1 /* 2 * Copyright © 2006-2007 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 21 * DEALINGS IN THE SOFTWARE. 22 * 23 * Authors: 24 * Eric Anholt <eric@anholt.net> 25 */ 26 27 #include <linux/i2c.h> 28 #include <linux/input.h> 29 #include <linux/intel-iommu.h> 30 #include <linux/kernel.h> 31 #include <linux/module.h> 32 #include <linux/dma-resv.h> 33 #include <linux/slab.h> 34 35 #include <drm/drm_atomic.h> 36 #include <drm/drm_atomic_helper.h> 37 #include <drm/drm_atomic_uapi.h> 38 #include <drm/drm_damage_helper.h> 39 #include <drm/drm_dp_helper.h> 40 #include <drm/drm_edid.h> 41 #include <drm/drm_fourcc.h> 42 #include <drm/drm_plane_helper.h> 43 #include <drm/drm_probe_helper.h> 44 #include <drm/drm_rect.h> 45 46 #include "display/intel_crt.h" 47 #include "display/intel_ddi.h" 48 #include "display/intel_dp.h" 49 #include "display/intel_dp_mst.h" 50 #include "display/intel_dpll_mgr.h" 51 #include "display/intel_dsi.h" 52 #include "display/intel_dvo.h" 53 #include "display/intel_gmbus.h" 54 #include "display/intel_hdmi.h" 55 #include "display/intel_lvds.h" 56 #include "display/intel_sdvo.h" 57 #include "display/intel_tv.h" 58 #include "display/intel_vdsc.h" 59 60 #include "gt/intel_rps.h" 61 62 #include "i915_drv.h" 63 #include "i915_trace.h" 64 #include "intel_acpi.h" 65 #include "intel_atomic.h" 66 #include "intel_atomic_plane.h" 67 #include "intel_bw.h" 68 #include "intel_cdclk.h" 69 #include "intel_color.h" 70 #include "intel_csr.h" 71 #include "intel_display_types.h" 72 #include "intel_dp_link_training.h" 73 #include "intel_fbc.h" 74 #include "intel_fbdev.h" 75 #include "intel_fifo_underrun.h" 76 #include "intel_frontbuffer.h" 77 #include "intel_hdcp.h" 78 #include "intel_hotplug.h" 79 #include "intel_overlay.h" 80 #include "intel_pipe_crc.h" 81 #include "intel_pm.h" 82 #include "intel_psr.h" 83 #include "intel_quirks.h" 84 #include "intel_sideband.h" 85 #include "intel_sprite.h" 86 #include "intel_tc.h" 87 #include "intel_vga.h" 88 89 /* Primary plane formats for gen <= 3 */ 90 static const u32 i8xx_primary_formats[] = { 91 DRM_FORMAT_C8, 92 DRM_FORMAT_XRGB1555, 93 DRM_FORMAT_RGB565, 94 DRM_FORMAT_XRGB8888, 95 }; 96 97 /* Primary plane formats for ivb (no fp16 due to hw issue) */ 98 static const u32 ivb_primary_formats[] = { 99 DRM_FORMAT_C8, 100 DRM_FORMAT_RGB565, 101 DRM_FORMAT_XRGB8888, 102 DRM_FORMAT_XBGR8888, 103 DRM_FORMAT_XRGB2101010, 104 DRM_FORMAT_XBGR2101010, 105 }; 106 107 /* Primary plane formats for gen >= 4, except ivb */ 108 static const u32 i965_primary_formats[] = { 109 DRM_FORMAT_C8, 110 DRM_FORMAT_RGB565, 111 DRM_FORMAT_XRGB8888, 112 DRM_FORMAT_XBGR8888, 113 DRM_FORMAT_XRGB2101010, 114 DRM_FORMAT_XBGR2101010, 115 DRM_FORMAT_XBGR16161616F, 116 }; 117 118 /* Primary plane formats for vlv/chv */ 119 static const u32 vlv_primary_formats[] = { 120 DRM_FORMAT_C8, 121 DRM_FORMAT_RGB565, 122 DRM_FORMAT_XRGB8888, 123 DRM_FORMAT_XBGR8888, 124 DRM_FORMAT_ARGB8888, 125 DRM_FORMAT_ABGR8888, 126 DRM_FORMAT_XRGB2101010, 127 DRM_FORMAT_XBGR2101010, 128 DRM_FORMAT_ARGB2101010, 129 DRM_FORMAT_ABGR2101010, 130 DRM_FORMAT_XBGR16161616F, 131 }; 132 133 static const u64 i9xx_format_modifiers[] = { 134 I915_FORMAT_MOD_X_TILED, 135 DRM_FORMAT_MOD_LINEAR, 136 DRM_FORMAT_MOD_INVALID 137 }; 138 139 /* Cursor formats */ 140 static const u32 intel_cursor_formats[] = { 141 DRM_FORMAT_ARGB8888, 142 }; 143 144 static const u64 cursor_format_modifiers[] = { 145 DRM_FORMAT_MOD_LINEAR, 146 DRM_FORMAT_MOD_INVALID 147 }; 148 149 static void i9xx_crtc_clock_get(struct intel_crtc *crtc, 150 struct intel_crtc_state *pipe_config); 151 static void ilk_pch_clock_get(struct intel_crtc *crtc, 152 struct intel_crtc_state *pipe_config); 153 154 static int intel_framebuffer_init(struct intel_framebuffer *ifb, 155 struct drm_i915_gem_object *obj, 156 struct drm_mode_fb_cmd2 *mode_cmd); 157 static void intel_set_pipe_timings(const struct intel_crtc_state *crtc_state); 158 static void intel_set_pipe_src_size(const struct intel_crtc_state *crtc_state); 159 static void intel_cpu_transcoder_set_m_n(const struct intel_crtc_state *crtc_state, 160 const struct intel_link_m_n *m_n, 161 const struct intel_link_m_n *m2_n2); 162 static void i9xx_set_pipeconf(const struct intel_crtc_state *crtc_state); 163 static void ilk_set_pipeconf(const struct intel_crtc_state *crtc_state); 164 static void hsw_set_pipeconf(const struct intel_crtc_state *crtc_state); 165 static void bdw_set_pipemisc(const struct intel_crtc_state *crtc_state); 166 static void vlv_prepare_pll(struct intel_crtc *crtc, 167 const struct intel_crtc_state *pipe_config); 168 static void chv_prepare_pll(struct intel_crtc *crtc, 169 const struct intel_crtc_state *pipe_config); 170 static void skl_pfit_enable(const struct intel_crtc_state *crtc_state); 171 static void ilk_pfit_enable(const struct intel_crtc_state *crtc_state); 172 static void intel_modeset_setup_hw_state(struct drm_device *dev, 173 struct drm_modeset_acquire_ctx *ctx); 174 static struct intel_crtc_state *intel_crtc_state_alloc(struct intel_crtc *crtc); 175 176 struct intel_limit { 177 struct { 178 int min, max; 179 } dot, vco, n, m, m1, m2, p, p1; 180 181 struct { 182 int dot_limit; 183 int p2_slow, p2_fast; 184 } p2; 185 }; 186 187 /* returns HPLL frequency in kHz */ 188 int vlv_get_hpll_vco(struct drm_i915_private *dev_priv) 189 { 190 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 }; 191 192 /* Obtain SKU information */ 193 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) & 194 CCK_FUSE_HPLL_FREQ_MASK; 195 196 return vco_freq[hpll_freq] * 1000; 197 } 198 199 int vlv_get_cck_clock(struct drm_i915_private *dev_priv, 200 const char *name, u32 reg, int ref_freq) 201 { 202 u32 val; 203 int divider; 204 205 val = vlv_cck_read(dev_priv, reg); 206 divider = val & CCK_FREQUENCY_VALUES; 207 208 drm_WARN(&dev_priv->drm, (val & CCK_FREQUENCY_STATUS) != 209 (divider << CCK_FREQUENCY_STATUS_SHIFT), 210 "%s change in progress\n", name); 211 212 return DIV_ROUND_CLOSEST(ref_freq << 1, divider + 1); 213 } 214 215 int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv, 216 const char *name, u32 reg) 217 { 218 int hpll; 219 220 vlv_cck_get(dev_priv); 221 222 if (dev_priv->hpll_freq == 0) 223 dev_priv->hpll_freq = vlv_get_hpll_vco(dev_priv); 224 225 hpll = vlv_get_cck_clock(dev_priv, name, reg, dev_priv->hpll_freq); 226 227 vlv_cck_put(dev_priv); 228 229 return hpll; 230 } 231 232 static void intel_update_czclk(struct drm_i915_private *dev_priv) 233 { 234 if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))) 235 return; 236 237 dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk", 238 CCK_CZ_CLOCK_CONTROL); 239 240 drm_dbg(&dev_priv->drm, "CZ clock rate: %d kHz\n", 241 dev_priv->czclk_freq); 242 } 243 244 /* units of 100MHz */ 245 static u32 intel_fdi_link_freq(struct drm_i915_private *dev_priv, 246 const struct intel_crtc_state *pipe_config) 247 { 248 if (HAS_DDI(dev_priv)) 249 return pipe_config->port_clock; /* SPLL */ 250 else 251 return dev_priv->fdi_pll_freq; 252 } 253 254 static const struct intel_limit intel_limits_i8xx_dac = { 255 .dot = { .min = 25000, .max = 350000 }, 256 .vco = { .min = 908000, .max = 1512000 }, 257 .n = { .min = 2, .max = 16 }, 258 .m = { .min = 96, .max = 140 }, 259 .m1 = { .min = 18, .max = 26 }, 260 .m2 = { .min = 6, .max = 16 }, 261 .p = { .min = 4, .max = 128 }, 262 .p1 = { .min = 2, .max = 33 }, 263 .p2 = { .dot_limit = 165000, 264 .p2_slow = 4, .p2_fast = 2 }, 265 }; 266 267 static const struct intel_limit intel_limits_i8xx_dvo = { 268 .dot = { .min = 25000, .max = 350000 }, 269 .vco = { .min = 908000, .max = 1512000 }, 270 .n = { .min = 2, .max = 16 }, 271 .m = { .min = 96, .max = 140 }, 272 .m1 = { .min = 18, .max = 26 }, 273 .m2 = { .min = 6, .max = 16 }, 274 .p = { .min = 4, .max = 128 }, 275 .p1 = { .min = 2, .max = 33 }, 276 .p2 = { .dot_limit = 165000, 277 .p2_slow = 4, .p2_fast = 4 }, 278 }; 279 280 static const struct intel_limit intel_limits_i8xx_lvds = { 281 .dot = { .min = 25000, .max = 350000 }, 282 .vco = { .min = 908000, .max = 1512000 }, 283 .n = { .min = 2, .max = 16 }, 284 .m = { .min = 96, .max = 140 }, 285 .m1 = { .min = 18, .max = 26 }, 286 .m2 = { .min = 6, .max = 16 }, 287 .p = { .min = 4, .max = 128 }, 288 .p1 = { .min = 1, .max = 6 }, 289 .p2 = { .dot_limit = 165000, 290 .p2_slow = 14, .p2_fast = 7 }, 291 }; 292 293 static const struct intel_limit intel_limits_i9xx_sdvo = { 294 .dot = { .min = 20000, .max = 400000 }, 295 .vco = { .min = 1400000, .max = 2800000 }, 296 .n = { .min = 1, .max = 6 }, 297 .m = { .min = 70, .max = 120 }, 298 .m1 = { .min = 8, .max = 18 }, 299 .m2 = { .min = 3, .max = 7 }, 300 .p = { .min = 5, .max = 80 }, 301 .p1 = { .min = 1, .max = 8 }, 302 .p2 = { .dot_limit = 200000, 303 .p2_slow = 10, .p2_fast = 5 }, 304 }; 305 306 static const struct intel_limit intel_limits_i9xx_lvds = { 307 .dot = { .min = 20000, .max = 400000 }, 308 .vco = { .min = 1400000, .max = 2800000 }, 309 .n = { .min = 1, .max = 6 }, 310 .m = { .min = 70, .max = 120 }, 311 .m1 = { .min = 8, .max = 18 }, 312 .m2 = { .min = 3, .max = 7 }, 313 .p = { .min = 7, .max = 98 }, 314 .p1 = { .min = 1, .max = 8 }, 315 .p2 = { .dot_limit = 112000, 316 .p2_slow = 14, .p2_fast = 7 }, 317 }; 318 319 320 static const struct intel_limit intel_limits_g4x_sdvo = { 321 .dot = { .min = 25000, .max = 270000 }, 322 .vco = { .min = 1750000, .max = 3500000}, 323 .n = { .min = 1, .max = 4 }, 324 .m = { .min = 104, .max = 138 }, 325 .m1 = { .min = 17, .max = 23 }, 326 .m2 = { .min = 5, .max = 11 }, 327 .p = { .min = 10, .max = 30 }, 328 .p1 = { .min = 1, .max = 3}, 329 .p2 = { .dot_limit = 270000, 330 .p2_slow = 10, 331 .p2_fast = 10 332 }, 333 }; 334 335 static const struct intel_limit intel_limits_g4x_hdmi = { 336 .dot = { .min = 22000, .max = 400000 }, 337 .vco = { .min = 1750000, .max = 3500000}, 338 .n = { .min = 1, .max = 4 }, 339 .m = { .min = 104, .max = 138 }, 340 .m1 = { .min = 16, .max = 23 }, 341 .m2 = { .min = 5, .max = 11 }, 342 .p = { .min = 5, .max = 80 }, 343 .p1 = { .min = 1, .max = 8}, 344 .p2 = { .dot_limit = 165000, 345 .p2_slow = 10, .p2_fast = 5 }, 346 }; 347 348 static const struct intel_limit intel_limits_g4x_single_channel_lvds = { 349 .dot = { .min = 20000, .max = 115000 }, 350 .vco = { .min = 1750000, .max = 3500000 }, 351 .n = { .min = 1, .max = 3 }, 352 .m = { .min = 104, .max = 138 }, 353 .m1 = { .min = 17, .max = 23 }, 354 .m2 = { .min = 5, .max = 11 }, 355 .p = { .min = 28, .max = 112 }, 356 .p1 = { .min = 2, .max = 8 }, 357 .p2 = { .dot_limit = 0, 358 .p2_slow = 14, .p2_fast = 14 359 }, 360 }; 361 362 static const struct intel_limit intel_limits_g4x_dual_channel_lvds = { 363 .dot = { .min = 80000, .max = 224000 }, 364 .vco = { .min = 1750000, .max = 3500000 }, 365 .n = { .min = 1, .max = 3 }, 366 .m = { .min = 104, .max = 138 }, 367 .m1 = { .min = 17, .max = 23 }, 368 .m2 = { .min = 5, .max = 11 }, 369 .p = { .min = 14, .max = 42 }, 370 .p1 = { .min = 2, .max = 6 }, 371 .p2 = { .dot_limit = 0, 372 .p2_slow = 7, .p2_fast = 7 373 }, 374 }; 375 376 static const struct intel_limit pnv_limits_sdvo = { 377 .dot = { .min = 20000, .max = 400000}, 378 .vco = { .min = 1700000, .max = 3500000 }, 379 /* Pineview's Ncounter is a ring counter */ 380 .n = { .min = 3, .max = 6 }, 381 .m = { .min = 2, .max = 256 }, 382 /* Pineview only has one combined m divider, which we treat as m2. */ 383 .m1 = { .min = 0, .max = 0 }, 384 .m2 = { .min = 0, .max = 254 }, 385 .p = { .min = 5, .max = 80 }, 386 .p1 = { .min = 1, .max = 8 }, 387 .p2 = { .dot_limit = 200000, 388 .p2_slow = 10, .p2_fast = 5 }, 389 }; 390 391 static const struct intel_limit pnv_limits_lvds = { 392 .dot = { .min = 20000, .max = 400000 }, 393 .vco = { .min = 1700000, .max = 3500000 }, 394 .n = { .min = 3, .max = 6 }, 395 .m = { .min = 2, .max = 256 }, 396 .m1 = { .min = 0, .max = 0 }, 397 .m2 = { .min = 0, .max = 254 }, 398 .p = { .min = 7, .max = 112 }, 399 .p1 = { .min = 1, .max = 8 }, 400 .p2 = { .dot_limit = 112000, 401 .p2_slow = 14, .p2_fast = 14 }, 402 }; 403 404 /* Ironlake / Sandybridge 405 * 406 * We calculate clock using (register_value + 2) for N/M1/M2, so here 407 * the range value for them is (actual_value - 2). 408 */ 409 static const struct intel_limit ilk_limits_dac = { 410 .dot = { .min = 25000, .max = 350000 }, 411 .vco = { .min = 1760000, .max = 3510000 }, 412 .n = { .min = 1, .max = 5 }, 413 .m = { .min = 79, .max = 127 }, 414 .m1 = { .min = 12, .max = 22 }, 415 .m2 = { .min = 5, .max = 9 }, 416 .p = { .min = 5, .max = 80 }, 417 .p1 = { .min = 1, .max = 8 }, 418 .p2 = { .dot_limit = 225000, 419 .p2_slow = 10, .p2_fast = 5 }, 420 }; 421 422 static const struct intel_limit ilk_limits_single_lvds = { 423 .dot = { .min = 25000, .max = 350000 }, 424 .vco = { .min = 1760000, .max = 3510000 }, 425 .n = { .min = 1, .max = 3 }, 426 .m = { .min = 79, .max = 118 }, 427 .m1 = { .min = 12, .max = 22 }, 428 .m2 = { .min = 5, .max = 9 }, 429 .p = { .min = 28, .max = 112 }, 430 .p1 = { .min = 2, .max = 8 }, 431 .p2 = { .dot_limit = 225000, 432 .p2_slow = 14, .p2_fast = 14 }, 433 }; 434 435 static const struct intel_limit ilk_limits_dual_lvds = { 436 .dot = { .min = 25000, .max = 350000 }, 437 .vco = { .min = 1760000, .max = 3510000 }, 438 .n = { .min = 1, .max = 3 }, 439 .m = { .min = 79, .max = 127 }, 440 .m1 = { .min = 12, .max = 22 }, 441 .m2 = { .min = 5, .max = 9 }, 442 .p = { .min = 14, .max = 56 }, 443 .p1 = { .min = 2, .max = 8 }, 444 .p2 = { .dot_limit = 225000, 445 .p2_slow = 7, .p2_fast = 7 }, 446 }; 447 448 /* LVDS 100mhz refclk limits. */ 449 static const struct intel_limit ilk_limits_single_lvds_100m = { 450 .dot = { .min = 25000, .max = 350000 }, 451 .vco = { .min = 1760000, .max = 3510000 }, 452 .n = { .min = 1, .max = 2 }, 453 .m = { .min = 79, .max = 126 }, 454 .m1 = { .min = 12, .max = 22 }, 455 .m2 = { .min = 5, .max = 9 }, 456 .p = { .min = 28, .max = 112 }, 457 .p1 = { .min = 2, .max = 8 }, 458 .p2 = { .dot_limit = 225000, 459 .p2_slow = 14, .p2_fast = 14 }, 460 }; 461 462 static const struct intel_limit ilk_limits_dual_lvds_100m = { 463 .dot = { .min = 25000, .max = 350000 }, 464 .vco = { .min = 1760000, .max = 3510000 }, 465 .n = { .min = 1, .max = 3 }, 466 .m = { .min = 79, .max = 126 }, 467 .m1 = { .min = 12, .max = 22 }, 468 .m2 = { .min = 5, .max = 9 }, 469 .p = { .min = 14, .max = 42 }, 470 .p1 = { .min = 2, .max = 6 }, 471 .p2 = { .dot_limit = 225000, 472 .p2_slow = 7, .p2_fast = 7 }, 473 }; 474 475 static const struct intel_limit intel_limits_vlv = { 476 /* 477 * These are the data rate limits (measured in fast clocks) 478 * since those are the strictest limits we have. The fast 479 * clock and actual rate limits are more relaxed, so checking 480 * them would make no difference. 481 */ 482 .dot = { .min = 25000 * 5, .max = 270000 * 5 }, 483 .vco = { .min = 4000000, .max = 6000000 }, 484 .n = { .min = 1, .max = 7 }, 485 .m1 = { .min = 2, .max = 3 }, 486 .m2 = { .min = 11, .max = 156 }, 487 .p1 = { .min = 2, .max = 3 }, 488 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */ 489 }; 490 491 static const struct intel_limit intel_limits_chv = { 492 /* 493 * These are the data rate limits (measured in fast clocks) 494 * since those are the strictest limits we have. The fast 495 * clock and actual rate limits are more relaxed, so checking 496 * them would make no difference. 497 */ 498 .dot = { .min = 25000 * 5, .max = 540000 * 5}, 499 .vco = { .min = 4800000, .max = 6480000 }, 500 .n = { .min = 1, .max = 1 }, 501 .m1 = { .min = 2, .max = 2 }, 502 .m2 = { .min = 24 << 22, .max = 175 << 22 }, 503 .p1 = { .min = 2, .max = 4 }, 504 .p2 = { .p2_slow = 1, .p2_fast = 14 }, 505 }; 506 507 static const struct intel_limit intel_limits_bxt = { 508 /* FIXME: find real dot limits */ 509 .dot = { .min = 0, .max = INT_MAX }, 510 .vco = { .min = 4800000, .max = 6700000 }, 511 .n = { .min = 1, .max = 1 }, 512 .m1 = { .min = 2, .max = 2 }, 513 /* FIXME: find real m2 limits */ 514 .m2 = { .min = 2 << 22, .max = 255 << 22 }, 515 .p1 = { .min = 2, .max = 4 }, 516 .p2 = { .p2_slow = 1, .p2_fast = 20 }, 517 }; 518 519 /* WA Display #0827: Gen9:all */ 520 static void 521 skl_wa_827(struct drm_i915_private *dev_priv, enum pipe pipe, bool enable) 522 { 523 if (enable) 524 intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe), 525 intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) | DUPS1_GATING_DIS | DUPS2_GATING_DIS); 526 else 527 intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe), 528 intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) & ~(DUPS1_GATING_DIS | DUPS2_GATING_DIS)); 529 } 530 531 /* Wa_2006604312:icl,ehl */ 532 static void 533 icl_wa_scalerclkgating(struct drm_i915_private *dev_priv, enum pipe pipe, 534 bool enable) 535 { 536 if (enable) 537 intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe), 538 intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) | DPFR_GATING_DIS); 539 else 540 intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe), 541 intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) & ~DPFR_GATING_DIS); 542 } 543 544 static bool 545 needs_modeset(const struct intel_crtc_state *state) 546 { 547 return drm_atomic_crtc_needs_modeset(&state->uapi); 548 } 549 550 static bool 551 is_trans_port_sync_slave(const struct intel_crtc_state *crtc_state) 552 { 553 return crtc_state->master_transcoder != INVALID_TRANSCODER; 554 } 555 556 static bool 557 is_trans_port_sync_master(const struct intel_crtc_state *crtc_state) 558 { 559 return crtc_state->sync_mode_slaves_mask != 0; 560 } 561 562 bool 563 is_trans_port_sync_mode(const struct intel_crtc_state *crtc_state) 564 { 565 return is_trans_port_sync_master(crtc_state) || 566 is_trans_port_sync_slave(crtc_state); 567 } 568 569 /* 570 * Platform specific helpers to calculate the port PLL loopback- (clock.m), 571 * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast 572 * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic. 573 * The helpers' return value is the rate of the clock that is fed to the 574 * display engine's pipe which can be the above fast dot clock rate or a 575 * divided-down version of it. 576 */ 577 /* m1 is reserved as 0 in Pineview, n is a ring counter */ 578 static int pnv_calc_dpll_params(int refclk, struct dpll *clock) 579 { 580 clock->m = clock->m2 + 2; 581 clock->p = clock->p1 * clock->p2; 582 if (WARN_ON(clock->n == 0 || clock->p == 0)) 583 return 0; 584 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n); 585 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p); 586 587 return clock->dot; 588 } 589 590 static u32 i9xx_dpll_compute_m(struct dpll *dpll) 591 { 592 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2); 593 } 594 595 static int i9xx_calc_dpll_params(int refclk, struct dpll *clock) 596 { 597 clock->m = i9xx_dpll_compute_m(clock); 598 clock->p = clock->p1 * clock->p2; 599 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0)) 600 return 0; 601 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2); 602 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p); 603 604 return clock->dot; 605 } 606 607 static int vlv_calc_dpll_params(int refclk, struct dpll *clock) 608 { 609 clock->m = clock->m1 * clock->m2; 610 clock->p = clock->p1 * clock->p2; 611 if (WARN_ON(clock->n == 0 || clock->p == 0)) 612 return 0; 613 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n); 614 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p); 615 616 return clock->dot / 5; 617 } 618 619 int chv_calc_dpll_params(int refclk, struct dpll *clock) 620 { 621 clock->m = clock->m1 * clock->m2; 622 clock->p = clock->p1 * clock->p2; 623 if (WARN_ON(clock->n == 0 || clock->p == 0)) 624 return 0; 625 clock->vco = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(refclk, clock->m), 626 clock->n << 22); 627 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p); 628 629 return clock->dot / 5; 630 } 631 632 /* 633 * Returns whether the given set of divisors are valid for a given refclk with 634 * the given connectors. 635 */ 636 static bool intel_pll_is_valid(struct drm_i915_private *dev_priv, 637 const struct intel_limit *limit, 638 const struct dpll *clock) 639 { 640 if (clock->n < limit->n.min || limit->n.max < clock->n) 641 return false; 642 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1) 643 return false; 644 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2) 645 return false; 646 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1) 647 return false; 648 649 if (!IS_PINEVIEW(dev_priv) && !IS_VALLEYVIEW(dev_priv) && 650 !IS_CHERRYVIEW(dev_priv) && !IS_GEN9_LP(dev_priv)) 651 if (clock->m1 <= clock->m2) 652 return false; 653 654 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) && 655 !IS_GEN9_LP(dev_priv)) { 656 if (clock->p < limit->p.min || limit->p.max < clock->p) 657 return false; 658 if (clock->m < limit->m.min || limit->m.max < clock->m) 659 return false; 660 } 661 662 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco) 663 return false; 664 /* XXX: We may need to be checking "Dot clock" depending on the multiplier, 665 * connector, etc., rather than just a single range. 666 */ 667 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot) 668 return false; 669 670 return true; 671 } 672 673 static int 674 i9xx_select_p2_div(const struct intel_limit *limit, 675 const struct intel_crtc_state *crtc_state, 676 int target) 677 { 678 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 679 680 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 681 /* 682 * For LVDS just rely on its current settings for dual-channel. 683 * We haven't figured out how to reliably set up different 684 * single/dual channel state, if we even can. 685 */ 686 if (intel_is_dual_link_lvds(dev_priv)) 687 return limit->p2.p2_fast; 688 else 689 return limit->p2.p2_slow; 690 } else { 691 if (target < limit->p2.dot_limit) 692 return limit->p2.p2_slow; 693 else 694 return limit->p2.p2_fast; 695 } 696 } 697 698 /* 699 * Returns a set of divisors for the desired target clock with the given 700 * refclk, or FALSE. The returned values represent the clock equation: 701 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2. 702 * 703 * Target and reference clocks are specified in kHz. 704 * 705 * If match_clock is provided, then best_clock P divider must match the P 706 * divider from @match_clock used for LVDS downclocking. 707 */ 708 static bool 709 i9xx_find_best_dpll(const struct intel_limit *limit, 710 struct intel_crtc_state *crtc_state, 711 int target, int refclk, struct dpll *match_clock, 712 struct dpll *best_clock) 713 { 714 struct drm_device *dev = crtc_state->uapi.crtc->dev; 715 struct dpll clock; 716 int err = target; 717 718 memset(best_clock, 0, sizeof(*best_clock)); 719 720 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target); 721 722 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; 723 clock.m1++) { 724 for (clock.m2 = limit->m2.min; 725 clock.m2 <= limit->m2.max; clock.m2++) { 726 if (clock.m2 >= clock.m1) 727 break; 728 for (clock.n = limit->n.min; 729 clock.n <= limit->n.max; clock.n++) { 730 for (clock.p1 = limit->p1.min; 731 clock.p1 <= limit->p1.max; clock.p1++) { 732 int this_err; 733 734 i9xx_calc_dpll_params(refclk, &clock); 735 if (!intel_pll_is_valid(to_i915(dev), 736 limit, 737 &clock)) 738 continue; 739 if (match_clock && 740 clock.p != match_clock->p) 741 continue; 742 743 this_err = abs(clock.dot - target); 744 if (this_err < err) { 745 *best_clock = clock; 746 err = this_err; 747 } 748 } 749 } 750 } 751 } 752 753 return (err != target); 754 } 755 756 /* 757 * Returns a set of divisors for the desired target clock with the given 758 * refclk, or FALSE. The returned values represent the clock equation: 759 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2. 760 * 761 * Target and reference clocks are specified in kHz. 762 * 763 * If match_clock is provided, then best_clock P divider must match the P 764 * divider from @match_clock used for LVDS downclocking. 765 */ 766 static bool 767 pnv_find_best_dpll(const struct intel_limit *limit, 768 struct intel_crtc_state *crtc_state, 769 int target, int refclk, struct dpll *match_clock, 770 struct dpll *best_clock) 771 { 772 struct drm_device *dev = crtc_state->uapi.crtc->dev; 773 struct dpll clock; 774 int err = target; 775 776 memset(best_clock, 0, sizeof(*best_clock)); 777 778 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target); 779 780 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; 781 clock.m1++) { 782 for (clock.m2 = limit->m2.min; 783 clock.m2 <= limit->m2.max; clock.m2++) { 784 for (clock.n = limit->n.min; 785 clock.n <= limit->n.max; clock.n++) { 786 for (clock.p1 = limit->p1.min; 787 clock.p1 <= limit->p1.max; clock.p1++) { 788 int this_err; 789 790 pnv_calc_dpll_params(refclk, &clock); 791 if (!intel_pll_is_valid(to_i915(dev), 792 limit, 793 &clock)) 794 continue; 795 if (match_clock && 796 clock.p != match_clock->p) 797 continue; 798 799 this_err = abs(clock.dot - target); 800 if (this_err < err) { 801 *best_clock = clock; 802 err = this_err; 803 } 804 } 805 } 806 } 807 } 808 809 return (err != target); 810 } 811 812 /* 813 * Returns a set of divisors for the desired target clock with the given 814 * refclk, or FALSE. The returned values represent the clock equation: 815 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2. 816 * 817 * Target and reference clocks are specified in kHz. 818 * 819 * If match_clock is provided, then best_clock P divider must match the P 820 * divider from @match_clock used for LVDS downclocking. 821 */ 822 static bool 823 g4x_find_best_dpll(const struct intel_limit *limit, 824 struct intel_crtc_state *crtc_state, 825 int target, int refclk, struct dpll *match_clock, 826 struct dpll *best_clock) 827 { 828 struct drm_device *dev = crtc_state->uapi.crtc->dev; 829 struct dpll clock; 830 int max_n; 831 bool found = false; 832 /* approximately equals target * 0.00585 */ 833 int err_most = (target >> 8) + (target >> 9); 834 835 memset(best_clock, 0, sizeof(*best_clock)); 836 837 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target); 838 839 max_n = limit->n.max; 840 /* based on hardware requirement, prefer smaller n to precision */ 841 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) { 842 /* based on hardware requirement, prefere larger m1,m2 */ 843 for (clock.m1 = limit->m1.max; 844 clock.m1 >= limit->m1.min; clock.m1--) { 845 for (clock.m2 = limit->m2.max; 846 clock.m2 >= limit->m2.min; clock.m2--) { 847 for (clock.p1 = limit->p1.max; 848 clock.p1 >= limit->p1.min; clock.p1--) { 849 int this_err; 850 851 i9xx_calc_dpll_params(refclk, &clock); 852 if (!intel_pll_is_valid(to_i915(dev), 853 limit, 854 &clock)) 855 continue; 856 857 this_err = abs(clock.dot - target); 858 if (this_err < err_most) { 859 *best_clock = clock; 860 err_most = this_err; 861 max_n = clock.n; 862 found = true; 863 } 864 } 865 } 866 } 867 } 868 return found; 869 } 870 871 /* 872 * Check if the calculated PLL configuration is more optimal compared to the 873 * best configuration and error found so far. Return the calculated error. 874 */ 875 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq, 876 const struct dpll *calculated_clock, 877 const struct dpll *best_clock, 878 unsigned int best_error_ppm, 879 unsigned int *error_ppm) 880 { 881 /* 882 * For CHV ignore the error and consider only the P value. 883 * Prefer a bigger P value based on HW requirements. 884 */ 885 if (IS_CHERRYVIEW(to_i915(dev))) { 886 *error_ppm = 0; 887 888 return calculated_clock->p > best_clock->p; 889 } 890 891 if (drm_WARN_ON_ONCE(dev, !target_freq)) 892 return false; 893 894 *error_ppm = div_u64(1000000ULL * 895 abs(target_freq - calculated_clock->dot), 896 target_freq); 897 /* 898 * Prefer a better P value over a better (smaller) error if the error 899 * is small. Ensure this preference for future configurations too by 900 * setting the error to 0. 901 */ 902 if (*error_ppm < 100 && calculated_clock->p > best_clock->p) { 903 *error_ppm = 0; 904 905 return true; 906 } 907 908 return *error_ppm + 10 < best_error_ppm; 909 } 910 911 /* 912 * Returns a set of divisors for the desired target clock with the given 913 * refclk, or FALSE. The returned values represent the clock equation: 914 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2. 915 */ 916 static bool 917 vlv_find_best_dpll(const struct intel_limit *limit, 918 struct intel_crtc_state *crtc_state, 919 int target, int refclk, struct dpll *match_clock, 920 struct dpll *best_clock) 921 { 922 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 923 struct drm_device *dev = crtc->base.dev; 924 struct dpll clock; 925 unsigned int bestppm = 1000000; 926 /* min update 19.2 MHz */ 927 int max_n = min(limit->n.max, refclk / 19200); 928 bool found = false; 929 930 target *= 5; /* fast clock */ 931 932 memset(best_clock, 0, sizeof(*best_clock)); 933 934 /* based on hardware requirement, prefer smaller n to precision */ 935 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) { 936 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) { 937 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow; 938 clock.p2 -= clock.p2 > 10 ? 2 : 1) { 939 clock.p = clock.p1 * clock.p2; 940 /* based on hardware requirement, prefer bigger m1,m2 values */ 941 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) { 942 unsigned int ppm; 943 944 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n, 945 refclk * clock.m1); 946 947 vlv_calc_dpll_params(refclk, &clock); 948 949 if (!intel_pll_is_valid(to_i915(dev), 950 limit, 951 &clock)) 952 continue; 953 954 if (!vlv_PLL_is_optimal(dev, target, 955 &clock, 956 best_clock, 957 bestppm, &ppm)) 958 continue; 959 960 *best_clock = clock; 961 bestppm = ppm; 962 found = true; 963 } 964 } 965 } 966 } 967 968 return found; 969 } 970 971 /* 972 * Returns a set of divisors for the desired target clock with the given 973 * refclk, or FALSE. The returned values represent the clock equation: 974 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2. 975 */ 976 static bool 977 chv_find_best_dpll(const struct intel_limit *limit, 978 struct intel_crtc_state *crtc_state, 979 int target, int refclk, struct dpll *match_clock, 980 struct dpll *best_clock) 981 { 982 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 983 struct drm_device *dev = crtc->base.dev; 984 unsigned int best_error_ppm; 985 struct dpll clock; 986 u64 m2; 987 int found = false; 988 989 memset(best_clock, 0, sizeof(*best_clock)); 990 best_error_ppm = 1000000; 991 992 /* 993 * Based on hardware doc, the n always set to 1, and m1 always 994 * set to 2. If requires to support 200Mhz refclk, we need to 995 * revisit this because n may not 1 anymore. 996 */ 997 clock.n = 1, clock.m1 = 2; 998 target *= 5; /* fast clock */ 999 1000 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) { 1001 for (clock.p2 = limit->p2.p2_fast; 1002 clock.p2 >= limit->p2.p2_slow; 1003 clock.p2 -= clock.p2 > 10 ? 2 : 1) { 1004 unsigned int error_ppm; 1005 1006 clock.p = clock.p1 * clock.p2; 1007 1008 m2 = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(target, clock.p * clock.n) << 22, 1009 refclk * clock.m1); 1010 1011 if (m2 > INT_MAX/clock.m1) 1012 continue; 1013 1014 clock.m2 = m2; 1015 1016 chv_calc_dpll_params(refclk, &clock); 1017 1018 if (!intel_pll_is_valid(to_i915(dev), limit, &clock)) 1019 continue; 1020 1021 if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock, 1022 best_error_ppm, &error_ppm)) 1023 continue; 1024 1025 *best_clock = clock; 1026 best_error_ppm = error_ppm; 1027 found = true; 1028 } 1029 } 1030 1031 return found; 1032 } 1033 1034 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, 1035 struct dpll *best_clock) 1036 { 1037 int refclk = 100000; 1038 const struct intel_limit *limit = &intel_limits_bxt; 1039 1040 return chv_find_best_dpll(limit, crtc_state, 1041 crtc_state->port_clock, refclk, 1042 NULL, best_clock); 1043 } 1044 1045 static bool pipe_scanline_is_moving(struct drm_i915_private *dev_priv, 1046 enum pipe pipe) 1047 { 1048 i915_reg_t reg = PIPEDSL(pipe); 1049 u32 line1, line2; 1050 u32 line_mask; 1051 1052 if (IS_GEN(dev_priv, 2)) 1053 line_mask = DSL_LINEMASK_GEN2; 1054 else 1055 line_mask = DSL_LINEMASK_GEN3; 1056 1057 line1 = intel_de_read(dev_priv, reg) & line_mask; 1058 drm_msleep(5); 1059 line2 = intel_de_read(dev_priv, reg) & line_mask; 1060 1061 return line1 != line2; 1062 } 1063 1064 static void wait_for_pipe_scanline_moving(struct intel_crtc *crtc, bool state) 1065 { 1066 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1067 enum pipe pipe = crtc->pipe; 1068 1069 /* Wait for the display line to settle/start moving */ 1070 if (wait_for(pipe_scanline_is_moving(dev_priv, pipe) == state, 100)) 1071 drm_err(&dev_priv->drm, 1072 "pipe %c scanline %s wait timed out\n", 1073 pipe_name(pipe), onoff(state)); 1074 } 1075 1076 static void intel_wait_for_pipe_scanline_stopped(struct intel_crtc *crtc) 1077 { 1078 wait_for_pipe_scanline_moving(crtc, false); 1079 } 1080 1081 static void intel_wait_for_pipe_scanline_moving(struct intel_crtc *crtc) 1082 { 1083 wait_for_pipe_scanline_moving(crtc, true); 1084 } 1085 1086 static void 1087 intel_wait_for_pipe_off(const struct intel_crtc_state *old_crtc_state) 1088 { 1089 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); 1090 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1091 1092 if (INTEL_GEN(dev_priv) >= 4) { 1093 enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder; 1094 i915_reg_t reg = PIPECONF(cpu_transcoder); 1095 1096 /* Wait for the Pipe State to go off */ 1097 if (intel_de_wait_for_clear(dev_priv, reg, 1098 I965_PIPECONF_ACTIVE, 100)) 1099 drm_WARN(&dev_priv->drm, 1, 1100 "pipe_off wait timed out\n"); 1101 } else { 1102 intel_wait_for_pipe_scanline_stopped(crtc); 1103 } 1104 } 1105 1106 /* Only for pre-ILK configs */ 1107 void assert_pll(struct drm_i915_private *dev_priv, 1108 enum pipe pipe, bool state) 1109 { 1110 u32 val; 1111 bool cur_state; 1112 1113 val = intel_de_read(dev_priv, DPLL(pipe)); 1114 cur_state = !!(val & DPLL_VCO_ENABLE); 1115 I915_STATE_WARN(cur_state != state, 1116 "PLL state assertion failure (expected %s, current %s)\n", 1117 onoff(state), onoff(cur_state)); 1118 } 1119 1120 /* XXX: the dsi pll is shared between MIPI DSI ports */ 1121 void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state) 1122 { 1123 u32 val; 1124 bool cur_state; 1125 1126 vlv_cck_get(dev_priv); 1127 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL); 1128 vlv_cck_put(dev_priv); 1129 1130 cur_state = val & DSI_PLL_VCO_EN; 1131 I915_STATE_WARN(cur_state != state, 1132 "DSI PLL state assertion failure (expected %s, current %s)\n", 1133 onoff(state), onoff(cur_state)); 1134 } 1135 1136 static void assert_fdi_tx(struct drm_i915_private *dev_priv, 1137 enum pipe pipe, bool state) 1138 { 1139 bool cur_state; 1140 1141 if (HAS_DDI(dev_priv)) { 1142 /* 1143 * DDI does not have a specific FDI_TX register. 1144 * 1145 * FDI is never fed from EDP transcoder 1146 * so pipe->transcoder cast is fine here. 1147 */ 1148 enum transcoder cpu_transcoder = (enum transcoder)pipe; 1149 u32 val = intel_de_read(dev_priv, 1150 TRANS_DDI_FUNC_CTL(cpu_transcoder)); 1151 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE); 1152 } else { 1153 u32 val = intel_de_read(dev_priv, FDI_TX_CTL(pipe)); 1154 cur_state = !!(val & FDI_TX_ENABLE); 1155 } 1156 I915_STATE_WARN(cur_state != state, 1157 "FDI TX state assertion failure (expected %s, current %s)\n", 1158 onoff(state), onoff(cur_state)); 1159 } 1160 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true) 1161 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false) 1162 1163 static void assert_fdi_rx(struct drm_i915_private *dev_priv, 1164 enum pipe pipe, bool state) 1165 { 1166 u32 val; 1167 bool cur_state; 1168 1169 val = intel_de_read(dev_priv, FDI_RX_CTL(pipe)); 1170 cur_state = !!(val & FDI_RX_ENABLE); 1171 I915_STATE_WARN(cur_state != state, 1172 "FDI RX state assertion failure (expected %s, current %s)\n", 1173 onoff(state), onoff(cur_state)); 1174 } 1175 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true) 1176 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false) 1177 1178 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv, 1179 enum pipe pipe) 1180 { 1181 u32 val; 1182 1183 /* ILK FDI PLL is always enabled */ 1184 if (IS_GEN(dev_priv, 5)) 1185 return; 1186 1187 /* On Haswell, DDI ports are responsible for the FDI PLL setup */ 1188 if (HAS_DDI(dev_priv)) 1189 return; 1190 1191 val = intel_de_read(dev_priv, FDI_TX_CTL(pipe)); 1192 I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n"); 1193 } 1194 1195 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv, 1196 enum pipe pipe, bool state) 1197 { 1198 u32 val; 1199 bool cur_state; 1200 1201 val = intel_de_read(dev_priv, FDI_RX_CTL(pipe)); 1202 cur_state = !!(val & FDI_RX_PLL_ENABLE); 1203 I915_STATE_WARN(cur_state != state, 1204 "FDI RX PLL assertion failure (expected %s, current %s)\n", 1205 onoff(state), onoff(cur_state)); 1206 } 1207 1208 void assert_panel_unlocked(struct drm_i915_private *dev_priv, enum pipe pipe) 1209 { 1210 i915_reg_t pp_reg; 1211 u32 val; 1212 enum pipe panel_pipe = INVALID_PIPE; 1213 bool locked = true; 1214 1215 if (drm_WARN_ON(&dev_priv->drm, HAS_DDI(dev_priv))) 1216 return; 1217 1218 if (HAS_PCH_SPLIT(dev_priv)) { 1219 u32 port_sel; 1220 1221 pp_reg = PP_CONTROL(0); 1222 port_sel = intel_de_read(dev_priv, PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK; 1223 1224 switch (port_sel) { 1225 case PANEL_PORT_SELECT_LVDS: 1226 intel_lvds_port_enabled(dev_priv, PCH_LVDS, &panel_pipe); 1227 break; 1228 case PANEL_PORT_SELECT_DPA: 1229 intel_dp_port_enabled(dev_priv, DP_A, PORT_A, &panel_pipe); 1230 break; 1231 case PANEL_PORT_SELECT_DPC: 1232 intel_dp_port_enabled(dev_priv, PCH_DP_C, PORT_C, &panel_pipe); 1233 break; 1234 case PANEL_PORT_SELECT_DPD: 1235 intel_dp_port_enabled(dev_priv, PCH_DP_D, PORT_D, &panel_pipe); 1236 break; 1237 default: 1238 MISSING_CASE(port_sel); 1239 break; 1240 } 1241 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 1242 /* presumably write lock depends on pipe, not port select */ 1243 pp_reg = PP_CONTROL(pipe); 1244 panel_pipe = pipe; 1245 } else { 1246 u32 port_sel; 1247 1248 pp_reg = PP_CONTROL(0); 1249 port_sel = intel_de_read(dev_priv, PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK; 1250 1251 drm_WARN_ON(&dev_priv->drm, 1252 port_sel != PANEL_PORT_SELECT_LVDS); 1253 intel_lvds_port_enabled(dev_priv, LVDS, &panel_pipe); 1254 } 1255 1256 val = intel_de_read(dev_priv, pp_reg); 1257 if (!(val & PANEL_POWER_ON) || 1258 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS)) 1259 locked = false; 1260 1261 I915_STATE_WARN(panel_pipe == pipe && locked, 1262 "panel assertion failure, pipe %c regs locked\n", 1263 pipe_name(pipe)); 1264 } 1265 1266 void assert_pipe(struct drm_i915_private *dev_priv, 1267 enum transcoder cpu_transcoder, bool state) 1268 { 1269 bool cur_state; 1270 enum intel_display_power_domain power_domain; 1271 intel_wakeref_t wakeref; 1272 1273 /* we keep both pipes enabled on 830 */ 1274 if (IS_I830(dev_priv)) 1275 state = true; 1276 1277 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder); 1278 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain); 1279 if (wakeref) { 1280 u32 val = intel_de_read(dev_priv, PIPECONF(cpu_transcoder)); 1281 cur_state = !!(val & PIPECONF_ENABLE); 1282 1283 intel_display_power_put(dev_priv, power_domain, wakeref); 1284 } else { 1285 cur_state = false; 1286 } 1287 1288 I915_STATE_WARN(cur_state != state, 1289 "transcoder %s assertion failure (expected %s, current %s)\n", 1290 transcoder_name(cpu_transcoder), 1291 onoff(state), onoff(cur_state)); 1292 } 1293 1294 static void assert_plane(struct intel_plane *plane, bool state) 1295 { 1296 enum pipe pipe; 1297 bool cur_state; 1298 1299 cur_state = plane->get_hw_state(plane, &pipe); 1300 1301 I915_STATE_WARN(cur_state != state, 1302 "%s assertion failure (expected %s, current %s)\n", 1303 plane->base.name, onoff(state), onoff(cur_state)); 1304 } 1305 1306 #define assert_plane_enabled(p) assert_plane(p, true) 1307 #define assert_plane_disabled(p) assert_plane(p, false) 1308 1309 static void assert_planes_disabled(struct intel_crtc *crtc) 1310 { 1311 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1312 struct intel_plane *plane; 1313 1314 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) 1315 assert_plane_disabled(plane); 1316 } 1317 1318 static void assert_vblank_disabled(struct drm_crtc *crtc) 1319 { 1320 if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0)) 1321 drm_crtc_vblank_put(crtc); 1322 } 1323 1324 void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv, 1325 enum pipe pipe) 1326 { 1327 u32 val; 1328 bool enabled; 1329 1330 val = intel_de_read(dev_priv, PCH_TRANSCONF(pipe)); 1331 enabled = !!(val & TRANS_ENABLE); 1332 I915_STATE_WARN(enabled, 1333 "transcoder assertion failed, should be off on pipe %c but is still active\n", 1334 pipe_name(pipe)); 1335 } 1336 1337 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv, 1338 enum pipe pipe, enum port port, 1339 i915_reg_t dp_reg) 1340 { 1341 enum pipe port_pipe; 1342 bool state; 1343 1344 state = intel_dp_port_enabled(dev_priv, dp_reg, port, &port_pipe); 1345 1346 I915_STATE_WARN(state && port_pipe == pipe, 1347 "PCH DP %c enabled on transcoder %c, should be disabled\n", 1348 port_name(port), pipe_name(pipe)); 1349 1350 I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && !state && port_pipe == PIPE_B, 1351 "IBX PCH DP %c still using transcoder B\n", 1352 port_name(port)); 1353 } 1354 1355 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv, 1356 enum pipe pipe, enum port port, 1357 i915_reg_t hdmi_reg) 1358 { 1359 enum pipe port_pipe; 1360 bool state; 1361 1362 state = intel_sdvo_port_enabled(dev_priv, hdmi_reg, &port_pipe); 1363 1364 I915_STATE_WARN(state && port_pipe == pipe, 1365 "PCH HDMI %c enabled on transcoder %c, should be disabled\n", 1366 port_name(port), pipe_name(pipe)); 1367 1368 I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && !state && port_pipe == PIPE_B, 1369 "IBX PCH HDMI %c still using transcoder B\n", 1370 port_name(port)); 1371 } 1372 1373 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv, 1374 enum pipe pipe) 1375 { 1376 enum pipe port_pipe; 1377 1378 assert_pch_dp_disabled(dev_priv, pipe, PORT_B, PCH_DP_B); 1379 assert_pch_dp_disabled(dev_priv, pipe, PORT_C, PCH_DP_C); 1380 assert_pch_dp_disabled(dev_priv, pipe, PORT_D, PCH_DP_D); 1381 1382 I915_STATE_WARN(intel_crt_port_enabled(dev_priv, PCH_ADPA, &port_pipe) && 1383 port_pipe == pipe, 1384 "PCH VGA enabled on transcoder %c, should be disabled\n", 1385 pipe_name(pipe)); 1386 1387 I915_STATE_WARN(intel_lvds_port_enabled(dev_priv, PCH_LVDS, &port_pipe) && 1388 port_pipe == pipe, 1389 "PCH LVDS enabled on transcoder %c, should be disabled\n", 1390 pipe_name(pipe)); 1391 1392 /* PCH SDVOB multiplex with HDMIB */ 1393 assert_pch_hdmi_disabled(dev_priv, pipe, PORT_B, PCH_HDMIB); 1394 assert_pch_hdmi_disabled(dev_priv, pipe, PORT_C, PCH_HDMIC); 1395 assert_pch_hdmi_disabled(dev_priv, pipe, PORT_D, PCH_HDMID); 1396 } 1397 1398 static void _vlv_enable_pll(struct intel_crtc *crtc, 1399 const struct intel_crtc_state *pipe_config) 1400 { 1401 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1402 enum pipe pipe = crtc->pipe; 1403 1404 intel_de_write(dev_priv, DPLL(pipe), pipe_config->dpll_hw_state.dpll); 1405 intel_de_posting_read(dev_priv, DPLL(pipe)); 1406 udelay(150); 1407 1408 if (intel_de_wait_for_set(dev_priv, DPLL(pipe), DPLL_LOCK_VLV, 1)) 1409 drm_err(&dev_priv->drm, "DPLL %d failed to lock\n", pipe); 1410 } 1411 1412 static void vlv_enable_pll(struct intel_crtc *crtc, 1413 const struct intel_crtc_state *pipe_config) 1414 { 1415 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1416 enum pipe pipe = crtc->pipe; 1417 1418 assert_pipe_disabled(dev_priv, pipe_config->cpu_transcoder); 1419 1420 /* PLL is protected by panel, make sure we can write it */ 1421 assert_panel_unlocked(dev_priv, pipe); 1422 1423 if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) 1424 _vlv_enable_pll(crtc, pipe_config); 1425 1426 intel_de_write(dev_priv, DPLL_MD(pipe), 1427 pipe_config->dpll_hw_state.dpll_md); 1428 intel_de_posting_read(dev_priv, DPLL_MD(pipe)); 1429 } 1430 1431 1432 static void _chv_enable_pll(struct intel_crtc *crtc, 1433 const struct intel_crtc_state *pipe_config) 1434 { 1435 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1436 enum pipe pipe = crtc->pipe; 1437 enum dpio_channel port = vlv_pipe_to_channel(pipe); 1438 u32 tmp; 1439 1440 vlv_dpio_get(dev_priv); 1441 1442 /* Enable back the 10bit clock to display controller */ 1443 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)); 1444 tmp |= DPIO_DCLKP_EN; 1445 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp); 1446 1447 vlv_dpio_put(dev_priv); 1448 1449 /* 1450 * Need to wait > 100ns between dclkp clock enable bit and PLL enable. 1451 */ 1452 udelay(1); 1453 1454 /* Enable PLL */ 1455 intel_de_write(dev_priv, DPLL(pipe), pipe_config->dpll_hw_state.dpll); 1456 1457 /* Check PLL is locked */ 1458 if (intel_de_wait_for_set(dev_priv, DPLL(pipe), DPLL_LOCK_VLV, 1)) 1459 drm_err(&dev_priv->drm, "PLL %d failed to lock\n", pipe); 1460 } 1461 1462 static void chv_enable_pll(struct intel_crtc *crtc, 1463 const struct intel_crtc_state *pipe_config) 1464 { 1465 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1466 enum pipe pipe = crtc->pipe; 1467 1468 assert_pipe_disabled(dev_priv, pipe_config->cpu_transcoder); 1469 1470 /* PLL is protected by panel, make sure we can write it */ 1471 assert_panel_unlocked(dev_priv, pipe); 1472 1473 if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) 1474 _chv_enable_pll(crtc, pipe_config); 1475 1476 if (pipe != PIPE_A) { 1477 /* 1478 * WaPixelRepeatModeFixForC0:chv 1479 * 1480 * DPLLCMD is AWOL. Use chicken bits to propagate 1481 * the value from DPLLBMD to either pipe B or C. 1482 */ 1483 intel_de_write(dev_priv, CBR4_VLV, CBR_DPLLBMD_PIPE(pipe)); 1484 intel_de_write(dev_priv, DPLL_MD(PIPE_B), 1485 pipe_config->dpll_hw_state.dpll_md); 1486 intel_de_write(dev_priv, CBR4_VLV, 0); 1487 dev_priv->chv_dpll_md[pipe] = pipe_config->dpll_hw_state.dpll_md; 1488 1489 /* 1490 * DPLLB VGA mode also seems to cause problems. 1491 * We should always have it disabled. 1492 */ 1493 drm_WARN_ON(&dev_priv->drm, 1494 (intel_de_read(dev_priv, DPLL(PIPE_B)) & 1495 DPLL_VGA_MODE_DIS) == 0); 1496 } else { 1497 intel_de_write(dev_priv, DPLL_MD(pipe), 1498 pipe_config->dpll_hw_state.dpll_md); 1499 intel_de_posting_read(dev_priv, DPLL_MD(pipe)); 1500 } 1501 } 1502 1503 static bool i9xx_has_pps(struct drm_i915_private *dev_priv) 1504 { 1505 if (IS_I830(dev_priv)) 1506 return false; 1507 1508 return IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv); 1509 } 1510 1511 static void i9xx_enable_pll(struct intel_crtc *crtc, 1512 const struct intel_crtc_state *crtc_state) 1513 { 1514 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1515 i915_reg_t reg = DPLL(crtc->pipe); 1516 u32 dpll = crtc_state->dpll_hw_state.dpll; 1517 int i; 1518 1519 assert_pipe_disabled(dev_priv, crtc_state->cpu_transcoder); 1520 1521 /* PLL is protected by panel, make sure we can write it */ 1522 if (i9xx_has_pps(dev_priv)) 1523 assert_panel_unlocked(dev_priv, crtc->pipe); 1524 1525 /* 1526 * Apparently we need to have VGA mode enabled prior to changing 1527 * the P1/P2 dividers. Otherwise the DPLL will keep using the old 1528 * dividers, even though the register value does change. 1529 */ 1530 intel_de_write(dev_priv, reg, dpll & ~DPLL_VGA_MODE_DIS); 1531 intel_de_write(dev_priv, reg, dpll); 1532 1533 /* Wait for the clocks to stabilize. */ 1534 intel_de_posting_read(dev_priv, reg); 1535 udelay(150); 1536 1537 if (INTEL_GEN(dev_priv) >= 4) { 1538 intel_de_write(dev_priv, DPLL_MD(crtc->pipe), 1539 crtc_state->dpll_hw_state.dpll_md); 1540 } else { 1541 /* The pixel multiplier can only be updated once the 1542 * DPLL is enabled and the clocks are stable. 1543 * 1544 * So write it again. 1545 */ 1546 intel_de_write(dev_priv, reg, dpll); 1547 } 1548 1549 /* We do this three times for luck */ 1550 for (i = 0; i < 3; i++) { 1551 intel_de_write(dev_priv, reg, dpll); 1552 intel_de_posting_read(dev_priv, reg); 1553 udelay(150); /* wait for warmup */ 1554 } 1555 } 1556 1557 static void i9xx_disable_pll(const struct intel_crtc_state *crtc_state) 1558 { 1559 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1560 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1561 enum pipe pipe = crtc->pipe; 1562 1563 /* Don't disable pipe or pipe PLLs if needed */ 1564 if (IS_I830(dev_priv)) 1565 return; 1566 1567 /* Make sure the pipe isn't still relying on us */ 1568 assert_pipe_disabled(dev_priv, crtc_state->cpu_transcoder); 1569 1570 intel_de_write(dev_priv, DPLL(pipe), DPLL_VGA_MODE_DIS); 1571 intel_de_posting_read(dev_priv, DPLL(pipe)); 1572 } 1573 1574 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe) 1575 { 1576 u32 val; 1577 1578 /* Make sure the pipe isn't still relying on us */ 1579 assert_pipe_disabled(dev_priv, (enum transcoder)pipe); 1580 1581 val = DPLL_INTEGRATED_REF_CLK_VLV | 1582 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS; 1583 if (pipe != PIPE_A) 1584 val |= DPLL_INTEGRATED_CRI_CLK_VLV; 1585 1586 intel_de_write(dev_priv, DPLL(pipe), val); 1587 intel_de_posting_read(dev_priv, DPLL(pipe)); 1588 } 1589 1590 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe) 1591 { 1592 enum dpio_channel port = vlv_pipe_to_channel(pipe); 1593 u32 val; 1594 1595 /* Make sure the pipe isn't still relying on us */ 1596 assert_pipe_disabled(dev_priv, (enum transcoder)pipe); 1597 1598 val = DPLL_SSC_REF_CLK_CHV | 1599 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS; 1600 if (pipe != PIPE_A) 1601 val |= DPLL_INTEGRATED_CRI_CLK_VLV; 1602 1603 intel_de_write(dev_priv, DPLL(pipe), val); 1604 intel_de_posting_read(dev_priv, DPLL(pipe)); 1605 1606 vlv_dpio_get(dev_priv); 1607 1608 /* Disable 10bit clock to display controller */ 1609 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)); 1610 val &= ~DPIO_DCLKP_EN; 1611 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val); 1612 1613 vlv_dpio_put(dev_priv); 1614 } 1615 1616 void vlv_wait_port_ready(struct drm_i915_private *dev_priv, 1617 struct intel_digital_port *dig_port, 1618 unsigned int expected_mask) 1619 { 1620 u32 port_mask; 1621 i915_reg_t dpll_reg; 1622 1623 switch (dig_port->base.port) { 1624 case PORT_B: 1625 port_mask = DPLL_PORTB_READY_MASK; 1626 dpll_reg = DPLL(0); 1627 break; 1628 case PORT_C: 1629 port_mask = DPLL_PORTC_READY_MASK; 1630 dpll_reg = DPLL(0); 1631 expected_mask <<= 4; 1632 break; 1633 case PORT_D: 1634 port_mask = DPLL_PORTD_READY_MASK; 1635 dpll_reg = DPIO_PHY_STATUS; 1636 break; 1637 default: 1638 BUG(); 1639 } 1640 1641 if (intel_de_wait_for_register(dev_priv, dpll_reg, 1642 port_mask, expected_mask, 1000)) 1643 drm_WARN(&dev_priv->drm, 1, 1644 "timed out waiting for [ENCODER:%d:%s] port ready: got 0x%x, expected 0x%x\n", 1645 dig_port->base.base.base.id, dig_port->base.base.name, 1646 intel_de_read(dev_priv, dpll_reg) & port_mask, 1647 expected_mask); 1648 } 1649 1650 static void ilk_enable_pch_transcoder(const struct intel_crtc_state *crtc_state) 1651 { 1652 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1653 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1654 enum pipe pipe = crtc->pipe; 1655 i915_reg_t reg; 1656 u32 val, pipeconf_val; 1657 1658 /* Make sure PCH DPLL is enabled */ 1659 assert_shared_dpll_enabled(dev_priv, crtc_state->shared_dpll); 1660 1661 /* FDI must be feeding us bits for PCH ports */ 1662 assert_fdi_tx_enabled(dev_priv, pipe); 1663 assert_fdi_rx_enabled(dev_priv, pipe); 1664 1665 if (HAS_PCH_CPT(dev_priv)) { 1666 reg = TRANS_CHICKEN2(pipe); 1667 val = intel_de_read(dev_priv, reg); 1668 /* 1669 * Workaround: Set the timing override bit 1670 * before enabling the pch transcoder. 1671 */ 1672 val |= TRANS_CHICKEN2_TIMING_OVERRIDE; 1673 /* Configure frame start delay to match the CPU */ 1674 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK; 1675 val |= TRANS_CHICKEN2_FRAME_START_DELAY(0); 1676 intel_de_write(dev_priv, reg, val); 1677 } 1678 1679 reg = PCH_TRANSCONF(pipe); 1680 val = intel_de_read(dev_priv, reg); 1681 pipeconf_val = intel_de_read(dev_priv, PIPECONF(pipe)); 1682 1683 if (HAS_PCH_IBX(dev_priv)) { 1684 /* Configure frame start delay to match the CPU */ 1685 val &= ~TRANS_FRAME_START_DELAY_MASK; 1686 val |= TRANS_FRAME_START_DELAY(0); 1687 1688 /* 1689 * Make the BPC in transcoder be consistent with 1690 * that in pipeconf reg. For HDMI we must use 8bpc 1691 * here for both 8bpc and 12bpc. 1692 */ 1693 val &= ~PIPECONF_BPC_MASK; 1694 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) 1695 val |= PIPECONF_8BPC; 1696 else 1697 val |= pipeconf_val & PIPECONF_BPC_MASK; 1698 } 1699 1700 val &= ~TRANS_INTERLACE_MASK; 1701 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK) { 1702 if (HAS_PCH_IBX(dev_priv) && 1703 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) 1704 val |= TRANS_LEGACY_INTERLACED_ILK; 1705 else 1706 val |= TRANS_INTERLACED; 1707 } else { 1708 val |= TRANS_PROGRESSIVE; 1709 } 1710 1711 intel_de_write(dev_priv, reg, val | TRANS_ENABLE); 1712 if (intel_de_wait_for_set(dev_priv, reg, TRANS_STATE_ENABLE, 100)) 1713 drm_err(&dev_priv->drm, "failed to enable transcoder %c\n", 1714 pipe_name(pipe)); 1715 } 1716 1717 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv, 1718 enum transcoder cpu_transcoder) 1719 { 1720 u32 val, pipeconf_val; 1721 1722 /* FDI must be feeding us bits for PCH ports */ 1723 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder); 1724 assert_fdi_rx_enabled(dev_priv, PIPE_A); 1725 1726 val = intel_de_read(dev_priv, TRANS_CHICKEN2(PIPE_A)); 1727 /* Workaround: set timing override bit. */ 1728 val |= TRANS_CHICKEN2_TIMING_OVERRIDE; 1729 /* Configure frame start delay to match the CPU */ 1730 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK; 1731 val |= TRANS_CHICKEN2_FRAME_START_DELAY(0); 1732 intel_de_write(dev_priv, TRANS_CHICKEN2(PIPE_A), val); 1733 1734 val = TRANS_ENABLE; 1735 pipeconf_val = intel_de_read(dev_priv, PIPECONF(cpu_transcoder)); 1736 1737 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) == 1738 PIPECONF_INTERLACED_ILK) 1739 val |= TRANS_INTERLACED; 1740 else 1741 val |= TRANS_PROGRESSIVE; 1742 1743 intel_de_write(dev_priv, LPT_TRANSCONF, val); 1744 if (intel_de_wait_for_set(dev_priv, LPT_TRANSCONF, 1745 TRANS_STATE_ENABLE, 100)) 1746 drm_err(&dev_priv->drm, "Failed to enable PCH transcoder\n"); 1747 } 1748 1749 static void ilk_disable_pch_transcoder(struct drm_i915_private *dev_priv, 1750 enum pipe pipe) 1751 { 1752 i915_reg_t reg; 1753 u32 val; 1754 1755 /* FDI relies on the transcoder */ 1756 assert_fdi_tx_disabled(dev_priv, pipe); 1757 assert_fdi_rx_disabled(dev_priv, pipe); 1758 1759 /* Ports must be off as well */ 1760 assert_pch_ports_disabled(dev_priv, pipe); 1761 1762 reg = PCH_TRANSCONF(pipe); 1763 val = intel_de_read(dev_priv, reg); 1764 val &= ~TRANS_ENABLE; 1765 intel_de_write(dev_priv, reg, val); 1766 /* wait for PCH transcoder off, transcoder state */ 1767 if (intel_de_wait_for_clear(dev_priv, reg, TRANS_STATE_ENABLE, 50)) 1768 drm_err(&dev_priv->drm, "failed to disable transcoder %c\n", 1769 pipe_name(pipe)); 1770 1771 if (HAS_PCH_CPT(dev_priv)) { 1772 /* Workaround: Clear the timing override chicken bit again. */ 1773 reg = TRANS_CHICKEN2(pipe); 1774 val = intel_de_read(dev_priv, reg); 1775 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE; 1776 intel_de_write(dev_priv, reg, val); 1777 } 1778 } 1779 1780 void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv) 1781 { 1782 u32 val; 1783 1784 val = intel_de_read(dev_priv, LPT_TRANSCONF); 1785 val &= ~TRANS_ENABLE; 1786 intel_de_write(dev_priv, LPT_TRANSCONF, val); 1787 /* wait for PCH transcoder off, transcoder state */ 1788 if (intel_de_wait_for_clear(dev_priv, LPT_TRANSCONF, 1789 TRANS_STATE_ENABLE, 50)) 1790 drm_err(&dev_priv->drm, "Failed to disable PCH transcoder\n"); 1791 1792 /* Workaround: clear timing override bit. */ 1793 val = intel_de_read(dev_priv, TRANS_CHICKEN2(PIPE_A)); 1794 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE; 1795 intel_de_write(dev_priv, TRANS_CHICKEN2(PIPE_A), val); 1796 } 1797 1798 enum pipe intel_crtc_pch_transcoder(struct intel_crtc *crtc) 1799 { 1800 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1801 1802 if (HAS_PCH_LPT(dev_priv)) 1803 return PIPE_A; 1804 else 1805 return crtc->pipe; 1806 } 1807 1808 static u32 intel_crtc_max_vblank_count(const struct intel_crtc_state *crtc_state) 1809 { 1810 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 1811 1812 /* 1813 * On i965gm the hardware frame counter reads 1814 * zero when the TV encoder is enabled :( 1815 */ 1816 if (IS_I965GM(dev_priv) && 1817 (crtc_state->output_types & BIT(INTEL_OUTPUT_TVOUT))) 1818 return 0; 1819 1820 if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) 1821 return 0xffffffff; /* full 32 bit counter */ 1822 else if (INTEL_GEN(dev_priv) >= 3) 1823 return 0xffffff; /* only 24 bits of frame count */ 1824 else 1825 return 0; /* Gen2 doesn't have a hardware frame counter */ 1826 } 1827 1828 void intel_crtc_vblank_on(const struct intel_crtc_state *crtc_state) 1829 { 1830 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1831 1832 assert_vblank_disabled(&crtc->base); 1833 drm_crtc_set_max_vblank_count(&crtc->base, 1834 intel_crtc_max_vblank_count(crtc_state)); 1835 drm_crtc_vblank_on(&crtc->base); 1836 } 1837 1838 void intel_crtc_vblank_off(const struct intel_crtc_state *crtc_state) 1839 { 1840 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1841 1842 drm_crtc_vblank_off(&crtc->base); 1843 assert_vblank_disabled(&crtc->base); 1844 } 1845 1846 void intel_enable_pipe(const struct intel_crtc_state *new_crtc_state) 1847 { 1848 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); 1849 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1850 enum transcoder cpu_transcoder = new_crtc_state->cpu_transcoder; 1851 enum pipe pipe = crtc->pipe; 1852 i915_reg_t reg; 1853 u32 val; 1854 1855 drm_dbg_kms(&dev_priv->drm, "enabling pipe %c\n", pipe_name(pipe)); 1856 1857 assert_planes_disabled(crtc); 1858 1859 /* 1860 * A pipe without a PLL won't actually be able to drive bits from 1861 * a plane. On ILK+ the pipe PLLs are integrated, so we don't 1862 * need the check. 1863 */ 1864 if (HAS_GMCH(dev_priv)) { 1865 if (intel_crtc_has_type(new_crtc_state, INTEL_OUTPUT_DSI)) 1866 assert_dsi_pll_enabled(dev_priv); 1867 else 1868 assert_pll_enabled(dev_priv, pipe); 1869 } else { 1870 if (new_crtc_state->has_pch_encoder) { 1871 /* if driving the PCH, we need FDI enabled */ 1872 assert_fdi_rx_pll_enabled(dev_priv, 1873 intel_crtc_pch_transcoder(crtc)); 1874 assert_fdi_tx_pll_enabled(dev_priv, 1875 (enum pipe) cpu_transcoder); 1876 } 1877 /* FIXME: assert CPU port conditions for SNB+ */ 1878 } 1879 1880 trace_intel_pipe_enable(crtc); 1881 1882 reg = PIPECONF(cpu_transcoder); 1883 val = intel_de_read(dev_priv, reg); 1884 if (val & PIPECONF_ENABLE) { 1885 /* we keep both pipes enabled on 830 */ 1886 drm_WARN_ON(&dev_priv->drm, !IS_I830(dev_priv)); 1887 return; 1888 } 1889 1890 intel_de_write(dev_priv, reg, val | PIPECONF_ENABLE); 1891 intel_de_posting_read(dev_priv, reg); 1892 1893 /* 1894 * Until the pipe starts PIPEDSL reads will return a stale value, 1895 * which causes an apparent vblank timestamp jump when PIPEDSL 1896 * resets to its proper value. That also messes up the frame count 1897 * when it's derived from the timestamps. So let's wait for the 1898 * pipe to start properly before we call drm_crtc_vblank_on() 1899 */ 1900 if (intel_crtc_max_vblank_count(new_crtc_state) == 0) 1901 intel_wait_for_pipe_scanline_moving(crtc); 1902 } 1903 1904 void intel_disable_pipe(const struct intel_crtc_state *old_crtc_state) 1905 { 1906 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); 1907 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1908 enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder; 1909 enum pipe pipe = crtc->pipe; 1910 i915_reg_t reg; 1911 u32 val; 1912 1913 drm_dbg_kms(&dev_priv->drm, "disabling pipe %c\n", pipe_name(pipe)); 1914 1915 /* 1916 * Make sure planes won't keep trying to pump pixels to us, 1917 * or we might hang the display. 1918 */ 1919 assert_planes_disabled(crtc); 1920 1921 trace_intel_pipe_disable(crtc); 1922 1923 reg = PIPECONF(cpu_transcoder); 1924 val = intel_de_read(dev_priv, reg); 1925 if ((val & PIPECONF_ENABLE) == 0) 1926 return; 1927 1928 /* 1929 * Double wide has implications for planes 1930 * so best keep it disabled when not needed. 1931 */ 1932 if (old_crtc_state->double_wide) 1933 val &= ~PIPECONF_DOUBLE_WIDE; 1934 1935 /* Don't disable pipe or pipe PLLs if needed */ 1936 if (!IS_I830(dev_priv)) 1937 val &= ~PIPECONF_ENABLE; 1938 1939 intel_de_write(dev_priv, reg, val); 1940 if ((val & PIPECONF_ENABLE) == 0) 1941 intel_wait_for_pipe_off(old_crtc_state); 1942 } 1943 1944 static unsigned int intel_tile_size(const struct drm_i915_private *dev_priv) 1945 { 1946 return IS_GEN(dev_priv, 2) ? 2048 : 4096; 1947 } 1948 1949 static bool is_ccs_plane(const struct drm_framebuffer *fb, int plane) 1950 { 1951 if (!is_ccs_modifier(fb->modifier)) 1952 return false; 1953 1954 return plane >= fb->format->num_planes / 2; 1955 } 1956 1957 static bool is_gen12_ccs_modifier(u64 modifier) 1958 { 1959 return modifier == I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS || 1960 modifier == I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS; 1961 1962 } 1963 1964 static bool is_gen12_ccs_plane(const struct drm_framebuffer *fb, int plane) 1965 { 1966 return is_gen12_ccs_modifier(fb->modifier) && is_ccs_plane(fb, plane); 1967 } 1968 1969 static bool is_aux_plane(const struct drm_framebuffer *fb, int plane) 1970 { 1971 if (is_ccs_modifier(fb->modifier)) 1972 return is_ccs_plane(fb, plane); 1973 1974 return plane == 1; 1975 } 1976 1977 static int main_to_ccs_plane(const struct drm_framebuffer *fb, int main_plane) 1978 { 1979 drm_WARN_ON(fb->dev, !is_ccs_modifier(fb->modifier) || 1980 (main_plane && main_plane >= fb->format->num_planes / 2)); 1981 1982 return fb->format->num_planes / 2 + main_plane; 1983 } 1984 1985 static int ccs_to_main_plane(const struct drm_framebuffer *fb, int ccs_plane) 1986 { 1987 drm_WARN_ON(fb->dev, !is_ccs_modifier(fb->modifier) || 1988 ccs_plane < fb->format->num_planes / 2); 1989 1990 return ccs_plane - fb->format->num_planes / 2; 1991 } 1992 1993 /* Return either the main plane's CCS or - if not a CCS FB - UV plane */ 1994 int intel_main_to_aux_plane(const struct drm_framebuffer *fb, int main_plane) 1995 { 1996 if (is_ccs_modifier(fb->modifier)) 1997 return main_to_ccs_plane(fb, main_plane); 1998 1999 return 1; 2000 } 2001 2002 bool 2003 intel_format_info_is_yuv_semiplanar(const struct drm_format_info *info, 2004 uint64_t modifier) 2005 { 2006 return info->is_yuv && 2007 info->num_planes == (is_ccs_modifier(modifier) ? 4 : 2); 2008 } 2009 2010 static bool is_semiplanar_uv_plane(const struct drm_framebuffer *fb, 2011 int color_plane) 2012 { 2013 return intel_format_info_is_yuv_semiplanar(fb->format, fb->modifier) && 2014 color_plane == 1; 2015 } 2016 2017 static unsigned int 2018 intel_tile_width_bytes(const struct drm_framebuffer *fb, int color_plane) 2019 { 2020 struct drm_i915_private *dev_priv = to_i915(fb->dev); 2021 unsigned int cpp = fb->format->cpp[color_plane]; 2022 2023 switch (fb->modifier) { 2024 case DRM_FORMAT_MOD_LINEAR: 2025 return intel_tile_size(dev_priv); 2026 case I915_FORMAT_MOD_X_TILED: 2027 if (IS_GEN(dev_priv, 2)) 2028 return 128; 2029 else 2030 return 512; 2031 case I915_FORMAT_MOD_Y_TILED_CCS: 2032 if (is_ccs_plane(fb, color_plane)) 2033 return 128; 2034 fallthrough; 2035 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS: 2036 case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS: 2037 if (is_ccs_plane(fb, color_plane)) 2038 return 64; 2039 fallthrough; 2040 case I915_FORMAT_MOD_Y_TILED: 2041 if (IS_GEN(dev_priv, 2) || HAS_128_BYTE_Y_TILING(dev_priv)) 2042 return 128; 2043 else 2044 return 512; 2045 case I915_FORMAT_MOD_Yf_TILED_CCS: 2046 if (is_ccs_plane(fb, color_plane)) 2047 return 128; 2048 fallthrough; 2049 case I915_FORMAT_MOD_Yf_TILED: 2050 switch (cpp) { 2051 case 1: 2052 return 64; 2053 case 2: 2054 case 4: 2055 return 128; 2056 case 8: 2057 case 16: 2058 return 256; 2059 default: 2060 MISSING_CASE(cpp); 2061 return cpp; 2062 } 2063 break; 2064 default: 2065 MISSING_CASE(fb->modifier); 2066 return cpp; 2067 } 2068 } 2069 2070 static unsigned int 2071 intel_tile_height(const struct drm_framebuffer *fb, int color_plane) 2072 { 2073 if (is_gen12_ccs_plane(fb, color_plane)) 2074 return 1; 2075 2076 return intel_tile_size(to_i915(fb->dev)) / 2077 intel_tile_width_bytes(fb, color_plane); 2078 } 2079 2080 /* Return the tile dimensions in pixel units */ 2081 static void intel_tile_dims(const struct drm_framebuffer *fb, int color_plane, 2082 unsigned int *tile_width, 2083 unsigned int *tile_height) 2084 { 2085 unsigned int tile_width_bytes = intel_tile_width_bytes(fb, color_plane); 2086 unsigned int cpp = fb->format->cpp[color_plane]; 2087 2088 *tile_width = tile_width_bytes / cpp; 2089 *tile_height = intel_tile_height(fb, color_plane); 2090 } 2091 2092 static unsigned int intel_tile_row_size(const struct drm_framebuffer *fb, 2093 int color_plane) 2094 { 2095 unsigned int tile_width, tile_height; 2096 2097 intel_tile_dims(fb, color_plane, &tile_width, &tile_height); 2098 2099 return fb->pitches[color_plane] * tile_height; 2100 } 2101 2102 unsigned int 2103 intel_fb_align_height(const struct drm_framebuffer *fb, 2104 int color_plane, unsigned int height) 2105 { 2106 unsigned int tile_height = intel_tile_height(fb, color_plane); 2107 2108 return roundup2(height, tile_height); 2109 } 2110 2111 unsigned int intel_rotation_info_size(const struct intel_rotation_info *rot_info) 2112 { 2113 unsigned int size = 0; 2114 int i; 2115 2116 for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) 2117 size += rot_info->plane[i].width * rot_info->plane[i].height; 2118 2119 return size; 2120 } 2121 2122 unsigned int intel_remapped_info_size(const struct intel_remapped_info *rem_info) 2123 { 2124 unsigned int size = 0; 2125 int i; 2126 2127 for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++) 2128 size += rem_info->plane[i].width * rem_info->plane[i].height; 2129 2130 return size; 2131 } 2132 2133 static void 2134 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view, 2135 const struct drm_framebuffer *fb, 2136 unsigned int rotation) 2137 { 2138 view->type = I915_GGTT_VIEW_NORMAL; 2139 if (drm_rotation_90_or_270(rotation)) { 2140 view->type = I915_GGTT_VIEW_ROTATED; 2141 view->rotated = to_intel_framebuffer(fb)->rot_info; 2142 } 2143 } 2144 2145 static unsigned int intel_cursor_alignment(const struct drm_i915_private *dev_priv) 2146 { 2147 if (IS_I830(dev_priv)) 2148 return 16 * 1024; 2149 else if (IS_I85X(dev_priv)) 2150 return 256; 2151 else if (IS_I845G(dev_priv) || IS_I865G(dev_priv)) 2152 return 32; 2153 else 2154 return 4 * 1024; 2155 } 2156 2157 static unsigned int intel_linear_alignment(const struct drm_i915_private *dev_priv) 2158 { 2159 if (INTEL_GEN(dev_priv) >= 9) 2160 return 256 * 1024; 2161 else if (IS_I965G(dev_priv) || IS_I965GM(dev_priv) || 2162 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 2163 return 128 * 1024; 2164 else if (INTEL_GEN(dev_priv) >= 4) 2165 return 4 * 1024; 2166 else 2167 return 0; 2168 } 2169 2170 static unsigned int intel_surf_alignment(const struct drm_framebuffer *fb, 2171 int color_plane) 2172 { 2173 struct drm_i915_private *dev_priv = to_i915(fb->dev); 2174 2175 /* AUX_DIST needs only 4K alignment */ 2176 if ((INTEL_GEN(dev_priv) < 12 && is_aux_plane(fb, color_plane)) || 2177 is_ccs_plane(fb, color_plane)) 2178 return 4096; 2179 2180 switch (fb->modifier) { 2181 case DRM_FORMAT_MOD_LINEAR: 2182 return intel_linear_alignment(dev_priv); 2183 case I915_FORMAT_MOD_X_TILED: 2184 if (INTEL_GEN(dev_priv) >= 9) 2185 return 256 * 1024; 2186 return 0; 2187 case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS: 2188 if (is_semiplanar_uv_plane(fb, color_plane)) 2189 return intel_tile_row_size(fb, color_plane); 2190 fallthrough; 2191 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS: 2192 return 16 * 1024; 2193 case I915_FORMAT_MOD_Y_TILED_CCS: 2194 case I915_FORMAT_MOD_Yf_TILED_CCS: 2195 case I915_FORMAT_MOD_Y_TILED: 2196 if (INTEL_GEN(dev_priv) >= 12 && 2197 is_semiplanar_uv_plane(fb, color_plane)) 2198 return intel_tile_row_size(fb, color_plane); 2199 fallthrough; 2200 case I915_FORMAT_MOD_Yf_TILED: 2201 return 1 * 1024 * 1024; 2202 default: 2203 MISSING_CASE(fb->modifier); 2204 return 0; 2205 } 2206 } 2207 2208 static bool intel_plane_uses_fence(const struct intel_plane_state *plane_state) 2209 { 2210 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 2211 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 2212 2213 return INTEL_GEN(dev_priv) < 4 || 2214 (plane->has_fbc && 2215 plane_state->view.type == I915_GGTT_VIEW_NORMAL); 2216 } 2217 2218 struct i915_vma * 2219 intel_pin_and_fence_fb_obj(struct drm_framebuffer *fb, 2220 const struct i915_ggtt_view *view, 2221 bool uses_fence, 2222 unsigned long *out_flags) 2223 { 2224 struct drm_device *dev = fb->dev; 2225 struct drm_i915_private *dev_priv = to_i915(dev); 2226 struct drm_i915_gem_object *obj = intel_fb_obj(fb); 2227 intel_wakeref_t wakeref; 2228 struct i915_vma *vma; 2229 unsigned int pinctl; 2230 u32 alignment; 2231 2232 if (drm_WARN_ON(dev, !i915_gem_object_is_framebuffer(obj))) 2233 return ERR_PTR(-EINVAL); 2234 2235 alignment = intel_surf_alignment(fb, 0); 2236 if (drm_WARN_ON(dev, alignment && !is_power_of_2(alignment))) 2237 return ERR_PTR(-EINVAL); 2238 2239 /* Note that the w/a also requires 64 PTE of padding following the 2240 * bo. We currently fill all unused PTE with the shadow page and so 2241 * we should always have valid PTE following the scanout preventing 2242 * the VT-d warning. 2243 */ 2244 if (intel_scanout_needs_vtd_wa(dev_priv) && alignment < 256 * 1024) 2245 alignment = 256 * 1024; 2246 2247 /* 2248 * Global gtt pte registers are special registers which actually forward 2249 * writes to a chunk of system memory. Which means that there is no risk 2250 * that the register values disappear as soon as we call 2251 * intel_runtime_pm_put(), so it is correct to wrap only the 2252 * pin/unpin/fence and not more. 2253 */ 2254 wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm); 2255 2256 atomic_inc(&dev_priv->gpu_error.pending_fb_pin); 2257 2258 /* 2259 * Valleyview is definitely limited to scanning out the first 2260 * 512MiB. Lets presume this behaviour was inherited from the 2261 * g4x display engine and that all earlier gen are similarly 2262 * limited. Testing suggests that it is a little more 2263 * complicated than this. For example, Cherryview appears quite 2264 * happy to scanout from anywhere within its global aperture. 2265 */ 2266 pinctl = 0; 2267 if (HAS_GMCH(dev_priv)) 2268 pinctl |= PIN_MAPPABLE; 2269 2270 vma = i915_gem_object_pin_to_display_plane(obj, 2271 alignment, view, pinctl); 2272 if (IS_ERR(vma)) 2273 goto err; 2274 2275 if (uses_fence && i915_vma_is_map_and_fenceable(vma)) { 2276 int ret; 2277 2278 /* 2279 * Install a fence for tiled scan-out. Pre-i965 always needs a 2280 * fence, whereas 965+ only requires a fence if using 2281 * framebuffer compression. For simplicity, we always, when 2282 * possible, install a fence as the cost is not that onerous. 2283 * 2284 * If we fail to fence the tiled scanout, then either the 2285 * modeset will reject the change (which is highly unlikely as 2286 * the affected systems, all but one, do not have unmappable 2287 * space) or we will not be able to enable full powersaving 2288 * techniques (also likely not to apply due to various limits 2289 * FBC and the like impose on the size of the buffer, which 2290 * presumably we violated anyway with this unmappable buffer). 2291 * Anyway, it is presumably better to stumble onwards with 2292 * something and try to run the system in a "less than optimal" 2293 * mode that matches the user configuration. 2294 */ 2295 ret = i915_vma_pin_fence(vma); 2296 if (ret != 0 && INTEL_GEN(dev_priv) < 4) { 2297 i915_vma_unpin(vma); 2298 vma = ERR_PTR(ret); 2299 goto err; 2300 } 2301 2302 if (ret == 0 && vma->fence) 2303 *out_flags |= PLANE_HAS_FENCE; 2304 } 2305 2306 i915_vma_get(vma); 2307 err: 2308 atomic_dec(&dev_priv->gpu_error.pending_fb_pin); 2309 intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref); 2310 return vma; 2311 } 2312 2313 void intel_unpin_fb_vma(struct i915_vma *vma, unsigned long flags) 2314 { 2315 if (flags & PLANE_HAS_FENCE) 2316 i915_vma_unpin_fence(vma); 2317 i915_vma_unpin(vma); 2318 i915_vma_put(vma); 2319 } 2320 2321 static int intel_fb_pitch(const struct drm_framebuffer *fb, int color_plane, 2322 unsigned int rotation) 2323 { 2324 if (drm_rotation_90_or_270(rotation)) 2325 return to_intel_framebuffer(fb)->rotated[color_plane].pitch; 2326 else 2327 return fb->pitches[color_plane]; 2328 } 2329 2330 /* 2331 * Convert the x/y offsets into a linear offset. 2332 * Only valid with 0/180 degree rotation, which is fine since linear 2333 * offset is only used with linear buffers on pre-hsw and tiled buffers 2334 * with gen2/3, and 90/270 degree rotations isn't supported on any of them. 2335 */ 2336 u32 intel_fb_xy_to_linear(int x, int y, 2337 const struct intel_plane_state *state, 2338 int color_plane) 2339 { 2340 const struct drm_framebuffer *fb = state->hw.fb; 2341 unsigned int cpp = fb->format->cpp[color_plane]; 2342 unsigned int pitch = state->color_plane[color_plane].stride; 2343 2344 return y * pitch + x * cpp; 2345 } 2346 2347 /* 2348 * Add the x/y offsets derived from fb->offsets[] to the user 2349 * specified plane src x/y offsets. The resulting x/y offsets 2350 * specify the start of scanout from the beginning of the gtt mapping. 2351 */ 2352 void intel_add_fb_offsets(int *x, int *y, 2353 const struct intel_plane_state *state, 2354 int color_plane) 2355 2356 { 2357 *x += state->color_plane[color_plane].x; 2358 *y += state->color_plane[color_plane].y; 2359 } 2360 2361 static u32 intel_adjust_tile_offset(int *x, int *y, 2362 unsigned int tile_width, 2363 unsigned int tile_height, 2364 unsigned int tile_size, 2365 unsigned int pitch_tiles, 2366 u32 old_offset, 2367 u32 new_offset) 2368 { 2369 unsigned int pitch_pixels = pitch_tiles * tile_width; 2370 unsigned int tiles; 2371 2372 WARN_ON(old_offset & (tile_size - 1)); 2373 WARN_ON(new_offset & (tile_size - 1)); 2374 WARN_ON(new_offset > old_offset); 2375 2376 tiles = (old_offset - new_offset) / tile_size; 2377 2378 *y += tiles / pitch_tiles * tile_height; 2379 *x += tiles % pitch_tiles * tile_width; 2380 2381 /* minimize x in case it got needlessly big */ 2382 *y += *x / pitch_pixels * tile_height; 2383 *x %= pitch_pixels; 2384 2385 return new_offset; 2386 } 2387 2388 static bool is_surface_linear(const struct drm_framebuffer *fb, int color_plane) 2389 { 2390 return fb->modifier == DRM_FORMAT_MOD_LINEAR || 2391 is_gen12_ccs_plane(fb, color_plane); 2392 } 2393 2394 static u32 intel_adjust_aligned_offset(int *x, int *y, 2395 const struct drm_framebuffer *fb, 2396 int color_plane, 2397 unsigned int rotation, 2398 unsigned int pitch, 2399 u32 old_offset, u32 new_offset) 2400 { 2401 struct drm_i915_private *dev_priv = to_i915(fb->dev); 2402 unsigned int cpp = fb->format->cpp[color_plane]; 2403 2404 drm_WARN_ON(&dev_priv->drm, new_offset > old_offset); 2405 2406 if (!is_surface_linear(fb, color_plane)) { 2407 unsigned int tile_size, tile_width, tile_height; 2408 unsigned int pitch_tiles; 2409 2410 tile_size = intel_tile_size(dev_priv); 2411 intel_tile_dims(fb, color_plane, &tile_width, &tile_height); 2412 2413 if (drm_rotation_90_or_270(rotation)) { 2414 pitch_tiles = pitch / tile_height; 2415 swap(tile_width, tile_height); 2416 } else { 2417 pitch_tiles = pitch / (tile_width * cpp); 2418 } 2419 2420 intel_adjust_tile_offset(x, y, tile_width, tile_height, 2421 tile_size, pitch_tiles, 2422 old_offset, new_offset); 2423 } else { 2424 old_offset += *y * pitch + *x * cpp; 2425 2426 *y = (old_offset - new_offset) / pitch; 2427 *x = ((old_offset - new_offset) - *y * pitch) / cpp; 2428 } 2429 2430 return new_offset; 2431 } 2432 2433 /* 2434 * Adjust the tile offset by moving the difference into 2435 * the x/y offsets. 2436 */ 2437 static u32 intel_plane_adjust_aligned_offset(int *x, int *y, 2438 const struct intel_plane_state *state, 2439 int color_plane, 2440 u32 old_offset, u32 new_offset) 2441 { 2442 return intel_adjust_aligned_offset(x, y, state->hw.fb, color_plane, 2443 state->hw.rotation, 2444 state->color_plane[color_plane].stride, 2445 old_offset, new_offset); 2446 } 2447 2448 /* 2449 * Computes the aligned offset to the base tile and adjusts 2450 * x, y. bytes per pixel is assumed to be a power-of-two. 2451 * 2452 * In the 90/270 rotated case, x and y are assumed 2453 * to be already rotated to match the rotated GTT view, and 2454 * pitch is the tile_height aligned framebuffer height. 2455 * 2456 * This function is used when computing the derived information 2457 * under intel_framebuffer, so using any of that information 2458 * here is not allowed. Anything under drm_framebuffer can be 2459 * used. This is why the user has to pass in the pitch since it 2460 * is specified in the rotated orientation. 2461 */ 2462 static u32 intel_compute_aligned_offset(struct drm_i915_private *dev_priv, 2463 int *x, int *y, 2464 const struct drm_framebuffer *fb, 2465 int color_plane, 2466 unsigned int pitch, 2467 unsigned int rotation, 2468 u32 alignment) 2469 { 2470 unsigned int cpp = fb->format->cpp[color_plane]; 2471 u32 offset, offset_aligned; 2472 2473 if (!is_surface_linear(fb, color_plane)) { 2474 unsigned int tile_size, tile_width, tile_height; 2475 unsigned int tile_rows, tiles, pitch_tiles; 2476 2477 tile_size = intel_tile_size(dev_priv); 2478 intel_tile_dims(fb, color_plane, &tile_width, &tile_height); 2479 2480 if (drm_rotation_90_or_270(rotation)) { 2481 pitch_tiles = pitch / tile_height; 2482 swap(tile_width, tile_height); 2483 } else { 2484 pitch_tiles = pitch / (tile_width * cpp); 2485 } 2486 2487 tile_rows = *y / tile_height; 2488 *y %= tile_height; 2489 2490 tiles = *x / tile_width; 2491 *x %= tile_width; 2492 2493 offset = (tile_rows * pitch_tiles + tiles) * tile_size; 2494 2495 offset_aligned = offset; 2496 if (alignment) 2497 offset_aligned = rounddown(offset_aligned, alignment); 2498 2499 intel_adjust_tile_offset(x, y, tile_width, tile_height, 2500 tile_size, pitch_tiles, 2501 offset, offset_aligned); 2502 } else { 2503 offset = *y * pitch + *x * cpp; 2504 offset_aligned = offset; 2505 if (alignment) { 2506 offset_aligned = rounddown(offset_aligned, alignment); 2507 *y = (offset % alignment) / pitch; 2508 *x = ((offset % alignment) - *y * pitch) / cpp; 2509 } else { 2510 *y = *x = 0; 2511 } 2512 } 2513 2514 return offset_aligned; 2515 } 2516 2517 static u32 intel_plane_compute_aligned_offset(int *x, int *y, 2518 const struct intel_plane_state *state, 2519 int color_plane) 2520 { 2521 struct intel_plane *intel_plane = to_intel_plane(state->uapi.plane); 2522 struct drm_i915_private *dev_priv = to_i915(intel_plane->base.dev); 2523 const struct drm_framebuffer *fb = state->hw.fb; 2524 unsigned int rotation = state->hw.rotation; 2525 int pitch = state->color_plane[color_plane].stride; 2526 u32 alignment; 2527 2528 if (intel_plane->id == PLANE_CURSOR) 2529 alignment = intel_cursor_alignment(dev_priv); 2530 else 2531 alignment = intel_surf_alignment(fb, color_plane); 2532 2533 return intel_compute_aligned_offset(dev_priv, x, y, fb, color_plane, 2534 pitch, rotation, alignment); 2535 } 2536 2537 /* Convert the fb->offset[] into x/y offsets */ 2538 static int intel_fb_offset_to_xy(int *x, int *y, 2539 const struct drm_framebuffer *fb, 2540 int color_plane) 2541 { 2542 struct drm_i915_private *dev_priv = to_i915(fb->dev); 2543 unsigned int height; 2544 u32 alignment; 2545 2546 if (INTEL_GEN(dev_priv) >= 12 && 2547 is_semiplanar_uv_plane(fb, color_plane)) 2548 alignment = intel_tile_row_size(fb, color_plane); 2549 else if (fb->modifier != DRM_FORMAT_MOD_LINEAR) 2550 alignment = intel_tile_size(dev_priv); 2551 else 2552 alignment = 0; 2553 2554 if (alignment != 0 && fb->offsets[color_plane] % alignment) { 2555 drm_dbg_kms(&dev_priv->drm, 2556 "Misaligned offset 0x%08x for color plane %d\n", 2557 fb->offsets[color_plane], color_plane); 2558 return -EINVAL; 2559 } 2560 2561 height = drm_framebuffer_plane_height(fb->height, fb, color_plane); 2562 height = roundup2(height, intel_tile_height(fb, color_plane)); 2563 2564 /* Catch potential overflows early */ 2565 if (add_overflows_t(u32, mul_u32_u32(height, fb->pitches[color_plane]), 2566 fb->offsets[color_plane])) { 2567 drm_dbg_kms(&dev_priv->drm, 2568 "Bad offset 0x%08x or pitch %d for color plane %d\n", 2569 fb->offsets[color_plane], fb->pitches[color_plane], 2570 color_plane); 2571 return -ERANGE; 2572 } 2573 2574 *x = 0; 2575 *y = 0; 2576 2577 intel_adjust_aligned_offset(x, y, 2578 fb, color_plane, DRM_MODE_ROTATE_0, 2579 fb->pitches[color_plane], 2580 fb->offsets[color_plane], 0); 2581 2582 return 0; 2583 } 2584 2585 static unsigned int intel_fb_modifier_to_tiling(u64 fb_modifier) 2586 { 2587 switch (fb_modifier) { 2588 case I915_FORMAT_MOD_X_TILED: 2589 return I915_TILING_X; 2590 case I915_FORMAT_MOD_Y_TILED: 2591 case I915_FORMAT_MOD_Y_TILED_CCS: 2592 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS: 2593 case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS: 2594 return I915_TILING_Y; 2595 default: 2596 return I915_TILING_NONE; 2597 } 2598 } 2599 2600 /* 2601 * From the Sky Lake PRM: 2602 * "The Color Control Surface (CCS) contains the compression status of 2603 * the cache-line pairs. The compression state of the cache-line pair 2604 * is specified by 2 bits in the CCS. Each CCS cache-line represents 2605 * an area on the main surface of 16 x16 sets of 128 byte Y-tiled 2606 * cache-line-pairs. CCS is always Y tiled." 2607 * 2608 * Since cache line pairs refers to horizontally adjacent cache lines, 2609 * each cache line in the CCS corresponds to an area of 32x16 cache 2610 * lines on the main surface. Since each pixel is 4 bytes, this gives 2611 * us a ratio of one byte in the CCS for each 8x16 pixels in the 2612 * main surface. 2613 */ 2614 static const struct drm_format_info skl_ccs_formats[] = { 2615 { .format = DRM_FORMAT_XRGB8888, .depth = 24, .num_planes = 2, 2616 .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, }, 2617 { .format = DRM_FORMAT_XBGR8888, .depth = 24, .num_planes = 2, 2618 .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, }, 2619 { .format = DRM_FORMAT_ARGB8888, .depth = 32, .num_planes = 2, 2620 .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, .has_alpha = true, }, 2621 { .format = DRM_FORMAT_ABGR8888, .depth = 32, .num_planes = 2, 2622 .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, .has_alpha = true, }, 2623 }; 2624 2625 /* 2626 * Gen-12 compression uses 4 bits of CCS data for each cache line pair in the 2627 * main surface. And each 64B CCS cache line represents an area of 4x1 Y-tiles 2628 * in the main surface. With 4 byte pixels and each Y-tile having dimensions of 2629 * 32x32 pixels, the ratio turns out to 1B in the CCS for every 2x32 pixels in 2630 * the main surface. 2631 */ 2632 static const struct drm_format_info gen12_ccs_formats[] = { 2633 { .format = DRM_FORMAT_XRGB8888, .depth = 24, .num_planes = 2, 2634 .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 2635 .hsub = 1, .vsub = 1, }, 2636 { .format = DRM_FORMAT_XBGR8888, .depth = 24, .num_planes = 2, 2637 .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 2638 .hsub = 1, .vsub = 1, }, 2639 { .format = DRM_FORMAT_ARGB8888, .depth = 32, .num_planes = 2, 2640 .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 2641 .hsub = 1, .vsub = 1, .has_alpha = true }, 2642 { .format = DRM_FORMAT_ABGR8888, .depth = 32, .num_planes = 2, 2643 .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 2644 .hsub = 1, .vsub = 1, .has_alpha = true }, 2645 { .format = DRM_FORMAT_YUYV, .num_planes = 2, 2646 .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 2647 .hsub = 2, .vsub = 1, .is_yuv = true }, 2648 { .format = DRM_FORMAT_YVYU, .num_planes = 2, 2649 .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 2650 .hsub = 2, .vsub = 1, .is_yuv = true }, 2651 { .format = DRM_FORMAT_UYVY, .num_planes = 2, 2652 .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 2653 .hsub = 2, .vsub = 1, .is_yuv = true }, 2654 { .format = DRM_FORMAT_VYUY, .num_planes = 2, 2655 .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 2656 .hsub = 2, .vsub = 1, .is_yuv = true }, 2657 { .format = DRM_FORMAT_NV12, .num_planes = 4, 2658 .char_per_block = { 1, 2, 1, 1 }, .block_w = { 1, 1, 4, 4 }, .block_h = { 1, 1, 1, 1 }, 2659 .hsub = 2, .vsub = 2, .is_yuv = true }, 2660 { .format = DRM_FORMAT_P010, .num_planes = 4, 2661 .char_per_block = { 2, 4, 1, 1 }, .block_w = { 1, 1, 2, 2 }, .block_h = { 1, 1, 1, 1 }, 2662 .hsub = 2, .vsub = 2, .is_yuv = true }, 2663 { .format = DRM_FORMAT_P012, .num_planes = 4, 2664 .char_per_block = { 2, 4, 1, 1 }, .block_w = { 1, 1, 2, 2 }, .block_h = { 1, 1, 1, 1 }, 2665 .hsub = 2, .vsub = 2, .is_yuv = true }, 2666 { .format = DRM_FORMAT_P016, .num_planes = 4, 2667 .char_per_block = { 2, 4, 1, 1 }, .block_w = { 1, 1, 2, 2 }, .block_h = { 1, 1, 1, 1 }, 2668 .hsub = 2, .vsub = 2, .is_yuv = true }, 2669 }; 2670 2671 static const struct drm_format_info * 2672 lookup_format_info(const struct drm_format_info formats[], 2673 int num_formats, u32 format) 2674 { 2675 int i; 2676 2677 for (i = 0; i < num_formats; i++) { 2678 if (formats[i].format == format) 2679 return &formats[i]; 2680 } 2681 2682 return NULL; 2683 } 2684 2685 static const struct drm_format_info * 2686 intel_get_format_info(const struct drm_mode_fb_cmd2 *cmd) 2687 { 2688 switch (cmd->modifier[0]) { 2689 case I915_FORMAT_MOD_Y_TILED_CCS: 2690 case I915_FORMAT_MOD_Yf_TILED_CCS: 2691 return lookup_format_info(skl_ccs_formats, 2692 ARRAY_SIZE(skl_ccs_formats), 2693 cmd->pixel_format); 2694 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS: 2695 case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS: 2696 return lookup_format_info(gen12_ccs_formats, 2697 ARRAY_SIZE(gen12_ccs_formats), 2698 cmd->pixel_format); 2699 default: 2700 return NULL; 2701 } 2702 } 2703 2704 bool is_ccs_modifier(u64 modifier) 2705 { 2706 return modifier == I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS || 2707 modifier == I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS || 2708 modifier == I915_FORMAT_MOD_Y_TILED_CCS || 2709 modifier == I915_FORMAT_MOD_Yf_TILED_CCS; 2710 } 2711 2712 static int gen12_ccs_aux_stride(struct drm_framebuffer *fb, int ccs_plane) 2713 { 2714 return DIV_ROUND_UP(fb->pitches[ccs_to_main_plane(fb, ccs_plane)], 2715 512) * 64; 2716 } 2717 2718 u32 intel_plane_fb_max_stride(struct drm_i915_private *dev_priv, 2719 u32 pixel_format, u64 modifier) 2720 { 2721 struct intel_crtc *crtc; 2722 struct intel_plane *plane; 2723 2724 /* 2725 * We assume the primary plane for pipe A has 2726 * the highest stride limits of them all, 2727 * if in case pipe A is disabled, use the first pipe from pipe_mask. 2728 */ 2729 crtc = intel_get_first_crtc(dev_priv); 2730 if (!crtc) 2731 return 0; 2732 2733 plane = to_intel_plane(crtc->base.primary); 2734 2735 return plane->max_stride(plane, pixel_format, modifier, 2736 DRM_MODE_ROTATE_0); 2737 } 2738 2739 static 2740 u32 intel_fb_max_stride(struct drm_i915_private *dev_priv, 2741 u32 pixel_format, u64 modifier) 2742 { 2743 /* 2744 * Arbitrary limit for gen4+ chosen to match the 2745 * render engine max stride. 2746 * 2747 * The new CCS hash mode makes remapping impossible 2748 */ 2749 if (!is_ccs_modifier(modifier)) { 2750 if (INTEL_GEN(dev_priv) >= 7) 2751 return 256*1024; 2752 else if (INTEL_GEN(dev_priv) >= 4) 2753 return 128*1024; 2754 } 2755 2756 return intel_plane_fb_max_stride(dev_priv, pixel_format, modifier); 2757 } 2758 2759 static u32 2760 intel_fb_stride_alignment(const struct drm_framebuffer *fb, int color_plane) 2761 { 2762 struct drm_i915_private *dev_priv = to_i915(fb->dev); 2763 u32 tile_width; 2764 2765 if (is_surface_linear(fb, color_plane)) { 2766 u32 max_stride = intel_plane_fb_max_stride(dev_priv, 2767 fb->format->format, 2768 fb->modifier); 2769 2770 /* 2771 * To make remapping with linear generally feasible 2772 * we need the stride to be page aligned. 2773 */ 2774 if (fb->pitches[color_plane] > max_stride && 2775 !is_ccs_modifier(fb->modifier)) 2776 return intel_tile_size(dev_priv); 2777 else 2778 return 64; 2779 } 2780 2781 tile_width = intel_tile_width_bytes(fb, color_plane); 2782 if (is_ccs_modifier(fb->modifier)) { 2783 /* 2784 * Display WA #0531: skl,bxt,kbl,glk 2785 * 2786 * Render decompression and plane width > 3840 2787 * combined with horizontal panning requires the 2788 * plane stride to be a multiple of 4. We'll just 2789 * require the entire fb to accommodate that to avoid 2790 * potential runtime errors at plane configuration time. 2791 */ 2792 if (IS_GEN(dev_priv, 9) && color_plane == 0 && fb->width > 3840) 2793 tile_width *= 4; 2794 /* 2795 * The main surface pitch must be padded to a multiple of four 2796 * tile widths. 2797 */ 2798 else if (INTEL_GEN(dev_priv) >= 12) 2799 tile_width *= 4; 2800 } 2801 return tile_width; 2802 } 2803 2804 bool intel_plane_can_remap(const struct intel_plane_state *plane_state) 2805 { 2806 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 2807 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 2808 const struct drm_framebuffer *fb = plane_state->hw.fb; 2809 int i; 2810 2811 /* We don't want to deal with remapping with cursors */ 2812 if (plane->id == PLANE_CURSOR) 2813 return false; 2814 2815 /* 2816 * The display engine limits already match/exceed the 2817 * render engine limits, so not much point in remapping. 2818 * Would also need to deal with the fence POT alignment 2819 * and gen2 2KiB GTT tile size. 2820 */ 2821 if (INTEL_GEN(dev_priv) < 4) 2822 return false; 2823 2824 /* 2825 * The new CCS hash mode isn't compatible with remapping as 2826 * the virtual address of the pages affects the compressed data. 2827 */ 2828 if (is_ccs_modifier(fb->modifier)) 2829 return false; 2830 2831 /* Linear needs a page aligned stride for remapping */ 2832 if (fb->modifier == DRM_FORMAT_MOD_LINEAR) { 2833 unsigned int alignment = intel_tile_size(dev_priv) - 1; 2834 2835 for (i = 0; i < fb->format->num_planes; i++) { 2836 if (fb->pitches[i] & alignment) 2837 return false; 2838 } 2839 } 2840 2841 return true; 2842 } 2843 2844 static bool intel_plane_needs_remap(const struct intel_plane_state *plane_state) 2845 { 2846 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 2847 const struct drm_framebuffer *fb = plane_state->hw.fb; 2848 unsigned int rotation = plane_state->hw.rotation; 2849 u32 stride, max_stride; 2850 2851 /* 2852 * No remapping for invisible planes since we don't have 2853 * an actual source viewport to remap. 2854 */ 2855 if (!plane_state->uapi.visible) 2856 return false; 2857 2858 if (!intel_plane_can_remap(plane_state)) 2859 return false; 2860 2861 /* 2862 * FIXME: aux plane limits on gen9+ are 2863 * unclear in Bspec, for now no checking. 2864 */ 2865 stride = intel_fb_pitch(fb, 0, rotation); 2866 max_stride = plane->max_stride(plane, fb->format->format, 2867 fb->modifier, rotation); 2868 2869 return stride > max_stride; 2870 } 2871 2872 static void 2873 intel_fb_plane_get_subsampling(int *hsub, int *vsub, 2874 const struct drm_framebuffer *fb, 2875 int color_plane) 2876 { 2877 int main_plane; 2878 2879 if (color_plane == 0) { 2880 *hsub = 1; 2881 *vsub = 1; 2882 2883 return; 2884 } 2885 2886 /* 2887 * TODO: Deduct the subsampling from the char block for all CCS 2888 * formats and planes. 2889 */ 2890 if (!is_gen12_ccs_plane(fb, color_plane)) { 2891 *hsub = fb->format->hsub; 2892 *vsub = fb->format->vsub; 2893 2894 return; 2895 } 2896 2897 main_plane = ccs_to_main_plane(fb, color_plane); 2898 *hsub = drm_format_info_block_width(fb->format, color_plane) / 2899 drm_format_info_block_width(fb->format, main_plane); 2900 2901 /* 2902 * The min stride check in the core framebuffer_check() function 2903 * assumes that format->hsub applies to every plane except for the 2904 * first plane. That's incorrect for the CCS AUX plane of the first 2905 * plane, but for the above check to pass we must define the block 2906 * width with that subsampling applied to it. Adjust the width here 2907 * accordingly, so we can calculate the actual subsampling factor. 2908 */ 2909 if (main_plane == 0) 2910 *hsub *= fb->format->hsub; 2911 2912 *vsub = 32; 2913 } 2914 static int 2915 intel_fb_check_ccs_xy(struct drm_framebuffer *fb, int ccs_plane, int x, int y) 2916 { 2917 struct drm_i915_private *i915 = to_i915(fb->dev); 2918 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); 2919 int main_plane; 2920 int hsub, vsub; 2921 int tile_width, tile_height; 2922 int ccs_x, ccs_y; 2923 int main_x, main_y; 2924 2925 if (!is_ccs_plane(fb, ccs_plane)) 2926 return 0; 2927 2928 intel_tile_dims(fb, ccs_plane, &tile_width, &tile_height); 2929 intel_fb_plane_get_subsampling(&hsub, &vsub, fb, ccs_plane); 2930 2931 tile_width *= hsub; 2932 tile_height *= vsub; 2933 2934 ccs_x = (x * hsub) % tile_width; 2935 ccs_y = (y * vsub) % tile_height; 2936 2937 main_plane = ccs_to_main_plane(fb, ccs_plane); 2938 main_x = intel_fb->normal[main_plane].x % tile_width; 2939 main_y = intel_fb->normal[main_plane].y % tile_height; 2940 2941 /* 2942 * CCS doesn't have its own x/y offset register, so the intra CCS tile 2943 * x/y offsets must match between CCS and the main surface. 2944 */ 2945 if (main_x != ccs_x || main_y != ccs_y) { 2946 drm_dbg_kms(&i915->drm, 2947 "Bad CCS x/y (main %d,%d ccs %d,%d) full (main %d,%d ccs %d,%d)\n", 2948 main_x, main_y, 2949 ccs_x, ccs_y, 2950 intel_fb->normal[main_plane].x, 2951 intel_fb->normal[main_plane].y, 2952 x, y); 2953 return -EINVAL; 2954 } 2955 2956 return 0; 2957 } 2958 2959 static void 2960 intel_fb_plane_dims(int *w, int *h, struct drm_framebuffer *fb, int color_plane) 2961 { 2962 int main_plane = is_ccs_plane(fb, color_plane) ? 2963 ccs_to_main_plane(fb, color_plane) : 0; 2964 int main_hsub, main_vsub; 2965 int hsub, vsub; 2966 2967 intel_fb_plane_get_subsampling(&main_hsub, &main_vsub, fb, main_plane); 2968 intel_fb_plane_get_subsampling(&hsub, &vsub, fb, color_plane); 2969 *w = fb->width / main_hsub / hsub; 2970 *h = fb->height / main_vsub / vsub; 2971 } 2972 2973 /* 2974 * Setup the rotated view for an FB plane and return the size the GTT mapping 2975 * requires for this view. 2976 */ 2977 static u32 2978 setup_fb_rotation(int plane, const struct intel_remapped_plane_info *plane_info, 2979 u32 gtt_offset_rotated, int x, int y, 2980 unsigned int width, unsigned int height, 2981 unsigned int tile_size, 2982 unsigned int tile_width, unsigned int tile_height, 2983 struct drm_framebuffer *fb) 2984 { 2985 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); 2986 struct intel_rotation_info *rot_info = &intel_fb->rot_info; 2987 unsigned int pitch_tiles; 2988 struct drm_rect r; 2989 2990 /* Y or Yf modifiers required for 90/270 rotation */ 2991 if (fb->modifier != I915_FORMAT_MOD_Y_TILED && 2992 fb->modifier != I915_FORMAT_MOD_Yf_TILED) 2993 return 0; 2994 2995 if (drm_WARN_ON(fb->dev, plane >= ARRAY_SIZE(rot_info->plane))) 2996 return 0; 2997 2998 rot_info->plane[plane] = *plane_info; 2999 3000 intel_fb->rotated[plane].pitch = plane_info->height * tile_height; 3001 3002 /* rotate the x/y offsets to match the GTT view */ 3003 drm_rect_init(&r, x, y, width, height); 3004 drm_rect_rotate(&r, 3005 plane_info->width * tile_width, 3006 plane_info->height * tile_height, 3007 DRM_MODE_ROTATE_270); 3008 x = r.x1; 3009 y = r.y1; 3010 3011 /* rotate the tile dimensions to match the GTT view */ 3012 pitch_tiles = intel_fb->rotated[plane].pitch / tile_height; 3013 swap(tile_width, tile_height); 3014 3015 /* 3016 * We only keep the x/y offsets, so push all of the 3017 * gtt offset into the x/y offsets. 3018 */ 3019 intel_adjust_tile_offset(&x, &y, 3020 tile_width, tile_height, 3021 tile_size, pitch_tiles, 3022 gtt_offset_rotated * tile_size, 0); 3023 3024 /* 3025 * First pixel of the framebuffer from 3026 * the start of the rotated gtt mapping. 3027 */ 3028 intel_fb->rotated[plane].x = x; 3029 intel_fb->rotated[plane].y = y; 3030 3031 return plane_info->width * plane_info->height; 3032 } 3033 3034 static int 3035 intel_fill_fb_info(struct drm_i915_private *dev_priv, 3036 struct drm_framebuffer *fb) 3037 { 3038 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); 3039 struct drm_i915_gem_object *obj = intel_fb_obj(fb); 3040 u32 gtt_offset_rotated = 0; 3041 unsigned int max_size = 0; 3042 int i, num_planes = fb->format->num_planes; 3043 unsigned int tile_size = intel_tile_size(dev_priv); 3044 3045 for (i = 0; i < num_planes; i++) { 3046 unsigned int width, height; 3047 unsigned int cpp, size; 3048 u32 offset; 3049 int x, y; 3050 int ret; 3051 3052 cpp = fb->format->cpp[i]; 3053 intel_fb_plane_dims(&width, &height, fb, i); 3054 3055 ret = intel_fb_offset_to_xy(&x, &y, fb, i); 3056 if (ret) { 3057 drm_dbg_kms(&dev_priv->drm, 3058 "bad fb plane %d offset: 0x%x\n", 3059 i, fb->offsets[i]); 3060 return ret; 3061 } 3062 3063 ret = intel_fb_check_ccs_xy(fb, i, x, y); 3064 if (ret) 3065 return ret; 3066 3067 /* 3068 * The fence (if used) is aligned to the start of the object 3069 * so having the framebuffer wrap around across the edge of the 3070 * fenced region doesn't really work. We have no API to configure 3071 * the fence start offset within the object (nor could we probably 3072 * on gen2/3). So it's just easier if we just require that the 3073 * fb layout agrees with the fence layout. We already check that the 3074 * fb stride matches the fence stride elsewhere. 3075 */ 3076 if (i == 0 && i915_gem_object_is_tiled(obj) && 3077 (x + width) * cpp > fb->pitches[i]) { 3078 drm_dbg_kms(&dev_priv->drm, 3079 "bad fb plane %d offset: 0x%x\n", 3080 i, fb->offsets[i]); 3081 return -EINVAL; 3082 } 3083 3084 /* 3085 * First pixel of the framebuffer from 3086 * the start of the normal gtt mapping. 3087 */ 3088 intel_fb->normal[i].x = x; 3089 intel_fb->normal[i].y = y; 3090 3091 offset = intel_compute_aligned_offset(dev_priv, &x, &y, fb, i, 3092 fb->pitches[i], 3093 DRM_MODE_ROTATE_0, 3094 tile_size); 3095 offset /= tile_size; 3096 3097 if (!is_surface_linear(fb, i)) { 3098 struct intel_remapped_plane_info plane_info; 3099 unsigned int tile_width, tile_height; 3100 3101 intel_tile_dims(fb, i, &tile_width, &tile_height); 3102 3103 plane_info.offset = offset; 3104 plane_info.stride = DIV_ROUND_UP(fb->pitches[i], 3105 tile_width * cpp); 3106 plane_info.width = DIV_ROUND_UP(x + width, tile_width); 3107 plane_info.height = DIV_ROUND_UP(y + height, 3108 tile_height); 3109 3110 /* how many tiles does this plane need */ 3111 size = plane_info.stride * plane_info.height; 3112 /* 3113 * If the plane isn't horizontally tile aligned, 3114 * we need one more tile. 3115 */ 3116 if (x != 0) 3117 size++; 3118 3119 gtt_offset_rotated += 3120 setup_fb_rotation(i, &plane_info, 3121 gtt_offset_rotated, 3122 x, y, width, height, 3123 tile_size, 3124 tile_width, tile_height, 3125 fb); 3126 } else { 3127 size = DIV_ROUND_UP((y + height) * fb->pitches[i] + 3128 x * cpp, tile_size); 3129 } 3130 3131 /* how many tiles in total needed in the bo */ 3132 max_size = max(max_size, offset + size); 3133 } 3134 3135 if (mul_u32_u32(max_size, tile_size) > obj->base.size) { 3136 drm_dbg_kms(&dev_priv->drm, 3137 "fb too big for bo (need %llu bytes, have %zu bytes)\n", 3138 mul_u32_u32(max_size, tile_size), obj->base.size); 3139 return -EINVAL; 3140 } 3141 3142 return 0; 3143 } 3144 3145 static void 3146 intel_plane_remap_gtt(struct intel_plane_state *plane_state) 3147 { 3148 struct drm_i915_private *dev_priv = 3149 to_i915(plane_state->uapi.plane->dev); 3150 struct drm_framebuffer *fb = plane_state->hw.fb; 3151 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); 3152 struct intel_rotation_info *info = &plane_state->view.rotated; 3153 unsigned int rotation = plane_state->hw.rotation; 3154 int i, num_planes = fb->format->num_planes; 3155 unsigned int tile_size = intel_tile_size(dev_priv); 3156 unsigned int src_x, src_y; 3157 unsigned int src_w, src_h; 3158 u32 gtt_offset = 0; 3159 3160 memset(&plane_state->view, 0, sizeof(plane_state->view)); 3161 plane_state->view.type = drm_rotation_90_or_270(rotation) ? 3162 I915_GGTT_VIEW_ROTATED : I915_GGTT_VIEW_REMAPPED; 3163 3164 src_x = plane_state->uapi.src.x1 >> 16; 3165 src_y = plane_state->uapi.src.y1 >> 16; 3166 src_w = drm_rect_width(&plane_state->uapi.src) >> 16; 3167 src_h = drm_rect_height(&plane_state->uapi.src) >> 16; 3168 3169 drm_WARN_ON(&dev_priv->drm, is_ccs_modifier(fb->modifier)); 3170 3171 /* Make src coordinates relative to the viewport */ 3172 drm_rect_translate(&plane_state->uapi.src, 3173 -(src_x << 16), -(src_y << 16)); 3174 3175 /* Rotate src coordinates to match rotated GTT view */ 3176 if (drm_rotation_90_or_270(rotation)) 3177 drm_rect_rotate(&plane_state->uapi.src, 3178 src_w << 16, src_h << 16, 3179 DRM_MODE_ROTATE_270); 3180 3181 for (i = 0; i < num_planes; i++) { 3182 unsigned int hsub = i ? fb->format->hsub : 1; 3183 unsigned int vsub = i ? fb->format->vsub : 1; 3184 unsigned int cpp = fb->format->cpp[i]; 3185 unsigned int tile_width, tile_height; 3186 unsigned int width, height; 3187 unsigned int pitch_tiles; 3188 unsigned int x, y; 3189 u32 offset; 3190 3191 intel_tile_dims(fb, i, &tile_width, &tile_height); 3192 3193 x = src_x / hsub; 3194 y = src_y / vsub; 3195 width = src_w / hsub; 3196 height = src_h / vsub; 3197 3198 /* 3199 * First pixel of the src viewport from the 3200 * start of the normal gtt mapping. 3201 */ 3202 x += intel_fb->normal[i].x; 3203 y += intel_fb->normal[i].y; 3204 3205 offset = intel_compute_aligned_offset(dev_priv, &x, &y, 3206 fb, i, fb->pitches[i], 3207 DRM_MODE_ROTATE_0, tile_size); 3208 offset /= tile_size; 3209 3210 drm_WARN_ON(&dev_priv->drm, i >= ARRAY_SIZE(info->plane)); 3211 info->plane[i].offset = offset; 3212 info->plane[i].stride = DIV_ROUND_UP(fb->pitches[i], 3213 tile_width * cpp); 3214 info->plane[i].width = DIV_ROUND_UP(x + width, tile_width); 3215 info->plane[i].height = DIV_ROUND_UP(y + height, tile_height); 3216 3217 if (drm_rotation_90_or_270(rotation)) { 3218 struct drm_rect r; 3219 3220 /* rotate the x/y offsets to match the GTT view */ 3221 drm_rect_init(&r, x, y, width, height); 3222 drm_rect_rotate(&r, 3223 info->plane[i].width * tile_width, 3224 info->plane[i].height * tile_height, 3225 DRM_MODE_ROTATE_270); 3226 x = r.x1; 3227 y = r.y1; 3228 3229 pitch_tiles = info->plane[i].height; 3230 plane_state->color_plane[i].stride = pitch_tiles * tile_height; 3231 3232 /* rotate the tile dimensions to match the GTT view */ 3233 swap(tile_width, tile_height); 3234 } else { 3235 pitch_tiles = info->plane[i].width; 3236 plane_state->color_plane[i].stride = pitch_tiles * tile_width * cpp; 3237 } 3238 3239 /* 3240 * We only keep the x/y offsets, so push all of the 3241 * gtt offset into the x/y offsets. 3242 */ 3243 intel_adjust_tile_offset(&x, &y, 3244 tile_width, tile_height, 3245 tile_size, pitch_tiles, 3246 gtt_offset * tile_size, 0); 3247 3248 gtt_offset += info->plane[i].width * info->plane[i].height; 3249 3250 plane_state->color_plane[i].offset = 0; 3251 plane_state->color_plane[i].x = x; 3252 plane_state->color_plane[i].y = y; 3253 } 3254 } 3255 3256 static int 3257 intel_plane_compute_gtt(struct intel_plane_state *plane_state) 3258 { 3259 const struct intel_framebuffer *fb = 3260 to_intel_framebuffer(plane_state->hw.fb); 3261 unsigned int rotation = plane_state->hw.rotation; 3262 int i, num_planes; 3263 3264 if (!fb) 3265 return 0; 3266 3267 num_planes = fb->base.format->num_planes; 3268 3269 if (intel_plane_needs_remap(plane_state)) { 3270 intel_plane_remap_gtt(plane_state); 3271 3272 /* 3273 * Sometimes even remapping can't overcome 3274 * the stride limitations :( Can happen with 3275 * big plane sizes and suitably misaligned 3276 * offsets. 3277 */ 3278 return intel_plane_check_stride(plane_state); 3279 } 3280 3281 intel_fill_fb_ggtt_view(&plane_state->view, &fb->base, rotation); 3282 3283 for (i = 0; i < num_planes; i++) { 3284 plane_state->color_plane[i].stride = intel_fb_pitch(&fb->base, i, rotation); 3285 plane_state->color_plane[i].offset = 0; 3286 3287 if (drm_rotation_90_or_270(rotation)) { 3288 plane_state->color_plane[i].x = fb->rotated[i].x; 3289 plane_state->color_plane[i].y = fb->rotated[i].y; 3290 } else { 3291 plane_state->color_plane[i].x = fb->normal[i].x; 3292 plane_state->color_plane[i].y = fb->normal[i].y; 3293 } 3294 } 3295 3296 /* Rotate src coordinates to match rotated GTT view */ 3297 if (drm_rotation_90_or_270(rotation)) 3298 drm_rect_rotate(&plane_state->uapi.src, 3299 fb->base.width << 16, fb->base.height << 16, 3300 DRM_MODE_ROTATE_270); 3301 3302 return intel_plane_check_stride(plane_state); 3303 } 3304 3305 static int i9xx_format_to_fourcc(int format) 3306 { 3307 switch (format) { 3308 case DISPPLANE_8BPP: 3309 return DRM_FORMAT_C8; 3310 case DISPPLANE_BGRA555: 3311 return DRM_FORMAT_ARGB1555; 3312 case DISPPLANE_BGRX555: 3313 return DRM_FORMAT_XRGB1555; 3314 case DISPPLANE_BGRX565: 3315 return DRM_FORMAT_RGB565; 3316 default: 3317 case DISPPLANE_BGRX888: 3318 return DRM_FORMAT_XRGB8888; 3319 case DISPPLANE_RGBX888: 3320 return DRM_FORMAT_XBGR8888; 3321 case DISPPLANE_BGRA888: 3322 return DRM_FORMAT_ARGB8888; 3323 case DISPPLANE_RGBA888: 3324 return DRM_FORMAT_ABGR8888; 3325 case DISPPLANE_BGRX101010: 3326 return DRM_FORMAT_XRGB2101010; 3327 case DISPPLANE_RGBX101010: 3328 return DRM_FORMAT_XBGR2101010; 3329 case DISPPLANE_BGRA101010: 3330 return DRM_FORMAT_ARGB2101010; 3331 case DISPPLANE_RGBA101010: 3332 return DRM_FORMAT_ABGR2101010; 3333 case DISPPLANE_RGBX161616: 3334 return DRM_FORMAT_XBGR16161616F; 3335 } 3336 } 3337 3338 int skl_format_to_fourcc(int format, bool rgb_order, bool alpha) 3339 { 3340 switch (format) { 3341 case PLANE_CTL_FORMAT_RGB_565: 3342 return DRM_FORMAT_RGB565; 3343 case PLANE_CTL_FORMAT_NV12: 3344 return DRM_FORMAT_NV12; 3345 case PLANE_CTL_FORMAT_XYUV: 3346 return DRM_FORMAT_XYUV8888; 3347 case PLANE_CTL_FORMAT_P010: 3348 return DRM_FORMAT_P010; 3349 case PLANE_CTL_FORMAT_P012: 3350 return DRM_FORMAT_P012; 3351 case PLANE_CTL_FORMAT_P016: 3352 return DRM_FORMAT_P016; 3353 case PLANE_CTL_FORMAT_Y210: 3354 return DRM_FORMAT_Y210; 3355 case PLANE_CTL_FORMAT_Y212: 3356 return DRM_FORMAT_Y212; 3357 case PLANE_CTL_FORMAT_Y216: 3358 return DRM_FORMAT_Y216; 3359 case PLANE_CTL_FORMAT_Y410: 3360 return DRM_FORMAT_XVYU2101010; 3361 case PLANE_CTL_FORMAT_Y412: 3362 return DRM_FORMAT_XVYU12_16161616; 3363 case PLANE_CTL_FORMAT_Y416: 3364 return DRM_FORMAT_XVYU16161616; 3365 default: 3366 case PLANE_CTL_FORMAT_XRGB_8888: 3367 if (rgb_order) { 3368 if (alpha) 3369 return DRM_FORMAT_ABGR8888; 3370 else 3371 return DRM_FORMAT_XBGR8888; 3372 } else { 3373 if (alpha) 3374 return DRM_FORMAT_ARGB8888; 3375 else 3376 return DRM_FORMAT_XRGB8888; 3377 } 3378 case PLANE_CTL_FORMAT_XRGB_2101010: 3379 if (rgb_order) { 3380 if (alpha) 3381 return DRM_FORMAT_ABGR2101010; 3382 else 3383 return DRM_FORMAT_XBGR2101010; 3384 } else { 3385 if (alpha) 3386 return DRM_FORMAT_ARGB2101010; 3387 else 3388 return DRM_FORMAT_XRGB2101010; 3389 } 3390 case PLANE_CTL_FORMAT_XRGB_16161616F: 3391 if (rgb_order) { 3392 if (alpha) 3393 return DRM_FORMAT_ABGR16161616F; 3394 else 3395 return DRM_FORMAT_XBGR16161616F; 3396 } else { 3397 if (alpha) 3398 return DRM_FORMAT_ARGB16161616F; 3399 else 3400 return DRM_FORMAT_XRGB16161616F; 3401 } 3402 } 3403 } 3404 3405 static struct i915_vma * 3406 initial_plane_vma(struct drm_i915_private *i915, 3407 struct intel_initial_plane_config *plane_config) 3408 { 3409 struct drm_i915_gem_object *obj; 3410 struct i915_vma *vma; 3411 u32 base, size; 3412 3413 if (plane_config->size == 0) 3414 return NULL; 3415 3416 base = round_down(plane_config->base, 3417 I915_GTT_MIN_ALIGNMENT); 3418 size = round_up(plane_config->base + plane_config->size, 3419 I915_GTT_MIN_ALIGNMENT); 3420 size -= base; 3421 3422 /* 3423 * If the FB is too big, just don't use it since fbdev is not very 3424 * important and we should probably use that space with FBC or other 3425 * features. 3426 */ 3427 if (size * 2 > i915->stolen_usable_size) 3428 return NULL; 3429 3430 obj = i915_gem_object_create_stolen_for_preallocated(i915, base, size); 3431 if (IS_ERR(obj)) 3432 return NULL; 3433 3434 /* 3435 * Mark it WT ahead of time to avoid changing the 3436 * cache_level during fbdev initialization. The 3437 * unbind there would get stuck waiting for rcu. 3438 */ 3439 i915_gem_object_set_cache_coherency(obj, HAS_WT(i915) ? 3440 I915_CACHE_WT : I915_CACHE_NONE); 3441 3442 switch (plane_config->tiling) { 3443 case I915_TILING_NONE: 3444 break; 3445 case I915_TILING_X: 3446 case I915_TILING_Y: 3447 obj->tiling_and_stride = 3448 plane_config->fb->base.pitches[0] | 3449 plane_config->tiling; 3450 break; 3451 default: 3452 MISSING_CASE(plane_config->tiling); 3453 goto err_obj; 3454 } 3455 3456 vma = i915_vma_instance(obj, &i915->ggtt.vm, NULL); 3457 if (IS_ERR(vma)) 3458 goto err_obj; 3459 3460 if (i915_ggtt_pin(vma, NULL, 0, PIN_MAPPABLE | PIN_OFFSET_FIXED | base)) 3461 goto err_obj; 3462 3463 if (i915_gem_object_is_tiled(obj) && 3464 !i915_vma_is_map_and_fenceable(vma)) 3465 goto err_obj; 3466 3467 return vma; 3468 3469 err_obj: 3470 i915_gem_object_put(obj); 3471 return NULL; 3472 } 3473 3474 static bool 3475 intel_alloc_initial_plane_obj(struct intel_crtc *crtc, 3476 struct intel_initial_plane_config *plane_config) 3477 { 3478 struct drm_device *dev = crtc->base.dev; 3479 struct drm_i915_private *dev_priv = to_i915(dev); 3480 struct drm_mode_fb_cmd2 mode_cmd = { 0 }; 3481 struct drm_framebuffer *fb = &plane_config->fb->base; 3482 struct i915_vma *vma; 3483 3484 switch (fb->modifier) { 3485 case DRM_FORMAT_MOD_LINEAR: 3486 case I915_FORMAT_MOD_X_TILED: 3487 case I915_FORMAT_MOD_Y_TILED: 3488 break; 3489 default: 3490 drm_dbg(&dev_priv->drm, 3491 "Unsupported modifier for initial FB: 0x%llx\n", 3492 fb->modifier); 3493 return false; 3494 } 3495 3496 vma = initial_plane_vma(dev_priv, plane_config); 3497 if (!vma) 3498 return false; 3499 3500 mode_cmd.pixel_format = fb->format->format; 3501 mode_cmd.width = fb->width; 3502 mode_cmd.height = fb->height; 3503 mode_cmd.pitches[0] = fb->pitches[0]; 3504 mode_cmd.modifier[0] = fb->modifier; 3505 mode_cmd.flags = DRM_MODE_FB_MODIFIERS; 3506 3507 if (intel_framebuffer_init(to_intel_framebuffer(fb), 3508 vma->obj, &mode_cmd)) { 3509 drm_dbg_kms(&dev_priv->drm, "intel fb init failed\n"); 3510 goto err_vma; 3511 } 3512 3513 plane_config->vma = vma; 3514 return true; 3515 3516 err_vma: 3517 i915_vma_put(vma); 3518 return false; 3519 } 3520 3521 static void 3522 intel_set_plane_visible(struct intel_crtc_state *crtc_state, 3523 struct intel_plane_state *plane_state, 3524 bool visible) 3525 { 3526 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 3527 3528 plane_state->uapi.visible = visible; 3529 3530 if (visible) 3531 crtc_state->uapi.plane_mask |= drm_plane_mask(&plane->base); 3532 else 3533 crtc_state->uapi.plane_mask &= ~drm_plane_mask(&plane->base); 3534 } 3535 3536 static void fixup_active_planes(struct intel_crtc_state *crtc_state) 3537 { 3538 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 3539 struct drm_plane *plane; 3540 3541 /* 3542 * Active_planes aliases if multiple "primary" or cursor planes 3543 * have been used on the same (or wrong) pipe. plane_mask uses 3544 * unique ids, hence we can use that to reconstruct active_planes. 3545 */ 3546 crtc_state->active_planes = 0; 3547 3548 drm_for_each_plane_mask(plane, &dev_priv->drm, 3549 crtc_state->uapi.plane_mask) 3550 crtc_state->active_planes |= BIT(to_intel_plane(plane)->id); 3551 } 3552 3553 static void intel_plane_disable_noatomic(struct intel_crtc *crtc, 3554 struct intel_plane *plane) 3555 { 3556 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3557 struct intel_crtc_state *crtc_state = 3558 to_intel_crtc_state(crtc->base.state); 3559 struct intel_plane_state *plane_state = 3560 to_intel_plane_state(plane->base.state); 3561 3562 drm_dbg_kms(&dev_priv->drm, 3563 "Disabling [PLANE:%d:%s] on [CRTC:%d:%s]\n", 3564 plane->base.base.id, plane->base.name, 3565 crtc->base.base.id, crtc->base.name); 3566 3567 intel_set_plane_visible(crtc_state, plane_state, false); 3568 fixup_active_planes(crtc_state); 3569 crtc_state->data_rate[plane->id] = 0; 3570 crtc_state->min_cdclk[plane->id] = 0; 3571 3572 if (plane->id == PLANE_PRIMARY) 3573 hsw_disable_ips(crtc_state); 3574 3575 /* 3576 * Vblank time updates from the shadow to live plane control register 3577 * are blocked if the memory self-refresh mode is active at that 3578 * moment. So to make sure the plane gets truly disabled, disable 3579 * first the self-refresh mode. The self-refresh enable bit in turn 3580 * will be checked/applied by the HW only at the next frame start 3581 * event which is after the vblank start event, so we need to have a 3582 * wait-for-vblank between disabling the plane and the pipe. 3583 */ 3584 if (HAS_GMCH(dev_priv) && 3585 intel_set_memory_cxsr(dev_priv, false)) 3586 intel_wait_for_vblank(dev_priv, crtc->pipe); 3587 3588 /* 3589 * Gen2 reports pipe underruns whenever all planes are disabled. 3590 * So disable underrun reporting before all the planes get disabled. 3591 */ 3592 if (IS_GEN(dev_priv, 2) && !crtc_state->active_planes) 3593 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false); 3594 3595 intel_disable_plane(plane, crtc_state); 3596 } 3597 3598 static struct intel_frontbuffer * 3599 to_intel_frontbuffer(struct drm_framebuffer *fb) 3600 { 3601 return fb ? to_intel_framebuffer(fb)->frontbuffer : NULL; 3602 } 3603 3604 static void 3605 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc, 3606 struct intel_initial_plane_config *plane_config) 3607 { 3608 struct drm_device *dev = intel_crtc->base.dev; 3609 struct drm_i915_private *dev_priv = to_i915(dev); 3610 struct drm_crtc *c; 3611 struct drm_plane *primary = intel_crtc->base.primary; 3612 struct drm_plane_state *plane_state = primary->state; 3613 struct intel_plane *intel_plane = to_intel_plane(primary); 3614 struct intel_plane_state *intel_state = 3615 to_intel_plane_state(plane_state); 3616 struct drm_framebuffer *fb; 3617 struct i915_vma *vma; 3618 3619 if (!plane_config->fb) 3620 return; 3621 3622 if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) { 3623 fb = &plane_config->fb->base; 3624 vma = plane_config->vma; 3625 goto valid_fb; 3626 } 3627 3628 /* 3629 * Failed to alloc the obj, check to see if we should share 3630 * an fb with another CRTC instead 3631 */ 3632 for_each_crtc(dev, c) { 3633 struct intel_plane_state *state; 3634 3635 if (c == &intel_crtc->base) 3636 continue; 3637 3638 if (!to_intel_crtc(c)->active) 3639 continue; 3640 3641 state = to_intel_plane_state(c->primary->state); 3642 if (!state->vma) 3643 continue; 3644 3645 if (intel_plane_ggtt_offset(state) == plane_config->base) { 3646 fb = state->hw.fb; 3647 vma = state->vma; 3648 goto valid_fb; 3649 } 3650 } 3651 3652 /* 3653 * We've failed to reconstruct the BIOS FB. Current display state 3654 * indicates that the primary plane is visible, but has a NULL FB, 3655 * which will lead to problems later if we don't fix it up. The 3656 * simplest solution is to just disable the primary plane now and 3657 * pretend the BIOS never had it enabled. 3658 */ 3659 intel_plane_disable_noatomic(intel_crtc, intel_plane); 3660 3661 return; 3662 3663 valid_fb: 3664 intel_state->hw.rotation = plane_config->rotation; 3665 intel_fill_fb_ggtt_view(&intel_state->view, fb, 3666 intel_state->hw.rotation); 3667 intel_state->color_plane[0].stride = 3668 intel_fb_pitch(fb, 0, intel_state->hw.rotation); 3669 3670 __i915_vma_pin(vma); 3671 intel_state->vma = i915_vma_get(vma); 3672 if (intel_plane_uses_fence(intel_state) && i915_vma_pin_fence(vma) == 0) 3673 if (vma->fence) 3674 intel_state->flags |= PLANE_HAS_FENCE; 3675 3676 plane_state->src_x = 0; 3677 plane_state->src_y = 0; 3678 plane_state->src_w = fb->width << 16; 3679 plane_state->src_h = fb->height << 16; 3680 3681 plane_state->crtc_x = 0; 3682 plane_state->crtc_y = 0; 3683 plane_state->crtc_w = fb->width; 3684 plane_state->crtc_h = fb->height; 3685 3686 intel_state->uapi.src = drm_plane_state_src(plane_state); 3687 intel_state->uapi.dst = drm_plane_state_dest(plane_state); 3688 3689 if (plane_config->tiling) 3690 dev_priv->preserve_bios_swizzle = true; 3691 3692 plane_state->fb = fb; 3693 drm_framebuffer_get(fb); 3694 3695 plane_state->crtc = &intel_crtc->base; 3696 intel_plane_copy_uapi_to_hw_state(intel_state, intel_state); 3697 3698 intel_frontbuffer_flush(to_intel_frontbuffer(fb), ORIGIN_DIRTYFB); 3699 3700 atomic_or(to_intel_plane(primary)->frontbuffer_bit, 3701 &to_intel_frontbuffer(fb)->bits); 3702 } 3703 3704 static int skl_max_plane_width(const struct drm_framebuffer *fb, 3705 int color_plane, 3706 unsigned int rotation) 3707 { 3708 int cpp = fb->format->cpp[color_plane]; 3709 3710 switch (fb->modifier) { 3711 case DRM_FORMAT_MOD_LINEAR: 3712 case I915_FORMAT_MOD_X_TILED: 3713 /* 3714 * Validated limit is 4k, but has 5k should 3715 * work apart from the following features: 3716 * - Ytile (already limited to 4k) 3717 * - FP16 (already limited to 4k) 3718 * - render compression (already limited to 4k) 3719 * - KVMR sprite and cursor (don't care) 3720 * - horizontal panning (TODO verify this) 3721 * - pipe and plane scaling (TODO verify this) 3722 */ 3723 if (cpp == 8) 3724 return 4096; 3725 else 3726 return 5120; 3727 case I915_FORMAT_MOD_Y_TILED_CCS: 3728 case I915_FORMAT_MOD_Yf_TILED_CCS: 3729 case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS: 3730 /* FIXME AUX plane? */ 3731 case I915_FORMAT_MOD_Y_TILED: 3732 case I915_FORMAT_MOD_Yf_TILED: 3733 if (cpp == 8) 3734 return 2048; 3735 else 3736 return 4096; 3737 default: 3738 MISSING_CASE(fb->modifier); 3739 return 2048; 3740 } 3741 } 3742 3743 static int glk_max_plane_width(const struct drm_framebuffer *fb, 3744 int color_plane, 3745 unsigned int rotation) 3746 { 3747 int cpp = fb->format->cpp[color_plane]; 3748 3749 switch (fb->modifier) { 3750 case DRM_FORMAT_MOD_LINEAR: 3751 case I915_FORMAT_MOD_X_TILED: 3752 if (cpp == 8) 3753 return 4096; 3754 else 3755 return 5120; 3756 case I915_FORMAT_MOD_Y_TILED_CCS: 3757 case I915_FORMAT_MOD_Yf_TILED_CCS: 3758 /* FIXME AUX plane? */ 3759 case I915_FORMAT_MOD_Y_TILED: 3760 case I915_FORMAT_MOD_Yf_TILED: 3761 if (cpp == 8) 3762 return 2048; 3763 else 3764 return 5120; 3765 default: 3766 MISSING_CASE(fb->modifier); 3767 return 2048; 3768 } 3769 } 3770 3771 static int icl_min_plane_width(const struct drm_framebuffer *fb) 3772 { 3773 /* Wa_14011264657, Wa_14011050563: gen11+ */ 3774 switch (fb->format->format) { 3775 case DRM_FORMAT_C8: 3776 return 18; 3777 case DRM_FORMAT_RGB565: 3778 return 10; 3779 case DRM_FORMAT_XRGB8888: 3780 case DRM_FORMAT_XBGR8888: 3781 case DRM_FORMAT_ARGB8888: 3782 case DRM_FORMAT_ABGR8888: 3783 case DRM_FORMAT_XRGB2101010: 3784 case DRM_FORMAT_XBGR2101010: 3785 case DRM_FORMAT_ARGB2101010: 3786 case DRM_FORMAT_ABGR2101010: 3787 case DRM_FORMAT_XVYU2101010: 3788 case DRM_FORMAT_Y212: 3789 case DRM_FORMAT_Y216: 3790 return 6; 3791 case DRM_FORMAT_NV12: 3792 return 20; 3793 case DRM_FORMAT_P010: 3794 case DRM_FORMAT_P012: 3795 case DRM_FORMAT_P016: 3796 return 12; 3797 case DRM_FORMAT_XRGB16161616F: 3798 case DRM_FORMAT_XBGR16161616F: 3799 case DRM_FORMAT_ARGB16161616F: 3800 case DRM_FORMAT_ABGR16161616F: 3801 case DRM_FORMAT_XVYU12_16161616: 3802 case DRM_FORMAT_XVYU16161616: 3803 return 4; 3804 default: 3805 return 1; 3806 } 3807 } 3808 3809 static int icl_max_plane_width(const struct drm_framebuffer *fb, 3810 int color_plane, 3811 unsigned int rotation) 3812 { 3813 return 5120; 3814 } 3815 3816 static int skl_max_plane_height(void) 3817 { 3818 return 4096; 3819 } 3820 3821 static int icl_max_plane_height(void) 3822 { 3823 return 4320; 3824 } 3825 3826 static bool 3827 skl_check_main_ccs_coordinates(struct intel_plane_state *plane_state, 3828 int main_x, int main_y, u32 main_offset, 3829 int ccs_plane) 3830 { 3831 const struct drm_framebuffer *fb = plane_state->hw.fb; 3832 int aux_x = plane_state->color_plane[ccs_plane].x; 3833 int aux_y = plane_state->color_plane[ccs_plane].y; 3834 u32 aux_offset = plane_state->color_plane[ccs_plane].offset; 3835 u32 alignment = intel_surf_alignment(fb, ccs_plane); 3836 int hsub; 3837 int vsub; 3838 3839 intel_fb_plane_get_subsampling(&hsub, &vsub, fb, ccs_plane); 3840 while (aux_offset >= main_offset && aux_y <= main_y) { 3841 int x, y; 3842 3843 if (aux_x == main_x && aux_y == main_y) 3844 break; 3845 3846 if (aux_offset == 0) 3847 break; 3848 3849 x = aux_x / hsub; 3850 y = aux_y / vsub; 3851 aux_offset = intel_plane_adjust_aligned_offset(&x, &y, 3852 plane_state, 3853 ccs_plane, 3854 aux_offset, 3855 aux_offset - 3856 alignment); 3857 aux_x = x * hsub + aux_x % hsub; 3858 aux_y = y * vsub + aux_y % vsub; 3859 } 3860 3861 if (aux_x != main_x || aux_y != main_y) 3862 return false; 3863 3864 plane_state->color_plane[ccs_plane].offset = aux_offset; 3865 plane_state->color_plane[ccs_plane].x = aux_x; 3866 plane_state->color_plane[ccs_plane].y = aux_y; 3867 3868 return true; 3869 } 3870 3871 unsigned int 3872 intel_plane_fence_y_offset(const struct intel_plane_state *plane_state) 3873 { 3874 int x = 0, y = 0; 3875 3876 intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0, 3877 plane_state->color_plane[0].offset, 0); 3878 3879 return y; 3880 } 3881 3882 static int skl_check_main_surface(struct intel_plane_state *plane_state) 3883 { 3884 struct drm_i915_private *dev_priv = to_i915(plane_state->uapi.plane->dev); 3885 const struct drm_framebuffer *fb = plane_state->hw.fb; 3886 unsigned int rotation = plane_state->hw.rotation; 3887 int x = plane_state->uapi.src.x1 >> 16; 3888 int y = plane_state->uapi.src.y1 >> 16; 3889 int w = drm_rect_width(&plane_state->uapi.src) >> 16; 3890 int h = drm_rect_height(&plane_state->uapi.src) >> 16; 3891 int max_width, min_width, max_height; 3892 u32 alignment, offset; 3893 int aux_plane = intel_main_to_aux_plane(fb, 0); 3894 u32 aux_offset = plane_state->color_plane[aux_plane].offset; 3895 3896 if (INTEL_GEN(dev_priv) >= 11) { 3897 max_width = icl_max_plane_width(fb, 0, rotation); 3898 min_width = icl_min_plane_width(fb); 3899 } else if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) { 3900 max_width = glk_max_plane_width(fb, 0, rotation); 3901 min_width = 1; 3902 } else { 3903 max_width = skl_max_plane_width(fb, 0, rotation); 3904 min_width = 1; 3905 } 3906 3907 if (INTEL_GEN(dev_priv) >= 11) 3908 max_height = icl_max_plane_height(); 3909 else 3910 max_height = skl_max_plane_height(); 3911 3912 if (w > max_width || w < min_width || h > max_height) { 3913 drm_dbg_kms(&dev_priv->drm, 3914 "requested Y/RGB source size %dx%d outside limits (min: %dx1 max: %dx%d)\n", 3915 w, h, min_width, max_width, max_height); 3916 return -EINVAL; 3917 } 3918 3919 intel_add_fb_offsets(&x, &y, plane_state, 0); 3920 offset = intel_plane_compute_aligned_offset(&x, &y, plane_state, 0); 3921 alignment = intel_surf_alignment(fb, 0); 3922 if (drm_WARN_ON(&dev_priv->drm, alignment && !is_power_of_2(alignment))) 3923 return -EINVAL; 3924 3925 /* 3926 * AUX surface offset is specified as the distance from the 3927 * main surface offset, and it must be non-negative. Make 3928 * sure that is what we will get. 3929 */ 3930 if (offset > aux_offset) 3931 offset = intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0, 3932 offset, aux_offset & ~(alignment - 1)); 3933 3934 /* 3935 * When using an X-tiled surface, the plane blows up 3936 * if the x offset + width exceed the stride. 3937 * 3938 * TODO: linear and Y-tiled seem fine, Yf untested, 3939 */ 3940 if (fb->modifier == I915_FORMAT_MOD_X_TILED) { 3941 int cpp = fb->format->cpp[0]; 3942 3943 while ((x + w) * cpp > plane_state->color_plane[0].stride) { 3944 if (offset == 0) { 3945 drm_dbg_kms(&dev_priv->drm, 3946 "Unable to find suitable display surface offset due to X-tiling\n"); 3947 return -EINVAL; 3948 } 3949 3950 offset = intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0, 3951 offset, offset - alignment); 3952 } 3953 } 3954 3955 /* 3956 * CCS AUX surface doesn't have its own x/y offsets, we must make sure 3957 * they match with the main surface x/y offsets. 3958 */ 3959 if (is_ccs_modifier(fb->modifier)) { 3960 while (!skl_check_main_ccs_coordinates(plane_state, x, y, 3961 offset, aux_plane)) { 3962 if (offset == 0) 3963 break; 3964 3965 offset = intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0, 3966 offset, offset - alignment); 3967 } 3968 3969 if (x != plane_state->color_plane[aux_plane].x || 3970 y != plane_state->color_plane[aux_plane].y) { 3971 drm_dbg_kms(&dev_priv->drm, 3972 "Unable to find suitable display surface offset due to CCS\n"); 3973 return -EINVAL; 3974 } 3975 } 3976 3977 plane_state->color_plane[0].offset = offset; 3978 plane_state->color_plane[0].x = x; 3979 plane_state->color_plane[0].y = y; 3980 3981 /* 3982 * Put the final coordinates back so that the src 3983 * coordinate checks will see the right values. 3984 */ 3985 drm_rect_translate_to(&plane_state->uapi.src, 3986 x << 16, y << 16); 3987 3988 return 0; 3989 } 3990 3991 static int skl_check_nv12_aux_surface(struct intel_plane_state *plane_state) 3992 { 3993 struct drm_i915_private *i915 = to_i915(plane_state->uapi.plane->dev); 3994 const struct drm_framebuffer *fb = plane_state->hw.fb; 3995 unsigned int rotation = plane_state->hw.rotation; 3996 int uv_plane = 1; 3997 int max_width = skl_max_plane_width(fb, uv_plane, rotation); 3998 int max_height = 4096; 3999 int x = plane_state->uapi.src.x1 >> 17; 4000 int y = plane_state->uapi.src.y1 >> 17; 4001 int w = drm_rect_width(&plane_state->uapi.src) >> 17; 4002 int h = drm_rect_height(&plane_state->uapi.src) >> 17; 4003 u32 offset; 4004 4005 intel_add_fb_offsets(&x, &y, plane_state, uv_plane); 4006 offset = intel_plane_compute_aligned_offset(&x, &y, 4007 plane_state, uv_plane); 4008 4009 /* FIXME not quite sure how/if these apply to the chroma plane */ 4010 if (w > max_width || h > max_height) { 4011 drm_dbg_kms(&i915->drm, 4012 "CbCr source size %dx%d too big (limit %dx%d)\n", 4013 w, h, max_width, max_height); 4014 return -EINVAL; 4015 } 4016 4017 if (is_ccs_modifier(fb->modifier)) { 4018 int ccs_plane = main_to_ccs_plane(fb, uv_plane); 4019 int aux_offset = plane_state->color_plane[ccs_plane].offset; 4020 int alignment = intel_surf_alignment(fb, uv_plane); 4021 4022 if (offset > aux_offset) 4023 offset = intel_plane_adjust_aligned_offset(&x, &y, 4024 plane_state, 4025 uv_plane, 4026 offset, 4027 aux_offset & ~(alignment - 1)); 4028 4029 while (!skl_check_main_ccs_coordinates(plane_state, x, y, 4030 offset, ccs_plane)) { 4031 if (offset == 0) 4032 break; 4033 4034 offset = intel_plane_adjust_aligned_offset(&x, &y, 4035 plane_state, 4036 uv_plane, 4037 offset, offset - alignment); 4038 } 4039 4040 if (x != plane_state->color_plane[ccs_plane].x || 4041 y != plane_state->color_plane[ccs_plane].y) { 4042 drm_dbg_kms(&i915->drm, 4043 "Unable to find suitable display surface offset due to CCS\n"); 4044 return -EINVAL; 4045 } 4046 } 4047 4048 plane_state->color_plane[uv_plane].offset = offset; 4049 plane_state->color_plane[uv_plane].x = x; 4050 plane_state->color_plane[uv_plane].y = y; 4051 4052 return 0; 4053 } 4054 4055 static int skl_check_ccs_aux_surface(struct intel_plane_state *plane_state) 4056 { 4057 const struct drm_framebuffer *fb = plane_state->hw.fb; 4058 int src_x = plane_state->uapi.src.x1 >> 16; 4059 int src_y = plane_state->uapi.src.y1 >> 16; 4060 u32 offset; 4061 int ccs_plane; 4062 4063 for (ccs_plane = 0; ccs_plane < fb->format->num_planes; ccs_plane++) { 4064 int main_hsub, main_vsub; 4065 int hsub, vsub; 4066 int x, y; 4067 4068 if (!is_ccs_plane(fb, ccs_plane)) 4069 continue; 4070 4071 intel_fb_plane_get_subsampling(&main_hsub, &main_vsub, fb, 4072 ccs_to_main_plane(fb, ccs_plane)); 4073 intel_fb_plane_get_subsampling(&hsub, &vsub, fb, ccs_plane); 4074 4075 hsub *= main_hsub; 4076 vsub *= main_vsub; 4077 x = src_x / hsub; 4078 y = src_y / vsub; 4079 4080 intel_add_fb_offsets(&x, &y, plane_state, ccs_plane); 4081 4082 offset = intel_plane_compute_aligned_offset(&x, &y, 4083 plane_state, 4084 ccs_plane); 4085 4086 plane_state->color_plane[ccs_plane].offset = offset; 4087 plane_state->color_plane[ccs_plane].x = (x * hsub + 4088 src_x % hsub) / 4089 main_hsub; 4090 plane_state->color_plane[ccs_plane].y = (y * vsub + 4091 src_y % vsub) / 4092 main_vsub; 4093 } 4094 4095 return 0; 4096 } 4097 4098 int skl_check_plane_surface(struct intel_plane_state *plane_state) 4099 { 4100 const struct drm_framebuffer *fb = plane_state->hw.fb; 4101 int ret, i; 4102 4103 ret = intel_plane_compute_gtt(plane_state); 4104 if (ret) 4105 return ret; 4106 4107 if (!plane_state->uapi.visible) 4108 return 0; 4109 4110 /* 4111 * Handle the AUX surface first since the main surface setup depends on 4112 * it. 4113 */ 4114 if (is_ccs_modifier(fb->modifier)) { 4115 ret = skl_check_ccs_aux_surface(plane_state); 4116 if (ret) 4117 return ret; 4118 } 4119 4120 if (intel_format_info_is_yuv_semiplanar(fb->format, 4121 fb->modifier)) { 4122 ret = skl_check_nv12_aux_surface(plane_state); 4123 if (ret) 4124 return ret; 4125 } 4126 4127 for (i = fb->format->num_planes; i < ARRAY_SIZE(plane_state->color_plane); i++) { 4128 plane_state->color_plane[i].offset = ~0xfff; 4129 plane_state->color_plane[i].x = 0; 4130 plane_state->color_plane[i].y = 0; 4131 } 4132 4133 ret = skl_check_main_surface(plane_state); 4134 if (ret) 4135 return ret; 4136 4137 return 0; 4138 } 4139 4140 static void i9xx_plane_ratio(const struct intel_crtc_state *crtc_state, 4141 const struct intel_plane_state *plane_state, 4142 unsigned int *num, unsigned int *den) 4143 { 4144 const struct drm_framebuffer *fb = plane_state->hw.fb; 4145 unsigned int cpp = fb->format->cpp[0]; 4146 4147 /* 4148 * g4x bspec says 64bpp pixel rate can't exceed 80% 4149 * of cdclk when the sprite plane is enabled on the 4150 * same pipe. ilk/snb bspec says 64bpp pixel rate is 4151 * never allowed to exceed 80% of cdclk. Let's just go 4152 * with the ilk/snb limit always. 4153 */ 4154 if (cpp == 8) { 4155 *num = 10; 4156 *den = 8; 4157 } else { 4158 *num = 1; 4159 *den = 1; 4160 } 4161 } 4162 4163 static int i9xx_plane_min_cdclk(const struct intel_crtc_state *crtc_state, 4164 const struct intel_plane_state *plane_state) 4165 { 4166 unsigned int pixel_rate; 4167 unsigned int num, den; 4168 4169 /* 4170 * Note that crtc_state->pixel_rate accounts for both 4171 * horizontal and vertical panel fitter downscaling factors. 4172 * Pre-HSW bspec tells us to only consider the horizontal 4173 * downscaling factor here. We ignore that and just consider 4174 * both for simplicity. 4175 */ 4176 pixel_rate = crtc_state->pixel_rate; 4177 4178 i9xx_plane_ratio(crtc_state, plane_state, &num, &den); 4179 4180 /* two pixels per clock with double wide pipe */ 4181 if (crtc_state->double_wide) 4182 den *= 2; 4183 4184 return DIV_ROUND_UP(pixel_rate * num, den); 4185 } 4186 4187 unsigned int 4188 i9xx_plane_max_stride(struct intel_plane *plane, 4189 u32 pixel_format, u64 modifier, 4190 unsigned int rotation) 4191 { 4192 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 4193 4194 if (!HAS_GMCH(dev_priv)) { 4195 return 32*1024; 4196 } else if (INTEL_GEN(dev_priv) >= 4) { 4197 if (modifier == I915_FORMAT_MOD_X_TILED) 4198 return 16*1024; 4199 else 4200 return 32*1024; 4201 } else if (INTEL_GEN(dev_priv) >= 3) { 4202 if (modifier == I915_FORMAT_MOD_X_TILED) 4203 return 8*1024; 4204 else 4205 return 16*1024; 4206 } else { 4207 if (plane->i9xx_plane == PLANE_C) 4208 return 4*1024; 4209 else 4210 return 8*1024; 4211 } 4212 } 4213 4214 static u32 i9xx_plane_ctl_crtc(const struct intel_crtc_state *crtc_state) 4215 { 4216 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 4217 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4218 u32 dspcntr = 0; 4219 4220 if (crtc_state->gamma_enable) 4221 dspcntr |= DISPPLANE_GAMMA_ENABLE; 4222 4223 if (crtc_state->csc_enable) 4224 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE; 4225 4226 if (INTEL_GEN(dev_priv) < 5) 4227 dspcntr |= DISPPLANE_SEL_PIPE(crtc->pipe); 4228 4229 return dspcntr; 4230 } 4231 4232 static u32 i9xx_plane_ctl(const struct intel_crtc_state *crtc_state, 4233 const struct intel_plane_state *plane_state) 4234 { 4235 struct drm_i915_private *dev_priv = 4236 to_i915(plane_state->uapi.plane->dev); 4237 const struct drm_framebuffer *fb = plane_state->hw.fb; 4238 unsigned int rotation = plane_state->hw.rotation; 4239 u32 dspcntr; 4240 4241 dspcntr = DISPLAY_PLANE_ENABLE; 4242 4243 if (IS_G4X(dev_priv) || IS_GEN(dev_priv, 5) || 4244 IS_GEN(dev_priv, 6) || IS_IVYBRIDGE(dev_priv)) 4245 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE; 4246 4247 switch (fb->format->format) { 4248 case DRM_FORMAT_C8: 4249 dspcntr |= DISPPLANE_8BPP; 4250 break; 4251 case DRM_FORMAT_XRGB1555: 4252 dspcntr |= DISPPLANE_BGRX555; 4253 break; 4254 case DRM_FORMAT_ARGB1555: 4255 dspcntr |= DISPPLANE_BGRA555; 4256 break; 4257 case DRM_FORMAT_RGB565: 4258 dspcntr |= DISPPLANE_BGRX565; 4259 break; 4260 case DRM_FORMAT_XRGB8888: 4261 dspcntr |= DISPPLANE_BGRX888; 4262 break; 4263 case DRM_FORMAT_XBGR8888: 4264 dspcntr |= DISPPLANE_RGBX888; 4265 break; 4266 case DRM_FORMAT_ARGB8888: 4267 dspcntr |= DISPPLANE_BGRA888; 4268 break; 4269 case DRM_FORMAT_ABGR8888: 4270 dspcntr |= DISPPLANE_RGBA888; 4271 break; 4272 case DRM_FORMAT_XRGB2101010: 4273 dspcntr |= DISPPLANE_BGRX101010; 4274 break; 4275 case DRM_FORMAT_XBGR2101010: 4276 dspcntr |= DISPPLANE_RGBX101010; 4277 break; 4278 case DRM_FORMAT_ARGB2101010: 4279 dspcntr |= DISPPLANE_BGRA101010; 4280 break; 4281 case DRM_FORMAT_ABGR2101010: 4282 dspcntr |= DISPPLANE_RGBA101010; 4283 break; 4284 case DRM_FORMAT_XBGR16161616F: 4285 dspcntr |= DISPPLANE_RGBX161616; 4286 break; 4287 default: 4288 MISSING_CASE(fb->format->format); 4289 return 0; 4290 } 4291 4292 if (INTEL_GEN(dev_priv) >= 4 && 4293 fb->modifier == I915_FORMAT_MOD_X_TILED) 4294 dspcntr |= DISPPLANE_TILED; 4295 4296 if (rotation & DRM_MODE_ROTATE_180) 4297 dspcntr |= DISPPLANE_ROTATE_180; 4298 4299 if (rotation & DRM_MODE_REFLECT_X) 4300 dspcntr |= DISPPLANE_MIRROR; 4301 4302 return dspcntr; 4303 } 4304 4305 int i9xx_check_plane_surface(struct intel_plane_state *plane_state) 4306 { 4307 struct drm_i915_private *dev_priv = 4308 to_i915(plane_state->uapi.plane->dev); 4309 const struct drm_framebuffer *fb = plane_state->hw.fb; 4310 int src_x, src_y, src_w; 4311 u32 offset; 4312 int ret; 4313 4314 ret = intel_plane_compute_gtt(plane_state); 4315 if (ret) 4316 return ret; 4317 4318 if (!plane_state->uapi.visible) 4319 return 0; 4320 4321 src_w = drm_rect_width(&plane_state->uapi.src) >> 16; 4322 src_x = plane_state->uapi.src.x1 >> 16; 4323 src_y = plane_state->uapi.src.y1 >> 16; 4324 4325 /* Undocumented hardware limit on i965/g4x/vlv/chv */ 4326 if (HAS_GMCH(dev_priv) && fb->format->cpp[0] == 8 && src_w > 2048) 4327 return -EINVAL; 4328 4329 intel_add_fb_offsets(&src_x, &src_y, plane_state, 0); 4330 4331 if (INTEL_GEN(dev_priv) >= 4) 4332 offset = intel_plane_compute_aligned_offset(&src_x, &src_y, 4333 plane_state, 0); 4334 else 4335 offset = 0; 4336 4337 /* 4338 * Put the final coordinates back so that the src 4339 * coordinate checks will see the right values. 4340 */ 4341 drm_rect_translate_to(&plane_state->uapi.src, 4342 src_x << 16, src_y << 16); 4343 4344 /* HSW/BDW do this automagically in hardware */ 4345 if (!IS_HASWELL(dev_priv) && !IS_BROADWELL(dev_priv)) { 4346 unsigned int rotation = plane_state->hw.rotation; 4347 int src_w = drm_rect_width(&plane_state->uapi.src) >> 16; 4348 int src_h = drm_rect_height(&plane_state->uapi.src) >> 16; 4349 4350 if (rotation & DRM_MODE_ROTATE_180) { 4351 src_x += src_w - 1; 4352 src_y += src_h - 1; 4353 } else if (rotation & DRM_MODE_REFLECT_X) { 4354 src_x += src_w - 1; 4355 } 4356 } 4357 4358 plane_state->color_plane[0].offset = offset; 4359 plane_state->color_plane[0].x = src_x; 4360 plane_state->color_plane[0].y = src_y; 4361 4362 return 0; 4363 } 4364 4365 static bool i9xx_plane_has_windowing(struct intel_plane *plane) 4366 { 4367 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 4368 enum i9xx_plane_id i9xx_plane = plane->i9xx_plane; 4369 4370 if (IS_CHERRYVIEW(dev_priv)) 4371 return i9xx_plane == PLANE_B; 4372 else if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) 4373 return false; 4374 else if (IS_GEN(dev_priv, 4)) 4375 return i9xx_plane == PLANE_C; 4376 else 4377 return i9xx_plane == PLANE_B || 4378 i9xx_plane == PLANE_C; 4379 } 4380 4381 static int 4382 i9xx_plane_check(struct intel_crtc_state *crtc_state, 4383 struct intel_plane_state *plane_state) 4384 { 4385 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 4386 int ret; 4387 4388 ret = chv_plane_check_rotation(plane_state); 4389 if (ret) 4390 return ret; 4391 4392 ret = drm_atomic_helper_check_plane_state(&plane_state->uapi, 4393 &crtc_state->uapi, 4394 DRM_PLANE_HELPER_NO_SCALING, 4395 DRM_PLANE_HELPER_NO_SCALING, 4396 i9xx_plane_has_windowing(plane), 4397 true); 4398 if (ret) 4399 return ret; 4400 4401 ret = i9xx_check_plane_surface(plane_state); 4402 if (ret) 4403 return ret; 4404 4405 if (!plane_state->uapi.visible) 4406 return 0; 4407 4408 ret = intel_plane_check_src_coordinates(plane_state); 4409 if (ret) 4410 return ret; 4411 4412 plane_state->ctl = i9xx_plane_ctl(crtc_state, plane_state); 4413 4414 return 0; 4415 } 4416 4417 static void i9xx_update_plane(struct intel_plane *plane, 4418 const struct intel_crtc_state *crtc_state, 4419 const struct intel_plane_state *plane_state) 4420 { 4421 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 4422 enum i9xx_plane_id i9xx_plane = plane->i9xx_plane; 4423 u32 linear_offset; 4424 int x = plane_state->color_plane[0].x; 4425 int y = plane_state->color_plane[0].y; 4426 int crtc_x = plane_state->uapi.dst.x1; 4427 int crtc_y = plane_state->uapi.dst.y1; 4428 int crtc_w = drm_rect_width(&plane_state->uapi.dst); 4429 int crtc_h = drm_rect_height(&plane_state->uapi.dst); 4430 unsigned long irqflags; 4431 u32 dspaddr_offset; 4432 u32 dspcntr; 4433 4434 dspcntr = plane_state->ctl | i9xx_plane_ctl_crtc(crtc_state); 4435 4436 linear_offset = intel_fb_xy_to_linear(x, y, plane_state, 0); 4437 4438 if (INTEL_GEN(dev_priv) >= 4) 4439 dspaddr_offset = plane_state->color_plane[0].offset; 4440 else 4441 dspaddr_offset = linear_offset; 4442 4443 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); 4444 4445 intel_de_write_fw(dev_priv, DSPSTRIDE(i9xx_plane), 4446 plane_state->color_plane[0].stride); 4447 4448 if (INTEL_GEN(dev_priv) < 4) { 4449 /* 4450 * PLANE_A doesn't actually have a full window 4451 * generator but let's assume we still need to 4452 * program whatever is there. 4453 */ 4454 intel_de_write_fw(dev_priv, DSPPOS(i9xx_plane), 4455 (crtc_y << 16) | crtc_x); 4456 intel_de_write_fw(dev_priv, DSPSIZE(i9xx_plane), 4457 ((crtc_h - 1) << 16) | (crtc_w - 1)); 4458 } else if (IS_CHERRYVIEW(dev_priv) && i9xx_plane == PLANE_B) { 4459 intel_de_write_fw(dev_priv, PRIMPOS(i9xx_plane), 4460 (crtc_y << 16) | crtc_x); 4461 intel_de_write_fw(dev_priv, PRIMSIZE(i9xx_plane), 4462 ((crtc_h - 1) << 16) | (crtc_w - 1)); 4463 intel_de_write_fw(dev_priv, PRIMCNSTALPHA(i9xx_plane), 0); 4464 } 4465 4466 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) { 4467 intel_de_write_fw(dev_priv, DSPOFFSET(i9xx_plane), 4468 (y << 16) | x); 4469 } else if (INTEL_GEN(dev_priv) >= 4) { 4470 intel_de_write_fw(dev_priv, DSPLINOFF(i9xx_plane), 4471 linear_offset); 4472 intel_de_write_fw(dev_priv, DSPTILEOFF(i9xx_plane), 4473 (y << 16) | x); 4474 } 4475 4476 /* 4477 * The control register self-arms if the plane was previously 4478 * disabled. Try to make the plane enable atomic by writing 4479 * the control register just before the surface register. 4480 */ 4481 intel_de_write_fw(dev_priv, DSPCNTR(i9xx_plane), dspcntr); 4482 if (INTEL_GEN(dev_priv) >= 4) 4483 intel_de_write_fw(dev_priv, DSPSURF(i9xx_plane), 4484 intel_plane_ggtt_offset(plane_state) + dspaddr_offset); 4485 else 4486 intel_de_write_fw(dev_priv, DSPADDR(i9xx_plane), 4487 intel_plane_ggtt_offset(plane_state) + dspaddr_offset); 4488 4489 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); 4490 } 4491 4492 static void i9xx_disable_plane(struct intel_plane *plane, 4493 const struct intel_crtc_state *crtc_state) 4494 { 4495 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 4496 enum i9xx_plane_id i9xx_plane = plane->i9xx_plane; 4497 unsigned long irqflags; 4498 u32 dspcntr; 4499 4500 /* 4501 * DSPCNTR pipe gamma enable on g4x+ and pipe csc 4502 * enable on ilk+ affect the pipe bottom color as 4503 * well, so we must configure them even if the plane 4504 * is disabled. 4505 * 4506 * On pre-g4x there is no way to gamma correct the 4507 * pipe bottom color but we'll keep on doing this 4508 * anyway so that the crtc state readout works correctly. 4509 */ 4510 dspcntr = i9xx_plane_ctl_crtc(crtc_state); 4511 4512 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); 4513 4514 intel_de_write_fw(dev_priv, DSPCNTR(i9xx_plane), dspcntr); 4515 if (INTEL_GEN(dev_priv) >= 4) 4516 intel_de_write_fw(dev_priv, DSPSURF(i9xx_plane), 0); 4517 else 4518 intel_de_write_fw(dev_priv, DSPADDR(i9xx_plane), 0); 4519 4520 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); 4521 } 4522 4523 static bool i9xx_plane_get_hw_state(struct intel_plane *plane, 4524 enum pipe *pipe) 4525 { 4526 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 4527 enum intel_display_power_domain power_domain; 4528 enum i9xx_plane_id i9xx_plane = plane->i9xx_plane; 4529 intel_wakeref_t wakeref; 4530 bool ret; 4531 u32 val; 4532 4533 /* 4534 * Not 100% correct for planes that can move between pipes, 4535 * but that's only the case for gen2-4 which don't have any 4536 * display power wells. 4537 */ 4538 power_domain = POWER_DOMAIN_PIPE(plane->pipe); 4539 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain); 4540 if (!wakeref) 4541 return false; 4542 4543 val = intel_de_read(dev_priv, DSPCNTR(i9xx_plane)); 4544 4545 ret = val & DISPLAY_PLANE_ENABLE; 4546 4547 if (INTEL_GEN(dev_priv) >= 5) 4548 *pipe = plane->pipe; 4549 else 4550 *pipe = (val & DISPPLANE_SEL_PIPE_MASK) >> 4551 DISPPLANE_SEL_PIPE_SHIFT; 4552 4553 intel_display_power_put(dev_priv, power_domain, wakeref); 4554 4555 return ret; 4556 } 4557 4558 static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id) 4559 { 4560 struct drm_device *dev = intel_crtc->base.dev; 4561 struct drm_i915_private *dev_priv = to_i915(dev); 4562 unsigned long irqflags; 4563 4564 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); 4565 4566 intel_de_write_fw(dev_priv, SKL_PS_CTRL(intel_crtc->pipe, id), 0); 4567 intel_de_write_fw(dev_priv, SKL_PS_WIN_POS(intel_crtc->pipe, id), 0); 4568 intel_de_write_fw(dev_priv, SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0); 4569 4570 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); 4571 } 4572 4573 /* 4574 * This function detaches (aka. unbinds) unused scalers in hardware 4575 */ 4576 static void skl_detach_scalers(const struct intel_crtc_state *crtc_state) 4577 { 4578 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc); 4579 const struct intel_crtc_scaler_state *scaler_state = 4580 &crtc_state->scaler_state; 4581 int i; 4582 4583 /* loop through and disable scalers that aren't in use */ 4584 for (i = 0; i < intel_crtc->num_scalers; i++) { 4585 if (!scaler_state->scalers[i].in_use) 4586 skl_detach_scaler(intel_crtc, i); 4587 } 4588 } 4589 4590 static unsigned int skl_plane_stride_mult(const struct drm_framebuffer *fb, 4591 int color_plane, unsigned int rotation) 4592 { 4593 /* 4594 * The stride is either expressed as a multiple of 64 bytes chunks for 4595 * linear buffers or in number of tiles for tiled buffers. 4596 */ 4597 if (is_surface_linear(fb, color_plane)) 4598 return 64; 4599 else if (drm_rotation_90_or_270(rotation)) 4600 return intel_tile_height(fb, color_plane); 4601 else 4602 return intel_tile_width_bytes(fb, color_plane); 4603 } 4604 4605 u32 skl_plane_stride(const struct intel_plane_state *plane_state, 4606 int color_plane) 4607 { 4608 const struct drm_framebuffer *fb = plane_state->hw.fb; 4609 unsigned int rotation = plane_state->hw.rotation; 4610 u32 stride = plane_state->color_plane[color_plane].stride; 4611 4612 if (color_plane >= fb->format->num_planes) 4613 return 0; 4614 4615 return stride / skl_plane_stride_mult(fb, color_plane, rotation); 4616 } 4617 4618 static u32 skl_plane_ctl_format(u32 pixel_format) 4619 { 4620 switch (pixel_format) { 4621 case DRM_FORMAT_C8: 4622 return PLANE_CTL_FORMAT_INDEXED; 4623 case DRM_FORMAT_RGB565: 4624 return PLANE_CTL_FORMAT_RGB_565; 4625 case DRM_FORMAT_XBGR8888: 4626 case DRM_FORMAT_ABGR8888: 4627 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX; 4628 case DRM_FORMAT_XRGB8888: 4629 case DRM_FORMAT_ARGB8888: 4630 return PLANE_CTL_FORMAT_XRGB_8888; 4631 case DRM_FORMAT_XBGR2101010: 4632 case DRM_FORMAT_ABGR2101010: 4633 return PLANE_CTL_FORMAT_XRGB_2101010 | PLANE_CTL_ORDER_RGBX; 4634 case DRM_FORMAT_XRGB2101010: 4635 case DRM_FORMAT_ARGB2101010: 4636 return PLANE_CTL_FORMAT_XRGB_2101010; 4637 case DRM_FORMAT_XBGR16161616F: 4638 case DRM_FORMAT_ABGR16161616F: 4639 return PLANE_CTL_FORMAT_XRGB_16161616F | PLANE_CTL_ORDER_RGBX; 4640 case DRM_FORMAT_XRGB16161616F: 4641 case DRM_FORMAT_ARGB16161616F: 4642 return PLANE_CTL_FORMAT_XRGB_16161616F; 4643 case DRM_FORMAT_XYUV8888: 4644 return PLANE_CTL_FORMAT_XYUV; 4645 case DRM_FORMAT_YUYV: 4646 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV; 4647 case DRM_FORMAT_YVYU: 4648 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU; 4649 case DRM_FORMAT_UYVY: 4650 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY; 4651 case DRM_FORMAT_VYUY: 4652 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY; 4653 case DRM_FORMAT_NV12: 4654 return PLANE_CTL_FORMAT_NV12; 4655 case DRM_FORMAT_P010: 4656 return PLANE_CTL_FORMAT_P010; 4657 case DRM_FORMAT_P012: 4658 return PLANE_CTL_FORMAT_P012; 4659 case DRM_FORMAT_P016: 4660 return PLANE_CTL_FORMAT_P016; 4661 case DRM_FORMAT_Y210: 4662 return PLANE_CTL_FORMAT_Y210; 4663 case DRM_FORMAT_Y212: 4664 return PLANE_CTL_FORMAT_Y212; 4665 case DRM_FORMAT_Y216: 4666 return PLANE_CTL_FORMAT_Y216; 4667 case DRM_FORMAT_XVYU2101010: 4668 return PLANE_CTL_FORMAT_Y410; 4669 case DRM_FORMAT_XVYU12_16161616: 4670 return PLANE_CTL_FORMAT_Y412; 4671 case DRM_FORMAT_XVYU16161616: 4672 return PLANE_CTL_FORMAT_Y416; 4673 default: 4674 MISSING_CASE(pixel_format); 4675 } 4676 4677 return 0; 4678 } 4679 4680 static u32 skl_plane_ctl_alpha(const struct intel_plane_state *plane_state) 4681 { 4682 if (!plane_state->hw.fb->format->has_alpha) 4683 return PLANE_CTL_ALPHA_DISABLE; 4684 4685 switch (plane_state->hw.pixel_blend_mode) { 4686 case DRM_MODE_BLEND_PIXEL_NONE: 4687 return PLANE_CTL_ALPHA_DISABLE; 4688 case DRM_MODE_BLEND_PREMULTI: 4689 return PLANE_CTL_ALPHA_SW_PREMULTIPLY; 4690 case DRM_MODE_BLEND_COVERAGE: 4691 return PLANE_CTL_ALPHA_HW_PREMULTIPLY; 4692 default: 4693 MISSING_CASE(plane_state->hw.pixel_blend_mode); 4694 return PLANE_CTL_ALPHA_DISABLE; 4695 } 4696 } 4697 4698 static u32 glk_plane_color_ctl_alpha(const struct intel_plane_state *plane_state) 4699 { 4700 if (!plane_state->hw.fb->format->has_alpha) 4701 return PLANE_COLOR_ALPHA_DISABLE; 4702 4703 switch (plane_state->hw.pixel_blend_mode) { 4704 case DRM_MODE_BLEND_PIXEL_NONE: 4705 return PLANE_COLOR_ALPHA_DISABLE; 4706 case DRM_MODE_BLEND_PREMULTI: 4707 return PLANE_COLOR_ALPHA_SW_PREMULTIPLY; 4708 case DRM_MODE_BLEND_COVERAGE: 4709 return PLANE_COLOR_ALPHA_HW_PREMULTIPLY; 4710 default: 4711 MISSING_CASE(plane_state->hw.pixel_blend_mode); 4712 return PLANE_COLOR_ALPHA_DISABLE; 4713 } 4714 } 4715 4716 static u32 skl_plane_ctl_tiling(u64 fb_modifier) 4717 { 4718 switch (fb_modifier) { 4719 case DRM_FORMAT_MOD_LINEAR: 4720 break; 4721 case I915_FORMAT_MOD_X_TILED: 4722 return PLANE_CTL_TILED_X; 4723 case I915_FORMAT_MOD_Y_TILED: 4724 return PLANE_CTL_TILED_Y; 4725 case I915_FORMAT_MOD_Y_TILED_CCS: 4726 return PLANE_CTL_TILED_Y | PLANE_CTL_RENDER_DECOMPRESSION_ENABLE; 4727 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS: 4728 return PLANE_CTL_TILED_Y | 4729 PLANE_CTL_RENDER_DECOMPRESSION_ENABLE | 4730 PLANE_CTL_CLEAR_COLOR_DISABLE; 4731 case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS: 4732 return PLANE_CTL_TILED_Y | PLANE_CTL_MEDIA_DECOMPRESSION_ENABLE; 4733 case I915_FORMAT_MOD_Yf_TILED: 4734 return PLANE_CTL_TILED_YF; 4735 case I915_FORMAT_MOD_Yf_TILED_CCS: 4736 return PLANE_CTL_TILED_YF | PLANE_CTL_RENDER_DECOMPRESSION_ENABLE; 4737 default: 4738 MISSING_CASE(fb_modifier); 4739 } 4740 4741 return 0; 4742 } 4743 4744 static u32 skl_plane_ctl_rotate(unsigned int rotate) 4745 { 4746 switch (rotate) { 4747 case DRM_MODE_ROTATE_0: 4748 break; 4749 /* 4750 * DRM_MODE_ROTATE_ is counter clockwise to stay compatible with Xrandr 4751 * while i915 HW rotation is clockwise, thats why this swapping. 4752 */ 4753 case DRM_MODE_ROTATE_90: 4754 return PLANE_CTL_ROTATE_270; 4755 case DRM_MODE_ROTATE_180: 4756 return PLANE_CTL_ROTATE_180; 4757 case DRM_MODE_ROTATE_270: 4758 return PLANE_CTL_ROTATE_90; 4759 default: 4760 MISSING_CASE(rotate); 4761 } 4762 4763 return 0; 4764 } 4765 4766 static u32 cnl_plane_ctl_flip(unsigned int reflect) 4767 { 4768 switch (reflect) { 4769 case 0: 4770 break; 4771 case DRM_MODE_REFLECT_X: 4772 return PLANE_CTL_FLIP_HORIZONTAL; 4773 case DRM_MODE_REFLECT_Y: 4774 default: 4775 MISSING_CASE(reflect); 4776 } 4777 4778 return 0; 4779 } 4780 4781 u32 skl_plane_ctl_crtc(const struct intel_crtc_state *crtc_state) 4782 { 4783 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 4784 u32 plane_ctl = 0; 4785 4786 if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) 4787 return plane_ctl; 4788 4789 if (crtc_state->gamma_enable) 4790 plane_ctl |= PLANE_CTL_PIPE_GAMMA_ENABLE; 4791 4792 if (crtc_state->csc_enable) 4793 plane_ctl |= PLANE_CTL_PIPE_CSC_ENABLE; 4794 4795 return plane_ctl; 4796 } 4797 4798 u32 skl_plane_ctl(const struct intel_crtc_state *crtc_state, 4799 const struct intel_plane_state *plane_state) 4800 { 4801 struct drm_i915_private *dev_priv = 4802 to_i915(plane_state->uapi.plane->dev); 4803 const struct drm_framebuffer *fb = plane_state->hw.fb; 4804 unsigned int rotation = plane_state->hw.rotation; 4805 const struct drm_intel_sprite_colorkey *key = &plane_state->ckey; 4806 u32 plane_ctl; 4807 4808 plane_ctl = PLANE_CTL_ENABLE; 4809 4810 if (INTEL_GEN(dev_priv) < 10 && !IS_GEMINILAKE(dev_priv)) { 4811 plane_ctl |= skl_plane_ctl_alpha(plane_state); 4812 plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE; 4813 4814 if (plane_state->hw.color_encoding == DRM_COLOR_YCBCR_BT709) 4815 plane_ctl |= PLANE_CTL_YUV_TO_RGB_CSC_FORMAT_BT709; 4816 4817 if (plane_state->hw.color_range == DRM_COLOR_YCBCR_FULL_RANGE) 4818 plane_ctl |= PLANE_CTL_YUV_RANGE_CORRECTION_DISABLE; 4819 } 4820 4821 plane_ctl |= skl_plane_ctl_format(fb->format->format); 4822 plane_ctl |= skl_plane_ctl_tiling(fb->modifier); 4823 plane_ctl |= skl_plane_ctl_rotate(rotation & DRM_MODE_ROTATE_MASK); 4824 4825 if (INTEL_GEN(dev_priv) >= 10) 4826 plane_ctl |= cnl_plane_ctl_flip(rotation & 4827 DRM_MODE_REFLECT_MASK); 4828 4829 if (key->flags & I915_SET_COLORKEY_DESTINATION) 4830 plane_ctl |= PLANE_CTL_KEY_ENABLE_DESTINATION; 4831 else if (key->flags & I915_SET_COLORKEY_SOURCE) 4832 plane_ctl |= PLANE_CTL_KEY_ENABLE_SOURCE; 4833 4834 return plane_ctl; 4835 } 4836 4837 u32 glk_plane_color_ctl_crtc(const struct intel_crtc_state *crtc_state) 4838 { 4839 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 4840 u32 plane_color_ctl = 0; 4841 4842 if (INTEL_GEN(dev_priv) >= 11) 4843 return plane_color_ctl; 4844 4845 if (crtc_state->gamma_enable) 4846 plane_color_ctl |= PLANE_COLOR_PIPE_GAMMA_ENABLE; 4847 4848 if (crtc_state->csc_enable) 4849 plane_color_ctl |= PLANE_COLOR_PIPE_CSC_ENABLE; 4850 4851 return plane_color_ctl; 4852 } 4853 4854 u32 glk_plane_color_ctl(const struct intel_crtc_state *crtc_state, 4855 const struct intel_plane_state *plane_state) 4856 { 4857 struct drm_i915_private *dev_priv = 4858 to_i915(plane_state->uapi.plane->dev); 4859 const struct drm_framebuffer *fb = plane_state->hw.fb; 4860 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 4861 u32 plane_color_ctl = 0; 4862 4863 plane_color_ctl |= PLANE_COLOR_PLANE_GAMMA_DISABLE; 4864 plane_color_ctl |= glk_plane_color_ctl_alpha(plane_state); 4865 4866 if (fb->format->is_yuv && !icl_is_hdr_plane(dev_priv, plane->id)) { 4867 switch (plane_state->hw.color_encoding) { 4868 case DRM_COLOR_YCBCR_BT709: 4869 plane_color_ctl |= PLANE_COLOR_CSC_MODE_YUV709_TO_RGB709; 4870 break; 4871 case DRM_COLOR_YCBCR_BT2020: 4872 plane_color_ctl |= 4873 PLANE_COLOR_CSC_MODE_YUV2020_TO_RGB2020; 4874 break; 4875 default: 4876 plane_color_ctl |= 4877 PLANE_COLOR_CSC_MODE_YUV601_TO_RGB601; 4878 } 4879 if (plane_state->hw.color_range == DRM_COLOR_YCBCR_FULL_RANGE) 4880 plane_color_ctl |= PLANE_COLOR_YUV_RANGE_CORRECTION_DISABLE; 4881 } else if (fb->format->is_yuv) { 4882 plane_color_ctl |= PLANE_COLOR_INPUT_CSC_ENABLE; 4883 if (plane_state->hw.color_range == DRM_COLOR_YCBCR_FULL_RANGE) 4884 plane_color_ctl |= PLANE_COLOR_YUV_RANGE_CORRECTION_DISABLE; 4885 } 4886 4887 return plane_color_ctl; 4888 } 4889 4890 static int 4891 __intel_display_resume(struct drm_device *dev, 4892 struct drm_atomic_state *state, 4893 struct drm_modeset_acquire_ctx *ctx) 4894 { 4895 struct drm_crtc_state *crtc_state; 4896 struct drm_crtc *crtc; 4897 int i, ret; 4898 4899 intel_modeset_setup_hw_state(dev, ctx); 4900 intel_vga_redisable(to_i915(dev)); 4901 4902 if (!state) 4903 return 0; 4904 4905 /* 4906 * We've duplicated the state, pointers to the old state are invalid. 4907 * 4908 * Don't attempt to use the old state until we commit the duplicated state. 4909 */ 4910 for_each_new_crtc_in_state(state, crtc, crtc_state, i) { 4911 /* 4912 * Force recalculation even if we restore 4913 * current state. With fast modeset this may not result 4914 * in a modeset when the state is compatible. 4915 */ 4916 crtc_state->mode_changed = true; 4917 } 4918 4919 /* ignore any reset values/BIOS leftovers in the WM registers */ 4920 if (!HAS_GMCH(to_i915(dev))) 4921 to_intel_atomic_state(state)->skip_intermediate_wm = true; 4922 4923 ret = drm_atomic_helper_commit_duplicated_state(state, ctx); 4924 4925 drm_WARN_ON(dev, ret == -EDEADLK); 4926 return ret; 4927 } 4928 4929 static bool gpu_reset_clobbers_display(struct drm_i915_private *dev_priv) 4930 { 4931 return (INTEL_INFO(dev_priv)->gpu_reset_clobbers_display && 4932 intel_has_gpu_reset(&dev_priv->gt)); 4933 } 4934 4935 void intel_prepare_reset(struct drm_i915_private *dev_priv) 4936 { 4937 struct drm_device *dev = &dev_priv->drm; 4938 struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx; 4939 struct drm_atomic_state *state; 4940 int ret; 4941 4942 /* reset doesn't touch the display */ 4943 if (!dev_priv->params.force_reset_modeset_test && 4944 !gpu_reset_clobbers_display(dev_priv)) 4945 return; 4946 4947 /* We have a modeset vs reset deadlock, defensively unbreak it. */ 4948 set_bit(I915_RESET_MODESET, &dev_priv->gt.reset.flags); 4949 smp_mb__after_atomic(); 4950 wake_up_bit(&dev_priv->gt.reset.flags, I915_RESET_MODESET); 4951 4952 if (atomic_read(&dev_priv->gpu_error.pending_fb_pin)) { 4953 drm_dbg_kms(&dev_priv->drm, 4954 "Modeset potentially stuck, unbreaking through wedging\n"); 4955 intel_gt_set_wedged(&dev_priv->gt); 4956 } 4957 4958 /* 4959 * Need mode_config.mutex so that we don't 4960 * trample ongoing ->detect() and whatnot. 4961 */ 4962 mutex_lock(&dev->mode_config.mutex); 4963 drm_modeset_acquire_init(ctx, 0); 4964 while (1) { 4965 ret = drm_modeset_lock_all_ctx(dev, ctx); 4966 if (ret != -EDEADLK) 4967 break; 4968 4969 drm_modeset_backoff(ctx); 4970 } 4971 /* 4972 * Disabling the crtcs gracefully seems nicer. Also the 4973 * g33 docs say we should at least disable all the planes. 4974 */ 4975 state = drm_atomic_helper_duplicate_state(dev, ctx); 4976 if (IS_ERR(state)) { 4977 ret = PTR_ERR(state); 4978 drm_err(&dev_priv->drm, "Duplicating state failed with %i\n", 4979 ret); 4980 return; 4981 } 4982 4983 ret = drm_atomic_helper_disable_all(dev, ctx); 4984 if (ret) { 4985 drm_err(&dev_priv->drm, "Suspending crtc's failed with %i\n", 4986 ret); 4987 drm_atomic_state_put(state); 4988 return; 4989 } 4990 4991 dev_priv->modeset_restore_state = state; 4992 state->acquire_ctx = ctx; 4993 } 4994 4995 void intel_finish_reset(struct drm_i915_private *dev_priv) 4996 { 4997 struct drm_device *dev = &dev_priv->drm; 4998 struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx; 4999 struct drm_atomic_state *state; 5000 int ret; 5001 5002 /* reset doesn't touch the display */ 5003 if (!test_bit(I915_RESET_MODESET, &dev_priv->gt.reset.flags)) 5004 return; 5005 5006 state = fetch_and_zero(&dev_priv->modeset_restore_state); 5007 if (!state) 5008 goto unlock; 5009 5010 /* reset doesn't touch the display */ 5011 if (!gpu_reset_clobbers_display(dev_priv)) { 5012 /* for testing only restore the display */ 5013 ret = __intel_display_resume(dev, state, ctx); 5014 if (ret) 5015 drm_err(&dev_priv->drm, 5016 "Restoring old state failed with %i\n", ret); 5017 } else { 5018 /* 5019 * The display has been reset as well, 5020 * so need a full re-initialization. 5021 */ 5022 intel_pps_unlock_regs_wa(dev_priv); 5023 intel_modeset_init_hw(dev_priv); 5024 intel_init_clock_gating(dev_priv); 5025 5026 spin_lock_irq(&dev_priv->irq_lock); 5027 if (dev_priv->display.hpd_irq_setup) 5028 dev_priv->display.hpd_irq_setup(dev_priv); 5029 spin_unlock_irq(&dev_priv->irq_lock); 5030 5031 ret = __intel_display_resume(dev, state, ctx); 5032 if (ret) 5033 drm_err(&dev_priv->drm, 5034 "Restoring old state failed with %i\n", ret); 5035 5036 intel_hpd_init(dev_priv); 5037 } 5038 5039 drm_atomic_state_put(state); 5040 unlock: 5041 drm_modeset_drop_locks(ctx); 5042 drm_modeset_acquire_fini(ctx); 5043 mutex_unlock(&dev->mode_config.mutex); 5044 5045 clear_bit_unlock(I915_RESET_MODESET, &dev_priv->gt.reset.flags); 5046 } 5047 5048 static void icl_set_pipe_chicken(struct intel_crtc *crtc) 5049 { 5050 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5051 enum pipe pipe = crtc->pipe; 5052 u32 tmp; 5053 5054 tmp = intel_de_read(dev_priv, PIPE_CHICKEN(pipe)); 5055 5056 /* 5057 * Display WA #1153: icl 5058 * enable hardware to bypass the alpha math 5059 * and rounding for per-pixel values 00 and 0xff 5060 */ 5061 tmp |= PER_PIXEL_ALPHA_BYPASS_EN; 5062 /* 5063 * Display WA # 1605353570: icl 5064 * Set the pixel rounding bit to 1 for allowing 5065 * passthrough of Frame buffer pixels unmodified 5066 * across pipe 5067 */ 5068 tmp |= PIXEL_ROUNDING_TRUNC_FB_PASSTHRU; 5069 intel_de_write(dev_priv, PIPE_CHICKEN(pipe), tmp); 5070 } 5071 5072 static void intel_fdi_normal_train(struct intel_crtc *crtc) 5073 { 5074 struct drm_device *dev = crtc->base.dev; 5075 struct drm_i915_private *dev_priv = to_i915(dev); 5076 enum pipe pipe = crtc->pipe; 5077 i915_reg_t reg; 5078 u32 temp; 5079 5080 /* enable normal train */ 5081 reg = FDI_TX_CTL(pipe); 5082 temp = intel_de_read(dev_priv, reg); 5083 if (IS_IVYBRIDGE(dev_priv)) { 5084 temp &= ~FDI_LINK_TRAIN_NONE_IVB; 5085 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE; 5086 } else { 5087 temp &= ~FDI_LINK_TRAIN_NONE; 5088 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE; 5089 } 5090 intel_de_write(dev_priv, reg, temp); 5091 5092 reg = FDI_RX_CTL(pipe); 5093 temp = intel_de_read(dev_priv, reg); 5094 if (HAS_PCH_CPT(dev_priv)) { 5095 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; 5096 temp |= FDI_LINK_TRAIN_NORMAL_CPT; 5097 } else { 5098 temp &= ~FDI_LINK_TRAIN_NONE; 5099 temp |= FDI_LINK_TRAIN_NONE; 5100 } 5101 intel_de_write(dev_priv, reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE); 5102 5103 /* wait one idle pattern time */ 5104 intel_de_posting_read(dev_priv, reg); 5105 udelay(1000); 5106 5107 /* IVB wants error correction enabled */ 5108 if (IS_IVYBRIDGE(dev_priv)) 5109 intel_de_write(dev_priv, reg, 5110 intel_de_read(dev_priv, reg) | FDI_FS_ERRC_ENABLE | FDI_FE_ERRC_ENABLE); 5111 } 5112 5113 /* The FDI link training functions for ILK/Ibexpeak. */ 5114 static void ilk_fdi_link_train(struct intel_crtc *crtc, 5115 const struct intel_crtc_state *crtc_state) 5116 { 5117 struct drm_device *dev = crtc->base.dev; 5118 struct drm_i915_private *dev_priv = to_i915(dev); 5119 enum pipe pipe = crtc->pipe; 5120 i915_reg_t reg; 5121 u32 temp, tries; 5122 5123 /* FDI needs bits from pipe first */ 5124 assert_pipe_enabled(dev_priv, crtc_state->cpu_transcoder); 5125 5126 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit 5127 for train result */ 5128 reg = FDI_RX_IMR(pipe); 5129 temp = intel_de_read(dev_priv, reg); 5130 temp &= ~FDI_RX_SYMBOL_LOCK; 5131 temp &= ~FDI_RX_BIT_LOCK; 5132 intel_de_write(dev_priv, reg, temp); 5133 intel_de_read(dev_priv, reg); 5134 udelay(150); 5135 5136 /* enable CPU FDI TX and PCH FDI RX */ 5137 reg = FDI_TX_CTL(pipe); 5138 temp = intel_de_read(dev_priv, reg); 5139 temp &= ~FDI_DP_PORT_WIDTH_MASK; 5140 temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes); 5141 temp &= ~FDI_LINK_TRAIN_NONE; 5142 temp |= FDI_LINK_TRAIN_PATTERN_1; 5143 intel_de_write(dev_priv, reg, temp | FDI_TX_ENABLE); 5144 5145 reg = FDI_RX_CTL(pipe); 5146 temp = intel_de_read(dev_priv, reg); 5147 temp &= ~FDI_LINK_TRAIN_NONE; 5148 temp |= FDI_LINK_TRAIN_PATTERN_1; 5149 intel_de_write(dev_priv, reg, temp | FDI_RX_ENABLE); 5150 5151 intel_de_posting_read(dev_priv, reg); 5152 udelay(150); 5153 5154 /* Ironlake workaround, enable clock pointer after FDI enable*/ 5155 intel_de_write(dev_priv, FDI_RX_CHICKEN(pipe), 5156 FDI_RX_PHASE_SYNC_POINTER_OVR); 5157 intel_de_write(dev_priv, FDI_RX_CHICKEN(pipe), 5158 FDI_RX_PHASE_SYNC_POINTER_OVR | FDI_RX_PHASE_SYNC_POINTER_EN); 5159 5160 reg = FDI_RX_IIR(pipe); 5161 for (tries = 0; tries < 5; tries++) { 5162 temp = intel_de_read(dev_priv, reg); 5163 drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR 0x%x\n", temp); 5164 5165 if ((temp & FDI_RX_BIT_LOCK)) { 5166 drm_dbg_kms(&dev_priv->drm, "FDI train 1 done.\n"); 5167 intel_de_write(dev_priv, reg, temp | FDI_RX_BIT_LOCK); 5168 break; 5169 } 5170 } 5171 if (tries == 5) 5172 drm_err(&dev_priv->drm, "FDI train 1 fail!\n"); 5173 5174 /* Train 2 */ 5175 reg = FDI_TX_CTL(pipe); 5176 temp = intel_de_read(dev_priv, reg); 5177 temp &= ~FDI_LINK_TRAIN_NONE; 5178 temp |= FDI_LINK_TRAIN_PATTERN_2; 5179 intel_de_write(dev_priv, reg, temp); 5180 5181 reg = FDI_RX_CTL(pipe); 5182 temp = intel_de_read(dev_priv, reg); 5183 temp &= ~FDI_LINK_TRAIN_NONE; 5184 temp |= FDI_LINK_TRAIN_PATTERN_2; 5185 intel_de_write(dev_priv, reg, temp); 5186 5187 intel_de_posting_read(dev_priv, reg); 5188 udelay(150); 5189 5190 reg = FDI_RX_IIR(pipe); 5191 for (tries = 0; tries < 5; tries++) { 5192 temp = intel_de_read(dev_priv, reg); 5193 drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR 0x%x\n", temp); 5194 5195 if (temp & FDI_RX_SYMBOL_LOCK) { 5196 intel_de_write(dev_priv, reg, 5197 temp | FDI_RX_SYMBOL_LOCK); 5198 drm_dbg_kms(&dev_priv->drm, "FDI train 2 done.\n"); 5199 break; 5200 } 5201 } 5202 if (tries == 5) 5203 drm_err(&dev_priv->drm, "FDI train 2 fail!\n"); 5204 5205 drm_dbg_kms(&dev_priv->drm, "FDI train done\n"); 5206 5207 } 5208 5209 static const int snb_b_fdi_train_param[] = { 5210 FDI_LINK_TRAIN_400MV_0DB_SNB_B, 5211 FDI_LINK_TRAIN_400MV_6DB_SNB_B, 5212 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B, 5213 FDI_LINK_TRAIN_800MV_0DB_SNB_B, 5214 }; 5215 5216 /* The FDI link training functions for SNB/Cougarpoint. */ 5217 static void gen6_fdi_link_train(struct intel_crtc *crtc, 5218 const struct intel_crtc_state *crtc_state) 5219 { 5220 struct drm_device *dev = crtc->base.dev; 5221 struct drm_i915_private *dev_priv = to_i915(dev); 5222 enum pipe pipe = crtc->pipe; 5223 i915_reg_t reg; 5224 u32 temp, i, retry; 5225 5226 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit 5227 for train result */ 5228 reg = FDI_RX_IMR(pipe); 5229 temp = intel_de_read(dev_priv, reg); 5230 temp &= ~FDI_RX_SYMBOL_LOCK; 5231 temp &= ~FDI_RX_BIT_LOCK; 5232 intel_de_write(dev_priv, reg, temp); 5233 5234 intel_de_posting_read(dev_priv, reg); 5235 udelay(150); 5236 5237 /* enable CPU FDI TX and PCH FDI RX */ 5238 reg = FDI_TX_CTL(pipe); 5239 temp = intel_de_read(dev_priv, reg); 5240 temp &= ~FDI_DP_PORT_WIDTH_MASK; 5241 temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes); 5242 temp &= ~FDI_LINK_TRAIN_NONE; 5243 temp |= FDI_LINK_TRAIN_PATTERN_1; 5244 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; 5245 /* SNB-B */ 5246 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B; 5247 intel_de_write(dev_priv, reg, temp | FDI_TX_ENABLE); 5248 5249 intel_de_write(dev_priv, FDI_RX_MISC(pipe), 5250 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90); 5251 5252 reg = FDI_RX_CTL(pipe); 5253 temp = intel_de_read(dev_priv, reg); 5254 if (HAS_PCH_CPT(dev_priv)) { 5255 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; 5256 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT; 5257 } else { 5258 temp &= ~FDI_LINK_TRAIN_NONE; 5259 temp |= FDI_LINK_TRAIN_PATTERN_1; 5260 } 5261 intel_de_write(dev_priv, reg, temp | FDI_RX_ENABLE); 5262 5263 intel_de_posting_read(dev_priv, reg); 5264 udelay(150); 5265 5266 for (i = 0; i < 4; i++) { 5267 reg = FDI_TX_CTL(pipe); 5268 temp = intel_de_read(dev_priv, reg); 5269 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; 5270 temp |= snb_b_fdi_train_param[i]; 5271 intel_de_write(dev_priv, reg, temp); 5272 5273 intel_de_posting_read(dev_priv, reg); 5274 udelay(500); 5275 5276 for (retry = 0; retry < 5; retry++) { 5277 reg = FDI_RX_IIR(pipe); 5278 temp = intel_de_read(dev_priv, reg); 5279 drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR 0x%x\n", temp); 5280 if (temp & FDI_RX_BIT_LOCK) { 5281 intel_de_write(dev_priv, reg, 5282 temp | FDI_RX_BIT_LOCK); 5283 drm_dbg_kms(&dev_priv->drm, 5284 "FDI train 1 done.\n"); 5285 break; 5286 } 5287 udelay(50); 5288 } 5289 if (retry < 5) 5290 break; 5291 } 5292 if (i == 4) 5293 drm_err(&dev_priv->drm, "FDI train 1 fail!\n"); 5294 5295 /* Train 2 */ 5296 reg = FDI_TX_CTL(pipe); 5297 temp = intel_de_read(dev_priv, reg); 5298 temp &= ~FDI_LINK_TRAIN_NONE; 5299 temp |= FDI_LINK_TRAIN_PATTERN_2; 5300 if (IS_GEN(dev_priv, 6)) { 5301 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; 5302 /* SNB-B */ 5303 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B; 5304 } 5305 intel_de_write(dev_priv, reg, temp); 5306 5307 reg = FDI_RX_CTL(pipe); 5308 temp = intel_de_read(dev_priv, reg); 5309 if (HAS_PCH_CPT(dev_priv)) { 5310 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; 5311 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT; 5312 } else { 5313 temp &= ~FDI_LINK_TRAIN_NONE; 5314 temp |= FDI_LINK_TRAIN_PATTERN_2; 5315 } 5316 intel_de_write(dev_priv, reg, temp); 5317 5318 intel_de_posting_read(dev_priv, reg); 5319 udelay(150); 5320 5321 for (i = 0; i < 4; i++) { 5322 reg = FDI_TX_CTL(pipe); 5323 temp = intel_de_read(dev_priv, reg); 5324 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; 5325 temp |= snb_b_fdi_train_param[i]; 5326 intel_de_write(dev_priv, reg, temp); 5327 5328 intel_de_posting_read(dev_priv, reg); 5329 udelay(500); 5330 5331 for (retry = 0; retry < 5; retry++) { 5332 reg = FDI_RX_IIR(pipe); 5333 temp = intel_de_read(dev_priv, reg); 5334 drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR 0x%x\n", temp); 5335 if (temp & FDI_RX_SYMBOL_LOCK) { 5336 intel_de_write(dev_priv, reg, 5337 temp | FDI_RX_SYMBOL_LOCK); 5338 drm_dbg_kms(&dev_priv->drm, 5339 "FDI train 2 done.\n"); 5340 break; 5341 } 5342 udelay(50); 5343 } 5344 if (retry < 5) 5345 break; 5346 } 5347 if (i == 4) 5348 drm_err(&dev_priv->drm, "FDI train 2 fail!\n"); 5349 5350 drm_dbg_kms(&dev_priv->drm, "FDI train done.\n"); 5351 } 5352 5353 /* Manual link training for Ivy Bridge A0 parts */ 5354 static void ivb_manual_fdi_link_train(struct intel_crtc *crtc, 5355 const struct intel_crtc_state *crtc_state) 5356 { 5357 struct drm_device *dev = crtc->base.dev; 5358 struct drm_i915_private *dev_priv = to_i915(dev); 5359 enum pipe pipe = crtc->pipe; 5360 i915_reg_t reg; 5361 u32 temp, i, j; 5362 5363 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit 5364 for train result */ 5365 reg = FDI_RX_IMR(pipe); 5366 temp = intel_de_read(dev_priv, reg); 5367 temp &= ~FDI_RX_SYMBOL_LOCK; 5368 temp &= ~FDI_RX_BIT_LOCK; 5369 intel_de_write(dev_priv, reg, temp); 5370 5371 intel_de_posting_read(dev_priv, reg); 5372 udelay(150); 5373 5374 drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR before link train 0x%x\n", 5375 intel_de_read(dev_priv, FDI_RX_IIR(pipe))); 5376 5377 /* Try each vswing and preemphasis setting twice before moving on */ 5378 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) { 5379 /* disable first in case we need to retry */ 5380 reg = FDI_TX_CTL(pipe); 5381 temp = intel_de_read(dev_priv, reg); 5382 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB); 5383 temp &= ~FDI_TX_ENABLE; 5384 intel_de_write(dev_priv, reg, temp); 5385 5386 reg = FDI_RX_CTL(pipe); 5387 temp = intel_de_read(dev_priv, reg); 5388 temp &= ~FDI_LINK_TRAIN_AUTO; 5389 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; 5390 temp &= ~FDI_RX_ENABLE; 5391 intel_de_write(dev_priv, reg, temp); 5392 5393 /* enable CPU FDI TX and PCH FDI RX */ 5394 reg = FDI_TX_CTL(pipe); 5395 temp = intel_de_read(dev_priv, reg); 5396 temp &= ~FDI_DP_PORT_WIDTH_MASK; 5397 temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes); 5398 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB; 5399 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; 5400 temp |= snb_b_fdi_train_param[j/2]; 5401 temp |= FDI_COMPOSITE_SYNC; 5402 intel_de_write(dev_priv, reg, temp | FDI_TX_ENABLE); 5403 5404 intel_de_write(dev_priv, FDI_RX_MISC(pipe), 5405 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90); 5406 5407 reg = FDI_RX_CTL(pipe); 5408 temp = intel_de_read(dev_priv, reg); 5409 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT; 5410 temp |= FDI_COMPOSITE_SYNC; 5411 intel_de_write(dev_priv, reg, temp | FDI_RX_ENABLE); 5412 5413 intel_de_posting_read(dev_priv, reg); 5414 udelay(1); /* should be 0.5us */ 5415 5416 for (i = 0; i < 4; i++) { 5417 reg = FDI_RX_IIR(pipe); 5418 temp = intel_de_read(dev_priv, reg); 5419 drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR 0x%x\n", temp); 5420 5421 if (temp & FDI_RX_BIT_LOCK || 5422 (intel_de_read(dev_priv, reg) & FDI_RX_BIT_LOCK)) { 5423 intel_de_write(dev_priv, reg, 5424 temp | FDI_RX_BIT_LOCK); 5425 drm_dbg_kms(&dev_priv->drm, 5426 "FDI train 1 done, level %i.\n", 5427 i); 5428 break; 5429 } 5430 udelay(1); /* should be 0.5us */ 5431 } 5432 if (i == 4) { 5433 drm_dbg_kms(&dev_priv->drm, 5434 "FDI train 1 fail on vswing %d\n", j / 2); 5435 continue; 5436 } 5437 5438 /* Train 2 */ 5439 reg = FDI_TX_CTL(pipe); 5440 temp = intel_de_read(dev_priv, reg); 5441 temp &= ~FDI_LINK_TRAIN_NONE_IVB; 5442 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB; 5443 intel_de_write(dev_priv, reg, temp); 5444 5445 reg = FDI_RX_CTL(pipe); 5446 temp = intel_de_read(dev_priv, reg); 5447 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; 5448 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT; 5449 intel_de_write(dev_priv, reg, temp); 5450 5451 intel_de_posting_read(dev_priv, reg); 5452 udelay(2); /* should be 1.5us */ 5453 5454 for (i = 0; i < 4; i++) { 5455 reg = FDI_RX_IIR(pipe); 5456 temp = intel_de_read(dev_priv, reg); 5457 drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR 0x%x\n", temp); 5458 5459 if (temp & FDI_RX_SYMBOL_LOCK || 5460 (intel_de_read(dev_priv, reg) & FDI_RX_SYMBOL_LOCK)) { 5461 intel_de_write(dev_priv, reg, 5462 temp | FDI_RX_SYMBOL_LOCK); 5463 drm_dbg_kms(&dev_priv->drm, 5464 "FDI train 2 done, level %i.\n", 5465 i); 5466 goto train_done; 5467 } 5468 udelay(2); /* should be 1.5us */ 5469 } 5470 if (i == 4) 5471 drm_dbg_kms(&dev_priv->drm, 5472 "FDI train 2 fail on vswing %d\n", j / 2); 5473 } 5474 5475 train_done: 5476 drm_dbg_kms(&dev_priv->drm, "FDI train done.\n"); 5477 } 5478 5479 static void ilk_fdi_pll_enable(const struct intel_crtc_state *crtc_state) 5480 { 5481 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc); 5482 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev); 5483 enum pipe pipe = intel_crtc->pipe; 5484 i915_reg_t reg; 5485 u32 temp; 5486 5487 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */ 5488 reg = FDI_RX_CTL(pipe); 5489 temp = intel_de_read(dev_priv, reg); 5490 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16)); 5491 temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes); 5492 temp |= (intel_de_read(dev_priv, PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11; 5493 intel_de_write(dev_priv, reg, temp | FDI_RX_PLL_ENABLE); 5494 5495 intel_de_posting_read(dev_priv, reg); 5496 udelay(200); 5497 5498 /* Switch from Rawclk to PCDclk */ 5499 temp = intel_de_read(dev_priv, reg); 5500 intel_de_write(dev_priv, reg, temp | FDI_PCDCLK); 5501 5502 intel_de_posting_read(dev_priv, reg); 5503 udelay(200); 5504 5505 /* Enable CPU FDI TX PLL, always on for Ironlake */ 5506 reg = FDI_TX_CTL(pipe); 5507 temp = intel_de_read(dev_priv, reg); 5508 if ((temp & FDI_TX_PLL_ENABLE) == 0) { 5509 intel_de_write(dev_priv, reg, temp | FDI_TX_PLL_ENABLE); 5510 5511 intel_de_posting_read(dev_priv, reg); 5512 udelay(100); 5513 } 5514 } 5515 5516 static void ilk_fdi_pll_disable(struct intel_crtc *intel_crtc) 5517 { 5518 struct drm_device *dev = intel_crtc->base.dev; 5519 struct drm_i915_private *dev_priv = to_i915(dev); 5520 enum pipe pipe = intel_crtc->pipe; 5521 i915_reg_t reg; 5522 u32 temp; 5523 5524 /* Switch from PCDclk to Rawclk */ 5525 reg = FDI_RX_CTL(pipe); 5526 temp = intel_de_read(dev_priv, reg); 5527 intel_de_write(dev_priv, reg, temp & ~FDI_PCDCLK); 5528 5529 /* Disable CPU FDI TX PLL */ 5530 reg = FDI_TX_CTL(pipe); 5531 temp = intel_de_read(dev_priv, reg); 5532 intel_de_write(dev_priv, reg, temp & ~FDI_TX_PLL_ENABLE); 5533 5534 intel_de_posting_read(dev_priv, reg); 5535 udelay(100); 5536 5537 reg = FDI_RX_CTL(pipe); 5538 temp = intel_de_read(dev_priv, reg); 5539 intel_de_write(dev_priv, reg, temp & ~FDI_RX_PLL_ENABLE); 5540 5541 /* Wait for the clocks to turn off. */ 5542 intel_de_posting_read(dev_priv, reg); 5543 udelay(100); 5544 } 5545 5546 static void ilk_fdi_disable(struct intel_crtc *crtc) 5547 { 5548 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5549 enum pipe pipe = crtc->pipe; 5550 i915_reg_t reg; 5551 u32 temp; 5552 5553 /* disable CPU FDI tx and PCH FDI rx */ 5554 reg = FDI_TX_CTL(pipe); 5555 temp = intel_de_read(dev_priv, reg); 5556 intel_de_write(dev_priv, reg, temp & ~FDI_TX_ENABLE); 5557 intel_de_posting_read(dev_priv, reg); 5558 5559 reg = FDI_RX_CTL(pipe); 5560 temp = intel_de_read(dev_priv, reg); 5561 temp &= ~(0x7 << 16); 5562 temp |= (intel_de_read(dev_priv, PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11; 5563 intel_de_write(dev_priv, reg, temp & ~FDI_RX_ENABLE); 5564 5565 intel_de_posting_read(dev_priv, reg); 5566 udelay(100); 5567 5568 /* Ironlake workaround, disable clock pointer after downing FDI */ 5569 if (HAS_PCH_IBX(dev_priv)) 5570 intel_de_write(dev_priv, FDI_RX_CHICKEN(pipe), 5571 FDI_RX_PHASE_SYNC_POINTER_OVR); 5572 5573 /* still set train pattern 1 */ 5574 reg = FDI_TX_CTL(pipe); 5575 temp = intel_de_read(dev_priv, reg); 5576 temp &= ~FDI_LINK_TRAIN_NONE; 5577 temp |= FDI_LINK_TRAIN_PATTERN_1; 5578 intel_de_write(dev_priv, reg, temp); 5579 5580 reg = FDI_RX_CTL(pipe); 5581 temp = intel_de_read(dev_priv, reg); 5582 if (HAS_PCH_CPT(dev_priv)) { 5583 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; 5584 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT; 5585 } else { 5586 temp &= ~FDI_LINK_TRAIN_NONE; 5587 temp |= FDI_LINK_TRAIN_PATTERN_1; 5588 } 5589 /* BPC in FDI rx is consistent with that in PIPECONF */ 5590 temp &= ~(0x07 << 16); 5591 temp |= (intel_de_read(dev_priv, PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11; 5592 intel_de_write(dev_priv, reg, temp); 5593 5594 intel_de_posting_read(dev_priv, reg); 5595 udelay(100); 5596 } 5597 5598 bool intel_has_pending_fb_unpin(struct drm_i915_private *dev_priv) 5599 { 5600 struct drm_crtc *crtc; 5601 bool cleanup_done; 5602 5603 drm_for_each_crtc(crtc, &dev_priv->drm) { 5604 struct drm_crtc_commit *commit; 5605 spin_lock(&crtc->commit_lock); 5606 commit = list_first_entry_or_null(&crtc->commit_list, 5607 struct drm_crtc_commit, commit_entry); 5608 cleanup_done = commit ? 5609 try_wait_for_completion(&commit->cleanup_done) : true; 5610 spin_unlock(&crtc->commit_lock); 5611 5612 if (cleanup_done) 5613 continue; 5614 5615 drm_crtc_wait_one_vblank(crtc); 5616 5617 return true; 5618 } 5619 5620 return false; 5621 } 5622 5623 void lpt_disable_iclkip(struct drm_i915_private *dev_priv) 5624 { 5625 u32 temp; 5626 5627 intel_de_write(dev_priv, PIXCLK_GATE, PIXCLK_GATE_GATE); 5628 5629 mutex_lock(&dev_priv->sb_lock); 5630 5631 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK); 5632 temp |= SBI_SSCCTL_DISABLE; 5633 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK); 5634 5635 mutex_unlock(&dev_priv->sb_lock); 5636 } 5637 5638 /* Program iCLKIP clock to the desired frequency */ 5639 static void lpt_program_iclkip(const struct intel_crtc_state *crtc_state) 5640 { 5641 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 5642 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5643 int clock = crtc_state->hw.adjusted_mode.crtc_clock; 5644 u32 divsel, phaseinc, auxdiv, phasedir = 0; 5645 u32 temp; 5646 5647 lpt_disable_iclkip(dev_priv); 5648 5649 /* The iCLK virtual clock root frequency is in MHz, 5650 * but the adjusted_mode->crtc_clock in in KHz. To get the 5651 * divisors, it is necessary to divide one by another, so we 5652 * convert the virtual clock precision to KHz here for higher 5653 * precision. 5654 */ 5655 for (auxdiv = 0; auxdiv < 2; auxdiv++) { 5656 u32 iclk_virtual_root_freq = 172800 * 1000; 5657 u32 iclk_pi_range = 64; 5658 u32 desired_divisor; 5659 5660 desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq, 5661 clock << auxdiv); 5662 divsel = (desired_divisor / iclk_pi_range) - 2; 5663 phaseinc = desired_divisor % iclk_pi_range; 5664 5665 /* 5666 * Near 20MHz is a corner case which is 5667 * out of range for the 7-bit divisor 5668 */ 5669 if (divsel <= 0x7f) 5670 break; 5671 } 5672 5673 /* This should not happen with any sane values */ 5674 drm_WARN_ON(&dev_priv->drm, SBI_SSCDIVINTPHASE_DIVSEL(divsel) & 5675 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK); 5676 drm_WARN_ON(&dev_priv->drm, SBI_SSCDIVINTPHASE_DIR(phasedir) & 5677 ~SBI_SSCDIVINTPHASE_INCVAL_MASK); 5678 5679 drm_dbg_kms(&dev_priv->drm, 5680 "iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n", 5681 clock, auxdiv, divsel, phasedir, phaseinc); 5682 5683 mutex_lock(&dev_priv->sb_lock); 5684 5685 /* Program SSCDIVINTPHASE6 */ 5686 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK); 5687 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK; 5688 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel); 5689 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK; 5690 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc); 5691 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir); 5692 temp |= SBI_SSCDIVINTPHASE_PROPAGATE; 5693 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK); 5694 5695 /* Program SSCAUXDIV */ 5696 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK); 5697 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1); 5698 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv); 5699 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK); 5700 5701 /* Enable modulator and associated divider */ 5702 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK); 5703 temp &= ~SBI_SSCCTL_DISABLE; 5704 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK); 5705 5706 mutex_unlock(&dev_priv->sb_lock); 5707 5708 /* Wait for initialization time */ 5709 udelay(24); 5710 5711 intel_de_write(dev_priv, PIXCLK_GATE, PIXCLK_GATE_UNGATE); 5712 } 5713 5714 int lpt_get_iclkip(struct drm_i915_private *dev_priv) 5715 { 5716 u32 divsel, phaseinc, auxdiv; 5717 u32 iclk_virtual_root_freq = 172800 * 1000; 5718 u32 iclk_pi_range = 64; 5719 u32 desired_divisor; 5720 u32 temp; 5721 5722 if ((intel_de_read(dev_priv, PIXCLK_GATE) & PIXCLK_GATE_UNGATE) == 0) 5723 return 0; 5724 5725 mutex_lock(&dev_priv->sb_lock); 5726 5727 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK); 5728 if (temp & SBI_SSCCTL_DISABLE) { 5729 mutex_unlock(&dev_priv->sb_lock); 5730 return 0; 5731 } 5732 5733 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK); 5734 divsel = (temp & SBI_SSCDIVINTPHASE_DIVSEL_MASK) >> 5735 SBI_SSCDIVINTPHASE_DIVSEL_SHIFT; 5736 phaseinc = (temp & SBI_SSCDIVINTPHASE_INCVAL_MASK) >> 5737 SBI_SSCDIVINTPHASE_INCVAL_SHIFT; 5738 5739 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK); 5740 auxdiv = (temp & SBI_SSCAUXDIV_FINALDIV2SEL_MASK) >> 5741 SBI_SSCAUXDIV_FINALDIV2SEL_SHIFT; 5742 5743 mutex_unlock(&dev_priv->sb_lock); 5744 5745 desired_divisor = (divsel + 2) * iclk_pi_range + phaseinc; 5746 5747 return DIV_ROUND_CLOSEST(iclk_virtual_root_freq, 5748 desired_divisor << auxdiv); 5749 } 5750 5751 static void ilk_pch_transcoder_set_timings(const struct intel_crtc_state *crtc_state, 5752 enum pipe pch_transcoder) 5753 { 5754 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 5755 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5756 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 5757 5758 intel_de_write(dev_priv, PCH_TRANS_HTOTAL(pch_transcoder), 5759 intel_de_read(dev_priv, HTOTAL(cpu_transcoder))); 5760 intel_de_write(dev_priv, PCH_TRANS_HBLANK(pch_transcoder), 5761 intel_de_read(dev_priv, HBLANK(cpu_transcoder))); 5762 intel_de_write(dev_priv, PCH_TRANS_HSYNC(pch_transcoder), 5763 intel_de_read(dev_priv, HSYNC(cpu_transcoder))); 5764 5765 intel_de_write(dev_priv, PCH_TRANS_VTOTAL(pch_transcoder), 5766 intel_de_read(dev_priv, VTOTAL(cpu_transcoder))); 5767 intel_de_write(dev_priv, PCH_TRANS_VBLANK(pch_transcoder), 5768 intel_de_read(dev_priv, VBLANK(cpu_transcoder))); 5769 intel_de_write(dev_priv, PCH_TRANS_VSYNC(pch_transcoder), 5770 intel_de_read(dev_priv, VSYNC(cpu_transcoder))); 5771 intel_de_write(dev_priv, PCH_TRANS_VSYNCSHIFT(pch_transcoder), 5772 intel_de_read(dev_priv, VSYNCSHIFT(cpu_transcoder))); 5773 } 5774 5775 static void cpt_set_fdi_bc_bifurcation(struct drm_i915_private *dev_priv, bool enable) 5776 { 5777 u32 temp; 5778 5779 temp = intel_de_read(dev_priv, SOUTH_CHICKEN1); 5780 if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable) 5781 return; 5782 5783 drm_WARN_ON(&dev_priv->drm, 5784 intel_de_read(dev_priv, FDI_RX_CTL(PIPE_B)) & 5785 FDI_RX_ENABLE); 5786 drm_WARN_ON(&dev_priv->drm, 5787 intel_de_read(dev_priv, FDI_RX_CTL(PIPE_C)) & 5788 FDI_RX_ENABLE); 5789 5790 temp &= ~FDI_BC_BIFURCATION_SELECT; 5791 if (enable) 5792 temp |= FDI_BC_BIFURCATION_SELECT; 5793 5794 drm_dbg_kms(&dev_priv->drm, "%sabling fdi C rx\n", 5795 enable ? "en" : "dis"); 5796 intel_de_write(dev_priv, SOUTH_CHICKEN1, temp); 5797 intel_de_posting_read(dev_priv, SOUTH_CHICKEN1); 5798 } 5799 5800 static void ivb_update_fdi_bc_bifurcation(const struct intel_crtc_state *crtc_state) 5801 { 5802 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 5803 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5804 5805 switch (crtc->pipe) { 5806 case PIPE_A: 5807 break; 5808 case PIPE_B: 5809 if (crtc_state->fdi_lanes > 2) 5810 cpt_set_fdi_bc_bifurcation(dev_priv, false); 5811 else 5812 cpt_set_fdi_bc_bifurcation(dev_priv, true); 5813 5814 break; 5815 case PIPE_C: 5816 cpt_set_fdi_bc_bifurcation(dev_priv, true); 5817 5818 break; 5819 default: 5820 BUG(); 5821 } 5822 } 5823 5824 /* 5825 * Finds the encoder associated with the given CRTC. This can only be 5826 * used when we know that the CRTC isn't feeding multiple encoders! 5827 */ 5828 static struct intel_encoder * 5829 intel_get_crtc_new_encoder(const struct intel_atomic_state *state, 5830 const struct intel_crtc_state *crtc_state) 5831 { 5832 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 5833 const struct drm_connector_state *connector_state; 5834 const struct drm_connector *connector; 5835 struct intel_encoder *encoder = NULL; 5836 int num_encoders = 0; 5837 int i; 5838 5839 for_each_new_connector_in_state(&state->base, connector, connector_state, i) { 5840 if (connector_state->crtc != &crtc->base) 5841 continue; 5842 5843 encoder = to_intel_encoder(connector_state->best_encoder); 5844 num_encoders++; 5845 } 5846 5847 drm_WARN(encoder->base.dev, num_encoders != 1, 5848 "%d encoders for pipe %c\n", 5849 num_encoders, pipe_name(crtc->pipe)); 5850 5851 return encoder; 5852 } 5853 5854 /* 5855 * Enable PCH resources required for PCH ports: 5856 * - PCH PLLs 5857 * - FDI training & RX/TX 5858 * - update transcoder timings 5859 * - DP transcoding bits 5860 * - transcoder 5861 */ 5862 static void ilk_pch_enable(const struct intel_atomic_state *state, 5863 const struct intel_crtc_state *crtc_state) 5864 { 5865 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 5866 struct drm_device *dev = crtc->base.dev; 5867 struct drm_i915_private *dev_priv = to_i915(dev); 5868 enum pipe pipe = crtc->pipe; 5869 u32 temp; 5870 5871 assert_pch_transcoder_disabled(dev_priv, pipe); 5872 5873 if (IS_IVYBRIDGE(dev_priv)) 5874 ivb_update_fdi_bc_bifurcation(crtc_state); 5875 5876 /* Write the TU size bits before fdi link training, so that error 5877 * detection works. */ 5878 intel_de_write(dev_priv, FDI_RX_TUSIZE1(pipe), 5879 intel_de_read(dev_priv, PIPE_DATA_M1(pipe)) & TU_SIZE_MASK); 5880 5881 /* For PCH output, training FDI link */ 5882 dev_priv->display.fdi_link_train(crtc, crtc_state); 5883 5884 /* We need to program the right clock selection before writing the pixel 5885 * mutliplier into the DPLL. */ 5886 if (HAS_PCH_CPT(dev_priv)) { 5887 u32 sel; 5888 5889 temp = intel_de_read(dev_priv, PCH_DPLL_SEL); 5890 temp |= TRANS_DPLL_ENABLE(pipe); 5891 sel = TRANS_DPLLB_SEL(pipe); 5892 if (crtc_state->shared_dpll == 5893 intel_get_shared_dpll_by_id(dev_priv, DPLL_ID_PCH_PLL_B)) 5894 temp |= sel; 5895 else 5896 temp &= ~sel; 5897 intel_de_write(dev_priv, PCH_DPLL_SEL, temp); 5898 } 5899 5900 /* XXX: pch pll's can be enabled any time before we enable the PCH 5901 * transcoder, and we actually should do this to not upset any PCH 5902 * transcoder that already use the clock when we share it. 5903 * 5904 * Note that enable_shared_dpll tries to do the right thing, but 5905 * get_shared_dpll unconditionally resets the pll - we need that to have 5906 * the right LVDS enable sequence. */ 5907 intel_enable_shared_dpll(crtc_state); 5908 5909 /* set transcoder timing, panel must allow it */ 5910 assert_panel_unlocked(dev_priv, pipe); 5911 ilk_pch_transcoder_set_timings(crtc_state, pipe); 5912 5913 intel_fdi_normal_train(crtc); 5914 5915 /* For PCH DP, enable TRANS_DP_CTL */ 5916 if (HAS_PCH_CPT(dev_priv) && 5917 intel_crtc_has_dp_encoder(crtc_state)) { 5918 const struct drm_display_mode *adjusted_mode = 5919 &crtc_state->hw.adjusted_mode; 5920 u32 bpc = (intel_de_read(dev_priv, PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5; 5921 i915_reg_t reg = TRANS_DP_CTL(pipe); 5922 enum port port; 5923 5924 temp = intel_de_read(dev_priv, reg); 5925 temp &= ~(TRANS_DP_PORT_SEL_MASK | 5926 TRANS_DP_SYNC_MASK | 5927 TRANS_DP_BPC_MASK); 5928 temp |= TRANS_DP_OUTPUT_ENABLE; 5929 temp |= bpc << 9; /* same format but at 11:9 */ 5930 5931 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) 5932 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH; 5933 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) 5934 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH; 5935 5936 port = intel_get_crtc_new_encoder(state, crtc_state)->port; 5937 drm_WARN_ON(dev, port < PORT_B || port > PORT_D); 5938 temp |= TRANS_DP_PORT_SEL(port); 5939 5940 intel_de_write(dev_priv, reg, temp); 5941 } 5942 5943 ilk_enable_pch_transcoder(crtc_state); 5944 } 5945 5946 void lpt_pch_enable(const struct intel_crtc_state *crtc_state) 5947 { 5948 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 5949 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5950 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 5951 5952 assert_pch_transcoder_disabled(dev_priv, PIPE_A); 5953 5954 lpt_program_iclkip(crtc_state); 5955 5956 /* Set transcoder timing. */ 5957 ilk_pch_transcoder_set_timings(crtc_state, PIPE_A); 5958 5959 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder); 5960 } 5961 5962 static void cpt_verify_modeset(struct drm_i915_private *dev_priv, 5963 enum pipe pipe) 5964 { 5965 i915_reg_t dslreg = PIPEDSL(pipe); 5966 u32 temp; 5967 5968 temp = intel_de_read(dev_priv, dslreg); 5969 udelay(500); 5970 if (wait_for(intel_de_read(dev_priv, dslreg) != temp, 5)) { 5971 if (wait_for(intel_de_read(dev_priv, dslreg) != temp, 5)) 5972 drm_err(&dev_priv->drm, 5973 "mode set failed: pipe %c stuck\n", 5974 pipe_name(pipe)); 5975 } 5976 } 5977 5978 /* 5979 * The hardware phase 0.0 refers to the center of the pixel. 5980 * We want to start from the top/left edge which is phase 5981 * -0.5. That matches how the hardware calculates the scaling 5982 * factors (from top-left of the first pixel to bottom-right 5983 * of the last pixel, as opposed to the pixel centers). 5984 * 5985 * For 4:2:0 subsampled chroma planes we obviously have to 5986 * adjust that so that the chroma sample position lands in 5987 * the right spot. 5988 * 5989 * Note that for packed YCbCr 4:2:2 formats there is no way to 5990 * control chroma siting. The hardware simply replicates the 5991 * chroma samples for both of the luma samples, and thus we don't 5992 * actually get the expected MPEG2 chroma siting convention :( 5993 * The same behaviour is observed on pre-SKL platforms as well. 5994 * 5995 * Theory behind the formula (note that we ignore sub-pixel 5996 * source coordinates): 5997 * s = source sample position 5998 * d = destination sample position 5999 * 6000 * Downscaling 4:1: 6001 * -0.5 6002 * | 0.0 6003 * | | 1.5 (initial phase) 6004 * | | | 6005 * v v v 6006 * | s | s | s | s | 6007 * | d | 6008 * 6009 * Upscaling 1:4: 6010 * -0.5 6011 * | -0.375 (initial phase) 6012 * | | 0.0 6013 * | | | 6014 * v v v 6015 * | s | 6016 * | d | d | d | d | 6017 */ 6018 u16 skl_scaler_calc_phase(int sub, int scale, bool chroma_cosited) 6019 { 6020 int phase = -0x8000; 6021 u16 trip = 0; 6022 6023 if (chroma_cosited) 6024 phase += (sub - 1) * 0x8000 / sub; 6025 6026 phase += scale / (2 * sub); 6027 6028 /* 6029 * Hardware initial phase limited to [-0.5:1.5]. 6030 * Since the max hardware scale factor is 3.0, we 6031 * should never actually excdeed 1.0 here. 6032 */ 6033 WARN_ON(phase < -0x8000 || phase > 0x18000); 6034 6035 if (phase < 0) 6036 phase = 0x10000 + phase; 6037 else 6038 trip = PS_PHASE_TRIP; 6039 6040 return ((phase >> 2) & PS_PHASE_MASK) | trip; 6041 } 6042 6043 #define SKL_MIN_SRC_W 8 6044 #define SKL_MAX_SRC_W 4096 6045 #define SKL_MIN_SRC_H 8 6046 #define SKL_MAX_SRC_H 4096 6047 #define SKL_MIN_DST_W 8 6048 #define SKL_MAX_DST_W 4096 6049 #define SKL_MIN_DST_H 8 6050 #define SKL_MAX_DST_H 4096 6051 #define ICL_MAX_SRC_W 5120 6052 #define ICL_MAX_SRC_H 4096 6053 #define ICL_MAX_DST_W 5120 6054 #define ICL_MAX_DST_H 4096 6055 #define SKL_MIN_YUV_420_SRC_W 16 6056 #define SKL_MIN_YUV_420_SRC_H 16 6057 6058 static int 6059 skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach, 6060 unsigned int scaler_user, int *scaler_id, 6061 int src_w, int src_h, int dst_w, int dst_h, 6062 const struct drm_format_info *format, 6063 u64 modifier, bool need_scaler) 6064 { 6065 struct intel_crtc_scaler_state *scaler_state = 6066 &crtc_state->scaler_state; 6067 struct intel_crtc *intel_crtc = 6068 to_intel_crtc(crtc_state->uapi.crtc); 6069 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev); 6070 const struct drm_display_mode *adjusted_mode = 6071 &crtc_state->hw.adjusted_mode; 6072 6073 /* 6074 * Src coordinates are already rotated by 270 degrees for 6075 * the 90/270 degree plane rotation cases (to match the 6076 * GTT mapping), hence no need to account for rotation here. 6077 */ 6078 if (src_w != dst_w || src_h != dst_h) 6079 need_scaler = true; 6080 6081 /* 6082 * Scaling/fitting not supported in IF-ID mode in GEN9+ 6083 * TODO: Interlace fetch mode doesn't support YUV420 planar formats. 6084 * Once NV12 is enabled, handle it here while allocating scaler 6085 * for NV12. 6086 */ 6087 if (INTEL_GEN(dev_priv) >= 9 && crtc_state->hw.enable && 6088 need_scaler && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) { 6089 drm_dbg_kms(&dev_priv->drm, 6090 "Pipe/Plane scaling not supported with IF-ID mode\n"); 6091 return -EINVAL; 6092 } 6093 6094 /* 6095 * if plane is being disabled or scaler is no more required or force detach 6096 * - free scaler binded to this plane/crtc 6097 * - in order to do this, update crtc->scaler_usage 6098 * 6099 * Here scaler state in crtc_state is set free so that 6100 * scaler can be assigned to other user. Actual register 6101 * update to free the scaler is done in plane/panel-fit programming. 6102 * For this purpose crtc/plane_state->scaler_id isn't reset here. 6103 */ 6104 if (force_detach || !need_scaler) { 6105 if (*scaler_id >= 0) { 6106 scaler_state->scaler_users &= ~(1 << scaler_user); 6107 scaler_state->scalers[*scaler_id].in_use = 0; 6108 6109 drm_dbg_kms(&dev_priv->drm, 6110 "scaler_user index %u.%u: " 6111 "Staged freeing scaler id %d scaler_users = 0x%x\n", 6112 intel_crtc->pipe, scaler_user, *scaler_id, 6113 scaler_state->scaler_users); 6114 *scaler_id = -1; 6115 } 6116 return 0; 6117 } 6118 6119 if (format && intel_format_info_is_yuv_semiplanar(format, modifier) && 6120 (src_h < SKL_MIN_YUV_420_SRC_H || src_w < SKL_MIN_YUV_420_SRC_W)) { 6121 drm_dbg_kms(&dev_priv->drm, 6122 "Planar YUV: src dimensions not met\n"); 6123 return -EINVAL; 6124 } 6125 6126 /* range checks */ 6127 if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H || 6128 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H || 6129 (INTEL_GEN(dev_priv) >= 11 && 6130 (src_w > ICL_MAX_SRC_W || src_h > ICL_MAX_SRC_H || 6131 dst_w > ICL_MAX_DST_W || dst_h > ICL_MAX_DST_H)) || 6132 (INTEL_GEN(dev_priv) < 11 && 6133 (src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H || 6134 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H))) { 6135 drm_dbg_kms(&dev_priv->drm, 6136 "scaler_user index %u.%u: src %ux%u dst %ux%u " 6137 "size is out of scaler range\n", 6138 intel_crtc->pipe, scaler_user, src_w, src_h, 6139 dst_w, dst_h); 6140 return -EINVAL; 6141 } 6142 6143 /* mark this plane as a scaler user in crtc_state */ 6144 scaler_state->scaler_users |= (1 << scaler_user); 6145 drm_dbg_kms(&dev_priv->drm, "scaler_user index %u.%u: " 6146 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n", 6147 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h, 6148 scaler_state->scaler_users); 6149 6150 return 0; 6151 } 6152 6153 static int skl_update_scaler_crtc(struct intel_crtc_state *crtc_state) 6154 { 6155 const struct drm_display_mode *adjusted_mode = 6156 &crtc_state->hw.adjusted_mode; 6157 int width, height; 6158 6159 if (crtc_state->pch_pfit.enabled) { 6160 width = drm_rect_width(&crtc_state->pch_pfit.dst); 6161 height = drm_rect_height(&crtc_state->pch_pfit.dst); 6162 } else { 6163 width = adjusted_mode->crtc_hdisplay; 6164 height = adjusted_mode->crtc_vdisplay; 6165 } 6166 6167 return skl_update_scaler(crtc_state, !crtc_state->hw.active, 6168 SKL_CRTC_INDEX, 6169 &crtc_state->scaler_state.scaler_id, 6170 crtc_state->pipe_src_w, crtc_state->pipe_src_h, 6171 width, height, NULL, 0, 6172 crtc_state->pch_pfit.enabled); 6173 } 6174 6175 /** 6176 * skl_update_scaler_plane - Stages update to scaler state for a given plane. 6177 * @crtc_state: crtc's scaler state 6178 * @plane_state: atomic plane state to update 6179 * 6180 * Return 6181 * 0 - scaler_usage updated successfully 6182 * error - requested scaling cannot be supported or other error condition 6183 */ 6184 static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state, 6185 struct intel_plane_state *plane_state) 6186 { 6187 struct intel_plane *intel_plane = 6188 to_intel_plane(plane_state->uapi.plane); 6189 struct drm_i915_private *dev_priv = to_i915(intel_plane->base.dev); 6190 struct drm_framebuffer *fb = plane_state->hw.fb; 6191 int ret; 6192 bool force_detach = !fb || !plane_state->uapi.visible; 6193 bool need_scaler = false; 6194 6195 /* Pre-gen11 and SDR planes always need a scaler for planar formats. */ 6196 if (!icl_is_hdr_plane(dev_priv, intel_plane->id) && 6197 fb && intel_format_info_is_yuv_semiplanar(fb->format, fb->modifier)) 6198 need_scaler = true; 6199 6200 ret = skl_update_scaler(crtc_state, force_detach, 6201 drm_plane_index(&intel_plane->base), 6202 &plane_state->scaler_id, 6203 drm_rect_width(&plane_state->uapi.src) >> 16, 6204 drm_rect_height(&plane_state->uapi.src) >> 16, 6205 drm_rect_width(&plane_state->uapi.dst), 6206 drm_rect_height(&plane_state->uapi.dst), 6207 fb ? fb->format : NULL, 6208 fb ? fb->modifier : 0, 6209 need_scaler); 6210 6211 if (ret || plane_state->scaler_id < 0) 6212 return ret; 6213 6214 /* check colorkey */ 6215 if (plane_state->ckey.flags) { 6216 drm_dbg_kms(&dev_priv->drm, 6217 "[PLANE:%d:%s] scaling with color key not allowed", 6218 intel_plane->base.base.id, 6219 intel_plane->base.name); 6220 return -EINVAL; 6221 } 6222 6223 /* Check src format */ 6224 switch (fb->format->format) { 6225 case DRM_FORMAT_RGB565: 6226 case DRM_FORMAT_XBGR8888: 6227 case DRM_FORMAT_XRGB8888: 6228 case DRM_FORMAT_ABGR8888: 6229 case DRM_FORMAT_ARGB8888: 6230 case DRM_FORMAT_XRGB2101010: 6231 case DRM_FORMAT_XBGR2101010: 6232 case DRM_FORMAT_ARGB2101010: 6233 case DRM_FORMAT_ABGR2101010: 6234 case DRM_FORMAT_YUYV: 6235 case DRM_FORMAT_YVYU: 6236 case DRM_FORMAT_UYVY: 6237 case DRM_FORMAT_VYUY: 6238 case DRM_FORMAT_NV12: 6239 case DRM_FORMAT_XYUV8888: 6240 case DRM_FORMAT_P010: 6241 case DRM_FORMAT_P012: 6242 case DRM_FORMAT_P016: 6243 case DRM_FORMAT_Y210: 6244 case DRM_FORMAT_Y212: 6245 case DRM_FORMAT_Y216: 6246 case DRM_FORMAT_XVYU2101010: 6247 case DRM_FORMAT_XVYU12_16161616: 6248 case DRM_FORMAT_XVYU16161616: 6249 break; 6250 case DRM_FORMAT_XBGR16161616F: 6251 case DRM_FORMAT_ABGR16161616F: 6252 case DRM_FORMAT_XRGB16161616F: 6253 case DRM_FORMAT_ARGB16161616F: 6254 if (INTEL_GEN(dev_priv) >= 11) 6255 break; 6256 fallthrough; 6257 default: 6258 drm_dbg_kms(&dev_priv->drm, 6259 "[PLANE:%d:%s] FB:%d unsupported scaling format 0x%x\n", 6260 intel_plane->base.base.id, intel_plane->base.name, 6261 fb->base.id, fb->format->format); 6262 return -EINVAL; 6263 } 6264 6265 return 0; 6266 } 6267 6268 void skl_scaler_disable(const struct intel_crtc_state *old_crtc_state) 6269 { 6270 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); 6271 int i; 6272 6273 for (i = 0; i < crtc->num_scalers; i++) 6274 skl_detach_scaler(crtc, i); 6275 } 6276 6277 static void skl_pfit_enable(const struct intel_crtc_state *crtc_state) 6278 { 6279 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 6280 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6281 const struct intel_crtc_scaler_state *scaler_state = 6282 &crtc_state->scaler_state; 6283 struct drm_rect src = { 6284 .x2 = crtc_state->pipe_src_w << 16, 6285 .y2 = crtc_state->pipe_src_h << 16, 6286 }; 6287 const struct drm_rect *dst = &crtc_state->pch_pfit.dst; 6288 u16 uv_rgb_hphase, uv_rgb_vphase; 6289 enum pipe pipe = crtc->pipe; 6290 int width = drm_rect_width(dst); 6291 int height = drm_rect_height(dst); 6292 int x = dst->x1; 6293 int y = dst->y1; 6294 int hscale, vscale; 6295 unsigned long irqflags; 6296 int id; 6297 6298 if (!crtc_state->pch_pfit.enabled) 6299 return; 6300 6301 if (drm_WARN_ON(&dev_priv->drm, 6302 crtc_state->scaler_state.scaler_id < 0)) 6303 return; 6304 6305 hscale = drm_rect_calc_hscale(&src, dst, 0, INT_MAX); 6306 vscale = drm_rect_calc_vscale(&src, dst, 0, INT_MAX); 6307 6308 uv_rgb_hphase = skl_scaler_calc_phase(1, hscale, false); 6309 uv_rgb_vphase = skl_scaler_calc_phase(1, vscale, false); 6310 6311 id = scaler_state->scaler_id; 6312 6313 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); 6314 6315 intel_de_write_fw(dev_priv, SKL_PS_CTRL(pipe, id), PS_SCALER_EN | 6316 PS_FILTER_MEDIUM | scaler_state->scalers[id].mode); 6317 intel_de_write_fw(dev_priv, SKL_PS_VPHASE(pipe, id), 6318 PS_Y_PHASE(0) | PS_UV_RGB_PHASE(uv_rgb_vphase)); 6319 intel_de_write_fw(dev_priv, SKL_PS_HPHASE(pipe, id), 6320 PS_Y_PHASE(0) | PS_UV_RGB_PHASE(uv_rgb_hphase)); 6321 intel_de_write_fw(dev_priv, SKL_PS_WIN_POS(pipe, id), 6322 x << 16 | y); 6323 intel_de_write_fw(dev_priv, SKL_PS_WIN_SZ(pipe, id), 6324 width << 16 | height); 6325 6326 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); 6327 } 6328 6329 static void ilk_pfit_enable(const struct intel_crtc_state *crtc_state) 6330 { 6331 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 6332 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6333 const struct drm_rect *dst = &crtc_state->pch_pfit.dst; 6334 enum pipe pipe = crtc->pipe; 6335 int width = drm_rect_width(dst); 6336 int height = drm_rect_height(dst); 6337 int x = dst->x1; 6338 int y = dst->y1; 6339 6340 if (!crtc_state->pch_pfit.enabled) 6341 return; 6342 6343 /* Force use of hard-coded filter coefficients 6344 * as some pre-programmed values are broken, 6345 * e.g. x201. 6346 */ 6347 if (IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) 6348 intel_de_write(dev_priv, PF_CTL(pipe), PF_ENABLE | 6349 PF_FILTER_MED_3x3 | PF_PIPE_SEL_IVB(pipe)); 6350 else 6351 intel_de_write(dev_priv, PF_CTL(pipe), PF_ENABLE | 6352 PF_FILTER_MED_3x3); 6353 intel_de_write(dev_priv, PF_WIN_POS(pipe), x << 16 | y); 6354 intel_de_write(dev_priv, PF_WIN_SZ(pipe), width << 16 | height); 6355 } 6356 6357 void hsw_enable_ips(const struct intel_crtc_state *crtc_state) 6358 { 6359 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 6360 struct drm_device *dev = crtc->base.dev; 6361 struct drm_i915_private *dev_priv = to_i915(dev); 6362 6363 if (!crtc_state->ips_enabled) 6364 return; 6365 6366 /* 6367 * We can only enable IPS after we enable a plane and wait for a vblank 6368 * This function is called from post_plane_update, which is run after 6369 * a vblank wait. 6370 */ 6371 drm_WARN_ON(dev, !(crtc_state->active_planes & ~BIT(PLANE_CURSOR))); 6372 6373 if (IS_BROADWELL(dev_priv)) { 6374 drm_WARN_ON(dev, sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 6375 IPS_ENABLE | IPS_PCODE_CONTROL)); 6376 /* Quoting Art Runyan: "its not safe to expect any particular 6377 * value in IPS_CTL bit 31 after enabling IPS through the 6378 * mailbox." Moreover, the mailbox may return a bogus state, 6379 * so we need to just enable it and continue on. 6380 */ 6381 } else { 6382 intel_de_write(dev_priv, IPS_CTL, IPS_ENABLE); 6383 /* The bit only becomes 1 in the next vblank, so this wait here 6384 * is essentially intel_wait_for_vblank. If we don't have this 6385 * and don't wait for vblanks until the end of crtc_enable, then 6386 * the HW state readout code will complain that the expected 6387 * IPS_CTL value is not the one we read. */ 6388 if (intel_de_wait_for_set(dev_priv, IPS_CTL, IPS_ENABLE, 50)) 6389 drm_err(&dev_priv->drm, 6390 "Timed out waiting for IPS enable\n"); 6391 } 6392 } 6393 6394 void hsw_disable_ips(const struct intel_crtc_state *crtc_state) 6395 { 6396 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 6397 struct drm_device *dev = crtc->base.dev; 6398 struct drm_i915_private *dev_priv = to_i915(dev); 6399 6400 if (!crtc_state->ips_enabled) 6401 return; 6402 6403 if (IS_BROADWELL(dev_priv)) { 6404 drm_WARN_ON(dev, 6405 sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0)); 6406 /* 6407 * Wait for PCODE to finish disabling IPS. The BSpec specified 6408 * 42ms timeout value leads to occasional timeouts so use 100ms 6409 * instead. 6410 */ 6411 if (intel_de_wait_for_clear(dev_priv, IPS_CTL, IPS_ENABLE, 100)) 6412 drm_err(&dev_priv->drm, 6413 "Timed out waiting for IPS disable\n"); 6414 } else { 6415 intel_de_write(dev_priv, IPS_CTL, 0); 6416 intel_de_posting_read(dev_priv, IPS_CTL); 6417 } 6418 6419 /* We need to wait for a vblank before we can disable the plane. */ 6420 intel_wait_for_vblank(dev_priv, crtc->pipe); 6421 } 6422 6423 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc) 6424 { 6425 if (intel_crtc->overlay) 6426 (void) intel_overlay_switch_off(intel_crtc->overlay); 6427 6428 /* Let userspace switch the overlay on again. In most cases userspace 6429 * has to recompute where to put it anyway. 6430 */ 6431 } 6432 6433 static bool hsw_pre_update_disable_ips(const struct intel_crtc_state *old_crtc_state, 6434 const struct intel_crtc_state *new_crtc_state) 6435 { 6436 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); 6437 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6438 6439 if (!old_crtc_state->ips_enabled) 6440 return false; 6441 6442 if (needs_modeset(new_crtc_state)) 6443 return true; 6444 6445 /* 6446 * Workaround : Do not read or write the pipe palette/gamma data while 6447 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled. 6448 * 6449 * Disable IPS before we program the LUT. 6450 */ 6451 if (IS_HASWELL(dev_priv) && 6452 (new_crtc_state->uapi.color_mgmt_changed || 6453 new_crtc_state->update_pipe) && 6454 new_crtc_state->gamma_mode == GAMMA_MODE_MODE_SPLIT) 6455 return true; 6456 6457 return !new_crtc_state->ips_enabled; 6458 } 6459 6460 static bool hsw_post_update_enable_ips(const struct intel_crtc_state *old_crtc_state, 6461 const struct intel_crtc_state *new_crtc_state) 6462 { 6463 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); 6464 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6465 6466 if (!new_crtc_state->ips_enabled) 6467 return false; 6468 6469 if (needs_modeset(new_crtc_state)) 6470 return true; 6471 6472 /* 6473 * Workaround : Do not read or write the pipe palette/gamma data while 6474 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled. 6475 * 6476 * Re-enable IPS after the LUT has been programmed. 6477 */ 6478 if (IS_HASWELL(dev_priv) && 6479 (new_crtc_state->uapi.color_mgmt_changed || 6480 new_crtc_state->update_pipe) && 6481 new_crtc_state->gamma_mode == GAMMA_MODE_MODE_SPLIT) 6482 return true; 6483 6484 /* 6485 * We can't read out IPS on broadwell, assume the worst and 6486 * forcibly enable IPS on the first fastset. 6487 */ 6488 if (new_crtc_state->update_pipe && old_crtc_state->inherited) 6489 return true; 6490 6491 return !old_crtc_state->ips_enabled; 6492 } 6493 6494 static bool needs_nv12_wa(const struct intel_crtc_state *crtc_state) 6495 { 6496 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 6497 6498 if (!crtc_state->nv12_planes) 6499 return false; 6500 6501 /* WA Display #0827: Gen9:all */ 6502 if (IS_GEN(dev_priv, 9) && !IS_GEMINILAKE(dev_priv)) 6503 return true; 6504 6505 return false; 6506 } 6507 6508 static bool needs_scalerclk_wa(const struct intel_crtc_state *crtc_state) 6509 { 6510 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 6511 6512 /* Wa_2006604312:icl,ehl */ 6513 if (crtc_state->scaler_state.scaler_users > 0 && IS_GEN(dev_priv, 11)) 6514 return true; 6515 6516 return false; 6517 } 6518 6519 static bool planes_enabling(const struct intel_crtc_state *old_crtc_state, 6520 const struct intel_crtc_state *new_crtc_state) 6521 { 6522 return (!old_crtc_state->active_planes || needs_modeset(new_crtc_state)) && 6523 new_crtc_state->active_planes; 6524 } 6525 6526 static bool planes_disabling(const struct intel_crtc_state *old_crtc_state, 6527 const struct intel_crtc_state *new_crtc_state) 6528 { 6529 return old_crtc_state->active_planes && 6530 (!new_crtc_state->active_planes || needs_modeset(new_crtc_state)); 6531 } 6532 6533 static void intel_post_plane_update(struct intel_atomic_state *state, 6534 struct intel_crtc *crtc) 6535 { 6536 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 6537 const struct intel_crtc_state *old_crtc_state = 6538 intel_atomic_get_old_crtc_state(state, crtc); 6539 const struct intel_crtc_state *new_crtc_state = 6540 intel_atomic_get_new_crtc_state(state, crtc); 6541 enum pipe pipe = crtc->pipe; 6542 6543 intel_frontbuffer_flip(dev_priv, new_crtc_state->fb_bits); 6544 6545 if (new_crtc_state->update_wm_post && new_crtc_state->hw.active) 6546 intel_update_watermarks(crtc); 6547 6548 if (hsw_post_update_enable_ips(old_crtc_state, new_crtc_state)) 6549 hsw_enable_ips(new_crtc_state); 6550 6551 intel_fbc_post_update(state, crtc); 6552 6553 if (needs_nv12_wa(old_crtc_state) && 6554 !needs_nv12_wa(new_crtc_state)) 6555 skl_wa_827(dev_priv, pipe, false); 6556 6557 if (needs_scalerclk_wa(old_crtc_state) && 6558 !needs_scalerclk_wa(new_crtc_state)) 6559 icl_wa_scalerclkgating(dev_priv, pipe, false); 6560 } 6561 6562 static void intel_pre_plane_update(struct intel_atomic_state *state, 6563 struct intel_crtc *crtc) 6564 { 6565 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 6566 const struct intel_crtc_state *old_crtc_state = 6567 intel_atomic_get_old_crtc_state(state, crtc); 6568 const struct intel_crtc_state *new_crtc_state = 6569 intel_atomic_get_new_crtc_state(state, crtc); 6570 enum pipe pipe = crtc->pipe; 6571 6572 if (hsw_pre_update_disable_ips(old_crtc_state, new_crtc_state)) 6573 hsw_disable_ips(old_crtc_state); 6574 6575 if (intel_fbc_pre_update(state, crtc)) 6576 intel_wait_for_vblank(dev_priv, pipe); 6577 6578 /* Display WA 827 */ 6579 if (!needs_nv12_wa(old_crtc_state) && 6580 needs_nv12_wa(new_crtc_state)) 6581 skl_wa_827(dev_priv, pipe, true); 6582 6583 /* Wa_2006604312:icl,ehl */ 6584 if (!needs_scalerclk_wa(old_crtc_state) && 6585 needs_scalerclk_wa(new_crtc_state)) 6586 icl_wa_scalerclkgating(dev_priv, pipe, true); 6587 6588 /* 6589 * Vblank time updates from the shadow to live plane control register 6590 * are blocked if the memory self-refresh mode is active at that 6591 * moment. So to make sure the plane gets truly disabled, disable 6592 * first the self-refresh mode. The self-refresh enable bit in turn 6593 * will be checked/applied by the HW only at the next frame start 6594 * event which is after the vblank start event, so we need to have a 6595 * wait-for-vblank between disabling the plane and the pipe. 6596 */ 6597 if (HAS_GMCH(dev_priv) && old_crtc_state->hw.active && 6598 new_crtc_state->disable_cxsr && intel_set_memory_cxsr(dev_priv, false)) 6599 intel_wait_for_vblank(dev_priv, pipe); 6600 6601 /* 6602 * IVB workaround: must disable low power watermarks for at least 6603 * one frame before enabling scaling. LP watermarks can be re-enabled 6604 * when scaling is disabled. 6605 * 6606 * WaCxSRDisabledForSpriteScaling:ivb 6607 */ 6608 if (old_crtc_state->hw.active && 6609 new_crtc_state->disable_lp_wm && ilk_disable_lp_wm(dev_priv)) 6610 intel_wait_for_vblank(dev_priv, pipe); 6611 6612 /* 6613 * If we're doing a modeset we don't need to do any 6614 * pre-vblank watermark programming here. 6615 */ 6616 if (!needs_modeset(new_crtc_state)) { 6617 /* 6618 * For platforms that support atomic watermarks, program the 6619 * 'intermediate' watermarks immediately. On pre-gen9 platforms, these 6620 * will be the intermediate values that are safe for both pre- and 6621 * post- vblank; when vblank happens, the 'active' values will be set 6622 * to the final 'target' values and we'll do this again to get the 6623 * optimal watermarks. For gen9+ platforms, the values we program here 6624 * will be the final target values which will get automatically latched 6625 * at vblank time; no further programming will be necessary. 6626 * 6627 * If a platform hasn't been transitioned to atomic watermarks yet, 6628 * we'll continue to update watermarks the old way, if flags tell 6629 * us to. 6630 */ 6631 if (dev_priv->display.initial_watermarks) 6632 dev_priv->display.initial_watermarks(state, crtc); 6633 else if (new_crtc_state->update_wm_pre) 6634 intel_update_watermarks(crtc); 6635 } 6636 6637 /* 6638 * Gen2 reports pipe underruns whenever all planes are disabled. 6639 * So disable underrun reporting before all the planes get disabled. 6640 * 6641 * We do this after .initial_watermarks() so that we have a 6642 * chance of catching underruns with the intermediate watermarks 6643 * vs. the old plane configuration. 6644 */ 6645 if (IS_GEN(dev_priv, 2) && planes_disabling(old_crtc_state, new_crtc_state)) 6646 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false); 6647 } 6648 6649 static void intel_crtc_disable_planes(struct intel_atomic_state *state, 6650 struct intel_crtc *crtc) 6651 { 6652 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6653 const struct intel_crtc_state *new_crtc_state = 6654 intel_atomic_get_new_crtc_state(state, crtc); 6655 unsigned int update_mask = new_crtc_state->update_planes; 6656 const struct intel_plane_state *old_plane_state; 6657 struct intel_plane *plane; 6658 unsigned fb_bits = 0; 6659 int i; 6660 6661 intel_crtc_dpms_overlay_disable(crtc); 6662 6663 for_each_old_intel_plane_in_state(state, plane, old_plane_state, i) { 6664 if (crtc->pipe != plane->pipe || 6665 !(update_mask & BIT(plane->id))) 6666 continue; 6667 6668 intel_disable_plane(plane, new_crtc_state); 6669 6670 if (old_plane_state->uapi.visible) 6671 fb_bits |= plane->frontbuffer_bit; 6672 } 6673 6674 intel_frontbuffer_flip(dev_priv, fb_bits); 6675 } 6676 6677 /* 6678 * intel_connector_primary_encoder - get the primary encoder for a connector 6679 * @connector: connector for which to return the encoder 6680 * 6681 * Returns the primary encoder for a connector. There is a 1:1 mapping from 6682 * all connectors to their encoder, except for DP-MST connectors which have 6683 * both a virtual and a primary encoder. These DP-MST primary encoders can be 6684 * pointed to by as many DP-MST connectors as there are pipes. 6685 */ 6686 static struct intel_encoder * 6687 intel_connector_primary_encoder(struct intel_connector *connector) 6688 { 6689 struct intel_encoder *encoder; 6690 6691 if (connector->mst_port) 6692 return &dp_to_dig_port(connector->mst_port)->base; 6693 6694 encoder = intel_attached_encoder(connector); 6695 drm_WARN_ON(connector->base.dev, !encoder); 6696 6697 return encoder; 6698 } 6699 6700 static void intel_encoders_update_prepare(struct intel_atomic_state *state) 6701 { 6702 struct drm_connector_state *new_conn_state; 6703 struct drm_connector *connector; 6704 int i; 6705 6706 for_each_new_connector_in_state(&state->base, connector, new_conn_state, 6707 i) { 6708 struct intel_connector *intel_connector; 6709 struct intel_encoder *encoder; 6710 struct intel_crtc *crtc; 6711 6712 if (!intel_connector_needs_modeset(state, connector)) 6713 continue; 6714 6715 intel_connector = to_intel_connector(connector); 6716 encoder = intel_connector_primary_encoder(intel_connector); 6717 if (!encoder->update_prepare) 6718 continue; 6719 6720 crtc = new_conn_state->crtc ? 6721 to_intel_crtc(new_conn_state->crtc) : NULL; 6722 encoder->update_prepare(state, encoder, crtc); 6723 } 6724 } 6725 6726 static void intel_encoders_update_complete(struct intel_atomic_state *state) 6727 { 6728 struct drm_connector_state *new_conn_state; 6729 struct drm_connector *connector; 6730 int i; 6731 6732 for_each_new_connector_in_state(&state->base, connector, new_conn_state, 6733 i) { 6734 struct intel_connector *intel_connector; 6735 struct intel_encoder *encoder; 6736 struct intel_crtc *crtc; 6737 6738 if (!intel_connector_needs_modeset(state, connector)) 6739 continue; 6740 6741 intel_connector = to_intel_connector(connector); 6742 encoder = intel_connector_primary_encoder(intel_connector); 6743 if (!encoder->update_complete) 6744 continue; 6745 6746 crtc = new_conn_state->crtc ? 6747 to_intel_crtc(new_conn_state->crtc) : NULL; 6748 encoder->update_complete(state, encoder, crtc); 6749 } 6750 } 6751 6752 static void intel_encoders_pre_pll_enable(struct intel_atomic_state *state, 6753 struct intel_crtc *crtc) 6754 { 6755 const struct intel_crtc_state *crtc_state = 6756 intel_atomic_get_new_crtc_state(state, crtc); 6757 const struct drm_connector_state *conn_state; 6758 struct drm_connector *conn; 6759 int i; 6760 6761 for_each_new_connector_in_state(&state->base, conn, conn_state, i) { 6762 struct intel_encoder *encoder = 6763 to_intel_encoder(conn_state->best_encoder); 6764 6765 if (conn_state->crtc != &crtc->base) 6766 continue; 6767 6768 if (encoder->pre_pll_enable) 6769 encoder->pre_pll_enable(state, encoder, 6770 crtc_state, conn_state); 6771 } 6772 } 6773 6774 static void intel_encoders_pre_enable(struct intel_atomic_state *state, 6775 struct intel_crtc *crtc) 6776 { 6777 const struct intel_crtc_state *crtc_state = 6778 intel_atomic_get_new_crtc_state(state, crtc); 6779 const struct drm_connector_state *conn_state; 6780 struct drm_connector *conn; 6781 int i; 6782 6783 for_each_new_connector_in_state(&state->base, conn, conn_state, i) { 6784 struct intel_encoder *encoder = 6785 to_intel_encoder(conn_state->best_encoder); 6786 6787 if (conn_state->crtc != &crtc->base) 6788 continue; 6789 6790 if (encoder->pre_enable) 6791 encoder->pre_enable(state, encoder, 6792 crtc_state, conn_state); 6793 } 6794 } 6795 6796 static void intel_encoders_enable(struct intel_atomic_state *state, 6797 struct intel_crtc *crtc) 6798 { 6799 const struct intel_crtc_state *crtc_state = 6800 intel_atomic_get_new_crtc_state(state, crtc); 6801 const struct drm_connector_state *conn_state; 6802 struct drm_connector *conn; 6803 int i; 6804 6805 for_each_new_connector_in_state(&state->base, conn, conn_state, i) { 6806 struct intel_encoder *encoder = 6807 to_intel_encoder(conn_state->best_encoder); 6808 6809 if (conn_state->crtc != &crtc->base) 6810 continue; 6811 6812 if (encoder->enable) 6813 encoder->enable(state, encoder, 6814 crtc_state, conn_state); 6815 intel_opregion_notify_encoder(encoder, true); 6816 } 6817 } 6818 6819 static void intel_encoders_disable(struct intel_atomic_state *state, 6820 struct intel_crtc *crtc) 6821 { 6822 const struct intel_crtc_state *old_crtc_state = 6823 intel_atomic_get_old_crtc_state(state, crtc); 6824 const struct drm_connector_state *old_conn_state; 6825 struct drm_connector *conn; 6826 int i; 6827 6828 for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) { 6829 struct intel_encoder *encoder = 6830 to_intel_encoder(old_conn_state->best_encoder); 6831 6832 if (old_conn_state->crtc != &crtc->base) 6833 continue; 6834 6835 intel_opregion_notify_encoder(encoder, false); 6836 if (encoder->disable) 6837 encoder->disable(state, encoder, 6838 old_crtc_state, old_conn_state); 6839 } 6840 } 6841 6842 static void intel_encoders_post_disable(struct intel_atomic_state *state, 6843 struct intel_crtc *crtc) 6844 { 6845 const struct intel_crtc_state *old_crtc_state = 6846 intel_atomic_get_old_crtc_state(state, crtc); 6847 const struct drm_connector_state *old_conn_state; 6848 struct drm_connector *conn; 6849 int i; 6850 6851 for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) { 6852 struct intel_encoder *encoder = 6853 to_intel_encoder(old_conn_state->best_encoder); 6854 6855 if (old_conn_state->crtc != &crtc->base) 6856 continue; 6857 6858 if (encoder->post_disable) 6859 encoder->post_disable(state, encoder, 6860 old_crtc_state, old_conn_state); 6861 } 6862 } 6863 6864 static void intel_encoders_post_pll_disable(struct intel_atomic_state *state, 6865 struct intel_crtc *crtc) 6866 { 6867 const struct intel_crtc_state *old_crtc_state = 6868 intel_atomic_get_old_crtc_state(state, crtc); 6869 const struct drm_connector_state *old_conn_state; 6870 struct drm_connector *conn; 6871 int i; 6872 6873 for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) { 6874 struct intel_encoder *encoder = 6875 to_intel_encoder(old_conn_state->best_encoder); 6876 6877 if (old_conn_state->crtc != &crtc->base) 6878 continue; 6879 6880 if (encoder->post_pll_disable) 6881 encoder->post_pll_disable(state, encoder, 6882 old_crtc_state, old_conn_state); 6883 } 6884 } 6885 6886 static void intel_encoders_update_pipe(struct intel_atomic_state *state, 6887 struct intel_crtc *crtc) 6888 { 6889 const struct intel_crtc_state *crtc_state = 6890 intel_atomic_get_new_crtc_state(state, crtc); 6891 const struct drm_connector_state *conn_state; 6892 struct drm_connector *conn; 6893 int i; 6894 6895 for_each_new_connector_in_state(&state->base, conn, conn_state, i) { 6896 struct intel_encoder *encoder = 6897 to_intel_encoder(conn_state->best_encoder); 6898 6899 if (conn_state->crtc != &crtc->base) 6900 continue; 6901 6902 if (encoder->update_pipe) 6903 encoder->update_pipe(state, encoder, 6904 crtc_state, conn_state); 6905 } 6906 } 6907 6908 static void intel_disable_primary_plane(const struct intel_crtc_state *crtc_state) 6909 { 6910 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 6911 struct intel_plane *plane = to_intel_plane(crtc->base.primary); 6912 6913 plane->disable_plane(plane, crtc_state); 6914 } 6915 6916 static void ilk_crtc_enable(struct intel_atomic_state *state, 6917 struct intel_crtc *crtc) 6918 { 6919 const struct intel_crtc_state *new_crtc_state = 6920 intel_atomic_get_new_crtc_state(state, crtc); 6921 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6922 enum pipe pipe = crtc->pipe; 6923 6924 if (drm_WARN_ON(&dev_priv->drm, crtc->active)) 6925 return; 6926 6927 /* 6928 * Sometimes spurious CPU pipe underruns happen during FDI 6929 * training, at least with VGA+HDMI cloning. Suppress them. 6930 * 6931 * On ILK we get an occasional spurious CPU pipe underruns 6932 * between eDP port A enable and vdd enable. Also PCH port 6933 * enable seems to result in the occasional CPU pipe underrun. 6934 * 6935 * Spurious PCH underruns also occur during PCH enabling. 6936 */ 6937 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false); 6938 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false); 6939 6940 if (new_crtc_state->has_pch_encoder) 6941 intel_prepare_shared_dpll(new_crtc_state); 6942 6943 if (intel_crtc_has_dp_encoder(new_crtc_state)) 6944 intel_dp_set_m_n(new_crtc_state, M1_N1); 6945 6946 intel_set_pipe_timings(new_crtc_state); 6947 intel_set_pipe_src_size(new_crtc_state); 6948 6949 if (new_crtc_state->has_pch_encoder) 6950 intel_cpu_transcoder_set_m_n(new_crtc_state, 6951 &new_crtc_state->fdi_m_n, NULL); 6952 6953 ilk_set_pipeconf(new_crtc_state); 6954 6955 crtc->active = true; 6956 6957 intel_encoders_pre_enable(state, crtc); 6958 6959 if (new_crtc_state->has_pch_encoder) { 6960 /* Note: FDI PLL enabling _must_ be done before we enable the 6961 * cpu pipes, hence this is separate from all the other fdi/pch 6962 * enabling. */ 6963 ilk_fdi_pll_enable(new_crtc_state); 6964 } else { 6965 assert_fdi_tx_disabled(dev_priv, pipe); 6966 assert_fdi_rx_disabled(dev_priv, pipe); 6967 } 6968 6969 ilk_pfit_enable(new_crtc_state); 6970 6971 /* 6972 * On ILK+ LUT must be loaded before the pipe is running but with 6973 * clocks enabled 6974 */ 6975 intel_color_load_luts(new_crtc_state); 6976 intel_color_commit(new_crtc_state); 6977 /* update DSPCNTR to configure gamma for pipe bottom color */ 6978 intel_disable_primary_plane(new_crtc_state); 6979 6980 if (dev_priv->display.initial_watermarks) 6981 dev_priv->display.initial_watermarks(state, crtc); 6982 intel_enable_pipe(new_crtc_state); 6983 6984 if (new_crtc_state->has_pch_encoder) 6985 ilk_pch_enable(state, new_crtc_state); 6986 6987 intel_crtc_vblank_on(new_crtc_state); 6988 6989 intel_encoders_enable(state, crtc); 6990 6991 if (HAS_PCH_CPT(dev_priv)) 6992 cpt_verify_modeset(dev_priv, pipe); 6993 6994 /* 6995 * Must wait for vblank to avoid spurious PCH FIFO underruns. 6996 * And a second vblank wait is needed at least on ILK with 6997 * some interlaced HDMI modes. Let's do the double wait always 6998 * in case there are more corner cases we don't know about. 6999 */ 7000 if (new_crtc_state->has_pch_encoder) { 7001 intel_wait_for_vblank(dev_priv, pipe); 7002 intel_wait_for_vblank(dev_priv, pipe); 7003 } 7004 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); 7005 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true); 7006 } 7007 7008 /* IPS only exists on ULT machines and is tied to pipe A. */ 7009 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc) 7010 { 7011 return HAS_IPS(to_i915(crtc->base.dev)) && crtc->pipe == PIPE_A; 7012 } 7013 7014 static void glk_pipe_scaler_clock_gating_wa(struct drm_i915_private *dev_priv, 7015 enum pipe pipe, bool apply) 7016 { 7017 u32 val = intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)); 7018 u32 mask = DPF_GATING_DIS | DPF_RAM_GATING_DIS | DPFR_GATING_DIS; 7019 7020 if (apply) 7021 val |= mask; 7022 else 7023 val &= ~mask; 7024 7025 intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe), val); 7026 } 7027 7028 static void icl_pipe_mbus_enable(struct intel_crtc *crtc) 7029 { 7030 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7031 enum pipe pipe = crtc->pipe; 7032 u32 val; 7033 7034 val = MBUS_DBOX_A_CREDIT(2); 7035 7036 if (INTEL_GEN(dev_priv) >= 12) { 7037 val |= MBUS_DBOX_BW_CREDIT(2); 7038 val |= MBUS_DBOX_B_CREDIT(12); 7039 } else { 7040 val |= MBUS_DBOX_BW_CREDIT(1); 7041 val |= MBUS_DBOX_B_CREDIT(8); 7042 } 7043 7044 intel_de_write(dev_priv, PIPE_MBUS_DBOX_CTL(pipe), val); 7045 } 7046 7047 static void hsw_set_linetime_wm(const struct intel_crtc_state *crtc_state) 7048 { 7049 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 7050 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7051 7052 intel_de_write(dev_priv, WM_LINETIME(crtc->pipe), 7053 HSW_LINETIME(crtc_state->linetime) | 7054 HSW_IPS_LINETIME(crtc_state->ips_linetime)); 7055 } 7056 7057 static void hsw_set_frame_start_delay(const struct intel_crtc_state *crtc_state) 7058 { 7059 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 7060 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7061 i915_reg_t reg = CHICKEN_TRANS(crtc_state->cpu_transcoder); 7062 u32 val; 7063 7064 val = intel_de_read(dev_priv, reg); 7065 val &= ~HSW_FRAME_START_DELAY_MASK; 7066 val |= HSW_FRAME_START_DELAY(0); 7067 intel_de_write(dev_priv, reg, val); 7068 } 7069 7070 static void hsw_crtc_enable(struct intel_atomic_state *state, 7071 struct intel_crtc *crtc) 7072 { 7073 const struct intel_crtc_state *new_crtc_state = 7074 intel_atomic_get_new_crtc_state(state, crtc); 7075 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7076 enum pipe pipe = crtc->pipe, hsw_workaround_pipe; 7077 enum transcoder cpu_transcoder = new_crtc_state->cpu_transcoder; 7078 bool psl_clkgate_wa; 7079 7080 if (drm_WARN_ON(&dev_priv->drm, crtc->active)) 7081 return; 7082 7083 intel_encoders_pre_pll_enable(state, crtc); 7084 7085 if (new_crtc_state->shared_dpll) 7086 intel_enable_shared_dpll(new_crtc_state); 7087 7088 intel_encoders_pre_enable(state, crtc); 7089 7090 if (!transcoder_is_dsi(cpu_transcoder)) 7091 intel_set_pipe_timings(new_crtc_state); 7092 7093 intel_set_pipe_src_size(new_crtc_state); 7094 7095 if (cpu_transcoder != TRANSCODER_EDP && 7096 !transcoder_is_dsi(cpu_transcoder)) 7097 intel_de_write(dev_priv, PIPE_MULT(cpu_transcoder), 7098 new_crtc_state->pixel_multiplier - 1); 7099 7100 if (new_crtc_state->has_pch_encoder) 7101 intel_cpu_transcoder_set_m_n(new_crtc_state, 7102 &new_crtc_state->fdi_m_n, NULL); 7103 7104 if (!transcoder_is_dsi(cpu_transcoder)) { 7105 hsw_set_frame_start_delay(new_crtc_state); 7106 hsw_set_pipeconf(new_crtc_state); 7107 } 7108 7109 if (INTEL_GEN(dev_priv) >= 9 || IS_BROADWELL(dev_priv)) 7110 bdw_set_pipemisc(new_crtc_state); 7111 7112 crtc->active = true; 7113 7114 /* Display WA #1180: WaDisableScalarClockGating: glk, cnl */ 7115 psl_clkgate_wa = (IS_GEMINILAKE(dev_priv) || IS_CANNONLAKE(dev_priv)) && 7116 new_crtc_state->pch_pfit.enabled; 7117 if (psl_clkgate_wa) 7118 glk_pipe_scaler_clock_gating_wa(dev_priv, pipe, true); 7119 7120 if (INTEL_GEN(dev_priv) >= 9) 7121 skl_pfit_enable(new_crtc_state); 7122 else 7123 ilk_pfit_enable(new_crtc_state); 7124 7125 /* 7126 * On ILK+ LUT must be loaded before the pipe is running but with 7127 * clocks enabled 7128 */ 7129 intel_color_load_luts(new_crtc_state); 7130 intel_color_commit(new_crtc_state); 7131 /* update DSPCNTR to configure gamma/csc for pipe bottom color */ 7132 if (INTEL_GEN(dev_priv) < 9) 7133 intel_disable_primary_plane(new_crtc_state); 7134 7135 hsw_set_linetime_wm(new_crtc_state); 7136 7137 if (INTEL_GEN(dev_priv) >= 11) 7138 icl_set_pipe_chicken(crtc); 7139 7140 if (dev_priv->display.initial_watermarks) 7141 dev_priv->display.initial_watermarks(state, crtc); 7142 7143 if (INTEL_GEN(dev_priv) >= 11) 7144 icl_pipe_mbus_enable(crtc); 7145 7146 intel_encoders_enable(state, crtc); 7147 7148 if (psl_clkgate_wa) { 7149 intel_wait_for_vblank(dev_priv, pipe); 7150 glk_pipe_scaler_clock_gating_wa(dev_priv, pipe, false); 7151 } 7152 7153 /* If we change the relative order between pipe/planes enabling, we need 7154 * to change the workaround. */ 7155 hsw_workaround_pipe = new_crtc_state->hsw_workaround_pipe; 7156 if (IS_HASWELL(dev_priv) && hsw_workaround_pipe != INVALID_PIPE) { 7157 intel_wait_for_vblank(dev_priv, hsw_workaround_pipe); 7158 intel_wait_for_vblank(dev_priv, hsw_workaround_pipe); 7159 } 7160 } 7161 7162 void ilk_pfit_disable(const struct intel_crtc_state *old_crtc_state) 7163 { 7164 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); 7165 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7166 enum pipe pipe = crtc->pipe; 7167 7168 /* To avoid upsetting the power well on haswell only disable the pfit if 7169 * it's in use. The hw state code will make sure we get this right. */ 7170 if (!old_crtc_state->pch_pfit.enabled) 7171 return; 7172 7173 intel_de_write(dev_priv, PF_CTL(pipe), 0); 7174 intel_de_write(dev_priv, PF_WIN_POS(pipe), 0); 7175 intel_de_write(dev_priv, PF_WIN_SZ(pipe), 0); 7176 } 7177 7178 static void ilk_crtc_disable(struct intel_atomic_state *state, 7179 struct intel_crtc *crtc) 7180 { 7181 const struct intel_crtc_state *old_crtc_state = 7182 intel_atomic_get_old_crtc_state(state, crtc); 7183 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7184 enum pipe pipe = crtc->pipe; 7185 7186 /* 7187 * Sometimes spurious CPU pipe underruns happen when the 7188 * pipe is already disabled, but FDI RX/TX is still enabled. 7189 * Happens at least with VGA+HDMI cloning. Suppress them. 7190 */ 7191 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false); 7192 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false); 7193 7194 intel_encoders_disable(state, crtc); 7195 7196 intel_crtc_vblank_off(old_crtc_state); 7197 7198 intel_disable_pipe(old_crtc_state); 7199 7200 ilk_pfit_disable(old_crtc_state); 7201 7202 if (old_crtc_state->has_pch_encoder) 7203 ilk_fdi_disable(crtc); 7204 7205 intel_encoders_post_disable(state, crtc); 7206 7207 if (old_crtc_state->has_pch_encoder) { 7208 ilk_disable_pch_transcoder(dev_priv, pipe); 7209 7210 if (HAS_PCH_CPT(dev_priv)) { 7211 i915_reg_t reg; 7212 u32 temp; 7213 7214 /* disable TRANS_DP_CTL */ 7215 reg = TRANS_DP_CTL(pipe); 7216 temp = intel_de_read(dev_priv, reg); 7217 temp &= ~(TRANS_DP_OUTPUT_ENABLE | 7218 TRANS_DP_PORT_SEL_MASK); 7219 temp |= TRANS_DP_PORT_SEL_NONE; 7220 intel_de_write(dev_priv, reg, temp); 7221 7222 /* disable DPLL_SEL */ 7223 temp = intel_de_read(dev_priv, PCH_DPLL_SEL); 7224 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe)); 7225 intel_de_write(dev_priv, PCH_DPLL_SEL, temp); 7226 } 7227 7228 ilk_fdi_pll_disable(crtc); 7229 } 7230 7231 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); 7232 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true); 7233 } 7234 7235 static void hsw_crtc_disable(struct intel_atomic_state *state, 7236 struct intel_crtc *crtc) 7237 { 7238 /* 7239 * FIXME collapse everything to one hook. 7240 * Need care with mst->ddi interactions. 7241 */ 7242 intel_encoders_disable(state, crtc); 7243 intel_encoders_post_disable(state, crtc); 7244 } 7245 7246 static void i9xx_pfit_enable(const struct intel_crtc_state *crtc_state) 7247 { 7248 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 7249 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7250 7251 if (!crtc_state->gmch_pfit.control) 7252 return; 7253 7254 /* 7255 * The panel fitter should only be adjusted whilst the pipe is disabled, 7256 * according to register description and PRM. 7257 */ 7258 drm_WARN_ON(&dev_priv->drm, 7259 intel_de_read(dev_priv, PFIT_CONTROL) & PFIT_ENABLE); 7260 assert_pipe_disabled(dev_priv, crtc_state->cpu_transcoder); 7261 7262 intel_de_write(dev_priv, PFIT_PGM_RATIOS, 7263 crtc_state->gmch_pfit.pgm_ratios); 7264 intel_de_write(dev_priv, PFIT_CONTROL, crtc_state->gmch_pfit.control); 7265 7266 /* Border color in case we don't scale up to the full screen. Black by 7267 * default, change to something else for debugging. */ 7268 intel_de_write(dev_priv, BCLRPAT(crtc->pipe), 0); 7269 } 7270 7271 bool intel_phy_is_combo(struct drm_i915_private *dev_priv, enum phy phy) 7272 { 7273 if (phy == PHY_NONE) 7274 return false; 7275 else if (IS_ROCKETLAKE(dev_priv)) 7276 return phy <= PHY_D; 7277 else if (IS_ELKHARTLAKE(dev_priv)) 7278 return phy <= PHY_C; 7279 else if (INTEL_GEN(dev_priv) >= 11) 7280 return phy <= PHY_B; 7281 else 7282 return false; 7283 } 7284 7285 bool intel_phy_is_tc(struct drm_i915_private *dev_priv, enum phy phy) 7286 { 7287 if (IS_ROCKETLAKE(dev_priv)) 7288 return false; 7289 else if (INTEL_GEN(dev_priv) >= 12) 7290 return phy >= PHY_D && phy <= PHY_I; 7291 else if (INTEL_GEN(dev_priv) >= 11 && !IS_ELKHARTLAKE(dev_priv)) 7292 return phy >= PHY_C && phy <= PHY_F; 7293 else 7294 return false; 7295 } 7296 7297 enum phy intel_port_to_phy(struct drm_i915_private *i915, enum port port) 7298 { 7299 if (IS_ROCKETLAKE(i915) && port >= PORT_D) 7300 return (enum phy)port - 1; 7301 else if (IS_ELKHARTLAKE(i915) && port == PORT_D) 7302 return PHY_A; 7303 7304 return (enum phy)port; 7305 } 7306 7307 enum tc_port intel_port_to_tc(struct drm_i915_private *dev_priv, enum port port) 7308 { 7309 if (!intel_phy_is_tc(dev_priv, intel_port_to_phy(dev_priv, port))) 7310 return PORT_TC_NONE; 7311 7312 if (INTEL_GEN(dev_priv) >= 12) 7313 return port - PORT_D; 7314 7315 return port - PORT_C; 7316 } 7317 7318 enum intel_display_power_domain intel_port_to_power_domain(enum port port) 7319 { 7320 switch (port) { 7321 case PORT_A: 7322 return POWER_DOMAIN_PORT_DDI_A_LANES; 7323 case PORT_B: 7324 return POWER_DOMAIN_PORT_DDI_B_LANES; 7325 case PORT_C: 7326 return POWER_DOMAIN_PORT_DDI_C_LANES; 7327 case PORT_D: 7328 return POWER_DOMAIN_PORT_DDI_D_LANES; 7329 case PORT_E: 7330 return POWER_DOMAIN_PORT_DDI_E_LANES; 7331 case PORT_F: 7332 return POWER_DOMAIN_PORT_DDI_F_LANES; 7333 case PORT_G: 7334 return POWER_DOMAIN_PORT_DDI_G_LANES; 7335 case PORT_H: 7336 return POWER_DOMAIN_PORT_DDI_H_LANES; 7337 case PORT_I: 7338 return POWER_DOMAIN_PORT_DDI_I_LANES; 7339 default: 7340 MISSING_CASE(port); 7341 return POWER_DOMAIN_PORT_OTHER; 7342 } 7343 } 7344 7345 enum intel_display_power_domain 7346 intel_aux_power_domain(struct intel_digital_port *dig_port) 7347 { 7348 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); 7349 enum phy phy = intel_port_to_phy(dev_priv, dig_port->base.port); 7350 7351 if (intel_phy_is_tc(dev_priv, phy) && 7352 dig_port->tc_mode == TC_PORT_TBT_ALT) { 7353 switch (dig_port->aux_ch) { 7354 case AUX_CH_C: 7355 return POWER_DOMAIN_AUX_C_TBT; 7356 case AUX_CH_D: 7357 return POWER_DOMAIN_AUX_D_TBT; 7358 case AUX_CH_E: 7359 return POWER_DOMAIN_AUX_E_TBT; 7360 case AUX_CH_F: 7361 return POWER_DOMAIN_AUX_F_TBT; 7362 case AUX_CH_G: 7363 return POWER_DOMAIN_AUX_G_TBT; 7364 case AUX_CH_H: 7365 return POWER_DOMAIN_AUX_H_TBT; 7366 case AUX_CH_I: 7367 return POWER_DOMAIN_AUX_I_TBT; 7368 default: 7369 MISSING_CASE(dig_port->aux_ch); 7370 return POWER_DOMAIN_AUX_C_TBT; 7371 } 7372 } 7373 7374 return intel_legacy_aux_to_power_domain(dig_port->aux_ch); 7375 } 7376 7377 /* 7378 * Converts aux_ch to power_domain without caring about TBT ports for that use 7379 * intel_aux_power_domain() 7380 */ 7381 enum intel_display_power_domain 7382 intel_legacy_aux_to_power_domain(enum aux_ch aux_ch) 7383 { 7384 switch (aux_ch) { 7385 case AUX_CH_A: 7386 return POWER_DOMAIN_AUX_A; 7387 case AUX_CH_B: 7388 return POWER_DOMAIN_AUX_B; 7389 case AUX_CH_C: 7390 return POWER_DOMAIN_AUX_C; 7391 case AUX_CH_D: 7392 return POWER_DOMAIN_AUX_D; 7393 case AUX_CH_E: 7394 return POWER_DOMAIN_AUX_E; 7395 case AUX_CH_F: 7396 return POWER_DOMAIN_AUX_F; 7397 case AUX_CH_G: 7398 return POWER_DOMAIN_AUX_G; 7399 case AUX_CH_H: 7400 return POWER_DOMAIN_AUX_H; 7401 case AUX_CH_I: 7402 return POWER_DOMAIN_AUX_I; 7403 default: 7404 MISSING_CASE(aux_ch); 7405 return POWER_DOMAIN_AUX_A; 7406 } 7407 } 7408 7409 static u64 get_crtc_power_domains(struct intel_crtc_state *crtc_state) 7410 { 7411 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 7412 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7413 struct drm_encoder *encoder; 7414 enum pipe pipe = crtc->pipe; 7415 u64 mask; 7416 enum transcoder transcoder = crtc_state->cpu_transcoder; 7417 7418 if (!crtc_state->hw.active) 7419 return 0; 7420 7421 mask = BIT_ULL(POWER_DOMAIN_PIPE(pipe)); 7422 mask |= BIT_ULL(POWER_DOMAIN_TRANSCODER(transcoder)); 7423 if (crtc_state->pch_pfit.enabled || 7424 crtc_state->pch_pfit.force_thru) 7425 mask |= BIT_ULL(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe)); 7426 7427 drm_for_each_encoder_mask(encoder, &dev_priv->drm, 7428 crtc_state->uapi.encoder_mask) { 7429 struct intel_encoder *intel_encoder = to_intel_encoder(encoder); 7430 7431 mask |= BIT_ULL(intel_encoder->power_domain); 7432 } 7433 7434 if (HAS_DDI(dev_priv) && crtc_state->has_audio) 7435 mask |= BIT_ULL(POWER_DOMAIN_AUDIO); 7436 7437 if (crtc_state->shared_dpll) 7438 mask |= BIT_ULL(POWER_DOMAIN_DISPLAY_CORE); 7439 7440 return mask; 7441 } 7442 7443 static u64 7444 modeset_get_crtc_power_domains(struct intel_crtc_state *crtc_state) 7445 { 7446 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 7447 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7448 enum intel_display_power_domain domain; 7449 u64 domains, new_domains, old_domains; 7450 7451 old_domains = crtc->enabled_power_domains; 7452 crtc->enabled_power_domains = new_domains = 7453 get_crtc_power_domains(crtc_state); 7454 7455 domains = new_domains & ~old_domains; 7456 7457 for_each_power_domain(domain, domains) 7458 intel_display_power_get(dev_priv, domain); 7459 7460 return old_domains & ~new_domains; 7461 } 7462 7463 static void modeset_put_power_domains(struct drm_i915_private *dev_priv, 7464 u64 domains) 7465 { 7466 enum intel_display_power_domain domain; 7467 7468 for_each_power_domain(domain, domains) 7469 intel_display_power_put_unchecked(dev_priv, domain); 7470 } 7471 7472 static void valleyview_crtc_enable(struct intel_atomic_state *state, 7473 struct intel_crtc *crtc) 7474 { 7475 const struct intel_crtc_state *new_crtc_state = 7476 intel_atomic_get_new_crtc_state(state, crtc); 7477 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7478 enum pipe pipe = crtc->pipe; 7479 7480 if (drm_WARN_ON(&dev_priv->drm, crtc->active)) 7481 return; 7482 7483 if (intel_crtc_has_dp_encoder(new_crtc_state)) 7484 intel_dp_set_m_n(new_crtc_state, M1_N1); 7485 7486 intel_set_pipe_timings(new_crtc_state); 7487 intel_set_pipe_src_size(new_crtc_state); 7488 7489 if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) { 7490 intel_de_write(dev_priv, CHV_BLEND(pipe), CHV_BLEND_LEGACY); 7491 intel_de_write(dev_priv, CHV_CANVAS(pipe), 0); 7492 } 7493 7494 i9xx_set_pipeconf(new_crtc_state); 7495 7496 crtc->active = true; 7497 7498 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); 7499 7500 intel_encoders_pre_pll_enable(state, crtc); 7501 7502 if (IS_CHERRYVIEW(dev_priv)) { 7503 chv_prepare_pll(crtc, new_crtc_state); 7504 chv_enable_pll(crtc, new_crtc_state); 7505 } else { 7506 vlv_prepare_pll(crtc, new_crtc_state); 7507 vlv_enable_pll(crtc, new_crtc_state); 7508 } 7509 7510 intel_encoders_pre_enable(state, crtc); 7511 7512 i9xx_pfit_enable(new_crtc_state); 7513 7514 intel_color_load_luts(new_crtc_state); 7515 intel_color_commit(new_crtc_state); 7516 /* update DSPCNTR to configure gamma for pipe bottom color */ 7517 intel_disable_primary_plane(new_crtc_state); 7518 7519 dev_priv->display.initial_watermarks(state, crtc); 7520 intel_enable_pipe(new_crtc_state); 7521 7522 intel_crtc_vblank_on(new_crtc_state); 7523 7524 intel_encoders_enable(state, crtc); 7525 } 7526 7527 static void i9xx_set_pll_dividers(const struct intel_crtc_state *crtc_state) 7528 { 7529 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 7530 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7531 7532 intel_de_write(dev_priv, FP0(crtc->pipe), 7533 crtc_state->dpll_hw_state.fp0); 7534 intel_de_write(dev_priv, FP1(crtc->pipe), 7535 crtc_state->dpll_hw_state.fp1); 7536 } 7537 7538 static void i9xx_crtc_enable(struct intel_atomic_state *state, 7539 struct intel_crtc *crtc) 7540 { 7541 const struct intel_crtc_state *new_crtc_state = 7542 intel_atomic_get_new_crtc_state(state, crtc); 7543 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7544 enum pipe pipe = crtc->pipe; 7545 7546 if (drm_WARN_ON(&dev_priv->drm, crtc->active)) 7547 return; 7548 7549 i9xx_set_pll_dividers(new_crtc_state); 7550 7551 if (intel_crtc_has_dp_encoder(new_crtc_state)) 7552 intel_dp_set_m_n(new_crtc_state, M1_N1); 7553 7554 intel_set_pipe_timings(new_crtc_state); 7555 intel_set_pipe_src_size(new_crtc_state); 7556 7557 i9xx_set_pipeconf(new_crtc_state); 7558 7559 crtc->active = true; 7560 7561 if (!IS_GEN(dev_priv, 2)) 7562 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); 7563 7564 intel_encoders_pre_enable(state, crtc); 7565 7566 i9xx_enable_pll(crtc, new_crtc_state); 7567 7568 i9xx_pfit_enable(new_crtc_state); 7569 7570 intel_color_load_luts(new_crtc_state); 7571 intel_color_commit(new_crtc_state); 7572 /* update DSPCNTR to configure gamma for pipe bottom color */ 7573 intel_disable_primary_plane(new_crtc_state); 7574 7575 if (dev_priv->display.initial_watermarks) 7576 dev_priv->display.initial_watermarks(state, crtc); 7577 else 7578 intel_update_watermarks(crtc); 7579 intel_enable_pipe(new_crtc_state); 7580 7581 intel_crtc_vblank_on(new_crtc_state); 7582 7583 intel_encoders_enable(state, crtc); 7584 7585 /* prevents spurious underruns */ 7586 if (IS_GEN(dev_priv, 2)) 7587 intel_wait_for_vblank(dev_priv, pipe); 7588 } 7589 7590 static void i9xx_pfit_disable(const struct intel_crtc_state *old_crtc_state) 7591 { 7592 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); 7593 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7594 7595 if (!old_crtc_state->gmch_pfit.control) 7596 return; 7597 7598 assert_pipe_disabled(dev_priv, old_crtc_state->cpu_transcoder); 7599 7600 drm_dbg_kms(&dev_priv->drm, "disabling pfit, current: 0x%08x\n", 7601 intel_de_read(dev_priv, PFIT_CONTROL)); 7602 intel_de_write(dev_priv, PFIT_CONTROL, 0); 7603 } 7604 7605 static void i9xx_crtc_disable(struct intel_atomic_state *state, 7606 struct intel_crtc *crtc) 7607 { 7608 struct intel_crtc_state *old_crtc_state = 7609 intel_atomic_get_old_crtc_state(state, crtc); 7610 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7611 enum pipe pipe = crtc->pipe; 7612 7613 /* 7614 * On gen2 planes are double buffered but the pipe isn't, so we must 7615 * wait for planes to fully turn off before disabling the pipe. 7616 */ 7617 if (IS_GEN(dev_priv, 2)) 7618 intel_wait_for_vblank(dev_priv, pipe); 7619 7620 intel_encoders_disable(state, crtc); 7621 7622 intel_crtc_vblank_off(old_crtc_state); 7623 7624 intel_disable_pipe(old_crtc_state); 7625 7626 i9xx_pfit_disable(old_crtc_state); 7627 7628 intel_encoders_post_disable(state, crtc); 7629 7630 if (!intel_crtc_has_type(old_crtc_state, INTEL_OUTPUT_DSI)) { 7631 if (IS_CHERRYVIEW(dev_priv)) 7632 chv_disable_pll(dev_priv, pipe); 7633 else if (IS_VALLEYVIEW(dev_priv)) 7634 vlv_disable_pll(dev_priv, pipe); 7635 else 7636 i9xx_disable_pll(old_crtc_state); 7637 } 7638 7639 intel_encoders_post_pll_disable(state, crtc); 7640 7641 if (!IS_GEN(dev_priv, 2)) 7642 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false); 7643 7644 if (!dev_priv->display.initial_watermarks) 7645 intel_update_watermarks(crtc); 7646 7647 /* clock the pipe down to 640x480@60 to potentially save power */ 7648 if (IS_I830(dev_priv)) 7649 i830_enable_pipe(dev_priv, pipe); 7650 } 7651 7652 static void intel_crtc_disable_noatomic(struct intel_crtc *crtc, 7653 struct drm_modeset_acquire_ctx *ctx) 7654 { 7655 struct intel_encoder *encoder; 7656 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7657 struct intel_bw_state *bw_state = 7658 to_intel_bw_state(dev_priv->bw_obj.state); 7659 struct intel_cdclk_state *cdclk_state = 7660 to_intel_cdclk_state(dev_priv->cdclk.obj.state); 7661 struct intel_dbuf_state *dbuf_state = 7662 to_intel_dbuf_state(dev_priv->dbuf.obj.state); 7663 struct intel_crtc_state *crtc_state = 7664 to_intel_crtc_state(crtc->base.state); 7665 enum intel_display_power_domain domain; 7666 struct intel_plane *plane; 7667 struct drm_atomic_state *state; 7668 struct intel_crtc_state *temp_crtc_state; 7669 enum pipe pipe = crtc->pipe; 7670 u64 domains; 7671 int ret; 7672 7673 if (!crtc_state->hw.active) 7674 return; 7675 7676 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) { 7677 const struct intel_plane_state *plane_state = 7678 to_intel_plane_state(plane->base.state); 7679 7680 if (plane_state->uapi.visible) 7681 intel_plane_disable_noatomic(crtc, plane); 7682 } 7683 7684 state = drm_atomic_state_alloc(&dev_priv->drm); 7685 if (!state) { 7686 drm_dbg_kms(&dev_priv->drm, 7687 "failed to disable [CRTC:%d:%s], out of memory", 7688 crtc->base.base.id, crtc->base.name); 7689 return; 7690 } 7691 7692 state->acquire_ctx = ctx; 7693 7694 /* Everything's already locked, -EDEADLK can't happen. */ 7695 temp_crtc_state = intel_atomic_get_crtc_state(state, crtc); 7696 ret = drm_atomic_add_affected_connectors(state, &crtc->base); 7697 7698 drm_WARN_ON(&dev_priv->drm, IS_ERR(temp_crtc_state) || ret); 7699 7700 dev_priv->display.crtc_disable(to_intel_atomic_state(state), crtc); 7701 7702 drm_atomic_state_put(state); 7703 7704 drm_dbg_kms(&dev_priv->drm, 7705 "[CRTC:%d:%s] hw state adjusted, was enabled, now disabled\n", 7706 crtc->base.base.id, crtc->base.name); 7707 7708 crtc->active = false; 7709 crtc->base.enabled = false; 7710 7711 drm_WARN_ON(&dev_priv->drm, 7712 drm_atomic_set_mode_for_crtc(&crtc_state->uapi, NULL) < 0); 7713 crtc_state->uapi.active = false; 7714 crtc_state->uapi.connector_mask = 0; 7715 crtc_state->uapi.encoder_mask = 0; 7716 intel_crtc_free_hw_state(crtc_state); 7717 memset(&crtc_state->hw, 0, sizeof(crtc_state->hw)); 7718 7719 for_each_encoder_on_crtc(&dev_priv->drm, &crtc->base, encoder) 7720 encoder->base.crtc = NULL; 7721 7722 intel_fbc_disable(crtc); 7723 intel_update_watermarks(crtc); 7724 intel_disable_shared_dpll(crtc_state); 7725 7726 domains = crtc->enabled_power_domains; 7727 for_each_power_domain(domain, domains) 7728 intel_display_power_put_unchecked(dev_priv, domain); 7729 crtc->enabled_power_domains = 0; 7730 7731 dev_priv->active_pipes &= ~BIT(pipe); 7732 cdclk_state->min_cdclk[pipe] = 0; 7733 cdclk_state->min_voltage_level[pipe] = 0; 7734 cdclk_state->active_pipes &= ~BIT(pipe); 7735 7736 dbuf_state->active_pipes &= ~BIT(pipe); 7737 7738 bw_state->data_rate[pipe] = 0; 7739 bw_state->num_active_planes[pipe] = 0; 7740 } 7741 7742 /* 7743 * turn all crtc's off, but do not adjust state 7744 * This has to be paired with a call to intel_modeset_setup_hw_state. 7745 */ 7746 int intel_display_suspend(struct drm_device *dev) 7747 { 7748 struct drm_i915_private *dev_priv = to_i915(dev); 7749 struct drm_atomic_state *state; 7750 int ret; 7751 7752 state = drm_atomic_helper_suspend(dev); 7753 ret = PTR_ERR_OR_ZERO(state); 7754 if (ret) 7755 drm_err(&dev_priv->drm, "Suspending crtc's failed with %i\n", 7756 ret); 7757 else 7758 dev_priv->modeset_restore_state = state; 7759 return ret; 7760 } 7761 7762 void intel_encoder_destroy(struct drm_encoder *encoder) 7763 { 7764 struct intel_encoder *intel_encoder = to_intel_encoder(encoder); 7765 7766 drm_encoder_cleanup(encoder); 7767 kfree(intel_encoder); 7768 } 7769 7770 /* Cross check the actual hw state with our own modeset state tracking (and it's 7771 * internal consistency). */ 7772 static void intel_connector_verify_state(struct intel_crtc_state *crtc_state, 7773 struct drm_connector_state *conn_state) 7774 { 7775 struct intel_connector *connector = to_intel_connector(conn_state->connector); 7776 struct drm_i915_private *i915 = to_i915(connector->base.dev); 7777 7778 drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s]\n", 7779 connector->base.base.id, connector->base.name); 7780 7781 if (connector->get_hw_state(connector)) { 7782 struct intel_encoder *encoder = intel_attached_encoder(connector); 7783 7784 I915_STATE_WARN(!crtc_state, 7785 "connector enabled without attached crtc\n"); 7786 7787 if (!crtc_state) 7788 return; 7789 7790 I915_STATE_WARN(!crtc_state->hw.active, 7791 "connector is active, but attached crtc isn't\n"); 7792 7793 if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST) 7794 return; 7795 7796 I915_STATE_WARN(conn_state->best_encoder != &encoder->base, 7797 "atomic encoder doesn't match attached encoder\n"); 7798 7799 I915_STATE_WARN(conn_state->crtc != encoder->base.crtc, 7800 "attached encoder crtc differs from connector crtc\n"); 7801 } else { 7802 I915_STATE_WARN(crtc_state && crtc_state->hw.active, 7803 "attached crtc is active, but connector isn't\n"); 7804 I915_STATE_WARN(!crtc_state && conn_state->best_encoder, 7805 "best encoder set without crtc!\n"); 7806 } 7807 } 7808 7809 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state) 7810 { 7811 if (crtc_state->hw.enable && crtc_state->has_pch_encoder) 7812 return crtc_state->fdi_lanes; 7813 7814 return 0; 7815 } 7816 7817 static int ilk_check_fdi_lanes(struct drm_device *dev, enum pipe pipe, 7818 struct intel_crtc_state *pipe_config) 7819 { 7820 struct drm_i915_private *dev_priv = to_i915(dev); 7821 struct drm_atomic_state *state = pipe_config->uapi.state; 7822 struct intel_crtc *other_crtc; 7823 struct intel_crtc_state *other_crtc_state; 7824 7825 drm_dbg_kms(&dev_priv->drm, 7826 "checking fdi config on pipe %c, lanes %i\n", 7827 pipe_name(pipe), pipe_config->fdi_lanes); 7828 if (pipe_config->fdi_lanes > 4) { 7829 drm_dbg_kms(&dev_priv->drm, 7830 "invalid fdi lane config on pipe %c: %i lanes\n", 7831 pipe_name(pipe), pipe_config->fdi_lanes); 7832 return -EINVAL; 7833 } 7834 7835 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) { 7836 if (pipe_config->fdi_lanes > 2) { 7837 drm_dbg_kms(&dev_priv->drm, 7838 "only 2 lanes on haswell, required: %i lanes\n", 7839 pipe_config->fdi_lanes); 7840 return -EINVAL; 7841 } else { 7842 return 0; 7843 } 7844 } 7845 7846 if (INTEL_NUM_PIPES(dev_priv) == 2) 7847 return 0; 7848 7849 /* Ivybridge 3 pipe is really complicated */ 7850 switch (pipe) { 7851 case PIPE_A: 7852 return 0; 7853 case PIPE_B: 7854 if (pipe_config->fdi_lanes <= 2) 7855 return 0; 7856 7857 other_crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_C); 7858 other_crtc_state = 7859 intel_atomic_get_crtc_state(state, other_crtc); 7860 if (IS_ERR(other_crtc_state)) 7861 return PTR_ERR(other_crtc_state); 7862 7863 if (pipe_required_fdi_lanes(other_crtc_state) > 0) { 7864 drm_dbg_kms(&dev_priv->drm, 7865 "invalid shared fdi lane config on pipe %c: %i lanes\n", 7866 pipe_name(pipe), pipe_config->fdi_lanes); 7867 return -EINVAL; 7868 } 7869 return 0; 7870 case PIPE_C: 7871 if (pipe_config->fdi_lanes > 2) { 7872 drm_dbg_kms(&dev_priv->drm, 7873 "only 2 lanes on pipe %c: required %i lanes\n", 7874 pipe_name(pipe), pipe_config->fdi_lanes); 7875 return -EINVAL; 7876 } 7877 7878 other_crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_B); 7879 other_crtc_state = 7880 intel_atomic_get_crtc_state(state, other_crtc); 7881 if (IS_ERR(other_crtc_state)) 7882 return PTR_ERR(other_crtc_state); 7883 7884 if (pipe_required_fdi_lanes(other_crtc_state) > 2) { 7885 drm_dbg_kms(&dev_priv->drm, 7886 "fdi link B uses too many lanes to enable link C\n"); 7887 return -EINVAL; 7888 } 7889 return 0; 7890 default: 7891 BUG(); 7892 } 7893 } 7894 7895 #define RETRY 1 7896 static int ilk_fdi_compute_config(struct intel_crtc *intel_crtc, 7897 struct intel_crtc_state *pipe_config) 7898 { 7899 struct drm_device *dev = intel_crtc->base.dev; 7900 struct drm_i915_private *i915 = to_i915(dev); 7901 const struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode; 7902 int lane, link_bw, fdi_dotclock, ret; 7903 bool needs_recompute = false; 7904 7905 retry: 7906 /* FDI is a binary signal running at ~2.7GHz, encoding 7907 * each output octet as 10 bits. The actual frequency 7908 * is stored as a divider into a 100MHz clock, and the 7909 * mode pixel clock is stored in units of 1KHz. 7910 * Hence the bw of each lane in terms of the mode signal 7911 * is: 7912 */ 7913 link_bw = intel_fdi_link_freq(i915, pipe_config); 7914 7915 fdi_dotclock = adjusted_mode->crtc_clock; 7916 7917 lane = ilk_get_lanes_required(fdi_dotclock, link_bw, 7918 pipe_config->pipe_bpp); 7919 7920 pipe_config->fdi_lanes = lane; 7921 7922 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock, 7923 link_bw, &pipe_config->fdi_m_n, false, false); 7924 7925 ret = ilk_check_fdi_lanes(dev, intel_crtc->pipe, pipe_config); 7926 if (ret == -EDEADLK) 7927 return ret; 7928 7929 if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) { 7930 pipe_config->pipe_bpp -= 2*3; 7931 drm_dbg_kms(&i915->drm, 7932 "fdi link bw constraint, reducing pipe bpp to %i\n", 7933 pipe_config->pipe_bpp); 7934 needs_recompute = true; 7935 pipe_config->bw_constrained = true; 7936 7937 goto retry; 7938 } 7939 7940 if (needs_recompute) 7941 return RETRY; 7942 7943 return ret; 7944 } 7945 7946 bool hsw_crtc_state_ips_capable(const struct intel_crtc_state *crtc_state) 7947 { 7948 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 7949 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7950 7951 /* IPS only exists on ULT machines and is tied to pipe A. */ 7952 if (!hsw_crtc_supports_ips(crtc)) 7953 return false; 7954 7955 if (!dev_priv->params.enable_ips) 7956 return false; 7957 7958 if (crtc_state->pipe_bpp > 24) 7959 return false; 7960 7961 /* 7962 * We compare against max which means we must take 7963 * the increased cdclk requirement into account when 7964 * calculating the new cdclk. 7965 * 7966 * Should measure whether using a lower cdclk w/o IPS 7967 */ 7968 if (IS_BROADWELL(dev_priv) && 7969 crtc_state->pixel_rate > dev_priv->max_cdclk_freq * 95 / 100) 7970 return false; 7971 7972 return true; 7973 } 7974 7975 static int hsw_compute_ips_config(struct intel_crtc_state *crtc_state) 7976 { 7977 struct drm_i915_private *dev_priv = 7978 to_i915(crtc_state->uapi.crtc->dev); 7979 struct intel_atomic_state *state = 7980 to_intel_atomic_state(crtc_state->uapi.state); 7981 7982 crtc_state->ips_enabled = false; 7983 7984 if (!hsw_crtc_state_ips_capable(crtc_state)) 7985 return 0; 7986 7987 /* 7988 * When IPS gets enabled, the pipe CRC changes. Since IPS gets 7989 * enabled and disabled dynamically based on package C states, 7990 * user space can't make reliable use of the CRCs, so let's just 7991 * completely disable it. 7992 */ 7993 if (crtc_state->crc_enabled) 7994 return 0; 7995 7996 /* IPS should be fine as long as at least one plane is enabled. */ 7997 if (!(crtc_state->active_planes & ~BIT(PLANE_CURSOR))) 7998 return 0; 7999 8000 if (IS_BROADWELL(dev_priv)) { 8001 const struct intel_cdclk_state *cdclk_state; 8002 8003 cdclk_state = intel_atomic_get_cdclk_state(state); 8004 if (IS_ERR(cdclk_state)) 8005 return PTR_ERR(cdclk_state); 8006 8007 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */ 8008 if (crtc_state->pixel_rate > cdclk_state->logical.cdclk * 95 / 100) 8009 return 0; 8010 } 8011 8012 crtc_state->ips_enabled = true; 8013 8014 return 0; 8015 } 8016 8017 static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc) 8018 { 8019 const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 8020 8021 /* GDG double wide on either pipe, otherwise pipe A only */ 8022 return INTEL_GEN(dev_priv) < 4 && 8023 (crtc->pipe == PIPE_A || IS_I915G(dev_priv)); 8024 } 8025 8026 static u32 ilk_pipe_pixel_rate(const struct intel_crtc_state *crtc_state) 8027 { 8028 u32 pixel_rate = crtc_state->hw.adjusted_mode.crtc_clock; 8029 unsigned int pipe_w, pipe_h, pfit_w, pfit_h; 8030 8031 /* 8032 * We only use IF-ID interlacing. If we ever use 8033 * PF-ID we'll need to adjust the pixel_rate here. 8034 */ 8035 8036 if (!crtc_state->pch_pfit.enabled) 8037 return pixel_rate; 8038 8039 pipe_w = crtc_state->pipe_src_w; 8040 pipe_h = crtc_state->pipe_src_h; 8041 8042 pfit_w = drm_rect_width(&crtc_state->pch_pfit.dst); 8043 pfit_h = drm_rect_height(&crtc_state->pch_pfit.dst); 8044 8045 if (pipe_w < pfit_w) 8046 pipe_w = pfit_w; 8047 if (pipe_h < pfit_h) 8048 pipe_h = pfit_h; 8049 8050 if (drm_WARN_ON(crtc_state->uapi.crtc->dev, 8051 !pfit_w || !pfit_h)) 8052 return pixel_rate; 8053 8054 return div_u64(mul_u32_u32(pixel_rate, pipe_w * pipe_h), 8055 pfit_w * pfit_h); 8056 } 8057 8058 static void intel_crtc_compute_pixel_rate(struct intel_crtc_state *crtc_state) 8059 { 8060 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 8061 8062 if (HAS_GMCH(dev_priv)) 8063 /* FIXME calculate proper pipe pixel rate for GMCH pfit */ 8064 crtc_state->pixel_rate = 8065 crtc_state->hw.adjusted_mode.crtc_clock; 8066 else 8067 crtc_state->pixel_rate = 8068 ilk_pipe_pixel_rate(crtc_state); 8069 } 8070 8071 static int intel_crtc_compute_config(struct intel_crtc *crtc, 8072 struct intel_crtc_state *pipe_config) 8073 { 8074 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 8075 const struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode; 8076 int clock_limit = dev_priv->max_dotclk_freq; 8077 8078 if (INTEL_GEN(dev_priv) < 4) { 8079 clock_limit = dev_priv->max_cdclk_freq * 9 / 10; 8080 8081 /* 8082 * Enable double wide mode when the dot clock 8083 * is > 90% of the (display) core speed. 8084 */ 8085 if (intel_crtc_supports_double_wide(crtc) && 8086 adjusted_mode->crtc_clock > clock_limit) { 8087 clock_limit = dev_priv->max_dotclk_freq; 8088 pipe_config->double_wide = true; 8089 } 8090 } 8091 8092 if (adjusted_mode->crtc_clock > clock_limit) { 8093 drm_dbg_kms(&dev_priv->drm, 8094 "requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n", 8095 adjusted_mode->crtc_clock, clock_limit, 8096 yesno(pipe_config->double_wide)); 8097 return -EINVAL; 8098 } 8099 8100 if ((pipe_config->output_format == INTEL_OUTPUT_FORMAT_YCBCR420 || 8101 pipe_config->output_format == INTEL_OUTPUT_FORMAT_YCBCR444) && 8102 pipe_config->hw.ctm) { 8103 /* 8104 * There is only one pipe CSC unit per pipe, and we need that 8105 * for output conversion from RGB->YCBCR. So if CTM is already 8106 * applied we can't support YCBCR420 output. 8107 */ 8108 drm_dbg_kms(&dev_priv->drm, 8109 "YCBCR420 and CTM together are not possible\n"); 8110 return -EINVAL; 8111 } 8112 8113 /* 8114 * Pipe horizontal size must be even in: 8115 * - DVO ganged mode 8116 * - LVDS dual channel mode 8117 * - Double wide pipe 8118 */ 8119 if (pipe_config->pipe_src_w & 1) { 8120 if (pipe_config->double_wide) { 8121 drm_dbg_kms(&dev_priv->drm, 8122 "Odd pipe source width not supported with double wide pipe\n"); 8123 return -EINVAL; 8124 } 8125 8126 if (intel_crtc_has_type(pipe_config, INTEL_OUTPUT_LVDS) && 8127 intel_is_dual_link_lvds(dev_priv)) { 8128 drm_dbg_kms(&dev_priv->drm, 8129 "Odd pipe source width not supported with dual link LVDS\n"); 8130 return -EINVAL; 8131 } 8132 } 8133 8134 /* Cantiga+ cannot handle modes with a hsync front porch of 0. 8135 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw. 8136 */ 8137 if ((INTEL_GEN(dev_priv) > 4 || IS_G4X(dev_priv)) && 8138 adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay) 8139 return -EINVAL; 8140 8141 intel_crtc_compute_pixel_rate(pipe_config); 8142 8143 if (pipe_config->has_pch_encoder) 8144 return ilk_fdi_compute_config(crtc, pipe_config); 8145 8146 return 0; 8147 } 8148 8149 static void 8150 intel_reduce_m_n_ratio(u32 *num, u32 *den) 8151 { 8152 while (*num > DATA_LINK_M_N_MASK || 8153 *den > DATA_LINK_M_N_MASK) { 8154 *num >>= 1; 8155 *den >>= 1; 8156 } 8157 } 8158 8159 static void compute_m_n(unsigned int m, unsigned int n, 8160 u32 *ret_m, u32 *ret_n, 8161 bool constant_n) 8162 { 8163 /* 8164 * Several DP dongles in particular seem to be fussy about 8165 * too large link M/N values. Give N value as 0x8000 that 8166 * should be acceptable by specific devices. 0x8000 is the 8167 * specified fixed N value for asynchronous clock mode, 8168 * which the devices expect also in synchronous clock mode. 8169 */ 8170 if (constant_n) 8171 *ret_n = DP_LINK_CONSTANT_N_VALUE; 8172 else 8173 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX); 8174 8175 *ret_m = div_u64(mul_u32_u32(m, *ret_n), n); 8176 intel_reduce_m_n_ratio(ret_m, ret_n); 8177 } 8178 8179 void 8180 intel_link_compute_m_n(u16 bits_per_pixel, int nlanes, 8181 int pixel_clock, int link_clock, 8182 struct intel_link_m_n *m_n, 8183 bool constant_n, bool fec_enable) 8184 { 8185 u32 data_clock = bits_per_pixel * pixel_clock; 8186 8187 if (fec_enable) 8188 data_clock = intel_dp_mode_to_fec_clock(data_clock); 8189 8190 m_n->tu = 64; 8191 compute_m_n(data_clock, 8192 link_clock * nlanes * 8, 8193 &m_n->gmch_m, &m_n->gmch_n, 8194 constant_n); 8195 8196 compute_m_n(pixel_clock, link_clock, 8197 &m_n->link_m, &m_n->link_n, 8198 constant_n); 8199 } 8200 8201 static void intel_panel_sanitize_ssc(struct drm_i915_private *dev_priv) 8202 { 8203 /* 8204 * There may be no VBT; and if the BIOS enabled SSC we can 8205 * just keep using it to avoid unnecessary flicker. Whereas if the 8206 * BIOS isn't using it, don't assume it will work even if the VBT 8207 * indicates as much. 8208 */ 8209 if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) { 8210 bool bios_lvds_use_ssc = intel_de_read(dev_priv, 8211 PCH_DREF_CONTROL) & 8212 DREF_SSC1_ENABLE; 8213 8214 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) { 8215 drm_dbg_kms(&dev_priv->drm, 8216 "SSC %s by BIOS, overriding VBT which says %s\n", 8217 enableddisabled(bios_lvds_use_ssc), 8218 enableddisabled(dev_priv->vbt.lvds_use_ssc)); 8219 dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc; 8220 } 8221 } 8222 } 8223 8224 static bool intel_panel_use_ssc(struct drm_i915_private *dev_priv) 8225 { 8226 if (dev_priv->params.panel_use_ssc >= 0) 8227 return dev_priv->params.panel_use_ssc != 0; 8228 return dev_priv->vbt.lvds_use_ssc 8229 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE); 8230 } 8231 8232 static u32 pnv_dpll_compute_fp(struct dpll *dpll) 8233 { 8234 return (1 << dpll->n) << 16 | dpll->m2; 8235 } 8236 8237 static u32 i9xx_dpll_compute_fp(struct dpll *dpll) 8238 { 8239 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2; 8240 } 8241 8242 static void i9xx_update_pll_dividers(struct intel_crtc *crtc, 8243 struct intel_crtc_state *crtc_state, 8244 struct dpll *reduced_clock) 8245 { 8246 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 8247 u32 fp, fp2 = 0; 8248 8249 if (IS_PINEVIEW(dev_priv)) { 8250 fp = pnv_dpll_compute_fp(&crtc_state->dpll); 8251 if (reduced_clock) 8252 fp2 = pnv_dpll_compute_fp(reduced_clock); 8253 } else { 8254 fp = i9xx_dpll_compute_fp(&crtc_state->dpll); 8255 if (reduced_clock) 8256 fp2 = i9xx_dpll_compute_fp(reduced_clock); 8257 } 8258 8259 crtc_state->dpll_hw_state.fp0 = fp; 8260 8261 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) && 8262 reduced_clock) { 8263 crtc_state->dpll_hw_state.fp1 = fp2; 8264 } else { 8265 crtc_state->dpll_hw_state.fp1 = fp; 8266 } 8267 } 8268 8269 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe 8270 pipe) 8271 { 8272 u32 reg_val; 8273 8274 /* 8275 * PLLB opamp always calibrates to max value of 0x3f, force enable it 8276 * and set it to a reasonable value instead. 8277 */ 8278 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1)); 8279 reg_val &= 0xffffff00; 8280 reg_val |= 0x00000030; 8281 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val); 8282 8283 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13); 8284 reg_val &= 0x00ffffff; 8285 reg_val |= 0x8c000000; 8286 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val); 8287 8288 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1)); 8289 reg_val &= 0xffffff00; 8290 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val); 8291 8292 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13); 8293 reg_val &= 0x00ffffff; 8294 reg_val |= 0xb0000000; 8295 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val); 8296 } 8297 8298 static void intel_pch_transcoder_set_m_n(const struct intel_crtc_state *crtc_state, 8299 const struct intel_link_m_n *m_n) 8300 { 8301 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 8302 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 8303 enum pipe pipe = crtc->pipe; 8304 8305 intel_de_write(dev_priv, PCH_TRANS_DATA_M1(pipe), 8306 TU_SIZE(m_n->tu) | m_n->gmch_m); 8307 intel_de_write(dev_priv, PCH_TRANS_DATA_N1(pipe), m_n->gmch_n); 8308 intel_de_write(dev_priv, PCH_TRANS_LINK_M1(pipe), m_n->link_m); 8309 intel_de_write(dev_priv, PCH_TRANS_LINK_N1(pipe), m_n->link_n); 8310 } 8311 8312 static bool transcoder_has_m2_n2(struct drm_i915_private *dev_priv, 8313 enum transcoder transcoder) 8314 { 8315 if (IS_HASWELL(dev_priv)) 8316 return transcoder == TRANSCODER_EDP; 8317 8318 /* 8319 * Strictly speaking some registers are available before 8320 * gen7, but we only support DRRS on gen7+ 8321 */ 8322 return IS_GEN(dev_priv, 7) || IS_CHERRYVIEW(dev_priv); 8323 } 8324 8325 static void intel_cpu_transcoder_set_m_n(const struct intel_crtc_state *crtc_state, 8326 const struct intel_link_m_n *m_n, 8327 const struct intel_link_m_n *m2_n2) 8328 { 8329 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 8330 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 8331 enum pipe pipe = crtc->pipe; 8332 enum transcoder transcoder = crtc_state->cpu_transcoder; 8333 8334 if (INTEL_GEN(dev_priv) >= 5) { 8335 intel_de_write(dev_priv, PIPE_DATA_M1(transcoder), 8336 TU_SIZE(m_n->tu) | m_n->gmch_m); 8337 intel_de_write(dev_priv, PIPE_DATA_N1(transcoder), 8338 m_n->gmch_n); 8339 intel_de_write(dev_priv, PIPE_LINK_M1(transcoder), 8340 m_n->link_m); 8341 intel_de_write(dev_priv, PIPE_LINK_N1(transcoder), 8342 m_n->link_n); 8343 /* 8344 * M2_N2 registers are set only if DRRS is supported 8345 * (to make sure the registers are not unnecessarily accessed). 8346 */ 8347 if (m2_n2 && crtc_state->has_drrs && 8348 transcoder_has_m2_n2(dev_priv, transcoder)) { 8349 intel_de_write(dev_priv, PIPE_DATA_M2(transcoder), 8350 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m); 8351 intel_de_write(dev_priv, PIPE_DATA_N2(transcoder), 8352 m2_n2->gmch_n); 8353 intel_de_write(dev_priv, PIPE_LINK_M2(transcoder), 8354 m2_n2->link_m); 8355 intel_de_write(dev_priv, PIPE_LINK_N2(transcoder), 8356 m2_n2->link_n); 8357 } 8358 } else { 8359 intel_de_write(dev_priv, PIPE_DATA_M_G4X(pipe), 8360 TU_SIZE(m_n->tu) | m_n->gmch_m); 8361 intel_de_write(dev_priv, PIPE_DATA_N_G4X(pipe), m_n->gmch_n); 8362 intel_de_write(dev_priv, PIPE_LINK_M_G4X(pipe), m_n->link_m); 8363 intel_de_write(dev_priv, PIPE_LINK_N_G4X(pipe), m_n->link_n); 8364 } 8365 } 8366 8367 void intel_dp_set_m_n(const struct intel_crtc_state *crtc_state, enum link_m_n_set m_n) 8368 { 8369 const struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL; 8370 struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); 8371 8372 if (m_n == M1_N1) { 8373 dp_m_n = &crtc_state->dp_m_n; 8374 dp_m2_n2 = &crtc_state->dp_m2_n2; 8375 } else if (m_n == M2_N2) { 8376 8377 /* 8378 * M2_N2 registers are not supported. Hence m2_n2 divider value 8379 * needs to be programmed into M1_N1. 8380 */ 8381 dp_m_n = &crtc_state->dp_m2_n2; 8382 } else { 8383 drm_err(&i915->drm, "Unsupported divider value\n"); 8384 return; 8385 } 8386 8387 if (crtc_state->has_pch_encoder) 8388 intel_pch_transcoder_set_m_n(crtc_state, &crtc_state->dp_m_n); 8389 else 8390 intel_cpu_transcoder_set_m_n(crtc_state, dp_m_n, dp_m2_n2); 8391 } 8392 8393 static void vlv_compute_dpll(struct intel_crtc *crtc, 8394 struct intel_crtc_state *pipe_config) 8395 { 8396 pipe_config->dpll_hw_state.dpll = DPLL_INTEGRATED_REF_CLK_VLV | 8397 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS; 8398 if (crtc->pipe != PIPE_A) 8399 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV; 8400 8401 /* DPLL not used with DSI, but still need the rest set up */ 8402 if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI)) 8403 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE | 8404 DPLL_EXT_BUFFER_ENABLE_VLV; 8405 8406 pipe_config->dpll_hw_state.dpll_md = 8407 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT; 8408 } 8409 8410 static void chv_compute_dpll(struct intel_crtc *crtc, 8411 struct intel_crtc_state *pipe_config) 8412 { 8413 pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV | 8414 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS; 8415 if (crtc->pipe != PIPE_A) 8416 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV; 8417 8418 /* DPLL not used with DSI, but still need the rest set up */ 8419 if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI)) 8420 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE; 8421 8422 pipe_config->dpll_hw_state.dpll_md = 8423 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT; 8424 } 8425 8426 static void vlv_prepare_pll(struct intel_crtc *crtc, 8427 const struct intel_crtc_state *pipe_config) 8428 { 8429 struct drm_device *dev = crtc->base.dev; 8430 struct drm_i915_private *dev_priv = to_i915(dev); 8431 enum pipe pipe = crtc->pipe; 8432 u32 mdiv; 8433 u32 bestn, bestm1, bestm2, bestp1, bestp2; 8434 u32 coreclk, reg_val; 8435 8436 /* Enable Refclk */ 8437 intel_de_write(dev_priv, DPLL(pipe), 8438 pipe_config->dpll_hw_state.dpll & ~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV)); 8439 8440 /* No need to actually set up the DPLL with DSI */ 8441 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0) 8442 return; 8443 8444 vlv_dpio_get(dev_priv); 8445 8446 bestn = pipe_config->dpll.n; 8447 bestm1 = pipe_config->dpll.m1; 8448 bestm2 = pipe_config->dpll.m2; 8449 bestp1 = pipe_config->dpll.p1; 8450 bestp2 = pipe_config->dpll.p2; 8451 8452 /* See eDP HDMI DPIO driver vbios notes doc */ 8453 8454 /* PLL B needs special handling */ 8455 if (pipe == PIPE_B) 8456 vlv_pllb_recal_opamp(dev_priv, pipe); 8457 8458 /* Set up Tx target for periodic Rcomp update */ 8459 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f); 8460 8461 /* Disable target IRef on PLL */ 8462 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe)); 8463 reg_val &= 0x00ffffff; 8464 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val); 8465 8466 /* Disable fast lock */ 8467 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610); 8468 8469 /* Set idtafcrecal before PLL is enabled */ 8470 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK)); 8471 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT)); 8472 mdiv |= ((bestn << DPIO_N_SHIFT)); 8473 mdiv |= (1 << DPIO_K_SHIFT); 8474 8475 /* 8476 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS, 8477 * but we don't support that). 8478 * Note: don't use the DAC post divider as it seems unstable. 8479 */ 8480 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT); 8481 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv); 8482 8483 mdiv |= DPIO_ENABLE_CALIBRATION; 8484 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv); 8485 8486 /* Set HBR and RBR LPF coefficients */ 8487 if (pipe_config->port_clock == 162000 || 8488 intel_crtc_has_type(pipe_config, INTEL_OUTPUT_ANALOG) || 8489 intel_crtc_has_type(pipe_config, INTEL_OUTPUT_HDMI)) 8490 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe), 8491 0x009f0003); 8492 else 8493 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe), 8494 0x00d0000f); 8495 8496 if (intel_crtc_has_dp_encoder(pipe_config)) { 8497 /* Use SSC source */ 8498 if (pipe == PIPE_A) 8499 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe), 8500 0x0df40000); 8501 else 8502 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe), 8503 0x0df70000); 8504 } else { /* HDMI or VGA */ 8505 /* Use bend source */ 8506 if (pipe == PIPE_A) 8507 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe), 8508 0x0df70000); 8509 else 8510 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe), 8511 0x0df40000); 8512 } 8513 8514 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe)); 8515 coreclk = (coreclk & 0x0000ff00) | 0x01c00000; 8516 if (intel_crtc_has_dp_encoder(pipe_config)) 8517 coreclk |= 0x01000000; 8518 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk); 8519 8520 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000); 8521 8522 vlv_dpio_put(dev_priv); 8523 } 8524 8525 static void chv_prepare_pll(struct intel_crtc *crtc, 8526 const struct intel_crtc_state *pipe_config) 8527 { 8528 struct drm_device *dev = crtc->base.dev; 8529 struct drm_i915_private *dev_priv = to_i915(dev); 8530 enum pipe pipe = crtc->pipe; 8531 enum dpio_channel port = vlv_pipe_to_channel(pipe); 8532 u32 loopfilter, tribuf_calcntr; 8533 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac; 8534 u32 dpio_val; 8535 int vco; 8536 8537 /* Enable Refclk and SSC */ 8538 intel_de_write(dev_priv, DPLL(pipe), 8539 pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE); 8540 8541 /* No need to actually set up the DPLL with DSI */ 8542 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0) 8543 return; 8544 8545 bestn = pipe_config->dpll.n; 8546 bestm2_frac = pipe_config->dpll.m2 & 0x3fffff; 8547 bestm1 = pipe_config->dpll.m1; 8548 bestm2 = pipe_config->dpll.m2 >> 22; 8549 bestp1 = pipe_config->dpll.p1; 8550 bestp2 = pipe_config->dpll.p2; 8551 vco = pipe_config->dpll.vco; 8552 dpio_val = 0; 8553 loopfilter = 0; 8554 8555 vlv_dpio_get(dev_priv); 8556 8557 /* p1 and p2 divider */ 8558 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port), 8559 5 << DPIO_CHV_S1_DIV_SHIFT | 8560 bestp1 << DPIO_CHV_P1_DIV_SHIFT | 8561 bestp2 << DPIO_CHV_P2_DIV_SHIFT | 8562 1 << DPIO_CHV_K_DIV_SHIFT); 8563 8564 /* Feedback post-divider - m2 */ 8565 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2); 8566 8567 /* Feedback refclk divider - n and m1 */ 8568 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port), 8569 DPIO_CHV_M1_DIV_BY_2 | 8570 1 << DPIO_CHV_N_DIV_SHIFT); 8571 8572 /* M2 fraction division */ 8573 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac); 8574 8575 /* M2 fraction division enable */ 8576 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port)); 8577 dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN); 8578 dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT); 8579 if (bestm2_frac) 8580 dpio_val |= DPIO_CHV_FRAC_DIV_EN; 8581 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val); 8582 8583 /* Program digital lock detect threshold */ 8584 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port)); 8585 dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK | 8586 DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE); 8587 dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT); 8588 if (!bestm2_frac) 8589 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE; 8590 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val); 8591 8592 /* Loop filter */ 8593 if (vco == 5400000) { 8594 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT); 8595 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT); 8596 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT); 8597 tribuf_calcntr = 0x9; 8598 } else if (vco <= 6200000) { 8599 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT); 8600 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT); 8601 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT); 8602 tribuf_calcntr = 0x9; 8603 } else if (vco <= 6480000) { 8604 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT); 8605 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT); 8606 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT); 8607 tribuf_calcntr = 0x8; 8608 } else { 8609 /* Not supported. Apply the same limits as in the max case */ 8610 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT); 8611 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT); 8612 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT); 8613 tribuf_calcntr = 0; 8614 } 8615 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter); 8616 8617 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port)); 8618 dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK; 8619 dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT); 8620 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val); 8621 8622 /* AFC Recal */ 8623 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), 8624 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) | 8625 DPIO_AFC_RECAL); 8626 8627 vlv_dpio_put(dev_priv); 8628 } 8629 8630 /** 8631 * vlv_force_pll_on - forcibly enable just the PLL 8632 * @dev_priv: i915 private structure 8633 * @pipe: pipe PLL to enable 8634 * @dpll: PLL configuration 8635 * 8636 * Enable the PLL for @pipe using the supplied @dpll config. To be used 8637 * in cases where we need the PLL enabled even when @pipe is not going to 8638 * be enabled. 8639 */ 8640 int vlv_force_pll_on(struct drm_i915_private *dev_priv, enum pipe pipe, 8641 const struct dpll *dpll) 8642 { 8643 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 8644 struct intel_crtc_state *pipe_config; 8645 8646 pipe_config = intel_crtc_state_alloc(crtc); 8647 if (!pipe_config) 8648 return -ENOMEM; 8649 8650 pipe_config->cpu_transcoder = (enum transcoder)pipe; 8651 pipe_config->pixel_multiplier = 1; 8652 pipe_config->dpll = *dpll; 8653 8654 if (IS_CHERRYVIEW(dev_priv)) { 8655 chv_compute_dpll(crtc, pipe_config); 8656 chv_prepare_pll(crtc, pipe_config); 8657 chv_enable_pll(crtc, pipe_config); 8658 } else { 8659 vlv_compute_dpll(crtc, pipe_config); 8660 vlv_prepare_pll(crtc, pipe_config); 8661 vlv_enable_pll(crtc, pipe_config); 8662 } 8663 8664 kfree(pipe_config); 8665 8666 return 0; 8667 } 8668 8669 /** 8670 * vlv_force_pll_off - forcibly disable just the PLL 8671 * @dev_priv: i915 private structure 8672 * @pipe: pipe PLL to disable 8673 * 8674 * Disable the PLL for @pipe. To be used in cases where we need 8675 * the PLL enabled even when @pipe is not going to be enabled. 8676 */ 8677 void vlv_force_pll_off(struct drm_i915_private *dev_priv, enum pipe pipe) 8678 { 8679 if (IS_CHERRYVIEW(dev_priv)) 8680 chv_disable_pll(dev_priv, pipe); 8681 else 8682 vlv_disable_pll(dev_priv, pipe); 8683 } 8684 8685 static void i9xx_compute_dpll(struct intel_crtc *crtc, 8686 struct intel_crtc_state *crtc_state, 8687 struct dpll *reduced_clock) 8688 { 8689 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 8690 u32 dpll; 8691 struct dpll *clock = &crtc_state->dpll; 8692 8693 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock); 8694 8695 dpll = DPLL_VGA_MODE_DIS; 8696 8697 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) 8698 dpll |= DPLLB_MODE_LVDS; 8699 else 8700 dpll |= DPLLB_MODE_DAC_SERIAL; 8701 8702 if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) || 8703 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) { 8704 dpll |= (crtc_state->pixel_multiplier - 1) 8705 << SDVO_MULTIPLIER_SHIFT_HIRES; 8706 } 8707 8708 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) || 8709 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) 8710 dpll |= DPLL_SDVO_HIGH_SPEED; 8711 8712 if (intel_crtc_has_dp_encoder(crtc_state)) 8713 dpll |= DPLL_SDVO_HIGH_SPEED; 8714 8715 /* compute bitmask from p1 value */ 8716 if (IS_PINEVIEW(dev_priv)) 8717 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW; 8718 else { 8719 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT; 8720 if (IS_G4X(dev_priv) && reduced_clock) 8721 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT; 8722 } 8723 switch (clock->p2) { 8724 case 5: 8725 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5; 8726 break; 8727 case 7: 8728 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7; 8729 break; 8730 case 10: 8731 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10; 8732 break; 8733 case 14: 8734 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14; 8735 break; 8736 } 8737 if (INTEL_GEN(dev_priv) >= 4) 8738 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT); 8739 8740 if (crtc_state->sdvo_tv_clock) 8741 dpll |= PLL_REF_INPUT_TVCLKINBC; 8742 else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) && 8743 intel_panel_use_ssc(dev_priv)) 8744 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN; 8745 else 8746 dpll |= PLL_REF_INPUT_DREFCLK; 8747 8748 dpll |= DPLL_VCO_ENABLE; 8749 crtc_state->dpll_hw_state.dpll = dpll; 8750 8751 if (INTEL_GEN(dev_priv) >= 4) { 8752 u32 dpll_md = (crtc_state->pixel_multiplier - 1) 8753 << DPLL_MD_UDI_MULTIPLIER_SHIFT; 8754 crtc_state->dpll_hw_state.dpll_md = dpll_md; 8755 } 8756 } 8757 8758 static void i8xx_compute_dpll(struct intel_crtc *crtc, 8759 struct intel_crtc_state *crtc_state, 8760 struct dpll *reduced_clock) 8761 { 8762 struct drm_device *dev = crtc->base.dev; 8763 struct drm_i915_private *dev_priv = to_i915(dev); 8764 u32 dpll; 8765 struct dpll *clock = &crtc_state->dpll; 8766 8767 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock); 8768 8769 dpll = DPLL_VGA_MODE_DIS; 8770 8771 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 8772 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT; 8773 } else { 8774 if (clock->p1 == 2) 8775 dpll |= PLL_P1_DIVIDE_BY_TWO; 8776 else 8777 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT; 8778 if (clock->p2 == 4) 8779 dpll |= PLL_P2_DIVIDE_BY_4; 8780 } 8781 8782 /* 8783 * Bspec: 8784 * "[Almador Errata}: For the correct operation of the muxed DVO pins 8785 * (GDEVSELB/I2Cdata, GIRDBY/I2CClk) and (GFRAMEB/DVI_Data, 8786 * GTRDYB/DVI_Clk): Bit 31 (DPLL VCO Enable) and Bit 30 (2X Clock 8787 * Enable) must be set to “1” in both the DPLL A Control Register 8788 * (06014h-06017h) and DPLL B Control Register (06018h-0601Bh)." 8789 * 8790 * For simplicity We simply keep both bits always enabled in 8791 * both DPLLS. The spec says we should disable the DVO 2X clock 8792 * when not needed, but this seems to work fine in practice. 8793 */ 8794 if (IS_I830(dev_priv) || 8795 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) 8796 dpll |= DPLL_DVO_2X_MODE; 8797 8798 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) && 8799 intel_panel_use_ssc(dev_priv)) 8800 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN; 8801 else 8802 dpll |= PLL_REF_INPUT_DREFCLK; 8803 8804 dpll |= DPLL_VCO_ENABLE; 8805 crtc_state->dpll_hw_state.dpll = dpll; 8806 } 8807 8808 static void intel_set_pipe_timings(const struct intel_crtc_state *crtc_state) 8809 { 8810 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 8811 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 8812 enum pipe pipe = crtc->pipe; 8813 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 8814 const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode; 8815 u32 crtc_vtotal, crtc_vblank_end; 8816 int vsyncshift = 0; 8817 8818 /* We need to be careful not to changed the adjusted mode, for otherwise 8819 * the hw state checker will get angry at the mismatch. */ 8820 crtc_vtotal = adjusted_mode->crtc_vtotal; 8821 crtc_vblank_end = adjusted_mode->crtc_vblank_end; 8822 8823 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) { 8824 /* the chip adds 2 halflines automatically */ 8825 crtc_vtotal -= 1; 8826 crtc_vblank_end -= 1; 8827 8828 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) 8829 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2; 8830 else 8831 vsyncshift = adjusted_mode->crtc_hsync_start - 8832 adjusted_mode->crtc_htotal / 2; 8833 if (vsyncshift < 0) 8834 vsyncshift += adjusted_mode->crtc_htotal; 8835 } 8836 8837 if (INTEL_GEN(dev_priv) > 3) 8838 intel_de_write(dev_priv, VSYNCSHIFT(cpu_transcoder), 8839 vsyncshift); 8840 8841 intel_de_write(dev_priv, HTOTAL(cpu_transcoder), 8842 (adjusted_mode->crtc_hdisplay - 1) | ((adjusted_mode->crtc_htotal - 1) << 16)); 8843 intel_de_write(dev_priv, HBLANK(cpu_transcoder), 8844 (adjusted_mode->crtc_hblank_start - 1) | ((adjusted_mode->crtc_hblank_end - 1) << 16)); 8845 intel_de_write(dev_priv, HSYNC(cpu_transcoder), 8846 (adjusted_mode->crtc_hsync_start - 1) | ((adjusted_mode->crtc_hsync_end - 1) << 16)); 8847 8848 intel_de_write(dev_priv, VTOTAL(cpu_transcoder), 8849 (adjusted_mode->crtc_vdisplay - 1) | ((crtc_vtotal - 1) << 16)); 8850 intel_de_write(dev_priv, VBLANK(cpu_transcoder), 8851 (adjusted_mode->crtc_vblank_start - 1) | ((crtc_vblank_end - 1) << 16)); 8852 intel_de_write(dev_priv, VSYNC(cpu_transcoder), 8853 (adjusted_mode->crtc_vsync_start - 1) | ((adjusted_mode->crtc_vsync_end - 1) << 16)); 8854 8855 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be 8856 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is 8857 * documented on the DDI_FUNC_CTL register description, EDP Input Select 8858 * bits. */ 8859 if (IS_HASWELL(dev_priv) && cpu_transcoder == TRANSCODER_EDP && 8860 (pipe == PIPE_B || pipe == PIPE_C)) 8861 intel_de_write(dev_priv, VTOTAL(pipe), 8862 intel_de_read(dev_priv, VTOTAL(cpu_transcoder))); 8863 8864 } 8865 8866 static void intel_set_pipe_src_size(const struct intel_crtc_state *crtc_state) 8867 { 8868 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 8869 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 8870 enum pipe pipe = crtc->pipe; 8871 8872 /* pipesrc controls the size that is scaled from, which should 8873 * always be the user's requested size. 8874 */ 8875 intel_de_write(dev_priv, PIPESRC(pipe), 8876 ((crtc_state->pipe_src_w - 1) << 16) | (crtc_state->pipe_src_h - 1)); 8877 } 8878 8879 static bool intel_pipe_is_interlaced(const struct intel_crtc_state *crtc_state) 8880 { 8881 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 8882 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 8883 8884 if (IS_GEN(dev_priv, 2)) 8885 return false; 8886 8887 if (INTEL_GEN(dev_priv) >= 9 || 8888 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) 8889 return intel_de_read(dev_priv, PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK_HSW; 8890 else 8891 return intel_de_read(dev_priv, PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK; 8892 } 8893 8894 static void intel_get_pipe_timings(struct intel_crtc *crtc, 8895 struct intel_crtc_state *pipe_config) 8896 { 8897 struct drm_device *dev = crtc->base.dev; 8898 struct drm_i915_private *dev_priv = to_i915(dev); 8899 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder; 8900 u32 tmp; 8901 8902 tmp = intel_de_read(dev_priv, HTOTAL(cpu_transcoder)); 8903 pipe_config->hw.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1; 8904 pipe_config->hw.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1; 8905 8906 if (!transcoder_is_dsi(cpu_transcoder)) { 8907 tmp = intel_de_read(dev_priv, HBLANK(cpu_transcoder)); 8908 pipe_config->hw.adjusted_mode.crtc_hblank_start = 8909 (tmp & 0xffff) + 1; 8910 pipe_config->hw.adjusted_mode.crtc_hblank_end = 8911 ((tmp >> 16) & 0xffff) + 1; 8912 } 8913 tmp = intel_de_read(dev_priv, HSYNC(cpu_transcoder)); 8914 pipe_config->hw.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1; 8915 pipe_config->hw.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1; 8916 8917 tmp = intel_de_read(dev_priv, VTOTAL(cpu_transcoder)); 8918 pipe_config->hw.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1; 8919 pipe_config->hw.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1; 8920 8921 if (!transcoder_is_dsi(cpu_transcoder)) { 8922 tmp = intel_de_read(dev_priv, VBLANK(cpu_transcoder)); 8923 pipe_config->hw.adjusted_mode.crtc_vblank_start = 8924 (tmp & 0xffff) + 1; 8925 pipe_config->hw.adjusted_mode.crtc_vblank_end = 8926 ((tmp >> 16) & 0xffff) + 1; 8927 } 8928 tmp = intel_de_read(dev_priv, VSYNC(cpu_transcoder)); 8929 pipe_config->hw.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1; 8930 pipe_config->hw.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1; 8931 8932 if (intel_pipe_is_interlaced(pipe_config)) { 8933 pipe_config->hw.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE; 8934 pipe_config->hw.adjusted_mode.crtc_vtotal += 1; 8935 pipe_config->hw.adjusted_mode.crtc_vblank_end += 1; 8936 } 8937 } 8938 8939 static void intel_get_pipe_src_size(struct intel_crtc *crtc, 8940 struct intel_crtc_state *pipe_config) 8941 { 8942 struct drm_device *dev = crtc->base.dev; 8943 struct drm_i915_private *dev_priv = to_i915(dev); 8944 u32 tmp; 8945 8946 tmp = intel_de_read(dev_priv, PIPESRC(crtc->pipe)); 8947 pipe_config->pipe_src_h = (tmp & 0xffff) + 1; 8948 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1; 8949 8950 pipe_config->hw.mode.vdisplay = pipe_config->pipe_src_h; 8951 pipe_config->hw.mode.hdisplay = pipe_config->pipe_src_w; 8952 } 8953 8954 void intel_mode_from_pipe_config(struct drm_display_mode *mode, 8955 struct intel_crtc_state *pipe_config) 8956 { 8957 mode->hdisplay = pipe_config->hw.adjusted_mode.crtc_hdisplay; 8958 mode->htotal = pipe_config->hw.adjusted_mode.crtc_htotal; 8959 mode->hsync_start = pipe_config->hw.adjusted_mode.crtc_hsync_start; 8960 mode->hsync_end = pipe_config->hw.adjusted_mode.crtc_hsync_end; 8961 8962 mode->vdisplay = pipe_config->hw.adjusted_mode.crtc_vdisplay; 8963 mode->vtotal = pipe_config->hw.adjusted_mode.crtc_vtotal; 8964 mode->vsync_start = pipe_config->hw.adjusted_mode.crtc_vsync_start; 8965 mode->vsync_end = pipe_config->hw.adjusted_mode.crtc_vsync_end; 8966 8967 mode->flags = pipe_config->hw.adjusted_mode.flags; 8968 mode->type = DRM_MODE_TYPE_DRIVER; 8969 8970 mode->clock = pipe_config->hw.adjusted_mode.crtc_clock; 8971 8972 drm_mode_set_name(mode); 8973 } 8974 8975 static void i9xx_set_pipeconf(const struct intel_crtc_state *crtc_state) 8976 { 8977 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 8978 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 8979 u32 pipeconf; 8980 8981 pipeconf = 0; 8982 8983 /* we keep both pipes enabled on 830 */ 8984 if (IS_I830(dev_priv)) 8985 pipeconf |= intel_de_read(dev_priv, PIPECONF(crtc->pipe)) & PIPECONF_ENABLE; 8986 8987 if (crtc_state->double_wide) 8988 pipeconf |= PIPECONF_DOUBLE_WIDE; 8989 8990 /* only g4x and later have fancy bpc/dither controls */ 8991 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) || 8992 IS_CHERRYVIEW(dev_priv)) { 8993 /* Bspec claims that we can't use dithering for 30bpp pipes. */ 8994 if (crtc_state->dither && crtc_state->pipe_bpp != 30) 8995 pipeconf |= PIPECONF_DITHER_EN | 8996 PIPECONF_DITHER_TYPE_SP; 8997 8998 switch (crtc_state->pipe_bpp) { 8999 case 18: 9000 pipeconf |= PIPECONF_6BPC; 9001 break; 9002 case 24: 9003 pipeconf |= PIPECONF_8BPC; 9004 break; 9005 case 30: 9006 pipeconf |= PIPECONF_10BPC; 9007 break; 9008 default: 9009 /* Case prevented by intel_choose_pipe_bpp_dither. */ 9010 BUG(); 9011 } 9012 } 9013 9014 if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) { 9015 if (INTEL_GEN(dev_priv) < 4 || 9016 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) 9017 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION; 9018 else 9019 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT; 9020 } else { 9021 pipeconf |= PIPECONF_PROGRESSIVE; 9022 } 9023 9024 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) && 9025 crtc_state->limited_color_range) 9026 pipeconf |= PIPECONF_COLOR_RANGE_SELECT; 9027 9028 pipeconf |= PIPECONF_GAMMA_MODE(crtc_state->gamma_mode); 9029 9030 pipeconf |= PIPECONF_FRAME_START_DELAY(0); 9031 9032 intel_de_write(dev_priv, PIPECONF(crtc->pipe), pipeconf); 9033 intel_de_posting_read(dev_priv, PIPECONF(crtc->pipe)); 9034 } 9035 9036 static int i8xx_crtc_compute_clock(struct intel_crtc *crtc, 9037 struct intel_crtc_state *crtc_state) 9038 { 9039 struct drm_device *dev = crtc->base.dev; 9040 struct drm_i915_private *dev_priv = to_i915(dev); 9041 const struct intel_limit *limit; 9042 int refclk = 48000; 9043 9044 memset(&crtc_state->dpll_hw_state, 0, 9045 sizeof(crtc_state->dpll_hw_state)); 9046 9047 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 9048 if (intel_panel_use_ssc(dev_priv)) { 9049 refclk = dev_priv->vbt.lvds_ssc_freq; 9050 drm_dbg_kms(&dev_priv->drm, 9051 "using SSC reference clock of %d kHz\n", 9052 refclk); 9053 } 9054 9055 limit = &intel_limits_i8xx_lvds; 9056 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) { 9057 limit = &intel_limits_i8xx_dvo; 9058 } else { 9059 limit = &intel_limits_i8xx_dac; 9060 } 9061 9062 if (!crtc_state->clock_set && 9063 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 9064 refclk, NULL, &crtc_state->dpll)) { 9065 drm_err(&dev_priv->drm, 9066 "Couldn't find PLL settings for mode!\n"); 9067 return -EINVAL; 9068 } 9069 9070 i8xx_compute_dpll(crtc, crtc_state, NULL); 9071 9072 return 0; 9073 } 9074 9075 static int g4x_crtc_compute_clock(struct intel_crtc *crtc, 9076 struct intel_crtc_state *crtc_state) 9077 { 9078 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 9079 const struct intel_limit *limit; 9080 int refclk = 96000; 9081 9082 memset(&crtc_state->dpll_hw_state, 0, 9083 sizeof(crtc_state->dpll_hw_state)); 9084 9085 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 9086 if (intel_panel_use_ssc(dev_priv)) { 9087 refclk = dev_priv->vbt.lvds_ssc_freq; 9088 drm_dbg_kms(&dev_priv->drm, 9089 "using SSC reference clock of %d kHz\n", 9090 refclk); 9091 } 9092 9093 if (intel_is_dual_link_lvds(dev_priv)) 9094 limit = &intel_limits_g4x_dual_channel_lvds; 9095 else 9096 limit = &intel_limits_g4x_single_channel_lvds; 9097 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) || 9098 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) { 9099 limit = &intel_limits_g4x_hdmi; 9100 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) { 9101 limit = &intel_limits_g4x_sdvo; 9102 } else { 9103 /* The option is for other outputs */ 9104 limit = &intel_limits_i9xx_sdvo; 9105 } 9106 9107 if (!crtc_state->clock_set && 9108 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 9109 refclk, NULL, &crtc_state->dpll)) { 9110 drm_err(&dev_priv->drm, 9111 "Couldn't find PLL settings for mode!\n"); 9112 return -EINVAL; 9113 } 9114 9115 i9xx_compute_dpll(crtc, crtc_state, NULL); 9116 9117 return 0; 9118 } 9119 9120 static int pnv_crtc_compute_clock(struct intel_crtc *crtc, 9121 struct intel_crtc_state *crtc_state) 9122 { 9123 struct drm_device *dev = crtc->base.dev; 9124 struct drm_i915_private *dev_priv = to_i915(dev); 9125 const struct intel_limit *limit; 9126 int refclk = 96000; 9127 9128 memset(&crtc_state->dpll_hw_state, 0, 9129 sizeof(crtc_state->dpll_hw_state)); 9130 9131 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 9132 if (intel_panel_use_ssc(dev_priv)) { 9133 refclk = dev_priv->vbt.lvds_ssc_freq; 9134 drm_dbg_kms(&dev_priv->drm, 9135 "using SSC reference clock of %d kHz\n", 9136 refclk); 9137 } 9138 9139 limit = &pnv_limits_lvds; 9140 } else { 9141 limit = &pnv_limits_sdvo; 9142 } 9143 9144 if (!crtc_state->clock_set && 9145 !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 9146 refclk, NULL, &crtc_state->dpll)) { 9147 drm_err(&dev_priv->drm, 9148 "Couldn't find PLL settings for mode!\n"); 9149 return -EINVAL; 9150 } 9151 9152 i9xx_compute_dpll(crtc, crtc_state, NULL); 9153 9154 return 0; 9155 } 9156 9157 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc, 9158 struct intel_crtc_state *crtc_state) 9159 { 9160 struct drm_device *dev = crtc->base.dev; 9161 struct drm_i915_private *dev_priv = to_i915(dev); 9162 const struct intel_limit *limit; 9163 int refclk = 96000; 9164 9165 memset(&crtc_state->dpll_hw_state, 0, 9166 sizeof(crtc_state->dpll_hw_state)); 9167 9168 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 9169 if (intel_panel_use_ssc(dev_priv)) { 9170 refclk = dev_priv->vbt.lvds_ssc_freq; 9171 drm_dbg_kms(&dev_priv->drm, 9172 "using SSC reference clock of %d kHz\n", 9173 refclk); 9174 } 9175 9176 limit = &intel_limits_i9xx_lvds; 9177 } else { 9178 limit = &intel_limits_i9xx_sdvo; 9179 } 9180 9181 if (!crtc_state->clock_set && 9182 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 9183 refclk, NULL, &crtc_state->dpll)) { 9184 drm_err(&dev_priv->drm, 9185 "Couldn't find PLL settings for mode!\n"); 9186 return -EINVAL; 9187 } 9188 9189 i9xx_compute_dpll(crtc, crtc_state, NULL); 9190 9191 return 0; 9192 } 9193 9194 static int chv_crtc_compute_clock(struct intel_crtc *crtc, 9195 struct intel_crtc_state *crtc_state) 9196 { 9197 int refclk = 100000; 9198 const struct intel_limit *limit = &intel_limits_chv; 9199 struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); 9200 9201 memset(&crtc_state->dpll_hw_state, 0, 9202 sizeof(crtc_state->dpll_hw_state)); 9203 9204 if (!crtc_state->clock_set && 9205 !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 9206 refclk, NULL, &crtc_state->dpll)) { 9207 drm_err(&i915->drm, "Couldn't find PLL settings for mode!\n"); 9208 return -EINVAL; 9209 } 9210 9211 chv_compute_dpll(crtc, crtc_state); 9212 9213 return 0; 9214 } 9215 9216 static int vlv_crtc_compute_clock(struct intel_crtc *crtc, 9217 struct intel_crtc_state *crtc_state) 9218 { 9219 int refclk = 100000; 9220 const struct intel_limit *limit = &intel_limits_vlv; 9221 struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); 9222 9223 memset(&crtc_state->dpll_hw_state, 0, 9224 sizeof(crtc_state->dpll_hw_state)); 9225 9226 if (!crtc_state->clock_set && 9227 !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 9228 refclk, NULL, &crtc_state->dpll)) { 9229 drm_err(&i915->drm, "Couldn't find PLL settings for mode!\n"); 9230 return -EINVAL; 9231 } 9232 9233 vlv_compute_dpll(crtc, crtc_state); 9234 9235 return 0; 9236 } 9237 9238 static bool i9xx_has_pfit(struct drm_i915_private *dev_priv) 9239 { 9240 if (IS_I830(dev_priv)) 9241 return false; 9242 9243 return INTEL_GEN(dev_priv) >= 4 || 9244 IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv); 9245 } 9246 9247 static void i9xx_get_pfit_config(struct intel_crtc_state *crtc_state) 9248 { 9249 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 9250 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 9251 u32 tmp; 9252 9253 if (!i9xx_has_pfit(dev_priv)) 9254 return; 9255 9256 tmp = intel_de_read(dev_priv, PFIT_CONTROL); 9257 if (!(tmp & PFIT_ENABLE)) 9258 return; 9259 9260 /* Check whether the pfit is attached to our pipe. */ 9261 if (INTEL_GEN(dev_priv) < 4) { 9262 if (crtc->pipe != PIPE_B) 9263 return; 9264 } else { 9265 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT)) 9266 return; 9267 } 9268 9269 crtc_state->gmch_pfit.control = tmp; 9270 crtc_state->gmch_pfit.pgm_ratios = 9271 intel_de_read(dev_priv, PFIT_PGM_RATIOS); 9272 } 9273 9274 static void vlv_crtc_clock_get(struct intel_crtc *crtc, 9275 struct intel_crtc_state *pipe_config) 9276 { 9277 struct drm_device *dev = crtc->base.dev; 9278 struct drm_i915_private *dev_priv = to_i915(dev); 9279 enum pipe pipe = crtc->pipe; 9280 struct dpll clock; 9281 u32 mdiv; 9282 int refclk = 100000; 9283 9284 /* In case of DSI, DPLL will not be used */ 9285 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0) 9286 return; 9287 9288 vlv_dpio_get(dev_priv); 9289 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe)); 9290 vlv_dpio_put(dev_priv); 9291 9292 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7; 9293 clock.m2 = mdiv & DPIO_M2DIV_MASK; 9294 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf; 9295 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7; 9296 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f; 9297 9298 pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock); 9299 } 9300 9301 static void 9302 i9xx_get_initial_plane_config(struct intel_crtc *crtc, 9303 struct intel_initial_plane_config *plane_config) 9304 { 9305 struct drm_device *dev = crtc->base.dev; 9306 struct drm_i915_private *dev_priv = to_i915(dev); 9307 struct intel_plane *plane = to_intel_plane(crtc->base.primary); 9308 enum i9xx_plane_id i9xx_plane = plane->i9xx_plane; 9309 enum pipe pipe; 9310 u32 val, base, offset; 9311 int fourcc, pixel_format; 9312 unsigned int aligned_height; 9313 struct drm_framebuffer *fb; 9314 struct intel_framebuffer *intel_fb; 9315 9316 if (!plane->get_hw_state(plane, &pipe)) 9317 return; 9318 9319 drm_WARN_ON(dev, pipe != crtc->pipe); 9320 9321 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL); 9322 if (!intel_fb) { 9323 drm_dbg_kms(&dev_priv->drm, "failed to alloc fb\n"); 9324 return; 9325 } 9326 9327 fb = &intel_fb->base; 9328 9329 fb->dev = dev; 9330 9331 val = intel_de_read(dev_priv, DSPCNTR(i9xx_plane)); 9332 9333 if (INTEL_GEN(dev_priv) >= 4) { 9334 if (val & DISPPLANE_TILED) { 9335 plane_config->tiling = I915_TILING_X; 9336 fb->modifier = I915_FORMAT_MOD_X_TILED; 9337 } 9338 9339 if (val & DISPPLANE_ROTATE_180) 9340 plane_config->rotation = DRM_MODE_ROTATE_180; 9341 } 9342 9343 if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B && 9344 val & DISPPLANE_MIRROR) 9345 plane_config->rotation |= DRM_MODE_REFLECT_X; 9346 9347 pixel_format = val & DISPPLANE_PIXFORMAT_MASK; 9348 fourcc = i9xx_format_to_fourcc(pixel_format); 9349 fb->format = drm_format_info(fourcc); 9350 9351 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) { 9352 offset = intel_de_read(dev_priv, DSPOFFSET(i9xx_plane)); 9353 base = intel_de_read(dev_priv, DSPSURF(i9xx_plane)) & 0xfffff000; 9354 } else if (INTEL_GEN(dev_priv) >= 4) { 9355 if (plane_config->tiling) 9356 offset = intel_de_read(dev_priv, 9357 DSPTILEOFF(i9xx_plane)); 9358 else 9359 offset = intel_de_read(dev_priv, 9360 DSPLINOFF(i9xx_plane)); 9361 base = intel_de_read(dev_priv, DSPSURF(i9xx_plane)) & 0xfffff000; 9362 } else { 9363 base = intel_de_read(dev_priv, DSPADDR(i9xx_plane)); 9364 } 9365 plane_config->base = base; 9366 9367 val = intel_de_read(dev_priv, PIPESRC(pipe)); 9368 fb->width = ((val >> 16) & 0xfff) + 1; 9369 fb->height = ((val >> 0) & 0xfff) + 1; 9370 9371 val = intel_de_read(dev_priv, DSPSTRIDE(i9xx_plane)); 9372 fb->pitches[0] = val & 0xffffffc0; 9373 9374 aligned_height = intel_fb_align_height(fb, 0, fb->height); 9375 9376 plane_config->size = fb->pitches[0] * aligned_height; 9377 9378 drm_dbg_kms(&dev_priv->drm, 9379 "%s/%s with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n", 9380 crtc->base.name, plane->base.name, fb->width, fb->height, 9381 fb->format->cpp[0] * 8, base, fb->pitches[0], 9382 plane_config->size); 9383 9384 plane_config->fb = intel_fb; 9385 } 9386 9387 static void chv_crtc_clock_get(struct intel_crtc *crtc, 9388 struct intel_crtc_state *pipe_config) 9389 { 9390 struct drm_device *dev = crtc->base.dev; 9391 struct drm_i915_private *dev_priv = to_i915(dev); 9392 enum pipe pipe = crtc->pipe; 9393 enum dpio_channel port = vlv_pipe_to_channel(pipe); 9394 struct dpll clock; 9395 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3; 9396 int refclk = 100000; 9397 9398 /* In case of DSI, DPLL will not be used */ 9399 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0) 9400 return; 9401 9402 vlv_dpio_get(dev_priv); 9403 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port)); 9404 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port)); 9405 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port)); 9406 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port)); 9407 pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port)); 9408 vlv_dpio_put(dev_priv); 9409 9410 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0; 9411 clock.m2 = (pll_dw0 & 0xff) << 22; 9412 if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN) 9413 clock.m2 |= pll_dw2 & 0x3fffff; 9414 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf; 9415 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7; 9416 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f; 9417 9418 pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock); 9419 } 9420 9421 static enum intel_output_format 9422 bdw_get_pipemisc_output_format(struct intel_crtc *crtc) 9423 { 9424 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 9425 u32 tmp; 9426 9427 tmp = intel_de_read(dev_priv, PIPEMISC(crtc->pipe)); 9428 9429 if (tmp & PIPEMISC_YUV420_ENABLE) { 9430 /* We support 4:2:0 in full blend mode only */ 9431 drm_WARN_ON(&dev_priv->drm, 9432 (tmp & PIPEMISC_YUV420_MODE_FULL_BLEND) == 0); 9433 9434 return INTEL_OUTPUT_FORMAT_YCBCR420; 9435 } else if (tmp & PIPEMISC_OUTPUT_COLORSPACE_YUV) { 9436 return INTEL_OUTPUT_FORMAT_YCBCR444; 9437 } else { 9438 return INTEL_OUTPUT_FORMAT_RGB; 9439 } 9440 } 9441 9442 static void i9xx_get_pipe_color_config(struct intel_crtc_state *crtc_state) 9443 { 9444 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 9445 struct intel_plane *plane = to_intel_plane(crtc->base.primary); 9446 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 9447 enum i9xx_plane_id i9xx_plane = plane->i9xx_plane; 9448 u32 tmp; 9449 9450 tmp = intel_de_read(dev_priv, DSPCNTR(i9xx_plane)); 9451 9452 if (tmp & DISPPLANE_GAMMA_ENABLE) 9453 crtc_state->gamma_enable = true; 9454 9455 if (!HAS_GMCH(dev_priv) && 9456 tmp & DISPPLANE_PIPE_CSC_ENABLE) 9457 crtc_state->csc_enable = true; 9458 } 9459 9460 static bool i9xx_get_pipe_config(struct intel_crtc *crtc, 9461 struct intel_crtc_state *pipe_config) 9462 { 9463 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 9464 enum intel_display_power_domain power_domain; 9465 intel_wakeref_t wakeref; 9466 u32 tmp; 9467 bool ret; 9468 9469 power_domain = POWER_DOMAIN_PIPE(crtc->pipe); 9470 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain); 9471 if (!wakeref) 9472 return false; 9473 9474 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB; 9475 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe; 9476 pipe_config->shared_dpll = NULL; 9477 9478 ret = false; 9479 9480 tmp = intel_de_read(dev_priv, PIPECONF(crtc->pipe)); 9481 if (!(tmp & PIPECONF_ENABLE)) 9482 goto out; 9483 9484 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) || 9485 IS_CHERRYVIEW(dev_priv)) { 9486 switch (tmp & PIPECONF_BPC_MASK) { 9487 case PIPECONF_6BPC: 9488 pipe_config->pipe_bpp = 18; 9489 break; 9490 case PIPECONF_8BPC: 9491 pipe_config->pipe_bpp = 24; 9492 break; 9493 case PIPECONF_10BPC: 9494 pipe_config->pipe_bpp = 30; 9495 break; 9496 default: 9497 break; 9498 } 9499 } 9500 9501 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) && 9502 (tmp & PIPECONF_COLOR_RANGE_SELECT)) 9503 pipe_config->limited_color_range = true; 9504 9505 pipe_config->gamma_mode = (tmp & PIPECONF_GAMMA_MODE_MASK_I9XX) >> 9506 PIPECONF_GAMMA_MODE_SHIFT; 9507 9508 if (IS_CHERRYVIEW(dev_priv)) 9509 pipe_config->cgm_mode = intel_de_read(dev_priv, 9510 CGM_PIPE_MODE(crtc->pipe)); 9511 9512 i9xx_get_pipe_color_config(pipe_config); 9513 intel_color_get_config(pipe_config); 9514 9515 if (INTEL_GEN(dev_priv) < 4) 9516 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE; 9517 9518 intel_get_pipe_timings(crtc, pipe_config); 9519 intel_get_pipe_src_size(crtc, pipe_config); 9520 9521 i9xx_get_pfit_config(pipe_config); 9522 9523 if (INTEL_GEN(dev_priv) >= 4) { 9524 /* No way to read it out on pipes B and C */ 9525 if (IS_CHERRYVIEW(dev_priv) && crtc->pipe != PIPE_A) 9526 tmp = dev_priv->chv_dpll_md[crtc->pipe]; 9527 else 9528 tmp = intel_de_read(dev_priv, DPLL_MD(crtc->pipe)); 9529 pipe_config->pixel_multiplier = 9530 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK) 9531 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1; 9532 pipe_config->dpll_hw_state.dpll_md = tmp; 9533 } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) || 9534 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) { 9535 tmp = intel_de_read(dev_priv, DPLL(crtc->pipe)); 9536 pipe_config->pixel_multiplier = 9537 ((tmp & SDVO_MULTIPLIER_MASK) 9538 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1; 9539 } else { 9540 /* Note that on i915G/GM the pixel multiplier is in the sdvo 9541 * port and will be fixed up in the encoder->get_config 9542 * function. */ 9543 pipe_config->pixel_multiplier = 1; 9544 } 9545 pipe_config->dpll_hw_state.dpll = intel_de_read(dev_priv, 9546 DPLL(crtc->pipe)); 9547 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) { 9548 pipe_config->dpll_hw_state.fp0 = intel_de_read(dev_priv, 9549 FP0(crtc->pipe)); 9550 pipe_config->dpll_hw_state.fp1 = intel_de_read(dev_priv, 9551 FP1(crtc->pipe)); 9552 } else { 9553 /* Mask out read-only status bits. */ 9554 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV | 9555 DPLL_PORTC_READY_MASK | 9556 DPLL_PORTB_READY_MASK); 9557 } 9558 9559 if (IS_CHERRYVIEW(dev_priv)) 9560 chv_crtc_clock_get(crtc, pipe_config); 9561 else if (IS_VALLEYVIEW(dev_priv)) 9562 vlv_crtc_clock_get(crtc, pipe_config); 9563 else 9564 i9xx_crtc_clock_get(crtc, pipe_config); 9565 9566 /* 9567 * Normally the dotclock is filled in by the encoder .get_config() 9568 * but in case the pipe is enabled w/o any ports we need a sane 9569 * default. 9570 */ 9571 pipe_config->hw.adjusted_mode.crtc_clock = 9572 pipe_config->port_clock / pipe_config->pixel_multiplier; 9573 9574 ret = true; 9575 9576 out: 9577 intel_display_power_put(dev_priv, power_domain, wakeref); 9578 9579 return ret; 9580 } 9581 9582 static void ilk_init_pch_refclk(struct drm_i915_private *dev_priv) 9583 { 9584 struct intel_encoder *encoder; 9585 int i; 9586 u32 val, final; 9587 bool has_lvds = false; 9588 bool has_cpu_edp = false; 9589 bool has_panel = false; 9590 bool has_ck505 = false; 9591 bool can_ssc = false; 9592 bool using_ssc_source = false; 9593 9594 /* We need to take the global config into account */ 9595 for_each_intel_encoder(&dev_priv->drm, encoder) { 9596 switch (encoder->type) { 9597 case INTEL_OUTPUT_LVDS: 9598 has_panel = true; 9599 has_lvds = true; 9600 break; 9601 case INTEL_OUTPUT_EDP: 9602 has_panel = true; 9603 if (encoder->port == PORT_A) 9604 has_cpu_edp = true; 9605 break; 9606 default: 9607 break; 9608 } 9609 } 9610 9611 if (HAS_PCH_IBX(dev_priv)) { 9612 has_ck505 = dev_priv->vbt.display_clock_mode; 9613 can_ssc = has_ck505; 9614 } else { 9615 has_ck505 = false; 9616 can_ssc = true; 9617 } 9618 9619 /* Check if any DPLLs are using the SSC source */ 9620 for (i = 0; i < dev_priv->dpll.num_shared_dpll; i++) { 9621 u32 temp = intel_de_read(dev_priv, PCH_DPLL(i)); 9622 9623 if (!(temp & DPLL_VCO_ENABLE)) 9624 continue; 9625 9626 if ((temp & PLL_REF_INPUT_MASK) == 9627 PLLB_REF_INPUT_SPREADSPECTRUMIN) { 9628 using_ssc_source = true; 9629 break; 9630 } 9631 } 9632 9633 drm_dbg_kms(&dev_priv->drm, 9634 "has_panel %d has_lvds %d has_ck505 %d using_ssc_source %d\n", 9635 has_panel, has_lvds, has_ck505, using_ssc_source); 9636 9637 /* Ironlake: try to setup display ref clock before DPLL 9638 * enabling. This is only under driver's control after 9639 * PCH B stepping, previous chipset stepping should be 9640 * ignoring this setting. 9641 */ 9642 val = intel_de_read(dev_priv, PCH_DREF_CONTROL); 9643 9644 /* As we must carefully and slowly disable/enable each source in turn, 9645 * compute the final state we want first and check if we need to 9646 * make any changes at all. 9647 */ 9648 final = val; 9649 final &= ~DREF_NONSPREAD_SOURCE_MASK; 9650 if (has_ck505) 9651 final |= DREF_NONSPREAD_CK505_ENABLE; 9652 else 9653 final |= DREF_NONSPREAD_SOURCE_ENABLE; 9654 9655 final &= ~DREF_SSC_SOURCE_MASK; 9656 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK; 9657 final &= ~DREF_SSC1_ENABLE; 9658 9659 if (has_panel) { 9660 final |= DREF_SSC_SOURCE_ENABLE; 9661 9662 if (intel_panel_use_ssc(dev_priv) && can_ssc) 9663 final |= DREF_SSC1_ENABLE; 9664 9665 if (has_cpu_edp) { 9666 if (intel_panel_use_ssc(dev_priv) && can_ssc) 9667 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD; 9668 else 9669 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD; 9670 } else 9671 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE; 9672 } else if (using_ssc_source) { 9673 final |= DREF_SSC_SOURCE_ENABLE; 9674 final |= DREF_SSC1_ENABLE; 9675 } 9676 9677 if (final == val) 9678 return; 9679 9680 /* Always enable nonspread source */ 9681 val &= ~DREF_NONSPREAD_SOURCE_MASK; 9682 9683 if (has_ck505) 9684 val |= DREF_NONSPREAD_CK505_ENABLE; 9685 else 9686 val |= DREF_NONSPREAD_SOURCE_ENABLE; 9687 9688 if (has_panel) { 9689 val &= ~DREF_SSC_SOURCE_MASK; 9690 val |= DREF_SSC_SOURCE_ENABLE; 9691 9692 /* SSC must be turned on before enabling the CPU output */ 9693 if (intel_panel_use_ssc(dev_priv) && can_ssc) { 9694 drm_dbg_kms(&dev_priv->drm, "Using SSC on panel\n"); 9695 val |= DREF_SSC1_ENABLE; 9696 } else 9697 val &= ~DREF_SSC1_ENABLE; 9698 9699 /* Get SSC going before enabling the outputs */ 9700 intel_de_write(dev_priv, PCH_DREF_CONTROL, val); 9701 intel_de_posting_read(dev_priv, PCH_DREF_CONTROL); 9702 udelay(200); 9703 9704 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK; 9705 9706 /* Enable CPU source on CPU attached eDP */ 9707 if (has_cpu_edp) { 9708 if (intel_panel_use_ssc(dev_priv) && can_ssc) { 9709 drm_dbg_kms(&dev_priv->drm, 9710 "Using SSC on eDP\n"); 9711 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD; 9712 } else 9713 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD; 9714 } else 9715 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE; 9716 9717 intel_de_write(dev_priv, PCH_DREF_CONTROL, val); 9718 intel_de_posting_read(dev_priv, PCH_DREF_CONTROL); 9719 udelay(200); 9720 } else { 9721 drm_dbg_kms(&dev_priv->drm, "Disabling CPU source output\n"); 9722 9723 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK; 9724 9725 /* Turn off CPU output */ 9726 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE; 9727 9728 intel_de_write(dev_priv, PCH_DREF_CONTROL, val); 9729 intel_de_posting_read(dev_priv, PCH_DREF_CONTROL); 9730 udelay(200); 9731 9732 if (!using_ssc_source) { 9733 drm_dbg_kms(&dev_priv->drm, "Disabling SSC source\n"); 9734 9735 /* Turn off the SSC source */ 9736 val &= ~DREF_SSC_SOURCE_MASK; 9737 val |= DREF_SSC_SOURCE_DISABLE; 9738 9739 /* Turn off SSC1 */ 9740 val &= ~DREF_SSC1_ENABLE; 9741 9742 intel_de_write(dev_priv, PCH_DREF_CONTROL, val); 9743 intel_de_posting_read(dev_priv, PCH_DREF_CONTROL); 9744 udelay(200); 9745 } 9746 } 9747 9748 BUG_ON(val != final); 9749 } 9750 9751 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv) 9752 { 9753 u32 tmp; 9754 9755 tmp = intel_de_read(dev_priv, SOUTH_CHICKEN2); 9756 tmp |= FDI_MPHY_IOSFSB_RESET_CTL; 9757 intel_de_write(dev_priv, SOUTH_CHICKEN2, tmp); 9758 9759 if (wait_for_us(intel_de_read(dev_priv, SOUTH_CHICKEN2) & 9760 FDI_MPHY_IOSFSB_RESET_STATUS, 100)) 9761 drm_err(&dev_priv->drm, "FDI mPHY reset assert timeout\n"); 9762 9763 tmp = intel_de_read(dev_priv, SOUTH_CHICKEN2); 9764 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL; 9765 intel_de_write(dev_priv, SOUTH_CHICKEN2, tmp); 9766 9767 if (wait_for_us((intel_de_read(dev_priv, SOUTH_CHICKEN2) & 9768 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100)) 9769 drm_err(&dev_priv->drm, "FDI mPHY reset de-assert timeout\n"); 9770 } 9771 9772 /* WaMPhyProgramming:hsw */ 9773 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv) 9774 { 9775 u32 tmp; 9776 9777 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY); 9778 tmp &= ~(0xFF << 24); 9779 tmp |= (0x12 << 24); 9780 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY); 9781 9782 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY); 9783 tmp |= (1 << 11); 9784 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY); 9785 9786 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY); 9787 tmp |= (1 << 11); 9788 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY); 9789 9790 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY); 9791 tmp |= (1 << 24) | (1 << 21) | (1 << 18); 9792 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY); 9793 9794 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY); 9795 tmp |= (1 << 24) | (1 << 21) | (1 << 18); 9796 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY); 9797 9798 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY); 9799 tmp &= ~(7 << 13); 9800 tmp |= (5 << 13); 9801 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY); 9802 9803 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY); 9804 tmp &= ~(7 << 13); 9805 tmp |= (5 << 13); 9806 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY); 9807 9808 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY); 9809 tmp &= ~0xFF; 9810 tmp |= 0x1C; 9811 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY); 9812 9813 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY); 9814 tmp &= ~0xFF; 9815 tmp |= 0x1C; 9816 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY); 9817 9818 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY); 9819 tmp &= ~(0xFF << 16); 9820 tmp |= (0x1C << 16); 9821 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY); 9822 9823 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY); 9824 tmp &= ~(0xFF << 16); 9825 tmp |= (0x1C << 16); 9826 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY); 9827 9828 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY); 9829 tmp |= (1 << 27); 9830 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY); 9831 9832 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY); 9833 tmp |= (1 << 27); 9834 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY); 9835 9836 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY); 9837 tmp &= ~(0xF << 28); 9838 tmp |= (4 << 28); 9839 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY); 9840 9841 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY); 9842 tmp &= ~(0xF << 28); 9843 tmp |= (4 << 28); 9844 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY); 9845 } 9846 9847 /* Implements 3 different sequences from BSpec chapter "Display iCLK 9848 * Programming" based on the parameters passed: 9849 * - Sequence to enable CLKOUT_DP 9850 * - Sequence to enable CLKOUT_DP without spread 9851 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O 9852 */ 9853 static void lpt_enable_clkout_dp(struct drm_i915_private *dev_priv, 9854 bool with_spread, bool with_fdi) 9855 { 9856 u32 reg, tmp; 9857 9858 if (drm_WARN(&dev_priv->drm, with_fdi && !with_spread, 9859 "FDI requires downspread\n")) 9860 with_spread = true; 9861 if (drm_WARN(&dev_priv->drm, HAS_PCH_LPT_LP(dev_priv) && 9862 with_fdi, "LP PCH doesn't have FDI\n")) 9863 with_fdi = false; 9864 9865 mutex_lock(&dev_priv->sb_lock); 9866 9867 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK); 9868 tmp &= ~SBI_SSCCTL_DISABLE; 9869 tmp |= SBI_SSCCTL_PATHALT; 9870 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); 9871 9872 udelay(24); 9873 9874 if (with_spread) { 9875 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK); 9876 tmp &= ~SBI_SSCCTL_PATHALT; 9877 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); 9878 9879 if (with_fdi) { 9880 lpt_reset_fdi_mphy(dev_priv); 9881 lpt_program_fdi_mphy(dev_priv); 9882 } 9883 } 9884 9885 reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0; 9886 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK); 9887 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE; 9888 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK); 9889 9890 mutex_unlock(&dev_priv->sb_lock); 9891 } 9892 9893 /* Sequence to disable CLKOUT_DP */ 9894 void lpt_disable_clkout_dp(struct drm_i915_private *dev_priv) 9895 { 9896 u32 reg, tmp; 9897 9898 mutex_lock(&dev_priv->sb_lock); 9899 9900 reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0; 9901 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK); 9902 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE; 9903 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK); 9904 9905 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK); 9906 if (!(tmp & SBI_SSCCTL_DISABLE)) { 9907 if (!(tmp & SBI_SSCCTL_PATHALT)) { 9908 tmp |= SBI_SSCCTL_PATHALT; 9909 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); 9910 udelay(32); 9911 } 9912 tmp |= SBI_SSCCTL_DISABLE; 9913 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); 9914 } 9915 9916 mutex_unlock(&dev_priv->sb_lock); 9917 } 9918 9919 #define BEND_IDX(steps) ((50 + (steps)) / 5) 9920 9921 static const u16 sscdivintphase[] = { 9922 [BEND_IDX( 50)] = 0x3B23, 9923 [BEND_IDX( 45)] = 0x3B23, 9924 [BEND_IDX( 40)] = 0x3C23, 9925 [BEND_IDX( 35)] = 0x3C23, 9926 [BEND_IDX( 30)] = 0x3D23, 9927 [BEND_IDX( 25)] = 0x3D23, 9928 [BEND_IDX( 20)] = 0x3E23, 9929 [BEND_IDX( 15)] = 0x3E23, 9930 [BEND_IDX( 10)] = 0x3F23, 9931 [BEND_IDX( 5)] = 0x3F23, 9932 [BEND_IDX( 0)] = 0x0025, 9933 [BEND_IDX( -5)] = 0x0025, 9934 [BEND_IDX(-10)] = 0x0125, 9935 [BEND_IDX(-15)] = 0x0125, 9936 [BEND_IDX(-20)] = 0x0225, 9937 [BEND_IDX(-25)] = 0x0225, 9938 [BEND_IDX(-30)] = 0x0325, 9939 [BEND_IDX(-35)] = 0x0325, 9940 [BEND_IDX(-40)] = 0x0425, 9941 [BEND_IDX(-45)] = 0x0425, 9942 [BEND_IDX(-50)] = 0x0525, 9943 }; 9944 9945 /* 9946 * Bend CLKOUT_DP 9947 * steps -50 to 50 inclusive, in steps of 5 9948 * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz) 9949 * change in clock period = -(steps / 10) * 5.787 ps 9950 */ 9951 static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps) 9952 { 9953 u32 tmp; 9954 int idx = BEND_IDX(steps); 9955 9956 if (drm_WARN_ON(&dev_priv->drm, steps % 5 != 0)) 9957 return; 9958 9959 if (drm_WARN_ON(&dev_priv->drm, idx >= ARRAY_SIZE(sscdivintphase))) 9960 return; 9961 9962 mutex_lock(&dev_priv->sb_lock); 9963 9964 if (steps % 10 != 0) 9965 tmp = 0xAAAAAAAB; 9966 else 9967 tmp = 0x00000000; 9968 intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK); 9969 9970 tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK); 9971 tmp &= 0xffff0000; 9972 tmp |= sscdivintphase[idx]; 9973 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK); 9974 9975 mutex_unlock(&dev_priv->sb_lock); 9976 } 9977 9978 #undef BEND_IDX 9979 9980 static bool spll_uses_pch_ssc(struct drm_i915_private *dev_priv) 9981 { 9982 u32 fuse_strap = intel_de_read(dev_priv, FUSE_STRAP); 9983 u32 ctl = intel_de_read(dev_priv, SPLL_CTL); 9984 9985 if ((ctl & SPLL_PLL_ENABLE) == 0) 9986 return false; 9987 9988 if ((ctl & SPLL_REF_MASK) == SPLL_REF_MUXED_SSC && 9989 (fuse_strap & HSW_CPU_SSC_ENABLE) == 0) 9990 return true; 9991 9992 if (IS_BROADWELL(dev_priv) && 9993 (ctl & SPLL_REF_MASK) == SPLL_REF_PCH_SSC_BDW) 9994 return true; 9995 9996 return false; 9997 } 9998 9999 static bool wrpll_uses_pch_ssc(struct drm_i915_private *dev_priv, 10000 enum intel_dpll_id id) 10001 { 10002 u32 fuse_strap = intel_de_read(dev_priv, FUSE_STRAP); 10003 u32 ctl = intel_de_read(dev_priv, WRPLL_CTL(id)); 10004 10005 if ((ctl & WRPLL_PLL_ENABLE) == 0) 10006 return false; 10007 10008 if ((ctl & WRPLL_REF_MASK) == WRPLL_REF_PCH_SSC) 10009 return true; 10010 10011 if ((IS_BROADWELL(dev_priv) || IS_HSW_ULT(dev_priv)) && 10012 (ctl & WRPLL_REF_MASK) == WRPLL_REF_MUXED_SSC_BDW && 10013 (fuse_strap & HSW_CPU_SSC_ENABLE) == 0) 10014 return true; 10015 10016 return false; 10017 } 10018 10019 static void lpt_init_pch_refclk(struct drm_i915_private *dev_priv) 10020 { 10021 struct intel_encoder *encoder; 10022 bool has_fdi = false; 10023 10024 for_each_intel_encoder(&dev_priv->drm, encoder) { 10025 switch (encoder->type) { 10026 case INTEL_OUTPUT_ANALOG: 10027 has_fdi = true; 10028 break; 10029 default: 10030 break; 10031 } 10032 } 10033 10034 /* 10035 * The BIOS may have decided to use the PCH SSC 10036 * reference so we must not disable it until the 10037 * relevant PLLs have stopped relying on it. We'll 10038 * just leave the PCH SSC reference enabled in case 10039 * any active PLL is using it. It will get disabled 10040 * after runtime suspend if we don't have FDI. 10041 * 10042 * TODO: Move the whole reference clock handling 10043 * to the modeset sequence proper so that we can 10044 * actually enable/disable/reconfigure these things 10045 * safely. To do that we need to introduce a real 10046 * clock hierarchy. That would also allow us to do 10047 * clock bending finally. 10048 */ 10049 dev_priv->pch_ssc_use = 0; 10050 10051 if (spll_uses_pch_ssc(dev_priv)) { 10052 drm_dbg_kms(&dev_priv->drm, "SPLL using PCH SSC\n"); 10053 dev_priv->pch_ssc_use |= BIT(DPLL_ID_SPLL); 10054 } 10055 10056 if (wrpll_uses_pch_ssc(dev_priv, DPLL_ID_WRPLL1)) { 10057 drm_dbg_kms(&dev_priv->drm, "WRPLL1 using PCH SSC\n"); 10058 dev_priv->pch_ssc_use |= BIT(DPLL_ID_WRPLL1); 10059 } 10060 10061 if (wrpll_uses_pch_ssc(dev_priv, DPLL_ID_WRPLL2)) { 10062 drm_dbg_kms(&dev_priv->drm, "WRPLL2 using PCH SSC\n"); 10063 dev_priv->pch_ssc_use |= BIT(DPLL_ID_WRPLL2); 10064 } 10065 10066 if (dev_priv->pch_ssc_use) 10067 return; 10068 10069 if (has_fdi) { 10070 lpt_bend_clkout_dp(dev_priv, 0); 10071 lpt_enable_clkout_dp(dev_priv, true, true); 10072 } else { 10073 lpt_disable_clkout_dp(dev_priv); 10074 } 10075 } 10076 10077 /* 10078 * Initialize reference clocks when the driver loads 10079 */ 10080 void intel_init_pch_refclk(struct drm_i915_private *dev_priv) 10081 { 10082 if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) 10083 ilk_init_pch_refclk(dev_priv); 10084 else if (HAS_PCH_LPT(dev_priv)) 10085 lpt_init_pch_refclk(dev_priv); 10086 } 10087 10088 static void ilk_set_pipeconf(const struct intel_crtc_state *crtc_state) 10089 { 10090 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 10091 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 10092 enum pipe pipe = crtc->pipe; 10093 u32 val; 10094 10095 val = 0; 10096 10097 switch (crtc_state->pipe_bpp) { 10098 case 18: 10099 val |= PIPECONF_6BPC; 10100 break; 10101 case 24: 10102 val |= PIPECONF_8BPC; 10103 break; 10104 case 30: 10105 val |= PIPECONF_10BPC; 10106 break; 10107 case 36: 10108 val |= PIPECONF_12BPC; 10109 break; 10110 default: 10111 /* Case prevented by intel_choose_pipe_bpp_dither. */ 10112 BUG(); 10113 } 10114 10115 if (crtc_state->dither) 10116 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP); 10117 10118 if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) 10119 val |= PIPECONF_INTERLACED_ILK; 10120 else 10121 val |= PIPECONF_PROGRESSIVE; 10122 10123 /* 10124 * This would end up with an odd purple hue over 10125 * the entire display. Make sure we don't do it. 10126 */ 10127 drm_WARN_ON(&dev_priv->drm, crtc_state->limited_color_range && 10128 crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB); 10129 10130 if (crtc_state->limited_color_range && 10131 !intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) 10132 val |= PIPECONF_COLOR_RANGE_SELECT; 10133 10134 if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB) 10135 val |= PIPECONF_OUTPUT_COLORSPACE_YUV709; 10136 10137 val |= PIPECONF_GAMMA_MODE(crtc_state->gamma_mode); 10138 10139 val |= PIPECONF_FRAME_START_DELAY(0); 10140 10141 intel_de_write(dev_priv, PIPECONF(pipe), val); 10142 intel_de_posting_read(dev_priv, PIPECONF(pipe)); 10143 } 10144 10145 static void hsw_set_pipeconf(const struct intel_crtc_state *crtc_state) 10146 { 10147 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 10148 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 10149 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 10150 u32 val = 0; 10151 10152 if (IS_HASWELL(dev_priv) && crtc_state->dither) 10153 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP); 10154 10155 if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) 10156 val |= PIPECONF_INTERLACED_ILK; 10157 else 10158 val |= PIPECONF_PROGRESSIVE; 10159 10160 if (IS_HASWELL(dev_priv) && 10161 crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB) 10162 val |= PIPECONF_OUTPUT_COLORSPACE_YUV_HSW; 10163 10164 intel_de_write(dev_priv, PIPECONF(cpu_transcoder), val); 10165 intel_de_posting_read(dev_priv, PIPECONF(cpu_transcoder)); 10166 } 10167 10168 static void bdw_set_pipemisc(const struct intel_crtc_state *crtc_state) 10169 { 10170 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 10171 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 10172 u32 val = 0; 10173 10174 switch (crtc_state->pipe_bpp) { 10175 case 18: 10176 val |= PIPEMISC_DITHER_6_BPC; 10177 break; 10178 case 24: 10179 val |= PIPEMISC_DITHER_8_BPC; 10180 break; 10181 case 30: 10182 val |= PIPEMISC_DITHER_10_BPC; 10183 break; 10184 case 36: 10185 val |= PIPEMISC_DITHER_12_BPC; 10186 break; 10187 default: 10188 MISSING_CASE(crtc_state->pipe_bpp); 10189 break; 10190 } 10191 10192 if (crtc_state->dither) 10193 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP; 10194 10195 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420 || 10196 crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444) 10197 val |= PIPEMISC_OUTPUT_COLORSPACE_YUV; 10198 10199 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420) 10200 val |= PIPEMISC_YUV420_ENABLE | 10201 PIPEMISC_YUV420_MODE_FULL_BLEND; 10202 10203 if (INTEL_GEN(dev_priv) >= 11 && 10204 (crtc_state->active_planes & ~(icl_hdr_plane_mask() | 10205 BIT(PLANE_CURSOR))) == 0) 10206 val |= PIPEMISC_HDR_MODE_PRECISION; 10207 10208 if (INTEL_GEN(dev_priv) >= 12) 10209 val |= PIPEMISC_PIXEL_ROUNDING_TRUNC; 10210 10211 intel_de_write(dev_priv, PIPEMISC(crtc->pipe), val); 10212 } 10213 10214 int bdw_get_pipemisc_bpp(struct intel_crtc *crtc) 10215 { 10216 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 10217 u32 tmp; 10218 10219 tmp = intel_de_read(dev_priv, PIPEMISC(crtc->pipe)); 10220 10221 switch (tmp & PIPEMISC_DITHER_BPC_MASK) { 10222 case PIPEMISC_DITHER_6_BPC: 10223 return 18; 10224 case PIPEMISC_DITHER_8_BPC: 10225 return 24; 10226 case PIPEMISC_DITHER_10_BPC: 10227 return 30; 10228 case PIPEMISC_DITHER_12_BPC: 10229 return 36; 10230 default: 10231 MISSING_CASE(tmp); 10232 return 0; 10233 } 10234 } 10235 10236 int ilk_get_lanes_required(int target_clock, int link_bw, int bpp) 10237 { 10238 /* 10239 * Account for spread spectrum to avoid 10240 * oversubscribing the link. Max center spread 10241 * is 2.5%; use 5% for safety's sake. 10242 */ 10243 u32 bps = target_clock * bpp * 21 / 20; 10244 return DIV_ROUND_UP(bps, link_bw * 8); 10245 } 10246 10247 static bool ilk_needs_fb_cb_tune(struct dpll *dpll, int factor) 10248 { 10249 return i9xx_dpll_compute_m(dpll) < factor * dpll->n; 10250 } 10251 10252 static void ilk_compute_dpll(struct intel_crtc *crtc, 10253 struct intel_crtc_state *crtc_state, 10254 struct dpll *reduced_clock) 10255 { 10256 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 10257 u32 dpll, fp, fp2; 10258 int factor; 10259 10260 /* Enable autotuning of the PLL clock (if permissible) */ 10261 factor = 21; 10262 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 10263 if ((intel_panel_use_ssc(dev_priv) && 10264 dev_priv->vbt.lvds_ssc_freq == 100000) || 10265 (HAS_PCH_IBX(dev_priv) && 10266 intel_is_dual_link_lvds(dev_priv))) 10267 factor = 25; 10268 } else if (crtc_state->sdvo_tv_clock) { 10269 factor = 20; 10270 } 10271 10272 fp = i9xx_dpll_compute_fp(&crtc_state->dpll); 10273 10274 if (ilk_needs_fb_cb_tune(&crtc_state->dpll, factor)) 10275 fp |= FP_CB_TUNE; 10276 10277 if (reduced_clock) { 10278 fp2 = i9xx_dpll_compute_fp(reduced_clock); 10279 10280 if (reduced_clock->m < factor * reduced_clock->n) 10281 fp2 |= FP_CB_TUNE; 10282 } else { 10283 fp2 = fp; 10284 } 10285 10286 dpll = 0; 10287 10288 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) 10289 dpll |= DPLLB_MODE_LVDS; 10290 else 10291 dpll |= DPLLB_MODE_DAC_SERIAL; 10292 10293 dpll |= (crtc_state->pixel_multiplier - 1) 10294 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT; 10295 10296 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) || 10297 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) 10298 dpll |= DPLL_SDVO_HIGH_SPEED; 10299 10300 if (intel_crtc_has_dp_encoder(crtc_state)) 10301 dpll |= DPLL_SDVO_HIGH_SPEED; 10302 10303 /* 10304 * The high speed IO clock is only really required for 10305 * SDVO/HDMI/DP, but we also enable it for CRT to make it 10306 * possible to share the DPLL between CRT and HDMI. Enabling 10307 * the clock needlessly does no real harm, except use up a 10308 * bit of power potentially. 10309 * 10310 * We'll limit this to IVB with 3 pipes, since it has only two 10311 * DPLLs and so DPLL sharing is the only way to get three pipes 10312 * driving PCH ports at the same time. On SNB we could do this, 10313 * and potentially avoid enabling the second DPLL, but it's not 10314 * clear if it''s a win or loss power wise. No point in doing 10315 * this on ILK at all since it has a fixed DPLL<->pipe mapping. 10316 */ 10317 if (INTEL_NUM_PIPES(dev_priv) == 3 && 10318 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) 10319 dpll |= DPLL_SDVO_HIGH_SPEED; 10320 10321 /* compute bitmask from p1 value */ 10322 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT; 10323 /* also FPA1 */ 10324 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT; 10325 10326 switch (crtc_state->dpll.p2) { 10327 case 5: 10328 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5; 10329 break; 10330 case 7: 10331 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7; 10332 break; 10333 case 10: 10334 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10; 10335 break; 10336 case 14: 10337 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14; 10338 break; 10339 } 10340 10341 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) && 10342 intel_panel_use_ssc(dev_priv)) 10343 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN; 10344 else 10345 dpll |= PLL_REF_INPUT_DREFCLK; 10346 10347 dpll |= DPLL_VCO_ENABLE; 10348 10349 crtc_state->dpll_hw_state.dpll = dpll; 10350 crtc_state->dpll_hw_state.fp0 = fp; 10351 crtc_state->dpll_hw_state.fp1 = fp2; 10352 } 10353 10354 static int ilk_crtc_compute_clock(struct intel_crtc *crtc, 10355 struct intel_crtc_state *crtc_state) 10356 { 10357 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 10358 struct intel_atomic_state *state = 10359 to_intel_atomic_state(crtc_state->uapi.state); 10360 const struct intel_limit *limit; 10361 int refclk = 120000; 10362 10363 memset(&crtc_state->dpll_hw_state, 0, 10364 sizeof(crtc_state->dpll_hw_state)); 10365 10366 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */ 10367 if (!crtc_state->has_pch_encoder) 10368 return 0; 10369 10370 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 10371 if (intel_panel_use_ssc(dev_priv)) { 10372 drm_dbg_kms(&dev_priv->drm, 10373 "using SSC reference clock of %d kHz\n", 10374 dev_priv->vbt.lvds_ssc_freq); 10375 refclk = dev_priv->vbt.lvds_ssc_freq; 10376 } 10377 10378 if (intel_is_dual_link_lvds(dev_priv)) { 10379 if (refclk == 100000) 10380 limit = &ilk_limits_dual_lvds_100m; 10381 else 10382 limit = &ilk_limits_dual_lvds; 10383 } else { 10384 if (refclk == 100000) 10385 limit = &ilk_limits_single_lvds_100m; 10386 else 10387 limit = &ilk_limits_single_lvds; 10388 } 10389 } else { 10390 limit = &ilk_limits_dac; 10391 } 10392 10393 if (!crtc_state->clock_set && 10394 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 10395 refclk, NULL, &crtc_state->dpll)) { 10396 drm_err(&dev_priv->drm, 10397 "Couldn't find PLL settings for mode!\n"); 10398 return -EINVAL; 10399 } 10400 10401 ilk_compute_dpll(crtc, crtc_state, NULL); 10402 10403 if (!intel_reserve_shared_dplls(state, crtc, NULL)) { 10404 drm_dbg_kms(&dev_priv->drm, 10405 "failed to find PLL for pipe %c\n", 10406 pipe_name(crtc->pipe)); 10407 return -EINVAL; 10408 } 10409 10410 return 0; 10411 } 10412 10413 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc, 10414 struct intel_link_m_n *m_n) 10415 { 10416 struct drm_device *dev = crtc->base.dev; 10417 struct drm_i915_private *dev_priv = to_i915(dev); 10418 enum pipe pipe = crtc->pipe; 10419 10420 m_n->link_m = intel_de_read(dev_priv, PCH_TRANS_LINK_M1(pipe)); 10421 m_n->link_n = intel_de_read(dev_priv, PCH_TRANS_LINK_N1(pipe)); 10422 m_n->gmch_m = intel_de_read(dev_priv, PCH_TRANS_DATA_M1(pipe)) 10423 & ~TU_SIZE_MASK; 10424 m_n->gmch_n = intel_de_read(dev_priv, PCH_TRANS_DATA_N1(pipe)); 10425 m_n->tu = ((intel_de_read(dev_priv, PCH_TRANS_DATA_M1(pipe)) 10426 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; 10427 } 10428 10429 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc, 10430 enum transcoder transcoder, 10431 struct intel_link_m_n *m_n, 10432 struct intel_link_m_n *m2_n2) 10433 { 10434 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 10435 enum pipe pipe = crtc->pipe; 10436 10437 if (INTEL_GEN(dev_priv) >= 5) { 10438 m_n->link_m = intel_de_read(dev_priv, 10439 PIPE_LINK_M1(transcoder)); 10440 m_n->link_n = intel_de_read(dev_priv, 10441 PIPE_LINK_N1(transcoder)); 10442 m_n->gmch_m = intel_de_read(dev_priv, 10443 PIPE_DATA_M1(transcoder)) 10444 & ~TU_SIZE_MASK; 10445 m_n->gmch_n = intel_de_read(dev_priv, 10446 PIPE_DATA_N1(transcoder)); 10447 m_n->tu = ((intel_de_read(dev_priv, PIPE_DATA_M1(transcoder)) 10448 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; 10449 10450 if (m2_n2 && transcoder_has_m2_n2(dev_priv, transcoder)) { 10451 m2_n2->link_m = intel_de_read(dev_priv, 10452 PIPE_LINK_M2(transcoder)); 10453 m2_n2->link_n = intel_de_read(dev_priv, 10454 PIPE_LINK_N2(transcoder)); 10455 m2_n2->gmch_m = intel_de_read(dev_priv, 10456 PIPE_DATA_M2(transcoder)) 10457 & ~TU_SIZE_MASK; 10458 m2_n2->gmch_n = intel_de_read(dev_priv, 10459 PIPE_DATA_N2(transcoder)); 10460 m2_n2->tu = ((intel_de_read(dev_priv, PIPE_DATA_M2(transcoder)) 10461 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; 10462 } 10463 } else { 10464 m_n->link_m = intel_de_read(dev_priv, PIPE_LINK_M_G4X(pipe)); 10465 m_n->link_n = intel_de_read(dev_priv, PIPE_LINK_N_G4X(pipe)); 10466 m_n->gmch_m = intel_de_read(dev_priv, PIPE_DATA_M_G4X(pipe)) 10467 & ~TU_SIZE_MASK; 10468 m_n->gmch_n = intel_de_read(dev_priv, PIPE_DATA_N_G4X(pipe)); 10469 m_n->tu = ((intel_de_read(dev_priv, PIPE_DATA_M_G4X(pipe)) 10470 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; 10471 } 10472 } 10473 10474 void intel_dp_get_m_n(struct intel_crtc *crtc, 10475 struct intel_crtc_state *pipe_config) 10476 { 10477 if (pipe_config->has_pch_encoder) 10478 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n); 10479 else 10480 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder, 10481 &pipe_config->dp_m_n, 10482 &pipe_config->dp_m2_n2); 10483 } 10484 10485 static void ilk_get_fdi_m_n_config(struct intel_crtc *crtc, 10486 struct intel_crtc_state *pipe_config) 10487 { 10488 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder, 10489 &pipe_config->fdi_m_n, NULL); 10490 } 10491 10492 static void ilk_get_pfit_pos_size(struct intel_crtc_state *crtc_state, 10493 u32 pos, u32 size) 10494 { 10495 drm_rect_init(&crtc_state->pch_pfit.dst, 10496 pos >> 16, pos & 0xffff, 10497 size >> 16, size & 0xffff); 10498 } 10499 10500 static void skl_get_pfit_config(struct intel_crtc_state *crtc_state) 10501 { 10502 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 10503 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 10504 struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state; 10505 int id = -1; 10506 int i; 10507 10508 /* find scaler attached to this pipe */ 10509 for (i = 0; i < crtc->num_scalers; i++) { 10510 u32 ctl, pos, size; 10511 10512 ctl = intel_de_read(dev_priv, SKL_PS_CTRL(crtc->pipe, i)); 10513 if ((ctl & (PS_SCALER_EN | PS_PLANE_SEL_MASK)) != PS_SCALER_EN) 10514 continue; 10515 10516 id = i; 10517 crtc_state->pch_pfit.enabled = true; 10518 10519 pos = intel_de_read(dev_priv, SKL_PS_WIN_POS(crtc->pipe, i)); 10520 size = intel_de_read(dev_priv, SKL_PS_WIN_SZ(crtc->pipe, i)); 10521 10522 ilk_get_pfit_pos_size(crtc_state, pos, size); 10523 10524 scaler_state->scalers[i].in_use = true; 10525 break; 10526 } 10527 10528 scaler_state->scaler_id = id; 10529 if (id >= 0) 10530 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX); 10531 else 10532 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX); 10533 } 10534 10535 static void 10536 skl_get_initial_plane_config(struct intel_crtc *crtc, 10537 struct intel_initial_plane_config *plane_config) 10538 { 10539 struct drm_device *dev = crtc->base.dev; 10540 struct drm_i915_private *dev_priv = to_i915(dev); 10541 struct intel_plane *plane = to_intel_plane(crtc->base.primary); 10542 enum plane_id plane_id = plane->id; 10543 enum pipe pipe; 10544 u32 val, base, offset, stride_mult, tiling, alpha; 10545 int fourcc, pixel_format; 10546 unsigned int aligned_height; 10547 struct drm_framebuffer *fb; 10548 struct intel_framebuffer *intel_fb; 10549 10550 if (!plane->get_hw_state(plane, &pipe)) 10551 return; 10552 10553 drm_WARN_ON(dev, pipe != crtc->pipe); 10554 10555 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL); 10556 if (!intel_fb) { 10557 drm_dbg_kms(&dev_priv->drm, "failed to alloc fb\n"); 10558 return; 10559 } 10560 10561 fb = &intel_fb->base; 10562 10563 fb->dev = dev; 10564 10565 val = intel_de_read(dev_priv, PLANE_CTL(pipe, plane_id)); 10566 10567 if (INTEL_GEN(dev_priv) >= 11) 10568 pixel_format = val & ICL_PLANE_CTL_FORMAT_MASK; 10569 else 10570 pixel_format = val & PLANE_CTL_FORMAT_MASK; 10571 10572 if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) { 10573 alpha = intel_de_read(dev_priv, 10574 PLANE_COLOR_CTL(pipe, plane_id)); 10575 alpha &= PLANE_COLOR_ALPHA_MASK; 10576 } else { 10577 alpha = val & PLANE_CTL_ALPHA_MASK; 10578 } 10579 10580 fourcc = skl_format_to_fourcc(pixel_format, 10581 val & PLANE_CTL_ORDER_RGBX, alpha); 10582 fb->format = drm_format_info(fourcc); 10583 10584 tiling = val & PLANE_CTL_TILED_MASK; 10585 switch (tiling) { 10586 case PLANE_CTL_TILED_LINEAR: 10587 fb->modifier = DRM_FORMAT_MOD_LINEAR; 10588 break; 10589 case PLANE_CTL_TILED_X: 10590 plane_config->tiling = I915_TILING_X; 10591 fb->modifier = I915_FORMAT_MOD_X_TILED; 10592 break; 10593 case PLANE_CTL_TILED_Y: 10594 plane_config->tiling = I915_TILING_Y; 10595 if (val & PLANE_CTL_RENDER_DECOMPRESSION_ENABLE) 10596 fb->modifier = INTEL_GEN(dev_priv) >= 12 ? 10597 I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS : 10598 I915_FORMAT_MOD_Y_TILED_CCS; 10599 else if (val & PLANE_CTL_MEDIA_DECOMPRESSION_ENABLE) 10600 fb->modifier = I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS; 10601 else 10602 fb->modifier = I915_FORMAT_MOD_Y_TILED; 10603 break; 10604 case PLANE_CTL_TILED_YF: 10605 if (val & PLANE_CTL_RENDER_DECOMPRESSION_ENABLE) 10606 fb->modifier = I915_FORMAT_MOD_Yf_TILED_CCS; 10607 else 10608 fb->modifier = I915_FORMAT_MOD_Yf_TILED; 10609 break; 10610 default: 10611 MISSING_CASE(tiling); 10612 goto error; 10613 } 10614 10615 /* 10616 * DRM_MODE_ROTATE_ is counter clockwise to stay compatible with Xrandr 10617 * while i915 HW rotation is clockwise, thats why this swapping. 10618 */ 10619 switch (val & PLANE_CTL_ROTATE_MASK) { 10620 case PLANE_CTL_ROTATE_0: 10621 plane_config->rotation = DRM_MODE_ROTATE_0; 10622 break; 10623 case PLANE_CTL_ROTATE_90: 10624 plane_config->rotation = DRM_MODE_ROTATE_270; 10625 break; 10626 case PLANE_CTL_ROTATE_180: 10627 plane_config->rotation = DRM_MODE_ROTATE_180; 10628 break; 10629 case PLANE_CTL_ROTATE_270: 10630 plane_config->rotation = DRM_MODE_ROTATE_90; 10631 break; 10632 } 10633 10634 if (INTEL_GEN(dev_priv) >= 10 && 10635 val & PLANE_CTL_FLIP_HORIZONTAL) 10636 plane_config->rotation |= DRM_MODE_REFLECT_X; 10637 10638 /* 90/270 degree rotation would require extra work */ 10639 if (drm_rotation_90_or_270(plane_config->rotation)) 10640 goto error; 10641 10642 base = intel_de_read(dev_priv, PLANE_SURF(pipe, plane_id)) & 0xfffff000; 10643 plane_config->base = base; 10644 10645 offset = intel_de_read(dev_priv, PLANE_OFFSET(pipe, plane_id)); 10646 10647 val = intel_de_read(dev_priv, PLANE_SIZE(pipe, plane_id)); 10648 fb->height = ((val >> 16) & 0xffff) + 1; 10649 fb->width = ((val >> 0) & 0xffff) + 1; 10650 10651 val = intel_de_read(dev_priv, PLANE_STRIDE(pipe, plane_id)); 10652 stride_mult = skl_plane_stride_mult(fb, 0, DRM_MODE_ROTATE_0); 10653 fb->pitches[0] = (val & 0x3ff) * stride_mult; 10654 10655 aligned_height = intel_fb_align_height(fb, 0, fb->height); 10656 10657 plane_config->size = fb->pitches[0] * aligned_height; 10658 10659 drm_dbg_kms(&dev_priv->drm, 10660 "%s/%s with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n", 10661 crtc->base.name, plane->base.name, fb->width, fb->height, 10662 fb->format->cpp[0] * 8, base, fb->pitches[0], 10663 plane_config->size); 10664 10665 plane_config->fb = intel_fb; 10666 return; 10667 10668 error: 10669 kfree(intel_fb); 10670 } 10671 10672 static void ilk_get_pfit_config(struct intel_crtc_state *crtc_state) 10673 { 10674 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 10675 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 10676 u32 ctl, pos, size; 10677 10678 ctl = intel_de_read(dev_priv, PF_CTL(crtc->pipe)); 10679 if ((ctl & PF_ENABLE) == 0) 10680 return; 10681 10682 crtc_state->pch_pfit.enabled = true; 10683 10684 pos = intel_de_read(dev_priv, PF_WIN_POS(crtc->pipe)); 10685 size = intel_de_read(dev_priv, PF_WIN_SZ(crtc->pipe)); 10686 10687 ilk_get_pfit_pos_size(crtc_state, pos, size); 10688 10689 /* 10690 * We currently do not free assignements of panel fitters on 10691 * ivb/hsw (since we don't use the higher upscaling modes which 10692 * differentiates them) so just WARN about this case for now. 10693 */ 10694 drm_WARN_ON(&dev_priv->drm, IS_GEN(dev_priv, 7) && 10695 (ctl & PF_PIPE_SEL_MASK_IVB) != PF_PIPE_SEL_IVB(crtc->pipe)); 10696 } 10697 10698 static bool ilk_get_pipe_config(struct intel_crtc *crtc, 10699 struct intel_crtc_state *pipe_config) 10700 { 10701 struct drm_device *dev = crtc->base.dev; 10702 struct drm_i915_private *dev_priv = to_i915(dev); 10703 enum intel_display_power_domain power_domain; 10704 intel_wakeref_t wakeref; 10705 u32 tmp; 10706 bool ret; 10707 10708 power_domain = POWER_DOMAIN_PIPE(crtc->pipe); 10709 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain); 10710 if (!wakeref) 10711 return false; 10712 10713 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe; 10714 pipe_config->shared_dpll = NULL; 10715 10716 ret = false; 10717 tmp = intel_de_read(dev_priv, PIPECONF(crtc->pipe)); 10718 if (!(tmp & PIPECONF_ENABLE)) 10719 goto out; 10720 10721 switch (tmp & PIPECONF_BPC_MASK) { 10722 case PIPECONF_6BPC: 10723 pipe_config->pipe_bpp = 18; 10724 break; 10725 case PIPECONF_8BPC: 10726 pipe_config->pipe_bpp = 24; 10727 break; 10728 case PIPECONF_10BPC: 10729 pipe_config->pipe_bpp = 30; 10730 break; 10731 case PIPECONF_12BPC: 10732 pipe_config->pipe_bpp = 36; 10733 break; 10734 default: 10735 break; 10736 } 10737 10738 if (tmp & PIPECONF_COLOR_RANGE_SELECT) 10739 pipe_config->limited_color_range = true; 10740 10741 switch (tmp & PIPECONF_OUTPUT_COLORSPACE_MASK) { 10742 case PIPECONF_OUTPUT_COLORSPACE_YUV601: 10743 case PIPECONF_OUTPUT_COLORSPACE_YUV709: 10744 pipe_config->output_format = INTEL_OUTPUT_FORMAT_YCBCR444; 10745 break; 10746 default: 10747 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB; 10748 break; 10749 } 10750 10751 pipe_config->gamma_mode = (tmp & PIPECONF_GAMMA_MODE_MASK_ILK) >> 10752 PIPECONF_GAMMA_MODE_SHIFT; 10753 10754 pipe_config->csc_mode = intel_de_read(dev_priv, 10755 PIPE_CSC_MODE(crtc->pipe)); 10756 10757 i9xx_get_pipe_color_config(pipe_config); 10758 intel_color_get_config(pipe_config); 10759 10760 if (intel_de_read(dev_priv, PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) { 10761 struct intel_shared_dpll *pll; 10762 enum intel_dpll_id pll_id; 10763 10764 pipe_config->has_pch_encoder = true; 10765 10766 tmp = intel_de_read(dev_priv, FDI_RX_CTL(crtc->pipe)); 10767 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >> 10768 FDI_DP_PORT_WIDTH_SHIFT) + 1; 10769 10770 ilk_get_fdi_m_n_config(crtc, pipe_config); 10771 10772 if (HAS_PCH_IBX(dev_priv)) { 10773 /* 10774 * The pipe->pch transcoder and pch transcoder->pll 10775 * mapping is fixed. 10776 */ 10777 pll_id = (enum intel_dpll_id) crtc->pipe; 10778 } else { 10779 tmp = intel_de_read(dev_priv, PCH_DPLL_SEL); 10780 if (tmp & TRANS_DPLLB_SEL(crtc->pipe)) 10781 pll_id = DPLL_ID_PCH_PLL_B; 10782 else 10783 pll_id= DPLL_ID_PCH_PLL_A; 10784 } 10785 10786 pipe_config->shared_dpll = 10787 intel_get_shared_dpll_by_id(dev_priv, pll_id); 10788 pll = pipe_config->shared_dpll; 10789 10790 drm_WARN_ON(dev, !pll->info->funcs->get_hw_state(dev_priv, pll, 10791 &pipe_config->dpll_hw_state)); 10792 10793 tmp = pipe_config->dpll_hw_state.dpll; 10794 pipe_config->pixel_multiplier = 10795 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK) 10796 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1; 10797 10798 ilk_pch_clock_get(crtc, pipe_config); 10799 } else { 10800 pipe_config->pixel_multiplier = 1; 10801 } 10802 10803 intel_get_pipe_timings(crtc, pipe_config); 10804 intel_get_pipe_src_size(crtc, pipe_config); 10805 10806 ilk_get_pfit_config(pipe_config); 10807 10808 ret = true; 10809 10810 out: 10811 intel_display_power_put(dev_priv, power_domain, wakeref); 10812 10813 return ret; 10814 } 10815 10816 static int hsw_crtc_compute_clock(struct intel_crtc *crtc, 10817 struct intel_crtc_state *crtc_state) 10818 { 10819 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 10820 struct intel_atomic_state *state = 10821 to_intel_atomic_state(crtc_state->uapi.state); 10822 10823 if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI) || 10824 INTEL_GEN(dev_priv) >= 11) { 10825 struct intel_encoder *encoder = 10826 intel_get_crtc_new_encoder(state, crtc_state); 10827 10828 if (!intel_reserve_shared_dplls(state, crtc, encoder)) { 10829 drm_dbg_kms(&dev_priv->drm, 10830 "failed to find PLL for pipe %c\n", 10831 pipe_name(crtc->pipe)); 10832 return -EINVAL; 10833 } 10834 } 10835 10836 return 0; 10837 } 10838 10839 static void cnl_get_ddi_pll(struct drm_i915_private *dev_priv, enum port port, 10840 struct intel_crtc_state *pipe_config) 10841 { 10842 enum intel_dpll_id id; 10843 u32 temp; 10844 10845 temp = intel_de_read(dev_priv, DPCLKA_CFGCR0) & DPCLKA_CFGCR0_DDI_CLK_SEL_MASK(port); 10846 id = temp >> DPCLKA_CFGCR0_DDI_CLK_SEL_SHIFT(port); 10847 10848 if (drm_WARN_ON(&dev_priv->drm, id < SKL_DPLL0 || id > SKL_DPLL2)) 10849 return; 10850 10851 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id); 10852 } 10853 10854 static void icl_get_ddi_pll(struct drm_i915_private *dev_priv, enum port port, 10855 struct intel_crtc_state *pipe_config) 10856 { 10857 enum phy phy = intel_port_to_phy(dev_priv, port); 10858 enum icl_port_dpll_id port_dpll_id; 10859 enum intel_dpll_id id; 10860 u32 temp; 10861 10862 if (intel_phy_is_combo(dev_priv, phy)) { 10863 u32 mask, shift; 10864 10865 if (IS_ROCKETLAKE(dev_priv)) { 10866 mask = RKL_DPCLKA_CFGCR0_DDI_CLK_SEL_MASK(phy); 10867 shift = RKL_DPCLKA_CFGCR0_DDI_CLK_SEL_SHIFT(phy); 10868 } else { 10869 mask = ICL_DPCLKA_CFGCR0_DDI_CLK_SEL_MASK(phy); 10870 shift = ICL_DPCLKA_CFGCR0_DDI_CLK_SEL_SHIFT(phy); 10871 } 10872 10873 temp = intel_de_read(dev_priv, ICL_DPCLKA_CFGCR0) & mask; 10874 id = temp >> shift; 10875 port_dpll_id = ICL_PORT_DPLL_DEFAULT; 10876 } else if (intel_phy_is_tc(dev_priv, phy)) { 10877 u32 clk_sel = intel_de_read(dev_priv, DDI_CLK_SEL(port)) & DDI_CLK_SEL_MASK; 10878 10879 if (clk_sel == DDI_CLK_SEL_MG) { 10880 id = icl_tc_port_to_pll_id(intel_port_to_tc(dev_priv, 10881 port)); 10882 port_dpll_id = ICL_PORT_DPLL_MG_PHY; 10883 } else { 10884 drm_WARN_ON(&dev_priv->drm, 10885 clk_sel < DDI_CLK_SEL_TBT_162); 10886 id = DPLL_ID_ICL_TBTPLL; 10887 port_dpll_id = ICL_PORT_DPLL_DEFAULT; 10888 } 10889 } else { 10890 drm_WARN(&dev_priv->drm, 1, "Invalid port %x\n", port); 10891 return; 10892 } 10893 10894 pipe_config->icl_port_dplls[port_dpll_id].pll = 10895 intel_get_shared_dpll_by_id(dev_priv, id); 10896 10897 icl_set_active_port_dpll(pipe_config, port_dpll_id); 10898 } 10899 10900 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv, 10901 enum port port, 10902 struct intel_crtc_state *pipe_config) 10903 { 10904 enum intel_dpll_id id; 10905 10906 switch (port) { 10907 case PORT_A: 10908 id = DPLL_ID_SKL_DPLL0; 10909 break; 10910 case PORT_B: 10911 id = DPLL_ID_SKL_DPLL1; 10912 break; 10913 case PORT_C: 10914 id = DPLL_ID_SKL_DPLL2; 10915 break; 10916 default: 10917 drm_err(&dev_priv->drm, "Incorrect port type\n"); 10918 return; 10919 } 10920 10921 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id); 10922 } 10923 10924 static void skl_get_ddi_pll(struct drm_i915_private *dev_priv, enum port port, 10925 struct intel_crtc_state *pipe_config) 10926 { 10927 enum intel_dpll_id id; 10928 u32 temp; 10929 10930 temp = intel_de_read(dev_priv, DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port); 10931 id = temp >> (port * 3 + 1); 10932 10933 if (drm_WARN_ON(&dev_priv->drm, id < SKL_DPLL0 || id > SKL_DPLL3)) 10934 return; 10935 10936 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id); 10937 } 10938 10939 static void hsw_get_ddi_pll(struct drm_i915_private *dev_priv, enum port port, 10940 struct intel_crtc_state *pipe_config) 10941 { 10942 enum intel_dpll_id id; 10943 u32 ddi_pll_sel = intel_de_read(dev_priv, PORT_CLK_SEL(port)); 10944 10945 switch (ddi_pll_sel) { 10946 case PORT_CLK_SEL_WRPLL1: 10947 id = DPLL_ID_WRPLL1; 10948 break; 10949 case PORT_CLK_SEL_WRPLL2: 10950 id = DPLL_ID_WRPLL2; 10951 break; 10952 case PORT_CLK_SEL_SPLL: 10953 id = DPLL_ID_SPLL; 10954 break; 10955 case PORT_CLK_SEL_LCPLL_810: 10956 id = DPLL_ID_LCPLL_810; 10957 break; 10958 case PORT_CLK_SEL_LCPLL_1350: 10959 id = DPLL_ID_LCPLL_1350; 10960 break; 10961 case PORT_CLK_SEL_LCPLL_2700: 10962 id = DPLL_ID_LCPLL_2700; 10963 break; 10964 default: 10965 MISSING_CASE(ddi_pll_sel); 10966 fallthrough; 10967 case PORT_CLK_SEL_NONE: 10968 return; 10969 } 10970 10971 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id); 10972 } 10973 10974 static bool hsw_get_transcoder_state(struct intel_crtc *crtc, 10975 struct intel_crtc_state *pipe_config, 10976 u64 *power_domain_mask, 10977 intel_wakeref_t *wakerefs) 10978 { 10979 struct drm_device *dev = crtc->base.dev; 10980 struct drm_i915_private *dev_priv = to_i915(dev); 10981 enum intel_display_power_domain power_domain; 10982 unsigned long panel_transcoder_mask = BIT(TRANSCODER_EDP); 10983 unsigned long enabled_panel_transcoders = 0; 10984 enum transcoder panel_transcoder; 10985 intel_wakeref_t wf; 10986 u32 tmp; 10987 10988 if (INTEL_GEN(dev_priv) >= 11) 10989 panel_transcoder_mask |= 10990 BIT(TRANSCODER_DSI_0) | BIT(TRANSCODER_DSI_1); 10991 10992 /* 10993 * The pipe->transcoder mapping is fixed with the exception of the eDP 10994 * and DSI transcoders handled below. 10995 */ 10996 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe; 10997 10998 /* 10999 * XXX: Do intel_display_power_get_if_enabled before reading this (for 11000 * consistency and less surprising code; it's in always on power). 11001 */ 11002 for_each_cpu_transcoder_masked(dev_priv, panel_transcoder, 11003 panel_transcoder_mask) { 11004 bool force_thru = false; 11005 enum pipe trans_pipe; 11006 11007 tmp = intel_de_read(dev_priv, 11008 TRANS_DDI_FUNC_CTL(panel_transcoder)); 11009 if (!(tmp & TRANS_DDI_FUNC_ENABLE)) 11010 continue; 11011 11012 /* 11013 * Log all enabled ones, only use the first one. 11014 * 11015 * FIXME: This won't work for two separate DSI displays. 11016 */ 11017 enabled_panel_transcoders |= BIT(panel_transcoder); 11018 if (enabled_panel_transcoders != BIT(panel_transcoder)) 11019 continue; 11020 11021 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) { 11022 default: 11023 drm_WARN(dev, 1, 11024 "unknown pipe linked to transcoder %s\n", 11025 transcoder_name(panel_transcoder)); 11026 fallthrough; 11027 case TRANS_DDI_EDP_INPUT_A_ONOFF: 11028 force_thru = true; 11029 fallthrough; 11030 case TRANS_DDI_EDP_INPUT_A_ON: 11031 trans_pipe = PIPE_A; 11032 break; 11033 case TRANS_DDI_EDP_INPUT_B_ONOFF: 11034 trans_pipe = PIPE_B; 11035 break; 11036 case TRANS_DDI_EDP_INPUT_C_ONOFF: 11037 trans_pipe = PIPE_C; 11038 break; 11039 case TRANS_DDI_EDP_INPUT_D_ONOFF: 11040 trans_pipe = PIPE_D; 11041 break; 11042 } 11043 11044 if (trans_pipe == crtc->pipe) { 11045 pipe_config->cpu_transcoder = panel_transcoder; 11046 pipe_config->pch_pfit.force_thru = force_thru; 11047 } 11048 } 11049 11050 /* 11051 * Valid combos: none, eDP, DSI0, DSI1, DSI0+DSI1 11052 */ 11053 drm_WARN_ON(dev, (enabled_panel_transcoders & BIT(TRANSCODER_EDP)) && 11054 enabled_panel_transcoders != BIT(TRANSCODER_EDP)); 11055 11056 power_domain = POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder); 11057 drm_WARN_ON(dev, *power_domain_mask & BIT_ULL(power_domain)); 11058 11059 wf = intel_display_power_get_if_enabled(dev_priv, power_domain); 11060 if (!wf) 11061 return false; 11062 11063 wakerefs[power_domain] = wf; 11064 *power_domain_mask |= BIT_ULL(power_domain); 11065 11066 tmp = intel_de_read(dev_priv, PIPECONF(pipe_config->cpu_transcoder)); 11067 11068 return tmp & PIPECONF_ENABLE; 11069 } 11070 11071 static bool bxt_get_dsi_transcoder_state(struct intel_crtc *crtc, 11072 struct intel_crtc_state *pipe_config, 11073 u64 *power_domain_mask, 11074 intel_wakeref_t *wakerefs) 11075 { 11076 struct drm_device *dev = crtc->base.dev; 11077 struct drm_i915_private *dev_priv = to_i915(dev); 11078 enum intel_display_power_domain power_domain; 11079 enum transcoder cpu_transcoder; 11080 intel_wakeref_t wf; 11081 enum port port; 11082 u32 tmp; 11083 11084 for_each_port_masked(port, BIT(PORT_A) | BIT(PORT_C)) { 11085 if (port == PORT_A) 11086 cpu_transcoder = TRANSCODER_DSI_A; 11087 else 11088 cpu_transcoder = TRANSCODER_DSI_C; 11089 11090 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder); 11091 drm_WARN_ON(dev, *power_domain_mask & BIT_ULL(power_domain)); 11092 11093 wf = intel_display_power_get_if_enabled(dev_priv, power_domain); 11094 if (!wf) 11095 continue; 11096 11097 wakerefs[power_domain] = wf; 11098 *power_domain_mask |= BIT_ULL(power_domain); 11099 11100 /* 11101 * The PLL needs to be enabled with a valid divider 11102 * configuration, otherwise accessing DSI registers will hang 11103 * the machine. See BSpec North Display Engine 11104 * registers/MIPI[BXT]. We can break out here early, since we 11105 * need the same DSI PLL to be enabled for both DSI ports. 11106 */ 11107 if (!bxt_dsi_pll_is_enabled(dev_priv)) 11108 break; 11109 11110 /* XXX: this works for video mode only */ 11111 tmp = intel_de_read(dev_priv, BXT_MIPI_PORT_CTRL(port)); 11112 if (!(tmp & DPI_ENABLE)) 11113 continue; 11114 11115 tmp = intel_de_read(dev_priv, MIPI_CTRL(port)); 11116 if ((tmp & BXT_PIPE_SELECT_MASK) != BXT_PIPE_SELECT(crtc->pipe)) 11117 continue; 11118 11119 pipe_config->cpu_transcoder = cpu_transcoder; 11120 break; 11121 } 11122 11123 return transcoder_is_dsi(pipe_config->cpu_transcoder); 11124 } 11125 11126 static void hsw_get_ddi_port_state(struct intel_crtc *crtc, 11127 struct intel_crtc_state *pipe_config) 11128 { 11129 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 11130 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder; 11131 struct intel_shared_dpll *pll; 11132 enum port port; 11133 u32 tmp; 11134 11135 if (transcoder_is_dsi(cpu_transcoder)) { 11136 port = (cpu_transcoder == TRANSCODER_DSI_A) ? 11137 PORT_A : PORT_B; 11138 } else { 11139 tmp = intel_de_read(dev_priv, 11140 TRANS_DDI_FUNC_CTL(cpu_transcoder)); 11141 if (INTEL_GEN(dev_priv) >= 12) 11142 port = TGL_TRANS_DDI_FUNC_CTL_VAL_TO_PORT(tmp); 11143 else 11144 port = TRANS_DDI_FUNC_CTL_VAL_TO_PORT(tmp); 11145 } 11146 11147 if (INTEL_GEN(dev_priv) >= 11) 11148 icl_get_ddi_pll(dev_priv, port, pipe_config); 11149 else if (IS_CANNONLAKE(dev_priv)) 11150 cnl_get_ddi_pll(dev_priv, port, pipe_config); 11151 else if (IS_GEN9_BC(dev_priv)) 11152 skl_get_ddi_pll(dev_priv, port, pipe_config); 11153 else if (IS_GEN9_LP(dev_priv)) 11154 bxt_get_ddi_pll(dev_priv, port, pipe_config); 11155 else 11156 hsw_get_ddi_pll(dev_priv, port, pipe_config); 11157 11158 pll = pipe_config->shared_dpll; 11159 if (pll) { 11160 drm_WARN_ON(&dev_priv->drm, 11161 !pll->info->funcs->get_hw_state(dev_priv, pll, 11162 &pipe_config->dpll_hw_state)); 11163 } 11164 11165 /* 11166 * Haswell has only FDI/PCH transcoder A. It is which is connected to 11167 * DDI E. So just check whether this pipe is wired to DDI E and whether 11168 * the PCH transcoder is on. 11169 */ 11170 if (INTEL_GEN(dev_priv) < 9 && 11171 (port == PORT_E) && intel_de_read(dev_priv, LPT_TRANSCONF) & TRANS_ENABLE) { 11172 pipe_config->has_pch_encoder = true; 11173 11174 tmp = intel_de_read(dev_priv, FDI_RX_CTL(PIPE_A)); 11175 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >> 11176 FDI_DP_PORT_WIDTH_SHIFT) + 1; 11177 11178 ilk_get_fdi_m_n_config(crtc, pipe_config); 11179 } 11180 } 11181 11182 static bool hsw_get_pipe_config(struct intel_crtc *crtc, 11183 struct intel_crtc_state *pipe_config) 11184 { 11185 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 11186 intel_wakeref_t wakerefs[POWER_DOMAIN_NUM], wf; 11187 enum intel_display_power_domain power_domain; 11188 u64 power_domain_mask; 11189 bool active; 11190 u32 tmp; 11191 11192 pipe_config->master_transcoder = INVALID_TRANSCODER; 11193 11194 power_domain = POWER_DOMAIN_PIPE(crtc->pipe); 11195 wf = intel_display_power_get_if_enabled(dev_priv, power_domain); 11196 if (!wf) 11197 return false; 11198 11199 wakerefs[power_domain] = wf; 11200 power_domain_mask = BIT_ULL(power_domain); 11201 11202 pipe_config->shared_dpll = NULL; 11203 11204 active = hsw_get_transcoder_state(crtc, pipe_config, 11205 &power_domain_mask, wakerefs); 11206 11207 if (IS_GEN9_LP(dev_priv) && 11208 bxt_get_dsi_transcoder_state(crtc, pipe_config, 11209 &power_domain_mask, wakerefs)) { 11210 drm_WARN_ON(&dev_priv->drm, active); 11211 active = true; 11212 } 11213 11214 if (!active) 11215 goto out; 11216 11217 if (!transcoder_is_dsi(pipe_config->cpu_transcoder) || 11218 INTEL_GEN(dev_priv) >= 11) { 11219 hsw_get_ddi_port_state(crtc, pipe_config); 11220 intel_get_pipe_timings(crtc, pipe_config); 11221 } 11222 11223 intel_get_pipe_src_size(crtc, pipe_config); 11224 11225 if (IS_HASWELL(dev_priv)) { 11226 u32 tmp = intel_de_read(dev_priv, 11227 PIPECONF(pipe_config->cpu_transcoder)); 11228 11229 if (tmp & PIPECONF_OUTPUT_COLORSPACE_YUV_HSW) 11230 pipe_config->output_format = INTEL_OUTPUT_FORMAT_YCBCR444; 11231 else 11232 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB; 11233 } else { 11234 pipe_config->output_format = 11235 bdw_get_pipemisc_output_format(crtc); 11236 11237 /* 11238 * Currently there is no interface defined to 11239 * check user preference between RGB/YCBCR444 11240 * or YCBCR420. So the only possible case for 11241 * YCBCR444 usage is driving YCBCR420 output 11242 * with LSPCON, when pipe is configured for 11243 * YCBCR444 output and LSPCON takes care of 11244 * downsampling it. 11245 */ 11246 pipe_config->lspcon_downsampling = 11247 pipe_config->output_format == INTEL_OUTPUT_FORMAT_YCBCR444; 11248 } 11249 11250 pipe_config->gamma_mode = intel_de_read(dev_priv, 11251 GAMMA_MODE(crtc->pipe)); 11252 11253 pipe_config->csc_mode = intel_de_read(dev_priv, 11254 PIPE_CSC_MODE(crtc->pipe)); 11255 11256 if (INTEL_GEN(dev_priv) >= 9) { 11257 tmp = intel_de_read(dev_priv, SKL_BOTTOM_COLOR(crtc->pipe)); 11258 11259 if (tmp & SKL_BOTTOM_COLOR_GAMMA_ENABLE) 11260 pipe_config->gamma_enable = true; 11261 11262 if (tmp & SKL_BOTTOM_COLOR_CSC_ENABLE) 11263 pipe_config->csc_enable = true; 11264 } else { 11265 i9xx_get_pipe_color_config(pipe_config); 11266 } 11267 11268 intel_color_get_config(pipe_config); 11269 11270 tmp = intel_de_read(dev_priv, WM_LINETIME(crtc->pipe)); 11271 pipe_config->linetime = REG_FIELD_GET(HSW_LINETIME_MASK, tmp); 11272 if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) 11273 pipe_config->ips_linetime = 11274 REG_FIELD_GET(HSW_IPS_LINETIME_MASK, tmp); 11275 11276 power_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe); 11277 drm_WARN_ON(&dev_priv->drm, power_domain_mask & BIT_ULL(power_domain)); 11278 11279 wf = intel_display_power_get_if_enabled(dev_priv, power_domain); 11280 if (wf) { 11281 wakerefs[power_domain] = wf; 11282 power_domain_mask |= BIT_ULL(power_domain); 11283 11284 if (INTEL_GEN(dev_priv) >= 9) 11285 skl_get_pfit_config(pipe_config); 11286 else 11287 ilk_get_pfit_config(pipe_config); 11288 } 11289 11290 if (hsw_crtc_supports_ips(crtc)) { 11291 if (IS_HASWELL(dev_priv)) 11292 pipe_config->ips_enabled = intel_de_read(dev_priv, 11293 IPS_CTL) & IPS_ENABLE; 11294 else { 11295 /* 11296 * We cannot readout IPS state on broadwell, set to 11297 * true so we can set it to a defined state on first 11298 * commit. 11299 */ 11300 pipe_config->ips_enabled = true; 11301 } 11302 } 11303 11304 if (pipe_config->cpu_transcoder != TRANSCODER_EDP && 11305 !transcoder_is_dsi(pipe_config->cpu_transcoder)) { 11306 pipe_config->pixel_multiplier = 11307 intel_de_read(dev_priv, 11308 PIPE_MULT(pipe_config->cpu_transcoder)) + 1; 11309 } else { 11310 pipe_config->pixel_multiplier = 1; 11311 } 11312 11313 out: 11314 for_each_power_domain(power_domain, power_domain_mask) 11315 intel_display_power_put(dev_priv, 11316 power_domain, wakerefs[power_domain]); 11317 11318 return active; 11319 } 11320 11321 static u32 intel_cursor_base(const struct intel_plane_state *plane_state) 11322 { 11323 struct drm_i915_private *dev_priv = 11324 to_i915(plane_state->uapi.plane->dev); 11325 const struct drm_framebuffer *fb = plane_state->hw.fb; 11326 const struct drm_i915_gem_object *obj = intel_fb_obj(fb); 11327 u32 base; 11328 11329 if (INTEL_INFO(dev_priv)->display.cursor_needs_physical) 11330 base = sg_dma_address(obj->mm.pages->sgl); 11331 else 11332 base = intel_plane_ggtt_offset(plane_state); 11333 11334 return base + plane_state->color_plane[0].offset; 11335 } 11336 11337 static u32 intel_cursor_position(const struct intel_plane_state *plane_state) 11338 { 11339 int x = plane_state->uapi.dst.x1; 11340 int y = plane_state->uapi.dst.y1; 11341 u32 pos = 0; 11342 11343 if (x < 0) { 11344 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT; 11345 x = -x; 11346 } 11347 pos |= x << CURSOR_X_SHIFT; 11348 11349 if (y < 0) { 11350 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT; 11351 y = -y; 11352 } 11353 pos |= y << CURSOR_Y_SHIFT; 11354 11355 return pos; 11356 } 11357 11358 static bool intel_cursor_size_ok(const struct intel_plane_state *plane_state) 11359 { 11360 const struct drm_mode_config *config = 11361 &plane_state->uapi.plane->dev->mode_config; 11362 int width = drm_rect_width(&plane_state->uapi.dst); 11363 int height = drm_rect_height(&plane_state->uapi.dst); 11364 11365 return width > 0 && width <= config->cursor_width && 11366 height > 0 && height <= config->cursor_height; 11367 } 11368 11369 static int intel_cursor_check_surface(struct intel_plane_state *plane_state) 11370 { 11371 struct drm_i915_private *dev_priv = 11372 to_i915(plane_state->uapi.plane->dev); 11373 unsigned int rotation = plane_state->hw.rotation; 11374 int src_x, src_y; 11375 u32 offset; 11376 int ret; 11377 11378 ret = intel_plane_compute_gtt(plane_state); 11379 if (ret) 11380 return ret; 11381 11382 if (!plane_state->uapi.visible) 11383 return 0; 11384 11385 src_x = plane_state->uapi.src.x1 >> 16; 11386 src_y = plane_state->uapi.src.y1 >> 16; 11387 11388 intel_add_fb_offsets(&src_x, &src_y, plane_state, 0); 11389 offset = intel_plane_compute_aligned_offset(&src_x, &src_y, 11390 plane_state, 0); 11391 11392 if (src_x != 0 || src_y != 0) { 11393 drm_dbg_kms(&dev_priv->drm, 11394 "Arbitrary cursor panning not supported\n"); 11395 return -EINVAL; 11396 } 11397 11398 /* 11399 * Put the final coordinates back so that the src 11400 * coordinate checks will see the right values. 11401 */ 11402 drm_rect_translate_to(&plane_state->uapi.src, 11403 src_x << 16, src_y << 16); 11404 11405 /* ILK+ do this automagically in hardware */ 11406 if (HAS_GMCH(dev_priv) && rotation & DRM_MODE_ROTATE_180) { 11407 const struct drm_framebuffer *fb = plane_state->hw.fb; 11408 int src_w = drm_rect_width(&plane_state->uapi.src) >> 16; 11409 int src_h = drm_rect_height(&plane_state->uapi.src) >> 16; 11410 11411 offset += (src_h * src_w - 1) * fb->format->cpp[0]; 11412 } 11413 11414 plane_state->color_plane[0].offset = offset; 11415 plane_state->color_plane[0].x = src_x; 11416 plane_state->color_plane[0].y = src_y; 11417 11418 return 0; 11419 } 11420 11421 static int intel_check_cursor(struct intel_crtc_state *crtc_state, 11422 struct intel_plane_state *plane_state) 11423 { 11424 const struct drm_framebuffer *fb = plane_state->hw.fb; 11425 struct drm_i915_private *i915 = to_i915(plane_state->uapi.plane->dev); 11426 int ret; 11427 11428 if (fb && fb->modifier != DRM_FORMAT_MOD_LINEAR) { 11429 drm_dbg_kms(&i915->drm, "cursor cannot be tiled\n"); 11430 return -EINVAL; 11431 } 11432 11433 ret = drm_atomic_helper_check_plane_state(&plane_state->uapi, 11434 &crtc_state->uapi, 11435 DRM_PLANE_HELPER_NO_SCALING, 11436 DRM_PLANE_HELPER_NO_SCALING, 11437 true, true); 11438 if (ret) 11439 return ret; 11440 11441 /* Use the unclipped src/dst rectangles, which we program to hw */ 11442 plane_state->uapi.src = drm_plane_state_src(&plane_state->uapi); 11443 plane_state->uapi.dst = drm_plane_state_dest(&plane_state->uapi); 11444 11445 ret = intel_cursor_check_surface(plane_state); 11446 if (ret) 11447 return ret; 11448 11449 if (!plane_state->uapi.visible) 11450 return 0; 11451 11452 ret = intel_plane_check_src_coordinates(plane_state); 11453 if (ret) 11454 return ret; 11455 11456 return 0; 11457 } 11458 11459 static unsigned int 11460 i845_cursor_max_stride(struct intel_plane *plane, 11461 u32 pixel_format, u64 modifier, 11462 unsigned int rotation) 11463 { 11464 return 2048; 11465 } 11466 11467 static u32 i845_cursor_ctl_crtc(const struct intel_crtc_state *crtc_state) 11468 { 11469 u32 cntl = 0; 11470 11471 if (crtc_state->gamma_enable) 11472 cntl |= CURSOR_GAMMA_ENABLE; 11473 11474 return cntl; 11475 } 11476 11477 static u32 i845_cursor_ctl(const struct intel_crtc_state *crtc_state, 11478 const struct intel_plane_state *plane_state) 11479 { 11480 return CURSOR_ENABLE | 11481 CURSOR_FORMAT_ARGB | 11482 CURSOR_STRIDE(plane_state->color_plane[0].stride); 11483 } 11484 11485 static bool i845_cursor_size_ok(const struct intel_plane_state *plane_state) 11486 { 11487 int width = drm_rect_width(&plane_state->uapi.dst); 11488 11489 /* 11490 * 845g/865g are only limited by the width of their cursors, 11491 * the height is arbitrary up to the precision of the register. 11492 */ 11493 return intel_cursor_size_ok(plane_state) && IS_ALIGNED(width, 64); 11494 } 11495 11496 static int i845_check_cursor(struct intel_crtc_state *crtc_state, 11497 struct intel_plane_state *plane_state) 11498 { 11499 const struct drm_framebuffer *fb = plane_state->hw.fb; 11500 struct drm_i915_private *i915 = to_i915(plane_state->uapi.plane->dev); 11501 int ret; 11502 11503 ret = intel_check_cursor(crtc_state, plane_state); 11504 if (ret) 11505 return ret; 11506 11507 /* if we want to turn off the cursor ignore width and height */ 11508 if (!fb) 11509 return 0; 11510 11511 /* Check for which cursor types we support */ 11512 if (!i845_cursor_size_ok(plane_state)) { 11513 drm_dbg_kms(&i915->drm, 11514 "Cursor dimension %dx%d not supported\n", 11515 drm_rect_width(&plane_state->uapi.dst), 11516 drm_rect_height(&plane_state->uapi.dst)); 11517 return -EINVAL; 11518 } 11519 11520 drm_WARN_ON(&i915->drm, plane_state->uapi.visible && 11521 plane_state->color_plane[0].stride != fb->pitches[0]); 11522 11523 switch (fb->pitches[0]) { 11524 case 256: 11525 case 512: 11526 case 1024: 11527 case 2048: 11528 break; 11529 default: 11530 drm_dbg_kms(&i915->drm, "Invalid cursor stride (%u)\n", 11531 fb->pitches[0]); 11532 return -EINVAL; 11533 } 11534 11535 plane_state->ctl = i845_cursor_ctl(crtc_state, plane_state); 11536 11537 return 0; 11538 } 11539 11540 static void i845_update_cursor(struct intel_plane *plane, 11541 const struct intel_crtc_state *crtc_state, 11542 const struct intel_plane_state *plane_state) 11543 { 11544 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 11545 u32 cntl = 0, base = 0, pos = 0, size = 0; 11546 unsigned long irqflags; 11547 11548 if (plane_state && plane_state->uapi.visible) { 11549 unsigned int width = drm_rect_width(&plane_state->uapi.dst); 11550 unsigned int height = drm_rect_height(&plane_state->uapi.dst); 11551 11552 cntl = plane_state->ctl | 11553 i845_cursor_ctl_crtc(crtc_state); 11554 11555 size = (height << 12) | width; 11556 11557 base = intel_cursor_base(plane_state); 11558 pos = intel_cursor_position(plane_state); 11559 } 11560 11561 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); 11562 11563 /* On these chipsets we can only modify the base/size/stride 11564 * whilst the cursor is disabled. 11565 */ 11566 if (plane->cursor.base != base || 11567 plane->cursor.size != size || 11568 plane->cursor.cntl != cntl) { 11569 intel_de_write_fw(dev_priv, CURCNTR(PIPE_A), 0); 11570 intel_de_write_fw(dev_priv, CURBASE(PIPE_A), base); 11571 intel_de_write_fw(dev_priv, CURSIZE, size); 11572 intel_de_write_fw(dev_priv, CURPOS(PIPE_A), pos); 11573 intel_de_write_fw(dev_priv, CURCNTR(PIPE_A), cntl); 11574 11575 plane->cursor.base = base; 11576 plane->cursor.size = size; 11577 plane->cursor.cntl = cntl; 11578 } else { 11579 intel_de_write_fw(dev_priv, CURPOS(PIPE_A), pos); 11580 } 11581 11582 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); 11583 } 11584 11585 static void i845_disable_cursor(struct intel_plane *plane, 11586 const struct intel_crtc_state *crtc_state) 11587 { 11588 i845_update_cursor(plane, crtc_state, NULL); 11589 } 11590 11591 static bool i845_cursor_get_hw_state(struct intel_plane *plane, 11592 enum pipe *pipe) 11593 { 11594 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 11595 enum intel_display_power_domain power_domain; 11596 intel_wakeref_t wakeref; 11597 bool ret; 11598 11599 power_domain = POWER_DOMAIN_PIPE(PIPE_A); 11600 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain); 11601 if (!wakeref) 11602 return false; 11603 11604 ret = intel_de_read(dev_priv, CURCNTR(PIPE_A)) & CURSOR_ENABLE; 11605 11606 *pipe = PIPE_A; 11607 11608 intel_display_power_put(dev_priv, power_domain, wakeref); 11609 11610 return ret; 11611 } 11612 11613 static unsigned int 11614 i9xx_cursor_max_stride(struct intel_plane *plane, 11615 u32 pixel_format, u64 modifier, 11616 unsigned int rotation) 11617 { 11618 return plane->base.dev->mode_config.cursor_width * 4; 11619 } 11620 11621 static u32 i9xx_cursor_ctl_crtc(const struct intel_crtc_state *crtc_state) 11622 { 11623 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 11624 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 11625 u32 cntl = 0; 11626 11627 if (INTEL_GEN(dev_priv) >= 11) 11628 return cntl; 11629 11630 if (crtc_state->gamma_enable) 11631 cntl = MCURSOR_GAMMA_ENABLE; 11632 11633 if (crtc_state->csc_enable) 11634 cntl |= MCURSOR_PIPE_CSC_ENABLE; 11635 11636 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv)) 11637 cntl |= MCURSOR_PIPE_SELECT(crtc->pipe); 11638 11639 return cntl; 11640 } 11641 11642 static u32 i9xx_cursor_ctl(const struct intel_crtc_state *crtc_state, 11643 const struct intel_plane_state *plane_state) 11644 { 11645 struct drm_i915_private *dev_priv = 11646 to_i915(plane_state->uapi.plane->dev); 11647 u32 cntl = 0; 11648 11649 if (IS_GEN(dev_priv, 6) || IS_IVYBRIDGE(dev_priv)) 11650 cntl |= MCURSOR_TRICKLE_FEED_DISABLE; 11651 11652 switch (drm_rect_width(&plane_state->uapi.dst)) { 11653 case 64: 11654 cntl |= MCURSOR_MODE_64_ARGB_AX; 11655 break; 11656 case 128: 11657 cntl |= MCURSOR_MODE_128_ARGB_AX; 11658 break; 11659 case 256: 11660 cntl |= MCURSOR_MODE_256_ARGB_AX; 11661 break; 11662 default: 11663 MISSING_CASE(drm_rect_width(&plane_state->uapi.dst)); 11664 return 0; 11665 } 11666 11667 if (plane_state->hw.rotation & DRM_MODE_ROTATE_180) 11668 cntl |= MCURSOR_ROTATE_180; 11669 11670 return cntl; 11671 } 11672 11673 static bool i9xx_cursor_size_ok(const struct intel_plane_state *plane_state) 11674 { 11675 struct drm_i915_private *dev_priv = 11676 to_i915(plane_state->uapi.plane->dev); 11677 int width = drm_rect_width(&plane_state->uapi.dst); 11678 int height = drm_rect_height(&plane_state->uapi.dst); 11679 11680 if (!intel_cursor_size_ok(plane_state)) 11681 return false; 11682 11683 /* Cursor width is limited to a few power-of-two sizes */ 11684 switch (width) { 11685 case 256: 11686 case 128: 11687 case 64: 11688 break; 11689 default: 11690 return false; 11691 } 11692 11693 /* 11694 * IVB+ have CUR_FBC_CTL which allows an arbitrary cursor 11695 * height from 8 lines up to the cursor width, when the 11696 * cursor is not rotated. Everything else requires square 11697 * cursors. 11698 */ 11699 if (HAS_CUR_FBC(dev_priv) && 11700 plane_state->hw.rotation & DRM_MODE_ROTATE_0) { 11701 if (height < 8 || height > width) 11702 return false; 11703 } else { 11704 if (height != width) 11705 return false; 11706 } 11707 11708 return true; 11709 } 11710 11711 static int i9xx_check_cursor(struct intel_crtc_state *crtc_state, 11712 struct intel_plane_state *plane_state) 11713 { 11714 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 11715 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 11716 const struct drm_framebuffer *fb = plane_state->hw.fb; 11717 enum pipe pipe = plane->pipe; 11718 int ret; 11719 11720 ret = intel_check_cursor(crtc_state, plane_state); 11721 if (ret) 11722 return ret; 11723 11724 /* if we want to turn off the cursor ignore width and height */ 11725 if (!fb) 11726 return 0; 11727 11728 /* Check for which cursor types we support */ 11729 if (!i9xx_cursor_size_ok(plane_state)) { 11730 drm_dbg(&dev_priv->drm, 11731 "Cursor dimension %dx%d not supported\n", 11732 drm_rect_width(&plane_state->uapi.dst), 11733 drm_rect_height(&plane_state->uapi.dst)); 11734 return -EINVAL; 11735 } 11736 11737 drm_WARN_ON(&dev_priv->drm, plane_state->uapi.visible && 11738 plane_state->color_plane[0].stride != fb->pitches[0]); 11739 11740 if (fb->pitches[0] != 11741 drm_rect_width(&plane_state->uapi.dst) * fb->format->cpp[0]) { 11742 drm_dbg_kms(&dev_priv->drm, 11743 "Invalid cursor stride (%u) (cursor width %d)\n", 11744 fb->pitches[0], 11745 drm_rect_width(&plane_state->uapi.dst)); 11746 return -EINVAL; 11747 } 11748 11749 /* 11750 * There's something wrong with the cursor on CHV pipe C. 11751 * If it straddles the left edge of the screen then 11752 * moving it away from the edge or disabling it often 11753 * results in a pipe underrun, and often that can lead to 11754 * dead pipe (constant underrun reported, and it scans 11755 * out just a solid color). To recover from that, the 11756 * display power well must be turned off and on again. 11757 * Refuse the put the cursor into that compromised position. 11758 */ 11759 if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_C && 11760 plane_state->uapi.visible && plane_state->uapi.dst.x1 < 0) { 11761 drm_dbg_kms(&dev_priv->drm, 11762 "CHV cursor C not allowed to straddle the left screen edge\n"); 11763 return -EINVAL; 11764 } 11765 11766 plane_state->ctl = i9xx_cursor_ctl(crtc_state, plane_state); 11767 11768 return 0; 11769 } 11770 11771 static void i9xx_update_cursor(struct intel_plane *plane, 11772 const struct intel_crtc_state *crtc_state, 11773 const struct intel_plane_state *plane_state) 11774 { 11775 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 11776 enum pipe pipe = plane->pipe; 11777 u32 cntl = 0, base = 0, pos = 0, fbc_ctl = 0; 11778 unsigned long irqflags; 11779 11780 if (plane_state && plane_state->uapi.visible) { 11781 unsigned width = drm_rect_width(&plane_state->uapi.dst); 11782 unsigned height = drm_rect_height(&plane_state->uapi.dst); 11783 11784 cntl = plane_state->ctl | 11785 i9xx_cursor_ctl_crtc(crtc_state); 11786 11787 if (width != height) 11788 fbc_ctl = CUR_FBC_CTL_EN | (height - 1); 11789 11790 base = intel_cursor_base(plane_state); 11791 pos = intel_cursor_position(plane_state); 11792 } 11793 11794 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); 11795 11796 /* 11797 * On some platforms writing CURCNTR first will also 11798 * cause CURPOS to be armed by the CURBASE write. 11799 * Without the CURCNTR write the CURPOS write would 11800 * arm itself. Thus we always update CURCNTR before 11801 * CURPOS. 11802 * 11803 * On other platforms CURPOS always requires the 11804 * CURBASE write to arm the update. Additonally 11805 * a write to any of the cursor register will cancel 11806 * an already armed cursor update. Thus leaving out 11807 * the CURBASE write after CURPOS could lead to a 11808 * cursor that doesn't appear to move, or even change 11809 * shape. Thus we always write CURBASE. 11810 * 11811 * The other registers are armed by by the CURBASE write 11812 * except when the plane is getting enabled at which time 11813 * the CURCNTR write arms the update. 11814 */ 11815 11816 if (INTEL_GEN(dev_priv) >= 9) 11817 skl_write_cursor_wm(plane, crtc_state); 11818 11819 if (plane->cursor.base != base || 11820 plane->cursor.size != fbc_ctl || 11821 plane->cursor.cntl != cntl) { 11822 if (HAS_CUR_FBC(dev_priv)) 11823 intel_de_write_fw(dev_priv, CUR_FBC_CTL(pipe), 11824 fbc_ctl); 11825 intel_de_write_fw(dev_priv, CURCNTR(pipe), cntl); 11826 intel_de_write_fw(dev_priv, CURPOS(pipe), pos); 11827 intel_de_write_fw(dev_priv, CURBASE(pipe), base); 11828 11829 plane->cursor.base = base; 11830 plane->cursor.size = fbc_ctl; 11831 plane->cursor.cntl = cntl; 11832 } else { 11833 intel_de_write_fw(dev_priv, CURPOS(pipe), pos); 11834 intel_de_write_fw(dev_priv, CURBASE(pipe), base); 11835 } 11836 11837 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); 11838 } 11839 11840 static void i9xx_disable_cursor(struct intel_plane *plane, 11841 const struct intel_crtc_state *crtc_state) 11842 { 11843 i9xx_update_cursor(plane, crtc_state, NULL); 11844 } 11845 11846 static bool i9xx_cursor_get_hw_state(struct intel_plane *plane, 11847 enum pipe *pipe) 11848 { 11849 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 11850 enum intel_display_power_domain power_domain; 11851 intel_wakeref_t wakeref; 11852 bool ret; 11853 u32 val; 11854 11855 /* 11856 * Not 100% correct for planes that can move between pipes, 11857 * but that's only the case for gen2-3 which don't have any 11858 * display power wells. 11859 */ 11860 power_domain = POWER_DOMAIN_PIPE(plane->pipe); 11861 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain); 11862 if (!wakeref) 11863 return false; 11864 11865 val = intel_de_read(dev_priv, CURCNTR(plane->pipe)); 11866 11867 ret = val & MCURSOR_MODE; 11868 11869 if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) 11870 *pipe = plane->pipe; 11871 else 11872 *pipe = (val & MCURSOR_PIPE_SELECT_MASK) >> 11873 MCURSOR_PIPE_SELECT_SHIFT; 11874 11875 intel_display_power_put(dev_priv, power_domain, wakeref); 11876 11877 return ret; 11878 } 11879 11880 /* VESA 640x480x72Hz mode to set on the pipe */ 11881 static const struct drm_display_mode load_detect_mode = { 11882 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664, 11883 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 11884 }; 11885 11886 struct drm_framebuffer * 11887 intel_framebuffer_create(struct drm_i915_gem_object *obj, 11888 struct drm_mode_fb_cmd2 *mode_cmd) 11889 { 11890 struct intel_framebuffer *intel_fb; 11891 int ret; 11892 11893 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL); 11894 if (!intel_fb) 11895 return ERR_PTR(-ENOMEM); 11896 11897 ret = intel_framebuffer_init(intel_fb, obj, mode_cmd); 11898 if (ret) 11899 goto err; 11900 11901 return &intel_fb->base; 11902 11903 err: 11904 kfree(intel_fb); 11905 return ERR_PTR(ret); 11906 } 11907 11908 static int intel_modeset_disable_planes(struct drm_atomic_state *state, 11909 struct drm_crtc *crtc) 11910 { 11911 struct drm_plane *plane; 11912 struct drm_plane_state *plane_state; 11913 int ret, i; 11914 11915 ret = drm_atomic_add_affected_planes(state, crtc); 11916 if (ret) 11917 return ret; 11918 11919 for_each_new_plane_in_state(state, plane, plane_state, i) { 11920 if (plane_state->crtc != crtc) 11921 continue; 11922 11923 ret = drm_atomic_set_crtc_for_plane(plane_state, NULL); 11924 if (ret) 11925 return ret; 11926 11927 drm_atomic_set_fb_for_plane(plane_state, NULL); 11928 } 11929 11930 return 0; 11931 } 11932 11933 int intel_get_load_detect_pipe(struct drm_connector *connector, 11934 struct intel_load_detect_pipe *old, 11935 struct drm_modeset_acquire_ctx *ctx) 11936 { 11937 struct intel_crtc *intel_crtc; 11938 struct intel_encoder *intel_encoder = 11939 intel_attached_encoder(to_intel_connector(connector)); 11940 struct drm_crtc *possible_crtc; 11941 struct drm_encoder *encoder = &intel_encoder->base; 11942 struct drm_crtc *crtc = NULL; 11943 struct drm_device *dev = encoder->dev; 11944 struct drm_i915_private *dev_priv = to_i915(dev); 11945 struct drm_mode_config *config = &dev->mode_config; 11946 struct drm_atomic_state *state = NULL, *restore_state = NULL; 11947 struct drm_connector_state *connector_state; 11948 struct intel_crtc_state *crtc_state; 11949 int ret, i = -1; 11950 11951 drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n", 11952 connector->base.id, connector->name, 11953 encoder->base.id, encoder->name); 11954 11955 old->restore_state = NULL; 11956 11957 drm_WARN_ON(dev, !drm_modeset_is_locked(&config->connection_mutex)); 11958 11959 /* 11960 * Algorithm gets a little messy: 11961 * 11962 * - if the connector already has an assigned crtc, use it (but make 11963 * sure it's on first) 11964 * 11965 * - try to find the first unused crtc that can drive this connector, 11966 * and use that if we find one 11967 */ 11968 11969 /* See if we already have a CRTC for this connector */ 11970 if (connector->state->crtc) { 11971 crtc = connector->state->crtc; 11972 11973 ret = drm_modeset_lock(&crtc->mutex, ctx); 11974 if (ret) 11975 goto fail; 11976 11977 /* Make sure the crtc and connector are running */ 11978 goto found; 11979 } 11980 11981 /* Find an unused one (if possible) */ 11982 for_each_crtc(dev, possible_crtc) { 11983 i++; 11984 if (!(encoder->possible_crtcs & (1 << i))) 11985 continue; 11986 11987 ret = drm_modeset_lock(&possible_crtc->mutex, ctx); 11988 if (ret) 11989 goto fail; 11990 11991 if (possible_crtc->state->enable) { 11992 drm_modeset_unlock(&possible_crtc->mutex); 11993 continue; 11994 } 11995 11996 crtc = possible_crtc; 11997 break; 11998 } 11999 12000 /* 12001 * If we didn't find an unused CRTC, don't use any. 12002 */ 12003 if (!crtc) { 12004 drm_dbg_kms(&dev_priv->drm, 12005 "no pipe available for load-detect\n"); 12006 ret = -ENODEV; 12007 goto fail; 12008 } 12009 12010 found: 12011 intel_crtc = to_intel_crtc(crtc); 12012 12013 state = drm_atomic_state_alloc(dev); 12014 restore_state = drm_atomic_state_alloc(dev); 12015 if (!state || !restore_state) { 12016 ret = -ENOMEM; 12017 goto fail; 12018 } 12019 12020 state->acquire_ctx = ctx; 12021 restore_state->acquire_ctx = ctx; 12022 12023 connector_state = drm_atomic_get_connector_state(state, connector); 12024 if (IS_ERR(connector_state)) { 12025 ret = PTR_ERR(connector_state); 12026 goto fail; 12027 } 12028 12029 ret = drm_atomic_set_crtc_for_connector(connector_state, crtc); 12030 if (ret) 12031 goto fail; 12032 12033 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc); 12034 if (IS_ERR(crtc_state)) { 12035 ret = PTR_ERR(crtc_state); 12036 goto fail; 12037 } 12038 12039 crtc_state->uapi.active = true; 12040 12041 ret = drm_atomic_set_mode_for_crtc(&crtc_state->uapi, 12042 &load_detect_mode); 12043 if (ret) 12044 goto fail; 12045 12046 ret = intel_modeset_disable_planes(state, crtc); 12047 if (ret) 12048 goto fail; 12049 12050 ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state, connector)); 12051 if (!ret) 12052 ret = PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state, crtc)); 12053 if (!ret) 12054 ret = drm_atomic_add_affected_planes(restore_state, crtc); 12055 if (ret) { 12056 drm_dbg_kms(&dev_priv->drm, 12057 "Failed to create a copy of old state to restore: %i\n", 12058 ret); 12059 goto fail; 12060 } 12061 12062 ret = drm_atomic_commit(state); 12063 if (ret) { 12064 drm_dbg_kms(&dev_priv->drm, 12065 "failed to set mode on load-detect pipe\n"); 12066 goto fail; 12067 } 12068 12069 old->restore_state = restore_state; 12070 drm_atomic_state_put(state); 12071 12072 /* let the connector get through one full cycle before testing */ 12073 intel_wait_for_vblank(dev_priv, intel_crtc->pipe); 12074 return true; 12075 12076 fail: 12077 if (state) { 12078 drm_atomic_state_put(state); 12079 state = NULL; 12080 } 12081 if (restore_state) { 12082 drm_atomic_state_put(restore_state); 12083 restore_state = NULL; 12084 } 12085 12086 if (ret == -EDEADLK) 12087 return ret; 12088 12089 return false; 12090 } 12091 12092 void intel_release_load_detect_pipe(struct drm_connector *connector, 12093 struct intel_load_detect_pipe *old, 12094 struct drm_modeset_acquire_ctx *ctx) 12095 { 12096 struct intel_encoder *intel_encoder = 12097 intel_attached_encoder(to_intel_connector(connector)); 12098 struct drm_i915_private *i915 = to_i915(intel_encoder->base.dev); 12099 struct drm_encoder *encoder = &intel_encoder->base; 12100 struct drm_atomic_state *state = old->restore_state; 12101 int ret; 12102 12103 drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n", 12104 connector->base.id, connector->name, 12105 encoder->base.id, encoder->name); 12106 12107 if (!state) 12108 return; 12109 12110 ret = drm_atomic_helper_commit_duplicated_state(state, ctx); 12111 if (ret) 12112 drm_dbg_kms(&i915->drm, 12113 "Couldn't release load detect pipe: %i\n", ret); 12114 drm_atomic_state_put(state); 12115 } 12116 12117 static int i9xx_pll_refclk(struct drm_device *dev, 12118 const struct intel_crtc_state *pipe_config) 12119 { 12120 struct drm_i915_private *dev_priv = to_i915(dev); 12121 u32 dpll = pipe_config->dpll_hw_state.dpll; 12122 12123 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN) 12124 return dev_priv->vbt.lvds_ssc_freq; 12125 else if (HAS_PCH_SPLIT(dev_priv)) 12126 return 120000; 12127 else if (!IS_GEN(dev_priv, 2)) 12128 return 96000; 12129 else 12130 return 48000; 12131 } 12132 12133 /* Returns the clock of the currently programmed mode of the given pipe. */ 12134 static void i9xx_crtc_clock_get(struct intel_crtc *crtc, 12135 struct intel_crtc_state *pipe_config) 12136 { 12137 struct drm_device *dev = crtc->base.dev; 12138 struct drm_i915_private *dev_priv = to_i915(dev); 12139 enum pipe pipe = crtc->pipe; 12140 u32 dpll = pipe_config->dpll_hw_state.dpll; 12141 u32 fp; 12142 struct dpll clock; 12143 int port_clock; 12144 int refclk = i9xx_pll_refclk(dev, pipe_config); 12145 12146 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0) 12147 fp = pipe_config->dpll_hw_state.fp0; 12148 else 12149 fp = pipe_config->dpll_hw_state.fp1; 12150 12151 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT; 12152 if (IS_PINEVIEW(dev_priv)) { 12153 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1; 12154 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT; 12155 } else { 12156 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT; 12157 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT; 12158 } 12159 12160 if (!IS_GEN(dev_priv, 2)) { 12161 if (IS_PINEVIEW(dev_priv)) 12162 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >> 12163 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW); 12164 else 12165 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >> 12166 DPLL_FPA01_P1_POST_DIV_SHIFT); 12167 12168 switch (dpll & DPLL_MODE_MASK) { 12169 case DPLLB_MODE_DAC_SERIAL: 12170 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ? 12171 5 : 10; 12172 break; 12173 case DPLLB_MODE_LVDS: 12174 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ? 12175 7 : 14; 12176 break; 12177 default: 12178 drm_dbg_kms(&dev_priv->drm, 12179 "Unknown DPLL mode %08x in programmed " 12180 "mode\n", (int)(dpll & DPLL_MODE_MASK)); 12181 return; 12182 } 12183 12184 if (IS_PINEVIEW(dev_priv)) 12185 port_clock = pnv_calc_dpll_params(refclk, &clock); 12186 else 12187 port_clock = i9xx_calc_dpll_params(refclk, &clock); 12188 } else { 12189 u32 lvds = IS_I830(dev_priv) ? 0 : intel_de_read(dev_priv, 12190 LVDS); 12191 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN); 12192 12193 if (is_lvds) { 12194 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >> 12195 DPLL_FPA01_P1_POST_DIV_SHIFT); 12196 12197 if (lvds & LVDS_CLKB_POWER_UP) 12198 clock.p2 = 7; 12199 else 12200 clock.p2 = 14; 12201 } else { 12202 if (dpll & PLL_P1_DIVIDE_BY_TWO) 12203 clock.p1 = 2; 12204 else { 12205 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >> 12206 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2; 12207 } 12208 if (dpll & PLL_P2_DIVIDE_BY_4) 12209 clock.p2 = 4; 12210 else 12211 clock.p2 = 2; 12212 } 12213 12214 port_clock = i9xx_calc_dpll_params(refclk, &clock); 12215 } 12216 12217 /* 12218 * This value includes pixel_multiplier. We will use 12219 * port_clock to compute adjusted_mode.crtc_clock in the 12220 * encoder's get_config() function. 12221 */ 12222 pipe_config->port_clock = port_clock; 12223 } 12224 12225 int intel_dotclock_calculate(int link_freq, 12226 const struct intel_link_m_n *m_n) 12227 { 12228 /* 12229 * The calculation for the data clock is: 12230 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp 12231 * But we want to avoid losing precison if possible, so: 12232 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp)) 12233 * 12234 * and the link clock is simpler: 12235 * link_clock = (m * link_clock) / n 12236 */ 12237 12238 if (!m_n->link_n) 12239 return 0; 12240 12241 return div_u64(mul_u32_u32(m_n->link_m, link_freq), m_n->link_n); 12242 } 12243 12244 static void ilk_pch_clock_get(struct intel_crtc *crtc, 12245 struct intel_crtc_state *pipe_config) 12246 { 12247 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 12248 12249 /* read out port_clock from the DPLL */ 12250 i9xx_crtc_clock_get(crtc, pipe_config); 12251 12252 /* 12253 * In case there is an active pipe without active ports, 12254 * we may need some idea for the dotclock anyway. 12255 * Calculate one based on the FDI configuration. 12256 */ 12257 pipe_config->hw.adjusted_mode.crtc_clock = 12258 intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config), 12259 &pipe_config->fdi_m_n); 12260 } 12261 12262 static void intel_crtc_state_reset(struct intel_crtc_state *crtc_state, 12263 struct intel_crtc *crtc) 12264 { 12265 memset(crtc_state, 0, sizeof(*crtc_state)); 12266 12267 __drm_atomic_helper_crtc_state_reset(&crtc_state->uapi, &crtc->base); 12268 12269 crtc_state->cpu_transcoder = INVALID_TRANSCODER; 12270 crtc_state->master_transcoder = INVALID_TRANSCODER; 12271 crtc_state->hsw_workaround_pipe = INVALID_PIPE; 12272 crtc_state->output_format = INTEL_OUTPUT_FORMAT_INVALID; 12273 crtc_state->scaler_state.scaler_id = -1; 12274 crtc_state->mst_master_transcoder = INVALID_TRANSCODER; 12275 } 12276 12277 static struct intel_crtc_state *intel_crtc_state_alloc(struct intel_crtc *crtc) 12278 { 12279 struct intel_crtc_state *crtc_state; 12280 12281 crtc_state = kmalloc(sizeof(*crtc_state), GFP_KERNEL); 12282 12283 if (crtc_state) 12284 intel_crtc_state_reset(crtc_state, crtc); 12285 12286 return crtc_state; 12287 } 12288 12289 /* Returns the currently programmed mode of the given encoder. */ 12290 struct drm_display_mode * 12291 intel_encoder_current_mode(struct intel_encoder *encoder) 12292 { 12293 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 12294 struct intel_crtc_state *crtc_state; 12295 struct drm_display_mode *mode; 12296 struct intel_crtc *crtc; 12297 enum pipe pipe; 12298 12299 if (!encoder->get_hw_state(encoder, &pipe)) 12300 return NULL; 12301 12302 crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 12303 12304 mode = kzalloc(sizeof(*mode), GFP_KERNEL); 12305 if (!mode) 12306 return NULL; 12307 12308 crtc_state = intel_crtc_state_alloc(crtc); 12309 if (!crtc_state) { 12310 kfree(mode); 12311 return NULL; 12312 } 12313 12314 if (!dev_priv->display.get_pipe_config(crtc, crtc_state)) { 12315 kfree(crtc_state); 12316 kfree(mode); 12317 return NULL; 12318 } 12319 12320 encoder->get_config(encoder, crtc_state); 12321 12322 intel_mode_from_pipe_config(mode, crtc_state); 12323 12324 kfree(crtc_state); 12325 12326 return mode; 12327 } 12328 12329 static void intel_crtc_destroy(struct drm_crtc *crtc) 12330 { 12331 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 12332 12333 drm_crtc_cleanup(crtc); 12334 kfree(intel_crtc); 12335 } 12336 12337 /** 12338 * intel_wm_need_update - Check whether watermarks need updating 12339 * @cur: current plane state 12340 * @new: new plane state 12341 * 12342 * Check current plane state versus the new one to determine whether 12343 * watermarks need to be recalculated. 12344 * 12345 * Returns true or false. 12346 */ 12347 static bool intel_wm_need_update(const struct intel_plane_state *cur, 12348 struct intel_plane_state *new) 12349 { 12350 /* Update watermarks on tiling or size changes. */ 12351 if (new->uapi.visible != cur->uapi.visible) 12352 return true; 12353 12354 if (!cur->hw.fb || !new->hw.fb) 12355 return false; 12356 12357 if (cur->hw.fb->modifier != new->hw.fb->modifier || 12358 cur->hw.rotation != new->hw.rotation || 12359 drm_rect_width(&new->uapi.src) != drm_rect_width(&cur->uapi.src) || 12360 drm_rect_height(&new->uapi.src) != drm_rect_height(&cur->uapi.src) || 12361 drm_rect_width(&new->uapi.dst) != drm_rect_width(&cur->uapi.dst) || 12362 drm_rect_height(&new->uapi.dst) != drm_rect_height(&cur->uapi.dst)) 12363 return true; 12364 12365 return false; 12366 } 12367 12368 static bool needs_scaling(const struct intel_plane_state *state) 12369 { 12370 int src_w = drm_rect_width(&state->uapi.src) >> 16; 12371 int src_h = drm_rect_height(&state->uapi.src) >> 16; 12372 int dst_w = drm_rect_width(&state->uapi.dst); 12373 int dst_h = drm_rect_height(&state->uapi.dst); 12374 12375 return (src_w != dst_w || src_h != dst_h); 12376 } 12377 12378 int intel_plane_atomic_calc_changes(const struct intel_crtc_state *old_crtc_state, 12379 struct intel_crtc_state *crtc_state, 12380 const struct intel_plane_state *old_plane_state, 12381 struct intel_plane_state *plane_state) 12382 { 12383 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 12384 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 12385 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 12386 bool mode_changed = needs_modeset(crtc_state); 12387 bool was_crtc_enabled = old_crtc_state->hw.active; 12388 bool is_crtc_enabled = crtc_state->hw.active; 12389 bool turn_off, turn_on, visible, was_visible; 12390 int ret; 12391 12392 if (INTEL_GEN(dev_priv) >= 9 && plane->id != PLANE_CURSOR) { 12393 ret = skl_update_scaler_plane(crtc_state, plane_state); 12394 if (ret) 12395 return ret; 12396 } 12397 12398 was_visible = old_plane_state->uapi.visible; 12399 visible = plane_state->uapi.visible; 12400 12401 if (!was_crtc_enabled && drm_WARN_ON(&dev_priv->drm, was_visible)) 12402 was_visible = false; 12403 12404 /* 12405 * Visibility is calculated as if the crtc was on, but 12406 * after scaler setup everything depends on it being off 12407 * when the crtc isn't active. 12408 * 12409 * FIXME this is wrong for watermarks. Watermarks should also 12410 * be computed as if the pipe would be active. Perhaps move 12411 * per-plane wm computation to the .check_plane() hook, and 12412 * only combine the results from all planes in the current place? 12413 */ 12414 if (!is_crtc_enabled) { 12415 intel_plane_set_invisible(crtc_state, plane_state); 12416 visible = false; 12417 } 12418 12419 if (!was_visible && !visible) 12420 return 0; 12421 12422 turn_off = was_visible && (!visible || mode_changed); 12423 turn_on = visible && (!was_visible || mode_changed); 12424 12425 drm_dbg_atomic(&dev_priv->drm, 12426 "[CRTC:%d:%s] with [PLANE:%d:%s] visible %i -> %i, off %i, on %i, ms %i\n", 12427 crtc->base.base.id, crtc->base.name, 12428 plane->base.base.id, plane->base.name, 12429 was_visible, visible, 12430 turn_off, turn_on, mode_changed); 12431 12432 if (turn_on) { 12433 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv)) 12434 crtc_state->update_wm_pre = true; 12435 12436 /* must disable cxsr around plane enable/disable */ 12437 if (plane->id != PLANE_CURSOR) 12438 crtc_state->disable_cxsr = true; 12439 } else if (turn_off) { 12440 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv)) 12441 crtc_state->update_wm_post = true; 12442 12443 /* must disable cxsr around plane enable/disable */ 12444 if (plane->id != PLANE_CURSOR) 12445 crtc_state->disable_cxsr = true; 12446 } else if (intel_wm_need_update(old_plane_state, plane_state)) { 12447 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv)) { 12448 /* FIXME bollocks */ 12449 crtc_state->update_wm_pre = true; 12450 crtc_state->update_wm_post = true; 12451 } 12452 } 12453 12454 if (visible || was_visible) 12455 crtc_state->fb_bits |= plane->frontbuffer_bit; 12456 12457 /* 12458 * ILK/SNB DVSACNTR/Sprite Enable 12459 * IVB SPR_CTL/Sprite Enable 12460 * "When in Self Refresh Big FIFO mode, a write to enable the 12461 * plane will be internally buffered and delayed while Big FIFO 12462 * mode is exiting." 12463 * 12464 * Which means that enabling the sprite can take an extra frame 12465 * when we start in big FIFO mode (LP1+). Thus we need to drop 12466 * down to LP0 and wait for vblank in order to make sure the 12467 * sprite gets enabled on the next vblank after the register write. 12468 * Doing otherwise would risk enabling the sprite one frame after 12469 * we've already signalled flip completion. We can resume LP1+ 12470 * once the sprite has been enabled. 12471 * 12472 * 12473 * WaCxSRDisabledForSpriteScaling:ivb 12474 * IVB SPR_SCALE/Scaling Enable 12475 * "Low Power watermarks must be disabled for at least one 12476 * frame before enabling sprite scaling, and kept disabled 12477 * until sprite scaling is disabled." 12478 * 12479 * ILK/SNB DVSASCALE/Scaling Enable 12480 * "When in Self Refresh Big FIFO mode, scaling enable will be 12481 * masked off while Big FIFO mode is exiting." 12482 * 12483 * Despite the w/a only being listed for IVB we assume that 12484 * the ILK/SNB note has similar ramifications, hence we apply 12485 * the w/a on all three platforms. 12486 * 12487 * With experimental results seems this is needed also for primary 12488 * plane, not only sprite plane. 12489 */ 12490 if (plane->id != PLANE_CURSOR && 12491 (IS_GEN_RANGE(dev_priv, 5, 6) || 12492 IS_IVYBRIDGE(dev_priv)) && 12493 (turn_on || (!needs_scaling(old_plane_state) && 12494 needs_scaling(plane_state)))) 12495 crtc_state->disable_lp_wm = true; 12496 12497 return 0; 12498 } 12499 12500 static bool encoders_cloneable(const struct intel_encoder *a, 12501 const struct intel_encoder *b) 12502 { 12503 /* masks could be asymmetric, so check both ways */ 12504 return a == b || (a->cloneable & (1 << b->type) && 12505 b->cloneable & (1 << a->type)); 12506 } 12507 12508 static bool check_single_encoder_cloning(struct drm_atomic_state *state, 12509 struct intel_crtc *crtc, 12510 struct intel_encoder *encoder) 12511 { 12512 struct intel_encoder *source_encoder; 12513 struct drm_connector *connector; 12514 struct drm_connector_state *connector_state; 12515 int i; 12516 12517 for_each_new_connector_in_state(state, connector, connector_state, i) { 12518 if (connector_state->crtc != &crtc->base) 12519 continue; 12520 12521 source_encoder = 12522 to_intel_encoder(connector_state->best_encoder); 12523 if (!encoders_cloneable(encoder, source_encoder)) 12524 return false; 12525 } 12526 12527 return true; 12528 } 12529 12530 static int icl_add_linked_planes(struct intel_atomic_state *state) 12531 { 12532 struct intel_plane *plane, *linked; 12533 struct intel_plane_state *plane_state, *linked_plane_state; 12534 int i; 12535 12536 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 12537 linked = plane_state->planar_linked_plane; 12538 12539 if (!linked) 12540 continue; 12541 12542 linked_plane_state = intel_atomic_get_plane_state(state, linked); 12543 if (IS_ERR(linked_plane_state)) 12544 return PTR_ERR(linked_plane_state); 12545 12546 drm_WARN_ON(state->base.dev, 12547 linked_plane_state->planar_linked_plane != plane); 12548 drm_WARN_ON(state->base.dev, 12549 linked_plane_state->planar_slave == plane_state->planar_slave); 12550 } 12551 12552 return 0; 12553 } 12554 12555 static int icl_check_nv12_planes(struct intel_crtc_state *crtc_state) 12556 { 12557 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 12558 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 12559 struct intel_atomic_state *state = to_intel_atomic_state(crtc_state->uapi.state); 12560 struct intel_plane *plane, *linked; 12561 struct intel_plane_state *plane_state; 12562 int i; 12563 12564 if (INTEL_GEN(dev_priv) < 11) 12565 return 0; 12566 12567 /* 12568 * Destroy all old plane links and make the slave plane invisible 12569 * in the crtc_state->active_planes mask. 12570 */ 12571 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 12572 if (plane->pipe != crtc->pipe || !plane_state->planar_linked_plane) 12573 continue; 12574 12575 plane_state->planar_linked_plane = NULL; 12576 if (plane_state->planar_slave && !plane_state->uapi.visible) { 12577 crtc_state->active_planes &= ~BIT(plane->id); 12578 crtc_state->update_planes |= BIT(plane->id); 12579 } 12580 12581 plane_state->planar_slave = false; 12582 } 12583 12584 if (!crtc_state->nv12_planes) 12585 return 0; 12586 12587 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 12588 struct intel_plane_state *linked_state = NULL; 12589 12590 if (plane->pipe != crtc->pipe || 12591 !(crtc_state->nv12_planes & BIT(plane->id))) 12592 continue; 12593 12594 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, linked) { 12595 if (!icl_is_nv12_y_plane(dev_priv, linked->id)) 12596 continue; 12597 12598 if (crtc_state->active_planes & BIT(linked->id)) 12599 continue; 12600 12601 linked_state = intel_atomic_get_plane_state(state, linked); 12602 if (IS_ERR(linked_state)) 12603 return PTR_ERR(linked_state); 12604 12605 break; 12606 } 12607 12608 if (!linked_state) { 12609 drm_dbg_kms(&dev_priv->drm, 12610 "Need %d free Y planes for planar YUV\n", 12611 hweight8(crtc_state->nv12_planes)); 12612 12613 return -EINVAL; 12614 } 12615 12616 plane_state->planar_linked_plane = linked; 12617 12618 linked_state->planar_slave = true; 12619 linked_state->planar_linked_plane = plane; 12620 crtc_state->active_planes |= BIT(linked->id); 12621 crtc_state->update_planes |= BIT(linked->id); 12622 drm_dbg_kms(&dev_priv->drm, "Using %s as Y plane for %s\n", 12623 linked->base.name, plane->base.name); 12624 12625 /* Copy parameters to slave plane */ 12626 linked_state->ctl = plane_state->ctl | PLANE_CTL_YUV420_Y_PLANE; 12627 linked_state->color_ctl = plane_state->color_ctl; 12628 linked_state->view = plane_state->view; 12629 memcpy(linked_state->color_plane, plane_state->color_plane, 12630 sizeof(linked_state->color_plane)); 12631 12632 intel_plane_copy_uapi_to_hw_state(linked_state, plane_state); 12633 linked_state->uapi.src = plane_state->uapi.src; 12634 linked_state->uapi.dst = plane_state->uapi.dst; 12635 12636 if (icl_is_hdr_plane(dev_priv, plane->id)) { 12637 if (linked->id == PLANE_SPRITE5) 12638 plane_state->cus_ctl |= PLANE_CUS_PLANE_7; 12639 else if (linked->id == PLANE_SPRITE4) 12640 plane_state->cus_ctl |= PLANE_CUS_PLANE_6; 12641 else if (linked->id == PLANE_SPRITE3) 12642 plane_state->cus_ctl |= PLANE_CUS_PLANE_5_RKL; 12643 else if (linked->id == PLANE_SPRITE2) 12644 plane_state->cus_ctl |= PLANE_CUS_PLANE_4_RKL; 12645 else 12646 MISSING_CASE(linked->id); 12647 } 12648 } 12649 12650 return 0; 12651 } 12652 12653 static bool c8_planes_changed(const struct intel_crtc_state *new_crtc_state) 12654 { 12655 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); 12656 struct intel_atomic_state *state = 12657 to_intel_atomic_state(new_crtc_state->uapi.state); 12658 const struct intel_crtc_state *old_crtc_state = 12659 intel_atomic_get_old_crtc_state(state, crtc); 12660 12661 return !old_crtc_state->c8_planes != !new_crtc_state->c8_planes; 12662 } 12663 12664 static u16 hsw_linetime_wm(const struct intel_crtc_state *crtc_state) 12665 { 12666 const struct drm_display_mode *adjusted_mode = 12667 &crtc_state->hw.adjusted_mode; 12668 int linetime_wm; 12669 12670 if (!crtc_state->hw.enable) 12671 return 0; 12672 12673 linetime_wm = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8, 12674 adjusted_mode->crtc_clock); 12675 12676 return min(linetime_wm, 0x1ff); 12677 } 12678 12679 static u16 hsw_ips_linetime_wm(const struct intel_crtc_state *crtc_state, 12680 const struct intel_cdclk_state *cdclk_state) 12681 { 12682 const struct drm_display_mode *adjusted_mode = 12683 &crtc_state->hw.adjusted_mode; 12684 int linetime_wm; 12685 12686 if (!crtc_state->hw.enable) 12687 return 0; 12688 12689 linetime_wm = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8, 12690 cdclk_state->logical.cdclk); 12691 12692 return min(linetime_wm, 0x1ff); 12693 } 12694 12695 static u16 skl_linetime_wm(const struct intel_crtc_state *crtc_state) 12696 { 12697 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 12698 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 12699 const struct drm_display_mode *adjusted_mode = 12700 &crtc_state->hw.adjusted_mode; 12701 int linetime_wm; 12702 12703 if (!crtc_state->hw.enable) 12704 return 0; 12705 12706 linetime_wm = DIV_ROUND_UP(adjusted_mode->crtc_htotal * 1000 * 8, 12707 crtc_state->pixel_rate); 12708 12709 /* Display WA #1135: BXT:ALL GLK:ALL */ 12710 if (IS_GEN9_LP(dev_priv) && dev_priv->ipc_enabled) 12711 linetime_wm /= 2; 12712 12713 return min(linetime_wm, 0x1ff); 12714 } 12715 12716 static int hsw_compute_linetime_wm(struct intel_atomic_state *state, 12717 struct intel_crtc *crtc) 12718 { 12719 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 12720 struct intel_crtc_state *crtc_state = 12721 intel_atomic_get_new_crtc_state(state, crtc); 12722 const struct intel_cdclk_state *cdclk_state; 12723 12724 if (INTEL_GEN(dev_priv) >= 9) 12725 crtc_state->linetime = skl_linetime_wm(crtc_state); 12726 else 12727 crtc_state->linetime = hsw_linetime_wm(crtc_state); 12728 12729 if (!hsw_crtc_supports_ips(crtc)) 12730 return 0; 12731 12732 cdclk_state = intel_atomic_get_cdclk_state(state); 12733 if (IS_ERR(cdclk_state)) 12734 return PTR_ERR(cdclk_state); 12735 12736 crtc_state->ips_linetime = hsw_ips_linetime_wm(crtc_state, 12737 cdclk_state); 12738 12739 return 0; 12740 } 12741 12742 static int intel_crtc_atomic_check(struct intel_atomic_state *state, 12743 struct intel_crtc *crtc) 12744 { 12745 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 12746 struct intel_crtc_state *crtc_state = 12747 intel_atomic_get_new_crtc_state(state, crtc); 12748 bool mode_changed = needs_modeset(crtc_state); 12749 int ret; 12750 12751 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv) && 12752 mode_changed && !crtc_state->hw.active) 12753 crtc_state->update_wm_post = true; 12754 12755 if (mode_changed && crtc_state->hw.enable && 12756 dev_priv->display.crtc_compute_clock && 12757 !drm_WARN_ON(&dev_priv->drm, crtc_state->shared_dpll)) { 12758 ret = dev_priv->display.crtc_compute_clock(crtc, crtc_state); 12759 if (ret) 12760 return ret; 12761 } 12762 12763 /* 12764 * May need to update pipe gamma enable bits 12765 * when C8 planes are getting enabled/disabled. 12766 */ 12767 if (c8_planes_changed(crtc_state)) 12768 crtc_state->uapi.color_mgmt_changed = true; 12769 12770 if (mode_changed || crtc_state->update_pipe || 12771 crtc_state->uapi.color_mgmt_changed) { 12772 ret = intel_color_check(crtc_state); 12773 if (ret) 12774 return ret; 12775 } 12776 12777 if (dev_priv->display.compute_pipe_wm) { 12778 ret = dev_priv->display.compute_pipe_wm(crtc_state); 12779 if (ret) { 12780 drm_dbg_kms(&dev_priv->drm, 12781 "Target pipe watermarks are invalid\n"); 12782 return ret; 12783 } 12784 } 12785 12786 if (dev_priv->display.compute_intermediate_wm) { 12787 if (drm_WARN_ON(&dev_priv->drm, 12788 !dev_priv->display.compute_pipe_wm)) 12789 return 0; 12790 12791 /* 12792 * Calculate 'intermediate' watermarks that satisfy both the 12793 * old state and the new state. We can program these 12794 * immediately. 12795 */ 12796 ret = dev_priv->display.compute_intermediate_wm(crtc_state); 12797 if (ret) { 12798 drm_dbg_kms(&dev_priv->drm, 12799 "No valid intermediate pipe watermarks are possible\n"); 12800 return ret; 12801 } 12802 } 12803 12804 if (INTEL_GEN(dev_priv) >= 9) { 12805 if (mode_changed || crtc_state->update_pipe) { 12806 ret = skl_update_scaler_crtc(crtc_state); 12807 if (ret) 12808 return ret; 12809 } 12810 12811 ret = intel_atomic_setup_scalers(dev_priv, crtc, crtc_state); 12812 if (ret) 12813 return ret; 12814 } 12815 12816 if (HAS_IPS(dev_priv)) { 12817 ret = hsw_compute_ips_config(crtc_state); 12818 if (ret) 12819 return ret; 12820 } 12821 12822 if (INTEL_GEN(dev_priv) >= 9 || 12823 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) { 12824 ret = hsw_compute_linetime_wm(state, crtc); 12825 if (ret) 12826 return ret; 12827 12828 } 12829 12830 if (!mode_changed) 12831 intel_psr2_sel_fetch_update(state, crtc); 12832 12833 return 0; 12834 } 12835 12836 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev) 12837 { 12838 struct intel_connector *connector; 12839 struct drm_connector_list_iter conn_iter; 12840 12841 drm_connector_list_iter_begin(dev, &conn_iter); 12842 for_each_intel_connector_iter(connector, &conn_iter) { 12843 if (connector->base.state->crtc) 12844 drm_connector_put(&connector->base); 12845 12846 if (connector->base.encoder) { 12847 connector->base.state->best_encoder = 12848 connector->base.encoder; 12849 connector->base.state->crtc = 12850 connector->base.encoder->crtc; 12851 12852 drm_connector_get(&connector->base); 12853 } else { 12854 connector->base.state->best_encoder = NULL; 12855 connector->base.state->crtc = NULL; 12856 } 12857 } 12858 drm_connector_list_iter_end(&conn_iter); 12859 } 12860 12861 static int 12862 compute_sink_pipe_bpp(const struct drm_connector_state *conn_state, 12863 struct intel_crtc_state *pipe_config) 12864 { 12865 struct drm_connector *connector = conn_state->connector; 12866 struct drm_i915_private *i915 = to_i915(pipe_config->uapi.crtc->dev); 12867 const struct drm_display_info *info = &connector->display_info; 12868 int bpp; 12869 12870 switch (conn_state->max_bpc) { 12871 case 6 ... 7: 12872 bpp = 6 * 3; 12873 break; 12874 case 8 ... 9: 12875 bpp = 8 * 3; 12876 break; 12877 case 10 ... 11: 12878 bpp = 10 * 3; 12879 break; 12880 case 12 ... 16: 12881 bpp = 12 * 3; 12882 break; 12883 default: 12884 MISSING_CASE(conn_state->max_bpc); 12885 return -EINVAL; 12886 } 12887 12888 if (bpp < pipe_config->pipe_bpp) { 12889 drm_dbg_kms(&i915->drm, 12890 "[CONNECTOR:%d:%s] Limiting display bpp to %d instead of " 12891 "EDID bpp %d, requested bpp %d, max platform bpp %d\n", 12892 connector->base.id, connector->name, 12893 bpp, 3 * info->bpc, 12894 3 * conn_state->max_requested_bpc, 12895 pipe_config->pipe_bpp); 12896 12897 pipe_config->pipe_bpp = bpp; 12898 } 12899 12900 return 0; 12901 } 12902 12903 static int 12904 compute_baseline_pipe_bpp(struct intel_crtc *crtc, 12905 struct intel_crtc_state *pipe_config) 12906 { 12907 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 12908 struct drm_atomic_state *state = pipe_config->uapi.state; 12909 struct drm_connector *connector; 12910 struct drm_connector_state *connector_state; 12911 int bpp, i; 12912 12913 if ((IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) || 12914 IS_CHERRYVIEW(dev_priv))) 12915 bpp = 10*3; 12916 else if (INTEL_GEN(dev_priv) >= 5) 12917 bpp = 12*3; 12918 else 12919 bpp = 8*3; 12920 12921 pipe_config->pipe_bpp = bpp; 12922 12923 /* Clamp display bpp to connector max bpp */ 12924 for_each_new_connector_in_state(state, connector, connector_state, i) { 12925 int ret; 12926 12927 if (connector_state->crtc != &crtc->base) 12928 continue; 12929 12930 ret = compute_sink_pipe_bpp(connector_state, pipe_config); 12931 if (ret) 12932 return ret; 12933 } 12934 12935 return 0; 12936 } 12937 12938 static void intel_dump_crtc_timings(struct drm_i915_private *i915, 12939 const struct drm_display_mode *mode) 12940 { 12941 drm_dbg_kms(&i915->drm, "crtc timings: %d %d %d %d %d %d %d %d %d, " 12942 "type: 0x%x flags: 0x%x\n", 12943 mode->crtc_clock, 12944 mode->crtc_hdisplay, mode->crtc_hsync_start, 12945 mode->crtc_hsync_end, mode->crtc_htotal, 12946 mode->crtc_vdisplay, mode->crtc_vsync_start, 12947 mode->crtc_vsync_end, mode->crtc_vtotal, 12948 mode->type, mode->flags); 12949 } 12950 12951 static void 12952 intel_dump_m_n_config(const struct intel_crtc_state *pipe_config, 12953 const char *id, unsigned int lane_count, 12954 const struct intel_link_m_n *m_n) 12955 { 12956 struct drm_i915_private *i915 = to_i915(pipe_config->uapi.crtc->dev); 12957 12958 drm_dbg_kms(&i915->drm, 12959 "%s: lanes: %i; gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n", 12960 id, lane_count, 12961 m_n->gmch_m, m_n->gmch_n, 12962 m_n->link_m, m_n->link_n, m_n->tu); 12963 } 12964 12965 static void 12966 intel_dump_infoframe(struct drm_i915_private *dev_priv, 12967 const union hdmi_infoframe *frame) 12968 { 12969 if (!drm_debug_enabled(DRM_UT_KMS)) 12970 return; 12971 12972 hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, frame); 12973 } 12974 12975 static void 12976 intel_dump_dp_vsc_sdp(struct drm_i915_private *dev_priv, 12977 const struct drm_dp_vsc_sdp *vsc) 12978 { 12979 if (!drm_debug_enabled(DRM_UT_KMS)) 12980 return; 12981 12982 drm_dp_vsc_sdp_log(KERN_DEBUG, dev_priv->drm.dev, vsc); 12983 } 12984 12985 #define OUTPUT_TYPE(x) [INTEL_OUTPUT_ ## x] = #x 12986 12987 static const char * const output_type_str[] = { 12988 OUTPUT_TYPE(UNUSED), 12989 OUTPUT_TYPE(ANALOG), 12990 OUTPUT_TYPE(DVO), 12991 OUTPUT_TYPE(SDVO), 12992 OUTPUT_TYPE(LVDS), 12993 OUTPUT_TYPE(TVOUT), 12994 OUTPUT_TYPE(HDMI), 12995 OUTPUT_TYPE(DP), 12996 OUTPUT_TYPE(EDP), 12997 OUTPUT_TYPE(DSI), 12998 OUTPUT_TYPE(DDI), 12999 OUTPUT_TYPE(DP_MST), 13000 }; 13001 13002 #undef OUTPUT_TYPE 13003 13004 static void snprintf_output_types(char *buf, size_t len, 13005 unsigned int output_types) 13006 { 13007 char *str = buf; 13008 int i; 13009 13010 str[0] = '\0'; 13011 13012 for (i = 0; i < ARRAY_SIZE(output_type_str); i++) { 13013 int r; 13014 13015 if ((output_types & BIT(i)) == 0) 13016 continue; 13017 13018 r = snprintf(str, len, "%s%s", 13019 str != buf ? "," : "", output_type_str[i]); 13020 if (r >= len) 13021 break; 13022 str += r; 13023 len -= r; 13024 13025 output_types &= ~BIT(i); 13026 } 13027 13028 WARN_ON_ONCE(output_types != 0); 13029 } 13030 13031 static const char * const output_format_str[] = { 13032 [INTEL_OUTPUT_FORMAT_INVALID] = "Invalid", 13033 [INTEL_OUTPUT_FORMAT_RGB] = "RGB", 13034 [INTEL_OUTPUT_FORMAT_YCBCR420] = "YCBCR4:2:0", 13035 [INTEL_OUTPUT_FORMAT_YCBCR444] = "YCBCR4:4:4", 13036 }; 13037 13038 static const char *output_formats(enum intel_output_format format) 13039 { 13040 if (format >= ARRAY_SIZE(output_format_str)) 13041 format = INTEL_OUTPUT_FORMAT_INVALID; 13042 return output_format_str[format]; 13043 } 13044 13045 static void intel_dump_plane_state(const struct intel_plane_state *plane_state) 13046 { 13047 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 13048 struct drm_i915_private *i915 = to_i915(plane->base.dev); 13049 const struct drm_framebuffer *fb = plane_state->hw.fb; 13050 struct drm_format_name_buf format_name; 13051 13052 if (!fb) { 13053 drm_dbg_kms(&i915->drm, 13054 "[PLANE:%d:%s] fb: [NOFB], visible: %s\n", 13055 plane->base.base.id, plane->base.name, 13056 yesno(plane_state->uapi.visible)); 13057 return; 13058 } 13059 13060 drm_dbg_kms(&i915->drm, 13061 "[PLANE:%d:%s] fb: [FB:%d] %ux%u format = %s, visible: %s\n", 13062 plane->base.base.id, plane->base.name, 13063 fb->base.id, fb->width, fb->height, 13064 drm_get_format_name(fb->format->format, &format_name), 13065 yesno(plane_state->uapi.visible)); 13066 drm_dbg_kms(&i915->drm, "\trotation: 0x%x, scaler: %d\n", 13067 plane_state->hw.rotation, plane_state->scaler_id); 13068 if (plane_state->uapi.visible) 13069 drm_dbg_kms(&i915->drm, 13070 "\tsrc: " DRM_RECT_FP_FMT " dst: " DRM_RECT_FMT "\n", 13071 DRM_RECT_FP_ARG(&plane_state->uapi.src), 13072 DRM_RECT_ARG(&plane_state->uapi.dst)); 13073 } 13074 13075 static void intel_dump_pipe_config(const struct intel_crtc_state *pipe_config, 13076 struct intel_atomic_state *state, 13077 const char *context) 13078 { 13079 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc); 13080 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 13081 const struct intel_plane_state *plane_state; 13082 struct intel_plane *plane; 13083 char buf[64]; 13084 int i; 13085 13086 drm_dbg_kms(&dev_priv->drm, "[CRTC:%d:%s] enable: %s %s\n", 13087 crtc->base.base.id, crtc->base.name, 13088 yesno(pipe_config->hw.enable), context); 13089 13090 if (!pipe_config->hw.enable) 13091 goto dump_planes; 13092 13093 snprintf_output_types(buf, sizeof(buf), pipe_config->output_types); 13094 drm_dbg_kms(&dev_priv->drm, 13095 "active: %s, output_types: %s (0x%x), output format: %s\n", 13096 yesno(pipe_config->hw.active), 13097 buf, pipe_config->output_types, 13098 output_formats(pipe_config->output_format)); 13099 13100 drm_dbg_kms(&dev_priv->drm, 13101 "cpu_transcoder: %s, pipe bpp: %i, dithering: %i\n", 13102 transcoder_name(pipe_config->cpu_transcoder), 13103 pipe_config->pipe_bpp, pipe_config->dither); 13104 13105 drm_dbg_kms(&dev_priv->drm, 13106 "port sync: master transcoder: %s, slave transcoder bitmask = 0x%x\n", 13107 transcoder_name(pipe_config->master_transcoder), 13108 pipe_config->sync_mode_slaves_mask); 13109 13110 if (pipe_config->has_pch_encoder) 13111 intel_dump_m_n_config(pipe_config, "fdi", 13112 pipe_config->fdi_lanes, 13113 &pipe_config->fdi_m_n); 13114 13115 if (intel_crtc_has_dp_encoder(pipe_config)) { 13116 intel_dump_m_n_config(pipe_config, "dp m_n", 13117 pipe_config->lane_count, &pipe_config->dp_m_n); 13118 if (pipe_config->has_drrs) 13119 intel_dump_m_n_config(pipe_config, "dp m2_n2", 13120 pipe_config->lane_count, 13121 &pipe_config->dp_m2_n2); 13122 } 13123 13124 drm_dbg_kms(&dev_priv->drm, 13125 "audio: %i, infoframes: %i, infoframes enabled: 0x%x\n", 13126 pipe_config->has_audio, pipe_config->has_infoframe, 13127 pipe_config->infoframes.enable); 13128 13129 if (pipe_config->infoframes.enable & 13130 intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL)) 13131 drm_dbg_kms(&dev_priv->drm, "GCP: 0x%x\n", 13132 pipe_config->infoframes.gcp); 13133 if (pipe_config->infoframes.enable & 13134 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_AVI)) 13135 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.avi); 13136 if (pipe_config->infoframes.enable & 13137 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_SPD)) 13138 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.spd); 13139 if (pipe_config->infoframes.enable & 13140 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_VENDOR)) 13141 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.hdmi); 13142 if (pipe_config->infoframes.enable & 13143 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_DRM)) 13144 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.drm); 13145 if (pipe_config->infoframes.enable & 13146 intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GAMUT_METADATA)) 13147 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.drm); 13148 if (pipe_config->infoframes.enable & 13149 intel_hdmi_infoframe_enable(DP_SDP_VSC)) 13150 intel_dump_dp_vsc_sdp(dev_priv, &pipe_config->infoframes.vsc); 13151 13152 drm_dbg_kms(&dev_priv->drm, "requested mode:\n"); 13153 drm_mode_debug_printmodeline(&pipe_config->hw.mode); 13154 drm_dbg_kms(&dev_priv->drm, "adjusted mode:\n"); 13155 drm_mode_debug_printmodeline(&pipe_config->hw.adjusted_mode); 13156 intel_dump_crtc_timings(dev_priv, &pipe_config->hw.adjusted_mode); 13157 drm_dbg_kms(&dev_priv->drm, 13158 "port clock: %d, pipe src size: %dx%d, pixel rate %d\n", 13159 pipe_config->port_clock, 13160 pipe_config->pipe_src_w, pipe_config->pipe_src_h, 13161 pipe_config->pixel_rate); 13162 13163 drm_dbg_kms(&dev_priv->drm, "linetime: %d, ips linetime: %d\n", 13164 pipe_config->linetime, pipe_config->ips_linetime); 13165 13166 if (INTEL_GEN(dev_priv) >= 9) 13167 drm_dbg_kms(&dev_priv->drm, 13168 "num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n", 13169 crtc->num_scalers, 13170 pipe_config->scaler_state.scaler_users, 13171 pipe_config->scaler_state.scaler_id); 13172 13173 if (HAS_GMCH(dev_priv)) 13174 drm_dbg_kms(&dev_priv->drm, 13175 "gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n", 13176 pipe_config->gmch_pfit.control, 13177 pipe_config->gmch_pfit.pgm_ratios, 13178 pipe_config->gmch_pfit.lvds_border_bits); 13179 else 13180 drm_dbg_kms(&dev_priv->drm, 13181 "pch pfit: " DRM_RECT_FMT ", %s, force thru: %s\n", 13182 DRM_RECT_ARG(&pipe_config->pch_pfit.dst), 13183 enableddisabled(pipe_config->pch_pfit.enabled), 13184 yesno(pipe_config->pch_pfit.force_thru)); 13185 13186 drm_dbg_kms(&dev_priv->drm, "ips: %i, double wide: %i\n", 13187 pipe_config->ips_enabled, pipe_config->double_wide); 13188 13189 intel_dpll_dump_hw_state(dev_priv, &pipe_config->dpll_hw_state); 13190 13191 if (IS_CHERRYVIEW(dev_priv)) 13192 drm_dbg_kms(&dev_priv->drm, 13193 "cgm_mode: 0x%x gamma_mode: 0x%x gamma_enable: %d csc_enable: %d\n", 13194 pipe_config->cgm_mode, pipe_config->gamma_mode, 13195 pipe_config->gamma_enable, pipe_config->csc_enable); 13196 else 13197 drm_dbg_kms(&dev_priv->drm, 13198 "csc_mode: 0x%x gamma_mode: 0x%x gamma_enable: %d csc_enable: %d\n", 13199 pipe_config->csc_mode, pipe_config->gamma_mode, 13200 pipe_config->gamma_enable, pipe_config->csc_enable); 13201 13202 drm_dbg_kms(&dev_priv->drm, "MST master transcoder: %s\n", 13203 transcoder_name(pipe_config->mst_master_transcoder)); 13204 13205 dump_planes: 13206 if (!state) 13207 return; 13208 13209 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 13210 if (plane->pipe == crtc->pipe) 13211 intel_dump_plane_state(plane_state); 13212 } 13213 } 13214 13215 static bool check_digital_port_conflicts(struct intel_atomic_state *state) 13216 { 13217 struct drm_device *dev = state->base.dev; 13218 struct drm_connector *connector; 13219 struct drm_connector_list_iter conn_iter; 13220 unsigned int used_ports = 0; 13221 unsigned int used_mst_ports = 0; 13222 bool ret = true; 13223 13224 /* 13225 * We're going to peek into connector->state, 13226 * hence connection_mutex must be held. 13227 */ 13228 drm_modeset_lock_assert_held(&dev->mode_config.connection_mutex); 13229 13230 /* 13231 * Walk the connector list instead of the encoder 13232 * list to detect the problem on ddi platforms 13233 * where there's just one encoder per digital port. 13234 */ 13235 drm_connector_list_iter_begin(dev, &conn_iter); 13236 drm_for_each_connector_iter(connector, &conn_iter) { 13237 struct drm_connector_state *connector_state; 13238 struct intel_encoder *encoder; 13239 13240 connector_state = 13241 drm_atomic_get_new_connector_state(&state->base, 13242 connector); 13243 if (!connector_state) 13244 connector_state = connector->state; 13245 13246 if (!connector_state->best_encoder) 13247 continue; 13248 13249 encoder = to_intel_encoder(connector_state->best_encoder); 13250 13251 drm_WARN_ON(dev, !connector_state->crtc); 13252 13253 switch (encoder->type) { 13254 case INTEL_OUTPUT_DDI: 13255 if (drm_WARN_ON(dev, !HAS_DDI(to_i915(dev)))) 13256 break; 13257 fallthrough; 13258 case INTEL_OUTPUT_DP: 13259 case INTEL_OUTPUT_HDMI: 13260 case INTEL_OUTPUT_EDP: 13261 /* the same port mustn't appear more than once */ 13262 if (used_ports & BIT(encoder->port)) 13263 ret = false; 13264 13265 used_ports |= BIT(encoder->port); 13266 break; 13267 case INTEL_OUTPUT_DP_MST: 13268 used_mst_ports |= 13269 1 << encoder->port; 13270 break; 13271 default: 13272 break; 13273 } 13274 } 13275 drm_connector_list_iter_end(&conn_iter); 13276 13277 /* can't mix MST and SST/HDMI on the same port */ 13278 if (used_ports & used_mst_ports) 13279 return false; 13280 13281 return ret; 13282 } 13283 13284 static void 13285 intel_crtc_copy_uapi_to_hw_state_nomodeset(struct intel_crtc_state *crtc_state) 13286 { 13287 intel_crtc_copy_color_blobs(crtc_state); 13288 } 13289 13290 static void 13291 intel_crtc_copy_uapi_to_hw_state(struct intel_crtc_state *crtc_state) 13292 { 13293 crtc_state->hw.enable = crtc_state->uapi.enable; 13294 crtc_state->hw.active = crtc_state->uapi.active; 13295 crtc_state->hw.mode = crtc_state->uapi.mode; 13296 crtc_state->hw.adjusted_mode = crtc_state->uapi.adjusted_mode; 13297 intel_crtc_copy_uapi_to_hw_state_nomodeset(crtc_state); 13298 } 13299 13300 static void intel_crtc_copy_hw_to_uapi_state(struct intel_crtc_state *crtc_state) 13301 { 13302 crtc_state->uapi.enable = crtc_state->hw.enable; 13303 crtc_state->uapi.active = crtc_state->hw.active; 13304 drm_WARN_ON(crtc_state->uapi.crtc->dev, 13305 drm_atomic_set_mode_for_crtc(&crtc_state->uapi, &crtc_state->hw.mode) < 0); 13306 13307 crtc_state->uapi.adjusted_mode = crtc_state->hw.adjusted_mode; 13308 13309 /* copy color blobs to uapi */ 13310 drm_property_replace_blob(&crtc_state->uapi.degamma_lut, 13311 crtc_state->hw.degamma_lut); 13312 drm_property_replace_blob(&crtc_state->uapi.gamma_lut, 13313 crtc_state->hw.gamma_lut); 13314 drm_property_replace_blob(&crtc_state->uapi.ctm, 13315 crtc_state->hw.ctm); 13316 } 13317 13318 static int 13319 intel_crtc_prepare_cleared_state(struct intel_crtc_state *crtc_state) 13320 { 13321 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 13322 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 13323 struct intel_crtc_state *saved_state; 13324 13325 saved_state = intel_crtc_state_alloc(crtc); 13326 if (!saved_state) 13327 return -ENOMEM; 13328 13329 /* free the old crtc_state->hw members */ 13330 intel_crtc_free_hw_state(crtc_state); 13331 13332 /* FIXME: before the switch to atomic started, a new pipe_config was 13333 * kzalloc'd. Code that depends on any field being zero should be 13334 * fixed, so that the crtc_state can be safely duplicated. For now, 13335 * only fields that are know to not cause problems are preserved. */ 13336 13337 saved_state->uapi = crtc_state->uapi; 13338 saved_state->scaler_state = crtc_state->scaler_state; 13339 saved_state->shared_dpll = crtc_state->shared_dpll; 13340 saved_state->dpll_hw_state = crtc_state->dpll_hw_state; 13341 memcpy(saved_state->icl_port_dplls, crtc_state->icl_port_dplls, 13342 sizeof(saved_state->icl_port_dplls)); 13343 saved_state->crc_enabled = crtc_state->crc_enabled; 13344 if (IS_G4X(dev_priv) || 13345 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 13346 saved_state->wm = crtc_state->wm; 13347 13348 memcpy(crtc_state, saved_state, sizeof(*crtc_state)); 13349 kfree(saved_state); 13350 13351 intel_crtc_copy_uapi_to_hw_state(crtc_state); 13352 13353 return 0; 13354 } 13355 13356 static int 13357 intel_modeset_pipe_config(struct intel_crtc_state *pipe_config) 13358 { 13359 struct drm_crtc *crtc = pipe_config->uapi.crtc; 13360 struct drm_atomic_state *state = pipe_config->uapi.state; 13361 struct drm_i915_private *i915 = to_i915(pipe_config->uapi.crtc->dev); 13362 struct drm_connector *connector; 13363 struct drm_connector_state *connector_state; 13364 int base_bpp, ret, i; 13365 bool retry = true; 13366 13367 pipe_config->cpu_transcoder = 13368 (enum transcoder) to_intel_crtc(crtc)->pipe; 13369 13370 /* 13371 * Sanitize sync polarity flags based on requested ones. If neither 13372 * positive or negative polarity is requested, treat this as meaning 13373 * negative polarity. 13374 */ 13375 if (!(pipe_config->hw.adjusted_mode.flags & 13376 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC))) 13377 pipe_config->hw.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC; 13378 13379 if (!(pipe_config->hw.adjusted_mode.flags & 13380 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC))) 13381 pipe_config->hw.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC; 13382 13383 ret = compute_baseline_pipe_bpp(to_intel_crtc(crtc), 13384 pipe_config); 13385 if (ret) 13386 return ret; 13387 13388 base_bpp = pipe_config->pipe_bpp; 13389 13390 /* 13391 * Determine the real pipe dimensions. Note that stereo modes can 13392 * increase the actual pipe size due to the frame doubling and 13393 * insertion of additional space for blanks between the frame. This 13394 * is stored in the crtc timings. We use the requested mode to do this 13395 * computation to clearly distinguish it from the adjusted mode, which 13396 * can be changed by the connectors in the below retry loop. 13397 */ 13398 drm_mode_get_hv_timing(&pipe_config->hw.mode, 13399 &pipe_config->pipe_src_w, 13400 &pipe_config->pipe_src_h); 13401 13402 for_each_new_connector_in_state(state, connector, connector_state, i) { 13403 struct intel_encoder *encoder = 13404 to_intel_encoder(connector_state->best_encoder); 13405 13406 if (connector_state->crtc != crtc) 13407 continue; 13408 13409 if (!check_single_encoder_cloning(state, to_intel_crtc(crtc), encoder)) { 13410 drm_dbg_kms(&i915->drm, 13411 "rejecting invalid cloning configuration\n"); 13412 return -EINVAL; 13413 } 13414 13415 /* 13416 * Determine output_types before calling the .compute_config() 13417 * hooks so that the hooks can use this information safely. 13418 */ 13419 if (encoder->compute_output_type) 13420 pipe_config->output_types |= 13421 BIT(encoder->compute_output_type(encoder, pipe_config, 13422 connector_state)); 13423 else 13424 pipe_config->output_types |= BIT(encoder->type); 13425 } 13426 13427 encoder_retry: 13428 /* Ensure the port clock defaults are reset when retrying. */ 13429 pipe_config->port_clock = 0; 13430 pipe_config->pixel_multiplier = 1; 13431 13432 /* Fill in default crtc timings, allow encoders to overwrite them. */ 13433 drm_mode_set_crtcinfo(&pipe_config->hw.adjusted_mode, 13434 CRTC_STEREO_DOUBLE); 13435 13436 /* Pass our mode to the connectors and the CRTC to give them a chance to 13437 * adjust it according to limitations or connector properties, and also 13438 * a chance to reject the mode entirely. 13439 */ 13440 for_each_new_connector_in_state(state, connector, connector_state, i) { 13441 struct intel_encoder *encoder = 13442 to_intel_encoder(connector_state->best_encoder); 13443 13444 if (connector_state->crtc != crtc) 13445 continue; 13446 13447 ret = encoder->compute_config(encoder, pipe_config, 13448 connector_state); 13449 if (ret < 0) { 13450 if (ret != -EDEADLK) 13451 drm_dbg_kms(&i915->drm, 13452 "Encoder config failure: %d\n", 13453 ret); 13454 return ret; 13455 } 13456 } 13457 13458 /* Set default port clock if not overwritten by the encoder. Needs to be 13459 * done afterwards in case the encoder adjusts the mode. */ 13460 if (!pipe_config->port_clock) 13461 pipe_config->port_clock = pipe_config->hw.adjusted_mode.crtc_clock 13462 * pipe_config->pixel_multiplier; 13463 13464 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config); 13465 if (ret == -EDEADLK) 13466 return ret; 13467 if (ret < 0) { 13468 drm_dbg_kms(&i915->drm, "CRTC fixup failed\n"); 13469 return ret; 13470 } 13471 13472 if (ret == RETRY) { 13473 if (drm_WARN(&i915->drm, !retry, 13474 "loop in pipe configuration computation\n")) 13475 return -EINVAL; 13476 13477 drm_dbg_kms(&i915->drm, "CRTC bw constrained, retrying\n"); 13478 retry = false; 13479 goto encoder_retry; 13480 } 13481 13482 /* Dithering seems to not pass-through bits correctly when it should, so 13483 * only enable it on 6bpc panels and when its not a compliance 13484 * test requesting 6bpc video pattern. 13485 */ 13486 pipe_config->dither = (pipe_config->pipe_bpp == 6*3) && 13487 !pipe_config->dither_force_disable; 13488 drm_dbg_kms(&i915->drm, 13489 "hw max bpp: %i, pipe bpp: %i, dithering: %i\n", 13490 base_bpp, pipe_config->pipe_bpp, pipe_config->dither); 13491 13492 return 0; 13493 } 13494 13495 static int 13496 intel_modeset_pipe_config_late(struct intel_crtc_state *crtc_state) 13497 { 13498 struct intel_atomic_state *state = 13499 to_intel_atomic_state(crtc_state->uapi.state); 13500 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 13501 struct drm_connector_state *conn_state; 13502 struct drm_connector *connector; 13503 int i; 13504 13505 for_each_new_connector_in_state(&state->base, connector, 13506 conn_state, i) { 13507 struct intel_encoder *encoder = 13508 to_intel_encoder(conn_state->best_encoder); 13509 int ret; 13510 13511 if (conn_state->crtc != &crtc->base || 13512 !encoder->compute_config_late) 13513 continue; 13514 13515 ret = encoder->compute_config_late(encoder, crtc_state, 13516 conn_state); 13517 if (ret) 13518 return ret; 13519 } 13520 13521 return 0; 13522 } 13523 13524 bool intel_fuzzy_clock_check(int clock1, int clock2) 13525 { 13526 int diff; 13527 13528 if (clock1 == clock2) 13529 return true; 13530 13531 if (!clock1 || !clock2) 13532 return false; 13533 13534 diff = abs(clock1 - clock2); 13535 13536 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105) 13537 return true; 13538 13539 return false; 13540 } 13541 13542 static bool 13543 intel_compare_m_n(unsigned int m, unsigned int n, 13544 unsigned int m2, unsigned int n2, 13545 bool exact) 13546 { 13547 if (m == m2 && n == n2) 13548 return true; 13549 13550 if (exact || !m || !n || !m2 || !n2) 13551 return false; 13552 13553 BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX); 13554 13555 if (n > n2) { 13556 while (n > n2) { 13557 m2 <<= 1; 13558 n2 <<= 1; 13559 } 13560 } else if (n < n2) { 13561 while (n < n2) { 13562 m <<= 1; 13563 n <<= 1; 13564 } 13565 } 13566 13567 if (n != n2) 13568 return false; 13569 13570 return intel_fuzzy_clock_check(m, m2); 13571 } 13572 13573 static bool 13574 intel_compare_link_m_n(const struct intel_link_m_n *m_n, 13575 const struct intel_link_m_n *m2_n2, 13576 bool exact) 13577 { 13578 return m_n->tu == m2_n2->tu && 13579 intel_compare_m_n(m_n->gmch_m, m_n->gmch_n, 13580 m2_n2->gmch_m, m2_n2->gmch_n, exact) && 13581 intel_compare_m_n(m_n->link_m, m_n->link_n, 13582 m2_n2->link_m, m2_n2->link_n, exact); 13583 } 13584 13585 static bool 13586 intel_compare_infoframe(const union hdmi_infoframe *a, 13587 const union hdmi_infoframe *b) 13588 { 13589 return memcmp(a, b, sizeof(*a)) == 0; 13590 } 13591 13592 static bool 13593 intel_compare_dp_vsc_sdp(const struct drm_dp_vsc_sdp *a, 13594 const struct drm_dp_vsc_sdp *b) 13595 { 13596 return memcmp(a, b, sizeof(*a)) == 0; 13597 } 13598 13599 static void 13600 pipe_config_infoframe_mismatch(struct drm_i915_private *dev_priv, 13601 bool fastset, const char *name, 13602 const union hdmi_infoframe *a, 13603 const union hdmi_infoframe *b) 13604 { 13605 if (fastset) { 13606 if (!drm_debug_enabled(DRM_UT_KMS)) 13607 return; 13608 13609 drm_dbg_kms(&dev_priv->drm, 13610 "fastset mismatch in %s infoframe\n", name); 13611 drm_dbg_kms(&dev_priv->drm, "expected:\n"); 13612 hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, a); 13613 drm_dbg_kms(&dev_priv->drm, "found:\n"); 13614 hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, b); 13615 } else { 13616 drm_err(&dev_priv->drm, "mismatch in %s infoframe\n", name); 13617 drm_err(&dev_priv->drm, "expected:\n"); 13618 hdmi_infoframe_log(KERN_ERR, dev_priv->drm.dev, a); 13619 drm_err(&dev_priv->drm, "found:\n"); 13620 hdmi_infoframe_log(KERN_ERR, dev_priv->drm.dev, b); 13621 } 13622 } 13623 13624 static void 13625 pipe_config_dp_vsc_sdp_mismatch(struct drm_i915_private *dev_priv, 13626 bool fastset, const char *name, 13627 const struct drm_dp_vsc_sdp *a, 13628 const struct drm_dp_vsc_sdp *b) 13629 { 13630 if (fastset) { 13631 if (!drm_debug_enabled(DRM_UT_KMS)) 13632 return; 13633 13634 drm_dbg_kms(&dev_priv->drm, 13635 "fastset mismatch in %s dp sdp\n", name); 13636 drm_dbg_kms(&dev_priv->drm, "expected:\n"); 13637 drm_dp_vsc_sdp_log(KERN_DEBUG, dev_priv->drm.dev, a); 13638 drm_dbg_kms(&dev_priv->drm, "found:\n"); 13639 drm_dp_vsc_sdp_log(KERN_DEBUG, dev_priv->drm.dev, b); 13640 } else { 13641 drm_err(&dev_priv->drm, "mismatch in %s dp sdp\n", name); 13642 drm_err(&dev_priv->drm, "expected:\n"); 13643 drm_dp_vsc_sdp_log(KERN_ERR, dev_priv->drm.dev, a); 13644 drm_err(&dev_priv->drm, "found:\n"); 13645 drm_dp_vsc_sdp_log(KERN_ERR, dev_priv->drm.dev, b); 13646 } 13647 } 13648 13649 static void __printf(4, 5) 13650 pipe_config_mismatch(bool fastset, const struct intel_crtc *crtc, 13651 const char *name, const char *format, ...) 13652 { 13653 struct drm_i915_private *i915 = to_i915(crtc->base.dev); 13654 struct va_format vaf; 13655 va_list args; 13656 13657 va_start(args, format); 13658 vaf.fmt = format; 13659 vaf.va = &args; 13660 13661 if (fastset) 13662 drm_dbg_kms(&i915->drm, 13663 "[CRTC:%d:%s] fastset mismatch in %s %pV\n", 13664 crtc->base.base.id, crtc->base.name, name, &vaf); 13665 else 13666 drm_err(&i915->drm, "[CRTC:%d:%s] mismatch in %s %pV\n", 13667 crtc->base.base.id, crtc->base.name, name, &vaf); 13668 13669 va_end(args); 13670 } 13671 13672 static bool fastboot_enabled(struct drm_i915_private *dev_priv) 13673 { 13674 if (dev_priv->params.fastboot != -1) 13675 return dev_priv->params.fastboot; 13676 13677 /* Enable fastboot by default on Skylake and newer */ 13678 if (INTEL_GEN(dev_priv) >= 9) 13679 return true; 13680 13681 /* Enable fastboot by default on VLV and CHV */ 13682 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 13683 return true; 13684 13685 /* Disabled by default on all others */ 13686 return false; 13687 } 13688 13689 static bool 13690 intel_pipe_config_compare(const struct intel_crtc_state *current_config, 13691 const struct intel_crtc_state *pipe_config, 13692 bool fastset) 13693 { 13694 struct drm_i915_private *dev_priv = to_i915(current_config->uapi.crtc->dev); 13695 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc); 13696 bool ret = true; 13697 u32 bp_gamma = 0; 13698 bool fixup_inherited = fastset && 13699 current_config->inherited && !pipe_config->inherited; 13700 13701 if (fixup_inherited && !fastboot_enabled(dev_priv)) { 13702 drm_dbg_kms(&dev_priv->drm, 13703 "initial modeset and fastboot not set\n"); 13704 ret = false; 13705 } 13706 13707 #define PIPE_CONF_CHECK_X(name) do { \ 13708 if (current_config->name != pipe_config->name) { \ 13709 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 13710 "(expected 0x%08x, found 0x%08x)", \ 13711 current_config->name, \ 13712 pipe_config->name); \ 13713 ret = false; \ 13714 } \ 13715 } while (0) 13716 13717 #define PIPE_CONF_CHECK_I(name) do { \ 13718 if (current_config->name != pipe_config->name) { \ 13719 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 13720 "(expected %i, found %i)", \ 13721 current_config->name, \ 13722 pipe_config->name); \ 13723 ret = false; \ 13724 } \ 13725 } while (0) 13726 13727 #define PIPE_CONF_CHECK_BOOL(name) do { \ 13728 if (current_config->name != pipe_config->name) { \ 13729 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 13730 "(expected %s, found %s)", \ 13731 yesno(current_config->name), \ 13732 yesno(pipe_config->name)); \ 13733 ret = false; \ 13734 } \ 13735 } while (0) 13736 13737 /* 13738 * Checks state where we only read out the enabling, but not the entire 13739 * state itself (like full infoframes or ELD for audio). These states 13740 * require a full modeset on bootup to fix up. 13741 */ 13742 #define PIPE_CONF_CHECK_BOOL_INCOMPLETE(name) do { \ 13743 if (!fixup_inherited || (!current_config->name && !pipe_config->name)) { \ 13744 PIPE_CONF_CHECK_BOOL(name); \ 13745 } else { \ 13746 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 13747 "unable to verify whether state matches exactly, forcing modeset (expected %s, found %s)", \ 13748 yesno(current_config->name), \ 13749 yesno(pipe_config->name)); \ 13750 ret = false; \ 13751 } \ 13752 } while (0) 13753 13754 #define PIPE_CONF_CHECK_P(name) do { \ 13755 if (current_config->name != pipe_config->name) { \ 13756 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 13757 "(expected %p, found %p)", \ 13758 current_config->name, \ 13759 pipe_config->name); \ 13760 ret = false; \ 13761 } \ 13762 } while (0) 13763 13764 #define PIPE_CONF_CHECK_M_N(name) do { \ 13765 if (!intel_compare_link_m_n(¤t_config->name, \ 13766 &pipe_config->name,\ 13767 !fastset)) { \ 13768 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 13769 "(expected tu %i gmch %i/%i link %i/%i, " \ 13770 "found tu %i, gmch %i/%i link %i/%i)", \ 13771 current_config->name.tu, \ 13772 current_config->name.gmch_m, \ 13773 current_config->name.gmch_n, \ 13774 current_config->name.link_m, \ 13775 current_config->name.link_n, \ 13776 pipe_config->name.tu, \ 13777 pipe_config->name.gmch_m, \ 13778 pipe_config->name.gmch_n, \ 13779 pipe_config->name.link_m, \ 13780 pipe_config->name.link_n); \ 13781 ret = false; \ 13782 } \ 13783 } while (0) 13784 13785 /* This is required for BDW+ where there is only one set of registers for 13786 * switching between high and low RR. 13787 * This macro can be used whenever a comparison has to be made between one 13788 * hw state and multiple sw state variables. 13789 */ 13790 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) do { \ 13791 if (!intel_compare_link_m_n(¤t_config->name, \ 13792 &pipe_config->name, !fastset) && \ 13793 !intel_compare_link_m_n(¤t_config->alt_name, \ 13794 &pipe_config->name, !fastset)) { \ 13795 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 13796 "(expected tu %i gmch %i/%i link %i/%i, " \ 13797 "or tu %i gmch %i/%i link %i/%i, " \ 13798 "found tu %i, gmch %i/%i link %i/%i)", \ 13799 current_config->name.tu, \ 13800 current_config->name.gmch_m, \ 13801 current_config->name.gmch_n, \ 13802 current_config->name.link_m, \ 13803 current_config->name.link_n, \ 13804 current_config->alt_name.tu, \ 13805 current_config->alt_name.gmch_m, \ 13806 current_config->alt_name.gmch_n, \ 13807 current_config->alt_name.link_m, \ 13808 current_config->alt_name.link_n, \ 13809 pipe_config->name.tu, \ 13810 pipe_config->name.gmch_m, \ 13811 pipe_config->name.gmch_n, \ 13812 pipe_config->name.link_m, \ 13813 pipe_config->name.link_n); \ 13814 ret = false; \ 13815 } \ 13816 } while (0) 13817 13818 #define PIPE_CONF_CHECK_FLAGS(name, mask) do { \ 13819 if ((current_config->name ^ pipe_config->name) & (mask)) { \ 13820 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 13821 "(%x) (expected %i, found %i)", \ 13822 (mask), \ 13823 current_config->name & (mask), \ 13824 pipe_config->name & (mask)); \ 13825 ret = false; \ 13826 } \ 13827 } while (0) 13828 13829 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) do { \ 13830 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \ 13831 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 13832 "(expected %i, found %i)", \ 13833 current_config->name, \ 13834 pipe_config->name); \ 13835 ret = false; \ 13836 } \ 13837 } while (0) 13838 13839 #define PIPE_CONF_CHECK_INFOFRAME(name) do { \ 13840 if (!intel_compare_infoframe(¤t_config->infoframes.name, \ 13841 &pipe_config->infoframes.name)) { \ 13842 pipe_config_infoframe_mismatch(dev_priv, fastset, __stringify(name), \ 13843 ¤t_config->infoframes.name, \ 13844 &pipe_config->infoframes.name); \ 13845 ret = false; \ 13846 } \ 13847 } while (0) 13848 13849 #define PIPE_CONF_CHECK_DP_VSC_SDP(name) do { \ 13850 if (!current_config->has_psr && !pipe_config->has_psr && \ 13851 !intel_compare_dp_vsc_sdp(¤t_config->infoframes.name, \ 13852 &pipe_config->infoframes.name)) { \ 13853 pipe_config_dp_vsc_sdp_mismatch(dev_priv, fastset, __stringify(name), \ 13854 ¤t_config->infoframes.name, \ 13855 &pipe_config->infoframes.name); \ 13856 ret = false; \ 13857 } \ 13858 } while (0) 13859 13860 #define PIPE_CONF_CHECK_COLOR_LUT(name1, name2, bit_precision) do { \ 13861 if (current_config->name1 != pipe_config->name1) { \ 13862 pipe_config_mismatch(fastset, crtc, __stringify(name1), \ 13863 "(expected %i, found %i, won't compare lut values)", \ 13864 current_config->name1, \ 13865 pipe_config->name1); \ 13866 ret = false;\ 13867 } else { \ 13868 if (!intel_color_lut_equal(current_config->name2, \ 13869 pipe_config->name2, pipe_config->name1, \ 13870 bit_precision)) { \ 13871 pipe_config_mismatch(fastset, crtc, __stringify(name2), \ 13872 "hw_state doesn't match sw_state"); \ 13873 ret = false; \ 13874 } \ 13875 } \ 13876 } while (0) 13877 13878 #define PIPE_CONF_QUIRK(quirk) \ 13879 ((current_config->quirks | pipe_config->quirks) & (quirk)) 13880 13881 PIPE_CONF_CHECK_I(cpu_transcoder); 13882 13883 PIPE_CONF_CHECK_BOOL(has_pch_encoder); 13884 PIPE_CONF_CHECK_I(fdi_lanes); 13885 PIPE_CONF_CHECK_M_N(fdi_m_n); 13886 13887 PIPE_CONF_CHECK_I(lane_count); 13888 PIPE_CONF_CHECK_X(lane_lat_optim_mask); 13889 13890 if (INTEL_GEN(dev_priv) < 8) { 13891 PIPE_CONF_CHECK_M_N(dp_m_n); 13892 13893 if (current_config->has_drrs) 13894 PIPE_CONF_CHECK_M_N(dp_m2_n2); 13895 } else 13896 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2); 13897 13898 PIPE_CONF_CHECK_X(output_types); 13899 13900 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hdisplay); 13901 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_htotal); 13902 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hblank_start); 13903 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hblank_end); 13904 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hsync_start); 13905 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hsync_end); 13906 13907 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vdisplay); 13908 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vtotal); 13909 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vblank_start); 13910 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vblank_end); 13911 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vsync_start); 13912 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vsync_end); 13913 13914 PIPE_CONF_CHECK_I(pixel_multiplier); 13915 PIPE_CONF_CHECK_I(output_format); 13916 PIPE_CONF_CHECK_BOOL(has_hdmi_sink); 13917 if ((INTEL_GEN(dev_priv) < 8 && !IS_HASWELL(dev_priv)) || 13918 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 13919 PIPE_CONF_CHECK_BOOL(limited_color_range); 13920 13921 PIPE_CONF_CHECK_BOOL(hdmi_scrambling); 13922 PIPE_CONF_CHECK_BOOL(hdmi_high_tmds_clock_ratio); 13923 PIPE_CONF_CHECK_BOOL(has_infoframe); 13924 PIPE_CONF_CHECK_BOOL(fec_enable); 13925 13926 PIPE_CONF_CHECK_BOOL_INCOMPLETE(has_audio); 13927 13928 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags, 13929 DRM_MODE_FLAG_INTERLACE); 13930 13931 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) { 13932 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags, 13933 DRM_MODE_FLAG_PHSYNC); 13934 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags, 13935 DRM_MODE_FLAG_NHSYNC); 13936 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags, 13937 DRM_MODE_FLAG_PVSYNC); 13938 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags, 13939 DRM_MODE_FLAG_NVSYNC); 13940 } 13941 13942 PIPE_CONF_CHECK_X(gmch_pfit.control); 13943 /* pfit ratios are autocomputed by the hw on gen4+ */ 13944 if (INTEL_GEN(dev_priv) < 4) 13945 PIPE_CONF_CHECK_X(gmch_pfit.pgm_ratios); 13946 PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits); 13947 13948 /* 13949 * Changing the EDP transcoder input mux 13950 * (A_ONOFF vs. A_ON) requires a full modeset. 13951 */ 13952 PIPE_CONF_CHECK_BOOL(pch_pfit.force_thru); 13953 13954 if (!fastset) { 13955 PIPE_CONF_CHECK_I(pipe_src_w); 13956 PIPE_CONF_CHECK_I(pipe_src_h); 13957 13958 PIPE_CONF_CHECK_BOOL(pch_pfit.enabled); 13959 if (current_config->pch_pfit.enabled) { 13960 PIPE_CONF_CHECK_I(pch_pfit.dst.x1); 13961 PIPE_CONF_CHECK_I(pch_pfit.dst.y1); 13962 PIPE_CONF_CHECK_I(pch_pfit.dst.x2); 13963 PIPE_CONF_CHECK_I(pch_pfit.dst.y2); 13964 } 13965 13966 PIPE_CONF_CHECK_I(scaler_state.scaler_id); 13967 PIPE_CONF_CHECK_CLOCK_FUZZY(pixel_rate); 13968 13969 PIPE_CONF_CHECK_X(gamma_mode); 13970 if (IS_CHERRYVIEW(dev_priv)) 13971 PIPE_CONF_CHECK_X(cgm_mode); 13972 else 13973 PIPE_CONF_CHECK_X(csc_mode); 13974 PIPE_CONF_CHECK_BOOL(gamma_enable); 13975 PIPE_CONF_CHECK_BOOL(csc_enable); 13976 13977 PIPE_CONF_CHECK_I(linetime); 13978 PIPE_CONF_CHECK_I(ips_linetime); 13979 13980 bp_gamma = intel_color_get_gamma_bit_precision(pipe_config); 13981 if (bp_gamma) 13982 PIPE_CONF_CHECK_COLOR_LUT(gamma_mode, hw.gamma_lut, bp_gamma); 13983 } 13984 13985 PIPE_CONF_CHECK_BOOL(double_wide); 13986 13987 PIPE_CONF_CHECK_P(shared_dpll); 13988 PIPE_CONF_CHECK_X(dpll_hw_state.dpll); 13989 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md); 13990 PIPE_CONF_CHECK_X(dpll_hw_state.fp0); 13991 PIPE_CONF_CHECK_X(dpll_hw_state.fp1); 13992 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll); 13993 PIPE_CONF_CHECK_X(dpll_hw_state.spll); 13994 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1); 13995 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1); 13996 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2); 13997 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr0); 13998 PIPE_CONF_CHECK_X(dpll_hw_state.ebb0); 13999 PIPE_CONF_CHECK_X(dpll_hw_state.ebb4); 14000 PIPE_CONF_CHECK_X(dpll_hw_state.pll0); 14001 PIPE_CONF_CHECK_X(dpll_hw_state.pll1); 14002 PIPE_CONF_CHECK_X(dpll_hw_state.pll2); 14003 PIPE_CONF_CHECK_X(dpll_hw_state.pll3); 14004 PIPE_CONF_CHECK_X(dpll_hw_state.pll6); 14005 PIPE_CONF_CHECK_X(dpll_hw_state.pll8); 14006 PIPE_CONF_CHECK_X(dpll_hw_state.pll9); 14007 PIPE_CONF_CHECK_X(dpll_hw_state.pll10); 14008 PIPE_CONF_CHECK_X(dpll_hw_state.pcsdw12); 14009 PIPE_CONF_CHECK_X(dpll_hw_state.mg_refclkin_ctl); 14010 PIPE_CONF_CHECK_X(dpll_hw_state.mg_clktop2_coreclkctl1); 14011 PIPE_CONF_CHECK_X(dpll_hw_state.mg_clktop2_hsclkctl); 14012 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_div0); 14013 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_div1); 14014 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_lf); 14015 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_frac_lock); 14016 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_ssc); 14017 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_bias); 14018 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_tdc_coldst_bias); 14019 14020 PIPE_CONF_CHECK_X(dsi_pll.ctrl); 14021 PIPE_CONF_CHECK_X(dsi_pll.div); 14022 14023 if (IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) 14024 PIPE_CONF_CHECK_I(pipe_bpp); 14025 14026 PIPE_CONF_CHECK_CLOCK_FUZZY(hw.adjusted_mode.crtc_clock); 14027 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock); 14028 14029 PIPE_CONF_CHECK_I(min_voltage_level); 14030 14031 PIPE_CONF_CHECK_X(infoframes.enable); 14032 PIPE_CONF_CHECK_X(infoframes.gcp); 14033 PIPE_CONF_CHECK_INFOFRAME(avi); 14034 PIPE_CONF_CHECK_INFOFRAME(spd); 14035 PIPE_CONF_CHECK_INFOFRAME(hdmi); 14036 PIPE_CONF_CHECK_INFOFRAME(drm); 14037 PIPE_CONF_CHECK_DP_VSC_SDP(vsc); 14038 14039 PIPE_CONF_CHECK_X(sync_mode_slaves_mask); 14040 PIPE_CONF_CHECK_I(master_transcoder); 14041 14042 PIPE_CONF_CHECK_I(dsc.compression_enable); 14043 PIPE_CONF_CHECK_I(dsc.dsc_split); 14044 PIPE_CONF_CHECK_I(dsc.compressed_bpp); 14045 14046 PIPE_CONF_CHECK_I(mst_master_transcoder); 14047 14048 #undef PIPE_CONF_CHECK_X 14049 #undef PIPE_CONF_CHECK_I 14050 #undef PIPE_CONF_CHECK_BOOL 14051 #undef PIPE_CONF_CHECK_BOOL_INCOMPLETE 14052 #undef PIPE_CONF_CHECK_P 14053 #undef PIPE_CONF_CHECK_FLAGS 14054 #undef PIPE_CONF_CHECK_CLOCK_FUZZY 14055 #undef PIPE_CONF_CHECK_COLOR_LUT 14056 #undef PIPE_CONF_QUIRK 14057 14058 return ret; 14059 } 14060 14061 static void intel_pipe_config_sanity_check(struct drm_i915_private *dev_priv, 14062 const struct intel_crtc_state *pipe_config) 14063 { 14064 if (pipe_config->has_pch_encoder) { 14065 int fdi_dotclock = intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config), 14066 &pipe_config->fdi_m_n); 14067 int dotclock = pipe_config->hw.adjusted_mode.crtc_clock; 14068 14069 /* 14070 * FDI already provided one idea for the dotclock. 14071 * Yell if the encoder disagrees. 14072 */ 14073 drm_WARN(&dev_priv->drm, 14074 !intel_fuzzy_clock_check(fdi_dotclock, dotclock), 14075 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n", 14076 fdi_dotclock, dotclock); 14077 } 14078 } 14079 14080 static void verify_wm_state(struct intel_crtc *crtc, 14081 struct intel_crtc_state *new_crtc_state) 14082 { 14083 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 14084 struct skl_hw_state { 14085 struct skl_ddb_entry ddb_y[I915_MAX_PLANES]; 14086 struct skl_ddb_entry ddb_uv[I915_MAX_PLANES]; 14087 struct skl_pipe_wm wm; 14088 } *hw; 14089 struct skl_pipe_wm *sw_wm; 14090 struct skl_ddb_entry *hw_ddb_entry, *sw_ddb_entry; 14091 u8 hw_enabled_slices; 14092 const enum pipe pipe = crtc->pipe; 14093 int plane, level, max_level = ilk_wm_max_level(dev_priv); 14094 14095 if (INTEL_GEN(dev_priv) < 9 || !new_crtc_state->hw.active) 14096 return; 14097 14098 hw = kzalloc(sizeof(*hw), GFP_KERNEL); 14099 if (!hw) 14100 return; 14101 14102 skl_pipe_wm_get_hw_state(crtc, &hw->wm); 14103 sw_wm = &new_crtc_state->wm.skl.optimal; 14104 14105 skl_pipe_ddb_get_hw_state(crtc, hw->ddb_y, hw->ddb_uv); 14106 14107 hw_enabled_slices = intel_enabled_dbuf_slices_mask(dev_priv); 14108 14109 if (INTEL_GEN(dev_priv) >= 11 && 14110 hw_enabled_slices != dev_priv->dbuf.enabled_slices) 14111 drm_err(&dev_priv->drm, 14112 "mismatch in DBUF Slices (expected 0x%x, got 0x%x)\n", 14113 dev_priv->dbuf.enabled_slices, 14114 hw_enabled_slices); 14115 14116 /* planes */ 14117 for_each_universal_plane(dev_priv, pipe, plane) { 14118 struct skl_plane_wm *hw_plane_wm, *sw_plane_wm; 14119 14120 hw_plane_wm = &hw->wm.planes[plane]; 14121 sw_plane_wm = &sw_wm->planes[plane]; 14122 14123 /* Watermarks */ 14124 for (level = 0; level <= max_level; level++) { 14125 if (skl_wm_level_equals(&hw_plane_wm->wm[level], 14126 &sw_plane_wm->wm[level]) || 14127 (level == 0 && skl_wm_level_equals(&hw_plane_wm->wm[level], 14128 &sw_plane_wm->sagv_wm0))) 14129 continue; 14130 14131 drm_err(&dev_priv->drm, 14132 "mismatch in WM pipe %c plane %d level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n", 14133 pipe_name(pipe), plane + 1, level, 14134 sw_plane_wm->wm[level].plane_en, 14135 sw_plane_wm->wm[level].plane_res_b, 14136 sw_plane_wm->wm[level].plane_res_l, 14137 hw_plane_wm->wm[level].plane_en, 14138 hw_plane_wm->wm[level].plane_res_b, 14139 hw_plane_wm->wm[level].plane_res_l); 14140 } 14141 14142 if (!skl_wm_level_equals(&hw_plane_wm->trans_wm, 14143 &sw_plane_wm->trans_wm)) { 14144 drm_err(&dev_priv->drm, 14145 "mismatch in trans WM pipe %c plane %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n", 14146 pipe_name(pipe), plane + 1, 14147 sw_plane_wm->trans_wm.plane_en, 14148 sw_plane_wm->trans_wm.plane_res_b, 14149 sw_plane_wm->trans_wm.plane_res_l, 14150 hw_plane_wm->trans_wm.plane_en, 14151 hw_plane_wm->trans_wm.plane_res_b, 14152 hw_plane_wm->trans_wm.plane_res_l); 14153 } 14154 14155 /* DDB */ 14156 hw_ddb_entry = &hw->ddb_y[plane]; 14157 sw_ddb_entry = &new_crtc_state->wm.skl.plane_ddb_y[plane]; 14158 14159 if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) { 14160 drm_err(&dev_priv->drm, 14161 "mismatch in DDB state pipe %c plane %d (expected (%u,%u), found (%u,%u))\n", 14162 pipe_name(pipe), plane + 1, 14163 sw_ddb_entry->start, sw_ddb_entry->end, 14164 hw_ddb_entry->start, hw_ddb_entry->end); 14165 } 14166 } 14167 14168 /* 14169 * cursor 14170 * If the cursor plane isn't active, we may not have updated it's ddb 14171 * allocation. In that case since the ddb allocation will be updated 14172 * once the plane becomes visible, we can skip this check 14173 */ 14174 if (1) { 14175 struct skl_plane_wm *hw_plane_wm, *sw_plane_wm; 14176 14177 hw_plane_wm = &hw->wm.planes[PLANE_CURSOR]; 14178 sw_plane_wm = &sw_wm->planes[PLANE_CURSOR]; 14179 14180 /* Watermarks */ 14181 for (level = 0; level <= max_level; level++) { 14182 if (skl_wm_level_equals(&hw_plane_wm->wm[level], 14183 &sw_plane_wm->wm[level]) || 14184 (level == 0 && skl_wm_level_equals(&hw_plane_wm->wm[level], 14185 &sw_plane_wm->sagv_wm0))) 14186 continue; 14187 14188 drm_err(&dev_priv->drm, 14189 "mismatch in WM pipe %c cursor level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n", 14190 pipe_name(pipe), level, 14191 sw_plane_wm->wm[level].plane_en, 14192 sw_plane_wm->wm[level].plane_res_b, 14193 sw_plane_wm->wm[level].plane_res_l, 14194 hw_plane_wm->wm[level].plane_en, 14195 hw_plane_wm->wm[level].plane_res_b, 14196 hw_plane_wm->wm[level].plane_res_l); 14197 } 14198 14199 if (!skl_wm_level_equals(&hw_plane_wm->trans_wm, 14200 &sw_plane_wm->trans_wm)) { 14201 drm_err(&dev_priv->drm, 14202 "mismatch in trans WM pipe %c cursor (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n", 14203 pipe_name(pipe), 14204 sw_plane_wm->trans_wm.plane_en, 14205 sw_plane_wm->trans_wm.plane_res_b, 14206 sw_plane_wm->trans_wm.plane_res_l, 14207 hw_plane_wm->trans_wm.plane_en, 14208 hw_plane_wm->trans_wm.plane_res_b, 14209 hw_plane_wm->trans_wm.plane_res_l); 14210 } 14211 14212 /* DDB */ 14213 hw_ddb_entry = &hw->ddb_y[PLANE_CURSOR]; 14214 sw_ddb_entry = &new_crtc_state->wm.skl.plane_ddb_y[PLANE_CURSOR]; 14215 14216 if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) { 14217 drm_err(&dev_priv->drm, 14218 "mismatch in DDB state pipe %c cursor (expected (%u,%u), found (%u,%u))\n", 14219 pipe_name(pipe), 14220 sw_ddb_entry->start, sw_ddb_entry->end, 14221 hw_ddb_entry->start, hw_ddb_entry->end); 14222 } 14223 } 14224 14225 kfree(hw); 14226 } 14227 14228 static void 14229 verify_connector_state(struct intel_atomic_state *state, 14230 struct intel_crtc *crtc) 14231 { 14232 struct drm_connector *connector; 14233 struct drm_connector_state *new_conn_state; 14234 int i; 14235 14236 for_each_new_connector_in_state(&state->base, connector, new_conn_state, i) { 14237 struct drm_encoder *encoder = connector->encoder; 14238 struct intel_crtc_state *crtc_state = NULL; 14239 14240 if (new_conn_state->crtc != &crtc->base) 14241 continue; 14242 14243 if (crtc) 14244 crtc_state = intel_atomic_get_new_crtc_state(state, crtc); 14245 14246 intel_connector_verify_state(crtc_state, new_conn_state); 14247 14248 I915_STATE_WARN(new_conn_state->best_encoder != encoder, 14249 "connector's atomic encoder doesn't match legacy encoder\n"); 14250 } 14251 } 14252 14253 static void 14254 verify_encoder_state(struct drm_i915_private *dev_priv, struct intel_atomic_state *state) 14255 { 14256 struct intel_encoder *encoder; 14257 struct drm_connector *connector; 14258 struct drm_connector_state *old_conn_state, *new_conn_state; 14259 int i; 14260 14261 for_each_intel_encoder(&dev_priv->drm, encoder) { 14262 bool enabled = false, found = false; 14263 enum pipe pipe; 14264 14265 drm_dbg_kms(&dev_priv->drm, "[ENCODER:%d:%s]\n", 14266 encoder->base.base.id, 14267 encoder->base.name); 14268 14269 for_each_oldnew_connector_in_state(&state->base, connector, old_conn_state, 14270 new_conn_state, i) { 14271 if (old_conn_state->best_encoder == &encoder->base) 14272 found = true; 14273 14274 if (new_conn_state->best_encoder != &encoder->base) 14275 continue; 14276 found = enabled = true; 14277 14278 I915_STATE_WARN(new_conn_state->crtc != 14279 encoder->base.crtc, 14280 "connector's crtc doesn't match encoder crtc\n"); 14281 } 14282 14283 if (!found) 14284 continue; 14285 14286 I915_STATE_WARN(!!encoder->base.crtc != enabled, 14287 "encoder's enabled state mismatch " 14288 "(expected %i, found %i)\n", 14289 !!encoder->base.crtc, enabled); 14290 14291 if (!encoder->base.crtc) { 14292 bool active; 14293 14294 active = encoder->get_hw_state(encoder, &pipe); 14295 I915_STATE_WARN(active, 14296 "encoder detached but still enabled on pipe %c.\n", 14297 pipe_name(pipe)); 14298 } 14299 } 14300 } 14301 14302 static void 14303 verify_crtc_state(struct intel_crtc *crtc, 14304 struct intel_crtc_state *old_crtc_state, 14305 struct intel_crtc_state *new_crtc_state) 14306 { 14307 struct drm_device *dev = crtc->base.dev; 14308 struct drm_i915_private *dev_priv = to_i915(dev); 14309 struct intel_encoder *encoder; 14310 struct intel_crtc_state *pipe_config = old_crtc_state; 14311 struct drm_atomic_state *state = old_crtc_state->uapi.state; 14312 14313 __drm_atomic_helper_crtc_destroy_state(&old_crtc_state->uapi); 14314 intel_crtc_free_hw_state(old_crtc_state); 14315 intel_crtc_state_reset(old_crtc_state, crtc); 14316 old_crtc_state->uapi.state = state; 14317 14318 drm_dbg_kms(&dev_priv->drm, "[CRTC:%d:%s]\n", crtc->base.base.id, 14319 crtc->base.name); 14320 14321 pipe_config->hw.enable = new_crtc_state->hw.enable; 14322 14323 pipe_config->hw.active = 14324 dev_priv->display.get_pipe_config(crtc, pipe_config); 14325 14326 /* we keep both pipes enabled on 830 */ 14327 if (IS_I830(dev_priv) && pipe_config->hw.active) 14328 pipe_config->hw.active = new_crtc_state->hw.active; 14329 14330 I915_STATE_WARN(new_crtc_state->hw.active != pipe_config->hw.active, 14331 "crtc active state doesn't match with hw state " 14332 "(expected %i, found %i)\n", 14333 new_crtc_state->hw.active, pipe_config->hw.active); 14334 14335 I915_STATE_WARN(crtc->active != new_crtc_state->hw.active, 14336 "transitional active state does not match atomic hw state " 14337 "(expected %i, found %i)\n", 14338 new_crtc_state->hw.active, crtc->active); 14339 14340 for_each_encoder_on_crtc(dev, &crtc->base, encoder) { 14341 enum pipe pipe; 14342 bool active; 14343 14344 active = encoder->get_hw_state(encoder, &pipe); 14345 I915_STATE_WARN(active != new_crtc_state->hw.active, 14346 "[ENCODER:%i] active %i with crtc active %i\n", 14347 encoder->base.base.id, active, 14348 new_crtc_state->hw.active); 14349 14350 I915_STATE_WARN(active && crtc->pipe != pipe, 14351 "Encoder connected to wrong pipe %c\n", 14352 pipe_name(pipe)); 14353 14354 if (active) 14355 encoder->get_config(encoder, pipe_config); 14356 } 14357 14358 intel_crtc_compute_pixel_rate(pipe_config); 14359 14360 if (!new_crtc_state->hw.active) 14361 return; 14362 14363 intel_pipe_config_sanity_check(dev_priv, pipe_config); 14364 14365 if (!intel_pipe_config_compare(new_crtc_state, 14366 pipe_config, false)) { 14367 I915_STATE_WARN(1, "pipe state doesn't match!\n"); 14368 intel_dump_pipe_config(pipe_config, NULL, "[hw state]"); 14369 intel_dump_pipe_config(new_crtc_state, NULL, "[sw state]"); 14370 } 14371 } 14372 14373 static void 14374 intel_verify_planes(struct intel_atomic_state *state) 14375 { 14376 struct intel_plane *plane; 14377 const struct intel_plane_state *plane_state; 14378 int i; 14379 14380 for_each_new_intel_plane_in_state(state, plane, 14381 plane_state, i) 14382 assert_plane(plane, plane_state->planar_slave || 14383 plane_state->uapi.visible); 14384 } 14385 14386 static void 14387 verify_single_dpll_state(struct drm_i915_private *dev_priv, 14388 struct intel_shared_dpll *pll, 14389 struct intel_crtc *crtc, 14390 struct intel_crtc_state *new_crtc_state) 14391 { 14392 struct intel_dpll_hw_state dpll_hw_state; 14393 unsigned int crtc_mask; 14394 bool active; 14395 14396 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state)); 14397 14398 drm_dbg_kms(&dev_priv->drm, "%s\n", pll->info->name); 14399 14400 active = pll->info->funcs->get_hw_state(dev_priv, pll, &dpll_hw_state); 14401 14402 if (!(pll->info->flags & INTEL_DPLL_ALWAYS_ON)) { 14403 I915_STATE_WARN(!pll->on && pll->active_mask, 14404 "pll in active use but not on in sw tracking\n"); 14405 I915_STATE_WARN(pll->on && !pll->active_mask, 14406 "pll is on but not used by any active crtc\n"); 14407 I915_STATE_WARN(pll->on != active, 14408 "pll on state mismatch (expected %i, found %i)\n", 14409 pll->on, active); 14410 } 14411 14412 if (!crtc) { 14413 I915_STATE_WARN(pll->active_mask & ~pll->state.crtc_mask, 14414 "more active pll users than references: %x vs %x\n", 14415 pll->active_mask, pll->state.crtc_mask); 14416 14417 return; 14418 } 14419 14420 crtc_mask = drm_crtc_mask(&crtc->base); 14421 14422 if (new_crtc_state->hw.active) 14423 I915_STATE_WARN(!(pll->active_mask & crtc_mask), 14424 "pll active mismatch (expected pipe %c in active mask 0x%02x)\n", 14425 pipe_name(crtc->pipe), pll->active_mask); 14426 else 14427 I915_STATE_WARN(pll->active_mask & crtc_mask, 14428 "pll active mismatch (didn't expect pipe %c in active mask 0x%02x)\n", 14429 pipe_name(crtc->pipe), pll->active_mask); 14430 14431 I915_STATE_WARN(!(pll->state.crtc_mask & crtc_mask), 14432 "pll enabled crtcs mismatch (expected 0x%x in 0x%02x)\n", 14433 crtc_mask, pll->state.crtc_mask); 14434 14435 I915_STATE_WARN(pll->on && memcmp(&pll->state.hw_state, 14436 &dpll_hw_state, 14437 sizeof(dpll_hw_state)), 14438 "pll hw state mismatch\n"); 14439 } 14440 14441 static void 14442 verify_shared_dpll_state(struct intel_crtc *crtc, 14443 struct intel_crtc_state *old_crtc_state, 14444 struct intel_crtc_state *new_crtc_state) 14445 { 14446 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 14447 14448 if (new_crtc_state->shared_dpll) 14449 verify_single_dpll_state(dev_priv, new_crtc_state->shared_dpll, crtc, new_crtc_state); 14450 14451 if (old_crtc_state->shared_dpll && 14452 old_crtc_state->shared_dpll != new_crtc_state->shared_dpll) { 14453 unsigned int crtc_mask = drm_crtc_mask(&crtc->base); 14454 struct intel_shared_dpll *pll = old_crtc_state->shared_dpll; 14455 14456 I915_STATE_WARN(pll->active_mask & crtc_mask, 14457 "pll active mismatch (didn't expect pipe %c in active mask)\n", 14458 pipe_name(crtc->pipe)); 14459 I915_STATE_WARN(pll->state.crtc_mask & crtc_mask, 14460 "pll enabled crtcs mismatch (found %x in enabled mask)\n", 14461 pipe_name(crtc->pipe)); 14462 } 14463 } 14464 14465 static void 14466 intel_modeset_verify_crtc(struct intel_crtc *crtc, 14467 struct intel_atomic_state *state, 14468 struct intel_crtc_state *old_crtc_state, 14469 struct intel_crtc_state *new_crtc_state) 14470 { 14471 if (!needs_modeset(new_crtc_state) && !new_crtc_state->update_pipe) 14472 return; 14473 14474 verify_wm_state(crtc, new_crtc_state); 14475 verify_connector_state(state, crtc); 14476 verify_crtc_state(crtc, old_crtc_state, new_crtc_state); 14477 verify_shared_dpll_state(crtc, old_crtc_state, new_crtc_state); 14478 } 14479 14480 static void 14481 verify_disabled_dpll_state(struct drm_i915_private *dev_priv) 14482 { 14483 int i; 14484 14485 for (i = 0; i < dev_priv->dpll.num_shared_dpll; i++) 14486 verify_single_dpll_state(dev_priv, 14487 &dev_priv->dpll.shared_dplls[i], 14488 NULL, NULL); 14489 } 14490 14491 static void 14492 intel_modeset_verify_disabled(struct drm_i915_private *dev_priv, 14493 struct intel_atomic_state *state) 14494 { 14495 verify_encoder_state(dev_priv, state); 14496 verify_connector_state(state, NULL); 14497 verify_disabled_dpll_state(dev_priv); 14498 } 14499 14500 static void 14501 intel_crtc_update_active_timings(const struct intel_crtc_state *crtc_state) 14502 { 14503 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 14504 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 14505 const struct drm_display_mode *adjusted_mode = 14506 &crtc_state->hw.adjusted_mode; 14507 14508 drm_calc_timestamping_constants(&crtc->base, adjusted_mode); 14509 14510 crtc->mode_flags = crtc_state->mode_flags; 14511 14512 /* 14513 * The scanline counter increments at the leading edge of hsync. 14514 * 14515 * On most platforms it starts counting from vtotal-1 on the 14516 * first active line. That means the scanline counter value is 14517 * always one less than what we would expect. Ie. just after 14518 * start of vblank, which also occurs at start of hsync (on the 14519 * last active line), the scanline counter will read vblank_start-1. 14520 * 14521 * On gen2 the scanline counter starts counting from 1 instead 14522 * of vtotal-1, so we have to subtract one (or rather add vtotal-1 14523 * to keep the value positive), instead of adding one. 14524 * 14525 * On HSW+ the behaviour of the scanline counter depends on the output 14526 * type. For DP ports it behaves like most other platforms, but on HDMI 14527 * there's an extra 1 line difference. So we need to add two instead of 14528 * one to the value. 14529 * 14530 * On VLV/CHV DSI the scanline counter would appear to increment 14531 * approx. 1/3 of a scanline before start of vblank. Unfortunately 14532 * that means we can't tell whether we're in vblank or not while 14533 * we're on that particular line. We must still set scanline_offset 14534 * to 1 so that the vblank timestamps come out correct when we query 14535 * the scanline counter from within the vblank interrupt handler. 14536 * However if queried just before the start of vblank we'll get an 14537 * answer that's slightly in the future. 14538 */ 14539 if (IS_GEN(dev_priv, 2)) { 14540 int vtotal; 14541 14542 vtotal = adjusted_mode->crtc_vtotal; 14543 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) 14544 vtotal /= 2; 14545 14546 crtc->scanline_offset = vtotal - 1; 14547 } else if (HAS_DDI(dev_priv) && 14548 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) { 14549 crtc->scanline_offset = 2; 14550 } else { 14551 crtc->scanline_offset = 1; 14552 } 14553 } 14554 14555 static void intel_modeset_clear_plls(struct intel_atomic_state *state) 14556 { 14557 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 14558 struct intel_crtc_state *new_crtc_state; 14559 struct intel_crtc *crtc; 14560 int i; 14561 14562 if (!dev_priv->display.crtc_compute_clock) 14563 return; 14564 14565 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 14566 if (!needs_modeset(new_crtc_state)) 14567 continue; 14568 14569 intel_release_shared_dplls(state, crtc); 14570 } 14571 } 14572 14573 /* 14574 * This implements the workaround described in the "notes" section of the mode 14575 * set sequence documentation. When going from no pipes or single pipe to 14576 * multiple pipes, and planes are enabled after the pipe, we need to wait at 14577 * least 2 vblanks on the first pipe before enabling planes on the second pipe. 14578 */ 14579 static int hsw_mode_set_planes_workaround(struct intel_atomic_state *state) 14580 { 14581 struct intel_crtc_state *crtc_state; 14582 struct intel_crtc *crtc; 14583 struct intel_crtc_state *first_crtc_state = NULL; 14584 struct intel_crtc_state *other_crtc_state = NULL; 14585 enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE; 14586 int i; 14587 14588 /* look at all crtc's that are going to be enabled in during modeset */ 14589 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 14590 if (!crtc_state->hw.active || 14591 !needs_modeset(crtc_state)) 14592 continue; 14593 14594 if (first_crtc_state) { 14595 other_crtc_state = crtc_state; 14596 break; 14597 } else { 14598 first_crtc_state = crtc_state; 14599 first_pipe = crtc->pipe; 14600 } 14601 } 14602 14603 /* No workaround needed? */ 14604 if (!first_crtc_state) 14605 return 0; 14606 14607 /* w/a possibly needed, check how many crtc's are already enabled. */ 14608 for_each_intel_crtc(state->base.dev, crtc) { 14609 crtc_state = intel_atomic_get_crtc_state(&state->base, crtc); 14610 if (IS_ERR(crtc_state)) 14611 return PTR_ERR(crtc_state); 14612 14613 crtc_state->hsw_workaround_pipe = INVALID_PIPE; 14614 14615 if (!crtc_state->hw.active || 14616 needs_modeset(crtc_state)) 14617 continue; 14618 14619 /* 2 or more enabled crtcs means no need for w/a */ 14620 if (enabled_pipe != INVALID_PIPE) 14621 return 0; 14622 14623 enabled_pipe = crtc->pipe; 14624 } 14625 14626 if (enabled_pipe != INVALID_PIPE) 14627 first_crtc_state->hsw_workaround_pipe = enabled_pipe; 14628 else if (other_crtc_state) 14629 other_crtc_state->hsw_workaround_pipe = first_pipe; 14630 14631 return 0; 14632 } 14633 14634 u8 intel_calc_active_pipes(struct intel_atomic_state *state, 14635 u8 active_pipes) 14636 { 14637 const struct intel_crtc_state *crtc_state; 14638 struct intel_crtc *crtc; 14639 int i; 14640 14641 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 14642 if (crtc_state->hw.active) 14643 active_pipes |= BIT(crtc->pipe); 14644 else 14645 active_pipes &= ~BIT(crtc->pipe); 14646 } 14647 14648 return active_pipes; 14649 } 14650 14651 static int intel_modeset_checks(struct intel_atomic_state *state) 14652 { 14653 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 14654 14655 state->modeset = true; 14656 14657 if (IS_HASWELL(dev_priv)) 14658 return hsw_mode_set_planes_workaround(state); 14659 14660 return 0; 14661 } 14662 14663 /* 14664 * Handle calculation of various watermark data at the end of the atomic check 14665 * phase. The code here should be run after the per-crtc and per-plane 'check' 14666 * handlers to ensure that all derived state has been updated. 14667 */ 14668 static int calc_watermark_data(struct intel_atomic_state *state) 14669 { 14670 struct drm_device *dev = state->base.dev; 14671 struct drm_i915_private *dev_priv = to_i915(dev); 14672 14673 /* Is there platform-specific watermark information to calculate? */ 14674 if (dev_priv->display.compute_global_watermarks) 14675 return dev_priv->display.compute_global_watermarks(state); 14676 14677 return 0; 14678 } 14679 14680 static void intel_crtc_check_fastset(const struct intel_crtc_state *old_crtc_state, 14681 struct intel_crtc_state *new_crtc_state) 14682 { 14683 if (!intel_pipe_config_compare(old_crtc_state, new_crtc_state, true)) 14684 return; 14685 14686 new_crtc_state->uapi.mode_changed = false; 14687 new_crtc_state->update_pipe = true; 14688 } 14689 14690 static void intel_crtc_copy_fastset(const struct intel_crtc_state *old_crtc_state, 14691 struct intel_crtc_state *new_crtc_state) 14692 { 14693 /* 14694 * If we're not doing the full modeset we want to 14695 * keep the current M/N values as they may be 14696 * sufficiently different to the computed values 14697 * to cause problems. 14698 * 14699 * FIXME: should really copy more fuzzy state here 14700 */ 14701 new_crtc_state->fdi_m_n = old_crtc_state->fdi_m_n; 14702 new_crtc_state->dp_m_n = old_crtc_state->dp_m_n; 14703 new_crtc_state->dp_m2_n2 = old_crtc_state->dp_m2_n2; 14704 new_crtc_state->has_drrs = old_crtc_state->has_drrs; 14705 } 14706 14707 static int intel_crtc_add_planes_to_state(struct intel_atomic_state *state, 14708 struct intel_crtc *crtc, 14709 u8 plane_ids_mask) 14710 { 14711 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 14712 struct intel_plane *plane; 14713 14714 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) { 14715 struct intel_plane_state *plane_state; 14716 14717 if ((plane_ids_mask & BIT(plane->id)) == 0) 14718 continue; 14719 14720 plane_state = intel_atomic_get_plane_state(state, plane); 14721 if (IS_ERR(plane_state)) 14722 return PTR_ERR(plane_state); 14723 } 14724 14725 return 0; 14726 } 14727 14728 static bool active_planes_affects_min_cdclk(struct drm_i915_private *dev_priv) 14729 { 14730 /* See {hsw,vlv,ivb}_plane_ratio() */ 14731 return IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv) || 14732 IS_CHERRYVIEW(dev_priv) || IS_VALLEYVIEW(dev_priv) || 14733 IS_IVYBRIDGE(dev_priv) || (INTEL_GEN(dev_priv) >= 11); 14734 } 14735 14736 static int intel_atomic_check_planes(struct intel_atomic_state *state) 14737 { 14738 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 14739 struct intel_crtc_state *old_crtc_state, *new_crtc_state; 14740 struct intel_plane_state *plane_state; 14741 struct intel_plane *plane; 14742 struct intel_crtc *crtc; 14743 int i, ret; 14744 14745 ret = icl_add_linked_planes(state); 14746 if (ret) 14747 return ret; 14748 14749 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 14750 ret = intel_plane_atomic_check(state, plane); 14751 if (ret) { 14752 drm_dbg_atomic(&dev_priv->drm, 14753 "[PLANE:%d:%s] atomic driver check failed\n", 14754 plane->base.base.id, plane->base.name); 14755 return ret; 14756 } 14757 } 14758 14759 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 14760 new_crtc_state, i) { 14761 u8 old_active_planes, new_active_planes; 14762 14763 ret = icl_check_nv12_planes(new_crtc_state); 14764 if (ret) 14765 return ret; 14766 14767 /* 14768 * On some platforms the number of active planes affects 14769 * the planes' minimum cdclk calculation. Add such planes 14770 * to the state before we compute the minimum cdclk. 14771 */ 14772 if (!active_planes_affects_min_cdclk(dev_priv)) 14773 continue; 14774 14775 old_active_planes = old_crtc_state->active_planes & ~BIT(PLANE_CURSOR); 14776 new_active_planes = new_crtc_state->active_planes & ~BIT(PLANE_CURSOR); 14777 14778 /* 14779 * Not only the number of planes, but if the plane configuration had 14780 * changed might already mean we need to recompute min CDCLK, 14781 * because different planes might consume different amount of Dbuf bandwidth 14782 * according to formula: Bw per plane = Pixel rate * bpp * pipe/plane scale factor 14783 */ 14784 if (old_active_planes == new_active_planes) 14785 continue; 14786 14787 ret = intel_crtc_add_planes_to_state(state, crtc, new_active_planes); 14788 if (ret) 14789 return ret; 14790 } 14791 14792 return 0; 14793 } 14794 14795 static int intel_atomic_check_cdclk(struct intel_atomic_state *state, 14796 bool *need_cdclk_calc) 14797 { 14798 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 14799 const struct intel_cdclk_state *old_cdclk_state; 14800 const struct intel_cdclk_state *new_cdclk_state; 14801 struct intel_plane_state *plane_state; 14802 struct intel_bw_state *new_bw_state; 14803 struct intel_plane *plane; 14804 int min_cdclk = 0; 14805 enum pipe pipe; 14806 int ret; 14807 int i; 14808 /* 14809 * active_planes bitmask has been updated, and potentially 14810 * affected planes are part of the state. We can now 14811 * compute the minimum cdclk for each plane. 14812 */ 14813 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 14814 ret = intel_plane_calc_min_cdclk(state, plane, need_cdclk_calc); 14815 if (ret) 14816 return ret; 14817 } 14818 14819 old_cdclk_state = intel_atomic_get_old_cdclk_state(state); 14820 new_cdclk_state = intel_atomic_get_new_cdclk_state(state); 14821 14822 if (new_cdclk_state && 14823 old_cdclk_state->force_min_cdclk != new_cdclk_state->force_min_cdclk) 14824 *need_cdclk_calc = true; 14825 14826 ret = dev_priv->display.bw_calc_min_cdclk(state); 14827 if (ret) 14828 return ret; 14829 14830 new_bw_state = intel_atomic_get_new_bw_state(state); 14831 14832 if (!new_cdclk_state || !new_bw_state) 14833 return 0; 14834 14835 for_each_pipe(dev_priv, pipe) { 14836 min_cdclk = max(new_cdclk_state->min_cdclk[pipe], min_cdclk); 14837 14838 /* 14839 * Currently do this change only if we need to increase 14840 */ 14841 if (new_bw_state->min_cdclk > min_cdclk) 14842 *need_cdclk_calc = true; 14843 } 14844 14845 return 0; 14846 } 14847 14848 static int intel_atomic_check_crtcs(struct intel_atomic_state *state) 14849 { 14850 struct intel_crtc_state *crtc_state; 14851 struct intel_crtc *crtc; 14852 int i; 14853 14854 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 14855 int ret = intel_crtc_atomic_check(state, crtc); 14856 struct drm_i915_private *i915 = to_i915(crtc->base.dev); 14857 if (ret) { 14858 drm_dbg_atomic(&i915->drm, 14859 "[CRTC:%d:%s] atomic driver check failed\n", 14860 crtc->base.base.id, crtc->base.name); 14861 return ret; 14862 } 14863 } 14864 14865 return 0; 14866 } 14867 14868 static bool intel_cpu_transcoders_need_modeset(struct intel_atomic_state *state, 14869 u8 transcoders) 14870 { 14871 const struct intel_crtc_state *new_crtc_state; 14872 struct intel_crtc *crtc; 14873 int i; 14874 14875 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 14876 if (new_crtc_state->hw.enable && 14877 transcoders & BIT(new_crtc_state->cpu_transcoder) && 14878 needs_modeset(new_crtc_state)) 14879 return true; 14880 } 14881 14882 return false; 14883 } 14884 14885 /** 14886 * intel_atomic_check - validate state object 14887 * @dev: drm device 14888 * @_state: state to validate 14889 */ 14890 static int intel_atomic_check(struct drm_device *dev, 14891 struct drm_atomic_state *_state) 14892 { 14893 struct drm_i915_private *dev_priv = to_i915(dev); 14894 struct intel_atomic_state *state = to_intel_atomic_state(_state); 14895 struct intel_crtc_state *old_crtc_state, *new_crtc_state; 14896 struct intel_crtc *crtc; 14897 int ret, i; 14898 bool any_ms = false; 14899 14900 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 14901 new_crtc_state, i) { 14902 if (new_crtc_state->inherited != old_crtc_state->inherited) 14903 new_crtc_state->uapi.mode_changed = true; 14904 } 14905 14906 ret = drm_atomic_helper_check_modeset(dev, &state->base); 14907 if (ret) 14908 goto fail; 14909 14910 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 14911 new_crtc_state, i) { 14912 if (!needs_modeset(new_crtc_state)) { 14913 /* Light copy */ 14914 intel_crtc_copy_uapi_to_hw_state_nomodeset(new_crtc_state); 14915 14916 continue; 14917 } 14918 14919 ret = intel_crtc_prepare_cleared_state(new_crtc_state); 14920 if (ret) 14921 goto fail; 14922 14923 if (!new_crtc_state->hw.enable) 14924 continue; 14925 14926 ret = intel_modeset_pipe_config(new_crtc_state); 14927 if (ret) 14928 goto fail; 14929 } 14930 14931 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 14932 new_crtc_state, i) { 14933 if (!needs_modeset(new_crtc_state)) 14934 continue; 14935 14936 ret = intel_modeset_pipe_config_late(new_crtc_state); 14937 if (ret) 14938 goto fail; 14939 14940 intel_crtc_check_fastset(old_crtc_state, new_crtc_state); 14941 } 14942 14943 /** 14944 * Check if fastset is allowed by external dependencies like other 14945 * pipes and transcoders. 14946 * 14947 * Right now it only forces a fullmodeset when the MST master 14948 * transcoder did not changed but the pipe of the master transcoder 14949 * needs a fullmodeset so all slaves also needs to do a fullmodeset or 14950 * in case of port synced crtcs, if one of the synced crtcs 14951 * needs a full modeset, all other synced crtcs should be 14952 * forced a full modeset. 14953 */ 14954 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 14955 if (!new_crtc_state->hw.enable || needs_modeset(new_crtc_state)) 14956 continue; 14957 14958 if (intel_dp_mst_is_slave_trans(new_crtc_state)) { 14959 enum transcoder master = new_crtc_state->mst_master_transcoder; 14960 14961 if (intel_cpu_transcoders_need_modeset(state, BIT(master))) { 14962 new_crtc_state->uapi.mode_changed = true; 14963 new_crtc_state->update_pipe = false; 14964 } 14965 } 14966 14967 if (is_trans_port_sync_mode(new_crtc_state)) { 14968 u8 trans = new_crtc_state->sync_mode_slaves_mask; 14969 14970 if (new_crtc_state->master_transcoder != INVALID_TRANSCODER) 14971 trans |= BIT(new_crtc_state->master_transcoder); 14972 14973 if (intel_cpu_transcoders_need_modeset(state, trans)) { 14974 new_crtc_state->uapi.mode_changed = true; 14975 new_crtc_state->update_pipe = false; 14976 } 14977 } 14978 } 14979 14980 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 14981 new_crtc_state, i) { 14982 if (needs_modeset(new_crtc_state)) { 14983 any_ms = true; 14984 continue; 14985 } 14986 14987 if (!new_crtc_state->update_pipe) 14988 continue; 14989 14990 intel_crtc_copy_fastset(old_crtc_state, new_crtc_state); 14991 } 14992 14993 if (any_ms && !check_digital_port_conflicts(state)) { 14994 drm_dbg_kms(&dev_priv->drm, 14995 "rejecting conflicting digital port configuration\n"); 14996 ret = -EINVAL; 14997 goto fail; 14998 } 14999 15000 ret = drm_dp_mst_atomic_check(&state->base); 15001 if (ret) 15002 goto fail; 15003 15004 ret = intel_atomic_check_planes(state); 15005 if (ret) 15006 goto fail; 15007 15008 /* 15009 * distrust_bios_wm will force a full dbuf recomputation 15010 * but the hardware state will only get updated accordingly 15011 * if state->modeset==true. Hence distrust_bios_wm==true && 15012 * state->modeset==false is an invalid combination which 15013 * would cause the hardware and software dbuf state to get 15014 * out of sync. We must prevent that. 15015 * 15016 * FIXME clean up this mess and introduce better 15017 * state tracking for dbuf. 15018 */ 15019 if (dev_priv->wm.distrust_bios_wm) 15020 any_ms = true; 15021 15022 intel_fbc_choose_crtc(dev_priv, state); 15023 ret = calc_watermark_data(state); 15024 if (ret) 15025 goto fail; 15026 15027 ret = intel_bw_atomic_check(state); 15028 if (ret) 15029 goto fail; 15030 15031 ret = intel_atomic_check_cdclk(state, &any_ms); 15032 if (ret) 15033 goto fail; 15034 15035 if (any_ms) { 15036 ret = intel_modeset_checks(state); 15037 if (ret) 15038 goto fail; 15039 15040 ret = intel_modeset_calc_cdclk(state); 15041 if (ret) 15042 return ret; 15043 15044 intel_modeset_clear_plls(state); 15045 } 15046 15047 ret = intel_atomic_check_crtcs(state); 15048 if (ret) 15049 goto fail; 15050 15051 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 15052 new_crtc_state, i) { 15053 if (!needs_modeset(new_crtc_state) && 15054 !new_crtc_state->update_pipe) 15055 continue; 15056 15057 intel_dump_pipe_config(new_crtc_state, state, 15058 needs_modeset(new_crtc_state) ? 15059 "[modeset]" : "[fastset]"); 15060 } 15061 15062 return 0; 15063 15064 fail: 15065 if (ret == -EDEADLK) 15066 return ret; 15067 15068 /* 15069 * FIXME would probably be nice to know which crtc specifically 15070 * caused the failure, in cases where we can pinpoint it. 15071 */ 15072 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 15073 new_crtc_state, i) 15074 intel_dump_pipe_config(new_crtc_state, state, "[failed]"); 15075 15076 return ret; 15077 } 15078 15079 static int intel_atomic_prepare_commit(struct intel_atomic_state *state) 15080 { 15081 struct intel_crtc_state *crtc_state; 15082 struct intel_crtc *crtc; 15083 int i, ret; 15084 15085 ret = drm_atomic_helper_prepare_planes(state->base.dev, &state->base); 15086 if (ret < 0) 15087 return ret; 15088 15089 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 15090 bool mode_changed = needs_modeset(crtc_state); 15091 15092 if (mode_changed || crtc_state->update_pipe || 15093 crtc_state->uapi.color_mgmt_changed) { 15094 intel_dsb_prepare(crtc_state); 15095 } 15096 } 15097 15098 return 0; 15099 } 15100 15101 u32 intel_crtc_get_vblank_counter(struct intel_crtc *crtc) 15102 { 15103 struct drm_device *dev = crtc->base.dev; 15104 struct drm_vblank_crtc *vblank = &dev->vblank[drm_crtc_index(&crtc->base)]; 15105 15106 if (!vblank->max_vblank_count) 15107 return (u32)drm_crtc_accurate_vblank_count(&crtc->base); 15108 15109 return crtc->base.funcs->get_vblank_counter(&crtc->base); 15110 } 15111 15112 void intel_crtc_arm_fifo_underrun(struct intel_crtc *crtc, 15113 struct intel_crtc_state *crtc_state) 15114 { 15115 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 15116 15117 if (!IS_GEN(dev_priv, 2) || crtc_state->active_planes) 15118 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true); 15119 15120 if (crtc_state->has_pch_encoder) { 15121 enum pipe pch_transcoder = 15122 intel_crtc_pch_transcoder(crtc); 15123 15124 intel_set_pch_fifo_underrun_reporting(dev_priv, pch_transcoder, true); 15125 } 15126 } 15127 15128 static void intel_pipe_fastset(const struct intel_crtc_state *old_crtc_state, 15129 const struct intel_crtc_state *new_crtc_state) 15130 { 15131 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); 15132 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 15133 15134 /* 15135 * Update pipe size and adjust fitter if needed: the reason for this is 15136 * that in compute_mode_changes we check the native mode (not the pfit 15137 * mode) to see if we can flip rather than do a full mode set. In the 15138 * fastboot case, we'll flip, but if we don't update the pipesrc and 15139 * pfit state, we'll end up with a big fb scanned out into the wrong 15140 * sized surface. 15141 */ 15142 intel_set_pipe_src_size(new_crtc_state); 15143 15144 /* on skylake this is done by detaching scalers */ 15145 if (INTEL_GEN(dev_priv) >= 9) { 15146 skl_detach_scalers(new_crtc_state); 15147 15148 if (new_crtc_state->pch_pfit.enabled) 15149 skl_pfit_enable(new_crtc_state); 15150 } else if (HAS_PCH_SPLIT(dev_priv)) { 15151 if (new_crtc_state->pch_pfit.enabled) 15152 ilk_pfit_enable(new_crtc_state); 15153 else if (old_crtc_state->pch_pfit.enabled) 15154 ilk_pfit_disable(old_crtc_state); 15155 } 15156 15157 /* 15158 * The register is supposedly single buffered so perhaps 15159 * not 100% correct to do this here. But SKL+ calculate 15160 * this based on the adjust pixel rate so pfit changes do 15161 * affect it and so it must be updated for fastsets. 15162 * HSW/BDW only really need this here for fastboot, after 15163 * that the value should not change without a full modeset. 15164 */ 15165 if (INTEL_GEN(dev_priv) >= 9 || 15166 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) 15167 hsw_set_linetime_wm(new_crtc_state); 15168 15169 if (INTEL_GEN(dev_priv) >= 11) 15170 icl_set_pipe_chicken(crtc); 15171 } 15172 15173 static void commit_pipe_config(struct intel_atomic_state *state, 15174 struct intel_crtc *crtc) 15175 { 15176 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 15177 const struct intel_crtc_state *old_crtc_state = 15178 intel_atomic_get_old_crtc_state(state, crtc); 15179 const struct intel_crtc_state *new_crtc_state = 15180 intel_atomic_get_new_crtc_state(state, crtc); 15181 bool modeset = needs_modeset(new_crtc_state); 15182 15183 /* 15184 * During modesets pipe configuration was programmed as the 15185 * CRTC was enabled. 15186 */ 15187 if (!modeset) { 15188 if (new_crtc_state->uapi.color_mgmt_changed || 15189 new_crtc_state->update_pipe) 15190 intel_color_commit(new_crtc_state); 15191 15192 if (INTEL_GEN(dev_priv) >= 9) 15193 skl_detach_scalers(new_crtc_state); 15194 15195 if (INTEL_GEN(dev_priv) >= 9 || IS_BROADWELL(dev_priv)) 15196 bdw_set_pipemisc(new_crtc_state); 15197 15198 if (new_crtc_state->update_pipe) 15199 intel_pipe_fastset(old_crtc_state, new_crtc_state); 15200 15201 intel_psr2_program_trans_man_trk_ctl(new_crtc_state); 15202 } 15203 15204 if (dev_priv->display.atomic_update_watermarks) 15205 dev_priv->display.atomic_update_watermarks(state, crtc); 15206 } 15207 15208 static void intel_enable_crtc(struct intel_atomic_state *state, 15209 struct intel_crtc *crtc) 15210 { 15211 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 15212 const struct intel_crtc_state *new_crtc_state = 15213 intel_atomic_get_new_crtc_state(state, crtc); 15214 15215 if (!needs_modeset(new_crtc_state)) 15216 return; 15217 15218 intel_crtc_update_active_timings(new_crtc_state); 15219 15220 dev_priv->display.crtc_enable(state, crtc); 15221 15222 /* vblanks work again, re-enable pipe CRC. */ 15223 intel_crtc_enable_pipe_crc(crtc); 15224 } 15225 15226 static void intel_update_crtc(struct intel_atomic_state *state, 15227 struct intel_crtc *crtc) 15228 { 15229 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 15230 const struct intel_crtc_state *old_crtc_state = 15231 intel_atomic_get_old_crtc_state(state, crtc); 15232 struct intel_crtc_state *new_crtc_state = 15233 intel_atomic_get_new_crtc_state(state, crtc); 15234 bool modeset = needs_modeset(new_crtc_state); 15235 15236 if (!modeset) { 15237 if (new_crtc_state->preload_luts && 15238 (new_crtc_state->uapi.color_mgmt_changed || 15239 new_crtc_state->update_pipe)) 15240 intel_color_load_luts(new_crtc_state); 15241 15242 intel_pre_plane_update(state, crtc); 15243 15244 if (new_crtc_state->update_pipe) 15245 intel_encoders_update_pipe(state, crtc); 15246 } 15247 15248 if (new_crtc_state->update_pipe && !new_crtc_state->enable_fbc) 15249 intel_fbc_disable(crtc); 15250 else 15251 intel_fbc_enable(state, crtc); 15252 15253 /* Perform vblank evasion around commit operation */ 15254 intel_pipe_update_start(new_crtc_state); 15255 15256 commit_pipe_config(state, crtc); 15257 15258 if (INTEL_GEN(dev_priv) >= 9) 15259 skl_update_planes_on_crtc(state, crtc); 15260 else 15261 i9xx_update_planes_on_crtc(state, crtc); 15262 15263 intel_pipe_update_end(new_crtc_state); 15264 15265 /* 15266 * We usually enable FIFO underrun interrupts as part of the 15267 * CRTC enable sequence during modesets. But when we inherit a 15268 * valid pipe configuration from the BIOS we need to take care 15269 * of enabling them on the CRTC's first fastset. 15270 */ 15271 if (new_crtc_state->update_pipe && !modeset && 15272 old_crtc_state->inherited) 15273 intel_crtc_arm_fifo_underrun(crtc, new_crtc_state); 15274 } 15275 15276 15277 static void intel_old_crtc_state_disables(struct intel_atomic_state *state, 15278 struct intel_crtc_state *old_crtc_state, 15279 struct intel_crtc_state *new_crtc_state, 15280 struct intel_crtc *crtc) 15281 { 15282 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 15283 15284 intel_crtc_disable_planes(state, crtc); 15285 15286 /* 15287 * We need to disable pipe CRC before disabling the pipe, 15288 * or we race against vblank off. 15289 */ 15290 intel_crtc_disable_pipe_crc(crtc); 15291 15292 dev_priv->display.crtc_disable(state, crtc); 15293 crtc->active = false; 15294 intel_fbc_disable(crtc); 15295 intel_disable_shared_dpll(old_crtc_state); 15296 15297 /* FIXME unify this for all platforms */ 15298 if (!new_crtc_state->hw.active && 15299 !HAS_GMCH(dev_priv) && 15300 dev_priv->display.initial_watermarks) 15301 dev_priv->display.initial_watermarks(state, crtc); 15302 } 15303 15304 static void intel_commit_modeset_disables(struct intel_atomic_state *state) 15305 { 15306 struct intel_crtc_state *new_crtc_state, *old_crtc_state; 15307 struct intel_crtc *crtc; 15308 u32 handled = 0; 15309 int i; 15310 15311 /* Only disable port sync and MST slaves */ 15312 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 15313 new_crtc_state, i) { 15314 if (!needs_modeset(new_crtc_state)) 15315 continue; 15316 15317 if (!old_crtc_state->hw.active) 15318 continue; 15319 15320 /* In case of Transcoder port Sync master slave CRTCs can be 15321 * assigned in any order and we need to make sure that 15322 * slave CRTCs are disabled first and then master CRTC since 15323 * Slave vblanks are masked till Master Vblanks. 15324 */ 15325 if (!is_trans_port_sync_slave(old_crtc_state) && 15326 !intel_dp_mst_is_slave_trans(old_crtc_state)) 15327 continue; 15328 15329 intel_pre_plane_update(state, crtc); 15330 intel_old_crtc_state_disables(state, old_crtc_state, 15331 new_crtc_state, crtc); 15332 handled |= BIT(crtc->pipe); 15333 } 15334 15335 /* Disable everything else left on */ 15336 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 15337 new_crtc_state, i) { 15338 if (!needs_modeset(new_crtc_state) || 15339 (handled & BIT(crtc->pipe))) 15340 continue; 15341 15342 intel_pre_plane_update(state, crtc); 15343 if (old_crtc_state->hw.active) 15344 intel_old_crtc_state_disables(state, old_crtc_state, 15345 new_crtc_state, crtc); 15346 } 15347 } 15348 15349 static void intel_commit_modeset_enables(struct intel_atomic_state *state) 15350 { 15351 struct intel_crtc_state *new_crtc_state; 15352 struct intel_crtc *crtc; 15353 int i; 15354 15355 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 15356 if (!new_crtc_state->hw.active) 15357 continue; 15358 15359 intel_enable_crtc(state, crtc); 15360 intel_update_crtc(state, crtc); 15361 } 15362 } 15363 15364 static void skl_commit_modeset_enables(struct intel_atomic_state *state) 15365 { 15366 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 15367 struct intel_crtc *crtc; 15368 struct intel_crtc_state *old_crtc_state, *new_crtc_state; 15369 struct skl_ddb_entry entries[I915_MAX_PIPES] = {}; 15370 u8 update_pipes = 0, modeset_pipes = 0; 15371 int i; 15372 15373 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 15374 enum pipe pipe = crtc->pipe; 15375 15376 if (!new_crtc_state->hw.active) 15377 continue; 15378 15379 /* ignore allocations for crtc's that have been turned off. */ 15380 if (!needs_modeset(new_crtc_state)) { 15381 entries[pipe] = old_crtc_state->wm.skl.ddb; 15382 update_pipes |= BIT(pipe); 15383 } else { 15384 modeset_pipes |= BIT(pipe); 15385 } 15386 } 15387 15388 /* 15389 * Whenever the number of active pipes changes, we need to make sure we 15390 * update the pipes in the right order so that their ddb allocations 15391 * never overlap with each other between CRTC updates. Otherwise we'll 15392 * cause pipe underruns and other bad stuff. 15393 * 15394 * So first lets enable all pipes that do not need a fullmodeset as 15395 * those don't have any external dependency. 15396 */ 15397 while (update_pipes) { 15398 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 15399 new_crtc_state, i) { 15400 enum pipe pipe = crtc->pipe; 15401 15402 if ((update_pipes & BIT(pipe)) == 0) 15403 continue; 15404 15405 if (skl_ddb_allocation_overlaps(&new_crtc_state->wm.skl.ddb, 15406 entries, I915_MAX_PIPES, pipe)) 15407 continue; 15408 15409 entries[pipe] = new_crtc_state->wm.skl.ddb; 15410 update_pipes &= ~BIT(pipe); 15411 15412 intel_update_crtc(state, crtc); 15413 15414 /* 15415 * If this is an already active pipe, it's DDB changed, 15416 * and this isn't the last pipe that needs updating 15417 * then we need to wait for a vblank to pass for the 15418 * new ddb allocation to take effect. 15419 */ 15420 if (!skl_ddb_entry_equal(&new_crtc_state->wm.skl.ddb, 15421 &old_crtc_state->wm.skl.ddb) && 15422 (update_pipes | modeset_pipes)) 15423 intel_wait_for_vblank(dev_priv, pipe); 15424 } 15425 } 15426 15427 update_pipes = modeset_pipes; 15428 15429 /* 15430 * Enable all pipes that needs a modeset and do not depends on other 15431 * pipes 15432 */ 15433 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 15434 enum pipe pipe = crtc->pipe; 15435 15436 if ((modeset_pipes & BIT(pipe)) == 0) 15437 continue; 15438 15439 if (intel_dp_mst_is_slave_trans(new_crtc_state) || 15440 is_trans_port_sync_master(new_crtc_state)) 15441 continue; 15442 15443 modeset_pipes &= ~BIT(pipe); 15444 15445 intel_enable_crtc(state, crtc); 15446 } 15447 15448 /* 15449 * Then we enable all remaining pipes that depend on other 15450 * pipes: MST slaves and port sync masters. 15451 */ 15452 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 15453 enum pipe pipe = crtc->pipe; 15454 15455 if ((modeset_pipes & BIT(pipe)) == 0) 15456 continue; 15457 15458 modeset_pipes &= ~BIT(pipe); 15459 15460 intel_enable_crtc(state, crtc); 15461 } 15462 15463 /* 15464 * Finally we do the plane updates/etc. for all pipes that got enabled. 15465 */ 15466 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 15467 enum pipe pipe = crtc->pipe; 15468 15469 if ((update_pipes & BIT(pipe)) == 0) 15470 continue; 15471 15472 drm_WARN_ON(&dev_priv->drm, skl_ddb_allocation_overlaps(&new_crtc_state->wm.skl.ddb, 15473 entries, I915_MAX_PIPES, pipe)); 15474 15475 entries[pipe] = new_crtc_state->wm.skl.ddb; 15476 update_pipes &= ~BIT(pipe); 15477 15478 intel_update_crtc(state, crtc); 15479 } 15480 15481 drm_WARN_ON(&dev_priv->drm, modeset_pipes); 15482 drm_WARN_ON(&dev_priv->drm, update_pipes); 15483 } 15484 15485 static void intel_atomic_helper_free_state(struct drm_i915_private *dev_priv) 15486 { 15487 struct intel_atomic_state *state, *next; 15488 struct llist_node *freed; 15489 15490 freed = llist_del_all(&dev_priv->atomic_helper.free_list); 15491 llist_for_each_entry_safe(state, next, freed, freed) 15492 drm_atomic_state_put(&state->base); 15493 } 15494 15495 static void intel_atomic_helper_free_state_worker(struct work_struct *work) 15496 { 15497 struct drm_i915_private *dev_priv = 15498 container_of(work, typeof(*dev_priv), atomic_helper.free_work); 15499 15500 intel_atomic_helper_free_state(dev_priv); 15501 } 15502 15503 static void intel_atomic_commit_fence_wait(struct intel_atomic_state *intel_state) 15504 { 15505 struct wait_queue_entry wait_fence, wait_reset; 15506 struct drm_i915_private *dev_priv = to_i915(intel_state->base.dev); 15507 15508 #ifdef notyet 15509 init_wait_entry(&wait_fence, 0); 15510 init_wait_entry(&wait_reset, 0); 15511 for (;;) { 15512 prepare_to_wait(&intel_state->commit_ready.wait, 15513 &wait_fence, TASK_UNINTERRUPTIBLE); 15514 prepare_to_wait(bit_waitqueue(&dev_priv->gt.reset.flags, 15515 I915_RESET_MODESET), 15516 &wait_reset, TASK_UNINTERRUPTIBLE); 15517 15518 15519 if (i915_sw_fence_done(&intel_state->commit_ready) || 15520 test_bit(I915_RESET_MODESET, &dev_priv->gt.reset.flags)) 15521 break; 15522 15523 schedule(); 15524 } 15525 finish_wait(&intel_state->commit_ready.wait, &wait_fence); 15526 finish_wait(bit_waitqueue(&dev_priv->gt.reset.flags, 15527 I915_RESET_MODESET), 15528 &wait_reset); 15529 #else 15530 /* XXX above recurses sch_mtx */ 15531 init_wait_entry(&wait_fence, 0); 15532 for (;;) { 15533 prepare_to_wait(&intel_state->commit_ready.wait, 15534 &wait_fence, TASK_UNINTERRUPTIBLE); 15535 15536 15537 if (i915_sw_fence_done(&intel_state->commit_ready) || 15538 test_bit(I915_RESET_MODESET, &dev_priv->gt.reset.flags)) 15539 break; 15540 15541 schedule(); 15542 } 15543 finish_wait(&intel_state->commit_ready.wait, &wait_fence); 15544 #endif 15545 } 15546 15547 static void intel_cleanup_dsbs(struct intel_atomic_state *state) 15548 { 15549 struct intel_crtc_state *old_crtc_state, *new_crtc_state; 15550 struct intel_crtc *crtc; 15551 int i; 15552 15553 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 15554 new_crtc_state, i) 15555 intel_dsb_cleanup(old_crtc_state); 15556 } 15557 15558 static void intel_atomic_cleanup_work(struct work_struct *work) 15559 { 15560 struct intel_atomic_state *state = 15561 container_of(work, struct intel_atomic_state, base.commit_work); 15562 struct drm_i915_private *i915 = to_i915(state->base.dev); 15563 15564 intel_cleanup_dsbs(state); 15565 drm_atomic_helper_cleanup_planes(&i915->drm, &state->base); 15566 drm_atomic_helper_commit_cleanup_done(&state->base); 15567 drm_atomic_state_put(&state->base); 15568 15569 intel_atomic_helper_free_state(i915); 15570 } 15571 15572 static void intel_atomic_commit_tail(struct intel_atomic_state *state) 15573 { 15574 struct drm_device *dev = state->base.dev; 15575 struct drm_i915_private *dev_priv = to_i915(dev); 15576 struct intel_crtc_state *new_crtc_state, *old_crtc_state; 15577 struct intel_crtc *crtc; 15578 u64 put_domains[I915_MAX_PIPES] = {}; 15579 intel_wakeref_t wakeref = 0; 15580 int i; 15581 15582 intel_atomic_commit_fence_wait(state); 15583 15584 drm_atomic_helper_wait_for_dependencies(&state->base); 15585 15586 if (state->modeset) 15587 wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET); 15588 15589 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 15590 new_crtc_state, i) { 15591 if (needs_modeset(new_crtc_state) || 15592 new_crtc_state->update_pipe) { 15593 15594 put_domains[crtc->pipe] = 15595 modeset_get_crtc_power_domains(new_crtc_state); 15596 } 15597 } 15598 15599 intel_commit_modeset_disables(state); 15600 15601 /* FIXME: Eventually get rid of our crtc->config pointer */ 15602 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) 15603 crtc->config = new_crtc_state; 15604 15605 if (state->modeset) { 15606 drm_atomic_helper_update_legacy_modeset_state(dev, &state->base); 15607 15608 intel_set_cdclk_pre_plane_update(state); 15609 15610 intel_modeset_verify_disabled(dev_priv, state); 15611 } 15612 15613 intel_sagv_pre_plane_update(state); 15614 15615 /* Complete the events for pipes that have now been disabled */ 15616 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 15617 bool modeset = needs_modeset(new_crtc_state); 15618 15619 /* Complete events for now disable pipes here. */ 15620 if (modeset && !new_crtc_state->hw.active && new_crtc_state->uapi.event) { 15621 spin_lock_irq(&dev->event_lock); 15622 drm_crtc_send_vblank_event(&crtc->base, 15623 new_crtc_state->uapi.event); 15624 spin_unlock_irq(&dev->event_lock); 15625 15626 new_crtc_state->uapi.event = NULL; 15627 } 15628 } 15629 15630 if (state->modeset) 15631 intel_encoders_update_prepare(state); 15632 15633 intel_dbuf_pre_plane_update(state); 15634 15635 /* Now enable the clocks, plane, pipe, and connectors that we set up. */ 15636 dev_priv->display.commit_modeset_enables(state); 15637 15638 if (state->modeset) { 15639 intel_encoders_update_complete(state); 15640 15641 intel_set_cdclk_post_plane_update(state); 15642 } 15643 15644 /* FIXME: We should call drm_atomic_helper_commit_hw_done() here 15645 * already, but still need the state for the delayed optimization. To 15646 * fix this: 15647 * - wrap the optimization/post_plane_update stuff into a per-crtc work. 15648 * - schedule that vblank worker _before_ calling hw_done 15649 * - at the start of commit_tail, cancel it _synchrously 15650 * - switch over to the vblank wait helper in the core after that since 15651 * we don't need out special handling any more. 15652 */ 15653 drm_atomic_helper_wait_for_flip_done(dev, &state->base); 15654 15655 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 15656 if (new_crtc_state->hw.active && 15657 !needs_modeset(new_crtc_state) && 15658 !new_crtc_state->preload_luts && 15659 (new_crtc_state->uapi.color_mgmt_changed || 15660 new_crtc_state->update_pipe)) 15661 intel_color_load_luts(new_crtc_state); 15662 } 15663 15664 /* 15665 * Now that the vblank has passed, we can go ahead and program the 15666 * optimal watermarks on platforms that need two-step watermark 15667 * programming. 15668 * 15669 * TODO: Move this (and other cleanup) to an async worker eventually. 15670 */ 15671 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 15672 new_crtc_state, i) { 15673 /* 15674 * Gen2 reports pipe underruns whenever all planes are disabled. 15675 * So re-enable underrun reporting after some planes get enabled. 15676 * 15677 * We do this before .optimize_watermarks() so that we have a 15678 * chance of catching underruns with the intermediate watermarks 15679 * vs. the new plane configuration. 15680 */ 15681 if (IS_GEN(dev_priv, 2) && planes_enabling(old_crtc_state, new_crtc_state)) 15682 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true); 15683 15684 if (dev_priv->display.optimize_watermarks) 15685 dev_priv->display.optimize_watermarks(state, crtc); 15686 } 15687 15688 intel_dbuf_post_plane_update(state); 15689 15690 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 15691 intel_post_plane_update(state, crtc); 15692 15693 if (put_domains[i]) 15694 modeset_put_power_domains(dev_priv, put_domains[i]); 15695 15696 intel_modeset_verify_crtc(crtc, state, old_crtc_state, new_crtc_state); 15697 15698 /* 15699 * DSB cleanup is done in cleanup_work aligning with framebuffer 15700 * cleanup. So copy and reset the dsb structure to sync with 15701 * commit_done and later do dsb cleanup in cleanup_work. 15702 */ 15703 old_crtc_state->dsb = fetch_and_zero(&new_crtc_state->dsb); 15704 } 15705 15706 /* Underruns don't always raise interrupts, so check manually */ 15707 intel_check_cpu_fifo_underruns(dev_priv); 15708 intel_check_pch_fifo_underruns(dev_priv); 15709 15710 if (state->modeset) 15711 intel_verify_planes(state); 15712 15713 intel_sagv_post_plane_update(state); 15714 15715 drm_atomic_helper_commit_hw_done(&state->base); 15716 15717 if (state->modeset) { 15718 /* As one of the primary mmio accessors, KMS has a high 15719 * likelihood of triggering bugs in unclaimed access. After we 15720 * finish modesetting, see if an error has been flagged, and if 15721 * so enable debugging for the next modeset - and hope we catch 15722 * the culprit. 15723 */ 15724 intel_uncore_arm_unclaimed_mmio_detection(&dev_priv->uncore); 15725 intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET, wakeref); 15726 } 15727 intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref); 15728 15729 /* 15730 * Defer the cleanup of the old state to a separate worker to not 15731 * impede the current task (userspace for blocking modesets) that 15732 * are executed inline. For out-of-line asynchronous modesets/flips, 15733 * deferring to a new worker seems overkill, but we would place a 15734 * schedule point (cond_resched()) here anyway to keep latencies 15735 * down. 15736 */ 15737 INIT_WORK(&state->base.commit_work, intel_atomic_cleanup_work); 15738 queue_work(system_highpri_wq, &state->base.commit_work); 15739 } 15740 15741 static void intel_atomic_commit_work(struct work_struct *work) 15742 { 15743 struct intel_atomic_state *state = 15744 container_of(work, struct intel_atomic_state, base.commit_work); 15745 15746 intel_atomic_commit_tail(state); 15747 } 15748 15749 static int __i915_sw_fence_call 15750 intel_atomic_commit_ready(struct i915_sw_fence *fence, 15751 enum i915_sw_fence_notify notify) 15752 { 15753 struct intel_atomic_state *state = 15754 container_of(fence, struct intel_atomic_state, commit_ready); 15755 15756 switch (notify) { 15757 case FENCE_COMPLETE: 15758 /* we do blocking waits in the worker, nothing to do here */ 15759 break; 15760 case FENCE_FREE: 15761 { 15762 struct intel_atomic_helper *helper = 15763 &to_i915(state->base.dev)->atomic_helper; 15764 15765 if (llist_add(&state->freed, &helper->free_list)) 15766 schedule_work(&helper->free_work); 15767 break; 15768 } 15769 } 15770 15771 return NOTIFY_DONE; 15772 } 15773 15774 static void intel_atomic_track_fbs(struct intel_atomic_state *state) 15775 { 15776 struct intel_plane_state *old_plane_state, *new_plane_state; 15777 struct intel_plane *plane; 15778 int i; 15779 15780 for_each_oldnew_intel_plane_in_state(state, plane, old_plane_state, 15781 new_plane_state, i) 15782 intel_frontbuffer_track(to_intel_frontbuffer(old_plane_state->hw.fb), 15783 to_intel_frontbuffer(new_plane_state->hw.fb), 15784 plane->frontbuffer_bit); 15785 } 15786 15787 static int intel_atomic_commit(struct drm_device *dev, 15788 struct drm_atomic_state *_state, 15789 bool nonblock) 15790 { 15791 struct intel_atomic_state *state = to_intel_atomic_state(_state); 15792 struct drm_i915_private *dev_priv = to_i915(dev); 15793 int ret = 0; 15794 15795 state->wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm); 15796 15797 drm_atomic_state_get(&state->base); 15798 i915_sw_fence_init(&state->commit_ready, 15799 intel_atomic_commit_ready); 15800 15801 /* 15802 * The intel_legacy_cursor_update() fast path takes care 15803 * of avoiding the vblank waits for simple cursor 15804 * movement and flips. For cursor on/off and size changes, 15805 * we want to perform the vblank waits so that watermark 15806 * updates happen during the correct frames. Gen9+ have 15807 * double buffered watermarks and so shouldn't need this. 15808 * 15809 * Unset state->legacy_cursor_update before the call to 15810 * drm_atomic_helper_setup_commit() because otherwise 15811 * drm_atomic_helper_wait_for_flip_done() is a noop and 15812 * we get FIFO underruns because we didn't wait 15813 * for vblank. 15814 * 15815 * FIXME doing watermarks and fb cleanup from a vblank worker 15816 * (assuming we had any) would solve these problems. 15817 */ 15818 if (INTEL_GEN(dev_priv) < 9 && state->base.legacy_cursor_update) { 15819 struct intel_crtc_state *new_crtc_state; 15820 struct intel_crtc *crtc; 15821 int i; 15822 15823 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) 15824 if (new_crtc_state->wm.need_postvbl_update || 15825 new_crtc_state->update_wm_post) 15826 state->base.legacy_cursor_update = false; 15827 } 15828 15829 ret = intel_atomic_prepare_commit(state); 15830 if (ret) { 15831 drm_dbg_atomic(&dev_priv->drm, 15832 "Preparing state failed with %i\n", ret); 15833 i915_sw_fence_commit(&state->commit_ready); 15834 intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref); 15835 return ret; 15836 } 15837 15838 ret = drm_atomic_helper_setup_commit(&state->base, nonblock); 15839 if (!ret) 15840 ret = drm_atomic_helper_swap_state(&state->base, true); 15841 if (!ret) 15842 intel_atomic_swap_global_state(state); 15843 15844 if (ret) { 15845 struct intel_crtc_state *new_crtc_state; 15846 struct intel_crtc *crtc; 15847 int i; 15848 15849 i915_sw_fence_commit(&state->commit_ready); 15850 15851 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) 15852 intel_dsb_cleanup(new_crtc_state); 15853 15854 drm_atomic_helper_cleanup_planes(dev, &state->base); 15855 intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref); 15856 return ret; 15857 } 15858 dev_priv->wm.distrust_bios_wm = false; 15859 intel_shared_dpll_swap_state(state); 15860 intel_atomic_track_fbs(state); 15861 15862 drm_atomic_state_get(&state->base); 15863 INIT_WORK(&state->base.commit_work, intel_atomic_commit_work); 15864 15865 i915_sw_fence_commit(&state->commit_ready); 15866 if (nonblock && state->modeset) { 15867 queue_work(dev_priv->modeset_wq, &state->base.commit_work); 15868 } else if (nonblock) { 15869 queue_work(dev_priv->flip_wq, &state->base.commit_work); 15870 } else { 15871 if (state->modeset) 15872 flush_workqueue(dev_priv->modeset_wq); 15873 intel_atomic_commit_tail(state); 15874 } 15875 15876 return 0; 15877 } 15878 15879 struct wait_rps_boost { 15880 struct wait_queue_entry wait; 15881 15882 struct drm_crtc *crtc; 15883 struct i915_request *request; 15884 }; 15885 15886 static int do_rps_boost(struct wait_queue_entry *_wait, 15887 unsigned mode, int sync, void *key) 15888 { 15889 struct wait_rps_boost *wait = container_of(_wait, typeof(*wait), wait); 15890 struct i915_request *rq = wait->request; 15891 15892 /* 15893 * If we missed the vblank, but the request is already running it 15894 * is reasonable to assume that it will complete before the next 15895 * vblank without our intervention, so leave RPS alone. 15896 */ 15897 if (!i915_request_started(rq)) 15898 intel_rps_boost(rq); 15899 i915_request_put(rq); 15900 15901 drm_crtc_vblank_put(wait->crtc); 15902 15903 list_del(&wait->wait.entry); 15904 kfree(wait); 15905 return 1; 15906 } 15907 15908 static void add_rps_boost_after_vblank(struct drm_crtc *crtc, 15909 struct dma_fence *fence) 15910 { 15911 struct wait_rps_boost *wait; 15912 15913 if (!dma_fence_is_i915(fence)) 15914 return; 15915 15916 if (INTEL_GEN(to_i915(crtc->dev)) < 6) 15917 return; 15918 15919 if (drm_crtc_vblank_get(crtc)) 15920 return; 15921 15922 wait = kmalloc(sizeof(*wait), GFP_KERNEL); 15923 if (!wait) { 15924 drm_crtc_vblank_put(crtc); 15925 return; 15926 } 15927 15928 wait->request = to_request(dma_fence_get(fence)); 15929 wait->crtc = crtc; 15930 15931 wait->wait.func = do_rps_boost; 15932 wait->wait.flags = 0; 15933 15934 add_wait_queue(drm_crtc_vblank_waitqueue(crtc), &wait->wait); 15935 } 15936 15937 static int intel_plane_pin_fb(struct intel_plane_state *plane_state) 15938 { 15939 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 15940 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 15941 struct drm_framebuffer *fb = plane_state->hw.fb; 15942 struct i915_vma *vma; 15943 15944 if (plane->id == PLANE_CURSOR && 15945 INTEL_INFO(dev_priv)->display.cursor_needs_physical) { 15946 struct drm_i915_gem_object *obj = intel_fb_obj(fb); 15947 const int align = intel_cursor_alignment(dev_priv); 15948 int err; 15949 15950 err = i915_gem_object_attach_phys(obj, align); 15951 if (err) 15952 return err; 15953 } 15954 15955 vma = intel_pin_and_fence_fb_obj(fb, 15956 &plane_state->view, 15957 intel_plane_uses_fence(plane_state), 15958 &plane_state->flags); 15959 if (IS_ERR(vma)) 15960 return PTR_ERR(vma); 15961 15962 plane_state->vma = vma; 15963 15964 return 0; 15965 } 15966 15967 static void intel_plane_unpin_fb(struct intel_plane_state *old_plane_state) 15968 { 15969 struct i915_vma *vma; 15970 15971 vma = fetch_and_zero(&old_plane_state->vma); 15972 if (vma) 15973 intel_unpin_fb_vma(vma, old_plane_state->flags); 15974 } 15975 15976 static void fb_obj_bump_render_priority(struct drm_i915_gem_object *obj) 15977 { 15978 struct i915_sched_attr attr = { 15979 .priority = I915_USER_PRIORITY(I915_PRIORITY_DISPLAY), 15980 }; 15981 15982 i915_gem_object_wait_priority(obj, 0, &attr); 15983 } 15984 15985 /** 15986 * intel_prepare_plane_fb - Prepare fb for usage on plane 15987 * @_plane: drm plane to prepare for 15988 * @_new_plane_state: the plane state being prepared 15989 * 15990 * Prepares a framebuffer for usage on a display plane. Generally this 15991 * involves pinning the underlying object and updating the frontbuffer tracking 15992 * bits. Some older platforms need special physical address handling for 15993 * cursor planes. 15994 * 15995 * Returns 0 on success, negative error code on failure. 15996 */ 15997 int 15998 intel_prepare_plane_fb(struct drm_plane *_plane, 15999 struct drm_plane_state *_new_plane_state) 16000 { 16001 struct intel_plane *plane = to_intel_plane(_plane); 16002 struct intel_plane_state *new_plane_state = 16003 to_intel_plane_state(_new_plane_state); 16004 struct intel_atomic_state *state = 16005 to_intel_atomic_state(new_plane_state->uapi.state); 16006 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 16007 const struct intel_plane_state *old_plane_state = 16008 intel_atomic_get_old_plane_state(state, plane); 16009 struct drm_i915_gem_object *obj = intel_fb_obj(new_plane_state->hw.fb); 16010 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_plane_state->hw.fb); 16011 int ret; 16012 16013 if (old_obj) { 16014 const struct intel_crtc_state *crtc_state = 16015 intel_atomic_get_new_crtc_state(state, 16016 to_intel_crtc(old_plane_state->hw.crtc)); 16017 16018 /* Big Hammer, we also need to ensure that any pending 16019 * MI_WAIT_FOR_EVENT inside a user batch buffer on the 16020 * current scanout is retired before unpinning the old 16021 * framebuffer. Note that we rely on userspace rendering 16022 * into the buffer attached to the pipe they are waiting 16023 * on. If not, userspace generates a GPU hang with IPEHR 16024 * point to the MI_WAIT_FOR_EVENT. 16025 * 16026 * This should only fail upon a hung GPU, in which case we 16027 * can safely continue. 16028 */ 16029 if (needs_modeset(crtc_state)) { 16030 ret = i915_sw_fence_await_reservation(&state->commit_ready, 16031 old_obj->base.resv, NULL, 16032 false, 0, 16033 GFP_KERNEL); 16034 if (ret < 0) 16035 return ret; 16036 } 16037 } 16038 16039 if (new_plane_state->uapi.fence) { /* explicit fencing */ 16040 ret = i915_sw_fence_await_dma_fence(&state->commit_ready, 16041 new_plane_state->uapi.fence, 16042 i915_fence_timeout(dev_priv), 16043 GFP_KERNEL); 16044 if (ret < 0) 16045 return ret; 16046 } 16047 16048 if (!obj) 16049 return 0; 16050 16051 ret = i915_gem_object_pin_pages(obj); 16052 if (ret) 16053 return ret; 16054 16055 ret = intel_plane_pin_fb(new_plane_state); 16056 16057 i915_gem_object_unpin_pages(obj); 16058 if (ret) 16059 return ret; 16060 16061 fb_obj_bump_render_priority(obj); 16062 i915_gem_object_flush_frontbuffer(obj, ORIGIN_DIRTYFB); 16063 16064 if (!new_plane_state->uapi.fence) { /* implicit fencing */ 16065 struct dma_fence *fence; 16066 16067 ret = i915_sw_fence_await_reservation(&state->commit_ready, 16068 obj->base.resv, NULL, 16069 false, 16070 i915_fence_timeout(dev_priv), 16071 GFP_KERNEL); 16072 if (ret < 0) 16073 goto unpin_fb; 16074 16075 fence = dma_resv_get_excl_rcu(obj->base.resv); 16076 if (fence) { 16077 add_rps_boost_after_vblank(new_plane_state->hw.crtc, 16078 fence); 16079 dma_fence_put(fence); 16080 } 16081 } else { 16082 add_rps_boost_after_vblank(new_plane_state->hw.crtc, 16083 new_plane_state->uapi.fence); 16084 } 16085 16086 /* 16087 * We declare pageflips to be interactive and so merit a small bias 16088 * towards upclocking to deliver the frame on time. By only changing 16089 * the RPS thresholds to sample more regularly and aim for higher 16090 * clocks we can hopefully deliver low power workloads (like kodi) 16091 * that are not quite steady state without resorting to forcing 16092 * maximum clocks following a vblank miss (see do_rps_boost()). 16093 */ 16094 if (!state->rps_interactive) { 16095 intel_rps_mark_interactive(&dev_priv->gt.rps, true); 16096 state->rps_interactive = true; 16097 } 16098 16099 return 0; 16100 16101 unpin_fb: 16102 intel_plane_unpin_fb(new_plane_state); 16103 16104 return ret; 16105 } 16106 16107 /** 16108 * intel_cleanup_plane_fb - Cleans up an fb after plane use 16109 * @plane: drm plane to clean up for 16110 * @_old_plane_state: the state from the previous modeset 16111 * 16112 * Cleans up a framebuffer that has just been removed from a plane. 16113 */ 16114 void 16115 intel_cleanup_plane_fb(struct drm_plane *plane, 16116 struct drm_plane_state *_old_plane_state) 16117 { 16118 struct intel_plane_state *old_plane_state = 16119 to_intel_plane_state(_old_plane_state); 16120 struct intel_atomic_state *state = 16121 to_intel_atomic_state(old_plane_state->uapi.state); 16122 struct drm_i915_private *dev_priv = to_i915(plane->dev); 16123 struct drm_i915_gem_object *obj = intel_fb_obj(old_plane_state->hw.fb); 16124 16125 if (!obj) 16126 return; 16127 16128 if (state->rps_interactive) { 16129 intel_rps_mark_interactive(&dev_priv->gt.rps, false); 16130 state->rps_interactive = false; 16131 } 16132 16133 /* Should only be called after a successful intel_prepare_plane_fb()! */ 16134 intel_plane_unpin_fb(old_plane_state); 16135 } 16136 16137 /** 16138 * intel_plane_destroy - destroy a plane 16139 * @plane: plane to destroy 16140 * 16141 * Common destruction function for all types of planes (primary, cursor, 16142 * sprite). 16143 */ 16144 void intel_plane_destroy(struct drm_plane *plane) 16145 { 16146 drm_plane_cleanup(plane); 16147 kfree(to_intel_plane(plane)); 16148 } 16149 16150 static bool i8xx_plane_format_mod_supported(struct drm_plane *_plane, 16151 u32 format, u64 modifier) 16152 { 16153 switch (modifier) { 16154 case DRM_FORMAT_MOD_LINEAR: 16155 case I915_FORMAT_MOD_X_TILED: 16156 break; 16157 default: 16158 return false; 16159 } 16160 16161 switch (format) { 16162 case DRM_FORMAT_C8: 16163 case DRM_FORMAT_RGB565: 16164 case DRM_FORMAT_XRGB1555: 16165 case DRM_FORMAT_XRGB8888: 16166 return modifier == DRM_FORMAT_MOD_LINEAR || 16167 modifier == I915_FORMAT_MOD_X_TILED; 16168 default: 16169 return false; 16170 } 16171 } 16172 16173 static bool i965_plane_format_mod_supported(struct drm_plane *_plane, 16174 u32 format, u64 modifier) 16175 { 16176 switch (modifier) { 16177 case DRM_FORMAT_MOD_LINEAR: 16178 case I915_FORMAT_MOD_X_TILED: 16179 break; 16180 default: 16181 return false; 16182 } 16183 16184 switch (format) { 16185 case DRM_FORMAT_C8: 16186 case DRM_FORMAT_RGB565: 16187 case DRM_FORMAT_XRGB8888: 16188 case DRM_FORMAT_XBGR8888: 16189 case DRM_FORMAT_ARGB8888: 16190 case DRM_FORMAT_ABGR8888: 16191 case DRM_FORMAT_XRGB2101010: 16192 case DRM_FORMAT_XBGR2101010: 16193 case DRM_FORMAT_ARGB2101010: 16194 case DRM_FORMAT_ABGR2101010: 16195 case DRM_FORMAT_XBGR16161616F: 16196 return modifier == DRM_FORMAT_MOD_LINEAR || 16197 modifier == I915_FORMAT_MOD_X_TILED; 16198 default: 16199 return false; 16200 } 16201 } 16202 16203 static bool intel_cursor_format_mod_supported(struct drm_plane *_plane, 16204 u32 format, u64 modifier) 16205 { 16206 return modifier == DRM_FORMAT_MOD_LINEAR && 16207 format == DRM_FORMAT_ARGB8888; 16208 } 16209 16210 static const struct drm_plane_funcs i965_plane_funcs = { 16211 .update_plane = drm_atomic_helper_update_plane, 16212 .disable_plane = drm_atomic_helper_disable_plane, 16213 .destroy = intel_plane_destroy, 16214 .atomic_duplicate_state = intel_plane_duplicate_state, 16215 .atomic_destroy_state = intel_plane_destroy_state, 16216 .format_mod_supported = i965_plane_format_mod_supported, 16217 }; 16218 16219 static const struct drm_plane_funcs i8xx_plane_funcs = { 16220 .update_plane = drm_atomic_helper_update_plane, 16221 .disable_plane = drm_atomic_helper_disable_plane, 16222 .destroy = intel_plane_destroy, 16223 .atomic_duplicate_state = intel_plane_duplicate_state, 16224 .atomic_destroy_state = intel_plane_destroy_state, 16225 .format_mod_supported = i8xx_plane_format_mod_supported, 16226 }; 16227 16228 static int 16229 intel_legacy_cursor_update(struct drm_plane *_plane, 16230 struct drm_crtc *_crtc, 16231 struct drm_framebuffer *fb, 16232 int crtc_x, int crtc_y, 16233 unsigned int crtc_w, unsigned int crtc_h, 16234 u32 src_x, u32 src_y, 16235 u32 src_w, u32 src_h, 16236 struct drm_modeset_acquire_ctx *ctx) 16237 { 16238 struct intel_plane *plane = to_intel_plane(_plane); 16239 struct intel_crtc *crtc = to_intel_crtc(_crtc); 16240 struct intel_plane_state *old_plane_state = 16241 to_intel_plane_state(plane->base.state); 16242 struct intel_plane_state *new_plane_state; 16243 struct intel_crtc_state *crtc_state = 16244 to_intel_crtc_state(crtc->base.state); 16245 struct intel_crtc_state *new_crtc_state; 16246 int ret; 16247 16248 /* 16249 * When crtc is inactive or there is a modeset pending, 16250 * wait for it to complete in the slowpath 16251 */ 16252 if (!crtc_state->hw.active || needs_modeset(crtc_state) || 16253 crtc_state->update_pipe) 16254 goto slow; 16255 16256 /* 16257 * Don't do an async update if there is an outstanding commit modifying 16258 * the plane. This prevents our async update's changes from getting 16259 * overridden by a previous synchronous update's state. 16260 */ 16261 if (old_plane_state->uapi.commit && 16262 !try_wait_for_completion(&old_plane_state->uapi.commit->hw_done)) 16263 goto slow; 16264 16265 /* 16266 * If any parameters change that may affect watermarks, 16267 * take the slowpath. Only changing fb or position should be 16268 * in the fastpath. 16269 */ 16270 if (old_plane_state->uapi.crtc != &crtc->base || 16271 old_plane_state->uapi.src_w != src_w || 16272 old_plane_state->uapi.src_h != src_h || 16273 old_plane_state->uapi.crtc_w != crtc_w || 16274 old_plane_state->uapi.crtc_h != crtc_h || 16275 !old_plane_state->uapi.fb != !fb) 16276 goto slow; 16277 16278 new_plane_state = to_intel_plane_state(intel_plane_duplicate_state(&plane->base)); 16279 if (!new_plane_state) 16280 return -ENOMEM; 16281 16282 new_crtc_state = to_intel_crtc_state(intel_crtc_duplicate_state(&crtc->base)); 16283 if (!new_crtc_state) { 16284 ret = -ENOMEM; 16285 goto out_free; 16286 } 16287 16288 drm_atomic_set_fb_for_plane(&new_plane_state->uapi, fb); 16289 16290 new_plane_state->uapi.src_x = src_x; 16291 new_plane_state->uapi.src_y = src_y; 16292 new_plane_state->uapi.src_w = src_w; 16293 new_plane_state->uapi.src_h = src_h; 16294 new_plane_state->uapi.crtc_x = crtc_x; 16295 new_plane_state->uapi.crtc_y = crtc_y; 16296 new_plane_state->uapi.crtc_w = crtc_w; 16297 new_plane_state->uapi.crtc_h = crtc_h; 16298 16299 intel_plane_copy_uapi_to_hw_state(new_plane_state, new_plane_state); 16300 16301 ret = intel_plane_atomic_check_with_state(crtc_state, new_crtc_state, 16302 old_plane_state, new_plane_state); 16303 if (ret) 16304 goto out_free; 16305 16306 ret = intel_plane_pin_fb(new_plane_state); 16307 if (ret) 16308 goto out_free; 16309 16310 intel_frontbuffer_flush(to_intel_frontbuffer(new_plane_state->hw.fb), 16311 ORIGIN_FLIP); 16312 intel_frontbuffer_track(to_intel_frontbuffer(old_plane_state->hw.fb), 16313 to_intel_frontbuffer(new_plane_state->hw.fb), 16314 plane->frontbuffer_bit); 16315 16316 /* Swap plane state */ 16317 plane->base.state = &new_plane_state->uapi; 16318 16319 /* 16320 * We cannot swap crtc_state as it may be in use by an atomic commit or 16321 * page flip that's running simultaneously. If we swap crtc_state and 16322 * destroy the old state, we will cause a use-after-free there. 16323 * 16324 * Only update active_planes, which is needed for our internal 16325 * bookkeeping. Either value will do the right thing when updating 16326 * planes atomically. If the cursor was part of the atomic update then 16327 * we would have taken the slowpath. 16328 */ 16329 crtc_state->active_planes = new_crtc_state->active_planes; 16330 16331 if (new_plane_state->uapi.visible) 16332 intel_update_plane(plane, crtc_state, new_plane_state); 16333 else 16334 intel_disable_plane(plane, crtc_state); 16335 16336 intel_plane_unpin_fb(old_plane_state); 16337 16338 out_free: 16339 if (new_crtc_state) 16340 intel_crtc_destroy_state(&crtc->base, &new_crtc_state->uapi); 16341 if (ret) 16342 intel_plane_destroy_state(&plane->base, &new_plane_state->uapi); 16343 else 16344 intel_plane_destroy_state(&plane->base, &old_plane_state->uapi); 16345 return ret; 16346 16347 slow: 16348 return drm_atomic_helper_update_plane(&plane->base, &crtc->base, fb, 16349 crtc_x, crtc_y, crtc_w, crtc_h, 16350 src_x, src_y, src_w, src_h, ctx); 16351 } 16352 16353 static const struct drm_plane_funcs intel_cursor_plane_funcs = { 16354 .update_plane = intel_legacy_cursor_update, 16355 .disable_plane = drm_atomic_helper_disable_plane, 16356 .destroy = intel_plane_destroy, 16357 .atomic_duplicate_state = intel_plane_duplicate_state, 16358 .atomic_destroy_state = intel_plane_destroy_state, 16359 .format_mod_supported = intel_cursor_format_mod_supported, 16360 }; 16361 16362 static bool i9xx_plane_has_fbc(struct drm_i915_private *dev_priv, 16363 enum i9xx_plane_id i9xx_plane) 16364 { 16365 if (!HAS_FBC(dev_priv)) 16366 return false; 16367 16368 if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) 16369 return i9xx_plane == PLANE_A; /* tied to pipe A */ 16370 else if (IS_IVYBRIDGE(dev_priv)) 16371 return i9xx_plane == PLANE_A || i9xx_plane == PLANE_B || 16372 i9xx_plane == PLANE_C; 16373 else if (INTEL_GEN(dev_priv) >= 4) 16374 return i9xx_plane == PLANE_A || i9xx_plane == PLANE_B; 16375 else 16376 return i9xx_plane == PLANE_A; 16377 } 16378 16379 static struct intel_plane * 16380 intel_primary_plane_create(struct drm_i915_private *dev_priv, enum pipe pipe) 16381 { 16382 struct intel_plane *plane; 16383 const struct drm_plane_funcs *plane_funcs; 16384 unsigned int supported_rotations; 16385 const u32 *formats; 16386 int num_formats; 16387 int ret, zpos; 16388 16389 if (INTEL_GEN(dev_priv) >= 9) 16390 return skl_universal_plane_create(dev_priv, pipe, 16391 PLANE_PRIMARY); 16392 16393 plane = intel_plane_alloc(); 16394 if (IS_ERR(plane)) 16395 return plane; 16396 16397 plane->pipe = pipe; 16398 /* 16399 * On gen2/3 only plane A can do FBC, but the panel fitter and LVDS 16400 * port is hooked to pipe B. Hence we want plane A feeding pipe B. 16401 */ 16402 if (HAS_FBC(dev_priv) && INTEL_GEN(dev_priv) < 4 && 16403 INTEL_NUM_PIPES(dev_priv) == 2) 16404 plane->i9xx_plane = (enum i9xx_plane_id) !pipe; 16405 else 16406 plane->i9xx_plane = (enum i9xx_plane_id) pipe; 16407 plane->id = PLANE_PRIMARY; 16408 plane->frontbuffer_bit = INTEL_FRONTBUFFER(pipe, plane->id); 16409 16410 plane->has_fbc = i9xx_plane_has_fbc(dev_priv, plane->i9xx_plane); 16411 if (plane->has_fbc) { 16412 struct intel_fbc *fbc = &dev_priv->fbc; 16413 16414 fbc->possible_framebuffer_bits |= plane->frontbuffer_bit; 16415 } 16416 16417 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 16418 formats = vlv_primary_formats; 16419 num_formats = ARRAY_SIZE(vlv_primary_formats); 16420 } else if (INTEL_GEN(dev_priv) >= 4) { 16421 /* 16422 * WaFP16GammaEnabling:ivb 16423 * "Workaround : When using the 64-bit format, the plane 16424 * output on each color channel has one quarter amplitude. 16425 * It can be brought up to full amplitude by using pipe 16426 * gamma correction or pipe color space conversion to 16427 * multiply the plane output by four." 16428 * 16429 * There is no dedicated plane gamma for the primary plane, 16430 * and using the pipe gamma/csc could conflict with other 16431 * planes, so we choose not to expose fp16 on IVB primary 16432 * planes. HSW primary planes no longer have this problem. 16433 */ 16434 if (IS_IVYBRIDGE(dev_priv)) { 16435 formats = ivb_primary_formats; 16436 num_formats = ARRAY_SIZE(ivb_primary_formats); 16437 } else { 16438 formats = i965_primary_formats; 16439 num_formats = ARRAY_SIZE(i965_primary_formats); 16440 } 16441 } else { 16442 formats = i8xx_primary_formats; 16443 num_formats = ARRAY_SIZE(i8xx_primary_formats); 16444 } 16445 16446 if (INTEL_GEN(dev_priv) >= 4) 16447 plane_funcs = &i965_plane_funcs; 16448 else 16449 plane_funcs = &i8xx_plane_funcs; 16450 16451 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 16452 plane->min_cdclk = vlv_plane_min_cdclk; 16453 else if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) 16454 plane->min_cdclk = hsw_plane_min_cdclk; 16455 else if (IS_IVYBRIDGE(dev_priv)) 16456 plane->min_cdclk = ivb_plane_min_cdclk; 16457 else 16458 plane->min_cdclk = i9xx_plane_min_cdclk; 16459 16460 plane->max_stride = i9xx_plane_max_stride; 16461 plane->update_plane = i9xx_update_plane; 16462 plane->disable_plane = i9xx_disable_plane; 16463 plane->get_hw_state = i9xx_plane_get_hw_state; 16464 plane->check_plane = i9xx_plane_check; 16465 16466 if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) 16467 ret = drm_universal_plane_init(&dev_priv->drm, &plane->base, 16468 0, plane_funcs, 16469 formats, num_formats, 16470 i9xx_format_modifiers, 16471 DRM_PLANE_TYPE_PRIMARY, 16472 "primary %c", pipe_name(pipe)); 16473 else 16474 ret = drm_universal_plane_init(&dev_priv->drm, &plane->base, 16475 0, plane_funcs, 16476 formats, num_formats, 16477 i9xx_format_modifiers, 16478 DRM_PLANE_TYPE_PRIMARY, 16479 "plane %c", 16480 plane_name(plane->i9xx_plane)); 16481 if (ret) 16482 goto fail; 16483 16484 if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) { 16485 supported_rotations = 16486 DRM_MODE_ROTATE_0 | DRM_MODE_ROTATE_180 | 16487 DRM_MODE_REFLECT_X; 16488 } else if (INTEL_GEN(dev_priv) >= 4) { 16489 supported_rotations = 16490 DRM_MODE_ROTATE_0 | DRM_MODE_ROTATE_180; 16491 } else { 16492 supported_rotations = DRM_MODE_ROTATE_0; 16493 } 16494 16495 if (INTEL_GEN(dev_priv) >= 4) 16496 drm_plane_create_rotation_property(&plane->base, 16497 DRM_MODE_ROTATE_0, 16498 supported_rotations); 16499 16500 zpos = 0; 16501 drm_plane_create_zpos_immutable_property(&plane->base, zpos); 16502 16503 drm_plane_helper_add(&plane->base, &intel_plane_helper_funcs); 16504 16505 return plane; 16506 16507 fail: 16508 intel_plane_free(plane); 16509 16510 return ERR_PTR(ret); 16511 } 16512 16513 static struct intel_plane * 16514 intel_cursor_plane_create(struct drm_i915_private *dev_priv, 16515 enum pipe pipe) 16516 { 16517 struct intel_plane *cursor; 16518 int ret, zpos; 16519 16520 cursor = intel_plane_alloc(); 16521 if (IS_ERR(cursor)) 16522 return cursor; 16523 16524 cursor->pipe = pipe; 16525 cursor->i9xx_plane = (enum i9xx_plane_id) pipe; 16526 cursor->id = PLANE_CURSOR; 16527 cursor->frontbuffer_bit = INTEL_FRONTBUFFER(pipe, cursor->id); 16528 16529 if (IS_I845G(dev_priv) || IS_I865G(dev_priv)) { 16530 cursor->max_stride = i845_cursor_max_stride; 16531 cursor->update_plane = i845_update_cursor; 16532 cursor->disable_plane = i845_disable_cursor; 16533 cursor->get_hw_state = i845_cursor_get_hw_state; 16534 cursor->check_plane = i845_check_cursor; 16535 } else { 16536 cursor->max_stride = i9xx_cursor_max_stride; 16537 cursor->update_plane = i9xx_update_cursor; 16538 cursor->disable_plane = i9xx_disable_cursor; 16539 cursor->get_hw_state = i9xx_cursor_get_hw_state; 16540 cursor->check_plane = i9xx_check_cursor; 16541 } 16542 16543 cursor->cursor.base = ~0; 16544 cursor->cursor.cntl = ~0; 16545 16546 if (IS_I845G(dev_priv) || IS_I865G(dev_priv) || HAS_CUR_FBC(dev_priv)) 16547 cursor->cursor.size = ~0; 16548 16549 ret = drm_universal_plane_init(&dev_priv->drm, &cursor->base, 16550 0, &intel_cursor_plane_funcs, 16551 intel_cursor_formats, 16552 ARRAY_SIZE(intel_cursor_formats), 16553 cursor_format_modifiers, 16554 DRM_PLANE_TYPE_CURSOR, 16555 "cursor %c", pipe_name(pipe)); 16556 if (ret) 16557 goto fail; 16558 16559 if (INTEL_GEN(dev_priv) >= 4) 16560 drm_plane_create_rotation_property(&cursor->base, 16561 DRM_MODE_ROTATE_0, 16562 DRM_MODE_ROTATE_0 | 16563 DRM_MODE_ROTATE_180); 16564 16565 zpos = RUNTIME_INFO(dev_priv)->num_sprites[pipe] + 1; 16566 drm_plane_create_zpos_immutable_property(&cursor->base, zpos); 16567 16568 if (INTEL_GEN(dev_priv) >= 12) 16569 drm_plane_enable_fb_damage_clips(&cursor->base); 16570 16571 drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs); 16572 16573 return cursor; 16574 16575 fail: 16576 intel_plane_free(cursor); 16577 16578 return ERR_PTR(ret); 16579 } 16580 16581 #define INTEL_CRTC_FUNCS \ 16582 .gamma_set = drm_atomic_helper_legacy_gamma_set, \ 16583 .set_config = drm_atomic_helper_set_config, \ 16584 .destroy = intel_crtc_destroy, \ 16585 .page_flip = drm_atomic_helper_page_flip, \ 16586 .atomic_duplicate_state = intel_crtc_duplicate_state, \ 16587 .atomic_destroy_state = intel_crtc_destroy_state, \ 16588 .set_crc_source = intel_crtc_set_crc_source, \ 16589 .verify_crc_source = intel_crtc_verify_crc_source, \ 16590 .get_crc_sources = intel_crtc_get_crc_sources 16591 16592 static const struct drm_crtc_funcs bdw_crtc_funcs = { 16593 INTEL_CRTC_FUNCS, 16594 16595 .get_vblank_counter = g4x_get_vblank_counter, 16596 .enable_vblank = bdw_enable_vblank, 16597 .disable_vblank = bdw_disable_vblank, 16598 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp, 16599 }; 16600 16601 static const struct drm_crtc_funcs ilk_crtc_funcs = { 16602 INTEL_CRTC_FUNCS, 16603 16604 .get_vblank_counter = g4x_get_vblank_counter, 16605 .enable_vblank = ilk_enable_vblank, 16606 .disable_vblank = ilk_disable_vblank, 16607 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp, 16608 }; 16609 16610 static const struct drm_crtc_funcs g4x_crtc_funcs = { 16611 INTEL_CRTC_FUNCS, 16612 16613 .get_vblank_counter = g4x_get_vblank_counter, 16614 .enable_vblank = i965_enable_vblank, 16615 .disable_vblank = i965_disable_vblank, 16616 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp, 16617 }; 16618 16619 static const struct drm_crtc_funcs i965_crtc_funcs = { 16620 INTEL_CRTC_FUNCS, 16621 16622 .get_vblank_counter = i915_get_vblank_counter, 16623 .enable_vblank = i965_enable_vblank, 16624 .disable_vblank = i965_disable_vblank, 16625 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp, 16626 }; 16627 16628 static const struct drm_crtc_funcs i915gm_crtc_funcs = { 16629 INTEL_CRTC_FUNCS, 16630 16631 .get_vblank_counter = i915_get_vblank_counter, 16632 .enable_vblank = i915gm_enable_vblank, 16633 .disable_vblank = i915gm_disable_vblank, 16634 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp, 16635 }; 16636 16637 static const struct drm_crtc_funcs i915_crtc_funcs = { 16638 INTEL_CRTC_FUNCS, 16639 16640 .get_vblank_counter = i915_get_vblank_counter, 16641 .enable_vblank = i8xx_enable_vblank, 16642 .disable_vblank = i8xx_disable_vblank, 16643 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp, 16644 }; 16645 16646 static const struct drm_crtc_funcs i8xx_crtc_funcs = { 16647 INTEL_CRTC_FUNCS, 16648 16649 /* no hw vblank counter */ 16650 .enable_vblank = i8xx_enable_vblank, 16651 .disable_vblank = i8xx_disable_vblank, 16652 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp, 16653 }; 16654 16655 static struct intel_crtc *intel_crtc_alloc(void) 16656 { 16657 struct intel_crtc_state *crtc_state; 16658 struct intel_crtc *crtc; 16659 16660 crtc = kzalloc(sizeof(*crtc), GFP_KERNEL); 16661 if (!crtc) 16662 return ERR_PTR(-ENOMEM); 16663 16664 crtc_state = intel_crtc_state_alloc(crtc); 16665 if (!crtc_state) { 16666 kfree(crtc); 16667 return ERR_PTR(-ENOMEM); 16668 } 16669 16670 crtc->base.state = &crtc_state->uapi; 16671 crtc->config = crtc_state; 16672 16673 return crtc; 16674 } 16675 16676 static void intel_crtc_free(struct intel_crtc *crtc) 16677 { 16678 intel_crtc_destroy_state(&crtc->base, crtc->base.state); 16679 kfree(crtc); 16680 } 16681 16682 static void intel_plane_possible_crtcs_init(struct drm_i915_private *dev_priv) 16683 { 16684 struct intel_plane *plane; 16685 16686 for_each_intel_plane(&dev_priv->drm, plane) { 16687 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, 16688 plane->pipe); 16689 16690 plane->base.possible_crtcs = drm_crtc_mask(&crtc->base); 16691 } 16692 } 16693 16694 static int intel_crtc_init(struct drm_i915_private *dev_priv, enum pipe pipe) 16695 { 16696 struct intel_plane *primary, *cursor; 16697 const struct drm_crtc_funcs *funcs; 16698 struct intel_crtc *crtc; 16699 int sprite, ret; 16700 16701 crtc = intel_crtc_alloc(); 16702 if (IS_ERR(crtc)) 16703 return PTR_ERR(crtc); 16704 16705 crtc->pipe = pipe; 16706 crtc->num_scalers = RUNTIME_INFO(dev_priv)->num_scalers[pipe]; 16707 16708 primary = intel_primary_plane_create(dev_priv, pipe); 16709 if (IS_ERR(primary)) { 16710 ret = PTR_ERR(primary); 16711 goto fail; 16712 } 16713 crtc->plane_ids_mask |= BIT(primary->id); 16714 16715 for_each_sprite(dev_priv, pipe, sprite) { 16716 struct intel_plane *plane; 16717 16718 plane = intel_sprite_plane_create(dev_priv, pipe, sprite); 16719 if (IS_ERR(plane)) { 16720 ret = PTR_ERR(plane); 16721 goto fail; 16722 } 16723 crtc->plane_ids_mask |= BIT(plane->id); 16724 } 16725 16726 cursor = intel_cursor_plane_create(dev_priv, pipe); 16727 if (IS_ERR(cursor)) { 16728 ret = PTR_ERR(cursor); 16729 goto fail; 16730 } 16731 crtc->plane_ids_mask |= BIT(cursor->id); 16732 16733 if (HAS_GMCH(dev_priv)) { 16734 if (IS_CHERRYVIEW(dev_priv) || 16735 IS_VALLEYVIEW(dev_priv) || IS_G4X(dev_priv)) 16736 funcs = &g4x_crtc_funcs; 16737 else if (IS_GEN(dev_priv, 4)) 16738 funcs = &i965_crtc_funcs; 16739 else if (IS_I945GM(dev_priv) || IS_I915GM(dev_priv)) 16740 funcs = &i915gm_crtc_funcs; 16741 else if (IS_GEN(dev_priv, 3)) 16742 funcs = &i915_crtc_funcs; 16743 else 16744 funcs = &i8xx_crtc_funcs; 16745 } else { 16746 if (INTEL_GEN(dev_priv) >= 8) 16747 funcs = &bdw_crtc_funcs; 16748 else 16749 funcs = &ilk_crtc_funcs; 16750 } 16751 16752 ret = drm_crtc_init_with_planes(&dev_priv->drm, &crtc->base, 16753 &primary->base, &cursor->base, 16754 funcs, "pipe %c", pipe_name(pipe)); 16755 if (ret) 16756 goto fail; 16757 16758 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->pipe_to_crtc_mapping) || 16759 dev_priv->pipe_to_crtc_mapping[pipe] != NULL); 16760 dev_priv->pipe_to_crtc_mapping[pipe] = crtc; 16761 16762 if (INTEL_GEN(dev_priv) < 9) { 16763 enum i9xx_plane_id i9xx_plane = primary->i9xx_plane; 16764 16765 BUG_ON(i9xx_plane >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) || 16766 dev_priv->plane_to_crtc_mapping[i9xx_plane] != NULL); 16767 dev_priv->plane_to_crtc_mapping[i9xx_plane] = crtc; 16768 } 16769 16770 intel_color_init(crtc); 16771 16772 intel_crtc_crc_init(crtc); 16773 16774 drm_WARN_ON(&dev_priv->drm, drm_crtc_index(&crtc->base) != crtc->pipe); 16775 16776 return 0; 16777 16778 fail: 16779 intel_crtc_free(crtc); 16780 16781 return ret; 16782 } 16783 16784 int intel_get_pipe_from_crtc_id_ioctl(struct drm_device *dev, void *data, 16785 struct drm_file *file) 16786 { 16787 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data; 16788 struct drm_crtc *drmmode_crtc; 16789 struct intel_crtc *crtc; 16790 16791 drmmode_crtc = drm_crtc_find(dev, file, pipe_from_crtc_id->crtc_id); 16792 if (!drmmode_crtc) 16793 return -ENOENT; 16794 16795 crtc = to_intel_crtc(drmmode_crtc); 16796 pipe_from_crtc_id->pipe = crtc->pipe; 16797 16798 return 0; 16799 } 16800 16801 static u32 intel_encoder_possible_clones(struct intel_encoder *encoder) 16802 { 16803 struct drm_device *dev = encoder->base.dev; 16804 struct intel_encoder *source_encoder; 16805 u32 possible_clones = 0; 16806 16807 for_each_intel_encoder(dev, source_encoder) { 16808 if (encoders_cloneable(encoder, source_encoder)) 16809 possible_clones |= drm_encoder_mask(&source_encoder->base); 16810 } 16811 16812 return possible_clones; 16813 } 16814 16815 static u32 intel_encoder_possible_crtcs(struct intel_encoder *encoder) 16816 { 16817 struct drm_device *dev = encoder->base.dev; 16818 struct intel_crtc *crtc; 16819 u32 possible_crtcs = 0; 16820 16821 for_each_intel_crtc(dev, crtc) { 16822 if (encoder->pipe_mask & BIT(crtc->pipe)) 16823 possible_crtcs |= drm_crtc_mask(&crtc->base); 16824 } 16825 16826 return possible_crtcs; 16827 } 16828 16829 static bool ilk_has_edp_a(struct drm_i915_private *dev_priv) 16830 { 16831 if (!IS_MOBILE(dev_priv)) 16832 return false; 16833 16834 if ((intel_de_read(dev_priv, DP_A) & DP_DETECTED) == 0) 16835 return false; 16836 16837 if (IS_GEN(dev_priv, 5) && (intel_de_read(dev_priv, FUSE_STRAP) & ILK_eDP_A_DISABLE)) 16838 return false; 16839 16840 return true; 16841 } 16842 16843 static bool intel_ddi_crt_present(struct drm_i915_private *dev_priv) 16844 { 16845 if (INTEL_GEN(dev_priv) >= 9) 16846 return false; 16847 16848 if (IS_HSW_ULT(dev_priv) || IS_BDW_ULT(dev_priv)) 16849 return false; 16850 16851 if (HAS_PCH_LPT_H(dev_priv) && 16852 intel_de_read(dev_priv, SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED) 16853 return false; 16854 16855 /* DDI E can't be used if DDI A requires 4 lanes */ 16856 if (intel_de_read(dev_priv, DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES) 16857 return false; 16858 16859 if (!dev_priv->vbt.int_crt_support) 16860 return false; 16861 16862 return true; 16863 } 16864 16865 void intel_pps_unlock_regs_wa(struct drm_i915_private *dev_priv) 16866 { 16867 int pps_num; 16868 int pps_idx; 16869 16870 if (HAS_DDI(dev_priv)) 16871 return; 16872 /* 16873 * This w/a is needed at least on CPT/PPT, but to be sure apply it 16874 * everywhere where registers can be write protected. 16875 */ 16876 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 16877 pps_num = 2; 16878 else 16879 pps_num = 1; 16880 16881 for (pps_idx = 0; pps_idx < pps_num; pps_idx++) { 16882 u32 val = intel_de_read(dev_priv, PP_CONTROL(pps_idx)); 16883 16884 val = (val & ~PANEL_UNLOCK_MASK) | PANEL_UNLOCK_REGS; 16885 intel_de_write(dev_priv, PP_CONTROL(pps_idx), val); 16886 } 16887 } 16888 16889 static void intel_pps_init(struct drm_i915_private *dev_priv) 16890 { 16891 if (HAS_PCH_SPLIT(dev_priv) || IS_GEN9_LP(dev_priv)) 16892 dev_priv->pps_mmio_base = PCH_PPS_BASE; 16893 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 16894 dev_priv->pps_mmio_base = VLV_PPS_BASE; 16895 else 16896 dev_priv->pps_mmio_base = PPS_BASE; 16897 16898 intel_pps_unlock_regs_wa(dev_priv); 16899 } 16900 16901 static void intel_setup_outputs(struct drm_i915_private *dev_priv) 16902 { 16903 struct intel_encoder *encoder; 16904 bool dpd_is_edp = false; 16905 16906 intel_pps_init(dev_priv); 16907 16908 if (!HAS_DISPLAY(dev_priv)) 16909 return; 16910 16911 if (IS_ROCKETLAKE(dev_priv)) { 16912 intel_ddi_init(dev_priv, PORT_A); 16913 intel_ddi_init(dev_priv, PORT_B); 16914 intel_ddi_init(dev_priv, PORT_D); /* DDI TC1 */ 16915 intel_ddi_init(dev_priv, PORT_E); /* DDI TC2 */ 16916 } else if (INTEL_GEN(dev_priv) >= 12) { 16917 intel_ddi_init(dev_priv, PORT_A); 16918 intel_ddi_init(dev_priv, PORT_B); 16919 intel_ddi_init(dev_priv, PORT_D); 16920 intel_ddi_init(dev_priv, PORT_E); 16921 intel_ddi_init(dev_priv, PORT_F); 16922 intel_ddi_init(dev_priv, PORT_G); 16923 intel_ddi_init(dev_priv, PORT_H); 16924 intel_ddi_init(dev_priv, PORT_I); 16925 icl_dsi_init(dev_priv); 16926 } else if (IS_ELKHARTLAKE(dev_priv)) { 16927 intel_ddi_init(dev_priv, PORT_A); 16928 intel_ddi_init(dev_priv, PORT_B); 16929 intel_ddi_init(dev_priv, PORT_C); 16930 intel_ddi_init(dev_priv, PORT_D); 16931 icl_dsi_init(dev_priv); 16932 } else if (IS_GEN(dev_priv, 11)) { 16933 intel_ddi_init(dev_priv, PORT_A); 16934 intel_ddi_init(dev_priv, PORT_B); 16935 intel_ddi_init(dev_priv, PORT_C); 16936 intel_ddi_init(dev_priv, PORT_D); 16937 intel_ddi_init(dev_priv, PORT_E); 16938 /* 16939 * On some ICL SKUs port F is not present. No strap bits for 16940 * this, so rely on VBT. 16941 * Work around broken VBTs on SKUs known to have no port F. 16942 */ 16943 if (IS_ICL_WITH_PORT_F(dev_priv) && 16944 intel_bios_is_port_present(dev_priv, PORT_F)) 16945 intel_ddi_init(dev_priv, PORT_F); 16946 16947 icl_dsi_init(dev_priv); 16948 } else if (IS_GEN9_LP(dev_priv)) { 16949 /* 16950 * FIXME: Broxton doesn't support port detection via the 16951 * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to 16952 * detect the ports. 16953 */ 16954 intel_ddi_init(dev_priv, PORT_A); 16955 intel_ddi_init(dev_priv, PORT_B); 16956 intel_ddi_init(dev_priv, PORT_C); 16957 16958 vlv_dsi_init(dev_priv); 16959 } else if (HAS_DDI(dev_priv)) { 16960 int found; 16961 16962 if (intel_ddi_crt_present(dev_priv)) 16963 intel_crt_init(dev_priv); 16964 16965 /* 16966 * Haswell uses DDI functions to detect digital outputs. 16967 * On SKL pre-D0 the strap isn't connected, so we assume 16968 * it's there. 16969 */ 16970 found = intel_de_read(dev_priv, DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED; 16971 /* WaIgnoreDDIAStrap: skl */ 16972 if (found || IS_GEN9_BC(dev_priv)) 16973 intel_ddi_init(dev_priv, PORT_A); 16974 16975 /* DDI B, C, D, and F detection is indicated by the SFUSE_STRAP 16976 * register */ 16977 found = intel_de_read(dev_priv, SFUSE_STRAP); 16978 16979 if (found & SFUSE_STRAP_DDIB_DETECTED) 16980 intel_ddi_init(dev_priv, PORT_B); 16981 if (found & SFUSE_STRAP_DDIC_DETECTED) 16982 intel_ddi_init(dev_priv, PORT_C); 16983 if (found & SFUSE_STRAP_DDID_DETECTED) 16984 intel_ddi_init(dev_priv, PORT_D); 16985 if (found & SFUSE_STRAP_DDIF_DETECTED) 16986 intel_ddi_init(dev_priv, PORT_F); 16987 /* 16988 * On SKL we don't have a way to detect DDI-E so we rely on VBT. 16989 */ 16990 if (IS_GEN9_BC(dev_priv) && 16991 intel_bios_is_port_present(dev_priv, PORT_E)) 16992 intel_ddi_init(dev_priv, PORT_E); 16993 16994 } else if (HAS_PCH_SPLIT(dev_priv)) { 16995 int found; 16996 16997 /* 16998 * intel_edp_init_connector() depends on this completing first, 16999 * to prevent the registration of both eDP and LVDS and the 17000 * incorrect sharing of the PPS. 17001 */ 17002 intel_lvds_init(dev_priv); 17003 intel_crt_init(dev_priv); 17004 17005 dpd_is_edp = intel_dp_is_port_edp(dev_priv, PORT_D); 17006 17007 if (ilk_has_edp_a(dev_priv)) 17008 intel_dp_init(dev_priv, DP_A, PORT_A); 17009 17010 if (intel_de_read(dev_priv, PCH_HDMIB) & SDVO_DETECTED) { 17011 /* PCH SDVOB multiplex with HDMIB */ 17012 found = intel_sdvo_init(dev_priv, PCH_SDVOB, PORT_B); 17013 if (!found) 17014 intel_hdmi_init(dev_priv, PCH_HDMIB, PORT_B); 17015 if (!found && (intel_de_read(dev_priv, PCH_DP_B) & DP_DETECTED)) 17016 intel_dp_init(dev_priv, PCH_DP_B, PORT_B); 17017 } 17018 17019 if (intel_de_read(dev_priv, PCH_HDMIC) & SDVO_DETECTED) 17020 intel_hdmi_init(dev_priv, PCH_HDMIC, PORT_C); 17021 17022 if (!dpd_is_edp && intel_de_read(dev_priv, PCH_HDMID) & SDVO_DETECTED) 17023 intel_hdmi_init(dev_priv, PCH_HDMID, PORT_D); 17024 17025 if (intel_de_read(dev_priv, PCH_DP_C) & DP_DETECTED) 17026 intel_dp_init(dev_priv, PCH_DP_C, PORT_C); 17027 17028 if (intel_de_read(dev_priv, PCH_DP_D) & DP_DETECTED) 17029 intel_dp_init(dev_priv, PCH_DP_D, PORT_D); 17030 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 17031 bool has_edp, has_port; 17032 17033 if (IS_VALLEYVIEW(dev_priv) && dev_priv->vbt.int_crt_support) 17034 intel_crt_init(dev_priv); 17035 17036 /* 17037 * The DP_DETECTED bit is the latched state of the DDC 17038 * SDA pin at boot. However since eDP doesn't require DDC 17039 * (no way to plug in a DP->HDMI dongle) the DDC pins for 17040 * eDP ports may have been muxed to an alternate function. 17041 * Thus we can't rely on the DP_DETECTED bit alone to detect 17042 * eDP ports. Consult the VBT as well as DP_DETECTED to 17043 * detect eDP ports. 17044 * 17045 * Sadly the straps seem to be missing sometimes even for HDMI 17046 * ports (eg. on Voyo V3 - CHT x7-Z8700), so check both strap 17047 * and VBT for the presence of the port. Additionally we can't 17048 * trust the port type the VBT declares as we've seen at least 17049 * HDMI ports that the VBT claim are DP or eDP. 17050 */ 17051 has_edp = intel_dp_is_port_edp(dev_priv, PORT_B); 17052 has_port = intel_bios_is_port_present(dev_priv, PORT_B); 17053 if (intel_de_read(dev_priv, VLV_DP_B) & DP_DETECTED || has_port) 17054 has_edp &= intel_dp_init(dev_priv, VLV_DP_B, PORT_B); 17055 if ((intel_de_read(dev_priv, VLV_HDMIB) & SDVO_DETECTED || has_port) && !has_edp) 17056 intel_hdmi_init(dev_priv, VLV_HDMIB, PORT_B); 17057 17058 has_edp = intel_dp_is_port_edp(dev_priv, PORT_C); 17059 has_port = intel_bios_is_port_present(dev_priv, PORT_C); 17060 if (intel_de_read(dev_priv, VLV_DP_C) & DP_DETECTED || has_port) 17061 has_edp &= intel_dp_init(dev_priv, VLV_DP_C, PORT_C); 17062 if ((intel_de_read(dev_priv, VLV_HDMIC) & SDVO_DETECTED || has_port) && !has_edp) 17063 intel_hdmi_init(dev_priv, VLV_HDMIC, PORT_C); 17064 17065 if (IS_CHERRYVIEW(dev_priv)) { 17066 /* 17067 * eDP not supported on port D, 17068 * so no need to worry about it 17069 */ 17070 has_port = intel_bios_is_port_present(dev_priv, PORT_D); 17071 if (intel_de_read(dev_priv, CHV_DP_D) & DP_DETECTED || has_port) 17072 intel_dp_init(dev_priv, CHV_DP_D, PORT_D); 17073 if (intel_de_read(dev_priv, CHV_HDMID) & SDVO_DETECTED || has_port) 17074 intel_hdmi_init(dev_priv, CHV_HDMID, PORT_D); 17075 } 17076 17077 vlv_dsi_init(dev_priv); 17078 } else if (IS_PINEVIEW(dev_priv)) { 17079 intel_lvds_init(dev_priv); 17080 intel_crt_init(dev_priv); 17081 } else if (IS_GEN_RANGE(dev_priv, 3, 4)) { 17082 bool found = false; 17083 17084 if (IS_MOBILE(dev_priv)) 17085 intel_lvds_init(dev_priv); 17086 17087 intel_crt_init(dev_priv); 17088 17089 if (intel_de_read(dev_priv, GEN3_SDVOB) & SDVO_DETECTED) { 17090 drm_dbg_kms(&dev_priv->drm, "probing SDVOB\n"); 17091 found = intel_sdvo_init(dev_priv, GEN3_SDVOB, PORT_B); 17092 if (!found && IS_G4X(dev_priv)) { 17093 drm_dbg_kms(&dev_priv->drm, 17094 "probing HDMI on SDVOB\n"); 17095 intel_hdmi_init(dev_priv, GEN4_HDMIB, PORT_B); 17096 } 17097 17098 if (!found && IS_G4X(dev_priv)) 17099 intel_dp_init(dev_priv, DP_B, PORT_B); 17100 } 17101 17102 /* Before G4X SDVOC doesn't have its own detect register */ 17103 17104 if (intel_de_read(dev_priv, GEN3_SDVOB) & SDVO_DETECTED) { 17105 drm_dbg_kms(&dev_priv->drm, "probing SDVOC\n"); 17106 found = intel_sdvo_init(dev_priv, GEN3_SDVOC, PORT_C); 17107 } 17108 17109 if (!found && (intel_de_read(dev_priv, GEN3_SDVOC) & SDVO_DETECTED)) { 17110 17111 if (IS_G4X(dev_priv)) { 17112 drm_dbg_kms(&dev_priv->drm, 17113 "probing HDMI on SDVOC\n"); 17114 intel_hdmi_init(dev_priv, GEN4_HDMIC, PORT_C); 17115 } 17116 if (IS_G4X(dev_priv)) 17117 intel_dp_init(dev_priv, DP_C, PORT_C); 17118 } 17119 17120 if (IS_G4X(dev_priv) && (intel_de_read(dev_priv, DP_D) & DP_DETECTED)) 17121 intel_dp_init(dev_priv, DP_D, PORT_D); 17122 17123 if (SUPPORTS_TV(dev_priv)) 17124 intel_tv_init(dev_priv); 17125 } else if (IS_GEN(dev_priv, 2)) { 17126 if (IS_I85X(dev_priv)) 17127 intel_lvds_init(dev_priv); 17128 17129 intel_crt_init(dev_priv); 17130 intel_dvo_init(dev_priv); 17131 } 17132 17133 intel_psr_init(dev_priv); 17134 17135 for_each_intel_encoder(&dev_priv->drm, encoder) { 17136 encoder->base.possible_crtcs = 17137 intel_encoder_possible_crtcs(encoder); 17138 encoder->base.possible_clones = 17139 intel_encoder_possible_clones(encoder); 17140 } 17141 17142 intel_init_pch_refclk(dev_priv); 17143 17144 drm_helper_move_panel_connectors_to_head(&dev_priv->drm); 17145 } 17146 17147 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb) 17148 { 17149 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); 17150 17151 drm_framebuffer_cleanup(fb); 17152 intel_frontbuffer_put(intel_fb->frontbuffer); 17153 17154 kfree(intel_fb); 17155 } 17156 17157 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb, 17158 struct drm_file *file, 17159 unsigned int *handle) 17160 { 17161 struct drm_i915_gem_object *obj = intel_fb_obj(fb); 17162 struct drm_i915_private *i915 = to_i915(obj->base.dev); 17163 17164 if (obj->userptr.mm) { 17165 drm_dbg(&i915->drm, 17166 "attempting to use a userptr for a framebuffer, denied\n"); 17167 return -EINVAL; 17168 } 17169 17170 return drm_gem_handle_create(file, &obj->base, handle); 17171 } 17172 17173 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb, 17174 struct drm_file *file, 17175 unsigned flags, unsigned color, 17176 struct drm_clip_rect *clips, 17177 unsigned num_clips) 17178 { 17179 struct drm_i915_gem_object *obj = intel_fb_obj(fb); 17180 17181 i915_gem_object_flush_if_display(obj); 17182 intel_frontbuffer_flush(to_intel_frontbuffer(fb), ORIGIN_DIRTYFB); 17183 17184 return 0; 17185 } 17186 17187 static const struct drm_framebuffer_funcs intel_fb_funcs = { 17188 .destroy = intel_user_framebuffer_destroy, 17189 .create_handle = intel_user_framebuffer_create_handle, 17190 .dirty = intel_user_framebuffer_dirty, 17191 }; 17192 17193 static int intel_framebuffer_init(struct intel_framebuffer *intel_fb, 17194 struct drm_i915_gem_object *obj, 17195 struct drm_mode_fb_cmd2 *mode_cmd) 17196 { 17197 struct drm_i915_private *dev_priv = to_i915(obj->base.dev); 17198 struct drm_framebuffer *fb = &intel_fb->base; 17199 u32 max_stride; 17200 unsigned int tiling, stride; 17201 int ret = -EINVAL; 17202 int i; 17203 17204 intel_fb->frontbuffer = intel_frontbuffer_get(obj); 17205 if (!intel_fb->frontbuffer) 17206 return -ENOMEM; 17207 17208 i915_gem_object_lock(obj, NULL); 17209 tiling = i915_gem_object_get_tiling(obj); 17210 stride = i915_gem_object_get_stride(obj); 17211 i915_gem_object_unlock(obj); 17212 17213 if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) { 17214 /* 17215 * If there's a fence, enforce that 17216 * the fb modifier and tiling mode match. 17217 */ 17218 if (tiling != I915_TILING_NONE && 17219 tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) { 17220 drm_dbg_kms(&dev_priv->drm, 17221 "tiling_mode doesn't match fb modifier\n"); 17222 goto err; 17223 } 17224 } else { 17225 if (tiling == I915_TILING_X) { 17226 mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED; 17227 } else if (tiling == I915_TILING_Y) { 17228 drm_dbg_kms(&dev_priv->drm, 17229 "No Y tiling for legacy addfb\n"); 17230 goto err; 17231 } 17232 } 17233 17234 if (!drm_any_plane_has_format(&dev_priv->drm, 17235 mode_cmd->pixel_format, 17236 mode_cmd->modifier[0])) { 17237 struct drm_format_name_buf format_name; 17238 17239 drm_dbg_kms(&dev_priv->drm, 17240 "unsupported pixel format %s / modifier 0x%llx\n", 17241 drm_get_format_name(mode_cmd->pixel_format, 17242 &format_name), 17243 mode_cmd->modifier[0]); 17244 goto err; 17245 } 17246 17247 /* 17248 * gen2/3 display engine uses the fence if present, 17249 * so the tiling mode must match the fb modifier exactly. 17250 */ 17251 if (INTEL_GEN(dev_priv) < 4 && 17252 tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) { 17253 drm_dbg_kms(&dev_priv->drm, 17254 "tiling_mode must match fb modifier exactly on gen2/3\n"); 17255 goto err; 17256 } 17257 17258 max_stride = intel_fb_max_stride(dev_priv, mode_cmd->pixel_format, 17259 mode_cmd->modifier[0]); 17260 if (mode_cmd->pitches[0] > max_stride) { 17261 drm_dbg_kms(&dev_priv->drm, 17262 "%s pitch (%u) must be at most %d\n", 17263 mode_cmd->modifier[0] != DRM_FORMAT_MOD_LINEAR ? 17264 "tiled" : "linear", 17265 mode_cmd->pitches[0], max_stride); 17266 goto err; 17267 } 17268 17269 /* 17270 * If there's a fence, enforce that 17271 * the fb pitch and fence stride match. 17272 */ 17273 if (tiling != I915_TILING_NONE && mode_cmd->pitches[0] != stride) { 17274 drm_dbg_kms(&dev_priv->drm, 17275 "pitch (%d) must match tiling stride (%d)\n", 17276 mode_cmd->pitches[0], stride); 17277 goto err; 17278 } 17279 17280 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */ 17281 if (mode_cmd->offsets[0] != 0) { 17282 drm_dbg_kms(&dev_priv->drm, 17283 "plane 0 offset (0x%08x) must be 0\n", 17284 mode_cmd->offsets[0]); 17285 goto err; 17286 } 17287 17288 drm_helper_mode_fill_fb_struct(&dev_priv->drm, fb, mode_cmd); 17289 17290 for (i = 0; i < fb->format->num_planes; i++) { 17291 u32 stride_alignment; 17292 17293 if (mode_cmd->handles[i] != mode_cmd->handles[0]) { 17294 drm_dbg_kms(&dev_priv->drm, "bad plane %d handle\n", 17295 i); 17296 goto err; 17297 } 17298 17299 stride_alignment = intel_fb_stride_alignment(fb, i); 17300 if (fb->pitches[i] & (stride_alignment - 1)) { 17301 drm_dbg_kms(&dev_priv->drm, 17302 "plane %d pitch (%d) must be at least %u byte aligned\n", 17303 i, fb->pitches[i], stride_alignment); 17304 goto err; 17305 } 17306 17307 if (is_gen12_ccs_plane(fb, i)) { 17308 int ccs_aux_stride = gen12_ccs_aux_stride(fb, i); 17309 17310 if (fb->pitches[i] != ccs_aux_stride) { 17311 drm_dbg_kms(&dev_priv->drm, 17312 "ccs aux plane %d pitch (%d) must be %d\n", 17313 i, 17314 fb->pitches[i], ccs_aux_stride); 17315 goto err; 17316 } 17317 } 17318 17319 fb->obj[i] = &obj->base; 17320 } 17321 17322 ret = intel_fill_fb_info(dev_priv, fb); 17323 if (ret) 17324 goto err; 17325 17326 ret = drm_framebuffer_init(&dev_priv->drm, fb, &intel_fb_funcs); 17327 if (ret) { 17328 drm_err(&dev_priv->drm, "framebuffer init failed %d\n", ret); 17329 goto err; 17330 } 17331 17332 return 0; 17333 17334 err: 17335 intel_frontbuffer_put(intel_fb->frontbuffer); 17336 return ret; 17337 } 17338 17339 static struct drm_framebuffer * 17340 intel_user_framebuffer_create(struct drm_device *dev, 17341 struct drm_file *filp, 17342 const struct drm_mode_fb_cmd2 *user_mode_cmd) 17343 { 17344 struct drm_framebuffer *fb; 17345 struct drm_i915_gem_object *obj; 17346 struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd; 17347 17348 obj = i915_gem_object_lookup(filp, mode_cmd.handles[0]); 17349 if (!obj) 17350 return ERR_PTR(-ENOENT); 17351 17352 fb = intel_framebuffer_create(obj, &mode_cmd); 17353 i915_gem_object_put(obj); 17354 17355 return fb; 17356 } 17357 17358 static enum drm_mode_status 17359 intel_mode_valid(struct drm_device *dev, 17360 const struct drm_display_mode *mode) 17361 { 17362 struct drm_i915_private *dev_priv = to_i915(dev); 17363 int hdisplay_max, htotal_max; 17364 int vdisplay_max, vtotal_max; 17365 17366 /* 17367 * Can't reject DBLSCAN here because Xorg ddxen can add piles 17368 * of DBLSCAN modes to the output's mode list when they detect 17369 * the scaling mode property on the connector. And they don't 17370 * ask the kernel to validate those modes in any way until 17371 * modeset time at which point the client gets a protocol error. 17372 * So in order to not upset those clients we silently ignore the 17373 * DBLSCAN flag on such connectors. For other connectors we will 17374 * reject modes with the DBLSCAN flag in encoder->compute_config(). 17375 * And we always reject DBLSCAN modes in connector->mode_valid() 17376 * as we never want such modes on the connector's mode list. 17377 */ 17378 17379 if (mode->vscan > 1) 17380 return MODE_NO_VSCAN; 17381 17382 if (mode->flags & DRM_MODE_FLAG_HSKEW) 17383 return MODE_H_ILLEGAL; 17384 17385 if (mode->flags & (DRM_MODE_FLAG_CSYNC | 17386 DRM_MODE_FLAG_NCSYNC | 17387 DRM_MODE_FLAG_PCSYNC)) 17388 return MODE_HSYNC; 17389 17390 if (mode->flags & (DRM_MODE_FLAG_BCAST | 17391 DRM_MODE_FLAG_PIXMUX | 17392 DRM_MODE_FLAG_CLKDIV2)) 17393 return MODE_BAD; 17394 17395 /* Transcoder timing limits */ 17396 if (INTEL_GEN(dev_priv) >= 11) { 17397 hdisplay_max = 16384; 17398 vdisplay_max = 8192; 17399 htotal_max = 16384; 17400 vtotal_max = 8192; 17401 } else if (INTEL_GEN(dev_priv) >= 9 || 17402 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) { 17403 hdisplay_max = 8192; /* FDI max 4096 handled elsewhere */ 17404 vdisplay_max = 4096; 17405 htotal_max = 8192; 17406 vtotal_max = 8192; 17407 } else if (INTEL_GEN(dev_priv) >= 3) { 17408 hdisplay_max = 4096; 17409 vdisplay_max = 4096; 17410 htotal_max = 8192; 17411 vtotal_max = 8192; 17412 } else { 17413 hdisplay_max = 2048; 17414 vdisplay_max = 2048; 17415 htotal_max = 4096; 17416 vtotal_max = 4096; 17417 } 17418 17419 if (mode->hdisplay > hdisplay_max || 17420 mode->hsync_start > htotal_max || 17421 mode->hsync_end > htotal_max || 17422 mode->htotal > htotal_max) 17423 return MODE_H_ILLEGAL; 17424 17425 if (mode->vdisplay > vdisplay_max || 17426 mode->vsync_start > vtotal_max || 17427 mode->vsync_end > vtotal_max || 17428 mode->vtotal > vtotal_max) 17429 return MODE_V_ILLEGAL; 17430 17431 if (INTEL_GEN(dev_priv) >= 5) { 17432 if (mode->hdisplay < 64 || 17433 mode->htotal - mode->hdisplay < 32) 17434 return MODE_H_ILLEGAL; 17435 17436 if (mode->vtotal - mode->vdisplay < 5) 17437 return MODE_V_ILLEGAL; 17438 } else { 17439 if (mode->htotal - mode->hdisplay < 32) 17440 return MODE_H_ILLEGAL; 17441 17442 if (mode->vtotal - mode->vdisplay < 3) 17443 return MODE_V_ILLEGAL; 17444 } 17445 17446 return MODE_OK; 17447 } 17448 17449 enum drm_mode_status 17450 intel_mode_valid_max_plane_size(struct drm_i915_private *dev_priv, 17451 const struct drm_display_mode *mode) 17452 { 17453 int plane_width_max, plane_height_max; 17454 17455 /* 17456 * intel_mode_valid() should be 17457 * sufficient on older platforms. 17458 */ 17459 if (INTEL_GEN(dev_priv) < 9) 17460 return MODE_OK; 17461 17462 /* 17463 * Most people will probably want a fullscreen 17464 * plane so let's not advertize modes that are 17465 * too big for that. 17466 */ 17467 if (INTEL_GEN(dev_priv) >= 11) { 17468 plane_width_max = 5120; 17469 plane_height_max = 4320; 17470 } else { 17471 plane_width_max = 5120; 17472 plane_height_max = 4096; 17473 } 17474 17475 if (mode->hdisplay > plane_width_max) 17476 return MODE_H_ILLEGAL; 17477 17478 if (mode->vdisplay > plane_height_max) 17479 return MODE_V_ILLEGAL; 17480 17481 return MODE_OK; 17482 } 17483 17484 static const struct drm_mode_config_funcs intel_mode_funcs = { 17485 .fb_create = intel_user_framebuffer_create, 17486 .get_format_info = intel_get_format_info, 17487 .output_poll_changed = intel_fbdev_output_poll_changed, 17488 .mode_valid = intel_mode_valid, 17489 .atomic_check = intel_atomic_check, 17490 .atomic_commit = intel_atomic_commit, 17491 .atomic_state_alloc = intel_atomic_state_alloc, 17492 .atomic_state_clear = intel_atomic_state_clear, 17493 .atomic_state_free = intel_atomic_state_free, 17494 }; 17495 17496 /** 17497 * intel_init_display_hooks - initialize the display modesetting hooks 17498 * @dev_priv: device private 17499 */ 17500 void intel_init_display_hooks(struct drm_i915_private *dev_priv) 17501 { 17502 intel_init_cdclk_hooks(dev_priv); 17503 17504 if (INTEL_GEN(dev_priv) >= 9) { 17505 dev_priv->display.get_pipe_config = hsw_get_pipe_config; 17506 dev_priv->display.get_initial_plane_config = 17507 skl_get_initial_plane_config; 17508 dev_priv->display.crtc_compute_clock = hsw_crtc_compute_clock; 17509 dev_priv->display.crtc_enable = hsw_crtc_enable; 17510 dev_priv->display.crtc_disable = hsw_crtc_disable; 17511 } else if (HAS_DDI(dev_priv)) { 17512 dev_priv->display.get_pipe_config = hsw_get_pipe_config; 17513 dev_priv->display.get_initial_plane_config = 17514 i9xx_get_initial_plane_config; 17515 dev_priv->display.crtc_compute_clock = 17516 hsw_crtc_compute_clock; 17517 dev_priv->display.crtc_enable = hsw_crtc_enable; 17518 dev_priv->display.crtc_disable = hsw_crtc_disable; 17519 } else if (HAS_PCH_SPLIT(dev_priv)) { 17520 dev_priv->display.get_pipe_config = ilk_get_pipe_config; 17521 dev_priv->display.get_initial_plane_config = 17522 i9xx_get_initial_plane_config; 17523 dev_priv->display.crtc_compute_clock = 17524 ilk_crtc_compute_clock; 17525 dev_priv->display.crtc_enable = ilk_crtc_enable; 17526 dev_priv->display.crtc_disable = ilk_crtc_disable; 17527 } else if (IS_CHERRYVIEW(dev_priv)) { 17528 dev_priv->display.get_pipe_config = i9xx_get_pipe_config; 17529 dev_priv->display.get_initial_plane_config = 17530 i9xx_get_initial_plane_config; 17531 dev_priv->display.crtc_compute_clock = chv_crtc_compute_clock; 17532 dev_priv->display.crtc_enable = valleyview_crtc_enable; 17533 dev_priv->display.crtc_disable = i9xx_crtc_disable; 17534 } else if (IS_VALLEYVIEW(dev_priv)) { 17535 dev_priv->display.get_pipe_config = i9xx_get_pipe_config; 17536 dev_priv->display.get_initial_plane_config = 17537 i9xx_get_initial_plane_config; 17538 dev_priv->display.crtc_compute_clock = vlv_crtc_compute_clock; 17539 dev_priv->display.crtc_enable = valleyview_crtc_enable; 17540 dev_priv->display.crtc_disable = i9xx_crtc_disable; 17541 } else if (IS_G4X(dev_priv)) { 17542 dev_priv->display.get_pipe_config = i9xx_get_pipe_config; 17543 dev_priv->display.get_initial_plane_config = 17544 i9xx_get_initial_plane_config; 17545 dev_priv->display.crtc_compute_clock = g4x_crtc_compute_clock; 17546 dev_priv->display.crtc_enable = i9xx_crtc_enable; 17547 dev_priv->display.crtc_disable = i9xx_crtc_disable; 17548 } else if (IS_PINEVIEW(dev_priv)) { 17549 dev_priv->display.get_pipe_config = i9xx_get_pipe_config; 17550 dev_priv->display.get_initial_plane_config = 17551 i9xx_get_initial_plane_config; 17552 dev_priv->display.crtc_compute_clock = pnv_crtc_compute_clock; 17553 dev_priv->display.crtc_enable = i9xx_crtc_enable; 17554 dev_priv->display.crtc_disable = i9xx_crtc_disable; 17555 } else if (!IS_GEN(dev_priv, 2)) { 17556 dev_priv->display.get_pipe_config = i9xx_get_pipe_config; 17557 dev_priv->display.get_initial_plane_config = 17558 i9xx_get_initial_plane_config; 17559 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock; 17560 dev_priv->display.crtc_enable = i9xx_crtc_enable; 17561 dev_priv->display.crtc_disable = i9xx_crtc_disable; 17562 } else { 17563 dev_priv->display.get_pipe_config = i9xx_get_pipe_config; 17564 dev_priv->display.get_initial_plane_config = 17565 i9xx_get_initial_plane_config; 17566 dev_priv->display.crtc_compute_clock = i8xx_crtc_compute_clock; 17567 dev_priv->display.crtc_enable = i9xx_crtc_enable; 17568 dev_priv->display.crtc_disable = i9xx_crtc_disable; 17569 } 17570 17571 if (IS_GEN(dev_priv, 5)) { 17572 dev_priv->display.fdi_link_train = ilk_fdi_link_train; 17573 } else if (IS_GEN(dev_priv, 6)) { 17574 dev_priv->display.fdi_link_train = gen6_fdi_link_train; 17575 } else if (IS_IVYBRIDGE(dev_priv)) { 17576 /* FIXME: detect B0+ stepping and use auto training */ 17577 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train; 17578 } 17579 17580 if (INTEL_GEN(dev_priv) >= 9) 17581 dev_priv->display.commit_modeset_enables = skl_commit_modeset_enables; 17582 else 17583 dev_priv->display.commit_modeset_enables = intel_commit_modeset_enables; 17584 17585 } 17586 17587 void intel_modeset_init_hw(struct drm_i915_private *i915) 17588 { 17589 struct intel_cdclk_state *cdclk_state = 17590 to_intel_cdclk_state(i915->cdclk.obj.state); 17591 struct intel_dbuf_state *dbuf_state = 17592 to_intel_dbuf_state(i915->dbuf.obj.state); 17593 17594 intel_update_cdclk(i915); 17595 intel_dump_cdclk_config(&i915->cdclk.hw, "Current CDCLK"); 17596 cdclk_state->logical = cdclk_state->actual = i915->cdclk.hw; 17597 17598 dbuf_state->enabled_slices = i915->dbuf.enabled_slices; 17599 } 17600 17601 static int sanitize_watermarks_add_affected(struct drm_atomic_state *state) 17602 { 17603 struct drm_plane *plane; 17604 struct intel_crtc *crtc; 17605 17606 for_each_intel_crtc(state->dev, crtc) { 17607 struct intel_crtc_state *crtc_state; 17608 17609 crtc_state = intel_atomic_get_crtc_state(state, crtc); 17610 if (IS_ERR(crtc_state)) 17611 return PTR_ERR(crtc_state); 17612 17613 if (crtc_state->hw.active) { 17614 /* 17615 * Preserve the inherited flag to avoid 17616 * taking the full modeset path. 17617 */ 17618 crtc_state->inherited = true; 17619 } 17620 } 17621 17622 drm_for_each_plane(plane, state->dev) { 17623 struct drm_plane_state *plane_state; 17624 17625 plane_state = drm_atomic_get_plane_state(state, plane); 17626 if (IS_ERR(plane_state)) 17627 return PTR_ERR(plane_state); 17628 } 17629 17630 return 0; 17631 } 17632 17633 /* 17634 * Calculate what we think the watermarks should be for the state we've read 17635 * out of the hardware and then immediately program those watermarks so that 17636 * we ensure the hardware settings match our internal state. 17637 * 17638 * We can calculate what we think WM's should be by creating a duplicate of the 17639 * current state (which was constructed during hardware readout) and running it 17640 * through the atomic check code to calculate new watermark values in the 17641 * state object. 17642 */ 17643 static void sanitize_watermarks(struct drm_i915_private *dev_priv) 17644 { 17645 struct drm_atomic_state *state; 17646 struct intel_atomic_state *intel_state; 17647 struct intel_crtc *crtc; 17648 struct intel_crtc_state *crtc_state; 17649 struct drm_modeset_acquire_ctx ctx; 17650 int ret; 17651 int i; 17652 17653 /* Only supported on platforms that use atomic watermark design */ 17654 if (!dev_priv->display.optimize_watermarks) 17655 return; 17656 17657 state = drm_atomic_state_alloc(&dev_priv->drm); 17658 if (drm_WARN_ON(&dev_priv->drm, !state)) 17659 return; 17660 17661 intel_state = to_intel_atomic_state(state); 17662 17663 drm_modeset_acquire_init(&ctx, 0); 17664 17665 retry: 17666 state->acquire_ctx = &ctx; 17667 17668 /* 17669 * Hardware readout is the only time we don't want to calculate 17670 * intermediate watermarks (since we don't trust the current 17671 * watermarks). 17672 */ 17673 if (!HAS_GMCH(dev_priv)) 17674 intel_state->skip_intermediate_wm = true; 17675 17676 ret = sanitize_watermarks_add_affected(state); 17677 if (ret) 17678 goto fail; 17679 17680 ret = intel_atomic_check(&dev_priv->drm, state); 17681 if (ret) 17682 goto fail; 17683 17684 /* Write calculated watermark values back */ 17685 for_each_new_intel_crtc_in_state(intel_state, crtc, crtc_state, i) { 17686 crtc_state->wm.need_postvbl_update = true; 17687 dev_priv->display.optimize_watermarks(intel_state, crtc); 17688 17689 to_intel_crtc_state(crtc->base.state)->wm = crtc_state->wm; 17690 } 17691 17692 fail: 17693 if (ret == -EDEADLK) { 17694 drm_atomic_state_clear(state); 17695 drm_modeset_backoff(&ctx); 17696 goto retry; 17697 } 17698 17699 /* 17700 * If we fail here, it means that the hardware appears to be 17701 * programmed in a way that shouldn't be possible, given our 17702 * understanding of watermark requirements. This might mean a 17703 * mistake in the hardware readout code or a mistake in the 17704 * watermark calculations for a given platform. Raise a WARN 17705 * so that this is noticeable. 17706 * 17707 * If this actually happens, we'll have to just leave the 17708 * BIOS-programmed watermarks untouched and hope for the best. 17709 */ 17710 drm_WARN(&dev_priv->drm, ret, 17711 "Could not determine valid watermarks for inherited state\n"); 17712 17713 drm_atomic_state_put(state); 17714 17715 drm_modeset_drop_locks(&ctx); 17716 drm_modeset_acquire_fini(&ctx); 17717 } 17718 17719 static void intel_update_fdi_pll_freq(struct drm_i915_private *dev_priv) 17720 { 17721 if (IS_GEN(dev_priv, 5)) { 17722 u32 fdi_pll_clk = 17723 intel_de_read(dev_priv, FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK; 17724 17725 dev_priv->fdi_pll_freq = (fdi_pll_clk + 2) * 10000; 17726 } else if (IS_GEN(dev_priv, 6) || IS_IVYBRIDGE(dev_priv)) { 17727 dev_priv->fdi_pll_freq = 270000; 17728 } else { 17729 return; 17730 } 17731 17732 drm_dbg(&dev_priv->drm, "FDI PLL freq=%d\n", dev_priv->fdi_pll_freq); 17733 } 17734 17735 static int intel_initial_commit(struct drm_device *dev) 17736 { 17737 struct drm_atomic_state *state = NULL; 17738 struct drm_modeset_acquire_ctx ctx; 17739 struct intel_crtc *crtc; 17740 int ret = 0; 17741 17742 state = drm_atomic_state_alloc(dev); 17743 if (!state) 17744 return -ENOMEM; 17745 17746 drm_modeset_acquire_init(&ctx, 0); 17747 17748 retry: 17749 state->acquire_ctx = &ctx; 17750 17751 for_each_intel_crtc(dev, crtc) { 17752 struct intel_crtc_state *crtc_state = 17753 intel_atomic_get_crtc_state(state, crtc); 17754 17755 if (IS_ERR(crtc_state)) { 17756 ret = PTR_ERR(crtc_state); 17757 goto out; 17758 } 17759 17760 if (crtc_state->hw.active) { 17761 /* 17762 * We've not yet detected sink capabilities 17763 * (audio,infoframes,etc.) and thus we don't want to 17764 * force a full state recomputation yet. We want that to 17765 * happen only for the first real commit from userspace. 17766 * So preserve the inherited flag for the time being. 17767 */ 17768 crtc_state->inherited = true; 17769 17770 ret = drm_atomic_add_affected_planes(state, &crtc->base); 17771 if (ret) 17772 goto out; 17773 17774 /* 17775 * FIXME hack to force a LUT update to avoid the 17776 * plane update forcing the pipe gamma on without 17777 * having a proper LUT loaded. Remove once we 17778 * have readout for pipe gamma enable. 17779 */ 17780 crtc_state->uapi.color_mgmt_changed = true; 17781 17782 /* 17783 * FIXME hack to force full modeset when DSC is being 17784 * used. 17785 * 17786 * As long as we do not have full state readout and 17787 * config comparison of crtc_state->dsc, we have no way 17788 * to ensure reliable fastset. Remove once we have 17789 * readout for DSC. 17790 */ 17791 if (crtc_state->dsc.compression_enable) { 17792 ret = drm_atomic_add_affected_connectors(state, 17793 &crtc->base); 17794 if (ret) 17795 goto out; 17796 crtc_state->uapi.mode_changed = true; 17797 drm_dbg_kms(dev, "Force full modeset for DSC\n"); 17798 } 17799 } 17800 } 17801 17802 ret = drm_atomic_commit(state); 17803 17804 out: 17805 if (ret == -EDEADLK) { 17806 drm_atomic_state_clear(state); 17807 drm_modeset_backoff(&ctx); 17808 goto retry; 17809 } 17810 17811 drm_atomic_state_put(state); 17812 17813 drm_modeset_drop_locks(&ctx); 17814 drm_modeset_acquire_fini(&ctx); 17815 17816 return ret; 17817 } 17818 17819 static void intel_mode_config_init(struct drm_i915_private *i915) 17820 { 17821 struct drm_mode_config *mode_config = &i915->drm.mode_config; 17822 17823 drm_mode_config_init(&i915->drm); 17824 INIT_LIST_HEAD(&i915->global_obj_list); 17825 17826 mode_config->min_width = 0; 17827 mode_config->min_height = 0; 17828 17829 mode_config->preferred_depth = 24; 17830 mode_config->prefer_shadow = 1; 17831 17832 mode_config->allow_fb_modifiers = true; 17833 17834 mode_config->funcs = &intel_mode_funcs; 17835 17836 /* 17837 * Maximum framebuffer dimensions, chosen to match 17838 * the maximum render engine surface size on gen4+. 17839 */ 17840 if (INTEL_GEN(i915) >= 7) { 17841 mode_config->max_width = 16384; 17842 mode_config->max_height = 16384; 17843 } else if (INTEL_GEN(i915) >= 4) { 17844 mode_config->max_width = 8192; 17845 mode_config->max_height = 8192; 17846 } else if (IS_GEN(i915, 3)) { 17847 mode_config->max_width = 4096; 17848 mode_config->max_height = 4096; 17849 } else { 17850 mode_config->max_width = 2048; 17851 mode_config->max_height = 2048; 17852 } 17853 17854 if (IS_I845G(i915) || IS_I865G(i915)) { 17855 mode_config->cursor_width = IS_I845G(i915) ? 64 : 512; 17856 mode_config->cursor_height = 1023; 17857 } else if (IS_I830(i915) || IS_I85X(i915) || 17858 IS_I915G(i915) || IS_I915GM(i915)) { 17859 mode_config->cursor_width = 64; 17860 mode_config->cursor_height = 64; 17861 } else { 17862 mode_config->cursor_width = 256; 17863 mode_config->cursor_height = 256; 17864 } 17865 } 17866 17867 static void intel_mode_config_cleanup(struct drm_i915_private *i915) 17868 { 17869 intel_atomic_global_obj_cleanup(i915); 17870 drm_mode_config_cleanup(&i915->drm); 17871 } 17872 17873 static void plane_config_fini(struct intel_initial_plane_config *plane_config) 17874 { 17875 if (plane_config->fb) { 17876 struct drm_framebuffer *fb = &plane_config->fb->base; 17877 17878 /* We may only have the stub and not a full framebuffer */ 17879 if (drm_framebuffer_read_refcount(fb)) 17880 drm_framebuffer_put(fb); 17881 else 17882 kfree(fb); 17883 } 17884 17885 if (plane_config->vma) 17886 i915_vma_put(plane_config->vma); 17887 } 17888 17889 /* part #1: call before irq install */ 17890 int intel_modeset_init_noirq(struct drm_i915_private *i915) 17891 { 17892 int ret; 17893 17894 if (i915_inject_probe_failure(i915)) 17895 return -ENODEV; 17896 17897 if (HAS_DISPLAY(i915)) { 17898 ret = drm_vblank_init(&i915->drm, 17899 INTEL_NUM_PIPES(i915)); 17900 if (ret) 17901 return ret; 17902 } 17903 17904 intel_bios_init(i915); 17905 17906 ret = intel_vga_register(i915); 17907 if (ret) 17908 goto cleanup_bios; 17909 17910 /* FIXME: completely on the wrong abstraction layer */ 17911 intel_power_domains_init_hw(i915, false); 17912 17913 intel_csr_ucode_init(i915); 17914 17915 i915->modeset_wq = alloc_ordered_workqueue("i915_modeset", 0); 17916 i915->flip_wq = alloc_workqueue("i915_flip", WQ_HIGHPRI | 17917 WQ_UNBOUND, WQ_UNBOUND_MAX_ACTIVE); 17918 17919 intel_mode_config_init(i915); 17920 17921 ret = intel_cdclk_init(i915); 17922 if (ret) 17923 goto cleanup_vga_client_pw_domain_csr; 17924 17925 ret = intel_dbuf_init(i915); 17926 if (ret) 17927 goto cleanup_vga_client_pw_domain_csr; 17928 17929 ret = intel_bw_init(i915); 17930 if (ret) 17931 goto cleanup_vga_client_pw_domain_csr; 17932 17933 init_llist_head(&i915->atomic_helper.free_list); 17934 INIT_WORK(&i915->atomic_helper.free_work, 17935 intel_atomic_helper_free_state_worker); 17936 17937 intel_init_quirks(i915); 17938 17939 intel_fbc_init(i915); 17940 17941 return 0; 17942 17943 cleanup_vga_client_pw_domain_csr: 17944 intel_csr_ucode_fini(i915); 17945 intel_power_domains_driver_remove(i915); 17946 intel_vga_unregister(i915); 17947 cleanup_bios: 17948 intel_bios_driver_remove(i915); 17949 17950 return ret; 17951 } 17952 17953 /* part #2: call after irq install, but before gem init */ 17954 int intel_modeset_init_nogem(struct drm_i915_private *i915) 17955 { 17956 struct drm_device *dev = &i915->drm; 17957 enum pipe pipe; 17958 struct intel_crtc *crtc; 17959 int ret; 17960 17961 intel_init_pm(i915); 17962 17963 intel_panel_sanitize_ssc(i915); 17964 17965 intel_gmbus_setup(i915); 17966 17967 drm_dbg_kms(&i915->drm, "%d display pipe%s available.\n", 17968 INTEL_NUM_PIPES(i915), 17969 INTEL_NUM_PIPES(i915) > 1 ? "s" : ""); 17970 17971 if (HAS_DISPLAY(i915)) { 17972 for_each_pipe(i915, pipe) { 17973 ret = intel_crtc_init(i915, pipe); 17974 if (ret) { 17975 intel_mode_config_cleanup(i915); 17976 return ret; 17977 } 17978 } 17979 } 17980 17981 intel_plane_possible_crtcs_init(i915); 17982 intel_shared_dpll_init(dev); 17983 intel_update_fdi_pll_freq(i915); 17984 17985 intel_update_czclk(i915); 17986 intel_modeset_init_hw(i915); 17987 17988 intel_hdcp_component_init(i915); 17989 17990 if (i915->max_cdclk_freq == 0) 17991 intel_update_max_cdclk(i915); 17992 17993 /* 17994 * If the platform has HTI, we need to find out whether it has reserved 17995 * any display resources before we create our display outputs. 17996 */ 17997 if (INTEL_INFO(i915)->display.has_hti) 17998 i915->hti_state = intel_de_read(i915, HDPORT_STATE); 17999 18000 /* Just disable it once at startup */ 18001 intel_vga_disable(i915); 18002 intel_setup_outputs(i915); 18003 18004 drm_modeset_lock_all(dev); 18005 intel_modeset_setup_hw_state(dev, dev->mode_config.acquire_ctx); 18006 drm_modeset_unlock_all(dev); 18007 18008 for_each_intel_crtc(dev, crtc) { 18009 struct intel_initial_plane_config plane_config = {}; 18010 18011 if (!crtc->active) 18012 continue; 18013 18014 /* 18015 * Note that reserving the BIOS fb up front prevents us 18016 * from stuffing other stolen allocations like the ring 18017 * on top. This prevents some ugliness at boot time, and 18018 * can even allow for smooth boot transitions if the BIOS 18019 * fb is large enough for the active pipe configuration. 18020 */ 18021 i915->display.get_initial_plane_config(crtc, &plane_config); 18022 18023 /* 18024 * If the fb is shared between multiple heads, we'll 18025 * just get the first one. 18026 */ 18027 intel_find_initial_plane_obj(crtc, &plane_config); 18028 18029 plane_config_fini(&plane_config); 18030 } 18031 18032 /* 18033 * Make sure hardware watermarks really match the state we read out. 18034 * Note that we need to do this after reconstructing the BIOS fb's 18035 * since the watermark calculation done here will use pstate->fb. 18036 */ 18037 if (!HAS_GMCH(i915)) 18038 sanitize_watermarks(i915); 18039 18040 return 0; 18041 } 18042 18043 /* part #3: call after gem init */ 18044 int intel_modeset_init(struct drm_i915_private *i915) 18045 { 18046 int ret; 18047 18048 if (!HAS_DISPLAY(i915)) 18049 return 0; 18050 18051 /* 18052 * Force all active planes to recompute their states. So that on 18053 * mode_setcrtc after probe, all the intel_plane_state variables 18054 * are already calculated and there is no assert_plane warnings 18055 * during bootup. 18056 */ 18057 ret = intel_initial_commit(&i915->drm); 18058 if (ret) 18059 drm_dbg_kms(&i915->drm, "Initial modeset failed, %d\n", ret); 18060 18061 intel_overlay_setup(i915); 18062 18063 ret = intel_fbdev_init(&i915->drm); 18064 if (ret) 18065 return ret; 18066 18067 /* Only enable hotplug handling once the fbdev is fully set up. */ 18068 intel_hpd_init(i915); 18069 18070 intel_init_ipc(i915); 18071 18072 intel_psr_set_force_mode_changed(i915->psr.dp); 18073 18074 return 0; 18075 } 18076 18077 void i830_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe) 18078 { 18079 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 18080 /* 640x480@60Hz, ~25175 kHz */ 18081 struct dpll clock = { 18082 .m1 = 18, 18083 .m2 = 7, 18084 .p1 = 13, 18085 .p2 = 4, 18086 .n = 2, 18087 }; 18088 u32 dpll, fp; 18089 int i; 18090 18091 drm_WARN_ON(&dev_priv->drm, 18092 i9xx_calc_dpll_params(48000, &clock) != 25154); 18093 18094 drm_dbg_kms(&dev_priv->drm, 18095 "enabling pipe %c due to force quirk (vco=%d dot=%d)\n", 18096 pipe_name(pipe), clock.vco, clock.dot); 18097 18098 fp = i9xx_dpll_compute_fp(&clock); 18099 dpll = DPLL_DVO_2X_MODE | 18100 DPLL_VGA_MODE_DIS | 18101 ((clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT) | 18102 PLL_P2_DIVIDE_BY_4 | 18103 PLL_REF_INPUT_DREFCLK | 18104 DPLL_VCO_ENABLE; 18105 18106 intel_de_write(dev_priv, FP0(pipe), fp); 18107 intel_de_write(dev_priv, FP1(pipe), fp); 18108 18109 intel_de_write(dev_priv, HTOTAL(pipe), (640 - 1) | ((800 - 1) << 16)); 18110 intel_de_write(dev_priv, HBLANK(pipe), (640 - 1) | ((800 - 1) << 16)); 18111 intel_de_write(dev_priv, HSYNC(pipe), (656 - 1) | ((752 - 1) << 16)); 18112 intel_de_write(dev_priv, VTOTAL(pipe), (480 - 1) | ((525 - 1) << 16)); 18113 intel_de_write(dev_priv, VBLANK(pipe), (480 - 1) | ((525 - 1) << 16)); 18114 intel_de_write(dev_priv, VSYNC(pipe), (490 - 1) | ((492 - 1) << 16)); 18115 intel_de_write(dev_priv, PIPESRC(pipe), ((640 - 1) << 16) | (480 - 1)); 18116 18117 /* 18118 * Apparently we need to have VGA mode enabled prior to changing 18119 * the P1/P2 dividers. Otherwise the DPLL will keep using the old 18120 * dividers, even though the register value does change. 18121 */ 18122 intel_de_write(dev_priv, DPLL(pipe), dpll & ~DPLL_VGA_MODE_DIS); 18123 intel_de_write(dev_priv, DPLL(pipe), dpll); 18124 18125 /* Wait for the clocks to stabilize. */ 18126 intel_de_posting_read(dev_priv, DPLL(pipe)); 18127 udelay(150); 18128 18129 /* The pixel multiplier can only be updated once the 18130 * DPLL is enabled and the clocks are stable. 18131 * 18132 * So write it again. 18133 */ 18134 intel_de_write(dev_priv, DPLL(pipe), dpll); 18135 18136 /* We do this three times for luck */ 18137 for (i = 0; i < 3 ; i++) { 18138 intel_de_write(dev_priv, DPLL(pipe), dpll); 18139 intel_de_posting_read(dev_priv, DPLL(pipe)); 18140 udelay(150); /* wait for warmup */ 18141 } 18142 18143 intel_de_write(dev_priv, PIPECONF(pipe), 18144 PIPECONF_ENABLE | PIPECONF_PROGRESSIVE); 18145 intel_de_posting_read(dev_priv, PIPECONF(pipe)); 18146 18147 intel_wait_for_pipe_scanline_moving(crtc); 18148 } 18149 18150 void i830_disable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe) 18151 { 18152 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 18153 18154 drm_dbg_kms(&dev_priv->drm, "disabling pipe %c due to force quirk\n", 18155 pipe_name(pipe)); 18156 18157 drm_WARN_ON(&dev_priv->drm, 18158 intel_de_read(dev_priv, DSPCNTR(PLANE_A)) & 18159 DISPLAY_PLANE_ENABLE); 18160 drm_WARN_ON(&dev_priv->drm, 18161 intel_de_read(dev_priv, DSPCNTR(PLANE_B)) & 18162 DISPLAY_PLANE_ENABLE); 18163 drm_WARN_ON(&dev_priv->drm, 18164 intel_de_read(dev_priv, DSPCNTR(PLANE_C)) & 18165 DISPLAY_PLANE_ENABLE); 18166 drm_WARN_ON(&dev_priv->drm, 18167 intel_de_read(dev_priv, CURCNTR(PIPE_A)) & MCURSOR_MODE); 18168 drm_WARN_ON(&dev_priv->drm, 18169 intel_de_read(dev_priv, CURCNTR(PIPE_B)) & MCURSOR_MODE); 18170 18171 intel_de_write(dev_priv, PIPECONF(pipe), 0); 18172 intel_de_posting_read(dev_priv, PIPECONF(pipe)); 18173 18174 intel_wait_for_pipe_scanline_stopped(crtc); 18175 18176 intel_de_write(dev_priv, DPLL(pipe), DPLL_VGA_MODE_DIS); 18177 intel_de_posting_read(dev_priv, DPLL(pipe)); 18178 } 18179 18180 static void 18181 intel_sanitize_plane_mapping(struct drm_i915_private *dev_priv) 18182 { 18183 struct intel_crtc *crtc; 18184 18185 if (INTEL_GEN(dev_priv) >= 4) 18186 return; 18187 18188 for_each_intel_crtc(&dev_priv->drm, crtc) { 18189 struct intel_plane *plane = 18190 to_intel_plane(crtc->base.primary); 18191 struct intel_crtc *plane_crtc; 18192 enum pipe pipe; 18193 18194 if (!plane->get_hw_state(plane, &pipe)) 18195 continue; 18196 18197 if (pipe == crtc->pipe) 18198 continue; 18199 18200 drm_dbg_kms(&dev_priv->drm, 18201 "[PLANE:%d:%s] attached to the wrong pipe, disabling plane\n", 18202 plane->base.base.id, plane->base.name); 18203 18204 plane_crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 18205 intel_plane_disable_noatomic(plane_crtc, plane); 18206 } 18207 } 18208 18209 static bool intel_crtc_has_encoders(struct intel_crtc *crtc) 18210 { 18211 struct drm_device *dev = crtc->base.dev; 18212 struct intel_encoder *encoder; 18213 18214 for_each_encoder_on_crtc(dev, &crtc->base, encoder) 18215 return true; 18216 18217 return false; 18218 } 18219 18220 static struct intel_connector *intel_encoder_find_connector(struct intel_encoder *encoder) 18221 { 18222 struct drm_device *dev = encoder->base.dev; 18223 struct intel_connector *connector; 18224 18225 for_each_connector_on_encoder(dev, &encoder->base, connector) 18226 return connector; 18227 18228 return NULL; 18229 } 18230 18231 static bool has_pch_trancoder(struct drm_i915_private *dev_priv, 18232 enum pipe pch_transcoder) 18233 { 18234 return HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) || 18235 (HAS_PCH_LPT_H(dev_priv) && pch_transcoder == PIPE_A); 18236 } 18237 18238 static void intel_sanitize_frame_start_delay(const struct intel_crtc_state *crtc_state) 18239 { 18240 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 18241 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 18242 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 18243 18244 if (INTEL_GEN(dev_priv) >= 9 || 18245 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) { 18246 i915_reg_t reg = CHICKEN_TRANS(cpu_transcoder); 18247 u32 val; 18248 18249 if (transcoder_is_dsi(cpu_transcoder)) 18250 return; 18251 18252 val = intel_de_read(dev_priv, reg); 18253 val &= ~HSW_FRAME_START_DELAY_MASK; 18254 val |= HSW_FRAME_START_DELAY(0); 18255 intel_de_write(dev_priv, reg, val); 18256 } else { 18257 i915_reg_t reg = PIPECONF(cpu_transcoder); 18258 u32 val; 18259 18260 val = intel_de_read(dev_priv, reg); 18261 val &= ~PIPECONF_FRAME_START_DELAY_MASK; 18262 val |= PIPECONF_FRAME_START_DELAY(0); 18263 intel_de_write(dev_priv, reg, val); 18264 } 18265 18266 if (!crtc_state->has_pch_encoder) 18267 return; 18268 18269 if (HAS_PCH_IBX(dev_priv)) { 18270 i915_reg_t reg = PCH_TRANSCONF(crtc->pipe); 18271 u32 val; 18272 18273 val = intel_de_read(dev_priv, reg); 18274 val &= ~TRANS_FRAME_START_DELAY_MASK; 18275 val |= TRANS_FRAME_START_DELAY(0); 18276 intel_de_write(dev_priv, reg, val); 18277 } else { 18278 enum pipe pch_transcoder = intel_crtc_pch_transcoder(crtc); 18279 i915_reg_t reg = TRANS_CHICKEN2(pch_transcoder); 18280 u32 val; 18281 18282 val = intel_de_read(dev_priv, reg); 18283 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK; 18284 val |= TRANS_CHICKEN2_FRAME_START_DELAY(0); 18285 intel_de_write(dev_priv, reg, val); 18286 } 18287 } 18288 18289 static void intel_sanitize_crtc(struct intel_crtc *crtc, 18290 struct drm_modeset_acquire_ctx *ctx) 18291 { 18292 struct drm_device *dev = crtc->base.dev; 18293 struct drm_i915_private *dev_priv = to_i915(dev); 18294 struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state); 18295 18296 if (crtc_state->hw.active) { 18297 struct intel_plane *plane; 18298 18299 /* Clear any frame start delays used for debugging left by the BIOS */ 18300 intel_sanitize_frame_start_delay(crtc_state); 18301 18302 /* Disable everything but the primary plane */ 18303 for_each_intel_plane_on_crtc(dev, crtc, plane) { 18304 const struct intel_plane_state *plane_state = 18305 to_intel_plane_state(plane->base.state); 18306 18307 if (plane_state->uapi.visible && 18308 plane->base.type != DRM_PLANE_TYPE_PRIMARY) 18309 intel_plane_disable_noatomic(crtc, plane); 18310 } 18311 18312 /* 18313 * Disable any background color set by the BIOS, but enable the 18314 * gamma and CSC to match how we program our planes. 18315 */ 18316 if (INTEL_GEN(dev_priv) >= 9) 18317 intel_de_write(dev_priv, SKL_BOTTOM_COLOR(crtc->pipe), 18318 SKL_BOTTOM_COLOR_GAMMA_ENABLE | SKL_BOTTOM_COLOR_CSC_ENABLE); 18319 } 18320 18321 /* Adjust the state of the output pipe according to whether we 18322 * have active connectors/encoders. */ 18323 if (crtc_state->hw.active && !intel_crtc_has_encoders(crtc)) 18324 intel_crtc_disable_noatomic(crtc, ctx); 18325 18326 if (crtc_state->hw.active || HAS_GMCH(dev_priv)) { 18327 /* 18328 * We start out with underrun reporting disabled to avoid races. 18329 * For correct bookkeeping mark this on active crtcs. 18330 * 18331 * Also on gmch platforms we dont have any hardware bits to 18332 * disable the underrun reporting. Which means we need to start 18333 * out with underrun reporting disabled also on inactive pipes, 18334 * since otherwise we'll complain about the garbage we read when 18335 * e.g. coming up after runtime pm. 18336 * 18337 * No protection against concurrent access is required - at 18338 * worst a fifo underrun happens which also sets this to false. 18339 */ 18340 crtc->cpu_fifo_underrun_disabled = true; 18341 /* 18342 * We track the PCH trancoder underrun reporting state 18343 * within the crtc. With crtc for pipe A housing the underrun 18344 * reporting state for PCH transcoder A, crtc for pipe B housing 18345 * it for PCH transcoder B, etc. LPT-H has only PCH transcoder A, 18346 * and marking underrun reporting as disabled for the non-existing 18347 * PCH transcoders B and C would prevent enabling the south 18348 * error interrupt (see cpt_can_enable_serr_int()). 18349 */ 18350 if (has_pch_trancoder(dev_priv, crtc->pipe)) 18351 crtc->pch_fifo_underrun_disabled = true; 18352 } 18353 } 18354 18355 static bool has_bogus_dpll_config(const struct intel_crtc_state *crtc_state) 18356 { 18357 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 18358 18359 /* 18360 * Some SNB BIOSen (eg. ASUS K53SV) are known to misprogram 18361 * the hardware when a high res displays plugged in. DPLL P 18362 * divider is zero, and the pipe timings are bonkers. We'll 18363 * try to disable everything in that case. 18364 * 18365 * FIXME would be nice to be able to sanitize this state 18366 * without several WARNs, but for now let's take the easy 18367 * road. 18368 */ 18369 return IS_GEN(dev_priv, 6) && 18370 crtc_state->hw.active && 18371 crtc_state->shared_dpll && 18372 crtc_state->port_clock == 0; 18373 } 18374 18375 static void intel_sanitize_encoder(struct intel_encoder *encoder) 18376 { 18377 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 18378 struct intel_connector *connector; 18379 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc); 18380 struct intel_crtc_state *crtc_state = crtc ? 18381 to_intel_crtc_state(crtc->base.state) : NULL; 18382 18383 /* We need to check both for a crtc link (meaning that the 18384 * encoder is active and trying to read from a pipe) and the 18385 * pipe itself being active. */ 18386 bool has_active_crtc = crtc_state && 18387 crtc_state->hw.active; 18388 18389 if (crtc_state && has_bogus_dpll_config(crtc_state)) { 18390 drm_dbg_kms(&dev_priv->drm, 18391 "BIOS has misprogrammed the hardware. Disabling pipe %c\n", 18392 pipe_name(crtc->pipe)); 18393 has_active_crtc = false; 18394 } 18395 18396 connector = intel_encoder_find_connector(encoder); 18397 if (connector && !has_active_crtc) { 18398 drm_dbg_kms(&dev_priv->drm, 18399 "[ENCODER:%d:%s] has active connectors but no active pipe!\n", 18400 encoder->base.base.id, 18401 encoder->base.name); 18402 18403 /* Connector is active, but has no active pipe. This is 18404 * fallout from our resume register restoring. Disable 18405 * the encoder manually again. */ 18406 if (crtc_state) { 18407 struct drm_encoder *best_encoder; 18408 18409 drm_dbg_kms(&dev_priv->drm, 18410 "[ENCODER:%d:%s] manually disabled\n", 18411 encoder->base.base.id, 18412 encoder->base.name); 18413 18414 /* avoid oopsing in case the hooks consult best_encoder */ 18415 best_encoder = connector->base.state->best_encoder; 18416 connector->base.state->best_encoder = &encoder->base; 18417 18418 /* FIXME NULL atomic state passed! */ 18419 if (encoder->disable) 18420 encoder->disable(NULL, encoder, crtc_state, 18421 connector->base.state); 18422 if (encoder->post_disable) 18423 encoder->post_disable(NULL, encoder, crtc_state, 18424 connector->base.state); 18425 18426 connector->base.state->best_encoder = best_encoder; 18427 } 18428 encoder->base.crtc = NULL; 18429 18430 /* Inconsistent output/port/pipe state happens presumably due to 18431 * a bug in one of the get_hw_state functions. Or someplace else 18432 * in our code, like the register restore mess on resume. Clamp 18433 * things to off as a safer default. */ 18434 18435 connector->base.dpms = DRM_MODE_DPMS_OFF; 18436 connector->base.encoder = NULL; 18437 } 18438 18439 /* notify opregion of the sanitized encoder state */ 18440 intel_opregion_notify_encoder(encoder, connector && has_active_crtc); 18441 18442 if (INTEL_GEN(dev_priv) >= 11) 18443 icl_sanitize_encoder_pll_mapping(encoder); 18444 } 18445 18446 /* FIXME read out full plane state for all planes */ 18447 static void readout_plane_state(struct drm_i915_private *dev_priv) 18448 { 18449 struct intel_plane *plane; 18450 struct intel_crtc *crtc; 18451 18452 for_each_intel_plane(&dev_priv->drm, plane) { 18453 struct intel_plane_state *plane_state = 18454 to_intel_plane_state(plane->base.state); 18455 struct intel_crtc_state *crtc_state; 18456 enum pipe pipe = PIPE_A; 18457 bool visible; 18458 18459 visible = plane->get_hw_state(plane, &pipe); 18460 18461 crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 18462 crtc_state = to_intel_crtc_state(crtc->base.state); 18463 18464 intel_set_plane_visible(crtc_state, plane_state, visible); 18465 18466 drm_dbg_kms(&dev_priv->drm, 18467 "[PLANE:%d:%s] hw state readout: %s, pipe %c\n", 18468 plane->base.base.id, plane->base.name, 18469 enableddisabled(visible), pipe_name(pipe)); 18470 } 18471 18472 for_each_intel_crtc(&dev_priv->drm, crtc) { 18473 struct intel_crtc_state *crtc_state = 18474 to_intel_crtc_state(crtc->base.state); 18475 18476 fixup_active_planes(crtc_state); 18477 } 18478 } 18479 18480 static void intel_modeset_readout_hw_state(struct drm_device *dev) 18481 { 18482 struct drm_i915_private *dev_priv = to_i915(dev); 18483 struct intel_cdclk_state *cdclk_state = 18484 to_intel_cdclk_state(dev_priv->cdclk.obj.state); 18485 struct intel_dbuf_state *dbuf_state = 18486 to_intel_dbuf_state(dev_priv->dbuf.obj.state); 18487 enum pipe pipe; 18488 struct intel_crtc *crtc; 18489 struct intel_encoder *encoder; 18490 struct intel_connector *connector; 18491 struct drm_connector_list_iter conn_iter; 18492 u8 active_pipes = 0; 18493 18494 for_each_intel_crtc(dev, crtc) { 18495 struct intel_crtc_state *crtc_state = 18496 to_intel_crtc_state(crtc->base.state); 18497 18498 __drm_atomic_helper_crtc_destroy_state(&crtc_state->uapi); 18499 intel_crtc_free_hw_state(crtc_state); 18500 intel_crtc_state_reset(crtc_state, crtc); 18501 18502 crtc_state->hw.active = crtc_state->hw.enable = 18503 dev_priv->display.get_pipe_config(crtc, crtc_state); 18504 18505 crtc->base.enabled = crtc_state->hw.enable; 18506 crtc->active = crtc_state->hw.active; 18507 18508 if (crtc_state->hw.active) 18509 active_pipes |= BIT(crtc->pipe); 18510 18511 drm_dbg_kms(&dev_priv->drm, 18512 "[CRTC:%d:%s] hw state readout: %s\n", 18513 crtc->base.base.id, crtc->base.name, 18514 enableddisabled(crtc_state->hw.active)); 18515 } 18516 18517 dev_priv->active_pipes = cdclk_state->active_pipes = 18518 dbuf_state->active_pipes = active_pipes; 18519 18520 readout_plane_state(dev_priv); 18521 18522 intel_dpll_readout_hw_state(dev_priv); 18523 18524 for_each_intel_encoder(dev, encoder) { 18525 pipe = 0; 18526 18527 if (encoder->get_hw_state(encoder, &pipe)) { 18528 struct intel_crtc_state *crtc_state; 18529 18530 crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 18531 crtc_state = to_intel_crtc_state(crtc->base.state); 18532 18533 encoder->base.crtc = &crtc->base; 18534 encoder->get_config(encoder, crtc_state); 18535 } else { 18536 encoder->base.crtc = NULL; 18537 } 18538 18539 drm_dbg_kms(&dev_priv->drm, 18540 "[ENCODER:%d:%s] hw state readout: %s, pipe %c\n", 18541 encoder->base.base.id, encoder->base.name, 18542 enableddisabled(encoder->base.crtc), 18543 pipe_name(pipe)); 18544 } 18545 18546 drm_connector_list_iter_begin(dev, &conn_iter); 18547 for_each_intel_connector_iter(connector, &conn_iter) { 18548 if (connector->get_hw_state(connector)) { 18549 struct intel_crtc_state *crtc_state; 18550 struct intel_crtc *crtc; 18551 18552 connector->base.dpms = DRM_MODE_DPMS_ON; 18553 18554 encoder = intel_attached_encoder(connector); 18555 connector->base.encoder = &encoder->base; 18556 18557 crtc = to_intel_crtc(encoder->base.crtc); 18558 crtc_state = crtc ? to_intel_crtc_state(crtc->base.state) : NULL; 18559 18560 if (crtc_state && crtc_state->hw.active) { 18561 /* 18562 * This has to be done during hardware readout 18563 * because anything calling .crtc_disable may 18564 * rely on the connector_mask being accurate. 18565 */ 18566 crtc_state->uapi.connector_mask |= 18567 drm_connector_mask(&connector->base); 18568 crtc_state->uapi.encoder_mask |= 18569 drm_encoder_mask(&encoder->base); 18570 } 18571 } else { 18572 connector->base.dpms = DRM_MODE_DPMS_OFF; 18573 connector->base.encoder = NULL; 18574 } 18575 drm_dbg_kms(&dev_priv->drm, 18576 "[CONNECTOR:%d:%s] hw state readout: %s\n", 18577 connector->base.base.id, connector->base.name, 18578 enableddisabled(connector->base.encoder)); 18579 } 18580 drm_connector_list_iter_end(&conn_iter); 18581 18582 for_each_intel_crtc(dev, crtc) { 18583 struct intel_bw_state *bw_state = 18584 to_intel_bw_state(dev_priv->bw_obj.state); 18585 struct intel_crtc_state *crtc_state = 18586 to_intel_crtc_state(crtc->base.state); 18587 struct intel_plane *plane; 18588 int min_cdclk = 0; 18589 18590 if (crtc_state->hw.active) { 18591 struct drm_display_mode *mode = &crtc_state->hw.mode; 18592 18593 intel_mode_from_pipe_config(&crtc_state->hw.adjusted_mode, 18594 crtc_state); 18595 18596 *mode = crtc_state->hw.adjusted_mode; 18597 mode->hdisplay = crtc_state->pipe_src_w; 18598 mode->vdisplay = crtc_state->pipe_src_h; 18599 18600 /* 18601 * The initial mode needs to be set in order to keep 18602 * the atomic core happy. It wants a valid mode if the 18603 * crtc's enabled, so we do the above call. 18604 * 18605 * But we don't set all the derived state fully, hence 18606 * set a flag to indicate that a full recalculation is 18607 * needed on the next commit. 18608 */ 18609 crtc_state->inherited = true; 18610 18611 intel_crtc_compute_pixel_rate(crtc_state); 18612 18613 intel_crtc_update_active_timings(crtc_state); 18614 18615 intel_crtc_copy_hw_to_uapi_state(crtc_state); 18616 } 18617 18618 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) { 18619 const struct intel_plane_state *plane_state = 18620 to_intel_plane_state(plane->base.state); 18621 18622 /* 18623 * FIXME don't have the fb yet, so can't 18624 * use intel_plane_data_rate() :( 18625 */ 18626 if (plane_state->uapi.visible) 18627 crtc_state->data_rate[plane->id] = 18628 4 * crtc_state->pixel_rate; 18629 /* 18630 * FIXME don't have the fb yet, so can't 18631 * use plane->min_cdclk() :( 18632 */ 18633 if (plane_state->uapi.visible && plane->min_cdclk) { 18634 if (crtc_state->double_wide || 18635 INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) 18636 crtc_state->min_cdclk[plane->id] = 18637 DIV_ROUND_UP(crtc_state->pixel_rate, 2); 18638 else 18639 crtc_state->min_cdclk[plane->id] = 18640 crtc_state->pixel_rate; 18641 } 18642 drm_dbg_kms(&dev_priv->drm, 18643 "[PLANE:%d:%s] min_cdclk %d kHz\n", 18644 plane->base.base.id, plane->base.name, 18645 crtc_state->min_cdclk[plane->id]); 18646 } 18647 18648 if (crtc_state->hw.active) { 18649 min_cdclk = intel_crtc_compute_min_cdclk(crtc_state); 18650 if (drm_WARN_ON(dev, min_cdclk < 0)) 18651 min_cdclk = 0; 18652 } 18653 18654 cdclk_state->min_cdclk[crtc->pipe] = min_cdclk; 18655 cdclk_state->min_voltage_level[crtc->pipe] = 18656 crtc_state->min_voltage_level; 18657 18658 intel_bw_crtc_update(bw_state, crtc_state); 18659 18660 intel_pipe_config_sanity_check(dev_priv, crtc_state); 18661 } 18662 } 18663 18664 static void 18665 get_encoder_power_domains(struct drm_i915_private *dev_priv) 18666 { 18667 struct intel_encoder *encoder; 18668 18669 for_each_intel_encoder(&dev_priv->drm, encoder) { 18670 struct intel_crtc_state *crtc_state; 18671 18672 if (!encoder->get_power_domains) 18673 continue; 18674 18675 /* 18676 * MST-primary and inactive encoders don't have a crtc state 18677 * and neither of these require any power domain references. 18678 */ 18679 if (!encoder->base.crtc) 18680 continue; 18681 18682 crtc_state = to_intel_crtc_state(encoder->base.crtc->state); 18683 encoder->get_power_domains(encoder, crtc_state); 18684 } 18685 } 18686 18687 static void intel_early_display_was(struct drm_i915_private *dev_priv) 18688 { 18689 /* 18690 * Display WA #1185 WaDisableDARBFClkGating:cnl,glk,icl,ehl,tgl 18691 * Also known as Wa_14010480278. 18692 */ 18693 if (IS_GEN_RANGE(dev_priv, 10, 12) || IS_GEMINILAKE(dev_priv)) 18694 intel_de_write(dev_priv, GEN9_CLKGATE_DIS_0, 18695 intel_de_read(dev_priv, GEN9_CLKGATE_DIS_0) | DARBF_GATING_DIS); 18696 18697 if (IS_HASWELL(dev_priv)) { 18698 /* 18699 * WaRsPkgCStateDisplayPMReq:hsw 18700 * System hang if this isn't done before disabling all planes! 18701 */ 18702 intel_de_write(dev_priv, CHICKEN_PAR1_1, 18703 intel_de_read(dev_priv, CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES); 18704 } 18705 } 18706 18707 static void ibx_sanitize_pch_hdmi_port(struct drm_i915_private *dev_priv, 18708 enum port port, i915_reg_t hdmi_reg) 18709 { 18710 u32 val = intel_de_read(dev_priv, hdmi_reg); 18711 18712 if (val & SDVO_ENABLE || 18713 (val & SDVO_PIPE_SEL_MASK) == SDVO_PIPE_SEL(PIPE_A)) 18714 return; 18715 18716 drm_dbg_kms(&dev_priv->drm, 18717 "Sanitizing transcoder select for HDMI %c\n", 18718 port_name(port)); 18719 18720 val &= ~SDVO_PIPE_SEL_MASK; 18721 val |= SDVO_PIPE_SEL(PIPE_A); 18722 18723 intel_de_write(dev_priv, hdmi_reg, val); 18724 } 18725 18726 static void ibx_sanitize_pch_dp_port(struct drm_i915_private *dev_priv, 18727 enum port port, i915_reg_t dp_reg) 18728 { 18729 u32 val = intel_de_read(dev_priv, dp_reg); 18730 18731 if (val & DP_PORT_EN || 18732 (val & DP_PIPE_SEL_MASK) == DP_PIPE_SEL(PIPE_A)) 18733 return; 18734 18735 drm_dbg_kms(&dev_priv->drm, 18736 "Sanitizing transcoder select for DP %c\n", 18737 port_name(port)); 18738 18739 val &= ~DP_PIPE_SEL_MASK; 18740 val |= DP_PIPE_SEL(PIPE_A); 18741 18742 intel_de_write(dev_priv, dp_reg, val); 18743 } 18744 18745 static void ibx_sanitize_pch_ports(struct drm_i915_private *dev_priv) 18746 { 18747 /* 18748 * The BIOS may select transcoder B on some of the PCH 18749 * ports even it doesn't enable the port. This would trip 18750 * assert_pch_dp_disabled() and assert_pch_hdmi_disabled(). 18751 * Sanitize the transcoder select bits to prevent that. We 18752 * assume that the BIOS never actually enabled the port, 18753 * because if it did we'd actually have to toggle the port 18754 * on and back off to make the transcoder A select stick 18755 * (see. intel_dp_link_down(), intel_disable_hdmi(), 18756 * intel_disable_sdvo()). 18757 */ 18758 ibx_sanitize_pch_dp_port(dev_priv, PORT_B, PCH_DP_B); 18759 ibx_sanitize_pch_dp_port(dev_priv, PORT_C, PCH_DP_C); 18760 ibx_sanitize_pch_dp_port(dev_priv, PORT_D, PCH_DP_D); 18761 18762 /* PCH SDVOB multiplex with HDMIB */ 18763 ibx_sanitize_pch_hdmi_port(dev_priv, PORT_B, PCH_HDMIB); 18764 ibx_sanitize_pch_hdmi_port(dev_priv, PORT_C, PCH_HDMIC); 18765 ibx_sanitize_pch_hdmi_port(dev_priv, PORT_D, PCH_HDMID); 18766 } 18767 18768 /* Scan out the current hw modeset state, 18769 * and sanitizes it to the current state 18770 */ 18771 static void 18772 intel_modeset_setup_hw_state(struct drm_device *dev, 18773 struct drm_modeset_acquire_ctx *ctx) 18774 { 18775 struct drm_i915_private *dev_priv = to_i915(dev); 18776 struct intel_encoder *encoder; 18777 struct intel_crtc *crtc; 18778 intel_wakeref_t wakeref; 18779 18780 wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_INIT); 18781 18782 intel_early_display_was(dev_priv); 18783 intel_modeset_readout_hw_state(dev); 18784 18785 /* HW state is read out, now we need to sanitize this mess. */ 18786 18787 /* Sanitize the TypeC port mode upfront, encoders depend on this */ 18788 for_each_intel_encoder(dev, encoder) { 18789 enum phy phy = intel_port_to_phy(dev_priv, encoder->port); 18790 18791 /* We need to sanitize only the MST primary port. */ 18792 if (encoder->type != INTEL_OUTPUT_DP_MST && 18793 intel_phy_is_tc(dev_priv, phy)) 18794 intel_tc_port_sanitize(enc_to_dig_port(encoder)); 18795 } 18796 18797 get_encoder_power_domains(dev_priv); 18798 18799 if (HAS_PCH_IBX(dev_priv)) 18800 ibx_sanitize_pch_ports(dev_priv); 18801 18802 /* 18803 * intel_sanitize_plane_mapping() may need to do vblank 18804 * waits, so we need vblank interrupts restored beforehand. 18805 */ 18806 for_each_intel_crtc(&dev_priv->drm, crtc) { 18807 struct intel_crtc_state *crtc_state = 18808 to_intel_crtc_state(crtc->base.state); 18809 18810 drm_crtc_vblank_reset(&crtc->base); 18811 18812 if (crtc_state->hw.active) 18813 intel_crtc_vblank_on(crtc_state); 18814 } 18815 18816 intel_sanitize_plane_mapping(dev_priv); 18817 18818 for_each_intel_encoder(dev, encoder) 18819 intel_sanitize_encoder(encoder); 18820 18821 for_each_intel_crtc(&dev_priv->drm, crtc) { 18822 struct intel_crtc_state *crtc_state = 18823 to_intel_crtc_state(crtc->base.state); 18824 18825 intel_sanitize_crtc(crtc, ctx); 18826 intel_dump_pipe_config(crtc_state, NULL, "[setup_hw_state]"); 18827 } 18828 18829 intel_modeset_update_connector_atomic_state(dev); 18830 18831 intel_dpll_sanitize_state(dev_priv); 18832 18833 if (IS_G4X(dev_priv)) { 18834 g4x_wm_get_hw_state(dev_priv); 18835 g4x_wm_sanitize(dev_priv); 18836 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 18837 vlv_wm_get_hw_state(dev_priv); 18838 vlv_wm_sanitize(dev_priv); 18839 } else if (INTEL_GEN(dev_priv) >= 9) { 18840 skl_wm_get_hw_state(dev_priv); 18841 } else if (HAS_PCH_SPLIT(dev_priv)) { 18842 ilk_wm_get_hw_state(dev_priv); 18843 } 18844 18845 for_each_intel_crtc(dev, crtc) { 18846 struct intel_crtc_state *crtc_state = 18847 to_intel_crtc_state(crtc->base.state); 18848 u64 put_domains; 18849 18850 put_domains = modeset_get_crtc_power_domains(crtc_state); 18851 if (drm_WARN_ON(dev, put_domains)) 18852 modeset_put_power_domains(dev_priv, put_domains); 18853 } 18854 18855 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT, wakeref); 18856 } 18857 18858 void intel_display_resume(struct drm_device *dev) 18859 { 18860 struct drm_i915_private *dev_priv = to_i915(dev); 18861 struct drm_atomic_state *state = dev_priv->modeset_restore_state; 18862 struct drm_modeset_acquire_ctx ctx; 18863 int ret; 18864 18865 dev_priv->modeset_restore_state = NULL; 18866 if (state) 18867 state->acquire_ctx = &ctx; 18868 18869 drm_modeset_acquire_init(&ctx, 0); 18870 18871 while (1) { 18872 ret = drm_modeset_lock_all_ctx(dev, &ctx); 18873 if (ret != -EDEADLK) 18874 break; 18875 18876 drm_modeset_backoff(&ctx); 18877 } 18878 18879 if (!ret) 18880 ret = __intel_display_resume(dev, state, &ctx); 18881 18882 intel_enable_ipc(dev_priv); 18883 drm_modeset_drop_locks(&ctx); 18884 drm_modeset_acquire_fini(&ctx); 18885 18886 if (ret) 18887 drm_err(&dev_priv->drm, 18888 "Restoring old state failed with %i\n", ret); 18889 if (state) 18890 drm_atomic_state_put(state); 18891 } 18892 18893 static void intel_hpd_poll_fini(struct drm_i915_private *i915) 18894 { 18895 struct intel_connector *connector; 18896 struct drm_connector_list_iter conn_iter; 18897 18898 /* Kill all the work that may have been queued by hpd. */ 18899 drm_connector_list_iter_begin(&i915->drm, &conn_iter); 18900 for_each_intel_connector_iter(connector, &conn_iter) { 18901 #ifdef __linux__ 18902 if (connector->modeset_retry_work.func) 18903 #else 18904 if (connector->modeset_retry_work.task.t_func) 18905 #endif 18906 cancel_work_sync(&connector->modeset_retry_work); 18907 if (connector->hdcp.shim) { 18908 cancel_delayed_work_sync(&connector->hdcp.check_work); 18909 cancel_work_sync(&connector->hdcp.prop_work); 18910 } 18911 } 18912 drm_connector_list_iter_end(&conn_iter); 18913 } 18914 18915 /* part #1: call before irq uninstall */ 18916 void intel_modeset_driver_remove(struct drm_i915_private *i915) 18917 { 18918 flush_workqueue(i915->flip_wq); 18919 flush_workqueue(i915->modeset_wq); 18920 18921 flush_work(&i915->atomic_helper.free_work); 18922 drm_WARN_ON(&i915->drm, !llist_empty(&i915->atomic_helper.free_list)); 18923 } 18924 18925 /* part #2: call after irq uninstall */ 18926 void intel_modeset_driver_remove_noirq(struct drm_i915_private *i915) 18927 { 18928 /* 18929 * Due to the hpd irq storm handling the hotplug work can re-arm the 18930 * poll handlers. Hence disable polling after hpd handling is shut down. 18931 */ 18932 intel_hpd_poll_fini(i915); 18933 18934 /* 18935 * MST topology needs to be suspended so we don't have any calls to 18936 * fbdev after it's finalized. MST will be destroyed later as part of 18937 * drm_mode_config_cleanup() 18938 */ 18939 intel_dp_mst_suspend(i915); 18940 18941 /* poll work can call into fbdev, hence clean that up afterwards */ 18942 intel_fbdev_fini(i915); 18943 18944 intel_unregister_dsm_handler(); 18945 18946 intel_fbc_global_disable(i915); 18947 18948 /* flush any delayed tasks or pending work */ 18949 flush_scheduled_work(); 18950 18951 intel_hdcp_component_fini(i915); 18952 18953 intel_mode_config_cleanup(i915); 18954 18955 intel_overlay_cleanup(i915); 18956 18957 intel_gmbus_teardown(i915); 18958 18959 destroy_workqueue(i915->flip_wq); 18960 destroy_workqueue(i915->modeset_wq); 18961 18962 intel_fbc_cleanup_cfb(i915); 18963 } 18964 18965 /* part #3: call after gem init */ 18966 void intel_modeset_driver_remove_nogem(struct drm_i915_private *i915) 18967 { 18968 intel_csr_ucode_fini(i915); 18969 18970 intel_power_domains_driver_remove(i915); 18971 18972 intel_vga_unregister(i915); 18973 18974 intel_bios_driver_remove(i915); 18975 } 18976 18977 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR) 18978 18979 struct intel_display_error_state { 18980 18981 u32 power_well_driver; 18982 18983 struct intel_cursor_error_state { 18984 u32 control; 18985 u32 position; 18986 u32 base; 18987 u32 size; 18988 } cursor[I915_MAX_PIPES]; 18989 18990 struct intel_pipe_error_state { 18991 bool power_domain_on; 18992 u32 source; 18993 u32 stat; 18994 } pipe[I915_MAX_PIPES]; 18995 18996 struct intel_plane_error_state { 18997 u32 control; 18998 u32 stride; 18999 u32 size; 19000 u32 pos; 19001 u32 addr; 19002 u32 surface; 19003 u32 tile_offset; 19004 } plane[I915_MAX_PIPES]; 19005 19006 struct intel_transcoder_error_state { 19007 bool available; 19008 bool power_domain_on; 19009 enum transcoder cpu_transcoder; 19010 19011 u32 conf; 19012 19013 u32 htotal; 19014 u32 hblank; 19015 u32 hsync; 19016 u32 vtotal; 19017 u32 vblank; 19018 u32 vsync; 19019 } transcoder[5]; 19020 }; 19021 19022 struct intel_display_error_state * 19023 intel_display_capture_error_state(struct drm_i915_private *dev_priv) 19024 { 19025 struct intel_display_error_state *error; 19026 int transcoders[] = { 19027 TRANSCODER_A, 19028 TRANSCODER_B, 19029 TRANSCODER_C, 19030 TRANSCODER_D, 19031 TRANSCODER_EDP, 19032 }; 19033 int i; 19034 19035 BUILD_BUG_ON(ARRAY_SIZE(transcoders) != ARRAY_SIZE(error->transcoder)); 19036 19037 if (!HAS_DISPLAY(dev_priv)) 19038 return NULL; 19039 19040 error = kzalloc(sizeof(*error), GFP_ATOMIC); 19041 if (error == NULL) 19042 return NULL; 19043 19044 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) 19045 error->power_well_driver = intel_de_read(dev_priv, 19046 HSW_PWR_WELL_CTL2); 19047 19048 for_each_pipe(dev_priv, i) { 19049 error->pipe[i].power_domain_on = 19050 __intel_display_power_is_enabled(dev_priv, 19051 POWER_DOMAIN_PIPE(i)); 19052 if (!error->pipe[i].power_domain_on) 19053 continue; 19054 19055 error->cursor[i].control = intel_de_read(dev_priv, CURCNTR(i)); 19056 error->cursor[i].position = intel_de_read(dev_priv, CURPOS(i)); 19057 error->cursor[i].base = intel_de_read(dev_priv, CURBASE(i)); 19058 19059 error->plane[i].control = intel_de_read(dev_priv, DSPCNTR(i)); 19060 error->plane[i].stride = intel_de_read(dev_priv, DSPSTRIDE(i)); 19061 if (INTEL_GEN(dev_priv) <= 3) { 19062 error->plane[i].size = intel_de_read(dev_priv, 19063 DSPSIZE(i)); 19064 error->plane[i].pos = intel_de_read(dev_priv, 19065 DSPPOS(i)); 19066 } 19067 if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv)) 19068 error->plane[i].addr = intel_de_read(dev_priv, 19069 DSPADDR(i)); 19070 if (INTEL_GEN(dev_priv) >= 4) { 19071 error->plane[i].surface = intel_de_read(dev_priv, 19072 DSPSURF(i)); 19073 error->plane[i].tile_offset = intel_de_read(dev_priv, 19074 DSPTILEOFF(i)); 19075 } 19076 19077 error->pipe[i].source = intel_de_read(dev_priv, PIPESRC(i)); 19078 19079 if (HAS_GMCH(dev_priv)) 19080 error->pipe[i].stat = intel_de_read(dev_priv, 19081 PIPESTAT(i)); 19082 } 19083 19084 for (i = 0; i < ARRAY_SIZE(error->transcoder); i++) { 19085 enum transcoder cpu_transcoder = transcoders[i]; 19086 19087 if (!HAS_TRANSCODER(dev_priv, cpu_transcoder)) 19088 continue; 19089 19090 error->transcoder[i].available = true; 19091 error->transcoder[i].power_domain_on = 19092 __intel_display_power_is_enabled(dev_priv, 19093 POWER_DOMAIN_TRANSCODER(cpu_transcoder)); 19094 if (!error->transcoder[i].power_domain_on) 19095 continue; 19096 19097 error->transcoder[i].cpu_transcoder = cpu_transcoder; 19098 19099 error->transcoder[i].conf = intel_de_read(dev_priv, 19100 PIPECONF(cpu_transcoder)); 19101 error->transcoder[i].htotal = intel_de_read(dev_priv, 19102 HTOTAL(cpu_transcoder)); 19103 error->transcoder[i].hblank = intel_de_read(dev_priv, 19104 HBLANK(cpu_transcoder)); 19105 error->transcoder[i].hsync = intel_de_read(dev_priv, 19106 HSYNC(cpu_transcoder)); 19107 error->transcoder[i].vtotal = intel_de_read(dev_priv, 19108 VTOTAL(cpu_transcoder)); 19109 error->transcoder[i].vblank = intel_de_read(dev_priv, 19110 VBLANK(cpu_transcoder)); 19111 error->transcoder[i].vsync = intel_de_read(dev_priv, 19112 VSYNC(cpu_transcoder)); 19113 } 19114 19115 return error; 19116 } 19117 19118 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__) 19119 19120 void 19121 intel_display_print_error_state(struct drm_i915_error_state_buf *m, 19122 struct intel_display_error_state *error) 19123 { 19124 struct drm_i915_private *dev_priv = m->i915; 19125 int i; 19126 19127 if (!error) 19128 return; 19129 19130 err_printf(m, "Num Pipes: %d\n", INTEL_NUM_PIPES(dev_priv)); 19131 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) 19132 err_printf(m, "PWR_WELL_CTL2: %08x\n", 19133 error->power_well_driver); 19134 for_each_pipe(dev_priv, i) { 19135 err_printf(m, "Pipe [%d]:\n", i); 19136 err_printf(m, " Power: %s\n", 19137 onoff(error->pipe[i].power_domain_on)); 19138 err_printf(m, " SRC: %08x\n", error->pipe[i].source); 19139 err_printf(m, " STAT: %08x\n", error->pipe[i].stat); 19140 19141 err_printf(m, "Plane [%d]:\n", i); 19142 err_printf(m, " CNTR: %08x\n", error->plane[i].control); 19143 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride); 19144 if (INTEL_GEN(dev_priv) <= 3) { 19145 err_printf(m, " SIZE: %08x\n", error->plane[i].size); 19146 err_printf(m, " POS: %08x\n", error->plane[i].pos); 19147 } 19148 if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv)) 19149 err_printf(m, " ADDR: %08x\n", error->plane[i].addr); 19150 if (INTEL_GEN(dev_priv) >= 4) { 19151 err_printf(m, " SURF: %08x\n", error->plane[i].surface); 19152 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset); 19153 } 19154 19155 err_printf(m, "Cursor [%d]:\n", i); 19156 err_printf(m, " CNTR: %08x\n", error->cursor[i].control); 19157 err_printf(m, " POS: %08x\n", error->cursor[i].position); 19158 err_printf(m, " BASE: %08x\n", error->cursor[i].base); 19159 } 19160 19161 for (i = 0; i < ARRAY_SIZE(error->transcoder); i++) { 19162 if (!error->transcoder[i].available) 19163 continue; 19164 19165 err_printf(m, "CPU transcoder: %s\n", 19166 transcoder_name(error->transcoder[i].cpu_transcoder)); 19167 err_printf(m, " Power: %s\n", 19168 onoff(error->transcoder[i].power_domain_on)); 19169 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf); 19170 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal); 19171 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank); 19172 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync); 19173 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal); 19174 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank); 19175 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync); 19176 } 19177 } 19178 19179 #endif 19180