1 /* 2 * Copyright © 2006 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 * SOFTWARE. 22 * 23 * Authors: 24 * Eric Anholt <eric@anholt.net> 25 * 26 */ 27 28 #include <drm/drm_edid.h> 29 #include <drm/display/drm_dp_helper.h> 30 #include <drm/display/drm_dsc_helper.h> 31 32 #include "display/intel_display.h" 33 #include "display/intel_display_types.h" 34 #include "display/intel_gmbus.h" 35 36 #include "i915_drv.h" 37 #include "i915_reg.h" 38 39 #define _INTEL_BIOS_PRIVATE 40 #include "intel_vbt_defs.h" 41 42 /** 43 * DOC: Video BIOS Table (VBT) 44 * 45 * The Video BIOS Table, or VBT, provides platform and board specific 46 * configuration information to the driver that is not discoverable or available 47 * through other means. The configuration is mostly related to display 48 * hardware. The VBT is available via the ACPI OpRegion or, on older systems, in 49 * the PCI ROM. 50 * 51 * The VBT consists of a VBT Header (defined as &struct vbt_header), a BDB 52 * Header (&struct bdb_header), and a number of BIOS Data Blocks (BDB) that 53 * contain the actual configuration information. The VBT Header, and thus the 54 * VBT, begins with "$VBT" signature. The VBT Header contains the offset of the 55 * BDB Header. The data blocks are concatenated after the BDB Header. The data 56 * blocks have a 1-byte Block ID, 2-byte Block Size, and Block Size bytes of 57 * data. (Block 53, the MIPI Sequence Block is an exception.) 58 * 59 * The driver parses the VBT during load. The relevant information is stored in 60 * driver private data for ease of use, and the actual VBT is not read after 61 * that. 62 */ 63 64 /* Wrapper for VBT child device config */ 65 struct intel_bios_encoder_data { 66 struct drm_i915_private *i915; 67 68 struct child_device_config child; 69 struct dsc_compression_parameters_entry *dsc; 70 struct list_head node; 71 }; 72 73 #define SLAVE_ADDR1 0x70 74 #define SLAVE_ADDR2 0x72 75 76 /* Get BDB block size given a pointer to Block ID. */ 77 static u32 _get_blocksize(const u8 *block_base) 78 { 79 /* The MIPI Sequence Block v3+ has a separate size field. */ 80 if (*block_base == BDB_MIPI_SEQUENCE && *(block_base + 3) >= 3) 81 return *((const u32 *)(block_base + 4)); 82 else 83 return *((const u16 *)(block_base + 1)); 84 } 85 86 /* Get BDB block size give a pointer to data after Block ID and Block Size. */ 87 static u32 get_blocksize(const void *block_data) 88 { 89 return _get_blocksize(block_data - 3); 90 } 91 92 static const void * 93 find_raw_section(const void *_bdb, enum bdb_block_id section_id) 94 { 95 const struct bdb_header *bdb = _bdb; 96 const u8 *base = _bdb; 97 int index = 0; 98 u32 total, current_size; 99 enum bdb_block_id current_id; 100 101 /* skip to first section */ 102 index += bdb->header_size; 103 total = bdb->bdb_size; 104 105 /* walk the sections looking for section_id */ 106 while (index + 3 < total) { 107 current_id = *(base + index); 108 current_size = _get_blocksize(base + index); 109 index += 3; 110 111 if (index + current_size > total) 112 return NULL; 113 114 if (current_id == section_id) 115 return base + index; 116 117 index += current_size; 118 } 119 120 return NULL; 121 } 122 123 /* 124 * Offset from the start of BDB to the start of the 125 * block data (just past the block header). 126 */ 127 static u32 raw_block_offset(const void *bdb, enum bdb_block_id section_id) 128 { 129 const void *block; 130 131 block = find_raw_section(bdb, section_id); 132 if (!block) 133 return 0; 134 135 return block - bdb; 136 } 137 138 struct bdb_block_entry { 139 struct list_head node; 140 enum bdb_block_id section_id; 141 u8 data[]; 142 }; 143 144 static const void * 145 find_section(struct drm_i915_private *i915, 146 enum bdb_block_id section_id) 147 { 148 struct bdb_block_entry *entry; 149 150 list_for_each_entry(entry, &i915->display.vbt.bdb_blocks, node) { 151 if (entry->section_id == section_id) 152 return entry->data + 3; 153 } 154 155 return NULL; 156 } 157 158 static const struct { 159 enum bdb_block_id section_id; 160 size_t min_size; 161 } bdb_blocks[] = { 162 { .section_id = BDB_GENERAL_FEATURES, 163 .min_size = sizeof(struct bdb_general_features), }, 164 { .section_id = BDB_GENERAL_DEFINITIONS, 165 .min_size = sizeof(struct bdb_general_definitions), }, 166 { .section_id = BDB_PSR, 167 .min_size = sizeof(struct bdb_psr), }, 168 { .section_id = BDB_DRIVER_FEATURES, 169 .min_size = sizeof(struct bdb_driver_features), }, 170 { .section_id = BDB_SDVO_LVDS_OPTIONS, 171 .min_size = sizeof(struct bdb_sdvo_lvds_options), }, 172 { .section_id = BDB_SDVO_PANEL_DTDS, 173 .min_size = sizeof(struct bdb_sdvo_panel_dtds), }, 174 { .section_id = BDB_EDP, 175 .min_size = sizeof(struct bdb_edp), }, 176 { .section_id = BDB_LVDS_OPTIONS, 177 .min_size = sizeof(struct bdb_lvds_options), }, 178 /* 179 * BDB_LVDS_LFP_DATA depends on BDB_LVDS_LFP_DATA_PTRS, 180 * so keep the two ordered. 181 */ 182 { .section_id = BDB_LVDS_LFP_DATA_PTRS, 183 .min_size = sizeof(struct bdb_lvds_lfp_data_ptrs), }, 184 { .section_id = BDB_LVDS_LFP_DATA, 185 .min_size = 0, /* special case */ }, 186 { .section_id = BDB_LVDS_BACKLIGHT, 187 .min_size = sizeof(struct bdb_lfp_backlight_data), }, 188 { .section_id = BDB_LFP_POWER, 189 .min_size = sizeof(struct bdb_lfp_power), }, 190 { .section_id = BDB_MIPI_CONFIG, 191 .min_size = sizeof(struct bdb_mipi_config), }, 192 { .section_id = BDB_MIPI_SEQUENCE, 193 .min_size = sizeof(struct bdb_mipi_sequence) }, 194 { .section_id = BDB_COMPRESSION_PARAMETERS, 195 .min_size = sizeof(struct bdb_compression_parameters), }, 196 { .section_id = BDB_GENERIC_DTD, 197 .min_size = sizeof(struct bdb_generic_dtd), }, 198 }; 199 200 static size_t lfp_data_min_size(struct drm_i915_private *i915) 201 { 202 const struct bdb_lvds_lfp_data_ptrs *ptrs; 203 size_t size; 204 205 ptrs = find_section(i915, BDB_LVDS_LFP_DATA_PTRS); 206 if (!ptrs) 207 return 0; 208 209 size = sizeof(struct bdb_lvds_lfp_data); 210 if (ptrs->panel_name.table_size) 211 size = max(size, ptrs->panel_name.offset + 212 sizeof(struct bdb_lvds_lfp_data_tail)); 213 214 return size; 215 } 216 217 static bool validate_lfp_data_ptrs(const void *bdb, 218 const struct bdb_lvds_lfp_data_ptrs *ptrs) 219 { 220 int fp_timing_size, dvo_timing_size, panel_pnp_id_size, panel_name_size; 221 int data_block_size, lfp_data_size; 222 const void *data_block; 223 int i; 224 225 data_block = find_raw_section(bdb, BDB_LVDS_LFP_DATA); 226 if (!data_block) 227 return false; 228 229 data_block_size = get_blocksize(data_block); 230 if (data_block_size == 0) 231 return false; 232 233 /* always 3 indicating the presence of fp_timing+dvo_timing+panel_pnp_id */ 234 if (ptrs->lvds_entries != 3) 235 return false; 236 237 fp_timing_size = ptrs->ptr[0].fp_timing.table_size; 238 dvo_timing_size = ptrs->ptr[0].dvo_timing.table_size; 239 panel_pnp_id_size = ptrs->ptr[0].panel_pnp_id.table_size; 240 panel_name_size = ptrs->panel_name.table_size; 241 242 /* fp_timing has variable size */ 243 if (fp_timing_size < 32 || 244 dvo_timing_size != sizeof(struct lvds_dvo_timing) || 245 panel_pnp_id_size != sizeof(struct lvds_pnp_id)) 246 return false; 247 248 /* panel_name is not present in old VBTs */ 249 if (panel_name_size != 0 && 250 panel_name_size != sizeof(struct lvds_lfp_panel_name)) 251 return false; 252 253 lfp_data_size = ptrs->ptr[1].fp_timing.offset - ptrs->ptr[0].fp_timing.offset; 254 if (16 * lfp_data_size > data_block_size) 255 return false; 256 257 /* make sure the table entries have uniform size */ 258 for (i = 1; i < 16; i++) { 259 if (ptrs->ptr[i].fp_timing.table_size != fp_timing_size || 260 ptrs->ptr[i].dvo_timing.table_size != dvo_timing_size || 261 ptrs->ptr[i].panel_pnp_id.table_size != panel_pnp_id_size) 262 return false; 263 264 if (ptrs->ptr[i].fp_timing.offset - ptrs->ptr[i-1].fp_timing.offset != lfp_data_size || 265 ptrs->ptr[i].dvo_timing.offset - ptrs->ptr[i-1].dvo_timing.offset != lfp_data_size || 266 ptrs->ptr[i].panel_pnp_id.offset - ptrs->ptr[i-1].panel_pnp_id.offset != lfp_data_size) 267 return false; 268 } 269 270 /* 271 * Except for vlv/chv machines all real VBTs seem to have 6 272 * unaccounted bytes in the fp_timing table. And it doesn't 273 * appear to be a really intentional hole as the fp_timing 274 * 0xffff terminator is always within those 6 missing bytes. 275 */ 276 if (fp_timing_size + 6 + dvo_timing_size + panel_pnp_id_size == lfp_data_size) 277 fp_timing_size += 6; 278 279 if (fp_timing_size + dvo_timing_size + panel_pnp_id_size != lfp_data_size) 280 return false; 281 282 if (ptrs->ptr[0].fp_timing.offset + fp_timing_size != ptrs->ptr[0].dvo_timing.offset || 283 ptrs->ptr[0].dvo_timing.offset + dvo_timing_size != ptrs->ptr[0].panel_pnp_id.offset || 284 ptrs->ptr[0].panel_pnp_id.offset + panel_pnp_id_size != lfp_data_size) 285 return false; 286 287 /* make sure the tables fit inside the data block */ 288 for (i = 0; i < 16; i++) { 289 if (ptrs->ptr[i].fp_timing.offset + fp_timing_size > data_block_size || 290 ptrs->ptr[i].dvo_timing.offset + dvo_timing_size > data_block_size || 291 ptrs->ptr[i].panel_pnp_id.offset + panel_pnp_id_size > data_block_size) 292 return false; 293 } 294 295 if (ptrs->panel_name.offset + 16 * panel_name_size > data_block_size) 296 return false; 297 298 /* make sure fp_timing terminators are present at expected locations */ 299 for (i = 0; i < 16; i++) { 300 const u16 *t = data_block + ptrs->ptr[i].fp_timing.offset + 301 fp_timing_size - 2; 302 303 if (*t != 0xffff) 304 return false; 305 } 306 307 return true; 308 } 309 310 /* make the data table offsets relative to the data block */ 311 static bool fixup_lfp_data_ptrs(const void *bdb, void *ptrs_block) 312 { 313 struct bdb_lvds_lfp_data_ptrs *ptrs = ptrs_block; 314 u32 offset; 315 int i; 316 317 offset = raw_block_offset(bdb, BDB_LVDS_LFP_DATA); 318 319 for (i = 0; i < 16; i++) { 320 if (ptrs->ptr[i].fp_timing.offset < offset || 321 ptrs->ptr[i].dvo_timing.offset < offset || 322 ptrs->ptr[i].panel_pnp_id.offset < offset) 323 return false; 324 325 ptrs->ptr[i].fp_timing.offset -= offset; 326 ptrs->ptr[i].dvo_timing.offset -= offset; 327 ptrs->ptr[i].panel_pnp_id.offset -= offset; 328 } 329 330 if (ptrs->panel_name.table_size) { 331 if (ptrs->panel_name.offset < offset) 332 return false; 333 334 ptrs->panel_name.offset -= offset; 335 } 336 337 return validate_lfp_data_ptrs(bdb, ptrs); 338 } 339 340 static int make_lfp_data_ptr(struct lvds_lfp_data_ptr_table *table, 341 int table_size, int total_size) 342 { 343 if (total_size < table_size) 344 return total_size; 345 346 table->table_size = table_size; 347 table->offset = total_size - table_size; 348 349 return total_size - table_size; 350 } 351 352 static void next_lfp_data_ptr(struct lvds_lfp_data_ptr_table *next, 353 const struct lvds_lfp_data_ptr_table *prev, 354 int size) 355 { 356 next->table_size = prev->table_size; 357 next->offset = prev->offset + size; 358 } 359 360 static void *generate_lfp_data_ptrs(struct drm_i915_private *i915, 361 const void *bdb) 362 { 363 int i, size, table_size, block_size, offset, fp_timing_size; 364 struct bdb_lvds_lfp_data_ptrs *ptrs; 365 const void *block; 366 void *ptrs_block; 367 368 /* 369 * The hardcoded fp_timing_size is only valid for 370 * modernish VBTs. All older VBTs definitely should 371 * include block 41 and thus we don't need to 372 * generate one. 373 */ 374 if (i915->display.vbt.version < 155) 375 return NULL; 376 377 fp_timing_size = 38; 378 379 block = find_raw_section(bdb, BDB_LVDS_LFP_DATA); 380 if (!block) 381 return NULL; 382 383 drm_dbg_kms(&i915->drm, "Generating LFP data table pointers\n"); 384 385 block_size = get_blocksize(block); 386 387 size = fp_timing_size + sizeof(struct lvds_dvo_timing) + 388 sizeof(struct lvds_pnp_id); 389 if (size * 16 > block_size) 390 return NULL; 391 392 ptrs_block = kzalloc(sizeof(*ptrs) + 3, GFP_KERNEL); 393 if (!ptrs_block) 394 return NULL; 395 396 *(u8 *)(ptrs_block + 0) = BDB_LVDS_LFP_DATA_PTRS; 397 *(u16 *)(ptrs_block + 1) = sizeof(*ptrs); 398 ptrs = ptrs_block + 3; 399 400 table_size = sizeof(struct lvds_pnp_id); 401 size = make_lfp_data_ptr(&ptrs->ptr[0].panel_pnp_id, table_size, size); 402 403 table_size = sizeof(struct lvds_dvo_timing); 404 size = make_lfp_data_ptr(&ptrs->ptr[0].dvo_timing, table_size, size); 405 406 table_size = fp_timing_size; 407 size = make_lfp_data_ptr(&ptrs->ptr[0].fp_timing, table_size, size); 408 409 if (ptrs->ptr[0].fp_timing.table_size) 410 ptrs->lvds_entries++; 411 if (ptrs->ptr[0].dvo_timing.table_size) 412 ptrs->lvds_entries++; 413 if (ptrs->ptr[0].panel_pnp_id.table_size) 414 ptrs->lvds_entries++; 415 416 if (size != 0 || ptrs->lvds_entries != 3) { 417 kfree(ptrs_block); 418 return NULL; 419 } 420 421 size = fp_timing_size + sizeof(struct lvds_dvo_timing) + 422 sizeof(struct lvds_pnp_id); 423 for (i = 1; i < 16; i++) { 424 next_lfp_data_ptr(&ptrs->ptr[i].fp_timing, &ptrs->ptr[i-1].fp_timing, size); 425 next_lfp_data_ptr(&ptrs->ptr[i].dvo_timing, &ptrs->ptr[i-1].dvo_timing, size); 426 next_lfp_data_ptr(&ptrs->ptr[i].panel_pnp_id, &ptrs->ptr[i-1].panel_pnp_id, size); 427 } 428 429 table_size = sizeof(struct lvds_lfp_panel_name); 430 431 if (16 * (size + table_size) <= block_size) { 432 ptrs->panel_name.table_size = table_size; 433 ptrs->panel_name.offset = size * 16; 434 } 435 436 offset = block - bdb; 437 438 for (i = 0; i < 16; i++) { 439 ptrs->ptr[i].fp_timing.offset += offset; 440 ptrs->ptr[i].dvo_timing.offset += offset; 441 ptrs->ptr[i].panel_pnp_id.offset += offset; 442 } 443 444 if (ptrs->panel_name.table_size) 445 ptrs->panel_name.offset += offset; 446 447 return ptrs_block; 448 } 449 450 static void 451 init_bdb_block(struct drm_i915_private *i915, 452 const void *bdb, enum bdb_block_id section_id, 453 size_t min_size) 454 { 455 struct bdb_block_entry *entry; 456 void *temp_block = NULL; 457 const void *block; 458 size_t block_size; 459 460 block = find_raw_section(bdb, section_id); 461 462 /* Modern VBTs lack the LFP data table pointers block, make one up */ 463 if (!block && section_id == BDB_LVDS_LFP_DATA_PTRS) { 464 temp_block = generate_lfp_data_ptrs(i915, bdb); 465 if (temp_block) 466 block = temp_block + 3; 467 } 468 if (!block) 469 return; 470 471 drm_WARN(&i915->drm, min_size == 0, 472 "Block %d min_size is zero\n", section_id); 473 474 block_size = get_blocksize(block); 475 476 /* 477 * Version number and new block size are considered 478 * part of the header for MIPI sequenece block v3+. 479 */ 480 if (section_id == BDB_MIPI_SEQUENCE && *(const u8 *)block >= 3) 481 block_size += 5; 482 483 entry = kzalloc(struct_size(entry, data, max(min_size, block_size) + 3), 484 GFP_KERNEL); 485 if (!entry) { 486 kfree(temp_block); 487 return; 488 } 489 490 entry->section_id = section_id; 491 memcpy(entry->data, block - 3, block_size + 3); 492 493 kfree(temp_block); 494 495 drm_dbg_kms(&i915->drm, "Found BDB block %d (size %zu, min size %zu)\n", 496 section_id, block_size, min_size); 497 498 if (section_id == BDB_LVDS_LFP_DATA_PTRS && 499 !fixup_lfp_data_ptrs(bdb, entry->data + 3)) { 500 drm_err(&i915->drm, "VBT has malformed LFP data table pointers\n"); 501 kfree(entry); 502 return; 503 } 504 505 list_add_tail(&entry->node, &i915->display.vbt.bdb_blocks); 506 } 507 508 static void init_bdb_blocks(struct drm_i915_private *i915, 509 const void *bdb) 510 { 511 int i; 512 513 for (i = 0; i < ARRAY_SIZE(bdb_blocks); i++) { 514 enum bdb_block_id section_id = bdb_blocks[i].section_id; 515 size_t min_size = bdb_blocks[i].min_size; 516 517 if (section_id == BDB_LVDS_LFP_DATA) 518 min_size = lfp_data_min_size(i915); 519 520 init_bdb_block(i915, bdb, section_id, min_size); 521 } 522 } 523 524 static void 525 fill_detail_timing_data(struct drm_display_mode *panel_fixed_mode, 526 const struct lvds_dvo_timing *dvo_timing) 527 { 528 panel_fixed_mode->hdisplay = (dvo_timing->hactive_hi << 8) | 529 dvo_timing->hactive_lo; 530 panel_fixed_mode->hsync_start = panel_fixed_mode->hdisplay + 531 ((dvo_timing->hsync_off_hi << 8) | dvo_timing->hsync_off_lo); 532 panel_fixed_mode->hsync_end = panel_fixed_mode->hsync_start + 533 ((dvo_timing->hsync_pulse_width_hi << 8) | 534 dvo_timing->hsync_pulse_width_lo); 535 panel_fixed_mode->htotal = panel_fixed_mode->hdisplay + 536 ((dvo_timing->hblank_hi << 8) | dvo_timing->hblank_lo); 537 538 panel_fixed_mode->vdisplay = (dvo_timing->vactive_hi << 8) | 539 dvo_timing->vactive_lo; 540 panel_fixed_mode->vsync_start = panel_fixed_mode->vdisplay + 541 ((dvo_timing->vsync_off_hi << 4) | dvo_timing->vsync_off_lo); 542 panel_fixed_mode->vsync_end = panel_fixed_mode->vsync_start + 543 ((dvo_timing->vsync_pulse_width_hi << 4) | 544 dvo_timing->vsync_pulse_width_lo); 545 panel_fixed_mode->vtotal = panel_fixed_mode->vdisplay + 546 ((dvo_timing->vblank_hi << 8) | dvo_timing->vblank_lo); 547 panel_fixed_mode->clock = dvo_timing->clock * 10; 548 panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED; 549 550 if (dvo_timing->hsync_positive) 551 panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC; 552 else 553 panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC; 554 555 if (dvo_timing->vsync_positive) 556 panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC; 557 else 558 panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC; 559 560 panel_fixed_mode->width_mm = (dvo_timing->himage_hi << 8) | 561 dvo_timing->himage_lo; 562 panel_fixed_mode->height_mm = (dvo_timing->vimage_hi << 8) | 563 dvo_timing->vimage_lo; 564 565 /* Some VBTs have bogus h/vtotal values */ 566 if (panel_fixed_mode->hsync_end > panel_fixed_mode->htotal) 567 panel_fixed_mode->htotal = panel_fixed_mode->hsync_end + 1; 568 if (panel_fixed_mode->vsync_end > panel_fixed_mode->vtotal) 569 panel_fixed_mode->vtotal = panel_fixed_mode->vsync_end + 1; 570 571 drm_mode_set_name(panel_fixed_mode); 572 } 573 574 static const struct lvds_dvo_timing * 575 get_lvds_dvo_timing(const struct bdb_lvds_lfp_data *data, 576 const struct bdb_lvds_lfp_data_ptrs *ptrs, 577 int index) 578 { 579 return (const void *)data + ptrs->ptr[index].dvo_timing.offset; 580 } 581 582 static const struct lvds_fp_timing * 583 get_lvds_fp_timing(const struct bdb_lvds_lfp_data *data, 584 const struct bdb_lvds_lfp_data_ptrs *ptrs, 585 int index) 586 { 587 return (const void *)data + ptrs->ptr[index].fp_timing.offset; 588 } 589 590 static const struct lvds_pnp_id * 591 get_lvds_pnp_id(const struct bdb_lvds_lfp_data *data, 592 const struct bdb_lvds_lfp_data_ptrs *ptrs, 593 int index) 594 { 595 return (const void *)data + ptrs->ptr[index].panel_pnp_id.offset; 596 } 597 598 static const struct bdb_lvds_lfp_data_tail * 599 get_lfp_data_tail(const struct bdb_lvds_lfp_data *data, 600 const struct bdb_lvds_lfp_data_ptrs *ptrs) 601 { 602 if (ptrs->panel_name.table_size) 603 return (const void *)data + ptrs->panel_name.offset; 604 else 605 return NULL; 606 } 607 608 static void dump_pnp_id(struct drm_i915_private *i915, 609 const struct lvds_pnp_id *pnp_id, 610 const char *name) 611 { 612 u16 mfg_name = be16_to_cpu((__force __be16)pnp_id->mfg_name); 613 char vend[4]; 614 615 drm_dbg_kms(&i915->drm, "%s PNPID mfg: %s (0x%x), prod: %u, serial: %u, week: %d, year: %d\n", 616 name, drm_edid_decode_mfg_id(mfg_name, vend), 617 pnp_id->mfg_name, pnp_id->product_code, pnp_id->serial, 618 pnp_id->mfg_week, pnp_id->mfg_year + 1990); 619 } 620 621 static int opregion_get_panel_type(struct drm_i915_private *i915, 622 const struct intel_bios_encoder_data *devdata, 623 const struct edid *edid, bool use_fallback) 624 { 625 return intel_opregion_get_panel_type(i915); 626 } 627 628 static int vbt_get_panel_type(struct drm_i915_private *i915, 629 const struct intel_bios_encoder_data *devdata, 630 const struct edid *edid, bool use_fallback) 631 { 632 const struct bdb_lvds_options *lvds_options; 633 634 lvds_options = find_section(i915, BDB_LVDS_OPTIONS); 635 if (!lvds_options) 636 return -1; 637 638 if (lvds_options->panel_type > 0xf && 639 lvds_options->panel_type != 0xff) { 640 drm_dbg_kms(&i915->drm, "Invalid VBT panel type 0x%x\n", 641 lvds_options->panel_type); 642 return -1; 643 } 644 645 if (devdata && devdata->child.handle == DEVICE_HANDLE_LFP2) 646 return lvds_options->panel_type2; 647 648 drm_WARN_ON(&i915->drm, devdata && devdata->child.handle != DEVICE_HANDLE_LFP1); 649 650 return lvds_options->panel_type; 651 } 652 653 static int pnpid_get_panel_type(struct drm_i915_private *i915, 654 const struct intel_bios_encoder_data *devdata, 655 const struct edid *edid, bool use_fallback) 656 { 657 const struct bdb_lvds_lfp_data *data; 658 const struct bdb_lvds_lfp_data_ptrs *ptrs; 659 const struct lvds_pnp_id *edid_id; 660 struct lvds_pnp_id edid_id_nodate; 661 int i, best = -1; 662 663 if (!edid) 664 return -1; 665 666 edid_id = (const void *)&edid->mfg_id[0]; 667 668 edid_id_nodate = *edid_id; 669 edid_id_nodate.mfg_week = 0; 670 edid_id_nodate.mfg_year = 0; 671 672 dump_pnp_id(i915, edid_id, "EDID"); 673 674 ptrs = find_section(i915, BDB_LVDS_LFP_DATA_PTRS); 675 if (!ptrs) 676 return -1; 677 678 data = find_section(i915, BDB_LVDS_LFP_DATA); 679 if (!data) 680 return -1; 681 682 for (i = 0; i < 16; i++) { 683 const struct lvds_pnp_id *vbt_id = 684 get_lvds_pnp_id(data, ptrs, i); 685 686 /* full match? */ 687 if (!memcmp(vbt_id, edid_id, sizeof(*vbt_id))) 688 return i; 689 690 /* 691 * Accept a match w/o date if no full match is found, 692 * and the VBT entry does not specify a date. 693 */ 694 if (best < 0 && 695 !memcmp(vbt_id, &edid_id_nodate, sizeof(*vbt_id))) 696 best = i; 697 } 698 699 return best; 700 } 701 702 static int fallback_get_panel_type(struct drm_i915_private *i915, 703 const struct intel_bios_encoder_data *devdata, 704 const struct edid *edid, bool use_fallback) 705 { 706 return use_fallback ? 0 : -1; 707 } 708 709 enum panel_type { 710 PANEL_TYPE_OPREGION, 711 PANEL_TYPE_VBT, 712 PANEL_TYPE_PNPID, 713 PANEL_TYPE_FALLBACK, 714 }; 715 716 static int get_panel_type(struct drm_i915_private *i915, 717 const struct intel_bios_encoder_data *devdata, 718 const struct edid *edid, bool use_fallback) 719 { 720 struct { 721 const char *name; 722 int (*get_panel_type)(struct drm_i915_private *i915, 723 const struct intel_bios_encoder_data *devdata, 724 const struct edid *edid, bool use_fallback); 725 int panel_type; 726 } panel_types[] = { 727 [PANEL_TYPE_OPREGION] = { 728 .name = "OpRegion", 729 .get_panel_type = opregion_get_panel_type, 730 }, 731 [PANEL_TYPE_VBT] = { 732 .name = "VBT", 733 .get_panel_type = vbt_get_panel_type, 734 }, 735 [PANEL_TYPE_PNPID] = { 736 .name = "PNPID", 737 .get_panel_type = pnpid_get_panel_type, 738 }, 739 [PANEL_TYPE_FALLBACK] = { 740 .name = "fallback", 741 .get_panel_type = fallback_get_panel_type, 742 }, 743 }; 744 int i; 745 746 for (i = 0; i < ARRAY_SIZE(panel_types); i++) { 747 panel_types[i].panel_type = panel_types[i].get_panel_type(i915, devdata, 748 edid, use_fallback); 749 750 drm_WARN_ON(&i915->drm, panel_types[i].panel_type > 0xf && 751 panel_types[i].panel_type != 0xff); 752 753 if (panel_types[i].panel_type >= 0) 754 drm_dbg_kms(&i915->drm, "Panel type (%s): %d\n", 755 panel_types[i].name, panel_types[i].panel_type); 756 } 757 758 if (panel_types[PANEL_TYPE_OPREGION].panel_type >= 0) 759 i = PANEL_TYPE_OPREGION; 760 else if (panel_types[PANEL_TYPE_VBT].panel_type == 0xff && 761 panel_types[PANEL_TYPE_PNPID].panel_type >= 0) 762 i = PANEL_TYPE_PNPID; 763 else if (panel_types[PANEL_TYPE_VBT].panel_type != 0xff && 764 panel_types[PANEL_TYPE_VBT].panel_type >= 0) 765 i = PANEL_TYPE_VBT; 766 else 767 i = PANEL_TYPE_FALLBACK; 768 769 drm_dbg_kms(&i915->drm, "Selected panel type (%s): %d\n", 770 panel_types[i].name, panel_types[i].panel_type); 771 772 return panel_types[i].panel_type; 773 } 774 775 static unsigned int panel_bits(unsigned int value, int panel_type, int num_bits) 776 { 777 return (value >> (panel_type * num_bits)) & (BIT(num_bits) - 1); 778 } 779 780 static bool panel_bool(unsigned int value, int panel_type) 781 { 782 return panel_bits(value, panel_type, 1); 783 } 784 785 /* Parse general panel options */ 786 static void 787 parse_panel_options(struct drm_i915_private *i915, 788 struct intel_panel *panel) 789 { 790 const struct bdb_lvds_options *lvds_options; 791 int panel_type = panel->vbt.panel_type; 792 int drrs_mode; 793 794 lvds_options = find_section(i915, BDB_LVDS_OPTIONS); 795 if (!lvds_options) 796 return; 797 798 panel->vbt.lvds_dither = lvds_options->pixel_dither; 799 800 /* 801 * Empirical evidence indicates the block size can be 802 * either 4,14,16,24+ bytes. For older VBTs no clear 803 * relationship between the block size vs. BDB version. 804 */ 805 if (get_blocksize(lvds_options) < 16) 806 return; 807 808 drrs_mode = panel_bits(lvds_options->dps_panel_type_bits, 809 panel_type, 2); 810 /* 811 * VBT has static DRRS = 0 and seamless DRRS = 2. 812 * The below piece of code is required to adjust vbt.drrs_type 813 * to match the enum drrs_support_type. 814 */ 815 switch (drrs_mode) { 816 case 0: 817 panel->vbt.drrs_type = DRRS_TYPE_STATIC; 818 drm_dbg_kms(&i915->drm, "DRRS supported mode is static\n"); 819 break; 820 case 2: 821 panel->vbt.drrs_type = DRRS_TYPE_SEAMLESS; 822 drm_dbg_kms(&i915->drm, 823 "DRRS supported mode is seamless\n"); 824 break; 825 default: 826 panel->vbt.drrs_type = DRRS_TYPE_NONE; 827 drm_dbg_kms(&i915->drm, 828 "DRRS not supported (VBT input)\n"); 829 break; 830 } 831 } 832 833 static void 834 parse_lfp_panel_dtd(struct drm_i915_private *i915, 835 struct intel_panel *panel, 836 const struct bdb_lvds_lfp_data *lvds_lfp_data, 837 const struct bdb_lvds_lfp_data_ptrs *lvds_lfp_data_ptrs) 838 { 839 const struct lvds_dvo_timing *panel_dvo_timing; 840 const struct lvds_fp_timing *fp_timing; 841 struct drm_display_mode *panel_fixed_mode; 842 int panel_type = panel->vbt.panel_type; 843 844 panel_dvo_timing = get_lvds_dvo_timing(lvds_lfp_data, 845 lvds_lfp_data_ptrs, 846 panel_type); 847 848 panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL); 849 if (!panel_fixed_mode) 850 return; 851 852 fill_detail_timing_data(panel_fixed_mode, panel_dvo_timing); 853 854 panel->vbt.lfp_lvds_vbt_mode = panel_fixed_mode; 855 856 drm_dbg_kms(&i915->drm, 857 "Found panel mode in BIOS VBT legacy lfp table: " DRM_MODE_FMT "\n", 858 DRM_MODE_ARG(panel_fixed_mode)); 859 860 fp_timing = get_lvds_fp_timing(lvds_lfp_data, 861 lvds_lfp_data_ptrs, 862 panel_type); 863 864 /* check the resolution, just to be sure */ 865 if (fp_timing->x_res == panel_fixed_mode->hdisplay && 866 fp_timing->y_res == panel_fixed_mode->vdisplay) { 867 panel->vbt.bios_lvds_val = fp_timing->lvds_reg_val; 868 drm_dbg_kms(&i915->drm, 869 "VBT initial LVDS value %x\n", 870 panel->vbt.bios_lvds_val); 871 } 872 } 873 874 static void 875 parse_lfp_data(struct drm_i915_private *i915, 876 struct intel_panel *panel) 877 { 878 const struct bdb_lvds_lfp_data *data; 879 const struct bdb_lvds_lfp_data_tail *tail; 880 const struct bdb_lvds_lfp_data_ptrs *ptrs; 881 const struct lvds_pnp_id *pnp_id; 882 int panel_type = panel->vbt.panel_type; 883 884 ptrs = find_section(i915, BDB_LVDS_LFP_DATA_PTRS); 885 if (!ptrs) 886 return; 887 888 data = find_section(i915, BDB_LVDS_LFP_DATA); 889 if (!data) 890 return; 891 892 if (!panel->vbt.lfp_lvds_vbt_mode) 893 parse_lfp_panel_dtd(i915, panel, data, ptrs); 894 895 pnp_id = get_lvds_pnp_id(data, ptrs, panel_type); 896 dump_pnp_id(i915, pnp_id, "Panel"); 897 898 tail = get_lfp_data_tail(data, ptrs); 899 if (!tail) 900 return; 901 902 drm_dbg_kms(&i915->drm, "Panel name: %.*s\n", 903 (int)sizeof(tail->panel_name[0].name), 904 tail->panel_name[panel_type].name); 905 906 if (i915->display.vbt.version >= 188) { 907 panel->vbt.seamless_drrs_min_refresh_rate = 908 tail->seamless_drrs_min_refresh_rate[panel_type]; 909 drm_dbg_kms(&i915->drm, 910 "Seamless DRRS min refresh rate: %d Hz\n", 911 panel->vbt.seamless_drrs_min_refresh_rate); 912 } 913 } 914 915 static void 916 parse_generic_dtd(struct drm_i915_private *i915, 917 struct intel_panel *panel) 918 { 919 const struct bdb_generic_dtd *generic_dtd; 920 const struct generic_dtd_entry *dtd; 921 struct drm_display_mode *panel_fixed_mode; 922 int num_dtd; 923 924 /* 925 * Older VBTs provided DTD information for internal displays through 926 * the "LFP panel tables" block (42). As of VBT revision 229 the 927 * DTD information should be provided via a newer "generic DTD" 928 * block (58). Just to be safe, we'll try the new generic DTD block 929 * first on VBT >= 229, but still fall back to trying the old LFP 930 * block if that fails. 931 */ 932 if (i915->display.vbt.version < 229) 933 return; 934 935 generic_dtd = find_section(i915, BDB_GENERIC_DTD); 936 if (!generic_dtd) 937 return; 938 939 if (generic_dtd->gdtd_size < sizeof(struct generic_dtd_entry)) { 940 drm_err(&i915->drm, "GDTD size %u is too small.\n", 941 generic_dtd->gdtd_size); 942 return; 943 } else if (generic_dtd->gdtd_size != 944 sizeof(struct generic_dtd_entry)) { 945 drm_err(&i915->drm, "Unexpected GDTD size %u\n", 946 generic_dtd->gdtd_size); 947 /* DTD has unknown fields, but keep going */ 948 } 949 950 num_dtd = (get_blocksize(generic_dtd) - 951 sizeof(struct bdb_generic_dtd)) / generic_dtd->gdtd_size; 952 if (panel->vbt.panel_type >= num_dtd) { 953 drm_err(&i915->drm, 954 "Panel type %d not found in table of %d DTD's\n", 955 panel->vbt.panel_type, num_dtd); 956 return; 957 } 958 959 dtd = &generic_dtd->dtd[panel->vbt.panel_type]; 960 961 panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL); 962 if (!panel_fixed_mode) 963 return; 964 965 panel_fixed_mode->hdisplay = dtd->hactive; 966 panel_fixed_mode->hsync_start = 967 panel_fixed_mode->hdisplay + dtd->hfront_porch; 968 panel_fixed_mode->hsync_end = 969 panel_fixed_mode->hsync_start + dtd->hsync; 970 panel_fixed_mode->htotal = 971 panel_fixed_mode->hdisplay + dtd->hblank; 972 973 panel_fixed_mode->vdisplay = dtd->vactive; 974 panel_fixed_mode->vsync_start = 975 panel_fixed_mode->vdisplay + dtd->vfront_porch; 976 panel_fixed_mode->vsync_end = 977 panel_fixed_mode->vsync_start + dtd->vsync; 978 panel_fixed_mode->vtotal = 979 panel_fixed_mode->vdisplay + dtd->vblank; 980 981 panel_fixed_mode->clock = dtd->pixel_clock; 982 panel_fixed_mode->width_mm = dtd->width_mm; 983 panel_fixed_mode->height_mm = dtd->height_mm; 984 985 panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED; 986 drm_mode_set_name(panel_fixed_mode); 987 988 if (dtd->hsync_positive_polarity) 989 panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC; 990 else 991 panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC; 992 993 if (dtd->vsync_positive_polarity) 994 panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC; 995 else 996 panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC; 997 998 drm_dbg_kms(&i915->drm, 999 "Found panel mode in BIOS VBT generic dtd table: " DRM_MODE_FMT "\n", 1000 DRM_MODE_ARG(panel_fixed_mode)); 1001 1002 panel->vbt.lfp_lvds_vbt_mode = panel_fixed_mode; 1003 } 1004 1005 static void 1006 parse_lfp_backlight(struct drm_i915_private *i915, 1007 struct intel_panel *panel) 1008 { 1009 const struct bdb_lfp_backlight_data *backlight_data; 1010 const struct lfp_backlight_data_entry *entry; 1011 int panel_type = panel->vbt.panel_type; 1012 u16 level; 1013 1014 backlight_data = find_section(i915, BDB_LVDS_BACKLIGHT); 1015 if (!backlight_data) 1016 return; 1017 1018 if (backlight_data->entry_size != sizeof(backlight_data->data[0])) { 1019 drm_dbg_kms(&i915->drm, 1020 "Unsupported backlight data entry size %u\n", 1021 backlight_data->entry_size); 1022 return; 1023 } 1024 1025 entry = &backlight_data->data[panel_type]; 1026 1027 panel->vbt.backlight.present = entry->type == BDB_BACKLIGHT_TYPE_PWM; 1028 if (!panel->vbt.backlight.present) { 1029 drm_dbg_kms(&i915->drm, 1030 "PWM backlight not present in VBT (type %u)\n", 1031 entry->type); 1032 return; 1033 } 1034 1035 panel->vbt.backlight.type = INTEL_BACKLIGHT_DISPLAY_DDI; 1036 if (i915->display.vbt.version >= 191) { 1037 size_t exp_size; 1038 1039 if (i915->display.vbt.version >= 236) 1040 exp_size = sizeof(struct bdb_lfp_backlight_data); 1041 else if (i915->display.vbt.version >= 234) 1042 exp_size = EXP_BDB_LFP_BL_DATA_SIZE_REV_234; 1043 else 1044 exp_size = EXP_BDB_LFP_BL_DATA_SIZE_REV_191; 1045 1046 if (get_blocksize(backlight_data) >= exp_size) { 1047 const struct lfp_backlight_control_method *method; 1048 1049 method = &backlight_data->backlight_control[panel_type]; 1050 panel->vbt.backlight.type = method->type; 1051 panel->vbt.backlight.controller = method->controller; 1052 } 1053 } 1054 1055 panel->vbt.backlight.pwm_freq_hz = entry->pwm_freq_hz; 1056 panel->vbt.backlight.active_low_pwm = entry->active_low_pwm; 1057 1058 if (i915->display.vbt.version >= 234) { 1059 u16 min_level; 1060 bool scale; 1061 1062 level = backlight_data->brightness_level[panel_type].level; 1063 min_level = backlight_data->brightness_min_level[panel_type].level; 1064 1065 if (i915->display.vbt.version >= 236) 1066 scale = backlight_data->brightness_precision_bits[panel_type] == 16; 1067 else 1068 scale = level > 255; 1069 1070 if (scale) 1071 min_level = min_level / 255; 1072 1073 if (min_level > 255) { 1074 drm_warn(&i915->drm, "Brightness min level > 255\n"); 1075 level = 255; 1076 } 1077 panel->vbt.backlight.min_brightness = min_level; 1078 1079 panel->vbt.backlight.brightness_precision_bits = 1080 backlight_data->brightness_precision_bits[panel_type]; 1081 } else { 1082 level = backlight_data->level[panel_type]; 1083 panel->vbt.backlight.min_brightness = entry->min_brightness; 1084 } 1085 1086 drm_dbg_kms(&i915->drm, 1087 "VBT backlight PWM modulation frequency %u Hz, " 1088 "active %s, min brightness %u, level %u, controller %u\n", 1089 panel->vbt.backlight.pwm_freq_hz, 1090 panel->vbt.backlight.active_low_pwm ? "low" : "high", 1091 panel->vbt.backlight.min_brightness, 1092 level, 1093 panel->vbt.backlight.controller); 1094 } 1095 1096 /* Try to find sdvo panel data */ 1097 static void 1098 parse_sdvo_panel_data(struct drm_i915_private *i915, 1099 struct intel_panel *panel) 1100 { 1101 const struct bdb_sdvo_panel_dtds *dtds; 1102 struct drm_display_mode *panel_fixed_mode; 1103 int index; 1104 1105 index = i915->params.vbt_sdvo_panel_type; 1106 if (index == -2) { 1107 drm_dbg_kms(&i915->drm, 1108 "Ignore SDVO panel mode from BIOS VBT tables.\n"); 1109 return; 1110 } 1111 1112 if (index == -1) { 1113 const struct bdb_sdvo_lvds_options *sdvo_lvds_options; 1114 1115 sdvo_lvds_options = find_section(i915, BDB_SDVO_LVDS_OPTIONS); 1116 if (!sdvo_lvds_options) 1117 return; 1118 1119 index = sdvo_lvds_options->panel_type; 1120 } 1121 1122 dtds = find_section(i915, BDB_SDVO_PANEL_DTDS); 1123 if (!dtds) 1124 return; 1125 1126 panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL); 1127 if (!panel_fixed_mode) 1128 return; 1129 1130 fill_detail_timing_data(panel_fixed_mode, &dtds->dtds[index]); 1131 1132 panel->vbt.sdvo_lvds_vbt_mode = panel_fixed_mode; 1133 1134 drm_dbg_kms(&i915->drm, 1135 "Found SDVO panel mode in BIOS VBT tables: " DRM_MODE_FMT "\n", 1136 DRM_MODE_ARG(panel_fixed_mode)); 1137 } 1138 1139 static int intel_bios_ssc_frequency(struct drm_i915_private *i915, 1140 bool alternate) 1141 { 1142 switch (DISPLAY_VER(i915)) { 1143 case 2: 1144 return alternate ? 66667 : 48000; 1145 case 3: 1146 case 4: 1147 return alternate ? 100000 : 96000; 1148 default: 1149 return alternate ? 100000 : 120000; 1150 } 1151 } 1152 1153 static void 1154 parse_general_features(struct drm_i915_private *i915) 1155 { 1156 const struct bdb_general_features *general; 1157 1158 general = find_section(i915, BDB_GENERAL_FEATURES); 1159 if (!general) 1160 return; 1161 1162 i915->display.vbt.int_tv_support = general->int_tv_support; 1163 /* int_crt_support can't be trusted on earlier platforms */ 1164 if (i915->display.vbt.version >= 155 && 1165 (HAS_DDI(i915) || IS_VALLEYVIEW(i915))) 1166 i915->display.vbt.int_crt_support = general->int_crt_support; 1167 i915->display.vbt.lvds_use_ssc = general->enable_ssc; 1168 i915->display.vbt.lvds_ssc_freq = 1169 intel_bios_ssc_frequency(i915, general->ssc_freq); 1170 i915->display.vbt.display_clock_mode = general->display_clock_mode; 1171 i915->display.vbt.fdi_rx_polarity_inverted = general->fdi_rx_polarity_inverted; 1172 if (i915->display.vbt.version >= 181) { 1173 i915->display.vbt.orientation = general->rotate_180 ? 1174 DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP : 1175 DRM_MODE_PANEL_ORIENTATION_NORMAL; 1176 } else { 1177 i915->display.vbt.orientation = DRM_MODE_PANEL_ORIENTATION_UNKNOWN; 1178 } 1179 1180 if (i915->display.vbt.version >= 249 && general->afc_startup_config) { 1181 i915->display.vbt.override_afc_startup = true; 1182 i915->display.vbt.override_afc_startup_val = general->afc_startup_config == 0x1 ? 0x0 : 0x7; 1183 } 1184 1185 drm_dbg_kms(&i915->drm, 1186 "BDB_GENERAL_FEATURES int_tv_support %d int_crt_support %d lvds_use_ssc %d lvds_ssc_freq %d display_clock_mode %d fdi_rx_polarity_inverted %d\n", 1187 i915->display.vbt.int_tv_support, 1188 i915->display.vbt.int_crt_support, 1189 i915->display.vbt.lvds_use_ssc, 1190 i915->display.vbt.lvds_ssc_freq, 1191 i915->display.vbt.display_clock_mode, 1192 i915->display.vbt.fdi_rx_polarity_inverted); 1193 } 1194 1195 static const struct child_device_config * 1196 child_device_ptr(const struct bdb_general_definitions *defs, int i) 1197 { 1198 return (const void *) &defs->devices[i * defs->child_dev_size]; 1199 } 1200 1201 static void 1202 parse_sdvo_device_mapping(struct drm_i915_private *i915) 1203 { 1204 struct sdvo_device_mapping *mapping; 1205 const struct intel_bios_encoder_data *devdata; 1206 const struct child_device_config *child; 1207 int count = 0; 1208 1209 /* 1210 * Only parse SDVO mappings on gens that could have SDVO. This isn't 1211 * accurate and doesn't have to be, as long as it's not too strict. 1212 */ 1213 if (!IS_DISPLAY_VER(i915, 3, 7)) { 1214 drm_dbg_kms(&i915->drm, "Skipping SDVO device mapping\n"); 1215 return; 1216 } 1217 1218 list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) { 1219 child = &devdata->child; 1220 1221 if (child->slave_addr != SLAVE_ADDR1 && 1222 child->slave_addr != SLAVE_ADDR2) { 1223 /* 1224 * If the slave address is neither 0x70 nor 0x72, 1225 * it is not a SDVO device. Skip it. 1226 */ 1227 continue; 1228 } 1229 if (child->dvo_port != DEVICE_PORT_DVOB && 1230 child->dvo_port != DEVICE_PORT_DVOC) { 1231 /* skip the incorrect SDVO port */ 1232 drm_dbg_kms(&i915->drm, 1233 "Incorrect SDVO port. Skip it\n"); 1234 continue; 1235 } 1236 drm_dbg_kms(&i915->drm, 1237 "the SDVO device with slave addr %2x is found on" 1238 " %s port\n", 1239 child->slave_addr, 1240 (child->dvo_port == DEVICE_PORT_DVOB) ? 1241 "SDVOB" : "SDVOC"); 1242 mapping = &i915->display.vbt.sdvo_mappings[child->dvo_port - 1]; 1243 if (!mapping->initialized) { 1244 mapping->dvo_port = child->dvo_port; 1245 mapping->slave_addr = child->slave_addr; 1246 mapping->dvo_wiring = child->dvo_wiring; 1247 mapping->ddc_pin = child->ddc_pin; 1248 mapping->i2c_pin = child->i2c_pin; 1249 mapping->initialized = 1; 1250 drm_dbg_kms(&i915->drm, 1251 "SDVO device: dvo=%x, addr=%x, wiring=%d, ddc_pin=%d, i2c_pin=%d\n", 1252 mapping->dvo_port, mapping->slave_addr, 1253 mapping->dvo_wiring, mapping->ddc_pin, 1254 mapping->i2c_pin); 1255 } else { 1256 drm_dbg_kms(&i915->drm, 1257 "Maybe one SDVO port is shared by " 1258 "two SDVO device.\n"); 1259 } 1260 if (child->slave2_addr) { 1261 /* Maybe this is a SDVO device with multiple inputs */ 1262 /* And the mapping info is not added */ 1263 drm_dbg_kms(&i915->drm, 1264 "there exists the slave2_addr. Maybe this" 1265 " is a SDVO device with multiple inputs.\n"); 1266 } 1267 count++; 1268 } 1269 1270 if (!count) { 1271 /* No SDVO device info is found */ 1272 drm_dbg_kms(&i915->drm, 1273 "No SDVO device info is found in VBT\n"); 1274 } 1275 } 1276 1277 static void 1278 parse_driver_features(struct drm_i915_private *i915) 1279 { 1280 const struct bdb_driver_features *driver; 1281 1282 driver = find_section(i915, BDB_DRIVER_FEATURES); 1283 if (!driver) 1284 return; 1285 1286 if (DISPLAY_VER(i915) >= 5) { 1287 /* 1288 * Note that we consider BDB_DRIVER_FEATURE_INT_SDVO_LVDS 1289 * to mean "eDP". The VBT spec doesn't agree with that 1290 * interpretation, but real world VBTs seem to. 1291 */ 1292 if (driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS) 1293 i915->display.vbt.int_lvds_support = 0; 1294 } else { 1295 /* 1296 * FIXME it's not clear which BDB version has the LVDS config 1297 * bits defined. Revision history in the VBT spec says: 1298 * "0.92 | Add two definitions for VBT value of LVDS Active 1299 * Config (00b and 11b values defined) | 06/13/2005" 1300 * but does not the specify the BDB version. 1301 * 1302 * So far version 134 (on i945gm) is the oldest VBT observed 1303 * in the wild with the bits correctly populated. Version 1304 * 108 (on i85x) does not have the bits correctly populated. 1305 */ 1306 if (i915->display.vbt.version >= 134 && 1307 driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS && 1308 driver->lvds_config != BDB_DRIVER_FEATURE_INT_SDVO_LVDS) 1309 i915->display.vbt.int_lvds_support = 0; 1310 } 1311 } 1312 1313 static void 1314 parse_panel_driver_features(struct drm_i915_private *i915, 1315 struct intel_panel *panel) 1316 { 1317 const struct bdb_driver_features *driver; 1318 1319 driver = find_section(i915, BDB_DRIVER_FEATURES); 1320 if (!driver) 1321 return; 1322 1323 if (i915->display.vbt.version < 228) { 1324 drm_dbg_kms(&i915->drm, "DRRS State Enabled:%d\n", 1325 driver->drrs_enabled); 1326 /* 1327 * If DRRS is not supported, drrs_type has to be set to 0. 1328 * This is because, VBT is configured in such a way that 1329 * static DRRS is 0 and DRRS not supported is represented by 1330 * driver->drrs_enabled=false 1331 */ 1332 if (!driver->drrs_enabled && panel->vbt.drrs_type != DRRS_TYPE_NONE) { 1333 /* 1334 * FIXME Should DMRRS perhaps be treated as seamless 1335 * but without the automatic downclocking? 1336 */ 1337 if (driver->dmrrs_enabled) 1338 panel->vbt.drrs_type = DRRS_TYPE_STATIC; 1339 else 1340 panel->vbt.drrs_type = DRRS_TYPE_NONE; 1341 } 1342 1343 panel->vbt.psr.enable = driver->psr_enabled; 1344 } 1345 } 1346 1347 static void 1348 parse_power_conservation_features(struct drm_i915_private *i915, 1349 struct intel_panel *panel) 1350 { 1351 const struct bdb_lfp_power *power; 1352 u8 panel_type = panel->vbt.panel_type; 1353 1354 panel->vbt.vrr = true; /* matches Windows behaviour */ 1355 1356 if (i915->display.vbt.version < 228) 1357 return; 1358 1359 power = find_section(i915, BDB_LFP_POWER); 1360 if (!power) 1361 return; 1362 1363 panel->vbt.psr.enable = panel_bool(power->psr, panel_type); 1364 1365 /* 1366 * If DRRS is not supported, drrs_type has to be set to 0. 1367 * This is because, VBT is configured in such a way that 1368 * static DRRS is 0 and DRRS not supported is represented by 1369 * power->drrs & BIT(panel_type)=false 1370 */ 1371 if (!panel_bool(power->drrs, panel_type) && panel->vbt.drrs_type != DRRS_TYPE_NONE) { 1372 /* 1373 * FIXME Should DMRRS perhaps be treated as seamless 1374 * but without the automatic downclocking? 1375 */ 1376 if (panel_bool(power->dmrrs, panel_type)) 1377 panel->vbt.drrs_type = DRRS_TYPE_STATIC; 1378 else 1379 panel->vbt.drrs_type = DRRS_TYPE_NONE; 1380 } 1381 1382 if (i915->display.vbt.version >= 232) 1383 panel->vbt.edp.hobl = panel_bool(power->hobl, panel_type); 1384 1385 if (i915->display.vbt.version >= 233) 1386 panel->vbt.vrr = panel_bool(power->vrr_feature_enabled, 1387 panel_type); 1388 } 1389 1390 static void 1391 parse_edp(struct drm_i915_private *i915, 1392 struct intel_panel *panel) 1393 { 1394 const struct bdb_edp *edp; 1395 const struct edp_power_seq *edp_pps; 1396 const struct edp_fast_link_params *edp_link_params; 1397 int panel_type = panel->vbt.panel_type; 1398 1399 edp = find_section(i915, BDB_EDP); 1400 if (!edp) 1401 return; 1402 1403 switch (panel_bits(edp->color_depth, panel_type, 2)) { 1404 case EDP_18BPP: 1405 panel->vbt.edp.bpp = 18; 1406 break; 1407 case EDP_24BPP: 1408 panel->vbt.edp.bpp = 24; 1409 break; 1410 case EDP_30BPP: 1411 panel->vbt.edp.bpp = 30; 1412 break; 1413 } 1414 1415 /* Get the eDP sequencing and link info */ 1416 edp_pps = &edp->power_seqs[panel_type]; 1417 edp_link_params = &edp->fast_link_params[panel_type]; 1418 1419 panel->vbt.edp.pps = *edp_pps; 1420 1421 if (i915->display.vbt.version >= 224) { 1422 panel->vbt.edp.rate = 1423 edp->edp_fast_link_training_rate[panel_type] * 20; 1424 } else { 1425 switch (edp_link_params->rate) { 1426 case EDP_RATE_1_62: 1427 panel->vbt.edp.rate = 162000; 1428 break; 1429 case EDP_RATE_2_7: 1430 panel->vbt.edp.rate = 270000; 1431 break; 1432 case EDP_RATE_5_4: 1433 panel->vbt.edp.rate = 540000; 1434 break; 1435 default: 1436 drm_dbg_kms(&i915->drm, 1437 "VBT has unknown eDP link rate value %u\n", 1438 edp_link_params->rate); 1439 break; 1440 } 1441 } 1442 1443 switch (edp_link_params->lanes) { 1444 case EDP_LANE_1: 1445 panel->vbt.edp.lanes = 1; 1446 break; 1447 case EDP_LANE_2: 1448 panel->vbt.edp.lanes = 2; 1449 break; 1450 case EDP_LANE_4: 1451 panel->vbt.edp.lanes = 4; 1452 break; 1453 default: 1454 drm_dbg_kms(&i915->drm, 1455 "VBT has unknown eDP lane count value %u\n", 1456 edp_link_params->lanes); 1457 break; 1458 } 1459 1460 switch (edp_link_params->preemphasis) { 1461 case EDP_PREEMPHASIS_NONE: 1462 panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_0; 1463 break; 1464 case EDP_PREEMPHASIS_3_5dB: 1465 panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_1; 1466 break; 1467 case EDP_PREEMPHASIS_6dB: 1468 panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_2; 1469 break; 1470 case EDP_PREEMPHASIS_9_5dB: 1471 panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_3; 1472 break; 1473 default: 1474 drm_dbg_kms(&i915->drm, 1475 "VBT has unknown eDP pre-emphasis value %u\n", 1476 edp_link_params->preemphasis); 1477 break; 1478 } 1479 1480 switch (edp_link_params->vswing) { 1481 case EDP_VSWING_0_4V: 1482 panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_0; 1483 break; 1484 case EDP_VSWING_0_6V: 1485 panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_1; 1486 break; 1487 case EDP_VSWING_0_8V: 1488 panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_2; 1489 break; 1490 case EDP_VSWING_1_2V: 1491 panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_3; 1492 break; 1493 default: 1494 drm_dbg_kms(&i915->drm, 1495 "VBT has unknown eDP voltage swing value %u\n", 1496 edp_link_params->vswing); 1497 break; 1498 } 1499 1500 if (i915->display.vbt.version >= 173) { 1501 u8 vswing; 1502 1503 /* Don't read from VBT if module parameter has valid value*/ 1504 if (i915->params.edp_vswing) { 1505 panel->vbt.edp.low_vswing = 1506 i915->params.edp_vswing == 1; 1507 } else { 1508 vswing = (edp->edp_vswing_preemph >> (panel_type * 4)) & 0xF; 1509 panel->vbt.edp.low_vswing = vswing == 0; 1510 } 1511 } 1512 1513 panel->vbt.edp.drrs_msa_timing_delay = 1514 panel_bits(edp->sdrrs_msa_timing_delay, panel_type, 2); 1515 1516 if (i915->display.vbt.version >= 244) 1517 panel->vbt.edp.max_link_rate = 1518 edp->edp_max_port_link_rate[panel_type] * 20; 1519 } 1520 1521 static void 1522 parse_psr(struct drm_i915_private *i915, 1523 struct intel_panel *panel) 1524 { 1525 const struct bdb_psr *psr; 1526 const struct psr_table *psr_table; 1527 int panel_type = panel->vbt.panel_type; 1528 1529 psr = find_section(i915, BDB_PSR); 1530 if (!psr) { 1531 drm_dbg_kms(&i915->drm, "No PSR BDB found.\n"); 1532 return; 1533 } 1534 1535 psr_table = &psr->psr_table[panel_type]; 1536 1537 panel->vbt.psr.full_link = psr_table->full_link; 1538 panel->vbt.psr.require_aux_wakeup = psr_table->require_aux_to_wakeup; 1539 1540 /* Allowed VBT values goes from 0 to 15 */ 1541 panel->vbt.psr.idle_frames = psr_table->idle_frames < 0 ? 0 : 1542 psr_table->idle_frames > 15 ? 15 : psr_table->idle_frames; 1543 1544 /* 1545 * New psr options 0=500us, 1=100us, 2=2500us, 3=0us 1546 * Old decimal value is wake up time in multiples of 100 us. 1547 */ 1548 if (i915->display.vbt.version >= 205 && 1549 (DISPLAY_VER(i915) >= 9 && !IS_BROXTON(i915))) { 1550 switch (psr_table->tp1_wakeup_time) { 1551 case 0: 1552 panel->vbt.psr.tp1_wakeup_time_us = 500; 1553 break; 1554 case 1: 1555 panel->vbt.psr.tp1_wakeup_time_us = 100; 1556 break; 1557 case 3: 1558 panel->vbt.psr.tp1_wakeup_time_us = 0; 1559 break; 1560 default: 1561 drm_dbg_kms(&i915->drm, 1562 "VBT tp1 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n", 1563 psr_table->tp1_wakeup_time); 1564 fallthrough; 1565 case 2: 1566 panel->vbt.psr.tp1_wakeup_time_us = 2500; 1567 break; 1568 } 1569 1570 switch (psr_table->tp2_tp3_wakeup_time) { 1571 case 0: 1572 panel->vbt.psr.tp2_tp3_wakeup_time_us = 500; 1573 break; 1574 case 1: 1575 panel->vbt.psr.tp2_tp3_wakeup_time_us = 100; 1576 break; 1577 case 3: 1578 panel->vbt.psr.tp2_tp3_wakeup_time_us = 0; 1579 break; 1580 default: 1581 drm_dbg_kms(&i915->drm, 1582 "VBT tp2_tp3 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n", 1583 psr_table->tp2_tp3_wakeup_time); 1584 fallthrough; 1585 case 2: 1586 panel->vbt.psr.tp2_tp3_wakeup_time_us = 2500; 1587 break; 1588 } 1589 } else { 1590 panel->vbt.psr.tp1_wakeup_time_us = psr_table->tp1_wakeup_time * 100; 1591 panel->vbt.psr.tp2_tp3_wakeup_time_us = psr_table->tp2_tp3_wakeup_time * 100; 1592 } 1593 1594 if (i915->display.vbt.version >= 226) { 1595 u32 wakeup_time = psr->psr2_tp2_tp3_wakeup_time; 1596 1597 wakeup_time = panel_bits(wakeup_time, panel_type, 2); 1598 switch (wakeup_time) { 1599 case 0: 1600 wakeup_time = 500; 1601 break; 1602 case 1: 1603 wakeup_time = 100; 1604 break; 1605 case 3: 1606 wakeup_time = 50; 1607 break; 1608 default: 1609 case 2: 1610 wakeup_time = 2500; 1611 break; 1612 } 1613 panel->vbt.psr.psr2_tp2_tp3_wakeup_time_us = wakeup_time; 1614 } else { 1615 /* Reusing PSR1 wakeup time for PSR2 in older VBTs */ 1616 panel->vbt.psr.psr2_tp2_tp3_wakeup_time_us = panel->vbt.psr.tp2_tp3_wakeup_time_us; 1617 } 1618 } 1619 1620 static void parse_dsi_backlight_ports(struct drm_i915_private *i915, 1621 struct intel_panel *panel, 1622 enum port port) 1623 { 1624 enum port port_bc = DISPLAY_VER(i915) >= 11 ? PORT_B : PORT_C; 1625 1626 if (!panel->vbt.dsi.config->dual_link || i915->display.vbt.version < 197) { 1627 panel->vbt.dsi.bl_ports = BIT(port); 1628 if (panel->vbt.dsi.config->cabc_supported) 1629 panel->vbt.dsi.cabc_ports = BIT(port); 1630 1631 return; 1632 } 1633 1634 switch (panel->vbt.dsi.config->dl_dcs_backlight_ports) { 1635 case DL_DCS_PORT_A: 1636 panel->vbt.dsi.bl_ports = BIT(PORT_A); 1637 break; 1638 case DL_DCS_PORT_C: 1639 panel->vbt.dsi.bl_ports = BIT(port_bc); 1640 break; 1641 default: 1642 case DL_DCS_PORT_A_AND_C: 1643 panel->vbt.dsi.bl_ports = BIT(PORT_A) | BIT(port_bc); 1644 break; 1645 } 1646 1647 if (!panel->vbt.dsi.config->cabc_supported) 1648 return; 1649 1650 switch (panel->vbt.dsi.config->dl_dcs_cabc_ports) { 1651 case DL_DCS_PORT_A: 1652 panel->vbt.dsi.cabc_ports = BIT(PORT_A); 1653 break; 1654 case DL_DCS_PORT_C: 1655 panel->vbt.dsi.cabc_ports = BIT(port_bc); 1656 break; 1657 default: 1658 case DL_DCS_PORT_A_AND_C: 1659 panel->vbt.dsi.cabc_ports = 1660 BIT(PORT_A) | BIT(port_bc); 1661 break; 1662 } 1663 } 1664 1665 static void 1666 parse_mipi_config(struct drm_i915_private *i915, 1667 struct intel_panel *panel) 1668 { 1669 const struct bdb_mipi_config *start; 1670 const struct mipi_config *config; 1671 const struct mipi_pps_data *pps; 1672 int panel_type = panel->vbt.panel_type; 1673 enum port port; 1674 1675 /* parse MIPI blocks only if LFP type is MIPI */ 1676 if (!intel_bios_is_dsi_present(i915, &port)) 1677 return; 1678 1679 /* Initialize this to undefined indicating no generic MIPI support */ 1680 panel->vbt.dsi.panel_id = MIPI_DSI_UNDEFINED_PANEL_ID; 1681 1682 /* Block #40 is already parsed and panel_fixed_mode is 1683 * stored in i915->lfp_lvds_vbt_mode 1684 * resuse this when needed 1685 */ 1686 1687 /* Parse #52 for panel index used from panel_type already 1688 * parsed 1689 */ 1690 start = find_section(i915, BDB_MIPI_CONFIG); 1691 if (!start) { 1692 drm_dbg_kms(&i915->drm, "No MIPI config BDB found"); 1693 return; 1694 } 1695 1696 drm_dbg(&i915->drm, "Found MIPI Config block, panel index = %d\n", 1697 panel_type); 1698 1699 /* 1700 * get hold of the correct configuration block and pps data as per 1701 * the panel_type as index 1702 */ 1703 config = &start->config[panel_type]; 1704 pps = &start->pps[panel_type]; 1705 1706 /* store as of now full data. Trim when we realise all is not needed */ 1707 panel->vbt.dsi.config = kmemdup(config, sizeof(struct mipi_config), GFP_KERNEL); 1708 if (!panel->vbt.dsi.config) 1709 return; 1710 1711 panel->vbt.dsi.pps = kmemdup(pps, sizeof(struct mipi_pps_data), GFP_KERNEL); 1712 if (!panel->vbt.dsi.pps) { 1713 kfree(panel->vbt.dsi.config); 1714 return; 1715 } 1716 1717 parse_dsi_backlight_ports(i915, panel, port); 1718 1719 /* FIXME is the 90 vs. 270 correct? */ 1720 switch (config->rotation) { 1721 case ENABLE_ROTATION_0: 1722 /* 1723 * Most (all?) VBTs claim 0 degrees despite having 1724 * an upside down panel, thus we do not trust this. 1725 */ 1726 panel->vbt.dsi.orientation = 1727 DRM_MODE_PANEL_ORIENTATION_UNKNOWN; 1728 break; 1729 case ENABLE_ROTATION_90: 1730 panel->vbt.dsi.orientation = 1731 DRM_MODE_PANEL_ORIENTATION_RIGHT_UP; 1732 break; 1733 case ENABLE_ROTATION_180: 1734 panel->vbt.dsi.orientation = 1735 DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP; 1736 break; 1737 case ENABLE_ROTATION_270: 1738 panel->vbt.dsi.orientation = 1739 DRM_MODE_PANEL_ORIENTATION_LEFT_UP; 1740 break; 1741 } 1742 1743 /* We have mandatory mipi config blocks. Initialize as generic panel */ 1744 panel->vbt.dsi.panel_id = MIPI_DSI_GENERIC_PANEL_ID; 1745 } 1746 1747 /* Find the sequence block and size for the given panel. */ 1748 static const u8 * 1749 find_panel_sequence_block(const struct bdb_mipi_sequence *sequence, 1750 u16 panel_id, u32 *seq_size) 1751 { 1752 u32 total = get_blocksize(sequence); 1753 const u8 *data = &sequence->data[0]; 1754 u8 current_id; 1755 u32 current_size; 1756 int header_size = sequence->version >= 3 ? 5 : 3; 1757 int index = 0; 1758 int i; 1759 1760 /* skip new block size */ 1761 if (sequence->version >= 3) 1762 data += 4; 1763 1764 for (i = 0; i < MAX_MIPI_CONFIGURATIONS && index < total; i++) { 1765 if (index + header_size > total) { 1766 DRM_ERROR("Invalid sequence block (header)\n"); 1767 return NULL; 1768 } 1769 1770 current_id = *(data + index); 1771 if (sequence->version >= 3) 1772 current_size = *((const u32 *)(data + index + 1)); 1773 else 1774 current_size = *((const u16 *)(data + index + 1)); 1775 1776 index += header_size; 1777 1778 if (index + current_size > total) { 1779 DRM_ERROR("Invalid sequence block\n"); 1780 return NULL; 1781 } 1782 1783 if (current_id == panel_id) { 1784 *seq_size = current_size; 1785 return data + index; 1786 } 1787 1788 index += current_size; 1789 } 1790 1791 DRM_ERROR("Sequence block detected but no valid configuration\n"); 1792 1793 return NULL; 1794 } 1795 1796 static int goto_next_sequence(const u8 *data, int index, int total) 1797 { 1798 u16 len; 1799 1800 /* Skip Sequence Byte. */ 1801 for (index = index + 1; index < total; index += len) { 1802 u8 operation_byte = *(data + index); 1803 index++; 1804 1805 switch (operation_byte) { 1806 case MIPI_SEQ_ELEM_END: 1807 return index; 1808 case MIPI_SEQ_ELEM_SEND_PKT: 1809 if (index + 4 > total) 1810 return 0; 1811 1812 len = *((const u16 *)(data + index + 2)) + 4; 1813 break; 1814 case MIPI_SEQ_ELEM_DELAY: 1815 len = 4; 1816 break; 1817 case MIPI_SEQ_ELEM_GPIO: 1818 len = 2; 1819 break; 1820 case MIPI_SEQ_ELEM_I2C: 1821 if (index + 7 > total) 1822 return 0; 1823 len = *(data + index + 6) + 7; 1824 break; 1825 default: 1826 DRM_ERROR("Unknown operation byte\n"); 1827 return 0; 1828 } 1829 } 1830 1831 return 0; 1832 } 1833 1834 static int goto_next_sequence_v3(const u8 *data, int index, int total) 1835 { 1836 int seq_end; 1837 u16 len; 1838 u32 size_of_sequence; 1839 1840 /* 1841 * Could skip sequence based on Size of Sequence alone, but also do some 1842 * checking on the structure. 1843 */ 1844 if (total < 5) { 1845 DRM_ERROR("Too small sequence size\n"); 1846 return 0; 1847 } 1848 1849 /* Skip Sequence Byte. */ 1850 index++; 1851 1852 /* 1853 * Size of Sequence. Excludes the Sequence Byte and the size itself, 1854 * includes MIPI_SEQ_ELEM_END byte, excludes the final MIPI_SEQ_END 1855 * byte. 1856 */ 1857 size_of_sequence = *((const u32 *)(data + index)); 1858 index += 4; 1859 1860 seq_end = index + size_of_sequence; 1861 if (seq_end > total) { 1862 DRM_ERROR("Invalid sequence size\n"); 1863 return 0; 1864 } 1865 1866 for (; index < total; index += len) { 1867 u8 operation_byte = *(data + index); 1868 index++; 1869 1870 if (operation_byte == MIPI_SEQ_ELEM_END) { 1871 if (index != seq_end) { 1872 DRM_ERROR("Invalid element structure\n"); 1873 return 0; 1874 } 1875 return index; 1876 } 1877 1878 len = *(data + index); 1879 index++; 1880 1881 /* 1882 * FIXME: Would be nice to check elements like for v1/v2 in 1883 * goto_next_sequence() above. 1884 */ 1885 switch (operation_byte) { 1886 case MIPI_SEQ_ELEM_SEND_PKT: 1887 case MIPI_SEQ_ELEM_DELAY: 1888 case MIPI_SEQ_ELEM_GPIO: 1889 case MIPI_SEQ_ELEM_I2C: 1890 case MIPI_SEQ_ELEM_SPI: 1891 case MIPI_SEQ_ELEM_PMIC: 1892 break; 1893 default: 1894 DRM_ERROR("Unknown operation byte %u\n", 1895 operation_byte); 1896 break; 1897 } 1898 } 1899 1900 return 0; 1901 } 1902 1903 /* 1904 * Get len of pre-fixed deassert fragment from a v1 init OTP sequence, 1905 * skip all delay + gpio operands and stop at the first DSI packet op. 1906 */ 1907 static int get_init_otp_deassert_fragment_len(struct drm_i915_private *i915, 1908 struct intel_panel *panel) 1909 { 1910 const u8 *data = panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP]; 1911 int index, len; 1912 1913 if (drm_WARN_ON(&i915->drm, 1914 !data || panel->vbt.dsi.seq_version != 1)) 1915 return 0; 1916 1917 /* index = 1 to skip sequence byte */ 1918 for (index = 1; data[index] != MIPI_SEQ_ELEM_END; index += len) { 1919 switch (data[index]) { 1920 case MIPI_SEQ_ELEM_SEND_PKT: 1921 return index == 1 ? 0 : index; 1922 case MIPI_SEQ_ELEM_DELAY: 1923 len = 5; /* 1 byte for operand + uint32 */ 1924 break; 1925 case MIPI_SEQ_ELEM_GPIO: 1926 len = 3; /* 1 byte for op, 1 for gpio_nr, 1 for value */ 1927 break; 1928 default: 1929 return 0; 1930 } 1931 } 1932 1933 return 0; 1934 } 1935 1936 /* 1937 * Some v1 VBT MIPI sequences do the deassert in the init OTP sequence. 1938 * The deassert must be done before calling intel_dsi_device_ready, so for 1939 * these devices we split the init OTP sequence into a deassert sequence and 1940 * the actual init OTP part. 1941 */ 1942 static void fixup_mipi_sequences(struct drm_i915_private *i915, 1943 struct intel_panel *panel) 1944 { 1945 u8 *init_otp; 1946 int len; 1947 1948 /* Limit this to VLV for now. */ 1949 if (!IS_VALLEYVIEW(i915)) 1950 return; 1951 1952 /* Limit this to v1 vid-mode sequences */ 1953 if (panel->vbt.dsi.config->is_cmd_mode || 1954 panel->vbt.dsi.seq_version != 1) 1955 return; 1956 1957 /* Only do this if there are otp and assert seqs and no deassert seq */ 1958 if (!panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] || 1959 !panel->vbt.dsi.sequence[MIPI_SEQ_ASSERT_RESET] || 1960 panel->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET]) 1961 return; 1962 1963 /* The deassert-sequence ends at the first DSI packet */ 1964 len = get_init_otp_deassert_fragment_len(i915, panel); 1965 if (!len) 1966 return; 1967 1968 drm_dbg_kms(&i915->drm, 1969 "Using init OTP fragment to deassert reset\n"); 1970 1971 /* Copy the fragment, update seq byte and terminate it */ 1972 init_otp = (u8 *)panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP]; 1973 panel->vbt.dsi.deassert_seq = kmemdup(init_otp, len + 1, GFP_KERNEL); 1974 if (!panel->vbt.dsi.deassert_seq) 1975 return; 1976 panel->vbt.dsi.deassert_seq[0] = MIPI_SEQ_DEASSERT_RESET; 1977 panel->vbt.dsi.deassert_seq[len] = MIPI_SEQ_ELEM_END; 1978 /* Use the copy for deassert */ 1979 panel->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET] = 1980 panel->vbt.dsi.deassert_seq; 1981 /* Replace the last byte of the fragment with init OTP seq byte */ 1982 init_otp[len - 1] = MIPI_SEQ_INIT_OTP; 1983 /* And make MIPI_MIPI_SEQ_INIT_OTP point to it */ 1984 panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] = init_otp + len - 1; 1985 } 1986 1987 static void 1988 parse_mipi_sequence(struct drm_i915_private *i915, 1989 struct intel_panel *panel) 1990 { 1991 int panel_type = panel->vbt.panel_type; 1992 const struct bdb_mipi_sequence *sequence; 1993 const u8 *seq_data; 1994 u32 seq_size; 1995 u8 *data; 1996 int index = 0; 1997 1998 /* Only our generic panel driver uses the sequence block. */ 1999 if (panel->vbt.dsi.panel_id != MIPI_DSI_GENERIC_PANEL_ID) 2000 return; 2001 2002 sequence = find_section(i915, BDB_MIPI_SEQUENCE); 2003 if (!sequence) { 2004 drm_dbg_kms(&i915->drm, 2005 "No MIPI Sequence found, parsing complete\n"); 2006 return; 2007 } 2008 2009 /* Fail gracefully for forward incompatible sequence block. */ 2010 if (sequence->version >= 4) { 2011 drm_err(&i915->drm, 2012 "Unable to parse MIPI Sequence Block v%u\n", 2013 sequence->version); 2014 return; 2015 } 2016 2017 drm_dbg(&i915->drm, "Found MIPI sequence block v%u\n", 2018 sequence->version); 2019 2020 seq_data = find_panel_sequence_block(sequence, panel_type, &seq_size); 2021 if (!seq_data) 2022 return; 2023 2024 data = kmemdup(seq_data, seq_size, GFP_KERNEL); 2025 if (!data) 2026 return; 2027 2028 /* Parse the sequences, store pointers to each sequence. */ 2029 for (;;) { 2030 u8 seq_id = *(data + index); 2031 if (seq_id == MIPI_SEQ_END) 2032 break; 2033 2034 if (seq_id >= MIPI_SEQ_MAX) { 2035 drm_err(&i915->drm, "Unknown sequence %u\n", 2036 seq_id); 2037 goto err; 2038 } 2039 2040 /* Log about presence of sequences we won't run. */ 2041 if (seq_id == MIPI_SEQ_TEAR_ON || seq_id == MIPI_SEQ_TEAR_OFF) 2042 drm_dbg_kms(&i915->drm, 2043 "Unsupported sequence %u\n", seq_id); 2044 2045 panel->vbt.dsi.sequence[seq_id] = data + index; 2046 2047 if (sequence->version >= 3) 2048 index = goto_next_sequence_v3(data, index, seq_size); 2049 else 2050 index = goto_next_sequence(data, index, seq_size); 2051 if (!index) { 2052 drm_err(&i915->drm, "Invalid sequence %u\n", 2053 seq_id); 2054 goto err; 2055 } 2056 } 2057 2058 panel->vbt.dsi.data = data; 2059 panel->vbt.dsi.size = seq_size; 2060 panel->vbt.dsi.seq_version = sequence->version; 2061 2062 fixup_mipi_sequences(i915, panel); 2063 2064 drm_dbg(&i915->drm, "MIPI related VBT parsing complete\n"); 2065 return; 2066 2067 err: 2068 kfree(data); 2069 memset(panel->vbt.dsi.sequence, 0, sizeof(panel->vbt.dsi.sequence)); 2070 } 2071 2072 static void 2073 parse_compression_parameters(struct drm_i915_private *i915) 2074 { 2075 const struct bdb_compression_parameters *params; 2076 struct intel_bios_encoder_data *devdata; 2077 const struct child_device_config *child; 2078 u16 block_size; 2079 int index; 2080 2081 if (i915->display.vbt.version < 198) 2082 return; 2083 2084 params = find_section(i915, BDB_COMPRESSION_PARAMETERS); 2085 if (params) { 2086 /* Sanity checks */ 2087 if (params->entry_size != sizeof(params->data[0])) { 2088 drm_dbg_kms(&i915->drm, 2089 "VBT: unsupported compression param entry size\n"); 2090 return; 2091 } 2092 2093 block_size = get_blocksize(params); 2094 if (block_size < sizeof(*params)) { 2095 drm_dbg_kms(&i915->drm, 2096 "VBT: expected 16 compression param entries\n"); 2097 return; 2098 } 2099 } 2100 2101 list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) { 2102 child = &devdata->child; 2103 2104 if (!child->compression_enable) 2105 continue; 2106 2107 if (!params) { 2108 drm_dbg_kms(&i915->drm, 2109 "VBT: compression params not available\n"); 2110 continue; 2111 } 2112 2113 if (child->compression_method_cps) { 2114 drm_dbg_kms(&i915->drm, 2115 "VBT: CPS compression not supported\n"); 2116 continue; 2117 } 2118 2119 index = child->compression_structure_index; 2120 2121 devdata->dsc = kmemdup(¶ms->data[index], 2122 sizeof(*devdata->dsc), GFP_KERNEL); 2123 } 2124 } 2125 2126 static u8 translate_iboost(u8 val) 2127 { 2128 static const u8 mapping[] = { 1, 3, 7 }; /* See VBT spec */ 2129 2130 if (val >= ARRAY_SIZE(mapping)) { 2131 DRM_DEBUG_KMS("Unsupported I_boost value found in VBT (%d), display may not work properly\n", val); 2132 return 0; 2133 } 2134 return mapping[val]; 2135 } 2136 2137 static const u8 cnp_ddc_pin_map[] = { 2138 [0] = 0, /* N/A */ 2139 [DDC_BUS_DDI_B] = GMBUS_PIN_1_BXT, 2140 [DDC_BUS_DDI_C] = GMBUS_PIN_2_BXT, 2141 [DDC_BUS_DDI_D] = GMBUS_PIN_4_CNP, /* sic */ 2142 [DDC_BUS_DDI_F] = GMBUS_PIN_3_BXT, /* sic */ 2143 }; 2144 2145 static const u8 icp_ddc_pin_map[] = { 2146 [ICL_DDC_BUS_DDI_A] = GMBUS_PIN_1_BXT, 2147 [ICL_DDC_BUS_DDI_B] = GMBUS_PIN_2_BXT, 2148 [TGL_DDC_BUS_DDI_C] = GMBUS_PIN_3_BXT, 2149 [ICL_DDC_BUS_PORT_1] = GMBUS_PIN_9_TC1_ICP, 2150 [ICL_DDC_BUS_PORT_2] = GMBUS_PIN_10_TC2_ICP, 2151 [ICL_DDC_BUS_PORT_3] = GMBUS_PIN_11_TC3_ICP, 2152 [ICL_DDC_BUS_PORT_4] = GMBUS_PIN_12_TC4_ICP, 2153 [TGL_DDC_BUS_PORT_5] = GMBUS_PIN_13_TC5_TGP, 2154 [TGL_DDC_BUS_PORT_6] = GMBUS_PIN_14_TC6_TGP, 2155 }; 2156 2157 static const u8 rkl_pch_tgp_ddc_pin_map[] = { 2158 [ICL_DDC_BUS_DDI_A] = GMBUS_PIN_1_BXT, 2159 [ICL_DDC_BUS_DDI_B] = GMBUS_PIN_2_BXT, 2160 [RKL_DDC_BUS_DDI_D] = GMBUS_PIN_9_TC1_ICP, 2161 [RKL_DDC_BUS_DDI_E] = GMBUS_PIN_10_TC2_ICP, 2162 }; 2163 2164 static const u8 adls_ddc_pin_map[] = { 2165 [ICL_DDC_BUS_DDI_A] = GMBUS_PIN_1_BXT, 2166 [ADLS_DDC_BUS_PORT_TC1] = GMBUS_PIN_9_TC1_ICP, 2167 [ADLS_DDC_BUS_PORT_TC2] = GMBUS_PIN_10_TC2_ICP, 2168 [ADLS_DDC_BUS_PORT_TC3] = GMBUS_PIN_11_TC3_ICP, 2169 [ADLS_DDC_BUS_PORT_TC4] = GMBUS_PIN_12_TC4_ICP, 2170 }; 2171 2172 static const u8 gen9bc_tgp_ddc_pin_map[] = { 2173 [DDC_BUS_DDI_B] = GMBUS_PIN_2_BXT, 2174 [DDC_BUS_DDI_C] = GMBUS_PIN_9_TC1_ICP, 2175 [DDC_BUS_DDI_D] = GMBUS_PIN_10_TC2_ICP, 2176 }; 2177 2178 static const u8 adlp_ddc_pin_map[] = { 2179 [ICL_DDC_BUS_DDI_A] = GMBUS_PIN_1_BXT, 2180 [ICL_DDC_BUS_DDI_B] = GMBUS_PIN_2_BXT, 2181 [ADLP_DDC_BUS_PORT_TC1] = GMBUS_PIN_9_TC1_ICP, 2182 [ADLP_DDC_BUS_PORT_TC2] = GMBUS_PIN_10_TC2_ICP, 2183 [ADLP_DDC_BUS_PORT_TC3] = GMBUS_PIN_11_TC3_ICP, 2184 [ADLP_DDC_BUS_PORT_TC4] = GMBUS_PIN_12_TC4_ICP, 2185 }; 2186 2187 static u8 map_ddc_pin(struct drm_i915_private *i915, u8 vbt_pin) 2188 { 2189 const u8 *ddc_pin_map; 2190 int n_entries; 2191 2192 if (IS_ALDERLAKE_P(i915)) { 2193 ddc_pin_map = adlp_ddc_pin_map; 2194 n_entries = ARRAY_SIZE(adlp_ddc_pin_map); 2195 } else if (IS_ALDERLAKE_S(i915)) { 2196 ddc_pin_map = adls_ddc_pin_map; 2197 n_entries = ARRAY_SIZE(adls_ddc_pin_map); 2198 } else if (INTEL_PCH_TYPE(i915) >= PCH_DG1) { 2199 return vbt_pin; 2200 } else if (IS_ROCKETLAKE(i915) && INTEL_PCH_TYPE(i915) == PCH_TGP) { 2201 ddc_pin_map = rkl_pch_tgp_ddc_pin_map; 2202 n_entries = ARRAY_SIZE(rkl_pch_tgp_ddc_pin_map); 2203 } else if (HAS_PCH_TGP(i915) && DISPLAY_VER(i915) == 9) { 2204 ddc_pin_map = gen9bc_tgp_ddc_pin_map; 2205 n_entries = ARRAY_SIZE(gen9bc_tgp_ddc_pin_map); 2206 } else if (INTEL_PCH_TYPE(i915) >= PCH_ICP) { 2207 ddc_pin_map = icp_ddc_pin_map; 2208 n_entries = ARRAY_SIZE(icp_ddc_pin_map); 2209 } else if (HAS_PCH_CNP(i915)) { 2210 ddc_pin_map = cnp_ddc_pin_map; 2211 n_entries = ARRAY_SIZE(cnp_ddc_pin_map); 2212 } else { 2213 /* Assuming direct map */ 2214 return vbt_pin; 2215 } 2216 2217 if (vbt_pin < n_entries && ddc_pin_map[vbt_pin] != 0) 2218 return ddc_pin_map[vbt_pin]; 2219 2220 drm_dbg_kms(&i915->drm, 2221 "Ignoring alternate pin: VBT claims DDC pin %d, which is not valid for this platform\n", 2222 vbt_pin); 2223 return 0; 2224 } 2225 2226 static enum port get_port_by_ddc_pin(struct drm_i915_private *i915, u8 ddc_pin) 2227 { 2228 const struct intel_bios_encoder_data *devdata; 2229 enum port port; 2230 2231 if (!ddc_pin) 2232 return PORT_NONE; 2233 2234 for_each_port(port) { 2235 devdata = i915->display.vbt.ports[port]; 2236 2237 if (devdata && ddc_pin == devdata->child.ddc_pin) 2238 return port; 2239 } 2240 2241 return PORT_NONE; 2242 } 2243 2244 static void sanitize_ddc_pin(struct intel_bios_encoder_data *devdata, 2245 enum port port) 2246 { 2247 struct drm_i915_private *i915 = devdata->i915; 2248 struct child_device_config *child; 2249 u8 mapped_ddc_pin; 2250 enum port p; 2251 2252 if (!devdata->child.ddc_pin) 2253 return; 2254 2255 mapped_ddc_pin = map_ddc_pin(i915, devdata->child.ddc_pin); 2256 if (!intel_gmbus_is_valid_pin(i915, mapped_ddc_pin)) { 2257 drm_dbg_kms(&i915->drm, 2258 "Port %c has invalid DDC pin %d, " 2259 "sticking to defaults\n", 2260 port_name(port), mapped_ddc_pin); 2261 devdata->child.ddc_pin = 0; 2262 return; 2263 } 2264 2265 p = get_port_by_ddc_pin(i915, devdata->child.ddc_pin); 2266 if (p == PORT_NONE) 2267 return; 2268 2269 drm_dbg_kms(&i915->drm, 2270 "port %c trying to use the same DDC pin (0x%x) as port %c, " 2271 "disabling port %c DVI/HDMI support\n", 2272 port_name(port), mapped_ddc_pin, 2273 port_name(p), port_name(p)); 2274 2275 /* 2276 * If we have multiple ports supposedly sharing the pin, then dvi/hdmi 2277 * couldn't exist on the shared port. Otherwise they share the same ddc 2278 * pin and system couldn't communicate with them separately. 2279 * 2280 * Give inverse child device order the priority, last one wins. Yes, 2281 * there are real machines (eg. Asrock B250M-HDV) where VBT has both 2282 * port A and port E with the same AUX ch and we must pick port E :( 2283 */ 2284 child = &i915->display.vbt.ports[p]->child; 2285 2286 child->device_type &= ~DEVICE_TYPE_TMDS_DVI_SIGNALING; 2287 child->device_type |= DEVICE_TYPE_NOT_HDMI_OUTPUT; 2288 2289 child->ddc_pin = 0; 2290 } 2291 2292 static enum port get_port_by_aux_ch(struct drm_i915_private *i915, u8 aux_ch) 2293 { 2294 const struct intel_bios_encoder_data *devdata; 2295 enum port port; 2296 2297 if (!aux_ch) 2298 return PORT_NONE; 2299 2300 for_each_port(port) { 2301 devdata = i915->display.vbt.ports[port]; 2302 2303 if (devdata && aux_ch == devdata->child.aux_channel) 2304 return port; 2305 } 2306 2307 return PORT_NONE; 2308 } 2309 2310 static void sanitize_aux_ch(struct intel_bios_encoder_data *devdata, 2311 enum port port) 2312 { 2313 struct drm_i915_private *i915 = devdata->i915; 2314 struct child_device_config *child; 2315 enum port p; 2316 2317 p = get_port_by_aux_ch(i915, devdata->child.aux_channel); 2318 if (p == PORT_NONE) 2319 return; 2320 2321 drm_dbg_kms(&i915->drm, 2322 "port %c trying to use the same AUX CH (0x%x) as port %c, " 2323 "disabling port %c DP support\n", 2324 port_name(port), devdata->child.aux_channel, 2325 port_name(p), port_name(p)); 2326 2327 /* 2328 * If we have multiple ports supposedly sharing the aux channel, then DP 2329 * couldn't exist on the shared port. Otherwise they share the same aux 2330 * channel and system couldn't communicate with them separately. 2331 * 2332 * Give inverse child device order the priority, last one wins. Yes, 2333 * there are real machines (eg. Asrock B250M-HDV) where VBT has both 2334 * port A and port E with the same AUX ch and we must pick port E :( 2335 */ 2336 child = &i915->display.vbt.ports[p]->child; 2337 2338 child->device_type &= ~DEVICE_TYPE_DISPLAYPORT_OUTPUT; 2339 child->aux_channel = 0; 2340 } 2341 2342 static u8 dvo_port_type(u8 dvo_port) 2343 { 2344 switch (dvo_port) { 2345 case DVO_PORT_HDMIA: 2346 case DVO_PORT_HDMIB: 2347 case DVO_PORT_HDMIC: 2348 case DVO_PORT_HDMID: 2349 case DVO_PORT_HDMIE: 2350 case DVO_PORT_HDMIF: 2351 case DVO_PORT_HDMIG: 2352 case DVO_PORT_HDMIH: 2353 case DVO_PORT_HDMII: 2354 return DVO_PORT_HDMIA; 2355 case DVO_PORT_DPA: 2356 case DVO_PORT_DPB: 2357 case DVO_PORT_DPC: 2358 case DVO_PORT_DPD: 2359 case DVO_PORT_DPE: 2360 case DVO_PORT_DPF: 2361 case DVO_PORT_DPG: 2362 case DVO_PORT_DPH: 2363 case DVO_PORT_DPI: 2364 return DVO_PORT_DPA; 2365 case DVO_PORT_MIPIA: 2366 case DVO_PORT_MIPIB: 2367 case DVO_PORT_MIPIC: 2368 case DVO_PORT_MIPID: 2369 return DVO_PORT_MIPIA; 2370 default: 2371 return dvo_port; 2372 } 2373 } 2374 2375 static enum port __dvo_port_to_port(int n_ports, int n_dvo, 2376 const int port_mapping[][3], u8 dvo_port) 2377 { 2378 enum port port; 2379 int i; 2380 2381 for (port = PORT_A; port < n_ports; port++) { 2382 for (i = 0; i < n_dvo; i++) { 2383 if (port_mapping[port][i] == -1) 2384 break; 2385 2386 if (dvo_port == port_mapping[port][i]) 2387 return port; 2388 } 2389 } 2390 2391 return PORT_NONE; 2392 } 2393 2394 static enum port dvo_port_to_port(struct drm_i915_private *i915, 2395 u8 dvo_port) 2396 { 2397 /* 2398 * Each DDI port can have more than one value on the "DVO Port" field, 2399 * so look for all the possible values for each port. 2400 */ 2401 static const int port_mapping[][3] = { 2402 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 }, 2403 [PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 }, 2404 [PORT_C] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 }, 2405 [PORT_D] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 }, 2406 [PORT_E] = { DVO_PORT_HDMIE, DVO_PORT_DPE, DVO_PORT_CRT }, 2407 [PORT_F] = { DVO_PORT_HDMIF, DVO_PORT_DPF, -1 }, 2408 [PORT_G] = { DVO_PORT_HDMIG, DVO_PORT_DPG, -1 }, 2409 [PORT_H] = { DVO_PORT_HDMIH, DVO_PORT_DPH, -1 }, 2410 [PORT_I] = { DVO_PORT_HDMII, DVO_PORT_DPI, -1 }, 2411 }; 2412 /* 2413 * RKL VBT uses PHY based mapping. Combo PHYs A,B,C,D 2414 * map to DDI A,B,TC1,TC2 respectively. 2415 */ 2416 static const int rkl_port_mapping[][3] = { 2417 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 }, 2418 [PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 }, 2419 [PORT_C] = { -1 }, 2420 [PORT_TC1] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 }, 2421 [PORT_TC2] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 }, 2422 }; 2423 /* 2424 * Alderlake S ports used in the driver are PORT_A, PORT_D, PORT_E, 2425 * PORT_F and PORT_G, we need to map that to correct VBT sections. 2426 */ 2427 static const int adls_port_mapping[][3] = { 2428 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 }, 2429 [PORT_B] = { -1 }, 2430 [PORT_C] = { -1 }, 2431 [PORT_TC1] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 }, 2432 [PORT_TC2] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 }, 2433 [PORT_TC3] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 }, 2434 [PORT_TC4] = { DVO_PORT_HDMIE, DVO_PORT_DPE, -1 }, 2435 }; 2436 static const int xelpd_port_mapping[][3] = { 2437 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 }, 2438 [PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 }, 2439 [PORT_C] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 }, 2440 [PORT_D_XELPD] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 }, 2441 [PORT_E_XELPD] = { DVO_PORT_HDMIE, DVO_PORT_DPE, -1 }, 2442 [PORT_TC1] = { DVO_PORT_HDMIF, DVO_PORT_DPF, -1 }, 2443 [PORT_TC2] = { DVO_PORT_HDMIG, DVO_PORT_DPG, -1 }, 2444 [PORT_TC3] = { DVO_PORT_HDMIH, DVO_PORT_DPH, -1 }, 2445 [PORT_TC4] = { DVO_PORT_HDMII, DVO_PORT_DPI, -1 }, 2446 }; 2447 2448 if (DISPLAY_VER(i915) >= 13) 2449 return __dvo_port_to_port(ARRAY_SIZE(xelpd_port_mapping), 2450 ARRAY_SIZE(xelpd_port_mapping[0]), 2451 xelpd_port_mapping, 2452 dvo_port); 2453 else if (IS_ALDERLAKE_S(i915)) 2454 return __dvo_port_to_port(ARRAY_SIZE(adls_port_mapping), 2455 ARRAY_SIZE(adls_port_mapping[0]), 2456 adls_port_mapping, 2457 dvo_port); 2458 else if (IS_DG1(i915) || IS_ROCKETLAKE(i915)) 2459 return __dvo_port_to_port(ARRAY_SIZE(rkl_port_mapping), 2460 ARRAY_SIZE(rkl_port_mapping[0]), 2461 rkl_port_mapping, 2462 dvo_port); 2463 else 2464 return __dvo_port_to_port(ARRAY_SIZE(port_mapping), 2465 ARRAY_SIZE(port_mapping[0]), 2466 port_mapping, 2467 dvo_port); 2468 } 2469 2470 static enum port 2471 dsi_dvo_port_to_port(struct drm_i915_private *i915, u8 dvo_port) 2472 { 2473 switch (dvo_port) { 2474 case DVO_PORT_MIPIA: 2475 return PORT_A; 2476 case DVO_PORT_MIPIC: 2477 if (DISPLAY_VER(i915) >= 11) 2478 return PORT_B; 2479 else 2480 return PORT_C; 2481 default: 2482 return PORT_NONE; 2483 } 2484 } 2485 2486 static int parse_bdb_230_dp_max_link_rate(const int vbt_max_link_rate) 2487 { 2488 switch (vbt_max_link_rate) { 2489 default: 2490 case BDB_230_VBT_DP_MAX_LINK_RATE_DEF: 2491 return 0; 2492 case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR20: 2493 return 2000000; 2494 case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR13P5: 2495 return 1350000; 2496 case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR10: 2497 return 1000000; 2498 case BDB_230_VBT_DP_MAX_LINK_RATE_HBR3: 2499 return 810000; 2500 case BDB_230_VBT_DP_MAX_LINK_RATE_HBR2: 2501 return 540000; 2502 case BDB_230_VBT_DP_MAX_LINK_RATE_HBR: 2503 return 270000; 2504 case BDB_230_VBT_DP_MAX_LINK_RATE_LBR: 2505 return 162000; 2506 } 2507 } 2508 2509 static int parse_bdb_216_dp_max_link_rate(const int vbt_max_link_rate) 2510 { 2511 switch (vbt_max_link_rate) { 2512 default: 2513 case BDB_216_VBT_DP_MAX_LINK_RATE_HBR3: 2514 return 810000; 2515 case BDB_216_VBT_DP_MAX_LINK_RATE_HBR2: 2516 return 540000; 2517 case BDB_216_VBT_DP_MAX_LINK_RATE_HBR: 2518 return 270000; 2519 case BDB_216_VBT_DP_MAX_LINK_RATE_LBR: 2520 return 162000; 2521 } 2522 } 2523 2524 static int _intel_bios_dp_max_link_rate(const struct intel_bios_encoder_data *devdata) 2525 { 2526 if (!devdata || devdata->i915->display.vbt.version < 216) 2527 return 0; 2528 2529 if (devdata->i915->display.vbt.version >= 230) 2530 return parse_bdb_230_dp_max_link_rate(devdata->child.dp_max_link_rate); 2531 else 2532 return parse_bdb_216_dp_max_link_rate(devdata->child.dp_max_link_rate); 2533 } 2534 2535 static int _intel_bios_dp_max_lane_count(const struct intel_bios_encoder_data *devdata) 2536 { 2537 if (!devdata || devdata->i915->display.vbt.version < 244) 2538 return 0; 2539 2540 return devdata->child.dp_max_lane_count + 1; 2541 } 2542 2543 static void sanitize_device_type(struct intel_bios_encoder_data *devdata, 2544 enum port port) 2545 { 2546 struct drm_i915_private *i915 = devdata->i915; 2547 bool is_hdmi; 2548 2549 if (port != PORT_A || DISPLAY_VER(i915) >= 12) 2550 return; 2551 2552 if (!intel_bios_encoder_supports_dvi(devdata)) 2553 return; 2554 2555 is_hdmi = intel_bios_encoder_supports_hdmi(devdata); 2556 2557 drm_dbg_kms(&i915->drm, "VBT claims port A supports DVI%s, ignoring\n", 2558 is_hdmi ? "/HDMI" : ""); 2559 2560 devdata->child.device_type &= ~DEVICE_TYPE_TMDS_DVI_SIGNALING; 2561 devdata->child.device_type |= DEVICE_TYPE_NOT_HDMI_OUTPUT; 2562 } 2563 2564 static bool 2565 intel_bios_encoder_supports_crt(const struct intel_bios_encoder_data *devdata) 2566 { 2567 return devdata->child.device_type & DEVICE_TYPE_ANALOG_OUTPUT; 2568 } 2569 2570 bool 2571 intel_bios_encoder_supports_dvi(const struct intel_bios_encoder_data *devdata) 2572 { 2573 return devdata->child.device_type & DEVICE_TYPE_TMDS_DVI_SIGNALING; 2574 } 2575 2576 bool 2577 intel_bios_encoder_supports_hdmi(const struct intel_bios_encoder_data *devdata) 2578 { 2579 return intel_bios_encoder_supports_dvi(devdata) && 2580 (devdata->child.device_type & DEVICE_TYPE_NOT_HDMI_OUTPUT) == 0; 2581 } 2582 2583 bool 2584 intel_bios_encoder_supports_dp(const struct intel_bios_encoder_data *devdata) 2585 { 2586 return devdata->child.device_type & DEVICE_TYPE_DISPLAYPORT_OUTPUT; 2587 } 2588 2589 static bool 2590 intel_bios_encoder_supports_edp(const struct intel_bios_encoder_data *devdata) 2591 { 2592 return intel_bios_encoder_supports_dp(devdata) && 2593 devdata->child.device_type & DEVICE_TYPE_INTERNAL_CONNECTOR; 2594 } 2595 2596 static bool 2597 intel_bios_encoder_supports_dsi(const struct intel_bios_encoder_data *devdata) 2598 { 2599 return devdata->child.device_type & DEVICE_TYPE_MIPI_OUTPUT; 2600 } 2601 2602 static int _intel_bios_hdmi_level_shift(const struct intel_bios_encoder_data *devdata) 2603 { 2604 if (!devdata || devdata->i915->display.vbt.version < 158) 2605 return -1; 2606 2607 return devdata->child.hdmi_level_shifter_value; 2608 } 2609 2610 static int _intel_bios_max_tmds_clock(const struct intel_bios_encoder_data *devdata) 2611 { 2612 if (!devdata || devdata->i915->display.vbt.version < 204) 2613 return 0; 2614 2615 switch (devdata->child.hdmi_max_data_rate) { 2616 default: 2617 MISSING_CASE(devdata->child.hdmi_max_data_rate); 2618 fallthrough; 2619 case HDMI_MAX_DATA_RATE_PLATFORM: 2620 return 0; 2621 case HDMI_MAX_DATA_RATE_594: 2622 return 594000; 2623 case HDMI_MAX_DATA_RATE_340: 2624 return 340000; 2625 case HDMI_MAX_DATA_RATE_300: 2626 return 300000; 2627 case HDMI_MAX_DATA_RATE_297: 2628 return 297000; 2629 case HDMI_MAX_DATA_RATE_165: 2630 return 165000; 2631 } 2632 } 2633 2634 static bool is_port_valid(struct drm_i915_private *i915, enum port port) 2635 { 2636 /* 2637 * On some ICL SKUs port F is not present, but broken VBTs mark 2638 * the port as present. Only try to initialize port F for the 2639 * SKUs that may actually have it. 2640 */ 2641 if (port == PORT_F && IS_ICELAKE(i915)) 2642 return IS_ICL_WITH_PORT_F(i915); 2643 2644 return true; 2645 } 2646 2647 static void print_ddi_port(const struct intel_bios_encoder_data *devdata, 2648 enum port port) 2649 { 2650 struct drm_i915_private *i915 = devdata->i915; 2651 const struct child_device_config *child = &devdata->child; 2652 bool is_dvi, is_hdmi, is_dp, is_edp, is_dsi, is_crt, supports_typec_usb, supports_tbt; 2653 int dp_boost_level, dp_max_link_rate, hdmi_boost_level, hdmi_level_shift, max_tmds_clock; 2654 2655 is_dvi = intel_bios_encoder_supports_dvi(devdata); 2656 is_dp = intel_bios_encoder_supports_dp(devdata); 2657 is_crt = intel_bios_encoder_supports_crt(devdata); 2658 is_hdmi = intel_bios_encoder_supports_hdmi(devdata); 2659 is_edp = intel_bios_encoder_supports_edp(devdata); 2660 is_dsi = intel_bios_encoder_supports_dsi(devdata); 2661 2662 supports_typec_usb = intel_bios_encoder_supports_typec_usb(devdata); 2663 supports_tbt = intel_bios_encoder_supports_tbt(devdata); 2664 2665 drm_dbg_kms(&i915->drm, 2666 "Port %c VBT info: CRT:%d DVI:%d HDMI:%d DP:%d eDP:%d DSI:%d LSPCON:%d USB-Type-C:%d TBT:%d DSC:%d\n", 2667 port_name(port), is_crt, is_dvi, is_hdmi, is_dp, is_edp, is_dsi, 2668 HAS_LSPCON(i915) && child->lspcon, 2669 supports_typec_usb, supports_tbt, 2670 devdata->dsc != NULL); 2671 2672 hdmi_level_shift = _intel_bios_hdmi_level_shift(devdata); 2673 if (hdmi_level_shift >= 0) { 2674 drm_dbg_kms(&i915->drm, 2675 "Port %c VBT HDMI level shift: %d\n", 2676 port_name(port), hdmi_level_shift); 2677 } 2678 2679 max_tmds_clock = _intel_bios_max_tmds_clock(devdata); 2680 if (max_tmds_clock) 2681 drm_dbg_kms(&i915->drm, 2682 "Port %c VBT HDMI max TMDS clock: %d kHz\n", 2683 port_name(port), max_tmds_clock); 2684 2685 /* I_boost config for SKL and above */ 2686 dp_boost_level = intel_bios_encoder_dp_boost_level(devdata); 2687 if (dp_boost_level) 2688 drm_dbg_kms(&i915->drm, 2689 "Port %c VBT (e)DP boost level: %d\n", 2690 port_name(port), dp_boost_level); 2691 2692 hdmi_boost_level = intel_bios_encoder_hdmi_boost_level(devdata); 2693 if (hdmi_boost_level) 2694 drm_dbg_kms(&i915->drm, 2695 "Port %c VBT HDMI boost level: %d\n", 2696 port_name(port), hdmi_boost_level); 2697 2698 dp_max_link_rate = _intel_bios_dp_max_link_rate(devdata); 2699 if (dp_max_link_rate) 2700 drm_dbg_kms(&i915->drm, 2701 "Port %c VBT DP max link rate: %d\n", 2702 port_name(port), dp_max_link_rate); 2703 } 2704 2705 static void parse_ddi_port(struct intel_bios_encoder_data *devdata) 2706 { 2707 struct drm_i915_private *i915 = devdata->i915; 2708 const struct child_device_config *child = &devdata->child; 2709 enum port port; 2710 2711 port = dvo_port_to_port(i915, child->dvo_port); 2712 if (port == PORT_NONE && DISPLAY_VER(i915) >= 11) 2713 port = dsi_dvo_port_to_port(i915, child->dvo_port); 2714 if (port == PORT_NONE) 2715 return; 2716 2717 if (!is_port_valid(i915, port)) { 2718 drm_dbg_kms(&i915->drm, 2719 "VBT reports port %c as supported, but that can't be true: skipping\n", 2720 port_name(port)); 2721 return; 2722 } 2723 2724 if (i915->display.vbt.ports[port]) { 2725 drm_dbg_kms(&i915->drm, 2726 "More than one child device for port %c in VBT, using the first.\n", 2727 port_name(port)); 2728 return; 2729 } 2730 2731 sanitize_device_type(devdata, port); 2732 2733 if (intel_bios_encoder_supports_dvi(devdata)) 2734 sanitize_ddc_pin(devdata, port); 2735 2736 if (intel_bios_encoder_supports_dp(devdata)) 2737 sanitize_aux_ch(devdata, port); 2738 2739 i915->display.vbt.ports[port] = devdata; 2740 } 2741 2742 static bool has_ddi_port_info(struct drm_i915_private *i915) 2743 { 2744 return DISPLAY_VER(i915) >= 5 || IS_G4X(i915); 2745 } 2746 2747 static void parse_ddi_ports(struct drm_i915_private *i915) 2748 { 2749 struct intel_bios_encoder_data *devdata; 2750 enum port port; 2751 2752 if (!has_ddi_port_info(i915)) 2753 return; 2754 2755 list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) 2756 parse_ddi_port(devdata); 2757 2758 for_each_port(port) { 2759 if (i915->display.vbt.ports[port]) 2760 print_ddi_port(i915->display.vbt.ports[port], port); 2761 } 2762 } 2763 2764 static void 2765 parse_general_definitions(struct drm_i915_private *i915) 2766 { 2767 const struct bdb_general_definitions *defs; 2768 struct intel_bios_encoder_data *devdata; 2769 const struct child_device_config *child; 2770 int i, child_device_num; 2771 u8 expected_size; 2772 u16 block_size; 2773 int bus_pin; 2774 2775 defs = find_section(i915, BDB_GENERAL_DEFINITIONS); 2776 if (!defs) { 2777 drm_dbg_kms(&i915->drm, 2778 "No general definition block is found, no devices defined.\n"); 2779 return; 2780 } 2781 2782 block_size = get_blocksize(defs); 2783 if (block_size < sizeof(*defs)) { 2784 drm_dbg_kms(&i915->drm, 2785 "General definitions block too small (%u)\n", 2786 block_size); 2787 return; 2788 } 2789 2790 bus_pin = defs->crt_ddc_gmbus_pin; 2791 drm_dbg_kms(&i915->drm, "crt_ddc_bus_pin: %d\n", bus_pin); 2792 if (intel_gmbus_is_valid_pin(i915, bus_pin)) 2793 i915->display.vbt.crt_ddc_pin = bus_pin; 2794 2795 if (i915->display.vbt.version < 106) { 2796 expected_size = 22; 2797 } else if (i915->display.vbt.version < 111) { 2798 expected_size = 27; 2799 } else if (i915->display.vbt.version < 195) { 2800 expected_size = LEGACY_CHILD_DEVICE_CONFIG_SIZE; 2801 } else if (i915->display.vbt.version == 195) { 2802 expected_size = 37; 2803 } else if (i915->display.vbt.version <= 215) { 2804 expected_size = 38; 2805 } else if (i915->display.vbt.version <= 237) { 2806 expected_size = 39; 2807 } else { 2808 expected_size = sizeof(*child); 2809 BUILD_BUG_ON(sizeof(*child) < 39); 2810 drm_dbg(&i915->drm, 2811 "Expected child device config size for VBT version %u not known; assuming %u\n", 2812 i915->display.vbt.version, expected_size); 2813 } 2814 2815 /* Flag an error for unexpected size, but continue anyway. */ 2816 if (defs->child_dev_size != expected_size) 2817 drm_err(&i915->drm, 2818 "Unexpected child device config size %u (expected %u for VBT version %u)\n", 2819 defs->child_dev_size, expected_size, i915->display.vbt.version); 2820 2821 /* The legacy sized child device config is the minimum we need. */ 2822 if (defs->child_dev_size < LEGACY_CHILD_DEVICE_CONFIG_SIZE) { 2823 drm_dbg_kms(&i915->drm, 2824 "Child device config size %u is too small.\n", 2825 defs->child_dev_size); 2826 return; 2827 } 2828 2829 /* get the number of child device */ 2830 child_device_num = (block_size - sizeof(*defs)) / defs->child_dev_size; 2831 2832 for (i = 0; i < child_device_num; i++) { 2833 child = child_device_ptr(defs, i); 2834 if (!child->device_type) 2835 continue; 2836 2837 drm_dbg_kms(&i915->drm, 2838 "Found VBT child device with type 0x%x\n", 2839 child->device_type); 2840 2841 devdata = kzalloc(sizeof(*devdata), GFP_KERNEL); 2842 if (!devdata) 2843 break; 2844 2845 devdata->i915 = i915; 2846 2847 /* 2848 * Copy as much as we know (sizeof) and is available 2849 * (child_dev_size) of the child device config. Accessing the 2850 * data must depend on VBT version. 2851 */ 2852 memcpy(&devdata->child, child, 2853 min_t(size_t, defs->child_dev_size, sizeof(*child))); 2854 2855 list_add_tail(&devdata->node, &i915->display.vbt.display_devices); 2856 } 2857 2858 if (list_empty(&i915->display.vbt.display_devices)) 2859 drm_dbg_kms(&i915->drm, 2860 "no child dev is parsed from VBT\n"); 2861 } 2862 2863 /* Common defaults which may be overridden by VBT. */ 2864 static void 2865 init_vbt_defaults(struct drm_i915_private *i915) 2866 { 2867 i915->display.vbt.crt_ddc_pin = GMBUS_PIN_VGADDC; 2868 2869 /* general features */ 2870 i915->display.vbt.int_tv_support = 1; 2871 i915->display.vbt.int_crt_support = 1; 2872 2873 /* driver features */ 2874 i915->display.vbt.int_lvds_support = 1; 2875 2876 /* Default to using SSC */ 2877 i915->display.vbt.lvds_use_ssc = 1; 2878 /* 2879 * Core/SandyBridge/IvyBridge use alternative (120MHz) reference 2880 * clock for LVDS. 2881 */ 2882 i915->display.vbt.lvds_ssc_freq = intel_bios_ssc_frequency(i915, 2883 !HAS_PCH_SPLIT(i915)); 2884 drm_dbg_kms(&i915->drm, "Set default to SSC at %d kHz\n", 2885 i915->display.vbt.lvds_ssc_freq); 2886 } 2887 2888 /* Common defaults which may be overridden by VBT. */ 2889 static void 2890 init_vbt_panel_defaults(struct intel_panel *panel) 2891 { 2892 /* Default to having backlight */ 2893 panel->vbt.backlight.present = true; 2894 2895 /* LFP panel data */ 2896 panel->vbt.lvds_dither = true; 2897 } 2898 2899 /* Defaults to initialize only if there is no VBT. */ 2900 static void 2901 init_vbt_missing_defaults(struct drm_i915_private *i915) 2902 { 2903 enum port port; 2904 int ports = BIT(PORT_A) | BIT(PORT_B) | BIT(PORT_C) | 2905 BIT(PORT_D) | BIT(PORT_E) | BIT(PORT_F); 2906 2907 if (!HAS_DDI(i915) && !IS_CHERRYVIEW(i915)) 2908 return; 2909 2910 for_each_port_masked(port, ports) { 2911 struct intel_bios_encoder_data *devdata; 2912 struct child_device_config *child; 2913 enum phy phy = intel_port_to_phy(i915, port); 2914 2915 /* 2916 * VBT has the TypeC mode (native,TBT/USB) and we don't want 2917 * to detect it. 2918 */ 2919 if (intel_phy_is_tc(i915, phy)) 2920 continue; 2921 2922 /* Create fake child device config */ 2923 devdata = kzalloc(sizeof(*devdata), GFP_KERNEL); 2924 if (!devdata) 2925 break; 2926 2927 devdata->i915 = i915; 2928 child = &devdata->child; 2929 2930 if (port == PORT_F) 2931 child->dvo_port = DVO_PORT_HDMIF; 2932 else if (port == PORT_E) 2933 child->dvo_port = DVO_PORT_HDMIE; 2934 else 2935 child->dvo_port = DVO_PORT_HDMIA + port; 2936 2937 if (port != PORT_A && port != PORT_E) 2938 child->device_type |= DEVICE_TYPE_TMDS_DVI_SIGNALING; 2939 2940 if (port != PORT_E) 2941 child->device_type |= DEVICE_TYPE_DISPLAYPORT_OUTPUT; 2942 2943 if (port == PORT_A) 2944 child->device_type |= DEVICE_TYPE_INTERNAL_CONNECTOR; 2945 2946 list_add_tail(&devdata->node, &i915->display.vbt.display_devices); 2947 2948 drm_dbg_kms(&i915->drm, 2949 "Generating default VBT child device with type 0x04%x on port %c\n", 2950 child->device_type, port_name(port)); 2951 } 2952 2953 /* Bypass some minimum baseline VBT version checks */ 2954 i915->display.vbt.version = 155; 2955 } 2956 2957 static const struct bdb_header *get_bdb_header(const struct vbt_header *vbt) 2958 { 2959 const void *_vbt = vbt; 2960 2961 return _vbt + vbt->bdb_offset; 2962 } 2963 2964 #include <dev/isa/isareg.h> 2965 #include <dev/isa/isavar.h> 2966 2967 #define VGA_BIOS_ADDR 0xc0000 2968 #define VGA_BIOS_LEN 0x10000 2969 2970 /** 2971 * intel_bios_is_valid_vbt - does the given buffer contain a valid VBT 2972 * @buf: pointer to a buffer to validate 2973 * @size: size of the buffer 2974 * 2975 * Returns true on valid VBT. 2976 */ 2977 bool intel_bios_is_valid_vbt(const void *buf, size_t size) 2978 { 2979 const struct vbt_header *vbt = buf; 2980 const struct bdb_header *bdb; 2981 2982 if (!vbt) 2983 return false; 2984 2985 if (sizeof(struct vbt_header) > size) { 2986 DRM_DEBUG_DRIVER("VBT header incomplete\n"); 2987 return false; 2988 } 2989 2990 if (memcmp(vbt->signature, "$VBT", 4)) { 2991 DRM_DEBUG_DRIVER("VBT invalid signature\n"); 2992 return false; 2993 } 2994 2995 if (vbt->vbt_size > size) { 2996 DRM_DEBUG_DRIVER("VBT incomplete (vbt_size overflows)\n"); 2997 return false; 2998 } 2999 3000 size = vbt->vbt_size; 3001 3002 if (range_overflows_t(size_t, 3003 vbt->bdb_offset, 3004 sizeof(struct bdb_header), 3005 size)) { 3006 DRM_DEBUG_DRIVER("BDB header incomplete\n"); 3007 return false; 3008 } 3009 3010 bdb = get_bdb_header(vbt); 3011 if (range_overflows_t(size_t, vbt->bdb_offset, bdb->bdb_size, size)) { 3012 DRM_DEBUG_DRIVER("BDB incomplete\n"); 3013 return false; 3014 } 3015 3016 return vbt; 3017 } 3018 3019 static struct vbt_header *spi_oprom_get_vbt(struct drm_i915_private *i915) 3020 { 3021 u32 count, data, found, store = 0; 3022 u32 static_region, oprom_offset; 3023 u32 oprom_size = 0x200000; 3024 u16 vbt_size; 3025 u32 *vbt; 3026 3027 static_region = intel_uncore_read(&i915->uncore, SPI_STATIC_REGIONS); 3028 static_region &= OPTIONROM_SPI_REGIONID_MASK; 3029 intel_uncore_write(&i915->uncore, PRIMARY_SPI_REGIONID, static_region); 3030 3031 oprom_offset = intel_uncore_read(&i915->uncore, OROM_OFFSET); 3032 oprom_offset &= OROM_OFFSET_MASK; 3033 3034 for (count = 0; count < oprom_size; count += 4) { 3035 intel_uncore_write(&i915->uncore, PRIMARY_SPI_ADDRESS, oprom_offset + count); 3036 data = intel_uncore_read(&i915->uncore, PRIMARY_SPI_TRIGGER); 3037 3038 if (data == *((const u32 *)"$VBT")) { 3039 found = oprom_offset + count; 3040 break; 3041 } 3042 } 3043 3044 if (count >= oprom_size) 3045 goto err_not_found; 3046 3047 /* Get VBT size and allocate space for the VBT */ 3048 intel_uncore_write(&i915->uncore, PRIMARY_SPI_ADDRESS, found + 3049 offsetof(struct vbt_header, vbt_size)); 3050 vbt_size = intel_uncore_read(&i915->uncore, PRIMARY_SPI_TRIGGER); 3051 vbt_size &= 0xffff; 3052 3053 vbt = kzalloc(round_up(vbt_size, 4), GFP_KERNEL); 3054 if (!vbt) 3055 goto err_not_found; 3056 3057 for (count = 0; count < vbt_size; count += 4) { 3058 intel_uncore_write(&i915->uncore, PRIMARY_SPI_ADDRESS, found + count); 3059 data = intel_uncore_read(&i915->uncore, PRIMARY_SPI_TRIGGER); 3060 *(vbt + store++) = data; 3061 } 3062 3063 if (!intel_bios_is_valid_vbt(vbt, vbt_size)) 3064 goto err_free_vbt; 3065 3066 drm_dbg_kms(&i915->drm, "Found valid VBT in SPI flash\n"); 3067 3068 return (struct vbt_header *)vbt; 3069 3070 err_free_vbt: 3071 kfree(vbt); 3072 err_not_found: 3073 return NULL; 3074 } 3075 3076 static struct vbt_header *oprom_get_vbt(struct drm_i915_private *i915) 3077 { 3078 #ifdef __linux__ 3079 struct pci_dev *pdev = to_pci_dev(i915->drm.dev); 3080 #endif 3081 void __iomem *p = NULL, *oprom; 3082 struct vbt_header *vbt; 3083 u16 vbt_size; 3084 size_t i, size; 3085 3086 #ifdef __linux__ 3087 oprom = pci_map_rom(pdev, &size); 3088 if (!oprom) 3089 return NULL; 3090 #else 3091 oprom = (u8 *)ISA_HOLE_VADDR(VGA_BIOS_ADDR); 3092 size = VGA_BIOS_LEN; 3093 #endif 3094 3095 /* Scour memory looking for the VBT signature. */ 3096 for (i = 0; i + 4 < size; i += 4) { 3097 if (ioread32(oprom + i) != *((const u32 *)"$VBT")) 3098 continue; 3099 3100 p = oprom + i; 3101 size -= i; 3102 break; 3103 } 3104 3105 if (!p) 3106 goto err_unmap_oprom; 3107 3108 if (sizeof(struct vbt_header) > size) { 3109 drm_dbg(&i915->drm, "VBT header incomplete\n"); 3110 goto err_unmap_oprom; 3111 } 3112 3113 vbt_size = ioread16(p + offsetof(struct vbt_header, vbt_size)); 3114 if (vbt_size > size) { 3115 drm_dbg(&i915->drm, 3116 "VBT incomplete (vbt_size overflows)\n"); 3117 goto err_unmap_oprom; 3118 } 3119 3120 /* The rest will be validated by intel_bios_is_valid_vbt() */ 3121 vbt = kmalloc(vbt_size, GFP_KERNEL); 3122 if (!vbt) 3123 goto err_unmap_oprom; 3124 3125 memcpy_fromio(vbt, p, vbt_size); 3126 3127 if (!intel_bios_is_valid_vbt(vbt, vbt_size)) 3128 goto err_free_vbt; 3129 3130 #ifdef __linux__ 3131 pci_unmap_rom(pdev, oprom); 3132 #endif 3133 3134 drm_dbg_kms(&i915->drm, "Found valid VBT in PCI ROM\n"); 3135 3136 return vbt; 3137 3138 err_free_vbt: 3139 kfree(vbt); 3140 err_unmap_oprom: 3141 #ifdef __linux__ 3142 pci_unmap_rom(pdev, oprom); 3143 #endif 3144 3145 return NULL; 3146 } 3147 3148 /** 3149 * intel_bios_init - find VBT and initialize settings from the BIOS 3150 * @i915: i915 device instance 3151 * 3152 * Parse and initialize settings from the Video BIOS Tables (VBT). If the VBT 3153 * was not found in ACPI OpRegion, try to find it in PCI ROM first. Also 3154 * initialize some defaults if the VBT is not present at all. 3155 */ 3156 void intel_bios_init(struct drm_i915_private *i915) 3157 { 3158 const struct vbt_header *vbt = i915->display.opregion.vbt; 3159 struct vbt_header *oprom_vbt = NULL; 3160 const struct bdb_header *bdb; 3161 3162 INIT_LIST_HEAD(&i915->display.vbt.display_devices); 3163 INIT_LIST_HEAD(&i915->display.vbt.bdb_blocks); 3164 3165 if (!HAS_DISPLAY(i915)) { 3166 drm_dbg_kms(&i915->drm, 3167 "Skipping VBT init due to disabled display.\n"); 3168 return; 3169 } 3170 3171 init_vbt_defaults(i915); 3172 3173 /* 3174 * If the OpRegion does not have VBT, look in SPI flash through MMIO or 3175 * PCI mapping 3176 */ 3177 if (!vbt && IS_DGFX(i915)) { 3178 oprom_vbt = spi_oprom_get_vbt(i915); 3179 vbt = oprom_vbt; 3180 } 3181 3182 if (!vbt) { 3183 oprom_vbt = oprom_get_vbt(i915); 3184 vbt = oprom_vbt; 3185 } 3186 3187 if (!vbt) 3188 goto out; 3189 3190 bdb = get_bdb_header(vbt); 3191 i915->display.vbt.version = bdb->version; 3192 3193 drm_dbg_kms(&i915->drm, 3194 "VBT signature \"%.*s\", BDB version %d\n", 3195 (int)sizeof(vbt->signature), vbt->signature, i915->display.vbt.version); 3196 3197 init_bdb_blocks(i915, bdb); 3198 3199 /* Grab useful general definitions */ 3200 parse_general_features(i915); 3201 parse_general_definitions(i915); 3202 parse_driver_features(i915); 3203 3204 /* Depends on child device list */ 3205 parse_compression_parameters(i915); 3206 3207 out: 3208 if (!vbt) { 3209 drm_info(&i915->drm, 3210 "Failed to find VBIOS tables (VBT)\n"); 3211 init_vbt_missing_defaults(i915); 3212 } 3213 3214 /* Further processing on pre-parsed or generated child device data */ 3215 parse_sdvo_device_mapping(i915); 3216 parse_ddi_ports(i915); 3217 3218 kfree(oprom_vbt); 3219 } 3220 3221 static void intel_bios_init_panel(struct drm_i915_private *i915, 3222 struct intel_panel *panel, 3223 const struct intel_bios_encoder_data *devdata, 3224 const struct edid *edid, 3225 bool use_fallback) 3226 { 3227 /* already have it? */ 3228 if (panel->vbt.panel_type >= 0) { 3229 drm_WARN_ON(&i915->drm, !use_fallback); 3230 return; 3231 } 3232 3233 panel->vbt.panel_type = get_panel_type(i915, devdata, 3234 edid, use_fallback); 3235 if (panel->vbt.panel_type < 0) { 3236 drm_WARN_ON(&i915->drm, use_fallback); 3237 return; 3238 } 3239 3240 init_vbt_panel_defaults(panel); 3241 3242 parse_panel_options(i915, panel); 3243 parse_generic_dtd(i915, panel); 3244 parse_lfp_data(i915, panel); 3245 parse_lfp_backlight(i915, panel); 3246 parse_sdvo_panel_data(i915, panel); 3247 parse_panel_driver_features(i915, panel); 3248 parse_power_conservation_features(i915, panel); 3249 parse_edp(i915, panel); 3250 parse_psr(i915, panel); 3251 parse_mipi_config(i915, panel); 3252 parse_mipi_sequence(i915, panel); 3253 } 3254 3255 void intel_bios_init_panel_early(struct drm_i915_private *i915, 3256 struct intel_panel *panel, 3257 const struct intel_bios_encoder_data *devdata) 3258 { 3259 intel_bios_init_panel(i915, panel, devdata, NULL, false); 3260 } 3261 3262 void intel_bios_init_panel_late(struct drm_i915_private *i915, 3263 struct intel_panel *panel, 3264 const struct intel_bios_encoder_data *devdata, 3265 const struct edid *edid) 3266 { 3267 intel_bios_init_panel(i915, panel, devdata, edid, true); 3268 } 3269 3270 /** 3271 * intel_bios_driver_remove - Free any resources allocated by intel_bios_init() 3272 * @i915: i915 device instance 3273 */ 3274 void intel_bios_driver_remove(struct drm_i915_private *i915) 3275 { 3276 struct intel_bios_encoder_data *devdata, *nd; 3277 struct bdb_block_entry *entry, *ne; 3278 3279 list_for_each_entry_safe(devdata, nd, &i915->display.vbt.display_devices, node) { 3280 list_del(&devdata->node); 3281 kfree(devdata->dsc); 3282 kfree(devdata); 3283 } 3284 3285 list_for_each_entry_safe(entry, ne, &i915->display.vbt.bdb_blocks, node) { 3286 list_del(&entry->node); 3287 kfree(entry); 3288 } 3289 } 3290 3291 void intel_bios_fini_panel(struct intel_panel *panel) 3292 { 3293 kfree(panel->vbt.sdvo_lvds_vbt_mode); 3294 panel->vbt.sdvo_lvds_vbt_mode = NULL; 3295 kfree(panel->vbt.lfp_lvds_vbt_mode); 3296 panel->vbt.lfp_lvds_vbt_mode = NULL; 3297 kfree(panel->vbt.dsi.data); 3298 panel->vbt.dsi.data = NULL; 3299 kfree(panel->vbt.dsi.pps); 3300 panel->vbt.dsi.pps = NULL; 3301 kfree(panel->vbt.dsi.config); 3302 panel->vbt.dsi.config = NULL; 3303 kfree(panel->vbt.dsi.deassert_seq); 3304 panel->vbt.dsi.deassert_seq = NULL; 3305 } 3306 3307 /** 3308 * intel_bios_is_tv_present - is integrated TV present in VBT 3309 * @i915: i915 device instance 3310 * 3311 * Return true if TV is present. If no child devices were parsed from VBT, 3312 * assume TV is present. 3313 */ 3314 bool intel_bios_is_tv_present(struct drm_i915_private *i915) 3315 { 3316 const struct intel_bios_encoder_data *devdata; 3317 const struct child_device_config *child; 3318 3319 if (!i915->display.vbt.int_tv_support) 3320 return false; 3321 3322 if (list_empty(&i915->display.vbt.display_devices)) 3323 return true; 3324 3325 list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) { 3326 child = &devdata->child; 3327 3328 /* 3329 * If the device type is not TV, continue. 3330 */ 3331 switch (child->device_type) { 3332 case DEVICE_TYPE_INT_TV: 3333 case DEVICE_TYPE_TV: 3334 case DEVICE_TYPE_TV_SVIDEO_COMPOSITE: 3335 break; 3336 default: 3337 continue; 3338 } 3339 /* Only when the addin_offset is non-zero, it is regarded 3340 * as present. 3341 */ 3342 if (child->addin_offset) 3343 return true; 3344 } 3345 3346 return false; 3347 } 3348 3349 /** 3350 * intel_bios_is_lvds_present - is LVDS present in VBT 3351 * @i915: i915 device instance 3352 * @i2c_pin: i2c pin for LVDS if present 3353 * 3354 * Return true if LVDS is present. If no child devices were parsed from VBT, 3355 * assume LVDS is present. 3356 */ 3357 bool intel_bios_is_lvds_present(struct drm_i915_private *i915, u8 *i2c_pin) 3358 { 3359 const struct intel_bios_encoder_data *devdata; 3360 const struct child_device_config *child; 3361 3362 if (list_empty(&i915->display.vbt.display_devices)) 3363 return true; 3364 3365 list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) { 3366 child = &devdata->child; 3367 3368 /* If the device type is not LFP, continue. 3369 * We have to check both the new identifiers as well as the 3370 * old for compatibility with some BIOSes. 3371 */ 3372 if (child->device_type != DEVICE_TYPE_INT_LFP && 3373 child->device_type != DEVICE_TYPE_LFP) 3374 continue; 3375 3376 if (intel_gmbus_is_valid_pin(i915, child->i2c_pin)) 3377 *i2c_pin = child->i2c_pin; 3378 3379 /* However, we cannot trust the BIOS writers to populate 3380 * the VBT correctly. Since LVDS requires additional 3381 * information from AIM blocks, a non-zero addin offset is 3382 * a good indicator that the LVDS is actually present. 3383 */ 3384 if (child->addin_offset) 3385 return true; 3386 3387 /* But even then some BIOS writers perform some black magic 3388 * and instantiate the device without reference to any 3389 * additional data. Trust that if the VBT was written into 3390 * the OpRegion then they have validated the LVDS's existence. 3391 */ 3392 if (i915->display.opregion.vbt) 3393 return true; 3394 } 3395 3396 return false; 3397 } 3398 3399 /** 3400 * intel_bios_is_port_present - is the specified digital port present 3401 * @i915: i915 device instance 3402 * @port: port to check 3403 * 3404 * Return true if the device in %port is present. 3405 */ 3406 bool intel_bios_is_port_present(struct drm_i915_private *i915, enum port port) 3407 { 3408 if (WARN_ON(!has_ddi_port_info(i915))) 3409 return true; 3410 3411 return i915->display.vbt.ports[port]; 3412 } 3413 3414 /** 3415 * intel_bios_is_port_edp - is the device in given port eDP 3416 * @i915: i915 device instance 3417 * @port: port to check 3418 * 3419 * Return true if the device in %port is eDP. 3420 */ 3421 bool intel_bios_is_port_edp(struct drm_i915_private *i915, enum port port) 3422 { 3423 const struct intel_bios_encoder_data *devdata = 3424 intel_bios_encoder_data_lookup(i915, port); 3425 3426 /* 3427 * XXX on T14 Gen 3 resume 3428 * [drm] AUX A/DDI A/PHY A: timeout (status 0x7d4003ff) 3429 * [drm] AUX A/DDI A/PHY A: Too many retries, giving up. First error: -60 3430 * intel_edp_init_source_oui *ERROR* [drm] *ERROR* Failed to write source OUI 3431 * intel_dp_link_training_clock_recovery *ERROR* [drm] *ERROR* failed to enable link training 3432 * https://gitlab.freedesktop.org/drm/intel/-/issues/5531 3433 */ 3434 if (IS_ALDERLAKE_P(i915) && port == PORT_B) 3435 return false; 3436 3437 return devdata && intel_bios_encoder_supports_edp(devdata); 3438 } 3439 3440 static bool intel_bios_encoder_supports_dp_dual_mode(const struct intel_bios_encoder_data *devdata) 3441 { 3442 const struct child_device_config *child = &devdata->child; 3443 3444 if (!intel_bios_encoder_supports_dp(devdata) || 3445 !intel_bios_encoder_supports_hdmi(devdata)) 3446 return false; 3447 3448 if (dvo_port_type(child->dvo_port) == DVO_PORT_DPA) 3449 return true; 3450 3451 /* Only accept a HDMI dvo_port as DP++ if it has an AUX channel */ 3452 if (dvo_port_type(child->dvo_port) == DVO_PORT_HDMIA && 3453 child->aux_channel != 0) 3454 return true; 3455 3456 return false; 3457 } 3458 3459 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *i915, 3460 enum port port) 3461 { 3462 const struct intel_bios_encoder_data *devdata = 3463 intel_bios_encoder_data_lookup(i915, port); 3464 3465 return devdata && intel_bios_encoder_supports_dp_dual_mode(devdata); 3466 } 3467 3468 /** 3469 * intel_bios_is_dsi_present - is DSI present in VBT 3470 * @i915: i915 device instance 3471 * @port: port for DSI if present 3472 * 3473 * Return true if DSI is present, and return the port in %port. 3474 */ 3475 bool intel_bios_is_dsi_present(struct drm_i915_private *i915, 3476 enum port *port) 3477 { 3478 const struct intel_bios_encoder_data *devdata; 3479 const struct child_device_config *child; 3480 u8 dvo_port; 3481 3482 list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) { 3483 child = &devdata->child; 3484 3485 if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT)) 3486 continue; 3487 3488 dvo_port = child->dvo_port; 3489 3490 if (dsi_dvo_port_to_port(i915, dvo_port) == PORT_NONE) { 3491 drm_dbg_kms(&i915->drm, 3492 "VBT has unsupported DSI port %c\n", 3493 port_name(dvo_port - DVO_PORT_MIPIA)); 3494 continue; 3495 } 3496 3497 if (port) 3498 *port = dsi_dvo_port_to_port(i915, dvo_port); 3499 return true; 3500 } 3501 3502 return false; 3503 } 3504 3505 static void fill_dsc(struct intel_crtc_state *crtc_state, 3506 struct dsc_compression_parameters_entry *dsc, 3507 int dsc_max_bpc) 3508 { 3509 struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config; 3510 int bpc = 8; 3511 3512 vdsc_cfg->dsc_version_major = dsc->version_major; 3513 vdsc_cfg->dsc_version_minor = dsc->version_minor; 3514 3515 if (dsc->support_12bpc && dsc_max_bpc >= 12) 3516 bpc = 12; 3517 else if (dsc->support_10bpc && dsc_max_bpc >= 10) 3518 bpc = 10; 3519 else if (dsc->support_8bpc && dsc_max_bpc >= 8) 3520 bpc = 8; 3521 else 3522 DRM_DEBUG_KMS("VBT: Unsupported BPC %d for DCS\n", 3523 dsc_max_bpc); 3524 3525 crtc_state->pipe_bpp = bpc * 3; 3526 3527 crtc_state->dsc.compressed_bpp = min(crtc_state->pipe_bpp, 3528 VBT_DSC_MAX_BPP(dsc->max_bpp)); 3529 3530 /* 3531 * FIXME: This is ugly, and slice count should take DSC engine 3532 * throughput etc. into account. 3533 * 3534 * Also, per spec DSI supports 1, 2, 3 or 4 horizontal slices. 3535 */ 3536 if (dsc->slices_per_line & BIT(2)) { 3537 crtc_state->dsc.slice_count = 4; 3538 } else if (dsc->slices_per_line & BIT(1)) { 3539 crtc_state->dsc.slice_count = 2; 3540 } else { 3541 /* FIXME */ 3542 if (!(dsc->slices_per_line & BIT(0))) 3543 DRM_DEBUG_KMS("VBT: Unsupported DSC slice count for DSI\n"); 3544 3545 crtc_state->dsc.slice_count = 1; 3546 } 3547 3548 if (crtc_state->hw.adjusted_mode.crtc_hdisplay % 3549 crtc_state->dsc.slice_count != 0) 3550 DRM_DEBUG_KMS("VBT: DSC hdisplay %d not divisible by slice count %d\n", 3551 crtc_state->hw.adjusted_mode.crtc_hdisplay, 3552 crtc_state->dsc.slice_count); 3553 3554 /* 3555 * The VBT rc_buffer_block_size and rc_buffer_size definitions 3556 * correspond to DP 1.4 DPCD offsets 0x62 and 0x63. 3557 */ 3558 vdsc_cfg->rc_model_size = drm_dsc_dp_rc_buffer_size(dsc->rc_buffer_block_size, 3559 dsc->rc_buffer_size); 3560 3561 /* FIXME: DSI spec says bpc + 1 for this one */ 3562 vdsc_cfg->line_buf_depth = VBT_DSC_LINE_BUFFER_DEPTH(dsc->line_buffer_depth); 3563 3564 vdsc_cfg->block_pred_enable = dsc->block_prediction_enable; 3565 3566 vdsc_cfg->slice_height = dsc->slice_height; 3567 } 3568 3569 /* FIXME: initially DSI specific */ 3570 bool intel_bios_get_dsc_params(struct intel_encoder *encoder, 3571 struct intel_crtc_state *crtc_state, 3572 int dsc_max_bpc) 3573 { 3574 struct drm_i915_private *i915 = to_i915(encoder->base.dev); 3575 const struct intel_bios_encoder_data *devdata; 3576 const struct child_device_config *child; 3577 3578 list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) { 3579 child = &devdata->child; 3580 3581 if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT)) 3582 continue; 3583 3584 if (dsi_dvo_port_to_port(i915, child->dvo_port) == encoder->port) { 3585 if (!devdata->dsc) 3586 return false; 3587 3588 if (crtc_state) 3589 fill_dsc(crtc_state, devdata->dsc, dsc_max_bpc); 3590 3591 return true; 3592 } 3593 } 3594 3595 return false; 3596 } 3597 3598 /** 3599 * intel_bios_is_port_hpd_inverted - is HPD inverted for %port 3600 * @i915: i915 device instance 3601 * @port: port to check 3602 * 3603 * Return true if HPD should be inverted for %port. 3604 */ 3605 bool 3606 intel_bios_is_port_hpd_inverted(const struct drm_i915_private *i915, 3607 enum port port) 3608 { 3609 const struct intel_bios_encoder_data *devdata = i915->display.vbt.ports[port]; 3610 3611 if (drm_WARN_ON_ONCE(&i915->drm, 3612 !IS_GEMINILAKE(i915) && !IS_BROXTON(i915))) 3613 return false; 3614 3615 return devdata && devdata->child.hpd_invert; 3616 } 3617 3618 /** 3619 * intel_bios_is_lspcon_present - if LSPCON is attached on %port 3620 * @i915: i915 device instance 3621 * @port: port to check 3622 * 3623 * Return true if LSPCON is present on this port 3624 */ 3625 bool 3626 intel_bios_is_lspcon_present(const struct drm_i915_private *i915, 3627 enum port port) 3628 { 3629 const struct intel_bios_encoder_data *devdata = i915->display.vbt.ports[port]; 3630 3631 return HAS_LSPCON(i915) && devdata && devdata->child.lspcon; 3632 } 3633 3634 /** 3635 * intel_bios_is_lane_reversal_needed - if lane reversal needed on port 3636 * @i915: i915 device instance 3637 * @port: port to check 3638 * 3639 * Return true if port requires lane reversal 3640 */ 3641 bool 3642 intel_bios_is_lane_reversal_needed(const struct drm_i915_private *i915, 3643 enum port port) 3644 { 3645 const struct intel_bios_encoder_data *devdata = i915->display.vbt.ports[port]; 3646 3647 return devdata && devdata->child.lane_reversal; 3648 } 3649 3650 enum aux_ch intel_bios_port_aux_ch(struct drm_i915_private *i915, 3651 enum port port) 3652 { 3653 const struct intel_bios_encoder_data *devdata = i915->display.vbt.ports[port]; 3654 enum aux_ch aux_ch; 3655 3656 if (!devdata || !devdata->child.aux_channel) { 3657 aux_ch = (enum aux_ch)port; 3658 3659 drm_dbg_kms(&i915->drm, 3660 "using AUX %c for port %c (platform default)\n", 3661 aux_ch_name(aux_ch), port_name(port)); 3662 return aux_ch; 3663 } 3664 3665 /* 3666 * RKL/DG1 VBT uses PHY based mapping. Combo PHYs A,B,C,D 3667 * map to DDI A,B,TC1,TC2 respectively. 3668 * 3669 * ADL-S VBT uses PHY based mapping. Combo PHYs A,B,C,D,E 3670 * map to DDI A,TC1,TC2,TC3,TC4 respectively. 3671 */ 3672 switch (devdata->child.aux_channel) { 3673 case DP_AUX_A: 3674 aux_ch = AUX_CH_A; 3675 break; 3676 case DP_AUX_B: 3677 if (IS_ALDERLAKE_S(i915)) 3678 aux_ch = AUX_CH_USBC1; 3679 else 3680 aux_ch = AUX_CH_B; 3681 break; 3682 case DP_AUX_C: 3683 if (IS_ALDERLAKE_S(i915)) 3684 aux_ch = AUX_CH_USBC2; 3685 else if (IS_DG1(i915) || IS_ROCKETLAKE(i915)) 3686 aux_ch = AUX_CH_USBC1; 3687 else 3688 aux_ch = AUX_CH_C; 3689 break; 3690 case DP_AUX_D: 3691 if (DISPLAY_VER(i915) >= 13) 3692 aux_ch = AUX_CH_D_XELPD; 3693 else if (IS_ALDERLAKE_S(i915)) 3694 aux_ch = AUX_CH_USBC3; 3695 else if (IS_DG1(i915) || IS_ROCKETLAKE(i915)) 3696 aux_ch = AUX_CH_USBC2; 3697 else 3698 aux_ch = AUX_CH_D; 3699 break; 3700 case DP_AUX_E: 3701 if (DISPLAY_VER(i915) >= 13) 3702 aux_ch = AUX_CH_E_XELPD; 3703 else if (IS_ALDERLAKE_S(i915)) 3704 aux_ch = AUX_CH_USBC4; 3705 else 3706 aux_ch = AUX_CH_E; 3707 break; 3708 case DP_AUX_F: 3709 if (DISPLAY_VER(i915) >= 13) 3710 aux_ch = AUX_CH_USBC1; 3711 else 3712 aux_ch = AUX_CH_F; 3713 break; 3714 case DP_AUX_G: 3715 if (DISPLAY_VER(i915) >= 13) 3716 aux_ch = AUX_CH_USBC2; 3717 else 3718 aux_ch = AUX_CH_G; 3719 break; 3720 case DP_AUX_H: 3721 if (DISPLAY_VER(i915) >= 13) 3722 aux_ch = AUX_CH_USBC3; 3723 else 3724 aux_ch = AUX_CH_H; 3725 break; 3726 case DP_AUX_I: 3727 if (DISPLAY_VER(i915) >= 13) 3728 aux_ch = AUX_CH_USBC4; 3729 else 3730 aux_ch = AUX_CH_I; 3731 break; 3732 default: 3733 MISSING_CASE(devdata->child.aux_channel); 3734 aux_ch = AUX_CH_A; 3735 break; 3736 } 3737 3738 drm_dbg_kms(&i915->drm, "using AUX %c for port %c (VBT)\n", 3739 aux_ch_name(aux_ch), port_name(port)); 3740 3741 return aux_ch; 3742 } 3743 3744 int intel_bios_max_tmds_clock(struct intel_encoder *encoder) 3745 { 3746 struct drm_i915_private *i915 = to_i915(encoder->base.dev); 3747 const struct intel_bios_encoder_data *devdata = i915->display.vbt.ports[encoder->port]; 3748 3749 return _intel_bios_max_tmds_clock(devdata); 3750 } 3751 3752 /* This is an index in the HDMI/DVI DDI buffer translation table, or -1 */ 3753 int intel_bios_hdmi_level_shift(struct intel_encoder *encoder) 3754 { 3755 struct drm_i915_private *i915 = to_i915(encoder->base.dev); 3756 const struct intel_bios_encoder_data *devdata = i915->display.vbt.ports[encoder->port]; 3757 3758 return _intel_bios_hdmi_level_shift(devdata); 3759 } 3760 3761 int intel_bios_encoder_dp_boost_level(const struct intel_bios_encoder_data *devdata) 3762 { 3763 if (!devdata || devdata->i915->display.vbt.version < 196 || !devdata->child.iboost) 3764 return 0; 3765 3766 return translate_iboost(devdata->child.dp_iboost_level); 3767 } 3768 3769 int intel_bios_encoder_hdmi_boost_level(const struct intel_bios_encoder_data *devdata) 3770 { 3771 if (!devdata || devdata->i915->display.vbt.version < 196 || !devdata->child.iboost) 3772 return 0; 3773 3774 return translate_iboost(devdata->child.hdmi_iboost_level); 3775 } 3776 3777 int intel_bios_dp_max_link_rate(struct intel_encoder *encoder) 3778 { 3779 struct drm_i915_private *i915 = to_i915(encoder->base.dev); 3780 const struct intel_bios_encoder_data *devdata = i915->display.vbt.ports[encoder->port]; 3781 3782 return _intel_bios_dp_max_link_rate(devdata); 3783 } 3784 3785 int intel_bios_dp_max_lane_count(struct intel_encoder *encoder) 3786 { 3787 struct drm_i915_private *i915 = to_i915(encoder->base.dev); 3788 const struct intel_bios_encoder_data *devdata = i915->display.vbt.ports[encoder->port]; 3789 3790 return _intel_bios_dp_max_lane_count(devdata); 3791 } 3792 3793 int intel_bios_alternate_ddc_pin(struct intel_encoder *encoder) 3794 { 3795 struct drm_i915_private *i915 = to_i915(encoder->base.dev); 3796 const struct intel_bios_encoder_data *devdata = i915->display.vbt.ports[encoder->port]; 3797 3798 if (!devdata || !devdata->child.ddc_pin) 3799 return 0; 3800 3801 return map_ddc_pin(i915, devdata->child.ddc_pin); 3802 } 3803 3804 bool intel_bios_encoder_supports_typec_usb(const struct intel_bios_encoder_data *devdata) 3805 { 3806 return devdata->i915->display.vbt.version >= 195 && devdata->child.dp_usb_type_c; 3807 } 3808 3809 bool intel_bios_encoder_supports_tbt(const struct intel_bios_encoder_data *devdata) 3810 { 3811 return devdata->i915->display.vbt.version >= 209 && devdata->child.tbt; 3812 } 3813 3814 const struct intel_bios_encoder_data * 3815 intel_bios_encoder_data_lookup(struct drm_i915_private *i915, enum port port) 3816 { 3817 return i915->display.vbt.ports[port]; 3818 } 3819