_priv, 6143 TRANS_DDI_FUNC_CTL(cpu_transcoder)); 6144 if (!(tmp & TRANS_DDI_FUNC_ENABLE)) 6145 return; 6146 if (DISPLAY_VER(dev_priv) >= 12) 6147 port = TGL_TRANS_DDI_FUNC_CTL_VAL_TO_PORT(tmp); 6148 else 6149 port = TRANS_DDI_FUNC_CTL_VAL_TO_PORT(tmp); 6150 } 6151 6152 /* 6153 * Haswell has only FDI/PCH transcoder A. It is which is connected to 6154 * DDI E. So just check whether this pipe is wired to DDI E and whether 6155 * the PCH transcoder is on. 6156 */ 6157 if (DISPLAY_VER(dev_priv) < 9 && 6158 (port == PORT_E) && intel_de_read(dev_priv, LPT_TRANSCONF) & TRANS_ENABLE) { 6159 pipe_config->has_pch_encoder = true; 6160 6161 tmp = intel_de_read(dev_priv, FDI_RX_CTL(PIPE_A)); 6162 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >> 6163 FDI_DP_PORT_WIDTH_SHIFT) + 1; 6164 6165 ilk_get_fdi_m_n_config(crtc, pipe_config); 6166 } 6167 } 6168 6169 static bool hsw_get_pipe_config(struct intel_crtc *crtc, 6170 struct intel_crtc_state *pipe_config) 6171 { 6172 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6173 struct intel_display_power_domain_set power_domain_set = { }; 6174 bool active; 6175 u32 tmp; 6176 6177 if (!intel_display_power_get_in_set_if_enabled(dev_priv, &power_domain_set, 6178 POWER_DOMAIN_PIPE(crtc->pipe))) 6179 return false; 6180 6181 pipe_config->shared_dpll = NULL; 6182 6183 active = hsw_get_transcoder_state(crtc, pipe_config, &power_domain_set); 6184 6185 if ((IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) && 6186 bxt_get_dsi_transcoder_state(crtc, pipe_config, &power_domain_set)) { 6187 drm_WARN_ON(&dev_priv->drm, active); 6188 active = true; 6189 } 6190 6191 intel_dsc_get_config(pipe_config); 6192 if (DISPLAY_VER(dev_priv) >= 13 && !pipe_config->dsc.compression_enable) 6193 intel_uncompressed_joiner_get_config(pipe_config); 6194 6195 if (!active) { 6196 /* bigjoiner slave doesn't enable transcoder */ 6197 if (!pipe_config->bigjoiner_slave) 6198 goto out; 6199 6200 active = true; 6201 pipe_config->pixel_multiplier = 1; 6202 6203 /* we cannot read out most state, so don't bother.. */ 6204 pipe_config->quirks |= PIPE_CONFIG_QUIRK_BIGJOINER_SLAVE; 6205 } else if (!transcoder_is_dsi(pipe_config->cpu_transcoder) || 6206 DISPLAY_VER(dev_priv) >= 11) { 6207 hsw_get_ddi_port_state(crtc, pipe_config); 6208 intel_get_transcoder_timings(crtc, pipe_config); 6209 } 6210 6211 if (HAS_VRR(dev_priv) && !transcoder_is_dsi(pipe_config->cpu_transcoder)) 6212 intel_vrr_get_config(crtc, pipe_config); 6213 6214 intel_get_pipe_src_size(crtc, pipe_config); 6215 6216 if (IS_HASWELL(dev_priv)) { 6217 u32 tmp = intel_de_read(dev_priv, 6218 PIPECONF(pipe_config->cpu_transcoder)); 6219 6220 if (tmp & PIPECONF_OUTPUT_COLORSPACE_YUV_HSW) 6221 pipe_config->output_format = INTEL_OUTPUT_FORMAT_YCBCR444; 6222 else 6223 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB; 6224 } else { 6225 pipe_config->output_format = 6226 bdw_get_pipemisc_output_format(crtc); 6227 } 6228 6229 pipe_config->gamma_mode = intel_de_read(dev_priv, 6230 GAMMA_MODE(crtc->pipe)); 6231 6232 pipe_config->csc_mode = intel_de_read(dev_priv, 6233 PIPE_CSC_MODE(crtc->pipe)); 6234 6235 if (DISPLAY_VER(dev_priv) >= 9) { 6236 tmp = intel_de_read(dev_priv, SKL_BOTTOM_COLOR(crtc->pipe)); 6237 6238 if (tmp & SKL_BOTTOM_COLOR_GAMMA_ENABLE) 6239 pipe_config->gamma_enable = true; 6240 6241 if (tmp & SKL_BOTTOM_COLOR_CSC_ENABLE) 6242 pipe_config->csc_enable = true; 6243 } else { 6244 i9xx_get_pipe_color_config(pipe_config); 6245 } 6246 6247 intel_color_get_config(pipe_config); 6248 6249 tmp = intel_de_read(dev_priv, WM_LINETIME(crtc->pipe)); 6250 pipe_config->linetime = REG_FIELD_GET(HSW_LINETIME_MASK, tmp); 6251 if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) 6252 pipe_config->ips_linetime = 6253 REG_FIELD_GET(HSW_IPS_LINETIME_MASK, tmp); 6254 6255 if (intel_display_power_get_in_set_if_enabled(dev_priv, &power_domain_set, 6256 POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe))) { 6257 if (DISPLAY_VER(dev_priv) >= 9) 6258 skl_get_pfit_config(pipe_config); 6259 else 6260 ilk_get_pfit_config(pipe_config); 6261 } 6262 6263 if (hsw_crtc_supports_ips(crtc)) { 6264 if (IS_HASWELL(dev_priv)) 6265 pipe_config->ips_enabled = intel_de_read(dev_priv, 6266 IPS_CTL) & IPS_ENABLE; 6267 else { 6268 /* 6269 * We cannot readout IPS state on broadwell, set to 6270 * true so we can set it to a defined state on first 6271 * commit. 6272 */ 6273 pipe_config->ips_enabled = true; 6274 } 6275 } 6276 6277 if (pipe_config->bigjoiner_slave) { 6278 /* Cannot be read out as a slave, set to 0. */ 6279 pipe_config->pixel_multiplier = 0; 6280 } else if (pipe_config->cpu_transcoder != TRANSCODER_EDP && 6281 !transcoder_is_dsi(pipe_config->cpu_transcoder)) { 6282 pipe_config->pixel_multiplier = 6283 intel_de_read(dev_priv, 6284 PIPE_MULT(pipe_config->cpu_transcoder)) + 1; 6285 } else { 6286 pipe_config->pixel_multiplier = 1; 6287 } 6288 6289 out: 6290 intel_display_power_put_all_in_set(dev_priv, &power_domain_set); 6291 6292 return active; 6293 } 6294 6295 static bool intel_crtc_get_pipe_config(struct intel_crtc_state *crtc_state) 6296 { 6297 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 6298 struct drm_i915_private *i915 = to_i915(crtc->base.dev); 6299 6300 if (!i915->display.get_pipe_config(crtc, crtc_state)) 6301 return false; 6302 6303 crtc_state->hw.active = true; 6304 6305 intel_crtc_readout_derived_state(crtc_state); 6306 6307 return true; 6308 } 6309 6310 /* VESA 640x480x72Hz mode to set on the pipe */ 6311 static const struct drm_display_mode load_detect_mode = { 6312 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664, 6313 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 6314 }; 6315 6316 struct drm_framebuffer * 6317 intel_framebuffer_create(struct drm_i915_gem_object *obj, 6318 struct drm_mode_fb_cmd2 *mode_cmd) 6319 { 6320 struct intel_framebuffer *intel_fb; 6321 int ret; 6322 6323 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL); 6324 if (!intel_fb) 6325 return ERR_PTR(-ENOMEM); 6326 6327 ret = intel_framebuffer_init(intel_fb, obj, mode_cmd); 6328 if (ret) 6329 goto err; 6330 6331 return &intel_fb->base; 6332 6333 err: 6334 kfree(intel_fb); 6335 return ERR_PTR(ret); 6336 } 6337 6338 static int intel_modeset_disable_planes(struct drm_atomic_state *state, 6339 struct drm_crtc *crtc) 6340 { 6341 struct drm_plane *plane; 6342 struct drm_plane_state *plane_state; 6343 int ret, i; 6344 6345 ret = drm_atomic_add_affected_planes(state, crtc); 6346 if (ret) 6347 return ret; 6348 6349 for_each_new_plane_in_state(state, plane, plane_state, i) { 6350 if (plane_state->crtc != crtc) 6351 continue; 6352 6353 ret = drm_atomic_set_crtc_for_plane(plane_state, NULL); 6354 if (ret) 6355 return ret; 6356 6357 drm_atomic_set_fb_for_plane(plane_state, NULL); 6358 } 6359 6360 return 0; 6361 } 6362 6363 int intel_get_load_detect_pipe(struct drm_connector *connector, 6364 struct intel_load_detect_pipe *old, 6365 struct drm_modeset_acquire_ctx *ctx) 6366 { 6367 struct intel_encoder *encoder = 6368 intel_attached_encoder(to_intel_connector(connector)); 6369 struct intel_crtc *possible_crtc; 6370 struct intel_crtc *crtc = NULL; 6371 struct drm_device *dev = encoder->base.dev; 6372 struct drm_i915_private *dev_priv = to_i915(dev); 6373 struct drm_mode_config *config = &dev->mode_config; 6374 struct drm_atomic_state *state = NULL, *restore_state = NULL; 6375 struct drm_connector_state *connector_state; 6376 struct intel_crtc_state *crtc_state; 6377 int ret; 6378 6379 drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n", 6380 connector->base.id, connector->name, 6381 encoder->base.base.id, encoder->base.name); 6382 6383 old->restore_state = NULL; 6384 6385 drm_WARN_ON(dev, !drm_modeset_is_locked(&config->connection_mutex)); 6386 6387 /* 6388 * Algorithm gets a little messy: 6389 * 6390 * - if the connector already has an assigned crtc, use it (but make 6391 * sure it's on first) 6392 * 6393 * - try to find the first unused crtc that can drive this connector, 6394 * and use that if we find one 6395 */ 6396 6397 /* See if we already have a CRTC for this connector */ 6398 if (connector->state->crtc) { 6399 crtc = to_intel_crtc(connector->state->crtc); 6400 6401 ret = drm_modeset_lock(&crtc->base.mutex, ctx); 6402 if (ret) 6403 goto fail; 6404 6405 /* Make sure the crtc and connector are running */ 6406 goto found; 6407 } 6408 6409 /* Find an unused one (if possible) */ 6410 for_each_intel_crtc(dev, possible_crtc) { 6411 if (!(encoder->base.possible_crtcs & 6412 drm_crtc_mask(&possible_crtc->base))) 6413 continue; 6414 6415 ret = drm_modeset_lock(&possible_crtc->base.mutex, ctx); 6416 if (ret) 6417 goto fail; 6418 6419 if (possible_crtc->base.state->enable) { 6420 drm_modeset_unlock(&possible_crtc->base.mutex); 6421 continue; 6422 } 6423 6424 crtc = possible_crtc; 6425 break; 6426 } 6427 6428 /* 6429 * If we didn't find an unused CRTC, don't use any. 6430 */ 6431 if (!crtc) { 6432 drm_dbg_kms(&dev_priv->drm, 6433 "no pipe available for load-detect\n"); 6434 ret = -ENODEV; 6435 goto fail; 6436 } 6437 6438 found: 6439 state = drm_atomic_state_alloc(dev); 6440 restore_state = drm_atomic_state_alloc(dev); 6441 if (!state || !restore_state) { 6442 ret = -ENOMEM; 6443 goto fail; 6444 } 6445 6446 state->acquire_ctx = ctx; 6447 restore_state->acquire_ctx = ctx; 6448 6449 connector_state = drm_atomic_get_connector_state(state, connector); 6450 if (IS_ERR(connector_state)) { 6451 ret = PTR_ERR(connector_state); 6452 goto fail; 6453 } 6454 6455 ret = drm_atomic_set_crtc_for_connector(connector_state, &crtc->base); 6456 if (ret) 6457 goto fail; 6458 6459 crtc_state = intel_atomic_get_crtc_state(state, crtc); 6460 if (IS_ERR(crtc_state)) { 6461 ret = PTR_ERR(crtc_state); 6462 goto fail; 6463 } 6464 6465 crtc_state->uapi.active = true; 6466 6467 ret = drm_atomic_set_mode_for_crtc(&crtc_state->uapi, 6468 &load_detect_mode); 6469 if (ret) 6470 goto fail; 6471 6472 ret = intel_modeset_disable_planes(state, &crtc->base); 6473 if (ret) 6474 goto fail; 6475 6476 ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state, connector)); 6477 if (!ret) 6478 ret = PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state, &crtc->base)); 6479 if (!ret) 6480 ret = drm_atomic_add_affected_planes(restore_state, &crtc->base); 6481 if (ret) { 6482 drm_dbg_kms(&dev_priv->drm, 6483 "Failed to create a copy of old state to restore: %i\n", 6484 ret); 6485 goto fail; 6486 } 6487 6488 ret = drm_atomic_commit(state); 6489 if (ret) { 6490 drm_dbg_kms(&dev_priv->drm, 6491 "failed to set mode on load-detect pipe\n"); 6492 goto fail; 6493 } 6494 6495 old->restore_state = restore_state; 6496 drm_atomic_state_put(state); 6497 6498 /* let the connector get through one full cycle before testing */ 6499 intel_wait_for_vblank(dev_priv, crtc->pipe); 6500 return true; 6501 6502 fail: 6503 if (state) { 6504 drm_atomic_state_put(state); 6505 state = NULL; 6506 } 6507 if (restore_state) { 6508 drm_atomic_state_put(restore_state); 6509 restore_state = NULL; 6510 } 6511 6512 if (ret == -EDEADLK) 6513 return ret; 6514 6515 return false; 6516 } 6517 6518 void intel_release_load_detect_pipe(struct drm_connector *connector, 6519 struct intel_load_detect_pipe *old, 6520 struct drm_modeset_acquire_ctx *ctx) 6521 { 6522 struct intel_encoder *intel_encoder = 6523 intel_attached_encoder(to_intel_connector(connector)); 6524 struct drm_i915_private *i915 = to_i915(intel_encoder->base.dev); 6525 struct drm_encoder *encoder = &intel_encoder->base; 6526 struct drm_atomic_state *state = old->restore_state; 6527 int ret; 6528 6529 drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n", 6530 connector->base.id, connector->name, 6531 encoder->base.id, encoder->name); 6532 6533 if (!state) 6534 return; 6535 6536 ret = drm_atomic_helper_commit_duplicated_state(state, ctx); 6537 if (ret) 6538 drm_dbg_kms(&i915->drm, 6539 "Couldn't release load detect pipe: %i\n", ret); 6540 drm_atomic_state_put(state); 6541 } 6542 6543 static int i9xx_pll_refclk(struct drm_device *dev, 6544 const struct intel_crtc_state *pipe_config) 6545 { 6546 struct drm_i915_private *dev_priv = to_i915(dev); 6547 u32 dpll = pipe_config->dpll_hw_state.dpll; 6548 6549 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN) 6550 return dev_priv->vbt.lvds_ssc_freq; 6551 else if (HAS_PCH_SPLIT(dev_priv)) 6552 return 120000; 6553 else if (DISPLAY_VER(dev_priv) != 2) 6554 return 96000; 6555 else 6556 return 48000; 6557 } 6558 6559 /* Returns the clock of the currently programmed mode of the given pipe. */ 6560 static void i9xx_crtc_clock_get(struct intel_crtc *crtc, 6561 struct intel_crtc_state *pipe_config) 6562 { 6563 struct drm_device *dev = crtc->base.dev; 6564 struct drm_i915_private *dev_priv = to_i915(dev); 6565 enum pipe pipe = crtc->pipe; 6566 u32 dpll = pipe_config->dpll_hw_state.dpll; 6567 u32 fp; 6568 struct dpll clock; 6569 int port_clock; 6570 int refclk = i9xx_pll_refclk(dev, pipe_config); 6571 6572 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0) 6573 fp = pipe_config->dpll_hw_state.fp0; 6574 else 6575 fp = pipe_config->dpll_hw_state.fp1; 6576 6577 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT; 6578 if (IS_PINEVIEW(dev_priv)) { 6579 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1; 6580 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT; 6581 } else { 6582 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT; 6583 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT; 6584 } 6585 6586 if (DISPLAY_VER(dev_priv) != 2) { 6587 if (IS_PINEVIEW(dev_priv)) 6588 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >> 6589 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW); 6590 else 6591 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >> 6592 DPLL_FPA01_P1_POST_DIV_SHIFT); 6593 6594 switch (dpll & DPLL_MODE_MASK) { 6595 case DPLLB_MODE_DAC_SERIAL: 6596 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ? 6597 5 : 10; 6598 break; 6599 case DPLLB_MODE_LVDS: 6600 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ? 6601 7 : 14; 6602 break; 6603 default: 6604 drm_dbg_kms(&dev_priv->drm, 6605 "Unknown DPLL mode %08x in programmed " 6606 "mode\n", (int)(dpll & DPLL_MODE_MASK)); 6607 return; 6608 } 6609 6610 if (IS_PINEVIEW(dev_priv)) 6611 port_clock = pnv_calc_dpll_params(refclk, &clock); 6612 else 6613 port_clock = i9xx_calc_dpll_params(refclk, &clock); 6614 } else { 6615 u32 lvds = IS_I830(dev_priv) ? 0 : intel_de_read(dev_priv, 6616 LVDS); 6617 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN); 6618 6619 if (is_lvds) { 6620 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >> 6621 DPLL_FPA01_P1_POST_DIV_SHIFT); 6622 6623 if (lvds & LVDS_CLKB_POWER_UP) 6624 clock.p2 = 7; 6625 else 6626 clock.p2 = 14; 6627 } else { 6628 if (dpll & PLL_P1_DIVIDE_BY_TWO) 6629 clock.p1 = 2; 6630 else { 6631 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >> 6632 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2; 6633 } 6634 if (dpll & PLL_P2_DIVIDE_BY_4) 6635 clock.p2 = 4; 6636 else 6637 clock.p2 = 2; 6638 } 6639 6640 port_clock = i9xx_calc_dpll_params(refclk, &clock); 6641 } 6642 6643 /* 6644 * This value includes pixel_multiplier. We will use 6645 * port_clock to compute adjusted_mode.crtc_clock in the 6646 * encoder's get_config() function. 6647 */ 6648 pipe_config->port_clock = port_clock; 6649 } 6650 6651 int intel_dotclock_calculate(int link_freq, 6652 const struct intel_link_m_n *m_n) 6653 { 6654 /* 6655 * The calculation for the data clock is: 6656 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp 6657 * But we want to avoid losing precison if possible, so: 6658 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp)) 6659 * 6660 * and the link clock is simpler: 6661 * link_clock = (m * link_clock) / n 6662 */ 6663 6664 if (!m_n->link_n) 6665 return 0; 6666 6667 return div_u64(mul_u32_u32(m_n->link_m, link_freq), m_n->link_n); 6668 } 6669 6670 static void ilk_pch_clock_get(struct intel_crtc *crtc, 6671 struct intel_crtc_state *pipe_config) 6672 { 6673 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6674 6675 /* read out port_clock from the DPLL */ 6676 i9xx_crtc_clock_get(crtc, pipe_config); 6677 6678 /* 6679 * In case there is an active pipe without active ports, 6680 * we may need some idea for the dotclock anyway. 6681 * Calculate one based on the FDI configuration. 6682 */ 6683 pipe_config->hw.adjusted_mode.crtc_clock = 6684 intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config), 6685 &pipe_config->fdi_m_n); 6686 } 6687 6688 /* Returns the currently programmed mode of the given encoder. */ 6689 struct drm_display_mode * 6690 intel_encoder_current_mode(struct intel_encoder *encoder) 6691 { 6692 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 6693 struct intel_crtc_state *crtc_state; 6694 struct drm_display_mode *mode; 6695 struct intel_crtc *crtc; 6696 enum pipe pipe; 6697 6698 if (!encoder->get_hw_state(encoder, &pipe)) 6699 return NULL; 6700 6701 crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 6702 6703 mode = kzalloc(sizeof(*mode), GFP_KERNEL); 6704 if (!mode) 6705 return NULL; 6706 6707 crtc_state = intel_crtc_state_alloc(crtc); 6708 if (!crtc_state) { 6709 kfree(mode); 6710 return NULL; 6711 } 6712 6713 if (!intel_crtc_get_pipe_config(crtc_state)) { 6714 kfree(crtc_state); 6715 kfree(mode); 6716 return NULL; 6717 } 6718 6719 intel_encoder_get_config(encoder, crtc_state); 6720 6721 intel_mode_from_crtc_timings(mode, &crtc_state->hw.adjusted_mode); 6722 6723 kfree(crtc_state); 6724 6725 return mode; 6726 } 6727 6728 /** 6729 * intel_wm_need_update - Check whether watermarks need updating 6730 * @cur: current plane state 6731 * @new: new plane state 6732 * 6733 * Check current plane state versus the new one to determine whether 6734 * watermarks need to be recalculated. 6735 * 6736 * Returns true or false. 6737 */ 6738 static bool intel_wm_need_update(const struct intel_plane_state *cur, 6739 struct intel_plane_state *new) 6740 { 6741 /* Update watermarks on tiling or size changes. */ 6742 if (new->uapi.visible != cur->uapi.visible) 6743 return true; 6744 6745 if (!cur->hw.fb || !new->hw.fb) 6746 return false; 6747 6748 if (cur->hw.fb->modifier != new->hw.fb->modifier || 6749 cur->hw.rotation != new->hw.rotation || 6750 drm_rect_width(&new->uapi.src) != drm_rect_width(&cur->uapi.src) || 6751 drm_rect_height(&new->uapi.src) != drm_rect_height(&cur->uapi.src) || 6752 drm_rect_width(&new->uapi.dst) != drm_rect_width(&cur->uapi.dst) || 6753 drm_rect_height(&new->uapi.dst) != drm_rect_height(&cur->uapi.dst)) 6754 return true; 6755 6756 return false; 6757 } 6758 6759 static bool needs_scaling(const struct intel_plane_state *state) 6760 { 6761 int src_w = drm_rect_width(&state->uapi.src) >> 16; 6762 int src_h = drm_rect_height(&state->uapi.src) >> 16; 6763 int dst_w = drm_rect_width(&state->uapi.dst); 6764 int dst_h = drm_rect_height(&state->uapi.dst); 6765 6766 return (src_w != dst_w || src_h != dst_h); 6767 } 6768 6769 int intel_plane_atomic_calc_changes(const struct intel_crtc_state *old_crtc_state, 6770 struct intel_crtc_state *crtc_state, 6771 const struct intel_plane_state *old_plane_state, 6772 struct intel_plane_state *plane_state) 6773 { 6774 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 6775 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 6776 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6777 bool mode_changed = intel_crtc_needs_modeset(crtc_state); 6778 bool was_crtc_enabled = old_crtc_state->hw.active; 6779 bool is_crtc_enabled = crtc_state->hw.active; 6780 bool turn_off, turn_on, visible, was_visible; 6781 int ret; 6782 6783 if (DISPLAY_VER(dev_priv) >= 9 && plane->id != PLANE_CURSOR) { 6784 ret = skl_update_scaler_plane(crtc_state, plane_state); 6785 if (ret) 6786 return ret; 6787 } 6788 6789 was_visible = old_plane_state->uapi.visible; 6790 visible = plane_state->uapi.visible; 6791 6792 if (!was_crtc_enabled && drm_WARN_ON(&dev_priv->drm, was_visible)) 6793 was_visible = false; 6794 6795 /* 6796 * Visibility is calculated as if the crtc was on, but 6797 * after scaler setup everything depends on it being off 6798 * when the crtc isn't active. 6799 * 6800 * FIXME this is wrong for watermarks. Watermarks should also 6801 * be computed as if the pipe would be active. Perhaps move 6802 * per-plane wm computation to the .check_plane() hook, and 6803 * only combine the results from all planes in the current place? 6804 */ 6805 if (!is_crtc_enabled) { 6806 intel_plane_set_invisible(crtc_state, plane_state); 6807 visible = false; 6808 } 6809 6810 if (!was_visible && !visible) 6811 return 0; 6812 6813 turn_off = was_visible && (!visible || mode_changed); 6814 turn_on = visible && (!was_visible || mode_changed); 6815 6816 drm_dbg_atomic(&dev_priv->drm, 6817 "[CRTC:%d:%s] with [PLANE:%d:%s] visible %i -> %i, off %i, on %i, ms %i\n", 6818 crtc->base.base.id, crtc->base.name, 6819 plane->base.base.id, plane->base.name, 6820 was_visible, visible, 6821 turn_off, turn_on, mode_changed); 6822 6823 if (turn_on) { 6824 if (DISPLAY_VER(dev_priv) < 5 && !IS_G4X(dev_priv)) 6825 crtc_state->update_wm_pre = true; 6826 6827 /* must disable cxsr around plane enable/disable */ 6828 if (plane->id != PLANE_CURSOR) 6829 crtc_state->disable_cxsr = true; 6830 } else if (turn_off) { 6831 if (DISPLAY_VER(dev_priv) < 5 && !IS_G4X(dev_priv)) 6832 crtc_state->update_wm_post = true; 6833 6834 /* must disable cxsr around plane enable/disable */ 6835 if (plane->id != PLANE_CURSOR) 6836 crtc_state->disable_cxsr = true; 6837 } else if (intel_wm_need_update(old_plane_state, plane_state)) { 6838 if (DISPLAY_VER(dev_priv) < 5 && !IS_G4X(dev_priv)) { 6839 /* FIXME bollocks */ 6840 crtc_state->update_wm_pre = true; 6841 crtc_state->update_wm_post = true; 6842 } 6843 } 6844 6845 if (visible || was_visible) 6846 crtc_state->fb_bits |= plane->frontbuffer_bit; 6847 6848 /* 6849 * ILK/SNB DVSACNTR/Sprite Enable 6850 * IVB SPR_CTL/Sprite Enable 6851 * "When in Self Refresh Big FIFO mode, a write to enable the 6852 * plane will be internally buffered and delayed while Big FIFO 6853 * mode is exiting." 6854 * 6855 * Which means that enabling the sprite can take an extra frame 6856 * when we start in big FIFO mode (LP1+). Thus we need to drop 6857 * down to LP0 and wait for vblank in order to make sure the 6858 * sprite gets enabled on the next vblank after the register write. 6859 * Doing otherwise would risk enabling the sprite one frame after 6860 * we've already signalled flip completion. We can resume LP1+ 6861 * once the sprite has been enabled. 6862 * 6863 * 6864 * WaCxSRDisabledForSpriteScaling:ivb 6865 * IVB SPR_SCALE/Scaling Enable 6866 * "Low Power watermarks must be disabled for at least one 6867 * frame before enabling sprite scaling, and kept disabled 6868 * until sprite scaling is disabled." 6869 * 6870 * ILK/SNB DVSASCALE/Scaling Enable 6871 * "When in Self Refresh Big FIFO mode, scaling enable will be 6872 * masked off while Big FIFO mode is exiting." 6873 * 6874 * Despite the w/a only being listed for IVB we assume that 6875 * the ILK/SNB note has similar ramifications, hence we apply 6876 * the w/a on all three platforms. 6877 * 6878 * With experimental results seems this is needed also for primary 6879 * plane, not only sprite plane. 6880 */ 6881 if (plane->id != PLANE_CURSOR && 6882 (IS_IRONLAKE(dev_priv) || IS_SANDYBRIDGE(dev_priv) || 6883 IS_IVYBRIDGE(dev_priv)) && 6884 (turn_on || (!needs_scaling(old_plane_state) && 6885 needs_scaling(plane_state)))) 6886 crtc_state->disable_lp_wm = true; 6887 6888 return 0; 6889 } 6890 6891 static bool encoders_cloneable(const struct intel_encoder *a, 6892 const struct intel_encoder *b) 6893 { 6894 /* masks could be asymmetric, so check both ways */ 6895 return a == b || (a->cloneable & (1 << b->type) && 6896 b->cloneable & (1 << a->type)); 6897 } 6898 6899 static bool check_single_encoder_cloning(struct intel_atomic_state *state, 6900 struct intel_crtc *crtc, 6901 struct intel_encoder *encoder) 6902 { 6903 struct intel_encoder *source_encoder; 6904 struct drm_connector *connector; 6905 struct drm_connector_state *connector_state; 6906 int i; 6907 6908 for_each_new_connector_in_state(&state->base, connector, connector_state, i) { 6909 if (connector_state->crtc != &crtc->base) 6910 continue; 6911 6912 source_encoder = 6913 to_intel_encoder(connector_state->best_encoder); 6914 if (!encoders_cloneable(encoder, source_encoder)) 6915 return false; 6916 } 6917 6918 return true; 6919 } 6920 6921 static int icl_add_linked_planes(struct intel_atomic_state *state) 6922 { 6923 struct intel_plane *plane, *linked; 6924 struct intel_plane_state *plane_state, *linked_plane_state; 6925 int i; 6926 6927 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 6928 linked = plane_state->planar_linked_plane; 6929 6930 if (!linked) 6931 continue; 6932 6933 linked_plane_state = intel_atomic_get_plane_state(state, linked); 6934 if (IS_ERR(linked_plane_state)) 6935 return PTR_ERR(linked_plane_state); 6936 6937 drm_WARN_ON(state->base.dev, 6938 linked_plane_state->planar_linked_plane != plane); 6939 drm_WARN_ON(state->base.dev, 6940 linked_plane_state->planar_slave == plane_state->planar_slave); 6941 } 6942 6943 return 0; 6944 } 6945 6946 static int icl_check_nv12_planes(struct intel_crtc_state *crtc_state) 6947 { 6948 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 6949 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6950 struct intel_atomic_state *state = to_intel_atomic_state(crtc_state->uapi.state); 6951 struct intel_plane *plane, *linked; 6952 struct intel_plane_state *plane_state; 6953 int i; 6954 6955 if (DISPLAY_VER(dev_priv) < 11) 6956 return 0; 6957 6958 /* 6959 * Destroy all old plane links and make the slave plane invisible 6960 * in the crtc_state->active_planes mask. 6961 */ 6962 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 6963 if (plane->pipe != crtc->pipe || !plane_state->planar_linked_plane) 6964 continue; 6965 6966 plane_state->planar_linked_plane = NULL; 6967 if (plane_state->planar_slave && !plane_state->uapi.visible) { 6968 crtc_state->enabled_planes &= ~BIT(plane->id); 6969 crtc_state->active_planes &= ~BIT(plane->id); 6970 crtc_state->update_planes |= BIT(plane->id); 6971 } 6972 6973 plane_state->planar_slave = false; 6974 } 6975 6976 if (!crtc_state->nv12_planes) 6977 return 0; 6978 6979 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 6980 struct intel_plane_state *linked_state = NULL; 6981 6982 if (plane->pipe != crtc->pipe || 6983 !(crtc_state->nv12_planes & BIT(plane->id))) 6984 continue; 6985 6986 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, linked) { 6987 if (!icl_is_nv12_y_plane(dev_priv, linked->id)) 6988 continue; 6989 6990 if (crtc_state->active_planes & BIT(linked->id)) 6991 continue; 6992 6993 linked_state = intel_atomic_get_plane_state(state, linked); 6994 if (IS_ERR(linked_state)) 6995 return PTR_ERR(linked_state); 6996 6997 break; 6998 } 6999 7000 if (!linked_state) { 7001 drm_dbg_kms(&dev_priv->drm, 7002 "Need %d free Y planes for planar YUV\n", 7003 hweight8(crtc_state->nv12_planes)); 7004 7005 return -EINVAL; 7006 } 7007 7008 plane_state->planar_linked_plane = linked; 7009 7010 linked_state->planar_slave = true; 7011 linked_state->planar_linked_plane = plane; 7012 crtc_state->enabled_planes |= BIT(linked->id); 7013 crtc_state->active_planes |= BIT(linked->id); 7014 crtc_state->update_planes |= BIT(linked->id); 7015 drm_dbg_kms(&dev_priv->drm, "Using %s as Y plane for %s\n", 7016 linked->base.name, plane->base.name); 7017 7018 /* Copy parameters to slave plane */ 7019 linked_state->ctl = plane_state->ctl | PLANE_CTL_YUV420_Y_PLANE; 7020 linked_state->color_ctl = plane_state->color_ctl; 7021 linked_state->view = plane_state->view; 7022 7023 intel_plane_copy_hw_state(linked_state, plane_state); 7024 linked_state->uapi.src = plane_state->uapi.src; 7025 linked_state->uapi.dst = plane_state->uapi.dst; 7026 7027 if (icl_is_hdr_plane(dev_priv, plane->id)) { 7028 if (linked->id == PLANE_SPRITE5) 7029 plane_state->cus_ctl |= PLANE_CUS_PLANE_7; 7030 else if (linked->id == PLANE_SPRITE4) 7031 plane_state->cus_ctl |= PLANE_CUS_PLANE_6; 7032 else if (linked->id == PLANE_SPRITE3) 7033 plane_state->cus_ctl |= PLANE_CUS_PLANE_5_RKL; 7034 else if (linked->id == PLANE_SPRITE2) 7035 plane_state->cus_ctl |= PLANE_CUS_PLANE_4_RKL; 7036 else 7037 MISSING_CASE(linked->id); 7038 } 7039 } 7040 7041 return 0; 7042 } 7043 7044 static bool c8_planes_changed(const struct intel_crtc_state *new_crtc_state) 7045 { 7046 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); 7047 struct intel_atomic_state *state = 7048 to_intel_atomic_state(new_crtc_state->uapi.state); 7049 const struct intel_crtc_state *old_crtc_state = 7050 intel_atomic_get_old_crtc_state(state, crtc); 7051 7052 return !old_crtc_state->c8_planes != !new_crtc_state->c8_planes; 7053 } 7054 7055 static u16 hsw_linetime_wm(const struct intel_crtc_state *crtc_state) 7056 { 7057 const struct drm_display_mode *pipe_mode = 7058 &crtc_state->hw.pipe_mode; 7059 int linetime_wm; 7060 7061 if (!crtc_state->hw.enable) 7062 return 0; 7063 7064 linetime_wm = DIV_ROUND_CLOSEST(pipe_mode->crtc_htotal * 1000 * 8, 7065 pipe_mode->crtc_clock); 7066 7067 return min(linetime_wm, 0x1ff); 7068 } 7069 7070 static u16 hsw_ips_linetime_wm(const struct intel_crtc_state *crtc_state, 7071 const struct intel_cdclk_state *cdclk_state) 7072 { 7073 const struct drm_display_mode *pipe_mode = 7074 &crtc_state->hw.pipe_mode; 7075 int linetime_wm; 7076 7077 if (!crtc_state->hw.enable) 7078 return 0; 7079 7080 linetime_wm = DIV_ROUND_CLOSEST(pipe_mode->crtc_htotal * 1000 * 8, 7081 cdclk_state->logical.cdclk); 7082 7083 return min(linetime_wm, 0x1ff); 7084 } 7085 7086 static u16 skl_linetime_wm(const struct intel_crtc_state *crtc_state) 7087 { 7088 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 7089 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7090 const struct drm_display_mode *pipe_mode = 7091 &crtc_state->hw.pipe_mode; 7092 int linetime_wm; 7093 7094 if (!crtc_state->hw.enable) 7095 return 0; 7096 7097 linetime_wm = DIV_ROUND_UP(pipe_mode->crtc_htotal * 1000 * 8, 7098 crtc_state->pixel_rate); 7099 7100 /* Display WA #1135: BXT:ALL GLK:ALL */ 7101 if ((IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) && 7102 dev_priv->ipc_enabled) 7103 linetime_wm /= 2; 7104 7105 return min(linetime_wm, 0x1ff); 7106 } 7107 7108 static int hsw_compute_linetime_wm(struct intel_atomic_state *state, 7109 struct intel_crtc *crtc) 7110 { 7111 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7112 struct intel_crtc_state *crtc_state = 7113 intel_atomic_get_new_crtc_state(state, crtc); 7114 const struct intel_cdclk_state *cdclk_state; 7115 7116 if (DISPLAY_VER(dev_priv) >= 9) 7117 crtc_state->linetime = skl_linetime_wm(crtc_state); 7118 else 7119 crtc_state->linetime = hsw_linetime_wm(crtc_state); 7120 7121 if (!hsw_crtc_supports_ips(crtc)) 7122 return 0; 7123 7124 cdclk_state = intel_atomic_get_cdclk_state(state); 7125 if (IS_ERR(cdclk_state)) 7126 return PTR_ERR(cdclk_state); 7127 7128 crtc_state->ips_linetime = hsw_ips_linetime_wm(crtc_state, 7129 cdclk_state); 7130 7131 return 0; 7132 } 7133 7134 static int intel_crtc_atomic_check(struct intel_atomic_state *state, 7135 struct intel_crtc *crtc) 7136 { 7137 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7138 struct intel_crtc_state *crtc_state = 7139 intel_atomic_get_new_crtc_state(state, crtc); 7140 bool mode_changed = intel_crtc_needs_modeset(crtc_state); 7141 int ret; 7142 7143 if (DISPLAY_VER(dev_priv) < 5 && !IS_G4X(dev_priv) && 7144 mode_changed && !crtc_state->hw.active) 7145 crtc_state->update_wm_post = true; 7146 7147 if (mode_changed && crtc_state->hw.enable && 7148 dev_priv->display.crtc_compute_clock && 7149 !crtc_state->bigjoiner_slave && 7150 !drm_WARN_ON(&dev_priv->drm, crtc_state->shared_dpll)) { 7151 ret = dev_priv->display.crtc_compute_clock(crtc, crtc_state); 7152 if (ret) 7153 return ret; 7154 } 7155 7156 /* 7157 * May need to update pipe gamma enable bits 7158 * when C8 planes are getting enabled/disabled. 7159 */ 7160 if (c8_planes_changed(crtc_state)) 7161 crtc_state->uapi.color_mgmt_changed = true; 7162 7163 if (mode_changed || crtc_state->update_pipe || 7164 crtc_state->uapi.color_mgmt_changed) { 7165 ret = intel_color_check(crtc_state); 7166 if (ret) 7167 return ret; 7168 } 7169 7170 if (dev_priv->display.compute_pipe_wm) { 7171 ret = dev_priv->display.compute_pipe_wm(state, crtc); 7172 if (ret) { 7173 drm_dbg_kms(&dev_priv->drm, 7174 "Target pipe watermarks are invalid\n"); 7175 return ret; 7176 } 7177 7178 } 7179 7180 if (dev_priv->display.compute_intermediate_wm) { 7181 if (drm_WARN_ON(&dev_priv->drm, 7182 !dev_priv->display.compute_pipe_wm)) 7183 return 0; 7184 7185 /* 7186 * Calculate 'intermediate' watermarks that satisfy both the 7187 * old state and the new state. We can program these 7188 * immediately. 7189 */ 7190 ret = dev_priv->display.compute_intermediate_wm(state, crtc); 7191 if (ret) { 7192 drm_dbg_kms(&dev_priv->drm, 7193 "No valid intermediate pipe watermarks are possible\n"); 7194 return ret; 7195 } 7196 } 7197 7198 if (DISPLAY_VER(dev_priv) >= 9) { 7199 if (mode_changed || crtc_state->update_pipe) { 7200 ret = skl_update_scaler_crtc(crtc_state); 7201 if (ret) 7202 return ret; 7203 } 7204 7205 ret = intel_atomic_setup_scalers(dev_priv, crtc, crtc_state); 7206 if (ret) 7207 return ret; 7208 } 7209 7210 if (HAS_IPS(dev_priv)) { 7211 ret = hsw_compute_ips_config(crtc_state); 7212 if (ret) 7213 return ret; 7214 } 7215 7216 if (DISPLAY_VER(dev_priv) >= 9 || 7217 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) { 7218 ret = hsw_compute_linetime_wm(state, crtc); 7219 if (ret) 7220 return ret; 7221 7222 } 7223 7224 if (!mode_changed) { 7225 ret = intel_psr2_sel_fetch_update(state, crtc); 7226 if (ret) 7227 return ret; 7228 } 7229 7230 return 0; 7231 } 7232 7233 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev) 7234 { 7235 struct intel_connector *connector; 7236 struct drm_connector_list_iter conn_iter; 7237 7238 drm_connector_list_iter_begin(dev, &conn_iter); 7239 for_each_intel_connector_iter(connector, &conn_iter) { 7240 struct drm_connector_state *conn_state = connector->base.state; 7241 struct intel_encoder *encoder = 7242 to_intel_encoder(connector->base.encoder); 7243 7244 if (conn_state->crtc) 7245 drm_connector_put(&connector->base); 7246 7247 if (encoder) { 7248 struct intel_crtc *crtc = 7249 to_intel_crtc(encoder->base.crtc); 7250 const struct intel_crtc_state *crtc_state = 7251 to_intel_crtc_state(crtc->base.state); 7252 7253 conn_state->best_encoder = &encoder->base; 7254 conn_state->crtc = &crtc->base; 7255 conn_state->max_bpc = (crtc_state->pipe_bpp ?: 24) / 3; 7256 7257 drm_connector_get(&connector->base); 7258 } else { 7259 conn_state->best_encoder = NULL; 7260 conn_state->crtc = NULL; 7261 } 7262 } 7263 drm_connector_list_iter_end(&conn_iter); 7264 } 7265 7266 static int 7267 compute_sink_pipe_bpp(const struct drm_connector_state *conn_state, 7268 struct intel_crtc_state *pipe_config) 7269 { 7270 struct drm_connector *connector = conn_state->connector; 7271 struct drm_i915_private *i915 = to_i915(pipe_config->uapi.crtc->dev); 7272 const struct drm_display_info *info = &connector->display_info; 7273 int bpp; 7274 7275 switch (conn_state->max_bpc) { 7276 case 6 ... 7: 7277 bpp = 6 * 3; 7278 break; 7279 case 8 ... 9: 7280 bpp = 8 * 3; 7281 break; 7282 case 10 ... 11: 7283 bpp = 10 * 3; 7284 break; 7285 case 12 ... 16: 7286 bpp = 12 * 3; 7287 break; 7288 default: 7289 MISSING_CASE(conn_state->max_bpc); 7290 return -EINVAL; 7291 } 7292 7293 if (bpp < pipe_config->pipe_bpp) { 7294 drm_dbg_kms(&i915->drm, 7295 "[CONNECTOR:%d:%s] Limiting display bpp to %d instead of " 7296 "EDID bpp %d, requested bpp %d, max platform bpp %d\n", 7297 connector->base.id, connector->name, 7298 bpp, 3 * info->bpc, 7299 3 * conn_state->max_requested_bpc, 7300 pipe_config->pipe_bpp); 7301 7302 pipe_config->pipe_bpp = bpp; 7303 } 7304 7305 return 0; 7306 } 7307 7308 static int 7309 compute_baseline_pipe_bpp(struct intel_crtc *crtc, 7310 struct intel_crtc_state *pipe_config) 7311 { 7312 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7313 struct drm_atomic_state *state = pipe_config->uapi.state; 7314 struct drm_connector *connector; 7315 struct drm_connector_state *connector_state; 7316 int bpp, i; 7317 7318 if ((IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) || 7319 IS_CHERRYVIEW(dev_priv))) 7320 bpp = 10*3; 7321 else if (DISPLAY_VER(dev_priv) >= 5) 7322 bpp = 12*3; 7323 else 7324 bpp = 8*3; 7325 7326 pipe_config->pipe_bpp = bpp; 7327 7328 /* Clamp display bpp to connector max bpp */ 7329 for_each_new_connector_in_state(state, connector, connector_state, i) { 7330 int ret; 7331 7332 if (connector_state->crtc != &crtc->base) 7333 continue; 7334 7335 ret = compute_sink_pipe_bpp(connector_state, pipe_config); 7336 if (ret) 7337 return ret; 7338 } 7339 7340 return 0; 7341 } 7342 7343 static void intel_dump_crtc_timings(struct drm_i915_private *i915, 7344 const struct drm_display_mode *mode) 7345 { 7346 drm_dbg_kms(&i915->drm, "crtc timings: %d %d %d %d %d %d %d %d %d, " 7347 "type: 0x%x flags: 0x%x\n", 7348 mode->crtc_clock, 7349 mode->crtc_hdisplay, mode->crtc_hsync_start, 7350 mode->crtc_hsync_end, mode->crtc_htotal, 7351 mode->crtc_vdisplay, mode->crtc_vsync_start, 7352 mode->crtc_vsync_end, mode->crtc_vtotal, 7353 mode->type, mode->flags); 7354 } 7355 7356 static void 7357 intel_dump_m_n_config(const struct intel_crtc_state *pipe_config, 7358 const char *id, unsigned int lane_count, 7359 const struct intel_link_m_n *m_n) 7360 { 7361 struct drm_i915_private *i915 = to_i915(pipe_config->uapi.crtc->dev); 7362 7363 drm_dbg_kms(&i915->drm, 7364 "%s: lanes: %i; gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n", 7365 id, lane_count, 7366 m_n->gmch_m, m_n->gmch_n, 7367 m_n->link_m, m_n->link_n, m_n->tu); 7368 } 7369 7370 static void 7371 intel_dump_infoframe(struct drm_i915_private *dev_priv, 7372 const union hdmi_infoframe *frame) 7373 { 7374 if (!drm_debug_enabled(DRM_UT_KMS)) 7375 return; 7376 7377 hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, frame); 7378 } 7379 7380 static void 7381 intel_dump_dp_vsc_sdp(struct drm_i915_private *dev_priv, 7382 const struct drm_dp_vsc_sdp *vsc) 7383 { 7384 if (!drm_debug_enabled(DRM_UT_KMS)) 7385 return; 7386 7387 drm_dp_vsc_sdp_log(KERN_DEBUG, dev_priv->drm.dev, vsc); 7388 } 7389 7390 #define OUTPUT_TYPE(x) [INTEL_OUTPUT_ ## x] = #x 7391 7392 static const char * const output_type_str[] = { 7393 OUTPUT_TYPE(UNUSED), 7394 OUTPUT_TYPE(ANALOG), 7395 OUTPUT_TYPE(DVO), 7396 OUTPUT_TYPE(SDVO), 7397 OUTPUT_TYPE(LVDS), 7398 OUTPUT_TYPE(TVOUT), 7399 OUTPUT_TYPE(HDMI), 7400 OUTPUT_TYPE(DP), 7401 OUTPUT_TYPE(EDP), 7402 OUTPUT_TYPE(DSI), 7403 OUTPUT_TYPE(DDI), 7404 OUTPUT_TYPE(DP_MST), 7405 }; 7406 7407 #undef OUTPUT_TYPE 7408 7409 static void snprintf_output_types(char *buf, size_t len, 7410 unsigned int output_types) 7411 { 7412 char *str = buf; 7413 int i; 7414 7415 str[0] = '\0'; 7416 7417 for (i = 0; i < ARRAY_SIZE(output_type_str); i++) { 7418 int r; 7419 7420 if ((output_types & BIT(i)) == 0) 7421 continue; 7422 7423 r = snprintf(str, len, "%s%s", 7424 str != buf ? "," : "", output_type_str[i]); 7425 if (r >= len) 7426 break; 7427 str += r; 7428 len -= r; 7429 7430 output_types &= ~BIT(i); 7431 } 7432 7433 WARN_ON_ONCE(output_types != 0); 7434 } 7435 7436 static const char * const output_format_str[] = { 7437 [INTEL_OUTPUT_FORMAT_RGB] = "RGB", 7438 [INTEL_OUTPUT_FORMAT_YCBCR420] = "YCBCR4:2:0", 7439 [INTEL_OUTPUT_FORMAT_YCBCR444] = "YCBCR4:4:4", 7440 }; 7441 7442 static const char *output_formats(enum intel_output_format format) 7443 { 7444 if (format >= ARRAY_SIZE(output_format_str)) 7445 return "invalid"; 7446 return output_format_str[format]; 7447 } 7448 7449 static void intel_dump_plane_state(const struct intel_plane_state *plane_state) 7450 { 7451 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 7452 struct drm_i915_private *i915 = to_i915(plane->base.dev); 7453 const struct drm_framebuffer *fb = plane_state->hw.fb; 7454 7455 if (!fb) { 7456 drm_dbg_kms(&i915->drm, 7457 "[PLANE:%d:%s] fb: [NOFB], visible: %s\n", 7458 plane->base.base.id, plane->base.name, 7459 yesno(plane_state->uapi.visible)); 7460 return; 7461 } 7462 7463 drm_dbg_kms(&i915->drm, 7464 "[PLANE:%d:%s] fb: [FB:%d] %ux%u format = %p4cc modifier = 0x%llx, visible: %s\n", 7465 plane->base.base.id, plane->base.name, 7466 fb->base.id, fb->width, fb->height, &fb->format->format, 7467 fb->modifier, yesno(plane_state->uapi.visible)); 7468 drm_dbg_kms(&i915->drm, "\trotation: 0x%x, scaler: %d\n", 7469 plane_state->hw.rotation, plane_state->scaler_id); 7470 if (plane_state->uapi.visible) 7471 drm_dbg_kms(&i915->drm, 7472 "\tsrc: " DRM_RECT_FP_FMT " dst: " DRM_RECT_FMT "\n", 7473 DRM_RECT_FP_ARG(&plane_state->uapi.src), 7474 DRM_RECT_ARG(&plane_state->uapi.dst)); 7475 } 7476 7477 static void intel_dump_pipe_config(const struct intel_crtc_state *pipe_config, 7478 struct intel_atomic_state *state, 7479 const char *context) 7480 { 7481 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc); 7482 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7483 const struct intel_plane_state *plane_state; 7484 struct intel_plane *plane; 7485 char buf[64]; 7486 int i; 7487 7488 drm_dbg_kms(&dev_priv->drm, "[CRTC:%d:%s] enable: %s %s\n", 7489 crtc->base.base.id, crtc->base.name, 7490 yesno(pipe_config->hw.enable), context); 7491 7492 if (!pipe_config->hw.enable) 7493 goto dump_planes; 7494 7495 snprintf_output_types(buf, sizeof(buf), pipe_config->output_types); 7496 drm_dbg_kms(&dev_priv->drm, 7497 "active: %s, output_types: %s (0x%x), output format: %s\n", 7498 yesno(pipe_config->hw.active), 7499 buf, pipe_config->output_types, 7500 output_formats(pipe_config->output_format)); 7501 7502 drm_dbg_kms(&dev_priv->drm, 7503 "cpu_transcoder: %s, pipe bpp: %i, dithering: %i\n", 7504 transcoder_name(pipe_config->cpu_transcoder), 7505 pipe_config->pipe_bpp, pipe_config->dither); 7506 7507 drm_dbg_kms(&dev_priv->drm, "MST master transcoder: %s\n", 7508 transcoder_name(pipe_config->mst_master_transcoder)); 7509 7510 drm_dbg_kms(&dev_priv->drm, 7511 "port sync: master transcoder: %s, slave transcoder bitmask = 0x%x\n", 7512 transcoder_name(pipe_config->master_transcoder), 7513 pipe_config->sync_mode_slaves_mask); 7514 7515 drm_dbg_kms(&dev_priv->drm, "bigjoiner: %s\n", 7516 pipe_config->bigjoiner_slave ? "slave" : 7517 pipe_config->bigjoiner ? "master" : "no"); 7518 7519 drm_dbg_kms(&dev_priv->drm, "splitter: %s, link count %d, overlap %d\n", 7520 enableddisabled(pipe_config->splitter.enable), 7521 pipe_config->splitter.link_count, 7522 pipe_config->splitter.pixel_overlap); 7523 7524 if (pipe_config->has_pch_encoder) 7525 intel_dump_m_n_config(pipe_config, "fdi", 7526 pipe_config->fdi_lanes, 7527 &pipe_config->fdi_m_n); 7528 7529 if (intel_crtc_has_dp_encoder(pipe_config)) { 7530 intel_dump_m_n_config(pipe_config, "dp m_n", 7531 pipe_config->lane_count, &pipe_config->dp_m_n); 7532 if (pipe_config->has_drrs) 7533 intel_dump_m_n_config(pipe_config, "dp m2_n2", 7534 pipe_config->lane_count, 7535 &pipe_config->dp_m2_n2); 7536 } 7537 7538 drm_dbg_kms(&dev_priv->drm, 7539 "audio: %i, infoframes: %i, infoframes enabled: 0x%x\n", 7540 pipe_config->has_audio, pipe_config->has_infoframe, 7541 pipe_config->infoframes.enable); 7542 7543 if (pipe_config->infoframes.enable & 7544 intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL)) 7545 drm_dbg_kms(&dev_priv->drm, "GCP: 0x%x\n", 7546 pipe_config->infoframes.gcp); 7547 if (pipe_config->infoframes.enable & 7548 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_AVI)) 7549 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.avi); 7550 if (pipe_config->infoframes.enable & 7551 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_SPD)) 7552 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.spd); 7553 if (pipe_config->infoframes.enable & 7554 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_VENDOR)) 7555 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.hdmi); 7556 if (pipe_config->infoframes.enable & 7557 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_DRM)) 7558 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.drm); 7559 if (pipe_config->infoframes.enable & 7560 intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GAMUT_METADATA)) 7561 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.drm); 7562 if (pipe_config->infoframes.enable & 7563 intel_hdmi_infoframe_enable(DP_SDP_VSC)) 7564 intel_dump_dp_vsc_sdp(dev_priv, &pipe_config->infoframes.vsc); 7565 7566 drm_dbg_kms(&dev_priv->drm, "vrr: %s, vmin: %d, vmax: %d, pipeline full: %d, guardband: %d flipline: %d, vmin vblank: %d, vmax vblank: %d\n", 7567 yesno(pipe_config->vrr.enable), 7568 pipe_config->vrr.vmin, pipe_config->vrr.vmax, 7569 pipe_config->vrr.pipeline_full, pipe_config->vrr.guardband, 7570 pipe_config->vrr.flipline, 7571 intel_vrr_vmin_vblank_start(pipe_config), 7572 intel_vrr_vmax_vblank_start(pipe_config)); 7573 7574 drm_dbg_kms(&dev_priv->drm, "requested mode:\n"); 7575 drm_mode_debug_printmodeline(&pipe_config->hw.mode); 7576 drm_dbg_kms(&dev_priv->drm, "adjusted mode:\n"); 7577 drm_mode_debug_printmodeline(&pipe_config->hw.adjusted_mode); 7578 intel_dump_crtc_timings(dev_priv, &pipe_config->hw.adjusted_mode); 7579 drm_dbg_kms(&dev_priv->drm, "pipe mode:\n"); 7580 drm_mode_debug_printmodeline(&pipe_config->hw.pipe_mode); 7581 intel_dump_crtc_timings(dev_priv, &pipe_config->hw.pipe_mode); 7582 drm_dbg_kms(&dev_priv->drm, 7583 "port clock: %d, pipe src size: %dx%d, pixel rate %d\n", 7584 pipe_config->port_clock, 7585 pipe_config->pipe_src_w, pipe_config->pipe_src_h, 7586 pipe_config->pixel_rate); 7587 7588 drm_dbg_kms(&dev_priv->drm, "linetime: %d, ips linetime: %d\n", 7589 pipe_config->linetime, pipe_config->ips_linetime); 7590 7591 if (DISPLAY_VER(dev_priv) >= 9) 7592 drm_dbg_kms(&dev_priv->drm, 7593 "num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n", 7594 crtc->num_scalers, 7595 pipe_config->scaler_state.scaler_users, 7596 pipe_config->scaler_state.scaler_id); 7597 7598 if (HAS_GMCH(dev_priv)) 7599 drm_dbg_kms(&dev_priv->drm, 7600 "gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n", 7601 pipe_config->gmch_pfit.control, 7602 pipe_config->gmch_pfit.pgm_ratios, 7603 pipe_config->gmch_pfit.lvds_border_bits); 7604 else 7605 drm_dbg_kms(&dev_priv->drm, 7606 "pch pfit: " DRM_RECT_FMT ", %s, force thru: %s\n", 7607 DRM_RECT_ARG(&pipe_config->pch_pfit.dst), 7608 enableddisabled(pipe_config->pch_pfit.enabled), 7609 yesno(pipe_config->pch_pfit.force_thru)); 7610 7611 drm_dbg_kms(&dev_priv->drm, "ips: %i, double wide: %i\n", 7612 pipe_config->ips_enabled, pipe_config->double_wide); 7613 7614 intel_dpll_dump_hw_state(dev_priv, &pipe_config->dpll_hw_state); 7615 7616 if (IS_CHERRYVIEW(dev_priv)) 7617 drm_dbg_kms(&dev_priv->drm, 7618 "cgm_mode: 0x%x gamma_mode: 0x%x gamma_enable: %d csc_enable: %d\n", 7619 pipe_config->cgm_mode, pipe_config->gamma_mode, 7620 pipe_config->gamma_enable, pipe_config->csc_enable); 7621 else 7622 drm_dbg_kms(&dev_priv->drm, 7623 "csc_mode: 0x%x gamma_mode: 0x%x gamma_enable: %d csc_enable: %d\n", 7624 pipe_config->csc_mode, pipe_config->gamma_mode, 7625 pipe_config->gamma_enable, pipe_config->csc_enable); 7626 7627 drm_dbg_kms(&dev_priv->drm, "degamma lut: %d entries, gamma lut: %d entries\n", 7628 pipe_config->hw.degamma_lut ? 7629 drm_color_lut_size(pipe_config->hw.degamma_lut) : 0, 7630 pipe_config->hw.gamma_lut ? 7631 drm_color_lut_size(pipe_config->hw.gamma_lut) : 0); 7632 7633 dump_planes: 7634 if (!state) 7635 return; 7636 7637 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 7638 if (plane->pipe == crtc->pipe) 7639 intel_dump_plane_state(plane_state); 7640 } 7641 } 7642 7643 static bool check_digital_port_conflicts(struct intel_atomic_state *state) 7644 { 7645 struct drm_device *dev = state->base.dev; 7646 struct drm_connector *connector; 7647 struct drm_connector_list_iter conn_iter; 7648 unsigned int used_ports = 0; 7649 unsigned int used_mst_ports = 0; 7650 bool ret = true; 7651 7652 /* 7653 * We're going to peek into connector->state, 7654 * hence connection_mutex must be held. 7655 */ 7656 drm_modeset_lock_assert_held(&dev->mode_config.connection_mutex); 7657 7658 /* 7659 * Walk the connector list instead of the encoder 7660 * list to detect the problem on ddi platforms 7661 * where there's just one encoder per digital port. 7662 */ 7663 drm_connector_list_iter_begin(dev, &conn_iter); 7664 drm_for_each_connector_iter(connector, &conn_iter) { 7665 struct drm_connector_state *connector_state; 7666 struct intel_encoder *encoder; 7667 7668 connector_state = 7669 drm_atomic_get_new_connector_state(&state->base, 7670 connector); 7671 if (!connector_state) 7672 connector_state = connector->state; 7673 7674 if (!connector_state->best_encoder) 7675 continue; 7676 7677 encoder = to_intel_encoder(connector_state->best_encoder); 7678 7679 drm_WARN_ON(dev, !connector_state->crtc); 7680 7681 switch (encoder->type) { 7682 case INTEL_OUTPUT_DDI: 7683 if (drm_WARN_ON(dev, !HAS_DDI(to_i915(dev)))) 7684 break; 7685 fallthrough; 7686 case INTEL_OUTPUT_DP: 7687 case INTEL_OUTPUT_HDMI: 7688 case INTEL_OUTPUT_EDP: 7689 /* the same port mustn't appear more than once */ 7690 if (used_ports & BIT(encoder->port)) 7691 ret = false; 7692 7693 used_ports |= BIT(encoder->port); 7694 break; 7695 case INTEL_OUTPUT_DP_MST: 7696 used_mst_ports |= 7697 1 << encoder->port; 7698 break; 7699 default: 7700 break; 7701 } 7702 } 7703 drm_connector_list_iter_end(&conn_iter); 7704 7705 /* can't mix MST and SST/HDMI on the same port */ 7706 if (used_ports & used_mst_ports) 7707 return false; 7708 7709 return ret; 7710 } 7711 7712 static void 7713 intel_crtc_copy_uapi_to_hw_state_nomodeset(struct intel_atomic_state *state, 7714 struct intel_crtc_state *crtc_state) 7715 { 7716 const struct intel_crtc_state *from_crtc_state = crtc_state; 7717 7718 if (crtc_state->bigjoiner_slave) { 7719 from_crtc_state = intel_atomic_get_new_crtc_state(state, 7720 crtc_state->bigjoiner_linked_crtc); 7721 7722 /* No need to copy state if the master state is unchanged */ 7723 if (!from_crtc_state) 7724 return; 7725 } 7726 7727 intel_crtc_copy_color_blobs(crtc_state, from_crtc_state); 7728 } 7729 7730 static void 7731 intel_crtc_copy_uapi_to_hw_state(struct intel_atomic_state *state, 7732 struct intel_crtc_state *crtc_state) 7733 { 7734 crtc_state->hw.enable = crtc_state->uapi.enable; 7735 crtc_state->hw.active = crtc_state->uapi.active; 7736 crtc_state->hw.mode = crtc_state->uapi.mode; 7737 crtc_state->hw.adjusted_mode = crtc_state->uapi.adjusted_mode; 7738 crtc_state->hw.scaling_filter = crtc_state->uapi.scaling_filter; 7739 7740 intel_crtc_copy_uapi_to_hw_state_nomodeset(state, crtc_state); 7741 } 7742 7743 static void intel_crtc_copy_hw_to_uapi_state(struct intel_crtc_state *crtc_state) 7744 { 7745 if (crtc_state->bigjoiner_slave) 7746 return; 7747 7748 crtc_state->uapi.enable = crtc_state->hw.enable; 7749 crtc_state->uapi.active = crtc_state->hw.active; 7750 drm_WARN_ON(crtc_state->uapi.crtc->dev, 7751 drm_atomic_set_mode_for_crtc(&crtc_state->uapi, &crtc_state->hw.mode) < 0); 7752 7753 crtc_state->uapi.adjusted_mode = crtc_state->hw.adjusted_mode; 7754 crtc_state->uapi.scaling_filter = crtc_state->hw.scaling_filter; 7755 7756 /* copy color blobs to uapi */ 7757 drm_property_replace_blob(&crtc_state->uapi.degamma_lut, 7758 crtc_state->hw.degamma_lut); 7759 drm_property_replace_blob(&crtc_state->uapi.gamma_lut, 7760 crtc_state->hw.gamma_lut); 7761 drm_property_replace_blob(&crtc_state->uapi.ctm, 7762 crtc_state->hw.ctm); 7763 } 7764 7765 static int 7766 copy_bigjoiner_crtc_state(struct intel_crtc_state *crtc_state, 7767 const struct intel_crtc_state *from_crtc_state) 7768 { 7769 struct intel_crtc_state *saved_state; 7770 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 7771 7772 saved_state = kmemdup(from_crtc_state, sizeof(*saved_state), GFP_KERNEL); 7773 if (!saved_state) 7774 return -ENOMEM; 7775 7776 saved_state->uapi = crtc_state->uapi; 7777 saved_state->scaler_state = crtc_state->scaler_state; 7778 saved_state->shared_dpll = crtc_state->shared_dpll; 7779 saved_state->dpll_hw_state = crtc_state->dpll_hw_state; 7780 saved_state->crc_enabled = crtc_state->crc_enabled; 7781 7782 intel_crtc_free_hw_state(crtc_state); 7783 memcpy(crtc_state, saved_state, sizeof(*crtc_state)); 7784 kfree(saved_state); 7785 7786 /* Re-init hw state */ 7787 memset(&crtc_state->hw, 0, sizeof(saved_state->hw)); 7788 crtc_state->hw.enable = from_crtc_state->hw.enable; 7789 crtc_state->hw.active = from_crtc_state->hw.active; 7790 crtc_state->hw.pipe_mode = from_crtc_state->hw.pipe_mode; 7791 crtc_state->hw.adjusted_mode = from_crtc_state->hw.adjusted_mode; 7792 7793 /* Some fixups */ 7794 crtc_state->uapi.mode_changed = from_crtc_state->uapi.mode_changed; 7795 crtc_state->uapi.connectors_changed = from_crtc_state->uapi.connectors_changed; 7796 crtc_state->uapi.active_changed = from_crtc_state->uapi.active_changed; 7797 crtc_state->nv12_planes = crtc_state->c8_planes = crtc_state->update_planes = 0; 7798 crtc_state->bigjoiner_linked_crtc = to_intel_crtc(from_crtc_state->uapi.crtc); 7799 crtc_state->bigjoiner_slave = true; 7800 crtc_state->cpu_transcoder = (enum transcoder)crtc->pipe; 7801 crtc_state->has_audio = false; 7802 7803 return 0; 7804 } 7805 7806 static int 7807 intel_crtc_prepare_cleared_state(struct intel_atomic_state *state, 7808 struct intel_crtc_state *crtc_state) 7809 { 7810 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 7811 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7812 struct intel_crtc_state *saved_state; 7813 7814 saved_state = intel_crtc_state_alloc(crtc); 7815 if (!saved_state) 7816 return -ENOMEM; 7817 7818 /* free the old crtc_state->hw members */ 7819 intel_crtc_free_hw_state(crtc_state); 7820 7821 /* FIXME: before the switch to atomic started, a new pipe_config was 7822 * kzalloc'd. Code that depends on any field being zero should be 7823 * fixed, so that the crtc_state can be safely duplicated. For now, 7824 * only fields that are know to not cause problems are preserved. */ 7825 7826 saved_state->uapi = crtc_state->uapi; 7827 saved_state->scaler_state = crtc_state->scaler_state; 7828 saved_state->shared_dpll = crtc_state->shared_dpll; 7829 saved_state->dpll_hw_state = crtc_state->dpll_hw_state; 7830 memcpy(saved_state->icl_port_dplls, crtc_state->icl_port_dplls, 7831 sizeof(saved_state->icl_port_dplls)); 7832 saved_state->crc_enabled = crtc_state->crc_enabled; 7833 if (IS_G4X(dev_priv) || 7834 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 7835 saved_state->wm = crtc_state->wm; 7836 7837 memcpy(crtc_state, saved_state, sizeof(*crtc_state)); 7838 kfree(saved_state); 7839 7840 intel_crtc_copy_uapi_to_hw_state(state, crtc_state); 7841 7842 return 0; 7843 } 7844 7845 static int 7846 intel_modeset_pipe_config(struct intel_atomic_state *state, 7847 struct intel_crtc_state *pipe_config) 7848 { 7849 struct drm_crtc *crtc = pipe_config->uapi.crtc; 7850 struct drm_i915_private *i915 = to_i915(pipe_config->uapi.crtc->dev); 7851 struct drm_connector *connector; 7852 struct drm_connector_state *connector_state; 7853 int base_bpp, ret, i; 7854 bool retry = true; 7855 7856 pipe_config->cpu_transcoder = 7857 (enum transcoder) to_intel_crtc(crtc)->pipe; 7858 7859 /* 7860 * Sanitize sync polarity flags based on requested ones. If neither 7861 * positive or negative polarity is requested, treat this as meaning 7862 * negative polarity. 7863 */ 7864 if (!(pipe_config->hw.adjusted_mode.flags & 7865 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC))) 7866 pipe_config->hw.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC; 7867 7868 if (!(pipe_config->hw.adjusted_mode.flags & 7869 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC))) 7870 pipe_config->hw.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC; 7871 7872 ret = compute_baseline_pipe_bpp(to_intel_crtc(crtc), 7873 pipe_config); 7874 if (ret) 7875 return ret; 7876 7877 base_bpp = pipe_config->pipe_bpp; 7878 7879 /* 7880 * Determine the real pipe dimensions. Note that stereo modes can 7881 * increase the actual pipe size due to the frame doubling and 7882 * insertion of additional space for blanks between the frame. This 7883 * is stored in the crtc timings. We use the requested mode to do this 7884 * computation to clearly distinguish it from the adjusted mode, which 7885 * can be changed by the connectors in the below retry loop. 7886 */ 7887 drm_mode_get_hv_timing(&pipe_config->hw.mode, 7888 &pipe_config->pipe_src_w, 7889 &pipe_config->pipe_src_h); 7890 7891 for_each_new_connector_in_state(&state->base, connector, connector_state, i) { 7892 struct intel_encoder *encoder = 7893 to_intel_encoder(connector_state->best_encoder); 7894 7895 if (connector_state->crtc != crtc) 7896 continue; 7897 7898 if (!check_single_encoder_cloning(state, to_intel_crtc(crtc), encoder)) { 7899 drm_dbg_kms(&i915->drm, 7900 "rejecting invalid cloning configuration\n"); 7901 return -EINVAL; 7902 } 7903 7904 /* 7905 * Determine output_types before calling the .compute_config() 7906 * hooks so that the hooks can use this information safely. 7907 */ 7908 if (encoder->compute_output_type) 7909 pipe_config->output_types |= 7910 BIT(encoder->compute_output_type(encoder, pipe_config, 7911 connector_state)); 7912 else 7913 pipe_config->output_types |= BIT(encoder->type); 7914 } 7915 7916 encoder_retry: 7917 /* Ensure the port clock defaults are reset when retrying. */ 7918 pipe_config->port_clock = 0; 7919 pipe_config->pixel_multiplier = 1; 7920 7921 /* Fill in default crtc timings, allow encoders to overwrite them. */ 7922 drm_mode_set_crtcinfo(&pipe_config->hw.adjusted_mode, 7923 CRTC_STEREO_DOUBLE); 7924 7925 /* Pass our mode to the connectors and the CRTC to give them a chance to 7926 * adjust it according to limitations or connector properties, and also 7927 * a chance to reject the mode entirely. 7928 */ 7929 for_each_new_connector_in_state(&state->base, connector, connector_state, i) { 7930 struct intel_encoder *encoder = 7931 to_intel_encoder(connector_state->best_encoder); 7932 7933 if (connector_state->crtc != crtc) 7934 continue; 7935 7936 ret = encoder->compute_config(encoder, pipe_config, 7937 connector_state); 7938 if (ret < 0) { 7939 if (ret != -EDEADLK) 7940 drm_dbg_kms(&i915->drm, 7941 "Encoder config failure: %d\n", 7942 ret); 7943 return ret; 7944 } 7945 } 7946 7947 /* Set default port clock if not overwritten by the encoder. Needs to be 7948 * done afterwards in case the encoder adjusts the mode. */ 7949 if (!pipe_config->port_clock) 7950 pipe_config->port_clock = pipe_config->hw.adjusted_mode.crtc_clock 7951 * pipe_config->pixel_multiplier; 7952 7953 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config); 7954 if (ret == -EDEADLK) 7955 return ret; 7956 if (ret < 0) { 7957 drm_dbg_kms(&i915->drm, "CRTC fixup failed\n"); 7958 return ret; 7959 } 7960 7961 if (ret == I915_DISPLAY_CONFIG_RETRY) { 7962 if (drm_WARN(&i915->drm, !retry, 7963 "loop in pipe configuration computation\n")) 7964 return -EINVAL; 7965 7966 drm_dbg_kms(&i915->drm, "CRTC bw constrained, retrying\n"); 7967 retry = false; 7968 goto encoder_retry; 7969 } 7970 7971 /* Dithering seems to not pass-through bits correctly when it should, so 7972 * only enable it on 6bpc panels and when its not a compliance 7973 * test requesting 6bpc video pattern. 7974 */ 7975 pipe_config->dither = (pipe_config->pipe_bpp == 6*3) && 7976 !pipe_config->dither_force_disable; 7977 drm_dbg_kms(&i915->drm, 7978 "hw max bpp: %i, pipe bpp: %i, dithering: %i\n", 7979 base_bpp, pipe_config->pipe_bpp, pipe_config->dither); 7980 7981 return 0; 7982 } 7983 7984 static int 7985 intel_modeset_pipe_config_late(struct intel_crtc_state *crtc_state) 7986 { 7987 struct intel_atomic_state *state = 7988 to_intel_atomic_state(crtc_state->uapi.state); 7989 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 7990 struct drm_connector_state *conn_state; 7991 struct drm_connector *connector; 7992 int i; 7993 7994 for_each_new_connector_in_state(&state->base, connector, 7995 conn_state, i) { 7996 struct intel_encoder *encoder = 7997 to_intel_encoder(conn_state->best_encoder); 7998 int ret; 7999 8000 if (conn_state->crtc != &crtc->base || 8001 !encoder->compute_config_late) 8002 continue; 8003 8004 ret = encoder->compute_config_late(encoder, crtc_state, 8005 conn_state); 8006 if (ret) 8007 return ret; 8008 } 8009 8010 return 0; 8011 } 8012 8013 bool intel_fuzzy_clock_check(int clock1, int clock2) 8014 { 8015 int diff; 8016 8017 if (clock1 == clock2) 8018 return true; 8019 8020 if (!clock1 || !clock2) 8021 return false; 8022 8023 diff = abs(clock1 - clock2); 8024 8025 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105) 8026 return true; 8027 8028 return false; 8029 } 8030 8031 static bool 8032 intel_compare_m_n(unsigned int m, unsigned int n, 8033 unsigned int m2, unsigned int n2, 8034 bool exact) 8035 { 8036 if (m == m2 && n == n2) 8037 return true; 8038 8039 if (exact || !m || !n || !m2 || !n2) 8040 return false; 8041 8042 BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX); 8043 8044 if (n > n2) { 8045 while (n > n2) { 8046 m2 <<= 1; 8047 n2 <<= 1; 8048 } 8049 } else if (n < n2) { 8050 while (n < n2) { 8051 m <<= 1; 8052 n <<= 1; 8053 } 8054 } 8055 8056 if (n != n2) 8057 return false; 8058 8059 return intel_fuzzy_clock_check(m, m2); 8060 } 8061 8062 static bool 8063 intel_compare_link_m_n(const struct intel_link_m_n *m_n, 8064 const struct intel_link_m_n *m2_n2, 8065 bool exact) 8066 { 8067 return m_n->tu == m2_n2->tu && 8068 intel_compare_m_n(m_n->gmch_m, m_n->gmch_n, 8069 m2_n2->gmch_m, m2_n2->gmch_n, exact) && 8070 intel_compare_m_n(m_n->link_m, m_n->link_n, 8071 m2_n2->link_m, m2_n2->link_n, exact); 8072 } 8073 8074 static bool 8075 intel_compare_infoframe(const union hdmi_infoframe *a, 8076 const union hdmi_infoframe *b) 8077 { 8078 return memcmp(a, b, sizeof(*a)) == 0; 8079 } 8080 8081 static bool 8082 intel_compare_dp_vsc_sdp(const struct drm_dp_vsc_sdp *a, 8083 const struct drm_dp_vsc_sdp *b) 8084 { 8085 return memcmp(a, b, sizeof(*a)) == 0; 8086 } 8087 8088 static void 8089 pipe_config_infoframe_mismatch(struct drm_i915_private *dev_priv, 8090 bool fastset, const char *name, 8091 const union hdmi_infoframe *a, 8092 const union hdmi_infoframe *b) 8093 { 8094 if (fastset) { 8095 if (!drm_debug_enabled(DRM_UT_KMS)) 8096 return; 8097 8098 drm_dbg_kms(&dev_priv->drm, 8099 "fastset mismatch in %s infoframe\n", name); 8100 drm_dbg_kms(&dev_priv->drm, "expected:\n"); 8101 hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, a); 8102 drm_dbg_kms(&dev_priv->drm, "found:\n"); 8103 hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, b); 8104 } else { 8105 drm_err(&dev_priv->drm, "mismatch in %s infoframe\n", name); 8106 drm_err(&dev_priv->drm, "expected:\n"); 8107 hdmi_infoframe_log(KERN_ERR, dev_priv->drm.dev, a); 8108 drm_err(&dev_priv->drm, "found:\n"); 8109 hdmi_infoframe_log(KERN_ERR, dev_priv->drm.dev, b); 8110 } 8111 } 8112 8113 static void 8114 pipe_config_dp_vsc_sdp_mismatch(struct drm_i915_private *dev_priv, 8115 bool fastset, const char *name, 8116 const struct drm_dp_vsc_sdp *a, 8117 const struct drm_dp_vsc_sdp *b) 8118 { 8119 if (fastset) { 8120 if (!drm_debug_enabled(DRM_UT_KMS)) 8121 return; 8122 8123 drm_dbg_kms(&dev_priv->drm, 8124 "fastset mismatch in %s dp sdp\n", name); 8125 drm_dbg_kms(&dev_priv->drm, "expected:\n"); 8126 drm_dp_vsc_sdp_log(KERN_DEBUG, dev_priv->drm.dev, a); 8127 drm_dbg_kms(&dev_priv->drm, "found:\n"); 8128 drm_dp_vsc_sdp_log(KERN_DEBUG, dev_priv->drm.dev, b); 8129 } else { 8130 drm_err(&dev_priv->drm, "mismatch in %s dp sdp\n", name); 8131 drm_err(&dev_priv->drm, "expected:\n"); 8132 drm_dp_vsc_sdp_log(KERN_ERR, dev_priv->drm.dev, a); 8133 drm_err(&dev_priv->drm, "found:\n"); 8134 drm_dp_vsc_sdp_log(KERN_ERR, dev_priv->drm.dev, b); 8135 } 8136 } 8137 8138 static void __printf(4, 5) 8139 pipe_config_mismatch(bool fastset, const struct intel_crtc *crtc, 8140 const char *name, const char *format, ...) 8141 { 8142 struct drm_i915_private *i915 = to_i915(crtc->base.dev); 8143 struct va_format vaf; 8144 va_list args; 8145 8146 va_start(args, format); 8147 vaf.fmt = format; 8148 vaf.va = &args; 8149 8150 if (fastset) 8151 drm_dbg_kms(&i915->drm, 8152 "[CRTC:%d:%s] fastset mismatch in %s %pV\n", 8153 crtc->base.base.id, crtc->base.name, name, &vaf); 8154 else 8155 drm_err(&i915->drm, "[CRTC:%d:%s] mismatch in %s %pV\n", 8156 crtc->base.base.id, crtc->base.name, name, &vaf); 8157 8158 va_end(args); 8159 } 8160 8161 static bool fastboot_enabled(struct drm_i915_private *dev_priv) 8162 { 8163 if (dev_priv->params.fastboot != -1) 8164 return dev_priv->params.fastboot; 8165 8166 /* Enable fastboot by default on Skylake and newer */ 8167 if (DISPLAY_VER(dev_priv) >= 9) 8168 return true; 8169 8170 /* Enable fastboot by default on VLV and CHV */ 8171 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 8172 return true; 8173 8174 /* Disabled by default on all others */ 8175 return false; 8176 } 8177 8178 static bool 8179 intel_pipe_config_compare(const struct intel_crtc_state *current_config, 8180 const struct intel_crtc_state *pipe_config, 8181 bool fastset) 8182 { 8183 struct drm_i915_private *dev_priv = to_i915(current_config->uapi.crtc->dev); 8184 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc); 8185 bool ret = true; 8186 u32 bp_gamma = 0; 8187 bool fixup_inherited = fastset && 8188 current_config->inherited && !pipe_config->inherited; 8189 8190 if (fixup_inherited && !fastboot_enabled(dev_priv)) { 8191 drm_dbg_kms(&dev_priv->drm, 8192 "initial modeset and fastboot not set\n"); 8193 ret = false; 8194 } 8195 8196 #define PIPE_CONF_CHECK_X(name) do { \ 8197 if (current_config->name != pipe_config->name) { \ 8198 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 8199 "(expected 0x%08x, found 0x%08x)", \ 8200 current_config->name, \ 8201 pipe_config->name); \ 8202 ret = false; \ 8203 } \ 8204 } while (0) 8205 8206 #define PIPE_CONF_CHECK_X_WITH_MASK(name, mask) do { \ 8207 if ((current_config->name & (mask)) != (pipe_config->name & (mask))) { \ 8208 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 8209 "(expected 0x%08x, found 0x%08x)", \ 8210 current_config->name & (mask), \ 8211 pipe_config->name & (mask)); \ 8212 ret = false; \ 8213 } \ 8214 } while (0) 8215 8216 #define PIPE_CONF_CHECK_I(name) do { \ 8217 if (current_config->name != pipe_config->name) { \ 8218 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 8219 "(expected %i, found %i)", \ 8220 current_config->name, \ 8221 pipe_config->name); \ 8222 ret = false; \ 8223 } \ 8224 } while (0) 8225 8226 #define PIPE_CONF_CHECK_BOOL(name) do { \ 8227 if (current_config->name != pipe_config->name) { \ 8228 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 8229 "(expected %s, found %s)", \ 8230 yesno(current_config->name), \ 8231 yesno(pipe_config->name)); \ 8232 ret = false; \ 8233 } \ 8234 } while (0) 8235 8236 /* 8237 * Checks state where we only read out the enabling, but not the entire 8238 * state itself (like full infoframes or ELD for audio). These states 8239 * require a full modeset on bootup to fix up. 8240 */ 8241 #define PIPE_CONF_CHECK_BOOL_INCOMPLETE(name) do { \ 8242 if (!fixup_inherited || (!current_config->name && !pipe_config->name)) { \ 8243 PIPE_CONF_CHECK_BOOL(name); \ 8244 } else { \ 8245 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 8246 "unable to verify whether state matches exactly, forcing modeset (expected %s, found %s)", \ 8247 yesno(current_config->name), \ 8248 yesno(pipe_config->name)); \ 8249 ret = false; \ 8250 } \ 8251 } while (0) 8252 8253 #define PIPE_CONF_CHECK_P(name) do { \ 8254 if (current_config->name != pipe_config->name) { \ 8255 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 8256 "(expected %p, found %p)", \ 8257 current_config->name, \ 8258 pipe_config->name); \ 8259 ret = false; \ 8260 } \ 8261 } while (0) 8262 8263 #define PIPE_CONF_CHECK_M_N(name) do { \ 8264 if (!intel_compare_link_m_n(¤t_config->name, \ 8265 &pipe_config->name,\ 8266 !fastset)) { \ 8267 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 8268 "(expected tu %i gmch %i/%i link %i/%i, " \ 8269 "found tu %i, gmch %i/%i link %i/%i)", \ 8270 current_config->name.tu, \ 8271 current_config->name.gmch_m, \ 8272 current_config->name.gmch_n, \ 8273 current_config->name.link_m, \ 8274 current_config->name.link_n, \ 8275 pipe_config->name.tu, \ 8276 pipe_config->name.gmch_m, \ 8277 pipe_config->name.gmch_n, \ 8278 pipe_config->name.link_m, \ 8279 pipe_config->name.link_n); \ 8280 ret = false; \ 8281 } \ 8282 } while (0) 8283 8284 /* This is required for BDW+ where there is only one set of registers for 8285 * switching between high and low RR. 8286 * This macro can be used whenever a comparison has to be made between one 8287 * hw state and multiple sw state variables. 8288 */ 8289 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) do { \ 8290 if (!intel_compare_link_m_n(¤t_config->name, \ 8291 &pipe_config->name, !fastset) && \ 8292 !intel_compare_link_m_n(¤t_config->alt_name, \ 8293 &pipe_config->name, !fastset)) { \ 8294 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 8295 "(expected tu %i gmch %i/%i link %i/%i, " \ 8296 "or tu %i gmch %i/%i link %i/%i, " \ 8297 "found tu %i, gmch %i/%i link %i/%i)", \ 8298 current_config->name.tu, \ 8299 current_config->name.gmch_m, \ 8300 current_config->name.gmch_n, \ 8301 current_config->name.link_m, \ 8302 current_config->name.link_n, \ 8303 current_config->alt_name.tu, \ 8304 current_config->alt_name.gmch_m, \ 8305 current_config->alt_name.gmch_n, \ 8306 current_config->alt_name.link_m, \ 8307 current_config->alt_name.link_n, \ 8308 pipe_config->name.tu, \ 8309 pipe_config->name.gmch_m, \ 8310 pipe_config->name.gmch_n, \ 8311 pipe_config->name.link_m, \ 8312 pipe_config->name.link_n); \ 8313 ret = false; \ 8314 } \ 8315 } while (0) 8316 8317 #define PIPE_CONF_CHECK_FLAGS(name, mask) do { \ 8318 if ((current_config->name ^ pipe_config->name) & (mask)) { \ 8319 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 8320 "(%x) (expected %i, found %i)", \ 8321 (mask), \ 8322 current_config->name & (mask), \ 8323 pipe_config->name & (mask)); \ 8324 ret = false; \ 8325 } \ 8326 } while (0) 8327 8328 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) do { \ 8329 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \ 8330 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 8331 "(expected %i, found %i)", \ 8332 current_config->name, \ 8333 pipe_config->name); \ 8334 ret = false; \ 8335 } \ 8336 } while (0) 8337 8338 #define PIPE_CONF_CHECK_INFOFRAME(name) do { \ 8339 if (!intel_compare_infoframe(¤t_config->infoframes.name, \ 8340 &pipe_config->infoframes.name)) { \ 8341 pipe_config_infoframe_mismatch(dev_priv, fastset, __stringify(name), \ 8342 ¤t_config->infoframes.name, \ 8343 &pipe_config->infoframes.name); \ 8344 ret = false; \ 8345 } \ 8346 } while (0) 8347 8348 #define PIPE_CONF_CHECK_DP_VSC_SDP(name) do { \ 8349 if (!current_config->has_psr && !pipe_config->has_psr && \ 8350 !intel_compare_dp_vsc_sdp(¤t_config->infoframes.name, \ 8351 &pipe_config->infoframes.name)) { \ 8352 pipe_config_dp_vsc_sdp_mismatch(dev_priv, fastset, __stringify(name), \ 8353 ¤t_config->infoframes.name, \ 8354 &pipe_config->infoframes.name); \ 8355 ret = false; \ 8356 } \ 8357 } while (0) 8358 8359 #define PIPE_CONF_CHECK_COLOR_LUT(name1, name2, bit_precision) do { \ 8360 if (current_config->name1 != pipe_config->name1) { \ 8361 pipe_config_mismatch(fastset, crtc, __stringify(name1), \ 8362 "(expected %i, found %i, won't compare lut values)", \ 8363 current_config->name1, \ 8364 pipe_config->name1); \ 8365 ret = false;\ 8366 } else { \ 8367 if (!intel_color_lut_equal(current_config->name2, \ 8368 pipe_config->name2, pipe_config->name1, \ 8369 bit_precision)) { \ 8370 pipe_config_mismatch(fastset, crtc, __stringify(name2), \ 8371 "hw_state doesn't match sw_state"); \ 8372 ret = false; \ 8373 } \ 8374 } \ 8375 } while (0) 8376 8377 #define PIPE_CONF_QUIRK(quirk) \ 8378 ((current_config->quirks | pipe_config->quirks) & (quirk)) 8379 8380 PIPE_CONF_CHECK_I(cpu_transcoder); 8381 8382 PIPE_CONF_CHECK_BOOL(has_pch_encoder); 8383 PIPE_CONF_CHECK_I(fdi_lanes); 8384 PIPE_CONF_CHECK_M_N(fdi_m_n); 8385 8386 PIPE_CONF_CHECK_I(lane_count); 8387 PIPE_CONF_CHECK_X(lane_lat_optim_mask); 8388 8389 if (DISPLAY_VER(dev_priv) < 8) { 8390 PIPE_CONF_CHECK_M_N(dp_m_n); 8391 8392 if (current_config->has_drrs) 8393 PIPE_CONF_CHECK_M_N(dp_m2_n2); 8394 } else 8395 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2); 8396 8397 PIPE_CONF_CHECK_X(output_types); 8398 8399 /* FIXME do the readout properly and get rid of this quirk */ 8400 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_BIGJOINER_SLAVE)) { 8401 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_hdisplay); 8402 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_htotal); 8403 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_hblank_start); 8404 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_hblank_end); 8405 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_hsync_start); 8406 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_hsync_end); 8407 8408 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_vdisplay); 8409 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_vtotal); 8410 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_vblank_start); 8411 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_vblank_end); 8412 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_vsync_start); 8413 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_vsync_end); 8414 8415 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hdisplay); 8416 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_htotal); 8417 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hblank_start); 8418 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hblank_end); 8419 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hsync_start); 8420 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hsync_end); 8421 8422 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vdisplay); 8423 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vtotal); 8424 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vblank_start); 8425 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vblank_end); 8426 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vsync_start); 8427 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vsync_end); 8428 8429 PIPE_CONF_CHECK_I(pixel_multiplier); 8430 8431 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags, 8432 DRM_MODE_FLAG_INTERLACE); 8433 8434 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) { 8435 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags, 8436 DRM_MODE_FLAG_PHSYNC); 8437 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags, 8438 DRM_MODE_FLAG_NHSYNC); 8439 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags, 8440 DRM_MODE_FLAG_PVSYNC); 8441 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags, 8442 DRM_MODE_FLAG_NVSYNC); 8443 } 8444 } 8445 8446 PIPE_CONF_CHECK_I(output_format); 8447 PIPE_CONF_CHECK_BOOL(has_hdmi_sink); 8448 if ((DISPLAY_VER(dev_priv) < 8 && !IS_HASWELL(dev_priv)) || 8449 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 8450 PIPE_CONF_CHECK_BOOL(limited_color_range); 8451 8452 PIPE_CONF_CHECK_BOOL(hdmi_scrambling); 8453 PIPE_CONF_CHECK_BOOL(hdmi_high_tmds_clock_ratio); 8454 PIPE_CONF_CHECK_BOOL(has_infoframe); 8455 /* FIXME do the readout properly and get rid of this quirk */ 8456 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_BIGJOINER_SLAVE)) 8457 PIPE_CONF_CHECK_BOOL(fec_enable); 8458 8459 PIPE_CONF_CHECK_BOOL_INCOMPLETE(has_audio); 8460 8461 PIPE_CONF_CHECK_X(gmch_pfit.control); 8462 /* pfit ratios are autocomputed by the hw on gen4+ */ 8463 if (DISPLAY_VER(dev_priv) < 4) 8464 PIPE_CONF_CHECK_X(gmch_pfit.pgm_ratios); 8465 PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits); 8466 8467 /* 8468 * Changing the EDP transcoder input mux 8469 * (A_ONOFF vs. A_ON) requires a full modeset. 8470 */ 8471 PIPE_CONF_CHECK_BOOL(pch_pfit.force_thru); 8472 8473 if (!fastset) { 8474 PIPE_CONF_CHECK_I(pipe_src_w); 8475 PIPE_CONF_CHECK_I(pipe_src_h); 8476 8477 PIPE_CONF_CHECK_BOOL(pch_pfit.enabled); 8478 if (current_config->pch_pfit.enabled) { 8479 PIPE_CONF_CHECK_I(pch_pfit.dst.x1); 8480 PIPE_CONF_CHECK_I(pch_pfit.dst.y1); 8481 PIPE_CONF_CHECK_I(pch_pfit.dst.x2); 8482 PIPE_CONF_CHECK_I(pch_pfit.dst.y2); 8483 } 8484 8485 PIPE_CONF_CHECK_I(scaler_state.scaler_id); 8486 /* FIXME do the readout properly and get rid of this quirk */ 8487 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_BIGJOINER_SLAVE)) 8488 PIPE_CONF_CHECK_CLOCK_FUZZY(pixel_rate); 8489 8490 PIPE_CONF_CHECK_X(gamma_mode); 8491 if (IS_CHERRYVIEW(dev_priv)) 8492 PIPE_CONF_CHECK_X(cgm_mode); 8493 else 8494 PIPE_CONF_CHECK_X(csc_mode); 8495 PIPE_CONF_CHECK_BOOL(gamma_enable); 8496 PIPE_CONF_CHECK_BOOL(csc_enable); 8497 8498 PIPE_CONF_CHECK_I(linetime); 8499 PIPE_CONF_CHECK_I(ips_linetime); 8500 8501 bp_gamma = intel_color_get_gamma_bit_precision(pipe_config); 8502 if (bp_gamma) 8503 PIPE_CONF_CHECK_COLOR_LUT(gamma_mode, hw.gamma_lut, bp_gamma); 8504 8505 PIPE_CONF_CHECK_BOOL(has_psr); 8506 PIPE_CONF_CHECK_BOOL(has_psr2); 8507 PIPE_CONF_CHECK_BOOL(enable_psr2_sel_fetch); 8508 PIPE_CONF_CHECK_I(dc3co_exitline); 8509 } 8510 8511 PIPE_CONF_CHECK_BOOL(double_wide); 8512 8513 if (dev_priv->dpll.mgr) 8514 PIPE_CONF_CHECK_P(shared_dpll); 8515 8516 /* FIXME do the readout properly and get rid of this quirk */ 8517 if (dev_priv->dpll.mgr && !PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_BIGJOINER_SLAVE)) { 8518 PIPE_CONF_CHECK_X(dpll_hw_state.dpll); 8519 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md); 8520 PIPE_CONF_CHECK_X(dpll_hw_state.fp0); 8521 PIPE_CONF_CHECK_X(dpll_hw_state.fp1); 8522 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll); 8523 PIPE_CONF_CHECK_X(dpll_hw_state.spll); 8524 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1); 8525 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1); 8526 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2); 8527 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr0); 8528 PIPE_CONF_CHECK_X(dpll_hw_state.ebb0); 8529 PIPE_CONF_CHECK_X(dpll_hw_state.ebb4); 8530 PIPE_CONF_CHECK_X(dpll_hw_state.pll0); 8531 PIPE_CONF_CHECK_X(dpll_hw_state.pll1); 8532 PIPE_CONF_CHECK_X(dpll_hw_state.pll2); 8533 PIPE_CONF_CHECK_X(dpll_hw_state.pll3); 8534 PIPE_CONF_CHECK_X(dpll_hw_state.pll6); 8535 PIPE_CONF_CHECK_X(dpll_hw_state.pll8); 8536 PIPE_CONF_CHECK_X(dpll_hw_state.pll9); 8537 PIPE_CONF_CHECK_X(dpll_hw_state.pll10); 8538 PIPE_CONF_CHECK_X(dpll_hw_state.pcsdw12); 8539 PIPE_CONF_CHECK_X(dpll_hw_state.mg_refclkin_ctl); 8540 PIPE_CONF_CHECK_X(dpll_hw_state.mg_clktop2_coreclkctl1); 8541 PIPE_CONF_CHECK_X(dpll_hw_state.mg_clktop2_hsclkctl); 8542 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_div0); 8543 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_div1); 8544 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_lf); 8545 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_frac_lock); 8546 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_ssc); 8547 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_bias); 8548 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_tdc_coldst_bias); 8549 } 8550 8551 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_BIGJOINER_SLAVE)) { 8552 PIPE_CONF_CHECK_X(dsi_pll.ctrl); 8553 PIPE_CONF_CHECK_X(dsi_pll.div); 8554 8555 if (IS_G4X(dev_priv) || DISPLAY_VER(dev_priv) >= 5) 8556 PIPE_CONF_CHECK_I(pipe_bpp); 8557 8558 PIPE_CONF_CHECK_CLOCK_FUZZY(hw.pipe_mode.crtc_clock); 8559 PIPE_CONF_CHECK_CLOCK_FUZZY(hw.adjusted_mode.crtc_clock); 8560 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock); 8561 8562 PIPE_CONF_CHECK_I(min_voltage_level); 8563 } 8564 8565 if (fastset && (current_config->has_psr || pipe_config->has_psr)) 8566 PIPE_CONF_CHECK_X_WITH_MASK(infoframes.enable, 8567 ~intel_hdmi_infoframe_enable(DP_SDP_VSC)); 8568 else 8569 PIPE_CONF_CHECK_X(infoframes.enable); 8570 8571 PIPE_CONF_CHECK_X(infoframes.gcp); 8572 PIPE_CONF_CHECK_INFOFRAME(avi); 8573 PIPE_CONF_CHECK_INFOFRAME(spd); 8574 PIPE_CONF_CHECK_INFOFRAME(hdmi); 8575 PIPE_CONF_CHECK_INFOFRAME(drm); 8576 PIPE_CONF_CHECK_DP_VSC_SDP(vsc); 8577 8578 PIPE_CONF_CHECK_X(sync_mode_slaves_mask); 8579 PIPE_CONF_CHECK_I(master_transcoder); 8580 PIPE_CONF_CHECK_BOOL(bigjoiner); 8581 PIPE_CONF_CHECK_BOOL(bigjoiner_slave); 8582 PIPE_CONF_CHECK_P(bigjoiner_linked_crtc); 8583 8584 PIPE_CONF_CHECK_I(dsc.compression_enable); 8585 PIPE_CONF_CHECK_I(dsc.dsc_split); 8586 PIPE_CONF_CHECK_I(dsc.compressed_bpp); 8587 8588 PIPE_CONF_CHECK_BOOL(splitter.enable); 8589 PIPE_CONF_CHECK_I(splitter.link_count); 8590 PIPE_CONF_CHECK_I(splitter.pixel_overlap); 8591 8592 PIPE_CONF_CHECK_I(mst_master_transcoder); 8593 8594 PIPE_CONF_CHECK_BOOL(vrr.enable); 8595 PIPE_CONF_CHECK_I(vrr.vmin); 8596 PIPE_CONF_CHECK_I(vrr.vmax); 8597 PIPE_CONF_CHECK_I(vrr.flipline); 8598 PIPE_CONF_CHECK_I(vrr.pipeline_full); 8599 PIPE_CONF_CHECK_I(vrr.guardband); 8600 8601 #undef PIPE_CONF_CHECK_X 8602 #undef PIPE_CONF_CHECK_I 8603 #undef PIPE_CONF_CHECK_BOOL 8604 #undef PIPE_CONF_CHECK_BOOL_INCOMPLETE 8605 #undef PIPE_CONF_CHECK_P 8606 #undef PIPE_CONF_CHECK_FLAGS 8607 #undef PIPE_CONF_CHECK_CLOCK_FUZZY 8608 #undef PIPE_CONF_CHECK_COLOR_LUT 8609 #undef PIPE_CONF_QUIRK 8610 8611 return ret; 8612 } 8613 8614 static void intel_pipe_config_sanity_check(struct drm_i915_private *dev_priv, 8615 const struct intel_crtc_state *pipe_config) 8616 { 8617 if (pipe_config->has_pch_encoder) { 8618 int fdi_dotclock = intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config), 8619 &pipe_config->fdi_m_n); 8620 int dotclock = pipe_config->hw.adjusted_mode.crtc_clock; 8621 8622 /* 8623 * FDI already provided one idea for the dotclock. 8624 * Yell if the encoder disagrees. 8625 */ 8626 drm_WARN(&dev_priv->drm, 8627 !intel_fuzzy_clock_check(fdi_dotclock, dotclock), 8628 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n", 8629 fdi_dotclock, dotclock); 8630 } 8631 } 8632 8633 static void verify_wm_state(struct intel_crtc *crtc, 8634 struct intel_crtc_state *new_crtc_state) 8635 { 8636 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 8637 struct skl_hw_state { 8638 struct skl_ddb_entry ddb_y[I915_MAX_PLANES]; 8639 struct skl_ddb_entry ddb_uv[I915_MAX_PLANES]; 8640 struct skl_pipe_wm wm; 8641 } *hw; 8642 const struct skl_pipe_wm *sw_wm = &new_crtc_state->wm.skl.optimal; 8643 int level, max_level = ilk_wm_max_level(dev_priv); 8644 struct intel_plane *plane; 8645 u8 hw_enabled_slices; 8646 8647 if (DISPLAY_VER(dev_priv) < 9 || !new_crtc_state->hw.active) 8648 return; 8649 8650 hw = kzalloc(sizeof(*hw), GFP_KERNEL); 8651 if (!hw) 8652 return; 8653 8654 skl_pipe_wm_get_hw_state(crtc, &hw->wm); 8655 8656 skl_pipe_ddb_get_hw_state(crtc, hw->ddb_y, hw->ddb_uv); 8657 8658 hw_enabled_slices = intel_enabled_dbuf_slices_mask(dev_priv); 8659 8660 if (DISPLAY_VER(dev_priv) >= 11 && 8661 hw_enabled_slices != dev_priv->dbuf.enabled_slices) 8662 drm_err(&dev_priv->drm, 8663 "mismatch in DBUF Slices (expected 0x%x, got 0x%x)\n", 8664 dev_priv->dbuf.enabled_slices, 8665 hw_enabled_slices); 8666 8667 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) { 8668 const struct skl_ddb_entry *hw_ddb_entry, *sw_ddb_entry; 8669 const struct skl_wm_level *hw_wm_level, *sw_wm_level; 8670 8671 /* Watermarks */ 8672 for (level = 0; level <= max_level; level++) { 8673 hw_wm_level = &hw->wm.planes[plane->id].wm[level]; 8674 sw_wm_level = skl_plane_wm_level(sw_wm, plane->id, level); 8675 8676 if (skl_wm_level_equals(hw_wm_level, sw_wm_level)) 8677 continue; 8678 8679 drm_err(&dev_priv->drm, 8680 "[PLANE:%d:%s] mismatch in WM%d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n", 8681 plane->base.base.id, plane->base.name, level, 8682 sw_wm_level->enable, 8683 sw_wm_level->blocks, 8684 sw_wm_level->lines, 8685 hw_wm_level->enable, 8686 hw_wm_level->blocks, 8687 hw_wm_level->lines); 8688 } 8689 8690 hw_wm_level = &hw->wm.planes[plane->id].trans_wm; 8691 sw_wm_level = skl_plane_trans_wm(sw_wm, plane->id); 8692 8693 if (!skl_wm_level_equals(hw_wm_level, sw_wm_level)) { 8694 drm_err(&dev_priv->drm, 8695 "[PLANE:%d:%s] mismatch in trans WM (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n", 8696 plane->base.base.id, plane->base.name, 8697 sw_wm_level->enable, 8698 sw_wm_level->blocks, 8699 sw_wm_level->lines, 8700 hw_wm_level->enable, 8701 hw_wm_level->blocks, 8702 hw_wm_level->lines); 8703 } 8704 8705 hw_wm_level = &hw->wm.planes[plane->id].sagv.wm0; 8706 sw_wm_level = &sw_wm->planes[plane->id].sagv.wm0; 8707 8708 if (HAS_HW_SAGV_WM(dev_priv) && 8709 !skl_wm_level_equals(hw_wm_level, sw_wm_level)) { 8710 drm_err(&dev_priv->drm, 8711 "[PLANE:%d:%s] mismatch in SAGV WM (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n", 8712 plane->base.base.id, plane->base.name, 8713 sw_wm_level->enable, 8714 sw_wm_level->blocks, 8715 sw_wm_level->lines, 8716 hw_wm_level->enable, 8717 hw_wm_level->blocks, 8718 hw_wm_level->lines); 8719 } 8720 8721 hw_wm_level = &hw->wm.planes[plane->id].sagv.trans_wm; 8722 sw_wm_level = &sw_wm->planes[plane->id].sagv.trans_wm; 8723 8724 if (HAS_HW_SAGV_WM(dev_priv) && 8725 !skl_wm_level_equals(hw_wm_level, sw_wm_level)) { 8726 drm_err(&dev_priv->drm, 8727 "[PLANE:%d:%s] mismatch in SAGV trans WM (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n", 8728 plane->base.base.id, plane->base.name, 8729 sw_wm_level->enable, 8730 sw_wm_level->blocks, 8731 sw_wm_level->lines, 8732 hw_wm_level->enable, 8733 hw_wm_level->blocks, 8734 hw_wm_level->lines); 8735 } 8736 8737 /* DDB */ 8738 hw_ddb_entry = &hw->ddb_y[plane->id]; 8739 sw_ddb_entry = &new_crtc_state->wm.skl.plane_ddb_y[plane->id]; 8740 8741 if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) { 8742 drm_err(&dev_priv->drm, 8743 "[PLANE:%d:%s] mismatch in DDB (expected (%u,%u), found (%u,%u))\n", 8744 plane->base.base.id, plane->base.name, 8745 sw_ddb_entry->start, sw_ddb_entry->end, 8746 hw_ddb_entry->start, hw_ddb_entry->end); 8747 } 8748 } 8749 8750 kfree(hw); 8751 } 8752 8753 static void 8754 verify_connector_state(struct intel_atomic_state *state, 8755 struct intel_crtc *crtc) 8756 { 8757 struct drm_connector *connector; 8758 struct drm_connector_state *new_conn_state; 8759 int i; 8760 8761 for_each_new_connector_in_state(&state->base, connector, new_conn_state, i) { 8762 struct drm_encoder *encoder = connector->encoder; 8763 struct intel_crtc_state *crtc_state = NULL; 8764 8765 if (new_conn_state->crtc != &crtc->base) 8766 continue; 8767 8768 if (crtc) 8769 crtc_state = intel_atomic_get_new_crtc_state(state, crtc); 8770 8771 intel_connector_verify_state(crtc_state, new_conn_state); 8772 8773 I915_STATE_WARN(new_conn_state->best_encoder != encoder, 8774 "connector's atomic encoder doesn't match legacy encoder\n"); 8775 } 8776 } 8777 8778 static void 8779 verify_encoder_state(struct drm_i915_private *dev_priv, struct intel_atomic_state *state) 8780 { 8781 struct intel_encoder *encoder; 8782 struct drm_connector *connector; 8783 struct drm_connector_state *old_conn_state, *new_conn_state; 8784 int i; 8785 8786 for_each_intel_encoder(&dev_priv->drm, encoder) { 8787 bool enabled = false, found = false; 8788 enum pipe pipe; 8789 8790 drm_dbg_kms(&dev_priv->drm, "[ENCODER:%d:%s]\n", 8791 encoder->base.base.id, 8792 encoder->base.name); 8793 8794 for_each_oldnew_connector_in_state(&state->base, connector, old_conn_state, 8795 new_conn_state, i) { 8796 if (old_conn_state->best_encoder == &encoder->base) 8797 found = true; 8798 8799 if (new_conn_state->best_encoder != &encoder->base) 8800 continue; 8801 found = enabled = true; 8802 8803 I915_STATE_WARN(new_conn_state->crtc != 8804 encoder->base.crtc, 8805 "connector's crtc doesn't match encoder crtc\n"); 8806 } 8807 8808 if (!found) 8809 continue; 8810 8811 I915_STATE_WARN(!!encoder->base.crtc != enabled, 8812 "encoder's enabled state mismatch " 8813 "(expected %i, found %i)\n", 8814 !!encoder->base.crtc, enabled); 8815 8816 if (!encoder->base.crtc) { 8817 bool active; 8818 8819 active = encoder->get_hw_state(encoder, &pipe); 8820 I915_STATE_WARN(active, 8821 "encoder detached but still enabled on pipe %c.\n", 8822 pipe_name(pipe)); 8823 } 8824 } 8825 } 8826 8827 static void 8828 verify_crtc_state(struct intel_crtc *crtc, 8829 struct intel_crtc_state *old_crtc_state, 8830 struct intel_crtc_state *new_crtc_state) 8831 { 8832 struct drm_device *dev = crtc->base.dev; 8833 struct drm_i915_private *dev_priv = to_i915(dev); 8834 struct intel_encoder *encoder; 8835 struct intel_crtc_state *pipe_config = old_crtc_state; 8836 struct drm_atomic_state *state = old_crtc_state->uapi.state; 8837 struct intel_crtc *master = crtc; 8838 8839 __drm_atomic_helper_crtc_destroy_state(&old_crtc_state->uapi); 8840 intel_crtc_free_hw_state(old_crtc_state); 8841 intel_crtc_state_reset(old_crtc_state, crtc); 8842 old_crtc_state->uapi.state = state; 8843 8844 drm_dbg_kms(&dev_priv->drm, "[CRTC:%d:%s]\n", crtc->base.base.id, 8845 crtc->base.name); 8846 8847 pipe_config->hw.enable = new_crtc_state->hw.enable; 8848 8849 intel_crtc_get_pipe_config(pipe_config); 8850 8851 /* we keep both pipes enabled on 830 */ 8852 if (IS_I830(dev_priv) && pipe_config->hw.active) 8853 pipe_config->hw.active = new_crtc_state->hw.active; 8854 8855 I915_STATE_WARN(new_crtc_state->hw.active != pipe_config->hw.active, 8856 "crtc active state doesn't match with hw state " 8857 "(expected %i, found %i)\n", 8858 new_crtc_state->hw.active, pipe_config->hw.active); 8859 8860 I915_STATE_WARN(crtc->active != new_crtc_state->hw.active, 8861 "transitional active state does not match atomic hw state " 8862 "(expected %i, found %i)\n", 8863 new_crtc_state->hw.active, crtc->active); 8864 8865 if (new_crtc_state->bigjoiner_slave) 8866 master = new_crtc_state->bigjoiner_linked_crtc; 8867 8868 for_each_encoder_on_crtc(dev, &master->base, encoder) { 8869 enum pipe pipe; 8870 bool active; 8871 8872 active = encoder->get_hw_state(encoder, &pipe); 8873 I915_STATE_WARN(active != new_crtc_state->hw.active, 8874 "[ENCODER:%i] active %i with crtc active %i\n", 8875 encoder->base.base.id, active, 8876 new_crtc_state->hw.active); 8877 8878 I915_STATE_WARN(active && master->pipe != pipe, 8879 "Encoder connected to wrong pipe %c\n", 8880 pipe_name(pipe)); 8881 8882 if (active) 8883 intel_encoder_get_config(encoder, pipe_config); 8884 } 8885 8886 if (!new_crtc_state->hw.active) 8887 return; 8888 8889 if (new_crtc_state->bigjoiner_slave) 8890 /* No PLLs set for slave */ 8891 pipe_config->shared_dpll = NULL; 8892 8893 intel_pipe_config_sanity_check(dev_priv, pipe_config); 8894 8895 if (!intel_pipe_config_compare(new_crtc_state, 8896 pipe_config, false)) { 8897 I915_STATE_WARN(1, "pipe state doesn't match!\n"); 8898 intel_dump_pipe_config(pipe_config, NULL, "[hw state]"); 8899 intel_dump_pipe_config(new_crtc_state, NULL, "[sw state]"); 8900 } 8901 } 8902 8903 static void 8904 intel_verify_planes(struct intel_atomic_state *state) 8905 { 8906 struct intel_plane *plane; 8907 const struct intel_plane_state *plane_state; 8908 int i; 8909 8910 for_each_new_intel_plane_in_state(state, plane, 8911 plane_state, i) 8912 assert_plane(plane, plane_state->planar_slave || 8913 plane_state->uapi.visible); 8914 } 8915 8916 static void 8917 verify_single_dpll_state(struct drm_i915_private *dev_priv, 8918 struct intel_shared_dpll *pll, 8919 struct intel_crtc *crtc, 8920 struct intel_crtc_state *new_crtc_state) 8921 { 8922 struct intel_dpll_hw_state dpll_hw_state; 8923 u8 pipe_mask; 8924 bool active; 8925 8926 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state)); 8927 8928 drm_dbg_kms(&dev_priv->drm, "%s\n", pll->info->name); 8929 8930 active = intel_dpll_get_hw_state(dev_priv, pll, &dpll_hw_state); 8931 8932 if (!(pll->info->flags & INTEL_DPLL_ALWAYS_ON)) { 8933 I915_STATE_WARN(!pll->on && pll->active_mask, 8934 "pll in active use but not on in sw tracking\n"); 8935 I915_STATE_WARN(pll->on && !pll->active_mask, 8936 "pll is on but not used by any active pipe\n"); 8937 I915_STATE_WARN(pll->on != active, 8938 "pll on state mismatch (expected %i, found %i)\n", 8939 pll->on, active); 8940 } 8941 8942 if (!crtc) { 8943 I915_STATE_WARN(pll->active_mask & ~pll->state.pipe_mask, 8944 "more active pll users than references: 0x%x vs 0x%x\n", 8945 pll->active_mask, pll->state.pipe_mask); 8946 8947 return; 8948 } 8949 8950 pipe_mask = BIT(crtc->pipe); 8951 8952 if (new_crtc_state->hw.active) 8953 I915_STATE_WARN(!(pll->active_mask & pipe_mask), 8954 "pll active mismatch (expected pipe %c in active mask 0x%x)\n", 8955 pipe_name(crtc->pipe), pll->active_mask); 8956 else 8957 I915_STATE_WARN(pll->active_mask & pipe_mask, 8958 "pll active mismatch (didn't expect pipe %c in active mask 0x%x)\n", 8959 pipe_name(crtc->pipe), pll->active_mask); 8960 8961 I915_STATE_WARN(!(pll->state.pipe_mask & pipe_mask), 8962 "pll enabled crtcs mismatch (expected 0x%x in 0x%x)\n", 8963 pipe_mask, pll->state.pipe_mask); 8964 8965 I915_STATE_WARN(pll->on && memcmp(&pll->state.hw_state, 8966 &dpll_hw_state, 8967 sizeof(dpll_hw_state)), 8968 "pll hw state mismatch\n"); 8969 } 8970 8971 static void 8972 verify_shared_dpll_state(struct intel_crtc *crtc, 8973 struct intel_crtc_state *old_crtc_state, 8974 struct intel_crtc_state *new_crtc_state) 8975 { 8976 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 8977 8978 if (new_crtc_state->shared_dpll) 8979 verify_single_dpll_state(dev_priv, new_crtc_state->shared_dpll, crtc, new_crtc_state); 8980 8981 if (old_crtc_state->shared_dpll && 8982 old_crtc_state->shared_dpll != new_crtc_state->shared_dpll) { 8983 u8 pipe_mask = BIT(crtc->pipe); 8984 struct intel_shared_dpll *pll = old_crtc_state->shared_dpll; 8985 8986 I915_STATE_WARN(pll->active_mask & pipe_mask, 8987 "pll active mismatch (didn't expect pipe %c in active mask (0x%x))\n", 8988 pipe_name(crtc->pipe), pll->active_mask); 8989 I915_STATE_WARN(pll->state.pipe_mask & pipe_mask, 8990 "pll enabled crtcs mismatch (found %x in enabled mask (0x%x))\n", 8991 pipe_name(crtc->pipe), pll->state.pipe_mask); 8992 } 8993 } 8994 8995 static void 8996 verify_mpllb_state(struct intel_atomic_state *state, 8997 struct intel_crtc_state *new_crtc_state) 8998 { 8999 struct drm_i915_private *i915 = to_i915(state->base.dev); 9000 struct intel_mpllb_state mpllb_hw_state = { 0 }; 9001 struct intel_mpllb_state *mpllb_sw_state = &new_crtc_state->mpllb_state; 9002 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); 9003 struct intel_encoder *encoder; 9004 9005 if (!IS_DG2(i915)) 9006 return; 9007 9008 if (!new_crtc_state->hw.active) 9009 return; 9010 9011 if (new_crtc_state->bigjoiner_slave) 9012 return; 9013 9014 encoder = intel_get_crtc_new_encoder(state, new_crtc_state); 9015 intel_mpllb_readout_hw_state(encoder, &mpllb_hw_state); 9016 9017 #define MPLLB_CHECK(name) do { \ 9018 if (mpllb_sw_state->name != mpllb_hw_state.name) { \ 9019 pipe_config_mismatch(false, crtc, "MPLLB:" __stringify(name), \ 9020 "(expected 0x%08x, found 0x%08x)", \ 9021 mpllb_sw_state->name, \ 9022 mpllb_hw_state.name); \ 9023 } \ 9024 } while (0) 9025 9026 MPLLB_CHECK(mpllb_cp); 9027 MPLLB_CHECK(mpllb_div); 9028 MPLLB_CHECK(mpllb_div2); 9029 MPLLB_CHECK(mpllb_fracn1); 9030 MPLLB_CHECK(mpllb_fracn2); 9031 MPLLB_CHECK(mpllb_sscen); 9032 MPLLB_CHECK(mpllb_sscstep); 9033 9034 /* 9035 * ref_control is handled by the hardware/firemware and never 9036 * programmed by the software, but the proper values are supplied 9037 * in the bspec for verification purposes. 9038 */ 9039 MPLLB_CHECK(ref_control); 9040 9041 #undef MPLLB_CHECK 9042 } 9043 9044 static void 9045 intel_modeset_verify_crtc(struct intel_crtc *crtc, 9046 struct intel_atomic_state *state, 9047 struct intel_crtc_state *old_crtc_state, 9048 struct intel_crtc_state *new_crtc_state) 9049 { 9050 if (!intel_crtc_needs_modeset(new_crtc_state) && !new_crtc_state->update_pipe) 9051 return; 9052 9053 verify_wm_state(crtc, new_crtc_state); 9054 verify_connector_state(state, crtc); 9055 verify_crtc_state(crtc, old_crtc_state, new_crtc_state); 9056 verify_shared_dpll_state(crtc, old_crtc_state, new_crtc_state); 9057 verify_mpllb_state(state, new_crtc_state); 9058 } 9059 9060 static void 9061 verify_disabled_dpll_state(struct drm_i915_private *dev_priv) 9062 { 9063 int i; 9064 9065 for (i = 0; i < dev_priv->dpll.num_shared_dpll; i++) 9066 verify_single_dpll_state(dev_priv, 9067 &dev_priv->dpll.shared_dplls[i], 9068 NULL, NULL); 9069 } 9070 9071 static void 9072 intel_modeset_verify_disabled(struct drm_i915_private *dev_priv, 9073 struct intel_atomic_state *state) 9074 { 9075 verify_encoder_state(dev_priv, state); 9076 verify_connector_state(state, NULL); 9077 verify_disabled_dpll_state(dev_priv); 9078 } 9079 9080 int intel_modeset_all_pipes(struct intel_atomic_state *state) 9081 { 9082 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 9083 struct intel_crtc *crtc; 9084 9085 /* 9086 * Add all pipes to the state, and force 9087 * a modeset on all the active ones. 9088 */ 9089 for_each_intel_crtc(&dev_priv->drm, crtc) { 9090 struct intel_crtc_state *crtc_state; 9091 int ret; 9092 9093 crtc_state = intel_atomic_get_crtc_state(&state->base, crtc); 9094 if (IS_ERR(crtc_state)) 9095 return PTR_ERR(crtc_state); 9096 9097 if (!crtc_state->hw.active || 9098 drm_atomic_crtc_needs_modeset(&crtc_state->uapi)) 9099 continue; 9100 9101 crtc_state->uapi.mode_changed = true; 9102 9103 ret = drm_atomic_add_affected_connectors(&state->base, 9104 &crtc->base); 9105 if (ret) 9106 return ret; 9107 9108 ret = intel_atomic_add_affected_planes(state, crtc); 9109 if (ret) 9110 return ret; 9111 9112 crtc_state->update_planes |= crtc_state->active_planes; 9113 } 9114 9115 return 0; 9116 } 9117 9118 static void 9119 intel_crtc_update_active_timings(const struct intel_crtc_state *crtc_state) 9120 { 9121 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 9122 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 9123 struct drm_display_mode adjusted_mode = 9124 crtc_state->hw.adjusted_mode; 9125 9126 if (crtc_state->vrr.enable) { 9127 adjusted_mode.crtc_vtotal = crtc_state->vrr.vmax; 9128 adjusted_mode.crtc_vblank_end = crtc_state->vrr.vmax; 9129 adjusted_mode.crtc_vblank_start = intel_vrr_vmin_vblank_start(crtc_state); 9130 crtc->vmax_vblank_start = intel_vrr_vmax_vblank_start(crtc_state); 9131 } 9132 9133 drm_calc_timestamping_constants(&crtc->base, &adjusted_mode); 9134 9135 crtc->mode_flags = crtc_state->mode_flags; 9136 9137 /* 9138 * The scanline counter increments at the leading edge of hsync. 9139 * 9140 * On most platforms it starts counting from vtotal-1 on the 9141 * first active line. That means the scanline counter value is 9142 * always one less than what we would expect. Ie. just after 9143 * start of vblank, which also occurs at start of hsync (on the 9144 * last active line), the scanline counter will read vblank_start-1. 9145 * 9146 * On gen2 the scanline counter starts counting from 1 instead 9147 * of vtotal-1, so we have to subtract one (or rather add vtotal-1 9148 * to keep the value positive), instead of adding one. 9149 * 9150 * On HSW+ the behaviour of the scanline counter depends on the output 9151 * type. For DP ports it behaves like most other platforms, but on HDMI 9152 * there's an extra 1 line difference. So we need to add two instead of 9153 * one to the value. 9154 * 9155 * On VLV/CHV DSI the scanline counter would appear to increment 9156 * approx. 1/3 of a scanline before start of vblank. Unfortunately 9157 * that means we can't tell whether we're in vblank or not while 9158 * we're on that particular line. We must still set scanline_offset 9159 * to 1 so that the vblank timestamps come out correct when we query 9160 * the scanline counter from within the vblank interrupt handler. 9161 * However if queried just before the start of vblank we'll get an 9162 * answer that's slightly in the future. 9163 */ 9164 if (DISPLAY_VER(dev_priv) == 2) { 9165 int vtotal; 9166 9167 vtotal = adjusted_mode.crtc_vtotal; 9168 if (adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) 9169 vtotal /= 2; 9170 9171 crtc->scanline_offset = vtotal - 1; 9172 } else if (HAS_DDI(dev_priv) && 9173 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) { 9174 crtc->scanline_offset = 2; 9175 } else { 9176 crtc->scanline_offset = 1; 9177 } 9178 } 9179 9180 static void intel_modeset_clear_plls(struct intel_atomic_state *state) 9181 { 9182 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 9183 struct intel_crtc_state *new_crtc_state; 9184 struct intel_crtc *crtc; 9185 int i; 9186 9187 if (!dev_priv->display.crtc_compute_clock) 9188 return; 9189 9190 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 9191 if (!intel_crtc_needs_modeset(new_crtc_state)) 9192 continue; 9193 9194 intel_release_shared_dplls(state, crtc); 9195 } 9196 } 9197 9198 /* 9199 * This implements the workaround described in the "notes" section of the mode 9200 * set sequence documentation. When going from no pipes or single pipe to 9201 * multiple pipes, and planes are enabled after the pipe, we need to wait at 9202 * least 2 vblanks on the first pipe before enabling planes on the second pipe. 9203 */ 9204 static int hsw_mode_set_planes_workaround(struct intel_atomic_state *state) 9205 { 9206 struct intel_crtc_state *crtc_state; 9207 struct intel_crtc *crtc; 9208 struct intel_crtc_state *first_crtc_state = NULL; 9209 struct intel_crtc_state *other_crtc_state = NULL; 9210 enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE; 9211 int i; 9212 9213 /* look at all crtc's that are going to be enabled in during modeset */ 9214 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 9215 if (!crtc_state->hw.active || 9216 !intel_crtc_needs_modeset(crtc_state)) 9217 continue; 9218 9219 if (first_crtc_state) { 9220 other_crtc_state = crtc_state; 9221 break; 9222 } else { 9223 first_crtc_state = crtc_state; 9224 first_pipe = crtc->pipe; 9225 } 9226 } 9227 9228 /* No workaround needed? */ 9229 if (!first_crtc_state) 9230 return 0; 9231 9232 /* w/a possibly needed, check how many crtc's are already enabled. */ 9233 for_each_intel_crtc(state->base.dev, crtc) { 9234 crtc_state = intel_atomic_get_crtc_state(&state->base, crtc); 9235 if (IS_ERR(crtc_state)) 9236 return PTR_ERR(crtc_state); 9237 9238 crtc_state->hsw_workaround_pipe = INVALID_PIPE; 9239 9240 if (!crtc_state->hw.active || 9241 intel_crtc_needs_modeset(crtc_state)) 9242 continue; 9243 9244 /* 2 or more enabled crtcs means no need for w/a */ 9245 if (enabled_pipe != INVALID_PIPE) 9246 return 0; 9247 9248 enabled_pipe = crtc->pipe; 9249 } 9250 9251 if (enabled_pipe != INVALID_PIPE) 9252 first_crtc_state->hsw_workaround_pipe = enabled_pipe; 9253 else if (other_crtc_state) 9254 other_crtc_state->hsw_workaround_pipe = first_pipe; 9255 9256 return 0; 9257 } 9258 9259 u8 intel_calc_active_pipes(struct intel_atomic_state *state, 9260 u8 active_pipes) 9261 { 9262 const struct intel_crtc_state *crtc_state; 9263 struct intel_crtc *crtc; 9264 int i; 9265 9266 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 9267 if (crtc_state->hw.active) 9268 active_pipes |= BIT(crtc->pipe); 9269 else 9270 active_pipes &= ~BIT(crtc->pipe); 9271 } 9272 9273 return active_pipes; 9274 } 9275 9276 static int intel_modeset_checks(struct intel_atomic_state *state) 9277 { 9278 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 9279 9280 state->modeset = true; 9281 9282 if (IS_HASWELL(dev_priv)) 9283 return hsw_mode_set_planes_workaround(state); 9284 9285 return 0; 9286 } 9287 9288 /* 9289 * Handle calculation of various watermark data at the end of the atomic check 9290 * phase. The code here should be run after the per-crtc and per-plane 'check' 9291 * handlers to ensure that all derived state has been updated. 9292 */ 9293 static int calc_watermark_data(struct intel_atomic_state *state) 9294 { 9295 struct drm_device *dev = state->base.dev; 9296 struct drm_i915_private *dev_priv = to_i915(dev); 9297 9298 /* Is there platform-specific watermark information to calculate? */ 9299 if (dev_priv->display.compute_global_watermarks) 9300 return dev_priv->display.compute_global_watermarks(state); 9301 9302 return 0; 9303 } 9304 9305 static void intel_crtc_check_fastset(const struct intel_crtc_state *old_crtc_state, 9306 struct intel_crtc_state *new_crtc_state) 9307 { 9308 if (!intel_pipe_config_compare(old_crtc_state, new_crtc_state, true)) 9309 return; 9310 9311 new_crtc_state->uapi.mode_changed = false; 9312 new_crtc_state->update_pipe = true; 9313 } 9314 9315 static void intel_crtc_copy_fastset(const struct intel_crtc_state *old_crtc_state, 9316 struct intel_crtc_state *new_crtc_state) 9317 { 9318 /* 9319 * If we're not doing the full modeset we want to 9320 * keep the current M/N values as they may be 9321 * sufficiently different to the computed values 9322 * to cause problems. 9323 * 9324 * FIXME: should really copy more fuzzy state here 9325 */ 9326 new_crtc_state->fdi_m_n = old_crtc_state->fdi_m_n; 9327 new_crtc_state->dp_m_n = old_crtc_state->dp_m_n; 9328 new_crtc_state->dp_m2_n2 = old_crtc_state->dp_m2_n2; 9329 new_crtc_state->has_drrs = old_crtc_state->has_drrs; 9330 } 9331 9332 static int intel_crtc_add_planes_to_state(struct intel_atomic_state *state, 9333 struct intel_crtc *crtc, 9334 u8 plane_ids_mask) 9335 { 9336 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 9337 struct intel_plane *plane; 9338 9339 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) { 9340 struct intel_plane_state *plane_state; 9341 9342 if ((plane_ids_mask & BIT(plane->id)) == 0) 9343 continue; 9344 9345 plane_state = intel_atomic_get_plane_state(state, plane); 9346 if (IS_ERR(plane_state)) 9347 return PTR_ERR(plane_state); 9348 } 9349 9350 return 0; 9351 } 9352 9353 int intel_atomic_add_affected_planes(struct intel_atomic_state *state, 9354 struct intel_crtc *crtc) 9355 { 9356 const struct intel_crtc_state *old_crtc_state = 9357 intel_atomic_get_old_crtc_state(state, crtc); 9358 const struct intel_crtc_state *new_crtc_state = 9359 intel_atomic_get_new_crtc_state(state, crtc); 9360 9361 return intel_crtc_add_planes_to_state(state, crtc, 9362 old_crtc_state->enabled_planes | 9363 new_crtc_state->enabled_planes); 9364 } 9365 9366 static bool active_planes_affects_min_cdclk(struct drm_i915_private *dev_priv) 9367 { 9368 /* See {hsw,vlv,ivb}_plane_ratio() */ 9369 return IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv) || 9370 IS_CHERRYVIEW(dev_priv) || IS_VALLEYVIEW(dev_priv) || 9371 IS_IVYBRIDGE(dev_priv); 9372 } 9373 9374 static int intel_crtc_add_bigjoiner_planes(struct intel_atomic_state *state, 9375 struct intel_crtc *crtc, 9376 struct intel_crtc *other) 9377 { 9378 const struct intel_plane_state *plane_state; 9379 struct intel_plane *plane; 9380 u8 plane_ids = 0; 9381 int i; 9382 9383 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 9384 if (plane->pipe == crtc->pipe) 9385 plane_ids |= BIT(plane->id); 9386 } 9387 9388 return intel_crtc_add_planes_to_state(state, other, plane_ids); 9389 } 9390 9391 static int intel_bigjoiner_add_affected_planes(struct intel_atomic_state *state) 9392 { 9393 const struct intel_crtc_state *crtc_state; 9394 struct intel_crtc *crtc; 9395 int i; 9396 9397 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 9398 int ret; 9399 9400 if (!crtc_state->bigjoiner) 9401 continue; 9402 9403 ret = intel_crtc_add_bigjoiner_planes(state, crtc, 9404 crtc_state->bigjoiner_linked_crtc); 9405 if (ret) 9406 return ret; 9407 } 9408 9409 return 0; 9410 } 9411 9412 static int intel_atomic_check_planes(struct intel_atomic_state *state) 9413 { 9414 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 9415 struct intel_crtc_state *old_crtc_state, *new_crtc_state; 9416 struct intel_plane_state *plane_state; 9417 struct intel_plane *plane; 9418 struct intel_crtc *crtc; 9419 int i, ret; 9420 9421 ret = icl_add_linked_planes(state); 9422 if (ret) 9423 return ret; 9424 9425 ret = intel_bigjoiner_add_affected_planes(state); 9426 if (ret) 9427 return ret; 9428 9429 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 9430 ret = intel_plane_atomic_check(state, plane); 9431 if (ret) { 9432 drm_dbg_atomic(&dev_priv->drm, 9433 "[PLANE:%d:%s] atomic driver check failed\n", 9434 plane->base.base.id, plane->base.name); 9435 return ret; 9436 } 9437 } 9438 9439 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 9440 new_crtc_state, i) { 9441 u8 old_active_planes, new_active_planes; 9442 9443 ret = icl_check_nv12_planes(new_crtc_state); 9444 if (ret) 9445 return ret; 9446 9447 /* 9448 * On some platforms the number of active planes affects 9449 * the planes' minimum cdclk calculation. Add such planes 9450 * to the state before we compute the minimum cdclk. 9451 */ 9452 if (!active_planes_affects_min_cdclk(dev_priv)) 9453 continue; 9454 9455 old_active_planes = old_crtc_state->active_planes & ~BIT(PLANE_CURSOR); 9456 new_active_planes = new_crtc_state->active_planes & ~BIT(PLANE_CURSOR); 9457 9458 if (hweight8(old_active_planes) == hweight8(new_active_planes)) 9459 continue; 9460 9461 ret = intel_crtc_add_planes_to_state(state, crtc, new_active_planes); 9462 if (ret) 9463 return ret; 9464 } 9465 9466 return 0; 9467 } 9468 9469 static int intel_atomic_check_cdclk(struct intel_atomic_state *state, 9470 bool *need_cdclk_calc) 9471 { 9472 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 9473 const struct intel_cdclk_state *old_cdclk_state; 9474 const struct intel_cdclk_state *new_cdclk_state; 9475 struct intel_plane_state *plane_state; 9476 struct intel_bw_state *new_bw_state; 9477 struct intel_plane *plane; 9478 int min_cdclk = 0; 9479 enum pipe pipe; 9480 int ret; 9481 int i; 9482 /* 9483 * active_planes bitmask has been updated, and potentially 9484 * affected planes are part of the state. We can now 9485 * compute the minimum cdclk for each plane. 9486 */ 9487 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 9488 ret = intel_plane_calc_min_cdclk(state, plane, need_cdclk_calc); 9489 if (ret) 9490 return ret; 9491 } 9492 9493 old_cdclk_state = intel_atomic_get_old_cdclk_state(state); 9494 new_cdclk_state = intel_atomic_get_new_cdclk_state(state); 9495 9496 if (new_cdclk_state && 9497 old_cdclk_state->force_min_cdclk != new_cdclk_state->force_min_cdclk) 9498 *need_cdclk_calc = true; 9499 9500 ret = dev_priv->display.bw_calc_min_cdclk(state); 9501 if (ret) 9502 return ret; 9503 9504 new_bw_state = intel_atomic_get_new_bw_state(state); 9505 9506 if (!new_cdclk_state || !new_bw_state) 9507 return 0; 9508 9509 for_each_pipe(dev_priv, pipe) { 9510 min_cdclk = max(new_cdclk_state->min_cdclk[pipe], min_cdclk); 9511 9512 /* 9513 * Currently do this change only if we need to increase 9514 */ 9515 if (new_bw_state->min_cdclk > min_cdclk) 9516 *need_cdclk_calc = true; 9517 } 9518 9519 return 0; 9520 } 9521 9522 static int intel_atomic_check_crtcs(struct intel_atomic_state *state) 9523 { 9524 struct intel_crtc_state *crtc_state; 9525 struct intel_crtc *crtc; 9526 int i; 9527 9528 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 9529 struct drm_i915_private *i915 = to_i915(crtc->base.dev); 9530 int ret; 9531 9532 ret = intel_crtc_atomic_check(state, crtc); 9533 if (ret) { 9534 drm_dbg_atomic(&i915->drm, 9535 "[CRTC:%d:%s] atomic driver check failed\n", 9536 crtc->base.base.id, crtc->base.name); 9537 return ret; 9538 } 9539 } 9540 9541 return 0; 9542 } 9543 9544 static bool intel_cpu_transcoders_need_modeset(struct intel_atomic_state *state, 9545 u8 transcoders) 9546 { 9547 const struct intel_crtc_state *new_crtc_state; 9548 struct intel_crtc *crtc; 9549 int i; 9550 9551 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 9552 if (new_crtc_state->hw.enable && 9553 transcoders & BIT(new_crtc_state->cpu_transcoder) && 9554 intel_crtc_needs_modeset(new_crtc_state)) 9555 return true; 9556 } 9557 9558 return false; 9559 } 9560 9561 static int intel_atomic_check_bigjoiner(struct intel_atomic_state *state, 9562 struct intel_crtc *crtc, 9563 struct intel_crtc_state *old_crtc_state, 9564 struct intel_crtc_state *new_crtc_state) 9565 { 9566 struct intel_crtc_state *slave_crtc_state, *master_crtc_state; 9567 struct intel_crtc *slave, *master; 9568 9569 /* slave being enabled, is master is still claiming this crtc? */ 9570 if (old_crtc_state->bigjoiner_slave) { 9571 slave = crtc; 9572 master = old_crtc_state->bigjoiner_linked_crtc; 9573 master_crtc_state = intel_atomic_get_new_crtc_state(state, master); 9574 if (!master_crtc_state || !intel_crtc_needs_modeset(master_crtc_state)) 9575 goto claimed; 9576 } 9577 9578 if (!new_crtc_state->bigjoiner) 9579 return 0; 9580 9581 slave = intel_dsc_get_bigjoiner_secondary(crtc); 9582 if (!slave) { 9583 DRM_DEBUG_KMS("[CRTC:%d:%s] Big joiner configuration requires " 9584 "CRTC + 1 to be used, doesn't exist\n", 9585 crtc->base.base.id, crtc->base.name); 9586 return -EINVAL; 9587 } 9588 9589 new_crtc_state->bigjoiner_linked_crtc = slave; 9590 slave_crtc_state = intel_atomic_get_crtc_state(&state->base, slave); 9591 master = crtc; 9592 if (IS_ERR(slave_crtc_state)) 9593 return PTR_ERR(slave_crtc_state); 9594 9595 /* master being enabled, slave was already configured? */ 9596 if (slave_crtc_state->uapi.enable) 9597 goto claimed; 9598 9599 DRM_DEBUG_KMS("[CRTC:%d:%s] Used as slave for big joiner\n", 9600 slave->base.base.id, slave->base.name); 9601 9602 return copy_bigjoiner_crtc_state(slave_crtc_state, new_crtc_state); 9603 9604 claimed: 9605 DRM_DEBUG_KMS("[CRTC:%d:%s] Slave is enabled as normal CRTC, but " 9606 "[CRTC:%d:%s] claiming this CRTC for bigjoiner.\n", 9607 slave->base.base.id, slave->base.name, 9608 master->base.base.id, master->base.name); 9609 return -EINVAL; 9610 } 9611 9612 static void kill_bigjoiner_slave(struct intel_atomic_state *state, 9613 struct intel_crtc_state *master_crtc_state) 9614 { 9615 struct intel_crtc_state *slave_crtc_state = 9616 intel_atomic_get_new_crtc_state(state, master_crtc_state->bigjoiner_linked_crtc); 9617 9618 slave_crtc_state->bigjoiner = master_crtc_state->bigjoiner = false; 9619 slave_crtc_state->bigjoiner_slave = master_crtc_state->bigjoiner_slave = false; 9620 slave_crtc_state->bigjoiner_linked_crtc = master_crtc_state->bigjoiner_linked_crtc = NULL; 9621 intel_crtc_copy_uapi_to_hw_state(state, slave_crtc_state); 9622 } 9623 9624 /** 9625 * DOC: asynchronous flip implementation 9626 * 9627 * Asynchronous page flip is the implementation for the DRM_MODE_PAGE_FLIP_ASYNC 9628 * flag. Currently async flip is only supported via the drmModePageFlip IOCTL. 9629 * Correspondingly, support is currently added for primary plane only. 9630 * 9631 * Async flip can only change the plane surface address, so anything else 9632 * changing is rejected from the intel_atomic_check_async() function. 9633 * Once this check is cleared, flip done interrupt is enabled using 9634 * the intel_crtc_enable_flip_done() function. 9635 * 9636 * As soon as the surface address register is written, flip done interrupt is 9637 * generated and the requested events are sent to the usersapce in the interrupt 9638 * handler itself. The timestamp and sequence sent during the flip done event 9639 * correspond to the last vblank and have no relation to the actual time when 9640 * the flip done event was sent. 9641 */ 9642 static int intel_atomic_check_async(struct intel_atomic_state *state) 9643 { 9644 struct drm_i915_private *i915 = to_i915(state->base.dev); 9645 const struct intel_crtc_state *old_crtc_state, *new_crtc_state; 9646 const struct intel_plane_state *new_plane_state, *old_plane_state; 9647 struct intel_crtc *crtc; 9648 struct intel_plane *plane; 9649 int i; 9650 9651 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 9652 new_crtc_state, i) { 9653 if (intel_crtc_needs_modeset(new_crtc_state)) { 9654 drm_dbg_kms(&i915->drm, "Modeset Required. Async flip not supported\n"); 9655 return -EINVAL; 9656 } 9657 9658 if (!new_crtc_state->hw.active) { 9659 drm_dbg_kms(&i915->drm, "CRTC inactive\n"); 9660 return -EINVAL; 9661 } 9662 if (old_crtc_state->active_planes != new_crtc_state->active_planes) { 9663 drm_dbg_kms(&i915->drm, 9664 "Active planes cannot be changed during async flip\n"); 9665 return -EINVAL; 9666 } 9667 } 9668 9669 for_each_oldnew_intel_plane_in_state(state, plane, old_plane_state, 9670 new_plane_state, i) { 9671 /* 9672 * TODO: Async flip is only supported through the page flip IOCTL 9673 * as of now. So support currently added for primary plane only. 9674 * Support for other planes on platforms on which supports 9675 * this(vlv/chv and icl+) should be added when async flip is 9676 * enabled in the atomic IOCTL path. 9677 */ 9678 if (!plane->async_flip) 9679 return -EINVAL; 9680 9681 /* 9682 * FIXME: This check is kept generic for all platforms. 9683 * Need to verify this for all gen9 platforms to enable 9684 * this selectively if required. 9685 */ 9686 switch (new_plane_state->hw.fb->modifier) { 9687 case I915_FORMAT_MOD_X_TILED: 9688 case I915_FORMAT_MOD_Y_TILED: 9689 case I915_FORMAT_MOD_Yf_TILED: 9690 break; 9691 default: 9692 drm_dbg_kms(&i915->drm, 9693 "Linear memory/CCS does not support async flips\n"); 9694 return -EINVAL; 9695 } 9696 9697 if (old_plane_state->view.color_plane[0].stride != 9698 new_plane_state->view.color_plane[0].stride) { 9699 drm_dbg_kms(&i915->drm, "Stride cannot be changed in async flip\n"); 9700 return -EINVAL; 9701 } 9702 9703 if (old_plane_state->hw.fb->modifier != 9704 new_plane_state->hw.fb->modifier) { 9705 drm_dbg_kms(&i915->drm, 9706 "Framebuffer modifiers cannot be changed in async flip\n"); 9707 return -EINVAL; 9708 } 9709 9710 if (old_plane_state->hw.fb->format != 9711 new_plane_state->hw.fb->format) { 9712 drm_dbg_kms(&i915->drm, 9713 "Framebuffer format cannot be changed in async flip\n"); 9714 return -EINVAL; 9715 } 9716 9717 if (old_plane_state->hw.rotation != 9718 new_plane_state->hw.rotation) { 9719 drm_dbg_kms(&i915->drm, "Rotation cannot be changed in async flip\n"); 9720 return -EINVAL; 9721 } 9722 9723 if (!drm_rect_equals(&old_plane_state->uapi.src, &new_plane_state->uapi.src) || 9724 !drm_rect_equals(&old_plane_state->uapi.dst, &new_plane_state->uapi.dst)) { 9725 drm_dbg_kms(&i915->drm, 9726 "Plane size/co-ordinates cannot be changed in async flip\n"); 9727 return -EINVAL; 9728 } 9729 9730 if (old_plane_state->hw.alpha != new_plane_state->hw.alpha) { 9731 drm_dbg_kms(&i915->drm, "Alpha value cannot be changed in async flip\n"); 9732 return -EINVAL; 9733 } 9734 9735 if (old_plane_state->hw.pixel_blend_mode != 9736 new_plane_state->hw.pixel_blend_mode) { 9737 drm_dbg_kms(&i915->drm, 9738 "Pixel blend mode cannot be changed in async flip\n"); 9739 return -EINVAL; 9740 } 9741 9742 if (old_plane_state->hw.color_encoding != new_plane_state->hw.color_encoding) { 9743 drm_dbg_kms(&i915->drm, 9744 "Color encoding cannot be changed in async flip\n"); 9745 return -EINVAL; 9746 } 9747 9748 if (old_plane_state->hw.color_range != new_plane_state->hw.color_range) { 9749 drm_dbg_kms(&i915->drm, "Color range cannot be changed in async flip\n"); 9750 return -EINVAL; 9751 } 9752 } 9753 9754 return 0; 9755 } 9756 9757 static int intel_bigjoiner_add_affected_crtcs(struct intel_atomic_state *state) 9758 { 9759 struct intel_crtc_state *crtc_state; 9760 struct intel_crtc *crtc; 9761 int i; 9762 9763 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 9764 struct intel_crtc_state *linked_crtc_state; 9765 struct intel_crtc *linked_crtc; 9766 int ret; 9767 9768 if (!crtc_state->bigjoiner) 9769 continue; 9770 9771 linked_crtc = crtc_state->bigjoiner_linked_crtc; 9772 linked_crtc_state = intel_atomic_get_crtc_state(&state->base, linked_crtc); 9773 if (IS_ERR(linked_crtc_state)) 9774 return PTR_ERR(linked_crtc_state); 9775 9776 if (!intel_crtc_needs_modeset(crtc_state)) 9777 continue; 9778 9779 linked_crtc_state->uapi.mode_changed = true; 9780 9781 ret = drm_atomic_add_affected_connectors(&state->base, 9782 &linked_crtc->base); 9783 if (ret) 9784 return ret; 9785 9786 ret = intel_atomic_add_affected_planes(state, linked_crtc); 9787 if (ret) 9788 return ret; 9789 } 9790 9791 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 9792 /* Kill old bigjoiner link, we may re-establish afterwards */ 9793 if (intel_crtc_needs_modeset(crtc_state) && 9794 crtc_state->bigjoiner && !crtc_state->bigjoiner_slave) 9795 kill_bigjoiner_slave(state, crtc_state); 9796 } 9797 9798 return 0; 9799 } 9800 9801 /** 9802 * intel_atomic_check - validate state object 9803 * @dev: drm device 9804 * @_state: state to validate 9805 */ 9806 static int intel_atomic_check(struct drm_device *dev, 9807 struct drm_atomic_state *_state) 9808 { 9809 struct drm_i915_private *dev_priv = to_i915(dev); 9810 struct intel_atomic_state *state = to_intel_atomic_state(_state); 9811 struct intel_crtc_state *old_crtc_state, *new_crtc_state; 9812 struct intel_crtc *crtc; 9813 int ret, i; 9814 bool any_ms = false; 9815 9816 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 9817 new_crtc_state, i) { 9818 if (new_crtc_state->inherited != old_crtc_state->inherited) 9819 new_crtc_state->uapi.mode_changed = true; 9820 } 9821 9822 intel_vrr_check_modeset(state); 9823 9824 ret = drm_atomic_helper_check_modeset(dev, &state->base); 9825 if (ret) 9826 goto fail; 9827 9828 ret = intel_bigjoiner_add_affected_crtcs(state); 9829 if (ret) 9830 goto fail; 9831 9832 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 9833 new_crtc_state, i) { 9834 if (!intel_crtc_needs_modeset(new_crtc_state)) { 9835 /* Light copy */ 9836 intel_crtc_copy_uapi_to_hw_state_nomodeset(state, new_crtc_state); 9837 9838 continue; 9839 } 9840 9841 if (!new_crtc_state->uapi.enable) { 9842 if (!new_crtc_state->bigjoiner_slave) { 9843 intel_crtc_copy_uapi_to_hw_state(state, new_crtc_state); 9844 any_ms = true; 9845 } 9846 continue; 9847 } 9848 9849 ret = intel_crtc_prepare_cleared_state(state, new_crtc_state); 9850 if (ret) 9851 goto fail; 9852 9853 ret = intel_modeset_pipe_config(state, new_crtc_state); 9854 if (ret) 9855 goto fail; 9856 9857 ret = intel_atomic_check_bigjoiner(state, crtc, old_crtc_state, 9858 new_crtc_state); 9859 if (ret) 9860 goto fail; 9861 } 9862 9863 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 9864 new_crtc_state, i) { 9865 if (!intel_crtc_needs_modeset(new_crtc_state)) 9866 continue; 9867 9868 ret = intel_modeset_pipe_config_late(new_crtc_state); 9869 if (ret) 9870 goto fail; 9871 9872 intel_crtc_check_fastset(old_crtc_state, new_crtc_state); 9873 } 9874 9875 /** 9876 * Check if fastset is allowed by external dependencies like other 9877 * pipes and transcoders. 9878 * 9879 * Right now it only forces a fullmodeset when the MST master 9880 * transcoder did not changed but the pipe of the master transcoder 9881 * needs a fullmodeset so all slaves also needs to do a fullmodeset or 9882 * in case of port synced crtcs, if one of the synced crtcs 9883 * needs a full modeset, all other synced crtcs should be 9884 * forced a full modeset. 9885 */ 9886 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 9887 if (!new_crtc_state->hw.enable || intel_crtc_needs_modeset(new_crtc_state)) 9888 continue; 9889 9890 if (intel_dp_mst_is_slave_trans(new_crtc_state)) { 9891 enum transcoder master = new_crtc_state->mst_master_transcoder; 9892 9893 if (intel_cpu_transcoders_need_modeset(state, BIT(master))) { 9894 new_crtc_state->uapi.mode_changed = true; 9895 new_crtc_state->update_pipe = false; 9896 } 9897 } 9898 9899 if (is_trans_port_sync_mode(new_crtc_state)) { 9900 u8 trans = new_crtc_state->sync_mode_slaves_mask; 9901 9902 if (new_crtc_state->master_transcoder != INVALID_TRANSCODER) 9903 trans |= BIT(new_crtc_state->master_transcoder); 9904 9905 if (intel_cpu_transcoders_need_modeset(state, trans)) { 9906 new_crtc_state->uapi.mode_changed = true; 9907 new_crtc_state->update_pipe = false; 9908 } 9909 } 9910 9911 if (new_crtc_state->bigjoiner) { 9912 struct intel_crtc_state *linked_crtc_state = 9913 intel_atomic_get_new_crtc_state(state, new_crtc_state->bigjoiner_linked_crtc); 9914 9915 if (intel_crtc_needs_modeset(linked_crtc_state)) { 9916 new_crtc_state->uapi.mode_changed = true; 9917 new_crtc_state->update_pipe = false; 9918 } 9919 } 9920 } 9921 9922 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 9923 new_crtc_state, i) { 9924 if (intel_crtc_needs_modeset(new_crtc_state)) { 9925 any_ms = true; 9926 continue; 9927 } 9928 9929 if (!new_crtc_state->update_pipe) 9930 continue; 9931 9932 intel_crtc_copy_fastset(old_crtc_state, new_crtc_state); 9933 } 9934 9935 if (any_ms && !check_digital_port_conflicts(state)) { 9936 drm_dbg_kms(&dev_priv->drm, 9937 "rejecting conflicting digital port configuration\n"); 9938 ret = -EINVAL; 9939 goto fail; 9940 } 9941 9942 ret = drm_dp_mst_atomic_check(&state->base); 9943 if (ret) 9944 goto fail; 9945 9946 ret = intel_atomic_check_planes(state); 9947 if (ret) 9948 goto fail; 9949 9950 intel_fbc_choose_crtc(dev_priv, state); 9951 ret = calc_watermark_data(state); 9952 if (ret) 9953 goto fail; 9954 9955 ret = intel_bw_atomic_check(state); 9956 if (ret) 9957 goto fail; 9958 9959 ret = intel_atomic_check_cdclk(state, &any_ms); 9960 if (ret) 9961 goto fail; 9962 9963 if (intel_any_crtc_needs_modeset(state)) 9964 any_ms = true; 9965 9966 if (any_ms) { 9967 ret = intel_modeset_checks(state); 9968 if (ret) 9969 goto fail; 9970 9971 ret = intel_modeset_calc_cdclk(state); 9972 if (ret) 9973 return ret; 9974 9975 intel_modeset_clear_plls(state); 9976 } 9977 9978 ret = intel_atomic_check_crtcs(state); 9979 if (ret) 9980 goto fail; 9981 9982 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 9983 new_crtc_state, i) { 9984 if (new_crtc_state->uapi.async_flip) { 9985 ret = intel_atomic_check_async(state); 9986 if (ret) 9987 goto fail; 9988 } 9989 9990 if (!intel_crtc_needs_modeset(new_crtc_state) && 9991 !new_crtc_state->update_pipe) 9992 continue; 9993 9994 intel_dump_pipe_config(new_crtc_state, state, 9995 intel_crtc_needs_modeset(new_crtc_state) ? 9996 "[modeset]" : "[fastset]"); 9997 } 9998 9999 return 0; 10000 10001 fail: 10002 if (ret == -EDEADLK) 10003 return ret; 10004 10005 /* 10006 * FIXME would probably be nice to know which crtc specifically 10007 * caused the failure, in cases where we can pinpoint it. 10008 */ 10009 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 10010 new_crtc_state, i) 10011 intel_dump_pipe_config(new_crtc_state, state, "[failed]"); 10012 10013 return ret; 10014 } 10015 10016 static int intel_atomic_prepare_commit(struct intel_atomic_state *state) 10017 { 10018 struct intel_crtc_state *crtc_state; 10019 struct intel_crtc *crtc; 10020 int i, ret; 10021 10022 ret = drm_atomic_helper_prepare_planes(state->base.dev, &state->base); 10023 if (ret < 0) 10024 return ret; 10025 10026 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 10027 bool mode_changed = intel_crtc_needs_modeset(crtc_state); 10028 10029 if (mode_changed || crtc_state->update_pipe || 10030 crtc_state->uapi.color_mgmt_changed) { 10031 intel_dsb_prepare(crtc_state); 10032 } 10033 } 10034 10035 return 0; 10036 } 10037 10038 void intel_crtc_arm_fifo_underrun(struct intel_crtc *crtc, 10039 struct intel_crtc_state *crtc_state) 10040 { 10041 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 10042 10043 if (DISPLAY_VER(dev_priv) != 2 || crtc_state->active_planes) 10044 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true); 10045 10046 if (crtc_state->has_pch_encoder) { 10047 enum pipe pch_transcoder = 10048 intel_crtc_pch_transcoder(crtc); 10049 10050 intel_set_pch_fifo_underrun_reporting(dev_priv, pch_transcoder, true); 10051 } 10052 } 10053 10054 static void intel_pipe_fastset(const struct intel_crtc_state *old_crtc_state, 10055 const struct intel_crtc_state *new_crtc_state) 10056 { 10057 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); 10058 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 10059 10060 /* 10061 * Update pipe size and adjust fitter if needed: the reason for this is 10062 * that in compute_mode_changes we check the native mode (not the pfit 10063 * mode) to see if we can flip rather than do a full mode set. In the 10064 * fastboot case, we'll flip, but if we don't update the pipesrc and 10065 * pfit state, we'll end up with a big fb scanned out into the wrong 10066 * sized surface. 10067 */ 10068 intel_set_pipe_src_size(new_crtc_state); 10069 10070 /* on skylake this is done by detaching scalers */ 10071 if (DISPLAY_VER(dev_priv) >= 9) { 10072 if (new_crtc_state->pch_pfit.enabled) 10073 skl_pfit_enable(new_crtc_state); 10074 } else if (HAS_PCH_SPLIT(dev_priv)) { 10075 if (new_crtc_state->pch_pfit.enabled) 10076 ilk_pfit_enable(new_crtc_state); 10077 else if (old_crtc_state->pch_pfit.enabled) 10078 ilk_pfit_disable(old_crtc_state); 10079 } 10080 10081 /* 10082 * The register is supposedly single buffered so perhaps 10083 * not 100% correct to do this here. But SKL+ calculate 10084 * this based on the adjust pixel rate so pfit changes do 10085 * affect it and so it must be updated for fastsets. 10086 * HSW/BDW only really need this here for fastboot, after 10087 * that the value should not change without a full modeset. 10088 */ 10089 if (DISPLAY_VER(dev_priv) >= 9 || 10090 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) 10091 hsw_set_linetime_wm(new_crtc_state); 10092 10093 if (DISPLAY_VER(dev_priv) >= 11) 10094 icl_set_pipe_chicken(new_crtc_state); 10095 } 10096 10097 static void commit_pipe_pre_planes(struct intel_atomic_state *state, 10098 struct intel_crtc *crtc) 10099 { 10100 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 10101 const struct intel_crtc_state *old_crtc_state = 10102 intel_atomic_get_old_crtc_state(state, crtc); 10103 const struct intel_crtc_state *new_crtc_state = 10104 intel_atomic_get_new_crtc_state(state, crtc); 10105 bool modeset = intel_crtc_needs_modeset(new_crtc_state); 10106 10107 /* 10108 * During modesets pipe configuration was programmed as the 10109 * CRTC was enabled. 10110 */ 10111 if (!modeset) { 10112 if (new_crtc_state->uapi.color_mgmt_changed || 10113 new_crtc_state->update_pipe) 10114 intel_color_commit(new_crtc_state); 10115 10116 if (DISPLAY_VER(dev_priv) >= 9 || IS_BROADWELL(dev_priv)) 10117 bdw_set_pipemisc(new_crtc_state); 10118 10119 if (new_crtc_state->update_pipe) 10120 intel_pipe_fastset(old_crtc_state, new_crtc_state); 10121 10122 intel_psr2_program_trans_man_trk_ctl(new_crtc_state); 10123 } 10124 10125 if (dev_priv->display.atomic_update_watermarks) 10126 dev_priv->display.atomic_update_watermarks(state, crtc); 10127 } 10128 10129 static void commit_pipe_post_planes(struct intel_atomic_state *state, 10130 struct intel_crtc *crtc) 10131 { 10132 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 10133 const struct intel_crtc_state *new_crtc_state = 10134 intel_atomic_get_new_crtc_state(state, crtc); 10135 10136 /* 10137 * Disable the scaler(s) after the plane(s) so that we don't 10138 * get a catastrophic underrun even if the two operations 10139 * end up happening in two different frames. 10140 */ 10141 if (DISPLAY_VER(dev_priv) >= 9 && 10142 !intel_crtc_needs_modeset(new_crtc_state)) 10143 skl_detach_scalers(new_crtc_state); 10144 } 10145 10146 static void intel_enable_crtc(struct intel_atomic_state *state, 10147 struct intel_crtc *crtc) 10148 { 10149 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 10150 const struct intel_crtc_state *new_crtc_state = 10151 intel_atomic_get_new_crtc_state(state, crtc); 10152 10153 if (!intel_crtc_needs_modeset(new_crtc_state)) 10154 return; 10155 10156 intel_crtc_update_active_timings(new_crtc_state); 10157 10158 dev_priv->display.crtc_enable(state, crtc); 10159 10160 if (new_crtc_state->bigjoiner_slave) 10161 return; 10162 10163 /* vblanks work again, re-enable pipe CRC. */ 10164 intel_crtc_enable_pipe_crc(crtc); 10165 } 10166 10167 static void intel_update_crtc(struct intel_atomic_state *state, 10168 struct intel_crtc *crtc) 10169 { 10170 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 10171 const struct intel_crtc_state *old_crtc_state = 10172 intel_atomic_get_old_crtc_state(state, crtc); 10173 struct intel_crtc_state *new_crtc_state = 10174 intel_atomic_get_new_crtc_state(state, crtc); 10175 bool modeset = intel_crtc_needs_modeset(new_crtc_state); 10176 10177 if (!modeset) { 10178 if (new_crtc_state->preload_luts && 10179 (new_crtc_state->uapi.color_mgmt_changed || 10180 new_crtc_state->update_pipe)) 10181 intel_color_load_luts(new_crtc_state); 10182 10183 intel_pre_plane_update(state, crtc); 10184 10185 if (new_crtc_state->update_pipe) 10186 intel_encoders_update_pipe(state, crtc); 10187 } 10188 10189 if (new_crtc_state->update_pipe && !new_crtc_state->enable_fbc) 10190 intel_fbc_disable(crtc); 10191 else 10192 intel_fbc_enable(state, crtc); 10193 10194 /* Perform vblank evasion around commit operation */ 10195 intel_pipe_update_start(new_crtc_state); 10196 10197 commit_pipe_pre_planes(state, crtc); 10198 10199 if (DISPLAY_VER(dev_priv) >= 9) 10200 skl_update_planes_on_crtc(state, crtc); 10201 else 10202 i9xx_update_planes_on_crtc(state, crtc); 10203 10204 commit_pipe_post_planes(state, crtc); 10205 10206 intel_pipe_update_end(new_crtc_state); 10207 10208 /* 10209 * We usually enable FIFO underrun interrupts as part of the 10210 * CRTC enable sequence during modesets. But when we inherit a 10211 * valid pipe configuration from the BIOS we need to take care 10212 * of enabling them on the CRTC's first fastset. 10213 */ 10214 if (new_crtc_state->update_pipe && !modeset && 10215 old_crtc_state->inherited) 10216 intel_crtc_arm_fifo_underrun(crtc, new_crtc_state); 10217 } 10218 10219 static void intel_old_crtc_state_disables(struct intel_atomic_state *state, 10220 struct intel_crtc_state *old_crtc_state, 10221 struct intel_crtc_state *new_crtc_state, 10222 struct intel_crtc *crtc) 10223 { 10224 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 10225 10226 drm_WARN_ON(&dev_priv->drm, old_crtc_state->bigjoiner_slave); 10227 10228 intel_encoders_pre_disable(state, crtc); 10229 10230 intel_crtc_disable_planes(state, crtc); 10231 10232 /* 10233 * We still need special handling for disabling bigjoiner master 10234 * and slaves since for slave we do not have encoder or plls 10235 * so we dont need to disable those. 10236 */ 10237 if (old_crtc_state->bigjoiner) { 10238 intel_crtc_disable_planes(state, 10239 old_crtc_state->bigjoiner_linked_crtc); 10240 old_crtc_state->bigjoiner_linked_crtc->active = false; 10241 } 10242 10243 /* 10244 * We need to disable pipe CRC before disabling the pipe, 10245 * or we race against vblank off. 10246 */ 10247 intel_crtc_disable_pipe_crc(crtc); 10248 10249 dev_priv->display.crtc_disable(state, crtc); 10250 crtc->active = false; 10251 intel_fbc_disable(crtc); 10252 intel_disable_shared_dpll(old_crtc_state); 10253 10254 /* FIXME unify this for all platforms */ 10255 if (!new_crtc_state->hw.active && 10256 !HAS_GMCH(dev_priv) && 10257 dev_priv->display.initial_watermarks) 10258 dev_priv->display.initial_watermarks(state, crtc); 10259 } 10260 10261 static void intel_commit_modeset_disables(struct intel_atomic_state *state) 10262 { 10263 struct intel_crtc_state *new_crtc_state, *old_crtc_state; 10264 struct intel_crtc *crtc; 10265 u32 handled = 0; 10266 int i; 10267 10268 /* Only disable port sync and MST slaves */ 10269 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 10270 new_crtc_state, i) { 10271 if (!intel_crtc_needs_modeset(new_crtc_state) || old_crtc_state->bigjoiner) 10272 continue; 10273 10274 if (!old_crtc_state->hw.active) 10275 continue; 10276 10277 /* In case of Transcoder port Sync master slave CRTCs can be 10278 * assigned in any order and we need to make sure that 10279 * slave CRTCs are disabled first and then master CRTC since 10280 * Slave vblanks are masked till Master Vblanks. 10281 */ 10282 if (!is_trans_port_sync_slave(old_crtc_state) && 10283 !intel_dp_mst_is_slave_trans(old_crtc_state)) 10284 continue; 10285 10286 intel_pre_plane_update(state, crtc); 10287 intel_old_crtc_state_disables(state, old_crtc_state, 10288 new_crtc_state, crtc); 10289 handled |= BIT(crtc->pipe); 10290 } 10291 10292 /* Disable everything else left on */ 10293 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 10294 new_crtc_state, i) { 10295 if (!intel_crtc_needs_modeset(new_crtc_state) || 10296 (handled & BIT(crtc->pipe)) || 10297 old_crtc_state->bigjoiner_slave) 10298 continue; 10299 10300 intel_pre_plane_update(state, crtc); 10301 if (old_crtc_state->bigjoiner) { 10302 struct intel_crtc *slave = 10303 old_crtc_state->bigjoiner_linked_crtc; 10304 10305 intel_pre_plane_update(state, slave); 10306 } 10307 10308 if (old_crtc_state->hw.active) 10309 intel_old_crtc_state_disables(state, old_crtc_state, 10310 new_crtc_state, crtc); 10311 } 10312 } 10313 10314 static void intel_commit_modeset_enables(struct intel_atomic_state *state) 10315 { 10316 struct intel_crtc_state *new_crtc_state; 10317 struct intel_crtc *crtc; 10318 int i; 10319 10320 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 10321 if (!new_crtc_state->hw.active) 10322 continue; 10323 10324 intel_enable_crtc(state, crtc); 10325 intel_update_crtc(state, crtc); 10326 } 10327 } 10328 10329 static void skl_commit_modeset_enables(struct intel_atomic_state *state) 10330 { 10331 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 10332 struct intel_crtc *crtc; 10333 struct intel_crtc_state *old_crtc_state, *new_crtc_state; 10334 struct skl_ddb_entry entries[I915_MAX_PIPES] = {}; 10335 u8 update_pipes = 0, modeset_pipes = 0; 10336 int i; 10337 10338 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 10339 enum pipe pipe = crtc->pipe; 10340 10341 if (!new_crtc_state->hw.active) 10342 continue; 10343 10344 /* ignore allocations for crtc's that have been turned off. */ 10345 if (!intel_crtc_needs_modeset(new_crtc_state)) { 10346 entries[pipe] = old_crtc_state->wm.skl.ddb; 10347 update_pipes |= BIT(pipe); 10348 } else { 10349 modeset_pipes |= BIT(pipe); 10350 } 10351 } 10352 10353 /* 10354 * Whenever the number of active pipes changes, we need to make sure we 10355 * update the pipes in the right order so that their ddb allocations 10356 * never overlap with each other between CRTC updates. Otherwise we'll 10357 * cause pipe underruns and other bad stuff. 10358 * 10359 * So first lets enable all pipes that do not need a fullmodeset as 10360 * those don't have any external dependency. 10361 */ 10362 while (update_pipes) { 10363 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 10364 new_crtc_state, i) { 10365 enum pipe pipe = crtc->pipe; 10366 10367 if ((update_pipes & BIT(pipe)) == 0) 10368 continue; 10369 10370 if (skl_ddb_allocation_overlaps(&new_crtc_state->wm.skl.ddb, 10371 entries, I915_MAX_PIPES, pipe)) 10372 continue; 10373 10374 entries[pipe] = new_crtc_state->wm.skl.ddb; 10375 update_pipes &= ~BIT(pipe); 10376 10377 intel_update_crtc(state, crtc); 10378 10379 /* 10380 * If this is an already active pipe, it's DDB changed, 10381 * and this isn't the last pipe that needs updating 10382 * then we need to wait for a vblank to pass for the 10383 * new ddb allocation to take effect. 10384 */ 10385 if (!skl_ddb_entry_equal(&new_crtc_state->wm.skl.ddb, 10386 &old_crtc_state->wm.skl.ddb) && 10387 (update_pipes | modeset_pipes)) 10388 intel_wait_for_vblank(dev_priv, pipe); 10389 } 10390 } 10391 10392 update_pipes = modeset_pipes; 10393 10394 /* 10395 * Enable all pipes that needs a modeset and do not depends on other 10396 * pipes 10397 */ 10398 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 10399 enum pipe pipe = crtc->pipe; 10400 10401 if ((modeset_pipes & BIT(pipe)) == 0) 10402 continue; 10403 10404 if (intel_dp_mst_is_slave_trans(new_crtc_state) || 10405 is_trans_port_sync_master(new_crtc_state) || 10406 (new_crtc_state->bigjoiner && !new_crtc_state->bigjoiner_slave)) 10407 continue; 10408 10409 modeset_pipes &= ~BIT(pipe); 10410 10411 intel_enable_crtc(state, crtc); 10412 } 10413 10414 /* 10415 * Then we enable all remaining pipes that depend on other 10416 * pipes: MST slaves and port sync masters, big joiner master 10417 */ 10418 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 10419 enum pipe pipe = crtc->pipe; 10420 10421 if ((modeset_pipes & BIT(pipe)) == 0) 10422 continue; 10423 10424 modeset_pipes &= ~BIT(pipe); 10425 10426 intel_enable_crtc(state, crtc); 10427 } 10428 10429 /* 10430 * Finally we do the plane updates/etc. for all pipes that got enabled. 10431 */ 10432 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 10433 enum pipe pipe = crtc->pipe; 10434 10435 if ((update_pipes & BIT(pipe)) == 0) 10436 continue; 10437 10438 drm_WARN_ON(&dev_priv->drm, skl_ddb_allocation_overlaps(&new_crtc_state->wm.skl.ddb, 10439 entries, I915_MAX_PIPES, pipe)); 10440 10441 entries[pipe] = new_crtc_state->wm.skl.ddb; 10442 update_pipes &= ~BIT(pipe); 10443 10444 intel_update_crtc(state, crtc); 10445 } 10446 10447 drm_WARN_ON(&dev_priv->drm, modeset_pipes); 10448 drm_WARN_ON(&dev_priv->drm, update_pipes); 10449 } 10450 10451 static void intel_atomic_helper_free_state(struct drm_i915_private *dev_priv) 10452 { 10453 struct intel_atomic_state *state, *next; 10454 struct llist_node *freed; 10455 10456 freed = llist_del_all(&dev_priv->atomic_helper.free_list); 10457 llist_for_each_entry_safe(state, next, freed, freed) 10458 drm_atomic_state_put(&state->base); 10459 } 10460 10461 static void intel_atomic_helper_free_state_worker(struct work_struct *work) 10462 { 10463 struct drm_i915_private *dev_priv = 10464 container_of(work, typeof(*dev_priv), atomic_helper.free_work); 10465 10466 intel_atomic_helper_free_state(dev_priv); 10467 } 10468 10469 static void intel_atomic_commit_fence_wait(struct intel_atomic_state *intel_state) 10470 { 10471 struct wait_queue_entry wait_fence, wait_reset; 10472 struct drm_i915_private *dev_priv = to_i915(intel_state->base.dev); 10473 10474 #ifdef notyet 10475 init_wait_entry(&wait_fence, 0); 10476 init_wait_entry(&wait_reset, 0); 10477 for (;;) { 10478 prepare_to_wait(&intel_state->commit_ready.wait, 10479 &wait_fence, TASK_UNINTERRUPTIBLE); 10480 prepare_to_wait(bit_waitqueue(&dev_priv->gt.reset.flags, 10481 I915_RESET_MODESET), 10482 &wait_reset, TASK_UNINTERRUPTIBLE); 10483 10484 10485 if (i915_sw_fence_done(&intel_state->commit_ready) || 10486 test_bit(I915_RESET_MODESET, &dev_priv->gt.reset.flags)) 10487 break; 10488 10489 schedule(); 10490 } 10491 finish_wait(&intel_state->commit_ready.wait, &wait_fence); 10492 finish_wait(bit_waitqueue(&dev_priv->gt.reset.flags, 10493 I915_RESET_MODESET), 10494 &wait_reset); 10495 #else 10496 /* XXX above recurses sch_mtx */ 10497 init_wait_entry(&wait_fence, 0); 10498 for (;;) { 10499 prepare_to_wait(&intel_state->commit_ready.wait, 10500 &wait_fence, TASK_UNINTERRUPTIBLE); 10501 10502 10503 if (i915_sw_fence_done(&intel_state->commit_ready) || 10504 test_bit(I915_RESET_MODESET, &dev_priv->gt.reset.flags)) 10505 break; 10506 10507 schedule(); 10508 } 10509 finish_wait(&intel_state->commit_ready.wait, &wait_fence); 10510 #endif 10511 } 10512 10513 static void intel_cleanup_dsbs(struct intel_atomic_state *state) 10514 { 10515 struct intel_crtc_state *old_crtc_state, *new_crtc_state; 10516 struct intel_crtc *crtc; 10517 int i; 10518 10519 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 10520 new_crtc_state, i) 10521 intel_dsb_cleanup(old_crtc_state); 10522 } 10523 10524 static void intel_atomic_cleanup_work(struct work_struct *work) 10525 { 10526 struct intel_atomic_state *state = 10527 container_of(work, struct intel_atomic_state, base.commit_work); 10528 struct drm_i915_private *i915 = to_i915(state->base.dev); 10529 10530 intel_cleanup_dsbs(state); 10531 drm_atomic_helper_cleanup_planes(&i915->drm, &state->base); 10532 drm_atomic_helper_commit_cleanup_done(&state->base); 10533 drm_atomic_state_put(&state->base); 10534 10535 intel_atomic_helper_free_state(i915); 10536 } 10537 10538 static void intel_atomic_prepare_plane_clear_colors(struct intel_atomic_state *state) 10539 { 10540 struct drm_i915_private *i915 = to_i915(state->base.dev); 10541 struct intel_plane *plane; 10542 struct intel_plane_state *plane_state; 10543 int i; 10544 10545 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 10546 struct drm_framebuffer *fb = plane_state->hw.fb; 10547 int ret; 10548 10549 if (!fb || 10550 fb->modifier != I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC) 10551 continue; 10552 10553 /* 10554 * The layout of the fast clear color value expected by HW 10555 * (the DRM ABI requiring this value to be located in fb at offset 0 of plane#2): 10556 * - 4 x 4 bytes per-channel value 10557 * (in surface type specific float/int format provided by the fb user) 10558 * - 8 bytes native color value used by the display 10559 * (converted/written by GPU during a fast clear operation using the 10560 * above per-channel values) 10561 * 10562 * The commit's FB prepare hook already ensured that FB obj is pinned and the 10563 * caller made sure that the object is synced wrt. the related color clear value 10564 * GPU write on it. 10565 */ 10566 ret = i915_gem_object_read_from_page(intel_fb_obj(fb), 10567 fb->offsets[2] + 16, 10568 &plane_state->ccval, 10569 sizeof(plane_state->ccval)); 10570 /* The above could only fail if the FB obj has an unexpected backing store type. */ 10571 drm_WARN_ON(&i915->drm, ret); 10572 } 10573 } 10574 10575 static void intel_atomic_commit_tail(struct intel_atomic_state *state) 10576 { 10577 struct drm_device *dev = state->base.dev; 10578 struct drm_i915_private *dev_priv = to_i915(dev); 10579 struct intel_crtc_state *new_crtc_state, *old_crtc_state; 10580 struct intel_crtc *crtc; 10581 u64 put_domains[I915_MAX_PIPES] = {}; 10582 intel_wakeref_t wakeref = 0; 10583 int i; 10584 10585 intel_atomic_commit_fence_wait(state); 10586 10587 drm_atomic_helper_wait_for_dependencies(&state->base); 10588 10589 if (state->modeset) 10590 wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET); 10591 10592 intel_atomic_prepare_plane_clear_colors(state); 10593 10594 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 10595 new_crtc_state, i) { 10596 if (intel_crtc_needs_modeset(new_crtc_state) || 10597 new_crtc_state->update_pipe) { 10598 10599 put_domains[crtc->pipe] = 10600 modeset_get_crtc_power_domains(new_crtc_state); 10601 } 10602 } 10603 10604 intel_commit_modeset_disables(state); 10605 10606 /* FIXME: Eventually get rid of our crtc->config pointer */ 10607 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) 10608 crtc->config = new_crtc_state; 10609 10610 if (state->modeset) { 10611 drm_atomic_helper_update_legacy_modeset_state(dev, &state->base); 10612 10613 intel_set_cdclk_pre_plane_update(state); 10614 10615 intel_modeset_verify_disabled(dev_priv, state); 10616 } 10617 10618 intel_sagv_pre_plane_update(state); 10619 10620 /* Complete the events for pipes that have now been disabled */ 10621 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 10622 bool modeset = intel_crtc_needs_modeset(new_crtc_state); 10623 10624 /* Complete events for now disable pipes here. */ 10625 if (modeset && !new_crtc_state->hw.active && new_crtc_state->uapi.event) { 10626 spin_lock_irq(&dev->event_lock); 10627 drm_crtc_send_vblank_event(&crtc->base, 10628 new_crtc_state->uapi.event); 10629 spin_unlock_irq(&dev->event_lock); 10630 10631 new_crtc_state->uapi.event = NULL; 10632 } 10633 } 10634 10635 if (state->modeset) 10636 intel_encoders_update_prepare(state); 10637 10638 intel_dbuf_pre_plane_update(state); 10639 10640 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 10641 if (new_crtc_state->uapi.async_flip) 10642 intel_crtc_enable_flip_done(state, crtc); 10643 } 10644 10645 /* Now enable the clocks, plane, pipe, and connectors that we set up. */ 10646 dev_priv->display.commit_modeset_enables(state); 10647 10648 if (state->modeset) { 10649 intel_encoders_update_complete(state); 10650 10651 intel_set_cdclk_post_plane_update(state); 10652 } 10653 10654 /* FIXME: We should call drm_atomic_helper_commit_hw_done() here 10655 * already, but still need the state for the delayed optimization. To 10656 * fix this: 10657 * - wrap the optimization/post_plane_update stuff into a per-crtc work. 10658 * - schedule that vblank worker _before_ calling hw_done 10659 * - at the start of commit_tail, cancel it _synchrously 10660 * - switch over to the vblank wait helper in the core after that since 10661 * we don't need out special handling any more. 10662 */ 10663 drm_atomic_helper_wait_for_flip_done(dev, &state->base); 10664 10665 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 10666 if (new_crtc_state->uapi.async_flip) 10667 intel_crtc_disable_flip_done(state, crtc); 10668 10669 if (new_crtc_state->hw.active && 10670 !intel_crtc_needs_modeset(new_crtc_state) && 10671 !new_crtc_state->preload_luts && 10672 (new_crtc_state->uapi.color_mgmt_changed || 10673 new_crtc_state->update_pipe)) 10674 intel_color_load_luts(new_crtc_state); 10675 } 10676 10677 /* 10678 * Now that the vblank has passed, we can go ahead and program the 10679 * optimal watermarks on platforms that need two-step watermark 10680 * programming. 10681 * 10682 * TODO: Move this (and other cleanup) to an async worker eventually. 10683 */ 10684 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 10685 new_crtc_state, i) { 10686 /* 10687 * Gen2 reports pipe underruns whenever all planes are disabled. 10688 * So re-enable underrun reporting after some planes get enabled. 10689 * 10690 * We do this before .optimize_watermarks() so that we have a 10691 * chance of catching underruns with the intermediate watermarks 10692 * vs. the new plane configuration. 10693 */ 10694 if (DISPLAY_VER(dev_priv) == 2 && planes_enabling(old_crtc_state, new_crtc_state)) 10695 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true); 10696 10697 if (dev_priv->display.optimize_watermarks) 10698 dev_priv->display.optimize_watermarks(state, crtc); 10699 } 10700 10701 intel_dbuf_post_plane_update(state); 10702 10703 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 10704 intel_post_plane_update(state, crtc); 10705 10706 modeset_put_crtc_power_domains(crtc, put_domains[crtc->pipe]); 10707 10708 intel_modeset_verify_crtc(crtc, state, old_crtc_state, new_crtc_state); 10709 10710 /* 10711 * DSB cleanup is done in cleanup_work aligning with framebuffer 10712 * cleanup. So copy and reset the dsb structure to sync with 10713 * commit_done and later do dsb cleanup in cleanup_work. 10714 */ 10715 old_crtc_state->dsb = fetch_and_zero(&new_crtc_state->dsb); 10716 } 10717 10718 /* Underruns don't always raise interrupts, so check manually */ 10719 intel_check_cpu_fifo_underruns(dev_priv); 10720 intel_check_pch_fifo_underruns(dev_priv); 10721 10722 if (state->modeset) 10723 intel_verify_planes(state); 10724 10725 intel_sagv_post_plane_update(state); 10726 10727 drm_atomic_helper_commit_hw_done(&state->base); 10728 10729 if (state->modeset) { 10730 /* As one of the primary mmio accessors, KMS has a high 10731 * likelihood of triggering bugs in unclaimed access. After we 10732 * finish modesetting, see if an error has been flagged, and if 10733 * so enable debugging for the next modeset - and hope we catch 10734 * the culprit. 10735 */ 10736 intel_uncore_arm_unclaimed_mmio_detection(&dev_priv->uncore); 10737 intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET, wakeref); 10738 } 10739 intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref); 10740 10741 /* 10742 * Defer the cleanup of the old state to a separate worker to not 10743 * impede the current task (userspace for blocking modesets) that 10744 * are executed inline. For out-of-line asynchronous modesets/flips, 10745 * deferring to a new worker seems overkill, but we would place a 10746 * schedule point (cond_resched()) here anyway to keep latencies 10747 * down. 10748 */ 10749 INIT_WORK(&state->base.commit_work, intel_atomic_cleanup_work); 10750 queue_work(system_highpri_wq, &state->base.commit_work); 10751 } 10752 10753 static void intel_atomic_commit_work(struct work_struct *work) 10754 { 10755 struct intel_atomic_state *state = 10756 container_of(work, struct intel_atomic_state, base.commit_work); 10757 10758 intel_atomic_commit_tail(state); 10759 } 10760 10761 static int __i915_sw_fence_call 10762 intel_atomic_commit_ready(struct i915_sw_fence *fence, 10763 enum i915_sw_fence_notify notify) 10764 { 10765 struct intel_atomic_state *state = 10766 container_of(fence, struct intel_atomic_state, commit_ready); 10767 10768 switch (notify) { 10769 case FENCE_COMPLETE: 10770 /* we do blocking waits in the worker, nothing to do here */ 10771 break; 10772 case FENCE_FREE: 10773 { 10774 struct intel_atomic_helper *helper = 10775 &to_i915(state->base.dev)->atomic_helper; 10776 10777 if (llist_add(&state->freed, &helper->free_list)) 10778 schedule_work(&helper->free_work); 10779 break; 10780 } 10781 } 10782 10783 return NOTIFY_DONE; 10784 } 10785 10786 static void intel_atomic_track_fbs(struct intel_atomic_state *state) 10787 { 10788 struct intel_plane_state *old_plane_state, *new_plane_state; 10789 struct intel_plane *plane; 10790 int i; 10791 10792 for_each_oldnew_intel_plane_in_state(state, plane, old_plane_state, 10793 new_plane_state, i) 10794 intel_frontbuffer_track(to_intel_frontbuffer(old_plane_state->hw.fb), 10795 to_intel_frontbuffer(new_plane_state->hw.fb), 10796 plane->frontbuffer_bit); 10797 } 10798 10799 static int intel_atomic_commit(struct drm_device *dev, 10800 struct drm_atomic_state *_state, 10801 bool nonblock) 10802 { 10803 struct intel_atomic_state *state = to_intel_atomic_state(_state); 10804 struct drm_i915_private *dev_priv = to_i915(dev); 10805 int ret = 0; 10806 10807 state->wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm); 10808 10809 drm_atomic_state_get(&state->base); 10810 i915_sw_fence_init(&state->commit_ready, 10811 intel_atomic_commit_ready); 10812 10813 /* 10814 * The intel_legacy_cursor_update() fast path takes care 10815 * of avoiding the vblank waits for simple cursor 10816 * movement and flips. For cursor on/off and size changes, 10817 * we want to perform the vblank waits so that watermark 10818 * updates happen during the correct frames. Gen9+ have 10819 * double buffered watermarks and so shouldn't need this. 10820 * 10821 * Unset state->legacy_cursor_update before the call to 10822 * drm_atomic_helper_setup_commit() because otherwise 10823 * drm_atomic_helper_wait_for_flip_done() is a noop and 10824 * we get FIFO underruns because we didn't wait 10825 * for vblank. 10826 * 10827 * FIXME doing watermarks and fb cleanup from a vblank worker 10828 * (assuming we had any) would solve these problems. 10829 */ 10830 if (DISPLAY_VER(dev_priv) < 9 && state->base.legacy_cursor_update) { 10831 struct intel_crtc_state *new_crtc_state; 10832 struct intel_crtc *crtc; 10833 int i; 10834 10835 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) 10836 if (new_crtc_state->wm.need_postvbl_update || 10837 new_crtc_state->update_wm_post) 10838 state->base.legacy_cursor_update = false; 10839 } 10840 10841 ret = intel_atomic_prepare_commit(state); 10842 if (ret) { 10843 drm_dbg_atomic(&dev_priv->drm, 10844 "Preparing state failed with %i\n", ret); 10845 i915_sw_fence_commit(&state->commit_ready); 10846 intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref); 10847 return ret; 10848 } 10849 10850 ret = drm_atomic_helper_setup_commit(&state->base, nonblock); 10851 if (!ret) 10852 ret = drm_atomic_helper_swap_state(&state->base, true); 10853 if (!ret) 10854 intel_atomic_swap_global_state(state); 10855 10856 if (ret) { 10857 struct intel_crtc_state *new_crtc_state; 10858 struct intel_crtc *crtc; 10859 int i; 10860 10861 i915_sw_fence_commit(&state->commit_ready); 10862 10863 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) 10864 intel_dsb_cleanup(new_crtc_state); 10865 10866 drm_atomic_helper_cleanup_planes(dev, &state->base); 10867 intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref); 10868 return ret; 10869 } 10870 intel_shared_dpll_swap_state(state); 10871 intel_atomic_track_fbs(state); 10872 10873 drm_atomic_state_get(&state->base); 10874 INIT_WORK(&state->base.commit_work, intel_atomic_commit_work); 10875 10876 i915_sw_fence_commit(&state->commit_ready); 10877 if (nonblock && state->modeset) { 10878 queue_work(dev_priv->modeset_wq, &state->base.commit_work); 10879 } else if (nonblock) { 10880 queue_work(dev_priv->flip_wq, &state->base.commit_work); 10881 } else { 10882 if (state->modeset) 10883 flush_workqueue(dev_priv->modeset_wq); 10884 intel_atomic_commit_tail(state); 10885 } 10886 10887 return 0; 10888 } 10889 10890 struct wait_rps_boost { 10891 struct wait_queue_entry wait; 10892 10893 struct drm_crtc *crtc; 10894 struct i915_request *request; 10895 }; 10896 10897 static int do_rps_boost(struct wait_queue_entry *_wait, 10898 unsigned mode, int sync, void *key) 10899 { 10900 struct wait_rps_boost *wait = container_of(_wait, typeof(*wait), wait); 10901 struct i915_request *rq = wait->request; 10902 10903 /* 10904 * If we missed the vblank, but the request is already running it 10905 * is reasonable to assume that it will complete before the next 10906 * vblank without our intervention, so leave RPS alone. 10907 */ 10908 if (!i915_request_started(rq)) 10909 intel_rps_boost(rq); 10910 i915_request_put(rq); 10911 10912 drm_crtc_vblank_put(wait->crtc); 10913 10914 list_del(&wait->wait.entry); 10915 kfree(wait); 10916 return 1; 10917 } 10918 10919 static void add_rps_boost_after_vblank(struct drm_crtc *crtc, 10920 struct dma_fence *fence) 10921 { 10922 struct wait_rps_boost *wait; 10923 10924 if (!dma_fence_is_i915(fence)) 10925 return; 10926 10927 if (DISPLAY_VER(to_i915(crtc->dev)) < 6) 10928 return; 10929 10930 if (drm_crtc_vblank_get(crtc)) 10931 return; 10932 10933 wait = kmalloc(sizeof(*wait), GFP_KERNEL); 10934 if (!wait) { 10935 drm_crtc_vblank_put(crtc); 10936 return; 10937 } 10938 10939 wait->request = to_request(dma_fence_get(fence)); 10940 wait->crtc = crtc; 10941 10942 wait->wait.func = do_rps_boost; 10943 wait->wait.flags = 0; 10944 10945 add_wait_queue(drm_crtc_vblank_waitqueue(crtc), &wait->wait); 10946 } 10947 10948 int intel_plane_pin_fb(struct intel_plane_state *plane_state) 10949 { 10950 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 10951 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 10952 struct drm_framebuffer *fb = plane_state->hw.fb; 10953 struct i915_vma *vma; 10954 bool phys_cursor = 10955 plane->id == PLANE_CURSOR && 10956 INTEL_INFO(dev_priv)->display.cursor_needs_physical; 10957 10958 if (!intel_fb_uses_dpt(fb)) { 10959 vma = intel_pin_and_fence_fb_obj(fb, phys_cursor, 10960 &plane_state->view.gtt, 10961 intel_plane_uses_fence(plane_state), 10962 &plane_state->flags); 10963 if (IS_ERR(vma)) 10964 return PTR_ERR(vma); 10965 10966 plane_state->ggtt_vma = vma; 10967 } else { 10968 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); 10969 10970 vma = intel_dpt_pin(intel_fb->dpt_vm); 10971 if (IS_ERR(vma)) 10972 return PTR_ERR(vma); 10973 10974 plane_state->ggtt_vma = vma; 10975 10976 vma = intel_pin_fb_obj_dpt(fb, &plane_state->view.gtt, false, 10977 &plane_state->flags, intel_fb->dpt_vm); 10978 if (IS_ERR(vma)) { 10979 intel_dpt_unpin(intel_fb->dpt_vm); 10980 plane_state->ggtt_vma = NULL; 10981 return PTR_ERR(vma); 10982 } 10983 10984 plane_state->dpt_vma = vma; 10985 10986 WARN_ON(plane_state->ggtt_vma == plane_state->dpt_vma); 10987 } 10988 10989 return 0; 10990 } 10991 10992 void intel_plane_unpin_fb(struct intel_plane_state *old_plane_state) 10993 { 10994 struct drm_framebuffer *fb = old_plane_state->hw.fb; 10995 struct i915_vma *vma; 10996 10997 if (!intel_fb_uses_dpt(fb)) { 10998 vma = fetch_and_zero(&old_plane_state->ggtt_vma); 10999 if (vma) 11000 intel_unpin_fb_vma(vma, old_plane_state->flags); 11001 } else { 11002 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); 11003 11004 vma = fetch_and_zero(&old_plane_state->dpt_vma); 11005 if (vma) 11006 intel_unpin_fb_vma(vma, old_plane_state->flags); 11007 11008 vma = fetch_and_zero(&old_plane_state->ggtt_vma); 11009 if (vma) 11010 intel_dpt_unpin(intel_fb->dpt_vm); 11011 } 11012 } 11013 11014 /** 11015 * intel_prepare_plane_fb - Prepare fb for usage on plane 11016 * @_plane: drm plane to prepare for 11017 * @_new_plane_state: the plane state being prepared 11018 * 11019 * Prepares a framebuffer for usage on a display plane. Generally this 11020 * involves pinning the underlying object and updating the frontbuffer tracking 11021 * bits. Some older platforms need special physical address handling for 11022 * cursor planes. 11023 * 11024 * Returns 0 on success, negative error code on failure. 11025 */ 11026 int 11027 intel_prepare_plane_fb(struct drm_plane *_plane, 11028 struct drm_plane_state *_new_plane_state) 11029 { 11030 struct i915_sched_attr attr = { .priority = I915_PRIORITY_DISPLAY }; 11031 struct intel_plane *plane = to_intel_plane(_plane); 11032 struct intel_plane_state *new_plane_state = 11033 to_intel_plane_state(_new_plane_state); 11034 struct intel_atomic_state *state = 11035 to_intel_atomic_state(new_plane_state->uapi.state); 11036 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 11037 const struct intel_plane_state *old_plane_state = 11038 intel_atomic_get_old_plane_state(state, plane); 11039 struct drm_i915_gem_object *obj = intel_fb_obj(new_plane_state->hw.fb); 11040 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_plane_state->hw.fb); 11041 int ret; 11042 11043 if (old_obj) { 11044 const struct intel_crtc_state *crtc_state = 11045 intel_atomic_get_new_crtc_state(state, 11046 to_intel_crtc(old_plane_state->hw.crtc)); 11047 11048 /* Big Hammer, we also need to ensure that any pending 11049 * MI_WAIT_FOR_EVENT inside a user batch buffer on the 11050 * current scanout is retired before unpinning the old 11051 * framebuffer. Note that we rely on userspace rendering 11052 * into the buffer attached to the pipe they are waiting 11053 * on. If not, userspace generates a GPU hang with IPEHR 11054 * point to the MI_WAIT_FOR_EVENT. 11055 * 11056 * This should only fail upon a hung GPU, in which case we 11057 * can safely continue. 11058 */ 11059 if (intel_crtc_needs_modeset(crtc_state)) { 11060 ret = i915_sw_fence_await_reservation(&state->commit_ready, 11061 old_obj->base.resv, NULL, 11062 false, 0, 11063 GFP_KERNEL); 11064 if (ret < 0) 11065 return ret; 11066 } 11067 } 11068 11069 if (new_plane_state->uapi.fence) { /* explicit fencing */ 11070 i915_gem_fence_wait_priority(new_plane_state->uapi.fence, 11071 &attr); 11072 ret = i915_sw_fence_await_dma_fence(&state->commit_ready, 11073 new_plane_state->uapi.fence, 11074 i915_fence_timeout(dev_priv), 11075 GFP_KERNEL); 11076 if (ret < 0) 11077 return ret; 11078 } 11079 11080 if (!obj) 11081 return 0; 11082 11083 11084 ret = intel_plane_pin_fb(new_plane_state); 11085 if (ret) 11086 return ret; 11087 11088 i915_gem_object_wait_priority(obj, 0, &attr); 11089 i915_gem_object_flush_frontbuffer(obj, ORIGIN_DIRTYFB); 11090 11091 if (!new_plane_state->uapi.fence) { /* implicit fencing */ 11092 struct dma_fence *fence; 11093 11094 ret = i915_sw_fence_await_reservation(&state->commit_ready, 11095 obj->base.resv, NULL, 11096 false, 11097 i915_fence_timeout(dev_priv), 11098 GFP_KERNEL); 11099 if (ret < 0) 11100 goto unpin_fb; 11101 11102 fence = dma_resv_get_excl_unlocked(obj->base.resv); 11103 if (fence) { 11104 add_rps_boost_after_vblank(new_plane_state->hw.crtc, 11105 fence); 11106 dma_fence_put(fence); 11107 } 11108 } else { 11109 add_rps_boost_after_vblank(new_plane_state->hw.crtc, 11110 new_plane_state->uapi.fence); 11111 } 11112 11113 /* 11114 * We declare pageflips to be interactive and so merit a small bias 11115 * towards upclocking to deliver the frame on time. By only changing 11116 * the RPS thresholds to sample more regularly and aim for higher 11117 * clocks we can hopefully deliver low power workloads (like kodi) 11118 * that are not quite steady state without resorting to forcing 11119 * maximum clocks following a vblank miss (see do_rps_boost()). 11120 */ 11121 if (!state->rps_interactive) { 11122 intel_rps_mark_interactive(&dev_priv->gt.rps, true); 11123 state->rps_interactive = true; 11124 } 11125 11126 return 0; 11127 11128 unpin_fb: 11129 intel_plane_unpin_fb(new_plane_state); 11130 11131 return ret; 11132 } 11133 11134 /** 11135 * intel_cleanup_plane_fb - Cleans up an fb after plane use 11136 * @plane: drm plane to clean up for 11137 * @_old_plane_state: the state from the previous modeset 11138 * 11139 * Cleans up a framebuffer that has just been removed from a plane. 11140 */ 11141 void 11142 intel_cleanup_plane_fb(struct drm_plane *plane, 11143 struct drm_plane_state *_old_plane_state) 11144 { 11145 struct intel_plane_state *old_plane_state = 11146 to_intel_plane_state(_old_plane_state); 11147 struct intel_atomic_state *state = 11148 to_intel_atomic_state(old_plane_state->uapi.state); 11149 struct drm_i915_private *dev_priv = to_i915(plane->dev); 11150 struct drm_i915_gem_object *obj = intel_fb_obj(old_plane_state->hw.fb); 11151 11152 if (!obj) 11153 return; 11154 11155 if (state->rps_interactive) { 11156 intel_rps_mark_interactive(&dev_priv->gt.rps, false); 11157 state->rps_interactive = false; 11158 } 11159 11160 /* Should only be called after a successful intel_prepare_plane_fb()! */ 11161 intel_plane_unpin_fb(old_plane_state); 11162 } 11163 11164 /** 11165 * intel_plane_destroy - destroy a plane 11166 * @plane: plane to destroy 11167 * 11168 * Common destruction function for all types of planes (primary, cursor, 11169 * sprite). 11170 */ 11171 void intel_plane_destroy(struct drm_plane *plane) 11172 { 11173 drm_plane_cleanup(plane); 11174 kfree(to_intel_plane(plane)); 11175 } 11176 11177 static void intel_plane_possible_crtcs_init(struct drm_i915_private *dev_priv) 11178 { 11179 struct intel_plane *plane; 11180 11181 for_each_intel_plane(&dev_priv->drm, plane) { 11182 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, 11183 plane->pipe); 11184 11185 plane->base.possible_crtcs = drm_crtc_mask(&crtc->base); 11186 } 11187 } 11188 11189 11190 int intel_get_pipe_from_crtc_id_ioctl(struct drm_device *dev, void *data, 11191 struct drm_file *file) 11192 { 11193 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data; 11194 struct drm_crtc *drmmode_crtc; 11195 struct intel_crtc *crtc; 11196 11197 drmmode_crtc = drm_crtc_find(dev, file, pipe_from_crtc_id->crtc_id); 11198 if (!drmmode_crtc) 11199 return -ENOENT; 11200 11201 crtc = to_intel_crtc(drmmode_crtc); 11202 pipe_from_crtc_id->pipe = crtc->pipe; 11203 11204 return 0; 11205 } 11206 11207 static u32 intel_encoder_possible_clones(struct intel_encoder *encoder) 11208 { 11209 struct drm_device *dev = encoder->base.dev; 11210 struct intel_encoder *source_encoder; 11211 u32 possible_clones = 0; 11212 11213 for_each_intel_encoder(dev, source_encoder) { 11214 if (encoders_cloneable(encoder, source_encoder)) 11215 possible_clones |= drm_encoder_mask(&source_encoder->base); 11216 } 11217 11218 return possible_clones; 11219 } 11220 11221 static u32 intel_encoder_possible_crtcs(struct intel_encoder *encoder) 11222 { 11223 struct drm_device *dev = encoder->base.dev; 11224 struct intel_crtc *crtc; 11225 u32 possible_crtcs = 0; 11226 11227 for_each_intel_crtc(dev, crtc) { 11228 if (encoder->pipe_mask & BIT(crtc->pipe)) 11229 possible_crtcs |= drm_crtc_mask(&crtc->base); 11230 } 11231 11232 return possible_crtcs; 11233 } 11234 11235 static bool ilk_has_edp_a(struct drm_i915_private *dev_priv) 11236 { 11237 if (!IS_MOBILE(dev_priv)) 11238 return false; 11239 11240 if ((intel_de_read(dev_priv, DP_A) & DP_DETECTED) == 0) 11241 return false; 11242 11243 if (IS_IRONLAKE(dev_priv) && (intel_de_read(dev_priv, FUSE_STRAP) & ILK_eDP_A_DISABLE)) 11244 return false; 11245 11246 return true; 11247 } 11248 11249 static bool intel_ddi_crt_present(struct drm_i915_private *dev_priv) 11250 { 11251 if (DISPLAY_VER(dev_priv) >= 9) 11252 return false; 11253 11254 if (IS_HSW_ULT(dev_priv) || IS_BDW_ULT(dev_priv)) 11255 return false; 11256 11257 if (HAS_PCH_LPT_H(dev_priv) && 11258 intel_de_read(dev_priv, SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED) 11259 return false; 11260 11261 /* DDI E can't be used if DDI A requires 4 lanes */ 11262 if (intel_de_read(dev_priv, DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES) 11263 return false; 11264 11265 if (!dev_priv->vbt.int_crt_support) 11266 return false; 11267 11268 return true; 11269 } 11270 11271 static void intel_setup_outputs(struct drm_i915_private *dev_priv) 11272 { 11273 struct intel_encoder *encoder; 11274 bool dpd_is_edp = false; 11275 11276 intel_pps_unlock_regs_wa(dev_priv); 11277 11278 if (!HAS_DISPLAY(dev_priv)) 11279 return; 11280 11281 if (IS_DG2(dev_priv)) { 11282 intel_ddi_init(dev_priv, PORT_A); 11283 intel_ddi_init(dev_priv, PORT_B); 11284 intel_ddi_init(dev_priv, PORT_C); 11285 intel_ddi_init(dev_priv, PORT_D_XELPD); 11286 } else if (IS_ALDERLAKE_P(dev_priv)) { 11287 intel_ddi_init(dev_priv, PORT_A); 11288 intel_ddi_init(dev_priv, PORT_B); 11289 intel_ddi_init(dev_priv, PORT_TC1); 11290 intel_ddi_init(dev_priv, PORT_TC2); 11291 intel_ddi_init(dev_priv, PORT_TC3); 11292 intel_ddi_init(dev_priv, PORT_TC4); 11293 } else if (IS_ALDERLAKE_S(dev_priv)) { 11294 intel_ddi_init(dev_priv, PORT_A); 11295 intel_ddi_init(dev_priv, PORT_TC1); 11296 intel_ddi_init(dev_priv, PORT_TC2); 11297 intel_ddi_init(dev_priv, PORT_TC3); 11298 intel_ddi_init(dev_priv, PORT_TC4); 11299 } else if (IS_DG1(dev_priv) || IS_ROCKETLAKE(dev_priv)) { 11300 intel_ddi_init(dev_priv, PORT_A); 11301 intel_ddi_init(dev_priv, PORT_B); 11302 intel_ddi_init(dev_priv, PORT_TC1); 11303 intel_ddi_init(dev_priv, PORT_TC2); 11304 } else if (DISPLAY_VER(dev_priv) >= 12) { 11305 intel_ddi_init(dev_priv, PORT_A); 11306 intel_ddi_init(dev_priv, PORT_B); 11307 intel_ddi_init(dev_priv, PORT_TC1); 11308 intel_ddi_init(dev_priv, PORT_TC2); 11309 intel_ddi_init(dev_priv, PORT_TC3); 11310 intel_ddi_init(dev_priv, PORT_TC4); 11311 intel_ddi_init(dev_priv, PORT_TC5); 11312 intel_ddi_init(dev_priv, PORT_TC6); 11313 icl_dsi_init(dev_priv); 11314 } else if (IS_JSL_EHL(dev_priv)) { 11315 intel_ddi_init(dev_priv, PORT_A); 11316 intel_ddi_init(dev_priv, PORT_B); 11317 intel_ddi_init(dev_priv, PORT_C); 11318 intel_ddi_init(dev_priv, PORT_D); 11319 icl_dsi_init(dev_priv); 11320 } else if (DISPLAY_VER(dev_priv) == 11) { 11321 intel_ddi_init(dev_priv, PORT_A); 11322 intel_ddi_init(dev_priv, PORT_B); 11323 intel_ddi_init(dev_priv, PORT_C); 11324 intel_ddi_init(dev_priv, PORT_D); 11325 intel_ddi_init(dev_priv, PORT_E); 11326 intel_ddi_init(dev_priv, PORT_F); 11327 icl_dsi_init(dev_priv); 11328 } else if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) { 11329 intel_ddi_init(dev_priv, PORT_A); 11330 intel_ddi_init(dev_priv, PORT_B); 11331 intel_ddi_init(dev_priv, PORT_C); 11332 vlv_dsi_init(dev_priv); 11333 } else if (DISPLAY_VER(dev_priv) >= 9) { 11334 intel_ddi_init(dev_priv, PORT_A); 11335 intel_ddi_init(dev_priv, PORT_B); 11336 intel_ddi_init(dev_priv, PORT_C); 11337 intel_ddi_init(dev_priv, PORT_D); 11338 intel_ddi_init(dev_priv, PORT_E); 11339 } else if (HAS_DDI(dev_priv)) { 11340 u32 found; 11341 11342 if (intel_ddi_crt_present(dev_priv)) 11343 intel_crt_init(dev_priv); 11344 11345 /* Haswell uses DDI functions to detect digital outputs. */ 11346 found = intel_de_read(dev_priv, DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED; 11347 if (found) 11348 intel_ddi_init(dev_priv, PORT_A); 11349 11350 found = intel_de_read(dev_priv, SFUSE_STRAP); 11351 if (found & SFUSE_STRAP_DDIB_DETECTED) 11352 intel_ddi_init(dev_priv, PORT_B); 11353 if (found & SFUSE_STRAP_DDIC_DETECTED) 11354 intel_ddi_init(dev_priv, PORT_C); 11355 if (found & SFUSE_STRAP_DDID_DETECTED) 11356 intel_ddi_init(dev_priv, PORT_D); 11357 if (found & SFUSE_STRAP_DDIF_DETECTED) 11358 intel_ddi_init(dev_priv, PORT_F); 11359 } else if (HAS_PCH_SPLIT(dev_priv)) { 11360 int found; 11361 11362 /* 11363 * intel_edp_init_connector() depends on this completing first, 11364 * to prevent the registration of both eDP and LVDS and the 11365 * incorrect sharing of the PPS. 11366 */ 11367 intel_lvds_init(dev_priv); 11368 intel_crt_init(dev_priv); 11369 11370 dpd_is_edp = intel_dp_is_port_edp(dev_priv, PORT_D); 11371 11372 if (ilk_has_edp_a(dev_priv)) 11373 g4x_dp_init(dev_priv, DP_A, PORT_A); 11374 11375 if (intel_de_read(dev_priv, PCH_HDMIB) & SDVO_DETECTED) { 11376 /* PCH SDVOB multiplex with HDMIB */ 11377 found = intel_sdvo_init(dev_priv, PCH_SDVOB, PORT_B); 11378 if (!found) 11379 g4x_hdmi_init(dev_priv, PCH_HDMIB, PORT_B); 11380 if (!found && (intel_de_read(dev_priv, PCH_DP_B) & DP_DETECTED)) 11381 g4x_dp_init(dev_priv, PCH_DP_B, PORT_B); 11382 } 11383 11384 if (intel_de_read(dev_priv, PCH_HDMIC) & SDVO_DETECTED) 11385 g4x_hdmi_init(dev_priv, PCH_HDMIC, PORT_C); 11386 11387 if (!dpd_is_edp && intel_de_read(dev_priv, PCH_HDMID) & SDVO_DETECTED) 11388 g4x_hdmi_init(dev_priv, PCH_HDMID, PORT_D); 11389 11390 if (intel_de_read(dev_priv, PCH_DP_C) & DP_DETECTED) 11391 g4x_dp_init(dev_priv, PCH_DP_C, PORT_C); 11392 11393 if (intel_de_read(dev_priv, PCH_DP_D) & DP_DETECTED) 11394 g4x_dp_init(dev_priv, PCH_DP_D, PORT_D); 11395 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 11396 bool has_edp, has_port; 11397 11398 if (IS_VALLEYVIEW(dev_priv) && dev_priv->vbt.int_crt_support) 11399 intel_crt_init(dev_priv); 11400 11401 /* 11402 * The DP_DETECTED bit is the latched state of the DDC 11403 * SDA pin at boot. However since eDP doesn't require DDC 11404 * (no way to plug in a DP->HDMI dongle) the DDC pins for 11405 * eDP ports may have been muxed to an alternate function. 11406 * Thus we can't rely on the DP_DETECTED bit alone to detect 11407 * eDP ports. Consult the VBT as well as DP_DETECTED to 11408 * detect eDP ports. 11409 * 11410 * Sadly the straps seem to be missing sometimes even for HDMI 11411 * ports (eg. on Voyo V3 - CHT x7-Z8700), so check both strap 11412 * and VBT for the presence of the port. Additionally we can't 11413 * trust the port type the VBT declares as we've seen at least 11414 * HDMI ports that the VBT claim are DP or eDP. 11415 */ 11416 has_edp = intel_dp_is_port_edp(dev_priv, PORT_B); 11417 has_port = intel_bios_is_port_present(dev_priv, PORT_B); 11418 if (intel_de_read(dev_priv, VLV_DP_B) & DP_DETECTED || has_port) 11419 has_edp &= g4x_dp_init(dev_priv, VLV_DP_B, PORT_B); 11420 if ((intel_de_read(dev_priv, VLV_HDMIB) & SDVO_DETECTED || has_port) && !has_edp) 11421 g4x_hdmi_init(dev_priv, VLV_HDMIB, PORT_B); 11422 11423 has_edp = intel_dp_is_port_edp(dev_priv, PORT_C); 11424 has_port = intel_bios_is_port_present(dev_priv, PORT_C); 11425 if (intel_de_read(dev_priv, VLV_DP_C) & DP_DETECTED || has_port) 11426 has_edp &= g4x_dp_init(dev_priv, VLV_DP_C, PORT_C); 11427 if ((intel_de_read(dev_priv, VLV_HDMIC) & SDVO_DETECTED || has_port) && !has_edp) 11428 g4x_hdmi_init(dev_priv, VLV_HDMIC, PORT_C); 11429 11430 if (IS_CHERRYVIEW(dev_priv)) { 11431 /* 11432 * eDP not supported on port D, 11433 * so no need to worry about it 11434 */ 11435 has_port = intel_bios_is_port_present(dev_priv, PORT_D); 11436 if (intel_de_read(dev_priv, CHV_DP_D) & DP_DETECTED || has_port) 11437 g4x_dp_init(dev_priv, CHV_DP_D, PORT_D); 11438 if (intel_de_read(dev_priv, CHV_HDMID) & SDVO_DETECTED || has_port) 11439 g4x_hdmi_init(dev_priv, CHV_HDMID, PORT_D); 11440 } 11441 11442 vlv_dsi_init(dev_priv); 11443 } else if (IS_PINEVIEW(dev_priv)) { 11444 intel_lvds_init(dev_priv); 11445 intel_crt_init(dev_priv); 11446 } else if (IS_DISPLAY_VER(dev_priv, 3, 4)) { 11447 bool found = false; 11448 11449 if (IS_MOBILE(dev_priv)) 11450 intel_lvds_init(dev_priv); 11451 11452 intel_crt_init(dev_priv); 11453 11454 if (intel_de_read(dev_priv, GEN3_SDVOB) & SDVO_DETECTED) { 11455 drm_dbg_kms(&dev_priv->drm, "probing SDVOB\n"); 11456 found = intel_sdvo_init(dev_priv, GEN3_SDVOB, PORT_B); 11457 if (!found && IS_G4X(dev_priv)) { 11458 drm_dbg_kms(&dev_priv->drm, 11459 "probing HDMI on SDVOB\n"); 11460 g4x_hdmi_init(dev_priv, GEN4_HDMIB, PORT_B); 11461 } 11462 11463 if (!found && IS_G4X(dev_priv)) 11464 g4x_dp_init(dev_priv, DP_B, PORT_B); 11465 } 11466 11467 /* Before G4X SDVOC doesn't have its own detect register */ 11468 11469 if (intel_de_read(dev_priv, GEN3_SDVOB) & SDVO_DETECTED) { 11470 drm_dbg_kms(&dev_priv->drm, "probing SDVOC\n"); 11471 found = intel_sdvo_init(dev_priv, GEN3_SDVOC, PORT_C); 11472 } 11473 11474 if (!found && (intel_de_read(dev_priv, GEN3_SDVOC) & SDVO_DETECTED)) { 11475 11476 if (IS_G4X(dev_priv)) { 11477 drm_dbg_kms(&dev_priv->drm, 11478 "probing HDMI on SDVOC\n"); 11479 g4x_hdmi_init(dev_priv, GEN4_HDMIC, PORT_C); 11480 } 11481 if (IS_G4X(dev_priv)) 11482 g4x_dp_init(dev_priv, DP_C, PORT_C); 11483 } 11484 11485 if (IS_G4X(dev_priv) && (intel_de_read(dev_priv, DP_D) & DP_DETECTED)) 11486 g4x_dp_init(dev_priv, DP_D, PORT_D); 11487 11488 if (SUPPORTS_TV(dev_priv)) 11489 intel_tv_init(dev_priv); 11490 } else if (DISPLAY_VER(dev_priv) == 2) { 11491 if (IS_I85X(dev_priv)) 11492 intel_lvds_init(dev_priv); 11493 11494 intel_crt_init(dev_priv); 11495 intel_dvo_init(dev_priv); 11496 } 11497 11498 for_each_intel_encoder(&dev_priv->drm, encoder) { 11499 encoder->base.possible_crtcs = 11500 intel_encoder_possible_crtcs(encoder); 11501 encoder->base.possible_clones = 11502 intel_encoder_possible_clones(encoder); 11503 } 11504 11505 intel_init_pch_refclk(dev_priv); 11506 11507 drm_helper_move_panel_connectors_to_head(&dev_priv->drm); 11508 } 11509 11510 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb) 11511 { 11512 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); 11513 11514 drm_framebuffer_cleanup(fb); 11515 11516 if (intel_fb_uses_dpt(fb)) 11517 intel_dpt_destroy(intel_fb->dpt_vm); 11518 11519 intel_frontbuffer_put(intel_fb->frontbuffer); 11520 11521 kfree(intel_fb); 11522 } 11523 11524 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb, 11525 struct drm_file *file, 11526 unsigned int *handle) 11527 { 11528 struct drm_i915_gem_object *obj = intel_fb_obj(fb); 11529 struct drm_i915_private *i915 = to_i915(obj->base.dev); 11530 11531 if (i915_gem_object_is_userptr(obj)) { 11532 drm_dbg(&i915->drm, 11533 "attempting to use a userptr for a framebuffer, denied\n"); 11534 return -EINVAL; 11535 } 11536 11537 return drm_gem_handle_create(file, &obj->base, handle); 11538 } 11539 11540 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb, 11541 struct drm_file *file, 11542 unsigned flags, unsigned color, 11543 struct drm_clip_rect *clips, 11544 unsigned num_clips) 11545 { 11546 struct drm_i915_gem_object *obj = intel_fb_obj(fb); 11547 11548 i915_gem_object_flush_if_display(obj); 11549 intel_frontbuffer_flush(to_intel_frontbuffer(fb), ORIGIN_DIRTYFB); 11550 11551 return 0; 11552 } 11553 11554 static const struct drm_framebuffer_funcs intel_fb_funcs = { 11555 .destroy = intel_user_framebuffer_destroy, 11556 .create_handle = intel_user_framebuffer_create_handle, 11557 .dirty = intel_user_framebuffer_dirty, 11558 }; 11559 11560 static int intel_framebuffer_init(struct intel_framebuffer *intel_fb, 11561 struct drm_i915_gem_object *obj, 11562 struct drm_mode_fb_cmd2 *mode_cmd) 11563 { 11564 struct drm_i915_private *dev_priv = to_i915(obj->base.dev); 11565 struct drm_framebuffer *fb = &intel_fb->base; 11566 u32 max_stride; 11567 unsigned int tiling, stride; 11568 int ret = -EINVAL; 11569 int i; 11570 11571 intel_fb->frontbuffer = intel_frontbuffer_get(obj); 11572 if (!intel_fb->frontbuffer) 11573 return -ENOMEM; 11574 11575 i915_gem_object_lock(obj, NULL); 11576 tiling = i915_gem_object_get_tiling(obj); 11577 stride = i915_gem_object_get_stride(obj); 11578 i915_gem_object_unlock(obj); 11579 11580 if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) { 11581 /* 11582 * If there's a fence, enforce that 11583 * the fb modifier and tiling mode match. 11584 */ 11585 if (tiling != I915_TILING_NONE && 11586 tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) { 11587 drm_dbg_kms(&dev_priv->drm, 11588 "tiling_mode doesn't match fb modifier\n"); 11589 goto err; 11590 } 11591 } else { 11592 if (tiling == I915_TILING_X) { 11593 mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED; 11594 } else if (tiling == I915_TILING_Y) { 11595 drm_dbg_kms(&dev_priv->drm, 11596 "No Y tiling for legacy addfb\n"); 11597 goto err; 11598 } 11599 } 11600 11601 if (!drm_any_plane_has_format(&dev_priv->drm, 11602 mode_cmd->pixel_format, 11603 mode_cmd->modifier[0])) { 11604 drm_dbg_kms(&dev_priv->drm, 11605 "unsupported pixel format %p4cc / modifier 0x%llx\n", 11606 &mode_cmd->pixel_format, mode_cmd->modifier[0]); 11607 goto err; 11608 } 11609 11610 /* 11611 * gen2/3 display engine uses the fence if present, 11612 * so the tiling mode must match the fb modifier exactly. 11613 */ 11614 if (DISPLAY_VER(dev_priv) < 4 && 11615 tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) { 11616 drm_dbg_kms(&dev_priv->drm, 11617 "tiling_mode must match fb modifier exactly on gen2/3\n"); 11618 goto err; 11619 } 11620 11621 max_stride = intel_fb_max_stride(dev_priv, mode_cmd->pixel_format, 11622 mode_cmd->modifier[0]); 11623 if (mode_cmd->pitches[0] > max_stride) { 11624 drm_dbg_kms(&dev_priv->drm, 11625 "%s pitch (%u) must be at most %d\n", 11626 mode_cmd->modifier[0] != DRM_FORMAT_MOD_LINEAR ? 11627 "tiled" : "linear", 11628 mode_cmd->pitches[0], max_stride); 11629 goto err; 11630 } 11631 11632 /* 11633 * If there's a fence, enforce that 11634 * the fb pitch and fence stride match. 11635 */ 11636 if (tiling != I915_TILING_NONE && mode_cmd->pitches[0] != stride) { 11637 drm_dbg_kms(&dev_priv->drm, 11638 "pitch (%d) must match tiling stride (%d)\n", 11639 mode_cmd->pitches[0], stride); 11640 goto err; 11641 } 11642 11643 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */ 11644 if (mode_cmd->offsets[0] != 0) { 11645 drm_dbg_kms(&dev_priv->drm, 11646 "plane 0 offset (0x%08x) must be 0\n", 11647 mode_cmd->offsets[0]); 11648 goto err; 11649 } 11650 11651 drm_helper_mode_fill_fb_struct(&dev_priv->drm, fb, mode_cmd); 11652 11653 for (i = 0; i < fb->format->num_planes; i++) { 11654 u32 stride_alignment; 11655 11656 if (mode_cmd->handles[i] != mode_cmd->handles[0]) { 11657 drm_dbg_kms(&dev_priv->drm, "bad plane %d handle\n", 11658 i); 11659 goto err; 11660 } 11661 11662 stride_alignment = intel_fb_stride_alignment(fb, i); 11663 if (fb->pitches[i] & (stride_alignment - 1)) { 11664 drm_dbg_kms(&dev_priv->drm, 11665 "plane %d pitch (%d) must be at least %u byte aligned\n", 11666 i, fb->pitches[i], stride_alignment); 11667 goto err; 11668 } 11669 11670 if (is_gen12_ccs_plane(fb, i) && !is_gen12_ccs_cc_plane(fb, i)) { 11671 int ccs_aux_stride = gen12_ccs_aux_stride(fb, i); 11672 11673 if (fb->pitches[i] != ccs_aux_stride) { 11674 drm_dbg_kms(&dev_priv->drm, 11675 "ccs aux plane %d pitch (%d) must be %d\n", 11676 i, 11677 fb->pitches[i], ccs_aux_stride); 11678 goto err; 11679 } 11680 } 11681 11682 /* TODO: Add POT stride remapping support for CCS formats as well. */ 11683 if (IS_ALDERLAKE_P(dev_priv) && 11684 mode_cmd->modifier[i] != DRM_FORMAT_MOD_LINEAR && 11685 !intel_fb_needs_pot_stride_remap(intel_fb) && 11686 !is_power_of_2(mode_cmd->pitches[i])) { 11687 drm_dbg_kms(&dev_priv->drm, 11688 "plane %d pitch (%d) must be power of two for tiled buffers\n", 11689 i, mode_cmd->pitches[i]); 11690 goto err; 11691 } 11692 11693 fb->obj[i] = &obj->base; 11694 } 11695 11696 ret = intel_fill_fb_info(dev_priv, intel_fb); 11697 if (ret) 11698 goto err; 11699 11700 if (intel_fb_uses_dpt(fb)) { 11701 struct i915_address_space *vm; 11702 11703 vm = intel_dpt_create(intel_fb); 11704 if (IS_ERR(vm)) { 11705 ret = PTR_ERR(vm); 11706 goto err; 11707 } 11708 11709 intel_fb->dpt_vm = vm; 11710 } 11711 11712 ret = drm_framebuffer_init(&dev_priv->drm, fb, &intel_fb_funcs); 11713 if (ret) { 11714 drm_err(&dev_priv->drm, "framebuffer init failed %d\n", ret); 11715 goto err; 11716 } 11717 11718 return 0; 11719 11720 err: 11721 intel_frontbuffer_put(intel_fb->frontbuffer); 11722 return ret; 11723 } 11724 11725 static struct drm_framebuffer * 11726 intel_user_framebuffer_create(struct drm_device *dev, 11727 struct drm_file *filp, 11728 const struct drm_mode_fb_cmd2 *user_mode_cmd) 11729 { 11730 struct drm_framebuffer *fb; 11731 struct drm_i915_gem_object *obj; 11732 struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd; 11733 struct drm_i915_private *i915; 11734 11735 obj = i915_gem_object_lookup(filp, mode_cmd.handles[0]); 11736 if (!obj) 11737 return ERR_PTR(-ENOENT); 11738 11739 /* object is backed with LMEM for discrete */ 11740 i915 = to_i915(obj->base.dev); 11741 if (HAS_LMEM(i915) && !i915_gem_object_can_migrate(obj, INTEL_REGION_LMEM)) { 11742 /* object is "remote", not in local memory */ 11743 i915_gem_object_put(obj); 11744 return ERR_PTR(-EREMOTE); 11745 } 11746 11747 fb = intel_framebuffer_create(obj, &mode_cmd); 11748 i915_gem_object_put(obj); 11749 11750 return fb; 11751 } 11752 11753 static enum drm_mode_status 11754 intel_mode_valid(struct drm_device *dev, 11755 const struct drm_display_mode *mode) 11756 { 11757 struct drm_i915_private *dev_priv = to_i915(dev); 11758 int hdisplay_max, htotal_max; 11759 int vdisplay_max, vtotal_max; 11760 11761 /* 11762 * Can't reject DBLSCAN here because Xorg ddxen can add piles 11763 * of DBLSCAN modes to the output's mode list when they detect 11764 * the scaling mode property on the connector. And they don't 11765 * ask the kernel to validate those modes in any way until 11766 * modeset time at which point the client gets a protocol error. 11767 * So in order to not upset those clients we silently ignore the 11768 * DBLSCAN flag on such connectors. For other connectors we will 11769 * reject modes with the DBLSCAN flag in encoder->compute_config(). 11770 * And we always reject DBLSCAN modes in connector->mode_valid() 11771 * as we never want such modes on the connector's mode list. 11772 */ 11773 11774 if (mode->vscan > 1) 11775 return MODE_NO_VSCAN; 11776 11777 if (mode->flags & DRM_MODE_FLAG_HSKEW) 11778 return MODE_H_ILLEGAL; 11779 11780 if (mode->flags & (DRM_MODE_FLAG_CSYNC | 11781 DRM_MODE_FLAG_NCSYNC | 11782 DRM_MODE_FLAG_PCSYNC)) 11783 return MODE_HSYNC; 11784 11785 if (mode->flags & (DRM_MODE_FLAG_BCAST | 11786 DRM_MODE_FLAG_PIXMUX | 11787 DRM_MODE_FLAG_CLKDIV2)) 11788 return MODE_BAD; 11789 11790 /* Transcoder timing limits */ 11791 if (DISPLAY_VER(dev_priv) >= 11) { 11792 hdisplay_max = 16384; 11793 vdisplay_max = 8192; 11794 htotal_max = 16384; 11795 vtotal_max = 8192; 11796 } else if (DISPLAY_VER(dev_priv) >= 9 || 11797 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) { 11798 hdisplay_max = 8192; /* FDI max 4096 handled elsewhere */ 11799 vdisplay_max = 4096; 11800 htotal_max = 8192; 11801 vtotal_max = 8192; 11802 } else if (DISPLAY_VER(dev_priv) >= 3) { 11803 hdisplay_max = 4096; 11804 vdisplay_max = 4096; 11805 htotal_max = 8192; 11806 vtotal_max = 8192; 11807 } else { 11808 hdisplay_max = 2048; 11809 vdisplay_max = 2048; 11810 htotal_max = 4096; 11811 vtotal_max = 4096; 11812 } 11813 11814 if (mode->hdisplay > hdisplay_max || 11815 mode->hsync_start > htotal_max || 11816 mode->hsync_end > htotal_max || 11817 mode->htotal > htotal_max) 11818 return MODE_H_ILLEGAL; 11819 11820 if (mode->vdisplay > vdisplay_max || 11821 mode->vsync_start > vtotal_max || 11822 mode->vsync_end > vtotal_max || 11823 mode->vtotal > vtotal_max) 11824 return MODE_V_ILLEGAL; 11825 11826 if (DISPLAY_VER(dev_priv) >= 5) { 11827 if (mode->hdisplay < 64 || 11828 mode->htotal - mode->hdisplay < 32) 11829 return MODE_H_ILLEGAL; 11830 11831 if (mode->vtotal - mode->vdisplay < 5) 11832 return MODE_V_ILLEGAL; 11833 } else { 11834 if (mode->htotal - mode->hdisplay < 32) 11835 return MODE_H_ILLEGAL; 11836 11837 if (mode->vtotal - mode->vdisplay < 3) 11838 return MODE_V_ILLEGAL; 11839 } 11840 11841 return MODE_OK; 11842 } 11843 11844 enum drm_mode_status 11845 intel_mode_valid_max_plane_size(struct drm_i915_private *dev_priv, 11846 const struct drm_display_mode *mode, 11847 bool bigjoiner) 11848 { 11849 int plane_width_max, plane_height_max; 11850 11851 /* 11852 * intel_mode_valid() should be 11853 * sufficient on older platforms. 11854 */ 11855 if (DISPLAY_VER(dev_priv) < 9) 11856 return MODE_OK; 11857 11858 /* 11859 * Most people will probably want a fullscreen 11860 * plane so let's not advertize modes that are 11861 * too big for that. 11862 */ 11863 if (DISPLAY_VER(dev_priv) >= 11) { 11864 plane_width_max = 5120 << bigjoiner; 11865 plane_height_max = 4320; 11866 } else { 11867 plane_width_max = 5120; 11868 plane_height_max = 4096; 11869 } 11870 11871 if (mode->hdisplay > plane_width_max) 11872 return MODE_H_ILLEGAL; 11873 11874 if (mode->vdisplay > plane_height_max) 11875 return MODE_V_ILLEGAL; 11876 11877 return MODE_OK; 11878 } 11879 11880 static const struct drm_mode_config_funcs intel_mode_funcs = { 11881 .fb_create = intel_user_framebuffer_create, 11882 .get_format_info = intel_get_format_info, 11883 .output_poll_changed = intel_fbdev_output_poll_changed, 11884 .mode_valid = intel_mode_valid, 11885 .atomic_check = intel_atomic_check, 11886 .atomic_commit = intel_atomic_commit, 11887 .atomic_state_alloc = intel_atomic_state_alloc, 11888 .atomic_state_clear = intel_atomic_state_clear, 11889 .atomic_state_free = intel_atomic_state_free, 11890 }; 11891 11892 /** 11893 * intel_init_display_hooks - initialize the display modesetting hooks 11894 * @dev_priv: device private 11895 */ 11896 void intel_init_display_hooks(struct drm_i915_private *dev_priv) 11897 { 11898 if (!HAS_DISPLAY(dev_priv)) 11899 return; 11900 11901 intel_init_cdclk_hooks(dev_priv); 11902 intel_init_audio_hooks(dev_priv); 11903 11904 intel_dpll_init_clock_hook(dev_priv); 11905 11906 if (DISPLAY_VER(dev_priv) >= 9) { 11907 dev_priv->display.get_pipe_config = hsw_get_pipe_config; 11908 dev_priv->display.crtc_enable = hsw_crtc_enable; 11909 dev_priv->display.crtc_disable = hsw_crtc_disable; 11910 } else if (HAS_DDI(dev_priv)) { 11911 dev_priv->display.get_pipe_config = hsw_get_pipe_config; 11912 dev_priv->display.crtc_enable = hsw_crtc_enable; 11913 dev_priv->display.crtc_disable = hsw_crtc_disable; 11914 } else if (HAS_PCH_SPLIT(dev_priv)) { 11915 dev_priv->display.get_pipe_config = ilk_get_pipe_config; 11916 dev_priv->display.crtc_enable = ilk_crtc_enable; 11917 dev_priv->display.crtc_disable = ilk_crtc_disable; 11918 } else if (IS_CHERRYVIEW(dev_priv) || 11919 IS_VALLEYVIEW(dev_priv)) { 11920 dev_priv->display.get_pipe_config = i9xx_get_pipe_config; 11921 dev_priv->display.crtc_enable = valleyview_crtc_enable; 11922 dev_priv->display.crtc_disable = i9xx_crtc_disable; 11923 } else { 11924 dev_priv->display.get_pipe_config = i9xx_get_pipe_config; 11925 dev_priv->display.crtc_enable = i9xx_crtc_enable; 11926 dev_priv->display.crtc_disable = i9xx_crtc_disable; 11927 } 11928 11929 intel_fdi_init_hook(dev_priv); 11930 11931 if (DISPLAY_VER(dev_priv) >= 9) { 11932 dev_priv->display.commit_modeset_enables = skl_commit_modeset_enables; 11933 dev_priv->display.get_initial_plane_config = skl_get_initial_plane_config; 11934 } else { 11935 dev_priv->display.commit_modeset_enables = intel_commit_modeset_enables; 11936 dev_priv->display.get_initial_plane_config = i9xx_get_initial_plane_config; 11937 } 11938 11939 } 11940 11941 void intel_modeset_init_hw(struct drm_i915_private *i915) 11942 { 11943 struct intel_cdclk_state *cdclk_state; 11944 11945 if (!HAS_DISPLAY(i915)) 11946 return; 11947 11948 cdclk_state = to_intel_cdclk_state(i915->cdclk.obj.state); 11949 11950 intel_update_cdclk(i915); 11951 intel_dump_cdclk_config(&i915->cdclk.hw, "Current CDCLK"); 11952 cdclk_state->logical = cdclk_state->actual = i915->cdclk.hw; 11953 } 11954 11955 static int sanitize_watermarks_add_affected(struct drm_atomic_state *state) 11956 { 11957 struct drm_plane *plane; 11958 struct intel_crtc *crtc; 11959 11960 for_each_intel_crtc(state->dev, crtc) { 11961 struct intel_crtc_state *crtc_state; 11962 11963 crtc_state = intel_atomic_get_crtc_state(state, crtc); 11964 if (IS_ERR(crtc_state)) 11965 return PTR_ERR(crtc_state); 11966 11967 if (crtc_state->hw.active) { 11968 /* 11969 * Preserve the inherited flag to avoid 11970 * taking the full modeset path. 11971 */ 11972 crtc_state->inherited = true; 11973 } 11974 } 11975 11976 drm_for_each_plane(plane, state->dev) { 11977 struct drm_plane_state *plane_state; 11978 11979 plane_state = drm_atomic_get_plane_state(state, plane); 11980 if (IS_ERR(plane_state)) 11981 return PTR_ERR(plane_state); 11982 } 11983 11984 return 0; 11985 } 11986 11987 /* 11988 * Calculate what we think the watermarks should be for the state we've read 11989 * out of the hardware and then immediately program those watermarks so that 11990 * we ensure the hardware settings match our internal state. 11991 * 11992 * We can calculate what we think WM's should be by creating a duplicate of the 11993 * current state (which was constructed during hardware readout) and running it 11994 * through the atomic check code to calculate new watermark values in the 11995 * state object. 11996 */ 11997 static void sanitize_watermarks(struct drm_i915_private *dev_priv) 11998 { 11999 struct drm_atomic_state *state; 12000 struct intel_atomic_state *intel_state; 12001 struct intel_crtc *crtc; 12002 struct intel_crtc_state *crtc_state; 12003 struct drm_modeset_acquire_ctx ctx; 12004 int ret; 12005 int i; 12006 12007 /* Only supported on platforms that use atomic watermark design */ 12008 if (!dev_priv->display.optimize_watermarks) 12009 return; 12010 12011 state = drm_atomic_state_alloc(&dev_priv->drm); 12012 if (drm_WARN_ON(&dev_priv->drm, !state)) 12013 return; 12014 12015 intel_state = to_intel_atomic_state(state); 12016 12017 drm_modeset_acquire_init(&ctx, 0); 12018 12019 retry: 12020 state->acquire_ctx = &ctx; 12021 12022 /* 12023 * Hardware readout is the only time we don't want to calculate 12024 * intermediate watermarks (since we don't trust the current 12025 * watermarks). 12026 */ 12027 if (!HAS_GMCH(dev_priv)) 12028 intel_state->skip_intermediate_wm = true; 12029 12030 ret = sanitize_watermarks_add_affected(state); 12031 if (ret) 12032 goto fail; 12033 12034 ret = intel_atomic_check(&dev_priv->drm, state); 12035 if (ret) 12036 goto fail; 12037 12038 /* Write calculated watermark values back */ 12039 for_each_new_intel_crtc_in_state(intel_state, crtc, crtc_state, i) { 12040 crtc_state->wm.need_postvbl_update = true; 12041 dev_priv->display.optimize_watermarks(intel_state, crtc); 12042 12043 to_intel_crtc_state(crtc->base.state)->wm = crtc_state->wm; 12044 } 12045 12046 fail: 12047 if (ret == -EDEADLK) { 12048 drm_atomic_state_clear(state); 12049 drm_modeset_backoff(&ctx); 12050 goto retry; 12051 } 12052 12053 /* 12054 * If we fail here, it means that the hardware appears to be 12055 * programmed in a way that shouldn't be possible, given our 12056 * understanding of watermark requirements. This might mean a 12057 * mistake in the hardware readout code or a mistake in the 12058 * watermark calculations for a given platform. Raise a WARN 12059 * so that this is noticeable. 12060 * 12061 * If this actually happens, we'll have to just leave the 12062 * BIOS-programmed watermarks untouched and hope for the best. 12063 */ 12064 drm_WARN(&dev_priv->drm, ret, 12065 "Could not determine valid watermarks for inherited state\n"); 12066 12067 drm_atomic_state_put(state); 12068 12069 drm_modeset_drop_locks(&ctx); 12070 drm_modeset_acquire_fini(&ctx); 12071 } 12072 12073 static void intel_update_fdi_pll_freq(struct drm_i915_private *dev_priv) 12074 { 12075 if (IS_IRONLAKE(dev_priv)) { 12076 u32 fdi_pll_clk = 12077 intel_de_read(dev_priv, FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK; 12078 12079 dev_priv->fdi_pll_freq = (fdi_pll_clk + 2) * 10000; 12080 } else if (IS_SANDYBRIDGE(dev_priv) || IS_IVYBRIDGE(dev_priv)) { 12081 dev_priv->fdi_pll_freq = 270000; 12082 } else { 12083 return; 12084 } 12085 12086 drm_dbg(&dev_priv->drm, "FDI PLL freq=%d\n", dev_priv->fdi_pll_freq); 12087 } 12088 12089 static int intel_initial_commit(struct drm_device *dev) 12090 { 12091 struct drm_atomic_state *state = NULL; 12092 struct drm_modeset_acquire_ctx ctx; 12093 struct intel_crtc *crtc; 12094 int ret = 0; 12095 12096 state = drm_atomic_state_alloc(dev); 12097 if (!state) 12098 return -ENOMEM; 12099 12100 drm_modeset_acquire_init(&ctx, 0); 12101 12102 retry: 12103 state->acquire_ctx = &ctx; 12104 12105 for_each_intel_crtc(dev, crtc) { 12106 struct intel_crtc_state *crtc_state = 12107 intel_atomic_get_crtc_state(state, crtc); 12108 12109 if (IS_ERR(crtc_state)) { 12110 ret = PTR_ERR(crtc_state); 12111 goto out; 12112 } 12113 12114 if (crtc_state->hw.active) { 12115 struct intel_encoder *encoder; 12116 12117 /* 12118 * We've not yet detected sink capabilities 12119 * (audio,infoframes,etc.) and thus we don't want to 12120 * force a full state recomputation yet. We want that to 12121 * happen only for the first real commit from userspace. 12122 * So preserve the inherited flag for the time being. 12123 */ 12124 crtc_state->inherited = true; 12125 12126 ret = drm_atomic_add_affected_planes(state, &crtc->base); 12127 if (ret) 12128 goto out; 12129 12130 /* 12131 * FIXME hack to force a LUT update to avoid the 12132 * plane update forcing the pipe gamma on without 12133 * having a proper LUT loaded. Remove once we 12134 * have readout for pipe gamma enable. 12135 */ 12136 crtc_state->uapi.color_mgmt_changed = true; 12137 12138 for_each_intel_encoder_mask(dev, encoder, 12139 crtc_state->uapi.encoder_mask) { 12140 if (encoder->initial_fastset_check && 12141 !encoder->initial_fastset_check(encoder, crtc_state)) { 12142 ret = drm_atomic_add_affected_connectors(state, 12143 &crtc->base); 12144 if (ret) 12145 goto out; 12146 } 12147 } 12148 } 12149 } 12150 12151 ret = drm_atomic_commit(state); 12152 12153 out: 12154 if (ret == -EDEADLK) { 12155 drm_atomic_state_clear(state); 12156 drm_modeset_backoff(&ctx); 12157 goto retry; 12158 } 12159 12160 drm_atomic_state_put(state); 12161 12162 drm_modeset_drop_locks(&ctx); 12163 drm_modeset_acquire_fini(&ctx); 12164 12165 return ret; 12166 } 12167 12168 static void intel_mode_config_init(struct drm_i915_private *i915) 12169 { 12170 struct drm_mode_config *mode_config = &i915->drm.mode_config; 12171 12172 drm_mode_config_init(&i915->drm); 12173 INIT_LIST_HEAD(&i915->global_obj_list); 12174 12175 mode_config->min_width = 0; 12176 mode_config->min_height = 0; 12177 12178 mode_config->preferred_depth = 24; 12179 mode_config->prefer_shadow = 1; 12180 12181 mode_config->funcs = &intel_mode_funcs; 12182 12183 mode_config->async_page_flip = has_async_flips(i915); 12184 12185 /* 12186 * Maximum framebuffer dimensions, chosen to match 12187 * the maximum render engine surface size on gen4+. 12188 */ 12189 if (DISPLAY_VER(i915) >= 7) { 12190 mode_config->max_width = 16384; 12191 mode_config->max_height = 16384; 12192 } else if (DISPLAY_VER(i915) >= 4) { 12193 mode_config->max_width = 8192; 12194 mode_config->max_height = 8192; 12195 } else if (DISPLAY_VER(i915) == 3) { 12196 mode_config->max_width = 4096; 12197 mode_config->max_height = 4096; 12198 } else { 12199 mode_config->max_width = 2048; 12200 mode_config->max_height = 2048; 12201 } 12202 12203 if (IS_I845G(i915) || IS_I865G(i915)) { 12204 mode_config->cursor_width = IS_I845G(i915) ? 64 : 512; 12205 mode_config->cursor_height = 1023; 12206 } else if (IS_I830(i915) || IS_I85X(i915) || 12207 IS_I915G(i915) || IS_I915GM(i915)) { 12208 mode_config->cursor_width = 64; 12209 mode_config->cursor_height = 64; 12210 } else { 12211 mode_config->cursor_width = 256; 12212 mode_config->cursor_height = 256; 12213 } 12214 } 12215 12216 static void intel_mode_config_cleanup(struct drm_i915_private *i915) 12217 { 12218 intel_atomic_global_obj_cleanup(i915); 12219 drm_mode_config_cleanup(&i915->drm); 12220 } 12221 12222 static void plane_config_fini(struct intel_initial_plane_config *plane_config) 12223 { 12224 if (plane_config->fb) { 12225 struct drm_framebuffer *fb = &plane_config->fb->base; 12226 12227 /* We may only have the stub and not a full framebuffer */ 12228 if (drm_framebuffer_read_refcount(fb)) 12229 drm_framebuffer_put(fb); 12230 else 12231 kfree(fb); 12232 } 12233 12234 if (plane_config->vma) 12235 i915_vma_put(plane_config->vma); 12236 } 12237 12238 /* part #1: call before irq install */ 12239 int intel_modeset_init_noirq(struct drm_i915_private *i915) 12240 { 12241 int ret; 12242 12243 if (i915_inject_probe_failure(i915)) 12244 return -ENODEV; 12245 12246 if (HAS_DISPLAY(i915)) { 12247 ret = drm_vblank_init(&i915->drm, 12248 INTEL_NUM_PIPES(i915)); 12249 if (ret) 12250 return ret; 12251 } 12252 12253 intel_bios_init(i915); 12254 12255 ret = intel_vga_register(i915); 12256 if (ret) 12257 goto cleanup_bios; 12258 12259 /* FIXME: completely on the wrong abstraction layer */ 12260 intel_power_domains_init_hw(i915, false); 12261 12262 if (!HAS_DISPLAY(i915)) 12263 return 0; 12264 12265 intel_dmc_ucode_init(i915); 12266 12267 i915->modeset_wq = alloc_ordered_workqueue("i915_modeset", 0); 12268 i915->flip_wq = alloc_workqueue("i915_flip", WQ_HIGHPRI | 12269 WQ_UNBOUND, WQ_UNBOUND_MAX_ACTIVE); 12270 12271 i915->framestart_delay = 1; /* 1-4 */ 12272 12273 i915->window2_delay = 0; /* No DSB so no window2 delay */ 12274 12275 intel_mode_config_init(i915); 12276 12277 ret = intel_cdclk_init(i915); 12278 if (ret) 12279 goto cleanup_vga_client_pw_domain_dmc; 12280 12281 ret = intel_dbuf_init(i915); 12282 if (ret) 12283 goto cleanup_vga_client_pw_domain_dmc; 12284 12285 ret = intel_bw_init(i915); 12286 if (ret) 12287 goto cleanup_vga_client_pw_domain_dmc; 12288 12289 init_llist_head(&i915->atomic_helper.free_list); 12290 INIT_WORK(&i915->atomic_helper.free_work, 12291 intel_atomic_helper_free_state_worker); 12292 12293 intel_init_quirks(i915); 12294 12295 intel_fbc_init(i915); 12296 12297 return 0; 12298 12299 cleanup_vga_client_pw_domain_dmc: 12300 intel_dmc_ucode_fini(i915); 12301 intel_power_domains_driver_remove(i915); 12302 intel_vga_unregister(i915); 12303 cleanup_bios: 12304 intel_bios_driver_remove(i915); 12305 12306 return ret; 12307 } 12308 12309 /* part #2: call after irq install, but before gem init */ 12310 int intel_modeset_init_nogem(struct drm_i915_private *i915) 12311 { 12312 struct drm_device *dev = &i915->drm; 12313 enum pipe pipe; 12314 struct intel_crtc *crtc; 12315 int ret; 12316 12317 if (!HAS_DISPLAY(i915)) 12318 return 0; 12319 12320 intel_init_pm(i915); 12321 12322 intel_panel_sanitize_ssc(i915); 12323 12324 intel_pps_setup(i915); 12325 12326 intel_gmbus_setup(i915); 12327 12328 drm_dbg_kms(&i915->drm, "%d display pipe%s available.\n", 12329 INTEL_NUM_PIPES(i915), 12330 INTEL_NUM_PIPES(i915) > 1 ? "s" : ""); 12331 12332 for_each_pipe(i915, pipe) { 12333 ret = intel_crtc_init(i915, pipe); 12334 if (ret) { 12335 intel_mode_config_cleanup(i915); 12336 return ret; 12337 } 12338 } 12339 12340 intel_plane_possible_crtcs_init(i915); 12341 intel_shared_dpll_init(dev); 12342 intel_update_fdi_pll_freq(i915); 12343 12344 intel_update_czclk(i915); 12345 intel_modeset_init_hw(i915); 12346 intel_dpll_update_ref_clks(i915); 12347 12348 intel_hdcp_component_init(i915); 12349 12350 if (i915->max_cdclk_freq == 0) 12351 intel_update_max_cdclk(i915); 12352 12353 /* 12354 * If the platform has HTI, we need to find out whether it has reserved 12355 * any display resources before we create our display outputs. 12356 */ 12357 if (INTEL_INFO(i915)->display.has_hti) 12358 i915->hti_state = intel_de_read(i915, HDPORT_STATE); 12359 12360 /* Just disable it once at startup */ 12361 intel_vga_disable(i915); 12362 intel_setup_outputs(i915); 12363 12364 drm_modeset_lock_all(dev); 12365 intel_modeset_setup_hw_state(dev, dev->mode_config.acquire_ctx); 12366 drm_modeset_unlock_all(dev); 12367 12368 for_each_intel_crtc(dev, crtc) { 12369 struct intel_initial_plane_config plane_config = {}; 12370 12371 if (!to_intel_crtc_state(crtc->base.state)->uapi.active) 12372 continue; 12373 12374 /* 12375 * Note that reserving the BIOS fb up front prevents us 12376 * from stuffing other stolen allocations like the ring 12377 * on top. This prevents some ugliness at boot time, and 12378 * can even allow for smooth boot transitions if the BIOS 12379 * fb is large enough for the active pipe configuration. 12380 */ 12381 i915->display.get_initial_plane_config(crtc, &plane_config); 12382 12383 /* 12384 * If the fb is shared between multiple heads, we'll 12385 * just get the first one. 12386 */ 12387 intel_find_initial_plane_obj(crtc, &plane_config); 12388 12389 plane_config_fini(&plane_config); 12390 } 12391 12392 /* 12393 * Make sure hardware watermarks really match the state we read out. 12394 * Note that we need to do this after reconstructing the BIOS fb's 12395 * since the watermark calculation done here will use pstate->fb. 12396 */ 12397 if (!HAS_GMCH(i915)) 12398 sanitize_watermarks(i915); 12399 12400 return 0; 12401 } 12402 12403 /* part #3: call after gem init */ 12404 int intel_modeset_init(struct drm_i915_private *i915) 12405 { 12406 int ret; 12407 12408 if (!HAS_DISPLAY(i915)) 12409 return 0; 12410 12411 /* 12412 * Force all active planes to recompute their states. So that on 12413 * mode_setcrtc after probe, all the intel_plane_state variables 12414 * are already calculated and there is no assert_plane warnings 12415 * during bootup. 12416 */ 12417 ret = intel_initial_commit(&i915->drm); 12418 if (ret) 12419 drm_dbg_kms(&i915->drm, "Initial modeset failed, %d\n", ret); 12420 12421 intel_overlay_setup(i915); 12422 12423 ret = intel_fbdev_init(&i915->drm); 12424 if (ret) 12425 return ret; 12426 12427 /* Only enable hotplug handling once the fbdev is fully set up. */ 12428 intel_hpd_init(i915); 12429 intel_hpd_poll_disable(i915); 12430 12431 intel_init_ipc(i915); 12432 12433 return 0; 12434 } 12435 12436 void i830_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe) 12437 { 12438 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 12439 /* 640x480@60Hz, ~25175 kHz */ 12440 struct dpll clock = { 12441 .m1 = 18, 12442 .m2 = 7, 12443 .p1 = 13, 12444 .p2 = 4, 12445 .n = 2, 12446 }; 12447 u32 dpll, fp; 12448 int i; 12449 12450 drm_WARN_ON(&dev_priv->drm, 12451 i9xx_calc_dpll_params(48000, &clock) != 25154); 12452 12453 drm_dbg_kms(&dev_priv->drm, 12454 "enabling pipe %c due to force quirk (vco=%d dot=%d)\n", 12455 pipe_name(pipe), clock.vco, clock.dot); 12456 12457 fp = i9xx_dpll_compute_fp(&clock); 12458 dpll = DPLL_DVO_2X_MODE | 12459 DPLL_VGA_MODE_DIS | 12460 ((clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT) | 12461 PLL_P2_DIVIDE_BY_4 | 12462 PLL_REF_INPUT_DREFCLK | 12463 DPLL_VCO_ENABLE; 12464 12465 intel_de_write(dev_priv, FP0(pipe), fp); 12466 intel_de_write(dev_priv, FP1(pipe), fp); 12467 12468 intel_de_write(dev_priv, HTOTAL(pipe), (640 - 1) | ((800 - 1) << 16)); 12469 intel_de_write(dev_priv, HBLANK(pipe), (640 - 1) | ((800 - 1) << 16)); 12470 intel_de_write(dev_priv, HSYNC(pipe), (656 - 1) | ((752 - 1) << 16)); 12471 intel_de_write(dev_priv, VTOTAL(pipe), (480 - 1) | ((525 - 1) << 16)); 12472 intel_de_write(dev_priv, VBLANK(pipe), (480 - 1) | ((525 - 1) << 16)); 12473 intel_de_write(dev_priv, VSYNC(pipe), (490 - 1) | ((492 - 1) << 16)); 12474 intel_de_write(dev_priv, PIPESRC(pipe), ((640 - 1) << 16) | (480 - 1)); 12475 12476 /* 12477 * Apparently we need to have VGA mode enabled prior to changing 12478 * the P1/P2 dividers. Otherwise the DPLL will keep using the old 12479 * dividers, even though the register value does change. 12480 */ 12481 intel_de_write(dev_priv, DPLL(pipe), dpll & ~DPLL_VGA_MODE_DIS); 12482 intel_de_write(dev_priv, DPLL(pipe), dpll); 12483 12484 /* Wait for the clocks to stabilize. */ 12485 intel_de_posting_read(dev_priv, DPLL(pipe)); 12486 udelay(150); 12487 12488 /* The pixel multiplier can only be updated once the 12489 * DPLL is enabled and the clocks are stable. 12490 * 12491 * So write it again. 12492 */ 12493 intel_de_write(dev_priv, DPLL(pipe), dpll); 12494 12495 /* We do this three times for luck */ 12496 for (i = 0; i < 3 ; i++) { 12497 intel_de_write(dev_priv, DPLL(pipe), dpll); 12498 intel_de_posting_read(dev_priv, DPLL(pipe)); 12499 udelay(150); /* wait for warmup */ 12500 } 12501 12502 intel_de_write(dev_priv, PIPECONF(pipe), 12503 PIPECONF_ENABLE | PIPECONF_PROGRESSIVE); 12504 intel_de_posting_read(dev_priv, PIPECONF(pipe)); 12505 12506 intel_wait_for_pipe_scanline_moving(crtc); 12507 } 12508 12509 void i830_disable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe) 12510 { 12511 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 12512 12513 drm_dbg_kms(&dev_priv->drm, "disabling pipe %c due to force quirk\n", 12514 pipe_name(pipe)); 12515 12516 drm_WARN_ON(&dev_priv->drm, 12517 intel_de_read(dev_priv, DSPCNTR(PLANE_A)) & 12518 DISPLAY_PLANE_ENABLE); 12519 drm_WARN_ON(&dev_priv->drm, 12520 intel_de_read(dev_priv, DSPCNTR(PLANE_B)) & 12521 DISPLAY_PLANE_ENABLE); 12522 drm_WARN_ON(&dev_priv->drm, 12523 intel_de_read(dev_priv, DSPCNTR(PLANE_C)) & 12524 DISPLAY_PLANE_ENABLE); 12525 drm_WARN_ON(&dev_priv->drm, 12526 intel_de_read(dev_priv, CURCNTR(PIPE_A)) & MCURSOR_MODE); 12527 drm_WARN_ON(&dev_priv->drm, 12528 intel_de_read(dev_priv, CURCNTR(PIPE_B)) & MCURSOR_MODE); 12529 12530 intel_de_write(dev_priv, PIPECONF(pipe), 0); 12531 intel_de_posting_read(dev_priv, PIPECONF(pipe)); 12532 12533 intel_wait_for_pipe_scanline_stopped(crtc); 12534 12535 intel_de_write(dev_priv, DPLL(pipe), DPLL_VGA_MODE_DIS); 12536 intel_de_posting_read(dev_priv, DPLL(pipe)); 12537 } 12538 12539 static void 12540 intel_sanitize_plane_mapping(struct drm_i915_private *dev_priv) 12541 { 12542 struct intel_crtc *crtc; 12543 12544 if (DISPLAY_VER(dev_priv) >= 4) 12545 return; 12546 12547 for_each_intel_crtc(&dev_priv->drm, crtc) { 12548 struct intel_plane *plane = 12549 to_intel_plane(crtc->base.primary); 12550 struct intel_crtc *plane_crtc; 12551 enum pipe pipe; 12552 12553 if (!plane->get_hw_state(plane, &pipe)) 12554 continue; 12555 12556 if (pipe == crtc->pipe) 12557 continue; 12558 12559 drm_dbg_kms(&dev_priv->drm, 12560 "[PLANE:%d:%s] attached to the wrong pipe, disabling plane\n", 12561 plane->base.base.id, plane->base.name); 12562 12563 plane_crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 12564 intel_plane_disable_noatomic(plane_crtc, plane); 12565 } 12566 } 12567 12568 static bool intel_crtc_has_encoders(struct intel_crtc *crtc) 12569 { 12570 struct drm_device *dev = crtc->base.dev; 12571 struct intel_encoder *encoder; 12572 12573 for_each_encoder_on_crtc(dev, &crtc->base, encoder) 12574 return true; 12575 12576 return false; 12577 } 12578 12579 static struct intel_connector *intel_encoder_find_connector(struct intel_encoder *encoder) 12580 { 12581 struct drm_device *dev = encoder->base.dev; 12582 struct intel_connector *connector; 12583 12584 for_each_connector_on_encoder(dev, &encoder->base, connector) 12585 return connector; 12586 12587 return NULL; 12588 } 12589 12590 static bool has_pch_trancoder(struct drm_i915_private *dev_priv, 12591 enum pipe pch_transcoder) 12592 { 12593 return HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) || 12594 (HAS_PCH_LPT_H(dev_priv) && pch_transcoder == PIPE_A); 12595 } 12596 12597 static void intel_sanitize_frame_start_delay(const struct intel_crtc_state *crtc_state) 12598 { 12599 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 12600 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 12601 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 12602 12603 if (DISPLAY_VER(dev_priv) >= 9 || 12604 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) { 12605 i915_reg_t reg = CHICKEN_TRANS(cpu_transcoder); 12606 u32 val; 12607 12608 if (transcoder_is_dsi(cpu_transcoder)) 12609 return; 12610 12611 val = intel_de_read(dev_priv, reg); 12612 val &= ~HSW_FRAME_START_DELAY_MASK; 12613 val |= HSW_FRAME_START_DELAY(dev_priv->framestart_delay - 1); 12614 intel_de_write(dev_priv, reg, val); 12615 } else { 12616 i915_reg_t reg = PIPECONF(cpu_transcoder); 12617 u32 val; 12618 12619 val = intel_de_read(dev_priv, reg); 12620 val &= ~PIPECONF_FRAME_START_DELAY_MASK; 12621 val |= PIPECONF_FRAME_START_DELAY(dev_priv->framestart_delay - 1); 12622 intel_de_write(dev_priv, reg, val); 12623 } 12624 12625 if (!crtc_state->has_pch_encoder) 12626 return; 12627 12628 if (HAS_PCH_IBX(dev_priv)) { 12629 i915_reg_t reg = PCH_TRANSCONF(crtc->pipe); 12630 u32 val; 12631 12632 val = intel_de_read(dev_priv, reg); 12633 val &= ~TRANS_FRAME_START_DELAY_MASK; 12634 val |= TRANS_FRAME_START_DELAY(dev_priv->framestart_delay - 1); 12635 intel_de_write(dev_priv, reg, val); 12636 } else { 12637 enum pipe pch_transcoder = intel_crtc_pch_transcoder(crtc); 12638 i915_reg_t reg = TRANS_CHICKEN2(pch_transcoder); 12639 u32 val; 12640 12641 val = intel_de_read(dev_priv, reg); 12642 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK; 12643 val |= TRANS_CHICKEN2_FRAME_START_DELAY(dev_priv->framestart_delay - 1); 12644 intel_de_write(dev_priv, reg, val); 12645 } 12646 } 12647 12648 static void intel_sanitize_crtc(struct intel_crtc *crtc, 12649 struct drm_modeset_acquire_ctx *ctx) 12650 { 12651 struct drm_device *dev = crtc->base.dev; 12652 struct drm_i915_private *dev_priv = to_i915(dev); 12653 struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state); 12654 12655 if (crtc_state->hw.active) { 12656 struct intel_plane *plane; 12657 12658 /* Clear any frame start delays used for debugging left by the BIOS */ 12659 intel_sanitize_frame_start_delay(crtc_state); 12660 12661 /* Disable everything but the primary plane */ 12662 for_each_intel_plane_on_crtc(dev, crtc, plane) { 12663 const struct intel_plane_state *plane_state = 12664 to_intel_plane_state(plane->base.state); 12665 12666 if (plane_state->uapi.visible && 12667 plane->base.type != DRM_PLANE_TYPE_PRIMARY) 12668 intel_plane_disable_noatomic(crtc, plane); 12669 } 12670 12671 /* 12672 * Disable any background color set by the BIOS, but enable the 12673 * gamma and CSC to match how we program our planes. 12674 */ 12675 if (DISPLAY_VER(dev_priv) >= 9) 12676 intel_de_write(dev_priv, SKL_BOTTOM_COLOR(crtc->pipe), 12677 SKL_BOTTOM_COLOR_GAMMA_ENABLE | SKL_BOTTOM_COLOR_CSC_ENABLE); 12678 } 12679 12680 /* Adjust the state of the output pipe according to whether we 12681 * have active connectors/encoders. */ 12682 if (crtc_state->hw.active && !intel_crtc_has_encoders(crtc) && 12683 !crtc_state->bigjoiner_slave) 12684 intel_crtc_disable_noatomic(crtc, ctx); 12685 12686 if (crtc_state->hw.active || HAS_GMCH(dev_priv)) { 12687 /* 12688 * We start out with underrun reporting disabled to avoid races. 12689 * For correct bookkeeping mark this on active crtcs. 12690 * 12691 * Also on gmch platforms we dont have any hardware bits to 12692 * disable the underrun reporting. Which means we need to start 12693 * out with underrun reporting disabled also on inactive pipes, 12694 * since otherwise we'll complain about the garbage we read when 12695 * e.g. coming up after runtime pm. 12696 * 12697 * No protection against concurrent access is required - at 12698 * worst a fifo underrun happens which also sets this to false. 12699 */ 12700 crtc->cpu_fifo_underrun_disabled = true; 12701 /* 12702 * We track the PCH trancoder underrun reporting state 12703 * within the crtc. With crtc for pipe A housing the underrun 12704 * reporting state for PCH transcoder A, crtc for pipe B housing 12705 * it for PCH transcoder B, etc. LPT-H has only PCH transcoder A, 12706 * and marking underrun reporting as disabled for the non-existing 12707 * PCH transcoders B and C would prevent enabling the south 12708 * error interrupt (see cpt_can_enable_serr_int()). 12709 */ 12710 if (has_pch_trancoder(dev_priv, crtc->pipe)) 12711 crtc->pch_fifo_underrun_disabled = true; 12712 } 12713 } 12714 12715 static bool has_bogus_dpll_config(const struct intel_crtc_state *crtc_state) 12716 { 12717 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 12718 12719 /* 12720 * Some SNB BIOSen (eg. ASUS K53SV) are known to misprogram 12721 * the hardware when a high res displays plugged in. DPLL P 12722 * divider is zero, and the pipe timings are bonkers. We'll 12723 * try to disable everything in that case. 12724 * 12725 * FIXME would be nice to be able to sanitize this state 12726 * without several WARNs, but for now let's take the easy 12727 * road. 12728 */ 12729 return IS_SANDYBRIDGE(dev_priv) && 12730 crtc_state->hw.active && 12731 crtc_state->shared_dpll && 12732 crtc_state->port_clock == 0; 12733 } 12734 12735 static void intel_sanitize_encoder(struct intel_encoder *encoder) 12736 { 12737 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 12738 struct intel_connector *connector; 12739 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc); 12740 struct intel_crtc_state *crtc_state = crtc ? 12741 to_intel_crtc_state(crtc->base.state) : NULL; 12742 12743 /* We need to check both for a crtc link (meaning that the 12744 * encoder is active and trying to read from a pipe) and the 12745 * pipe itself being active. */ 12746 bool has_active_crtc = crtc_state && 12747 crtc_state->hw.active; 12748 12749 if (crtc_state && has_bogus_dpll_config(crtc_state)) { 12750 drm_dbg_kms(&dev_priv->drm, 12751 "BIOS has misprogrammed the hardware. Disabling pipe %c\n", 12752 pipe_name(crtc->pipe)); 12753 has_active_crtc = false; 12754 } 12755 12756 connector = intel_encoder_find_connector(encoder); 12757 if (connector && !has_active_crtc) { 12758 drm_dbg_kms(&dev_priv->drm, 12759 "[ENCODER:%d:%s] has active connectors but no active pipe!\n", 12760 encoder->base.base.id, 12761 encoder->base.name); 12762 12763 /* Connector is active, but has no active pipe. This is 12764 * fallout from our resume register restoring. Disable 12765 * the encoder manually again. */ 12766 if (crtc_state) { 12767 struct drm_encoder *best_encoder; 12768 12769 drm_dbg_kms(&dev_priv->drm, 12770 "[ENCODER:%d:%s] manually disabled\n", 12771 encoder->base.base.id, 12772 encoder->base.name); 12773 12774 /* avoid oopsing in case the hooks consult best_encoder */ 12775 best_encoder = connector->base.state->best_encoder; 12776 connector->base.state->best_encoder = &encoder->base; 12777 12778 /* FIXME NULL atomic state passed! */ 12779 if (encoder->disable) 12780 encoder->disable(NULL, encoder, crtc_state, 12781 connector->base.state); 12782 if (encoder->post_disable) 12783 encoder->post_disable(NULL, encoder, crtc_state, 12784 connector->base.state); 12785 12786 connector->base.state->best_encoder = best_encoder; 12787 } 12788 encoder->base.crtc = NULL; 12789 12790 /* Inconsistent output/port/pipe state happens presumably due to 12791 * a bug in one of the get_hw_state functions. Or someplace else 12792 * in our code, like the register restore mess on resume. Clamp 12793 * things to off as a safer default. */ 12794 12795 connector->base.dpms = DRM_MODE_DPMS_OFF; 12796 connector->base.encoder = NULL; 12797 } 12798 12799 /* notify opregion of the sanitized encoder state */ 12800 intel_opregion_notify_encoder(encoder, connector && has_active_crtc); 12801 12802 if (HAS_DDI(dev_priv)) 12803 intel_ddi_sanitize_encoder_pll_mapping(encoder); 12804 } 12805 12806 /* FIXME read out full plane state for all planes */ 12807 static void readout_plane_state(struct drm_i915_private *dev_priv) 12808 { 12809 struct intel_plane *plane; 12810 struct intel_crtc *crtc; 12811 12812 for_each_intel_plane(&dev_priv->drm, plane) { 12813 struct intel_plane_state *plane_state = 12814 to_intel_plane_state(plane->base.state); 12815 struct intel_crtc_state *crtc_state; 12816 enum pipe pipe = PIPE_A; 12817 bool visible; 12818 12819 visible = plane->get_hw_state(plane, &pipe); 12820 12821 crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 12822 crtc_state = to_intel_crtc_state(crtc->base.state); 12823 12824 intel_set_plane_visible(crtc_state, plane_state, visible); 12825 12826 drm_dbg_kms(&dev_priv->drm, 12827 "[PLANE:%d:%s] hw state readout: %s, pipe %c\n", 12828 plane->base.base.id, plane->base.name, 12829 enableddisabled(visible), pipe_name(pipe)); 12830 } 12831 12832 for_each_intel_crtc(&dev_priv->drm, crtc) { 12833 struct intel_crtc_state *crtc_state = 12834 to_intel_crtc_state(crtc->base.state); 12835 12836 fixup_plane_bitmasks(crtc_state); 12837 } 12838 } 12839 12840 static void intel_modeset_readout_hw_state(struct drm_device *dev) 12841 { 12842 struct drm_i915_private *dev_priv = to_i915(dev); 12843 struct intel_cdclk_state *cdclk_state = 12844 to_intel_cdclk_state(dev_priv->cdclk.obj.state); 12845 struct intel_dbuf_state *dbuf_state = 12846 to_intel_dbuf_state(dev_priv->dbuf.obj.state); 12847 enum pipe pipe; 12848 struct intel_crtc *crtc; 12849 struct intel_encoder *encoder; 12850 struct intel_connector *connector; 12851 struct drm_connector_list_iter conn_iter; 12852 u8 active_pipes = 0; 12853 12854 for_each_intel_crtc(dev, crtc) { 12855 struct intel_crtc_state *crtc_state = 12856 to_intel_crtc_state(crtc->base.state); 12857 12858 __drm_atomic_helper_crtc_destroy_state(&crtc_state->uapi); 12859 intel_crtc_free_hw_state(crtc_state); 12860 intel_crtc_state_reset(crtc_state, crtc); 12861 12862 intel_crtc_get_pipe_config(crtc_state); 12863 12864 crtc_state->hw.enable = crtc_state->hw.active; 12865 12866 crtc->base.enabled = crtc_state->hw.enable; 12867 crtc->active = crtc_state->hw.active; 12868 12869 if (crtc_state->hw.active) 12870 active_pipes |= BIT(crtc->pipe); 12871 12872 drm_dbg_kms(&dev_priv->drm, 12873 "[CRTC:%d:%s] hw state readout: %s\n", 12874 crtc->base.base.id, crtc->base.name, 12875 enableddisabled(crtc_state->hw.active)); 12876 } 12877 12878 dev_priv->active_pipes = cdclk_state->active_pipes = 12879 dbuf_state->active_pipes = active_pipes; 12880 12881 readout_plane_state(dev_priv); 12882 12883 for_each_intel_encoder(dev, encoder) { 12884 struct intel_crtc_state *crtc_state = NULL; 12885 12886 pipe = 0; 12887 12888 if (encoder->get_hw_state(encoder, &pipe)) { 12889 crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 12890 crtc_state = to_intel_crtc_state(crtc->base.state); 12891 12892 encoder->base.crtc = &crtc->base; 12893 intel_encoder_get_config(encoder, crtc_state); 12894 12895 /* read out to slave crtc as well for bigjoiner */ 12896 if (crtc_state->bigjoiner) { 12897 /* encoder should read be linked to bigjoiner master */ 12898 WARN_ON(crtc_state->bigjoiner_slave); 12899 12900 crtc = crtc_state->bigjoiner_linked_crtc; 12901 crtc_state = to_intel_crtc_state(crtc->base.state); 12902 intel_encoder_get_config(encoder, crtc_state); 12903 } 12904 } else { 12905 encoder->base.crtc = NULL; 12906 } 12907 12908 if (encoder->sync_state) 12909 encoder->sync_state(encoder, crtc_state); 12910 12911 drm_dbg_kms(&dev_priv->drm, 12912 "[ENCODER:%d:%s] hw state readout: %s, pipe %c\n", 12913 encoder->base.base.id, encoder->base.name, 12914 enableddisabled(encoder->base.crtc), 12915 pipe_name(pipe)); 12916 } 12917 12918 intel_dpll_readout_hw_state(dev_priv); 12919 12920 drm_connector_list_iter_begin(dev, &conn_iter); 12921 for_each_intel_connector_iter(connector, &conn_iter) { 12922 if (connector->get_hw_state(connector)) { 12923 struct intel_crtc_state *crtc_state; 12924 struct intel_crtc *crtc; 12925 12926 connector->base.dpms = DRM_MODE_DPMS_ON; 12927 12928 encoder = intel_attached_encoder(connector); 12929 connector->base.encoder = &encoder->base; 12930 12931 crtc = to_intel_crtc(encoder->base.crtc); 12932 crtc_state = crtc ? to_intel_crtc_state(crtc->base.state) : NULL; 12933 12934 if (crtc_state && crtc_state->hw.active) { 12935 /* 12936 * This has to be done during hardware readout 12937 * because anything calling .crtc_disable may 12938 * rely on the connector_mask being accurate. 12939 */ 12940 crtc_state->uapi.connector_mask |= 12941 drm_connector_mask(&connector->base); 12942 crtc_state->uapi.encoder_mask |= 12943 drm_encoder_mask(&encoder->base); 12944 } 12945 } else { 12946 connector->base.dpms = DRM_MODE_DPMS_OFF; 12947 connector->base.encoder = NULL; 12948 } 12949 drm_dbg_kms(&dev_priv->drm, 12950 "[CONNECTOR:%d:%s] hw state readout: %s\n", 12951 connector->base.base.id, connector->base.name, 12952 enableddisabled(connector->base.encoder)); 12953 } 12954 drm_connector_list_iter_end(&conn_iter); 12955 12956 for_each_intel_crtc(dev, crtc) { 12957 struct intel_bw_state *bw_state = 12958 to_intel_bw_state(dev_priv->bw_obj.state); 12959 struct intel_crtc_state *crtc_state = 12960 to_intel_crtc_state(crtc->base.state); 12961 struct intel_plane *plane; 12962 int min_cdclk = 0; 12963 12964 if (crtc_state->bigjoiner_slave) 12965 continue; 12966 12967 if (crtc_state->hw.active) { 12968 /* 12969 * The initial mode needs to be set in order to keep 12970 * the atomic core happy. It wants a valid mode if the 12971 * crtc's enabled, so we do the above call. 12972 * 12973 * But we don't set all the derived state fully, hence 12974 * set a flag to indicate that a full recalculation is 12975 * needed on the next commit. 12976 */ 12977 crtc_state->inherited = true; 12978 12979 intel_crtc_update_active_timings(crtc_state); 12980 12981 intel_crtc_copy_hw_to_uapi_state(crtc_state); 12982 } 12983 12984 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) { 12985 const struct intel_plane_state *plane_state = 12986 to_intel_plane_state(plane->base.state); 12987 12988 /* 12989 * FIXME don't have the fb yet, so can't 12990 * use intel_plane_data_rate() :( 12991 */ 12992 if (plane_state->uapi.visible) 12993 crtc_state->data_rate[plane->id] = 12994 4 * crtc_state->pixel_rate; 12995 /* 12996 * FIXME don't have the fb yet, so can't 12997 * use plane->min_cdclk() :( 12998 */ 12999 if (plane_state->uapi.visible && plane->min_cdclk) { 13000 if (crtc_state->double_wide || DISPLAY_VER(dev_priv) >= 10) 13001 crtc_state->min_cdclk[plane->id] = 13002 DIV_ROUND_UP(crtc_state->pixel_rate, 2); 13003 else 13004 crtc_state->min_cdclk[plane->id] = 13005 crtc_state->pixel_rate; 13006 } 13007 drm_dbg_kms(&dev_priv->drm, 13008 "[PLANE:%d:%s] min_cdclk %d kHz\n", 13009 plane->base.base.id, plane->base.name, 13010 crtc_state->min_cdclk[plane->id]); 13011 } 13012 13013 if (crtc_state->hw.active) { 13014 min_cdclk = intel_crtc_compute_min_cdclk(crtc_state); 13015 if (drm_WARN_ON(dev, min_cdclk < 0)) 13016 min_cdclk = 0; 13017 } 13018 13019 cdclk_state->min_cdclk[crtc->pipe] = min_cdclk; 13020 cdclk_state->min_voltage_level[crtc->pipe] = 13021 crtc_state->min_voltage_level; 13022 13023 intel_bw_crtc_update(bw_state, crtc_state); 13024 13025 intel_pipe_config_sanity_check(dev_priv, crtc_state); 13026 13027 /* discard our incomplete slave state, copy it from master */ 13028 if (crtc_state->bigjoiner && crtc_state->hw.active) { 13029 struct intel_crtc *slave = crtc_state->bigjoiner_linked_crtc; 13030 struct intel_crtc_state *slave_crtc_state = 13031 to_intel_crtc_state(slave->base.state); 13032 13033 copy_bigjoiner_crtc_state(slave_crtc_state, crtc_state); 13034 slave->base.mode = crtc->base.mode; 13035 13036 cdclk_state->min_cdclk[slave->pipe] = min_cdclk; 13037 cdclk_state->min_voltage_level[slave->pipe] = 13038 crtc_state->min_voltage_level; 13039 13040 for_each_intel_plane_on_crtc(&dev_priv->drm, slave, plane) { 13041 const struct intel_plane_state *plane_state = 13042 to_intel_plane_state(plane->base.state); 13043 13044 /* 13045 * FIXME don't have the fb yet, so can't 13046 * use intel_plane_data_rate() :( 13047 */ 13048 if (plane_state->uapi.visible) 13049 crtc_state->data_rate[plane->id] = 13050 4 * crtc_state->pixel_rate; 13051 else 13052 crtc_state->data_rate[plane->id] = 0; 13053 } 13054 13055 intel_bw_crtc_update(bw_state, slave_crtc_state); 13056 drm_calc_timestamping_constants(&slave->base, 13057 &slave_crtc_state->hw.adjusted_mode); 13058 } 13059 } 13060 } 13061 13062 static void 13063 get_encoder_power_domains(struct drm_i915_private *dev_priv) 13064 { 13065 struct intel_encoder *encoder; 13066 13067 for_each_intel_encoder(&dev_priv->drm, encoder) { 13068 struct intel_crtc_state *crtc_state; 13069 13070 if (!encoder->get_power_domains) 13071 continue; 13072 13073 /* 13074 * MST-primary and inactive encoders don't have a crtc state 13075 * and neither of these require any power domain references. 13076 */ 13077 if (!encoder->base.crtc) 13078 continue; 13079 13080 crtc_state = to_intel_crtc_state(encoder->base.crtc->state); 13081 encoder->get_power_domains(encoder, crtc_state); 13082 } 13083 } 13084 13085 static void intel_early_display_was(struct drm_i915_private *dev_priv) 13086 { 13087 /* 13088 * Display WA #1185 WaDisableDARBFClkGating:glk,icl,ehl,tgl 13089 * Also known as Wa_14010480278. 13090 */ 13091 if (IS_DISPLAY_VER(dev_priv, 10, 12)) 13092 intel_de_write(dev_priv, GEN9_CLKGATE_DIS_0, 13093 intel_de_read(dev_priv, GEN9_CLKGATE_DIS_0) | DARBF_GATING_DIS); 13094 13095 if (IS_HASWELL(dev_priv)) { 13096 /* 13097 * WaRsPkgCStateDisplayPMReq:hsw 13098 * System hang if this isn't done before disabling all planes! 13099 */ 13100 intel_de_write(dev_priv, CHICKEN_PAR1_1, 13101 intel_de_read(dev_priv, CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES); 13102 } 13103 13104 if (IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv) || IS_COMETLAKE(dev_priv)) { 13105 /* Display WA #1142:kbl,cfl,cml */ 13106 intel_de_rmw(dev_priv, CHICKEN_PAR1_1, 13107 KBL_ARB_FILL_SPARE_22, KBL_ARB_FILL_SPARE_22); 13108 intel_de_rmw(dev_priv, CHICKEN_MISC_2, 13109 KBL_ARB_FILL_SPARE_13 | KBL_ARB_FILL_SPARE_14, 13110 KBL_ARB_FILL_SPARE_14); 13111 } 13112 } 13113 13114 static void ibx_sanitize_pch_hdmi_port(struct drm_i915_private *dev_priv, 13115 enum port port, i915_reg_t hdmi_reg) 13116 { 13117 u32 val = intel_de_read(dev_priv, hdmi_reg); 13118 13119 if (val & SDVO_ENABLE || 13120 (val & SDVO_PIPE_SEL_MASK) == SDVO_PIPE_SEL(PIPE_A)) 13121 return; 13122 13123 drm_dbg_kms(&dev_priv->drm, 13124 "Sanitizing transcoder select for HDMI %c\n", 13125 port_name(port)); 13126 13127 val &= ~SDVO_PIPE_SEL_MASK; 13128 val |= SDVO_PIPE_SEL(PIPE_A); 13129 13130 intel_de_write(dev_priv, hdmi_reg, val); 13131 } 13132 13133 static void ibx_sanitize_pch_dp_port(struct drm_i915_private *dev_priv, 13134 enum port port, i915_reg_t dp_reg) 13135 { 13136 u32 val = intel_de_read(dev_priv, dp_reg); 13137 13138 if (val & DP_PORT_EN || 13139 (val & DP_PIPE_SEL_MASK) == DP_PIPE_SEL(PIPE_A)) 13140 return; 13141 13142 drm_dbg_kms(&dev_priv->drm, 13143 "Sanitizing transcoder select for DP %c\n", 13144 port_name(port)); 13145 13146 val &= ~DP_PIPE_SEL_MASK; 13147 val |= DP_PIPE_SEL(PIPE_A); 13148 13149 intel_de_write(dev_priv, dp_reg, val); 13150 } 13151 13152 static void ibx_sanitize_pch_ports(struct drm_i915_private *dev_priv) 13153 { 13154 /* 13155 * The BIOS may select transcoder B on some of the PCH 13156 * ports even it doesn't enable the port. This would trip 13157 * assert_pch_dp_disabled() and assert_pch_hdmi_disabled(). 13158 * Sanitize the transcoder select bits to prevent that. We 13159 * assume that the BIOS never actually enabled the port, 13160 * because if it did we'd actually have to toggle the port 13161 * on and back off to make the transcoder A select stick 13162 * (see. intel_dp_link_down(), intel_disable_hdmi(), 13163 * intel_disable_sdvo()). 13164 */ 13165 ibx_sanitize_pch_dp_port(dev_priv, PORT_B, PCH_DP_B); 13166 ibx_sanitize_pch_dp_port(dev_priv, PORT_C, PCH_DP_C); 13167 ibx_sanitize_pch_dp_port(dev_priv, PORT_D, PCH_DP_D); 13168 13169 /* PCH SDVOB multiplex with HDMIB */ 13170 ibx_sanitize_pch_hdmi_port(dev_priv, PORT_B, PCH_HDMIB); 13171 ibx_sanitize_pch_hdmi_port(dev_priv, PORT_C, PCH_HDMIC); 13172 ibx_sanitize_pch_hdmi_port(dev_priv, PORT_D, PCH_HDMID); 13173 } 13174 13175 /* Scan out the current hw modeset state, 13176 * and sanitizes it to the current state 13177 */ 13178 static void 13179 intel_modeset_setup_hw_state(struct drm_device *dev, 13180 struct drm_modeset_acquire_ctx *ctx) 13181 { 13182 struct drm_i915_private *dev_priv = to_i915(dev); 13183 struct intel_encoder *encoder; 13184 struct intel_crtc *crtc; 13185 intel_wakeref_t wakeref; 13186 13187 wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_INIT); 13188 13189 intel_early_display_was(dev_priv); 13190 intel_modeset_readout_hw_state(dev); 13191 13192 /* HW state is read out, now we need to sanitize this mess. */ 13193 get_encoder_power_domains(dev_priv); 13194 13195 if (HAS_PCH_IBX(dev_priv)) 13196 ibx_sanitize_pch_ports(dev_priv); 13197 13198 /* 13199 * intel_sanitize_plane_mapping() may need to do vblank 13200 * waits, so we need vblank interrupts restored beforehand. 13201 */ 13202 for_each_intel_crtc(&dev_priv->drm, crtc) { 13203 struct intel_crtc_state *crtc_state = 13204 to_intel_crtc_state(crtc->base.state); 13205 13206 drm_crtc_vblank_reset(&crtc->base); 13207 13208 if (crtc_state->hw.active) 13209 intel_crtc_vblank_on(crtc_state); 13210 } 13211 13212 intel_sanitize_plane_mapping(dev_priv); 13213 13214 for_each_intel_encoder(dev, encoder) 13215 intel_sanitize_encoder(encoder); 13216 13217 for_each_intel_crtc(&dev_priv->drm, crtc) { 13218 struct intel_crtc_state *crtc_state = 13219 to_intel_crtc_state(crtc->base.state); 13220 13221 intel_sanitize_crtc(crtc, ctx); 13222 intel_dump_pipe_config(crtc_state, NULL, "[setup_hw_state]"); 13223 } 13224 13225 intel_modeset_update_connector_atomic_state(dev); 13226 13227 intel_dpll_sanitize_state(dev_priv); 13228 13229 if (IS_G4X(dev_priv)) { 13230 g4x_wm_get_hw_state(dev_priv); 13231 g4x_wm_sanitize(dev_priv); 13232 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 13233 vlv_wm_get_hw_state(dev_priv); 13234 vlv_wm_sanitize(dev_priv); 13235 } else if (DISPLAY_VER(dev_priv) >= 9) { 13236 skl_wm_get_hw_state(dev_priv); 13237 skl_wm_sanitize(dev_priv); 13238 } else if (HAS_PCH_SPLIT(dev_priv)) { 13239 ilk_wm_get_hw_state(dev_priv); 13240 } 13241 13242 for_each_intel_crtc(dev, crtc) { 13243 struct intel_crtc_state *crtc_state = 13244 to_intel_crtc_state(crtc->base.state); 13245 u64 put_domains; 13246 13247 put_domains = modeset_get_crtc_power_domains(crtc_state); 13248 if (drm_WARN_ON(dev, put_domains)) 13249 modeset_put_crtc_power_domains(crtc, put_domains); 13250 } 13251 13252 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT, wakeref); 13253 } 13254 13255 void intel_display_resume(struct drm_device *dev) 13256 { 13257 struct drm_i915_private *dev_priv = to_i915(dev); 13258 struct drm_atomic_state *state = dev_priv->modeset_restore_state; 13259 struct drm_modeset_acquire_ctx ctx; 13260 int ret; 13261 13262 if (!HAS_DISPLAY(dev_priv)) 13263 return; 13264 13265 dev_priv->modeset_restore_state = NULL; 13266 if (state) 13267 state->acquire_ctx = &ctx; 13268 13269 drm_modeset_acquire_init(&ctx, 0); 13270 13271 while (1) { 13272 ret = drm_modeset_lock_all_ctx(dev, &ctx); 13273 if (ret != -EDEADLK) 13274 break; 13275 13276 drm_modeset_backoff(&ctx); 13277 } 13278 13279 if (!ret) 13280 ret = __intel_display_resume(dev, state, &ctx); 13281 13282 intel_enable_ipc(dev_priv); 13283 drm_modeset_drop_locks(&ctx); 13284 drm_modeset_acquire_fini(&ctx); 13285 13286 if (ret) 13287 drm_err(&dev_priv->drm, 13288 "Restoring old state failed with %i\n", ret); 13289 if (state) 13290 drm_atomic_state_put(state); 13291 } 13292 13293 static void intel_hpd_poll_fini(struct drm_i915_private *i915) 13294 { 13295 struct intel_connector *connector; 13296 struct drm_connector_list_iter conn_iter; 13297 13298 /* Kill all the work that may have been queued by hpd. */ 13299 drm_connector_list_iter_begin(&i915->drm, &conn_iter); 13300 for_each_intel_connector_iter(connector, &conn_iter) { 13301 #ifdef __linux__ 13302 if (connector->modeset_retry_work.func) 13303 #else 13304 if (connector->modeset_retry_work.task.t_func) 13305 #endif 13306 cancel_work_sync(&connector->modeset_retry_work); 13307 if (connector->hdcp.shim) { 13308 cancel_delayed_work_sync(&connector->hdcp.check_work); 13309 cancel_work_sync(&connector->hdcp.prop_work); 13310 } 13311 } 13312 drm_connector_list_iter_end(&conn_iter); 13313 } 13314 13315 /* part #1: call before irq uninstall */ 13316 void intel_modeset_driver_remove(struct drm_i915_private *i915) 13317 { 13318 if (!HAS_DISPLAY(i915)) 13319 return; 13320 13321 flush_workqueue(i915->flip_wq); 13322 flush_workqueue(i915->modeset_wq); 13323 13324 flush_work(&i915->atomic_helper.free_work); 13325 drm_WARN_ON(&i915->drm, !llist_empty(&i915->atomic_helper.free_list)); 13326 } 13327 13328 /* part #2: call after irq uninstall */ 13329 void intel_modeset_driver_remove_noirq(struct drm_i915_private *i915) 13330 { 13331 if (!HAS_DISPLAY(i915)) 13332 return; 13333 13334 /* 13335 * Due to the hpd irq storm handling the hotplug work can re-arm the 13336 * poll handlers. Hence disable polling after hpd handling is shut down. 13337 */ 13338 intel_hpd_poll_fini(i915); 13339 13340 /* 13341 * MST topology needs to be suspended so we don't have any calls to 13342 * fbdev after it's finalized. MST will be destroyed later as part of 13343 * drm_mode_config_cleanup() 13344 */ 13345 intel_dp_mst_suspend(i915); 13346 13347 /* poll work can call into fbdev, hence clean that up afterwards */ 13348 intel_fbdev_fini(i915); 13349 13350 intel_unregister_dsm_handler(); 13351 13352 intel_fbc_global_disable(i915); 13353 13354 /* flush any delayed tasks or pending work */ 13355 flush_scheduled_work(); 13356 13357 intel_hdcp_component_fini(i915); 13358 13359 intel_mode_config_cleanup(i915); 13360 13361 intel_overlay_cleanup(i915); 13362 13363 intel_gmbus_teardown(i915); 13364 13365 destroy_workqueue(i915->flip_wq); 13366 destroy_workqueue(i915->modeset_wq); 13367 13368 intel_fbc_cleanup_cfb(i915); 13369 } 13370 13371 /* part #3: call after gem init */ 13372 void intel_modeset_driver_remove_nogem(struct drm_i915_private *i915) 13373 { 13374 intel_dmc_ucode_fini(i915); 13375 13376 intel_power_domains_driver_remove(i915); 13377 13378 intel_vga_unregister(i915); 13379 13380 intel_bios_driver_remove(i915); 13381 } 13382 13383 void intel_display_driver_register(struct drm_i915_private *i915) 13384 { 13385 if (!HAS_DISPLAY(i915)) 13386 return; 13387 13388 intel_display_debugfs_register(i915); 13389 13390 /* Must be done after probing outputs */ 13391 intel_opregion_register(i915); 13392 acpi_video_register(); 13393 13394 intel_audio_init(i915); 13395 13396 /* 13397 * Some ports require correctly set-up hpd registers for 13398 * detection to work properly (leading to ghost connected 13399 * connector status), e.g. VGA on gm45. Hence we can only set 13400 * up the initial fbdev config after hpd irqs are fully 13401 * enabled. We do it last so that the async config cannot run 13402 * before the connectors are registered. 13403 */ 13404 intel_fbdev_initial_config_async(&i915->drm); 13405 13406 /* 13407 * We need to coordinate the hotplugs with the asynchronous 13408 * fbdev configuration, for which we use the 13409 * fbdev->async_cookie. 13410 */ 13411 drm_kms_helper_poll_init(&i915->drm); 13412 } 13413 13414 void intel_display_driver_unregister(struct drm_i915_private *i915) 13415 { 13416 if (!HAS_DISPLAY(i915)) 13417 return; 13418 13419 intel_fbdev_unregister(i915); 13420 intel_audio_deinit(i915); 13421 13422 /* 13423 * After flushing the fbdev (incl. a late async config which 13424 * will have delayed queuing of a hotplug event), then flush 13425 * the hotplug events. 13426 */ 13427 drm_kms_helper_poll_fini(&i915->drm); 13428 drm_atomic_helper_shutdown(&i915->drm); 13429 13430 acpi_video_unregister(); 13431 intel_opregion_unregister(i915); 13432 } 13433