xref: /openbsd-src/sys/dev/pci/drm/drm_vblank.c (revision 4b70baf6e17fc8b27fc1f7fa7929335753fa94c3)
1 /*
2  * drm_irq.c IRQ and vblank support
3  *
4  * \author Rickard E. (Rik) Faith <faith@valinux.com>
5  * \author Gareth Hughes <gareth@valinux.com>
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the "Software"),
9  * to deal in the Software without restriction, including without limitation
10  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11  * and/or sell copies of the Software, and to permit persons to whom the
12  * Software is furnished to do so, subject to the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the next
15  * paragraph) shall be included in all copies or substantial portions of the
16  * Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
21  * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
22  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
23  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
24  * OTHER DEALINGS IN THE SOFTWARE.
25  */
26 
27 #include <drm/drm_vblank.h>
28 #include <drm/drmP.h>
29 #include <linux/export.h>
30 
31 #include "drm_trace.h"
32 #include "drm_internal.h"
33 
34 /**
35  * DOC: vblank handling
36  *
37  * Vertical blanking plays a major role in graphics rendering. To achieve
38  * tear-free display, users must synchronize page flips and/or rendering to
39  * vertical blanking. The DRM API offers ioctls to perform page flips
40  * synchronized to vertical blanking and wait for vertical blanking.
41  *
42  * The DRM core handles most of the vertical blanking management logic, which
43  * involves filtering out spurious interrupts, keeping race-free blanking
44  * counters, coping with counter wrap-around and resets and keeping use counts.
45  * It relies on the driver to generate vertical blanking interrupts and
46  * optionally provide a hardware vertical blanking counter.
47  *
48  * Drivers must initialize the vertical blanking handling core with a call to
49  * drm_vblank_init(). Minimally, a driver needs to implement
50  * &drm_crtc_funcs.enable_vblank and &drm_crtc_funcs.disable_vblank plus call
51  * drm_crtc_handle_vblank() in it's vblank interrupt handler for working vblank
52  * support.
53  *
54  * Vertical blanking interrupts can be enabled by the DRM core or by drivers
55  * themselves (for instance to handle page flipping operations).  The DRM core
56  * maintains a vertical blanking use count to ensure that the interrupts are not
57  * disabled while a user still needs them. To increment the use count, drivers
58  * call drm_crtc_vblank_get() and release the vblank reference again with
59  * drm_crtc_vblank_put(). In between these two calls vblank interrupts are
60  * guaranteed to be enabled.
61  *
62  * On many hardware disabling the vblank interrupt cannot be done in a race-free
63  * manner, see &drm_driver.vblank_disable_immediate and
64  * &drm_driver.max_vblank_count. In that case the vblank core only disables the
65  * vblanks after a timer has expired, which can be configured through the
66  * ``vblankoffdelay`` module parameter.
67  */
68 
69 /* Retry timestamp calculation up to 3 times to satisfy
70  * drm_timestamp_precision before giving up.
71  */
72 #define DRM_TIMESTAMP_MAXRETRIES 3
73 
74 /* Threshold in nanoseconds for detection of redundant
75  * vblank irq in drm_handle_vblank(). 1 msec should be ok.
76  */
77 #define DRM_REDUNDANT_VBLIRQ_THRESH_NS 1000000
78 
79 static bool
80 drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe,
81 			  ktime_t *tvblank, bool in_vblank_irq);
82 
83 static unsigned int drm_timestamp_precision = 20;  /* Default to 20 usecs. */
84 
85 static int drm_vblank_offdelay = 5000;    /* Default to 5000 msecs. */
86 
87 module_param_named(vblankoffdelay, drm_vblank_offdelay, int, 0600);
88 module_param_named(timestamp_precision_usec, drm_timestamp_precision, int, 0600);
89 MODULE_PARM_DESC(vblankoffdelay, "Delay until vblank irq auto-disable [msecs] (0: never disable, <0: disable immediately)");
90 MODULE_PARM_DESC(timestamp_precision_usec, "Max. error on timestamps [usecs]");
91 
92 static void store_vblank(struct drm_device *dev, unsigned int pipe,
93 			 u32 vblank_count_inc,
94 			 ktime_t t_vblank, u32 last)
95 {
96 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
97 
98 	assert_spin_locked(&dev->vblank_time_lock);
99 
100 	vblank->last = last;
101 
102 	write_seqlock(&vblank->seqlock);
103 	vblank->time = t_vblank;
104 	vblank->count += vblank_count_inc;
105 	write_sequnlock(&vblank->seqlock);
106 }
107 
108 /*
109  * "No hw counter" fallback implementation of .get_vblank_counter() hook,
110  * if there is no useable hardware frame counter available.
111  */
112 static u32 drm_vblank_no_hw_counter(struct drm_device *dev, unsigned int pipe)
113 {
114 	WARN_ON_ONCE(dev->max_vblank_count != 0);
115 	return 0;
116 }
117 
118 static u32 __get_vblank_counter(struct drm_device *dev, unsigned int pipe)
119 {
120 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
121 		struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
122 
123 		if (WARN_ON(!crtc))
124 			return 0;
125 
126 		if (crtc->funcs->get_vblank_counter)
127 			return crtc->funcs->get_vblank_counter(crtc);
128 	}
129 
130 	if (dev->driver->get_vblank_counter)
131 		return dev->driver->get_vblank_counter(dev, pipe);
132 
133 	return drm_vblank_no_hw_counter(dev, pipe);
134 }
135 
136 /*
137  * Reset the stored timestamp for the current vblank count to correspond
138  * to the last vblank occurred.
139  *
140  * Only to be called from drm_crtc_vblank_on().
141  *
142  * Note: caller must hold &drm_device.vbl_lock since this reads & writes
143  * device vblank fields.
144  */
145 static void drm_reset_vblank_timestamp(struct drm_device *dev, unsigned int pipe)
146 {
147 	u32 cur_vblank;
148 	bool rc;
149 	ktime_t t_vblank;
150 	int count = DRM_TIMESTAMP_MAXRETRIES;
151 
152 	spin_lock(&dev->vblank_time_lock);
153 
154 	/*
155 	 * sample the current counter to avoid random jumps
156 	 * when drm_vblank_enable() applies the diff
157 	 */
158 	do {
159 		cur_vblank = __get_vblank_counter(dev, pipe);
160 		rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, false);
161 	} while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0);
162 
163 	/*
164 	 * Only reinitialize corresponding vblank timestamp if high-precision query
165 	 * available and didn't fail. Otherwise reinitialize delayed at next vblank
166 	 * interrupt and assign 0 for now, to mark the vblanktimestamp as invalid.
167 	 */
168 	if (!rc)
169 		t_vblank = (struct timeval) {0, 0};
170 
171 	/*
172 	 * +1 to make sure user will never see the same
173 	 * vblank counter value before and after a modeset
174 	 */
175 	store_vblank(dev, pipe, 1, t_vblank, cur_vblank);
176 
177 	spin_unlock(&dev->vblank_time_lock);
178 }
179 
180 /*
181  * Call back into the driver to update the appropriate vblank counter
182  * (specified by @pipe).  Deal with wraparound, if it occurred, and
183  * update the last read value so we can deal with wraparound on the next
184  * call if necessary.
185  *
186  * Only necessary when going from off->on, to account for frames we
187  * didn't get an interrupt for.
188  *
189  * Note: caller must hold &drm_device.vbl_lock since this reads & writes
190  * device vblank fields.
191  */
192 static void drm_update_vblank_count(struct drm_device *dev, unsigned int pipe,
193 				    bool in_vblank_irq)
194 {
195 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
196 	u32 cur_vblank, diff;
197 	bool rc;
198 	ktime_t t_vblank;
199 	int count = DRM_TIMESTAMP_MAXRETRIES;
200 	int framedur_ns = vblank->framedur_ns;
201 
202 	/*
203 	 * Interrupts were disabled prior to this call, so deal with counter
204 	 * wrap if needed.
205 	 * NOTE!  It's possible we lost a full dev->max_vblank_count + 1 events
206 	 * here if the register is small or we had vblank interrupts off for
207 	 * a long time.
208 	 *
209 	 * We repeat the hardware vblank counter & timestamp query until
210 	 * we get consistent results. This to prevent races between gpu
211 	 * updating its hardware counter while we are retrieving the
212 	 * corresponding vblank timestamp.
213 	 */
214 	do {
215 		cur_vblank = __get_vblank_counter(dev, pipe);
216 		rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, in_vblank_irq);
217 	} while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0);
218 
219 	if (dev->max_vblank_count != 0) {
220 		/* trust the hw counter when it's around */
221 		diff = (cur_vblank - vblank->last) & dev->max_vblank_count;
222 	} else if (rc && framedur_ns) {
223 		u64 diff_ns = ktime_to_ns(ktime_sub(t_vblank, vblank->time));
224 
225 		/*
226 		 * Figure out how many vblanks we've missed based
227 		 * on the difference in the timestamps and the
228 		 * frame/field duration.
229 		 */
230 		diff = DIV_ROUND_CLOSEST_ULL(diff_ns, framedur_ns);
231 
232 		if (diff == 0 && in_vblank_irq)
233 			DRM_DEBUG_VBL("crtc %u: Redundant vblirq ignored."
234 				      " diff_ns = %lld, framedur_ns = %d)\n",
235 				      pipe, (long long) diff_ns, framedur_ns);
236 	} else {
237 		/* some kind of default for drivers w/o accurate vbl timestamping */
238 		diff = in_vblank_irq ? 1 : 0;
239 	}
240 
241 	/*
242 	 * Within a drm_vblank_pre_modeset - drm_vblank_post_modeset
243 	 * interval? If so then vblank irqs keep running and it will likely
244 	 * happen that the hardware vblank counter is not trustworthy as it
245 	 * might reset at some point in that interval and vblank timestamps
246 	 * are not trustworthy either in that interval. Iow. this can result
247 	 * in a bogus diff >> 1 which must be avoided as it would cause
248 	 * random large forward jumps of the software vblank counter.
249 	 */
250 	if (diff > 1 && (vblank->inmodeset & 0x2)) {
251 		DRM_DEBUG_VBL("clamping vblank bump to 1 on crtc %u: diffr=%u"
252 			      " due to pre-modeset.\n", pipe, diff);
253 		diff = 1;
254 	}
255 
256 	DRM_DEBUG_VBL("updating vblank count on crtc %u:"
257 		      " current=%llu, diff=%u, hw=%u hw_last=%u\n",
258 		      pipe, vblank->count, diff, cur_vblank, vblank->last);
259 
260 	if (diff == 0) {
261 		WARN_ON_ONCE(cur_vblank != vblank->last);
262 		return;
263 	}
264 
265 	/*
266 	 * Only reinitialize corresponding vblank timestamp if high-precision query
267 	 * available and didn't fail, or we were called from the vblank interrupt.
268 	 * Otherwise reinitialize delayed at next vblank interrupt and assign 0
269 	 * for now, to mark the vblanktimestamp as invalid.
270 	 */
271 	if (!rc && !in_vblank_irq)
272 		t_vblank = (struct timeval) {0, 0};
273 
274 	store_vblank(dev, pipe, diff, t_vblank, cur_vblank);
275 }
276 
277 static u64 drm_vblank_count(struct drm_device *dev, unsigned int pipe)
278 {
279 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
280 
281 	if (WARN_ON(pipe >= dev->num_crtcs))
282 		return 0;
283 
284 	return vblank->count;
285 }
286 
287 /**
288  * drm_crtc_accurate_vblank_count - retrieve the master vblank counter
289  * @crtc: which counter to retrieve
290  *
291  * This function is similar to drm_crtc_vblank_count() but this function
292  * interpolates to handle a race with vblank interrupts using the high precision
293  * timestamping support.
294  *
295  * This is mostly useful for hardware that can obtain the scanout position, but
296  * doesn't have a hardware frame counter.
297  */
298 u64 drm_crtc_accurate_vblank_count(struct drm_crtc *crtc)
299 {
300 	struct drm_device *dev = crtc->dev;
301 	unsigned int pipe = drm_crtc_index(crtc);
302 	u64 vblank;
303 	unsigned long flags;
304 
305 	WARN_ONCE(drm_debug & DRM_UT_VBL && !dev->driver->get_vblank_timestamp,
306 		  "This function requires support for accurate vblank timestamps.");
307 
308 	spin_lock_irqsave(&dev->vblank_time_lock, flags);
309 
310 	drm_update_vblank_count(dev, pipe, false);
311 	vblank = drm_vblank_count(dev, pipe);
312 
313 	spin_unlock_irqrestore(&dev->vblank_time_lock, flags);
314 
315 	return vblank;
316 }
317 EXPORT_SYMBOL(drm_crtc_accurate_vblank_count);
318 
319 static void __disable_vblank(struct drm_device *dev, unsigned int pipe)
320 {
321 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
322 		struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
323 
324 		if (WARN_ON(!crtc))
325 			return;
326 
327 		if (crtc->funcs->disable_vblank) {
328 			crtc->funcs->disable_vblank(crtc);
329 			return;
330 		}
331 	}
332 
333 	dev->driver->disable_vblank(dev, pipe);
334 }
335 
336 /*
337  * Disable vblank irq's on crtc, make sure that last vblank count
338  * of hardware and corresponding consistent software vblank counter
339  * are preserved, even if there are any spurious vblank irq's after
340  * disable.
341  */
342 void drm_vblank_disable_and_save(struct drm_device *dev, unsigned int pipe)
343 {
344 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
345 	unsigned long irqflags;
346 
347 	assert_spin_locked(&dev->vbl_lock);
348 
349 	/* Prevent vblank irq processing while disabling vblank irqs,
350 	 * so no updates of timestamps or count can happen after we've
351 	 * disabled. Needed to prevent races in case of delayed irq's.
352 	 */
353 	spin_lock_irqsave(&dev->vblank_time_lock, irqflags);
354 
355 	/*
356 	 * Update vblank count and disable vblank interrupts only if the
357 	 * interrupts were enabled. This avoids calling the ->disable_vblank()
358 	 * operation in atomic context with the hardware potentially runtime
359 	 * suspended.
360 	 */
361 	if (!vblank->enabled)
362 		goto out;
363 
364 	/*
365 	 * Update the count and timestamp to maintain the
366 	 * appearance that the counter has been ticking all along until
367 	 * this time. This makes the count account for the entire time
368 	 * between drm_crtc_vblank_on() and drm_crtc_vblank_off().
369 	 */
370 	drm_update_vblank_count(dev, pipe, false);
371 	__disable_vblank(dev, pipe);
372 	vblank->enabled = false;
373 
374 out:
375 	spin_unlock_irqrestore(&dev->vblank_time_lock, irqflags);
376 }
377 
378 static void vblank_disable_fn(unsigned long arg)
379 {
380 	struct drm_vblank_crtc *vblank = (void *)arg;
381 	struct drm_device *dev = vblank->dev;
382 	unsigned int pipe = vblank->pipe;
383 	unsigned long irqflags;
384 
385 	spin_lock_irqsave(&dev->vbl_lock, irqflags);
386 	if (atomic_read(&vblank->refcount) == 0 && vblank->enabled) {
387 		DRM_DEBUG("disabling vblank on crtc %u\n", pipe);
388 		drm_vblank_disable_and_save(dev, pipe);
389 	}
390 	spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
391 }
392 
393 void drm_vblank_cleanup(struct drm_device *dev)
394 {
395 	unsigned int pipe;
396 
397 	/* Bail if the driver didn't call drm_vblank_init() */
398 	if (dev->num_crtcs == 0)
399 		return;
400 
401 	for (pipe = 0; pipe < dev->num_crtcs; pipe++) {
402 		struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
403 
404 		WARN_ON(READ_ONCE(vblank->enabled) &&
405 			drm_core_check_feature(dev, DRIVER_MODESET));
406 
407 		del_timer_sync(&vblank->disable_timer);
408 	}
409 
410 	kfree(dev->vblank);
411 
412 	dev->num_crtcs = 0;
413 }
414 
415 /**
416  * drm_vblank_init - initialize vblank support
417  * @dev: DRM device
418  * @num_crtcs: number of CRTCs supported by @dev
419  *
420  * This function initializes vblank support for @num_crtcs display pipelines.
421  * Cleanup is handled by the DRM core, or through calling drm_dev_fini() for
422  * drivers with a &drm_driver.release callback.
423  *
424  * Returns:
425  * Zero on success or a negative error code on failure.
426  */
427 int drm_vblank_init(struct drm_device *dev, unsigned int num_crtcs)
428 {
429 	int ret = -ENOMEM;
430 	unsigned int i;
431 
432 	mtx_init(&dev->vbl_lock, IPL_TTY);
433 	mtx_init(&dev->vblank_time_lock, IPL_TTY);
434 
435 	dev->num_crtcs = num_crtcs;
436 
437 	dev->vblank = kcalloc(num_crtcs, sizeof(*dev->vblank), GFP_KERNEL);
438 	if (!dev->vblank)
439 		goto err;
440 
441 	for (i = 0; i < num_crtcs; i++) {
442 		struct drm_vblank_crtc *vblank = &dev->vblank[i];
443 
444 		vblank->dev = dev;
445 		vblank->pipe = i;
446 		init_waitqueue_head(&vblank->queue);
447 		setup_timer(&vblank->disable_timer, vblank_disable_fn,
448 		    (unsigned long)vblank);
449 		seqlock_init(&vblank->seqlock);
450 	}
451 
452 	DRM_INFO("Supports vblank timestamp caching Rev 2 (21.10.2013).\n");
453 
454 	/* Driver specific high-precision vblank timestamping supported? */
455 	if (dev->driver->get_vblank_timestamp)
456 		DRM_INFO("Driver supports precise vblank timestamp query.\n");
457 	else
458 		DRM_INFO("No driver support for vblank timestamp query.\n");
459 
460 	/* Must have precise timestamping for reliable vblank instant disable */
461 	if (dev->vblank_disable_immediate && !dev->driver->get_vblank_timestamp) {
462 		dev->vblank_disable_immediate = false;
463 		DRM_INFO("Setting vblank_disable_immediate to false because "
464 			 "get_vblank_timestamp == NULL\n");
465 	}
466 
467 	return 0;
468 
469 err:
470 	dev->num_crtcs = 0;
471 	return ret;
472 }
473 EXPORT_SYMBOL(drm_vblank_init);
474 
475 /**
476  * drm_crtc_vblank_waitqueue - get vblank waitqueue for the CRTC
477  * @crtc: which CRTC's vblank waitqueue to retrieve
478  *
479  * This function returns a pointer to the vblank waitqueue for the CRTC.
480  * Drivers can use this to implement vblank waits using wait_event() and related
481  * functions.
482  */
483 wait_queue_head_t *drm_crtc_vblank_waitqueue(struct drm_crtc *crtc)
484 {
485 	return &crtc->dev->vblank[drm_crtc_index(crtc)].queue;
486 }
487 EXPORT_SYMBOL(drm_crtc_vblank_waitqueue);
488 
489 
490 /**
491  * drm_calc_timestamping_constants - calculate vblank timestamp constants
492  * @crtc: drm_crtc whose timestamp constants should be updated.
493  * @mode: display mode containing the scanout timings
494  *
495  * Calculate and store various constants which are later needed by vblank and
496  * swap-completion timestamping, e.g, by
497  * drm_calc_vbltimestamp_from_scanoutpos(). They are derived from CRTC's true
498  * scanout timing, so they take things like panel scaling or other adjustments
499  * into account.
500  */
501 void drm_calc_timestamping_constants(struct drm_crtc *crtc,
502 				     const struct drm_display_mode *mode)
503 {
504 	struct drm_device *dev = crtc->dev;
505 	unsigned int pipe = drm_crtc_index(crtc);
506 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
507 	int linedur_ns = 0, framedur_ns = 0;
508 	int dotclock = mode->crtc_clock;
509 
510 	if (!dev->num_crtcs)
511 		return;
512 
513 	if (WARN_ON(pipe >= dev->num_crtcs))
514 		return;
515 
516 	/* Valid dotclock? */
517 	if (dotclock > 0) {
518 		int frame_size = mode->crtc_htotal * mode->crtc_vtotal;
519 
520 		/*
521 		 * Convert scanline length in pixels and video
522 		 * dot clock to line duration and frame duration
523 		 * in nanoseconds:
524 		 */
525 		linedur_ns  = div_u64((u64) mode->crtc_htotal * 1000000, dotclock);
526 		framedur_ns = div_u64((u64) frame_size * 1000000, dotclock);
527 
528 		/*
529 		 * Fields of interlaced scanout modes are only half a frame duration.
530 		 */
531 		if (mode->flags & DRM_MODE_FLAG_INTERLACE)
532 			framedur_ns /= 2;
533 	} else
534 		DRM_ERROR("crtc %u: Can't calculate constants, dotclock = 0!\n",
535 			  crtc->base.id);
536 
537 	vblank->linedur_ns  = linedur_ns;
538 	vblank->framedur_ns = framedur_ns;
539 	vblank->hwmode = *mode;
540 
541 	DRM_DEBUG("crtc %u: hwmode: htotal %d, vtotal %d, vdisplay %d\n",
542 		  crtc->base.id, mode->crtc_htotal,
543 		  mode->crtc_vtotal, mode->crtc_vdisplay);
544 	DRM_DEBUG("crtc %u: clock %d kHz framedur %d linedur %d\n",
545 		  crtc->base.id, dotclock, framedur_ns, linedur_ns);
546 }
547 EXPORT_SYMBOL(drm_calc_timestamping_constants);
548 
549 /**
550  * drm_calc_vbltimestamp_from_scanoutpos - precise vblank timestamp helper
551  * @dev: DRM device
552  * @pipe: index of CRTC whose vblank timestamp to retrieve
553  * @max_error: Desired maximum allowable error in timestamps (nanosecs)
554  *             On return contains true maximum error of timestamp
555  * @vblank_time: Pointer to time which should receive the timestamp
556  * @in_vblank_irq:
557  *     True when called from drm_crtc_handle_vblank().  Some drivers
558  *     need to apply some workarounds for gpu-specific vblank irq quirks
559  *     if flag is set.
560  *
561  * Implements calculation of exact vblank timestamps from given drm_display_mode
562  * timings and current video scanout position of a CRTC. This can be directly
563  * used as the &drm_driver.get_vblank_timestamp implementation of a kms driver
564  * if &drm_driver.get_scanout_position is implemented.
565  *
566  * The current implementation only handles standard video modes. For double scan
567  * and interlaced modes the driver is supposed to adjust the hardware mode
568  * (taken from &drm_crtc_state.adjusted mode for atomic modeset drivers) to
569  * match the scanout position reported.
570  *
571  * Note that atomic drivers must call drm_calc_timestamping_constants() before
572  * enabling a CRTC. The atomic helpers already take care of that in
573  * drm_atomic_helper_update_legacy_modeset_state().
574  *
575  * Returns:
576  *
577  * Returns true on success, and false on failure, i.e. when no accurate
578  * timestamp could be acquired.
579  */
580 bool drm_calc_vbltimestamp_from_scanoutpos(struct drm_device *dev,
581 					   unsigned int pipe,
582 					   int *max_error,
583 					   ktime_t *vblank_time,
584 					   bool in_vblank_irq)
585 {
586 	struct timespec64 ts_etime, ts_vblank_time;
587 	ktime_t stime, etime;
588 	bool vbl_status;
589 	struct drm_crtc *crtc;
590 	const struct drm_display_mode *mode;
591 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
592 	int vpos, hpos, i;
593 	int delta_ns, duration_ns;
594 
595 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
596 		return false;
597 
598 	crtc = drm_crtc_from_index(dev, pipe);
599 
600 	if (pipe >= dev->num_crtcs || !crtc) {
601 		DRM_ERROR("Invalid crtc %u\n", pipe);
602 		return false;
603 	}
604 
605 	/* Scanout position query not supported? Should not happen. */
606 	if (!dev->driver->get_scanout_position) {
607 		DRM_ERROR("Called from driver w/o get_scanout_position()!?\n");
608 		return false;
609 	}
610 
611 	if (drm_drv_uses_atomic_modeset(dev))
612 		mode = &vblank->hwmode;
613 	else
614 		mode = &crtc->hwmode;
615 
616 	/* If mode timing undefined, just return as no-op:
617 	 * Happens during initial modesetting of a crtc.
618 	 */
619 	if (mode->crtc_clock == 0) {
620 		DRM_DEBUG("crtc %u: Noop due to uninitialized mode.\n", pipe);
621 		WARN_ON_ONCE(drm_drv_uses_atomic_modeset(dev));
622 
623 		return false;
624 	}
625 
626 	/* Get current scanout position with system timestamp.
627 	 * Repeat query up to DRM_TIMESTAMP_MAXRETRIES times
628 	 * if single query takes longer than max_error nanoseconds.
629 	 *
630 	 * This guarantees a tight bound on maximum error if
631 	 * code gets preempted or delayed for some reason.
632 	 */
633 	for (i = 0; i < DRM_TIMESTAMP_MAXRETRIES; i++) {
634 		/*
635 		 * Get vertical and horizontal scanout position vpos, hpos,
636 		 * and bounding timestamps stime, etime, pre/post query.
637 		 */
638 		vbl_status = dev->driver->get_scanout_position(dev, pipe,
639 							       in_vblank_irq,
640 							       &vpos, &hpos,
641 							       &stime, &etime,
642 							       mode);
643 
644 		/* Return as no-op if scanout query unsupported or failed. */
645 		if (!vbl_status) {
646 			DRM_DEBUG("crtc %u : scanoutpos query failed.\n",
647 				  pipe);
648 			return false;
649 		}
650 
651 		/* Compute uncertainty in timestamp of scanout position query. */
652 		duration_ns = ktime_to_ns(etime) - ktime_to_ns(stime);
653 
654 		/* Accept result with <  max_error nsecs timing uncertainty. */
655 		if (duration_ns <= *max_error)
656 			break;
657 	}
658 
659 	/* Noisy system timing? */
660 	if (i == DRM_TIMESTAMP_MAXRETRIES) {
661 		DRM_DEBUG("crtc %u: Noisy timestamp %d us > %d us [%d reps].\n",
662 			  pipe, duration_ns/1000, *max_error/1000, i);
663 	}
664 
665 	/* Return upper bound of timestamp precision error. */
666 	*max_error = duration_ns;
667 
668 	/* Convert scanout position into elapsed time at raw_time query
669 	 * since start of scanout at first display scanline. delta_ns
670 	 * can be negative if start of scanout hasn't happened yet.
671 	 */
672 	delta_ns = div_s64(1000000LL * (vpos * mode->crtc_htotal + hpos),
673 			   mode->crtc_clock);
674 
675 	/* Subtract time delta from raw timestamp to get final
676 	 * vblank_time timestamp for end of vblank.
677 	 */
678 	*vblank_time = ktime_sub_ns(etime, delta_ns);
679 
680 	if ((drm_debug & DRM_UT_VBL) == 0)
681 		return true;
682 
683 	ts_etime = ktime_to_timespec64(etime);
684 	ts_vblank_time = ktime_to_timespec64(*vblank_time);
685 
686 	DRM_DEBUG_VBL("crtc %u : v p(%d,%d)@ %lld.%06ld -> %lld.%06ld [e %d us, %d rep]\n",
687 		      pipe, hpos, vpos,
688 		      (u64)ts_etime.tv_sec, ts_etime.tv_nsec / 1000,
689 		      (u64)ts_vblank_time.tv_sec, ts_vblank_time.tv_nsec / 1000,
690 		      duration_ns / 1000, i);
691 
692 	return true;
693 }
694 EXPORT_SYMBOL(drm_calc_vbltimestamp_from_scanoutpos);
695 
696 /**
697  * drm_get_last_vbltimestamp - retrieve raw timestamp for the most recent
698  *                             vblank interval
699  * @dev: DRM device
700  * @pipe: index of CRTC whose vblank timestamp to retrieve
701  * @tvblank: Pointer to target time which should receive the timestamp
702  * @in_vblank_irq:
703  *     True when called from drm_crtc_handle_vblank().  Some drivers
704  *     need to apply some workarounds for gpu-specific vblank irq quirks
705  *     if flag is set.
706  *
707  * Fetches the system timestamp corresponding to the time of the most recent
708  * vblank interval on specified CRTC. May call into kms-driver to
709  * compute the timestamp with a high-precision GPU specific method.
710  *
711  * Returns zero if timestamp originates from uncorrected do_gettimeofday()
712  * call, i.e., it isn't very precisely locked to the true vblank.
713  *
714  * Returns:
715  * True if timestamp is considered to be very precise, false otherwise.
716  */
717 static bool
718 drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe,
719 			  ktime_t *tvblank, bool in_vblank_irq)
720 {
721 	bool ret = false;
722 
723 	/* Define requested maximum error on timestamps (nanoseconds). */
724 	int max_error = (int) drm_timestamp_precision * 1000;
725 
726 	/* Query driver if possible and precision timestamping enabled. */
727 	if (dev->driver->get_vblank_timestamp && (max_error > 0))
728 		ret = dev->driver->get_vblank_timestamp(dev, pipe, &max_error,
729 							tvblank, in_vblank_irq);
730 
731 	/* GPU high precision timestamp query unsupported or failed.
732 	 * Return current monotonic/gettimeofday timestamp as best estimate.
733 	 */
734 	if (!ret)
735 		*tvblank = ktime_get();
736 
737 	return ret;
738 }
739 
740 /**
741  * drm_crtc_vblank_count - retrieve "cooked" vblank counter value
742  * @crtc: which counter to retrieve
743  *
744  * Fetches the "cooked" vblank count value that represents the number of
745  * vblank events since the system was booted, including lost events due to
746  * modesetting activity. Note that this timer isn't correct against a racing
747  * vblank interrupt (since it only reports the software vblank counter), see
748  * drm_crtc_accurate_vblank_count() for such use-cases.
749  *
750  * Returns:
751  * The software vblank counter.
752  */
753 u64 drm_crtc_vblank_count(struct drm_crtc *crtc)
754 {
755 	return drm_vblank_count(crtc->dev, drm_crtc_index(crtc));
756 }
757 EXPORT_SYMBOL(drm_crtc_vblank_count);
758 
759 /**
760  * drm_vblank_count_and_time - retrieve "cooked" vblank counter value and the
761  *     system timestamp corresponding to that vblank counter value.
762  * @dev: DRM device
763  * @pipe: index of CRTC whose counter to retrieve
764  * @vblanktime: Pointer to ktime_t to receive the vblank timestamp.
765  *
766  * Fetches the "cooked" vblank count value that represents the number of
767  * vblank events since the system was booted, including lost events due to
768  * modesetting activity. Returns corresponding system timestamp of the time
769  * of the vblank interval that corresponds to the current vblank counter value.
770  *
771  * This is the legacy version of drm_crtc_vblank_count_and_time().
772  */
773 static u64 drm_vblank_count_and_time(struct drm_device *dev, unsigned int pipe,
774 				     ktime_t *vblanktime)
775 {
776 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
777 	u64 vblank_count;
778 	unsigned int seq;
779 
780 	if (WARN_ON(pipe >= dev->num_crtcs)) {
781 		*vblanktime = (struct timeval) {0, 0};
782 		return 0;
783 	}
784 
785 	do {
786 		seq = read_seqbegin(&vblank->seqlock);
787 		vblank_count = vblank->count;
788 		*vblanktime = vblank->time;
789 	} while (read_seqretry(&vblank->seqlock, seq));
790 
791 	return vblank_count;
792 }
793 
794 /**
795  * drm_crtc_vblank_count_and_time - retrieve "cooked" vblank counter value
796  *     and the system timestamp corresponding to that vblank counter value
797  * @crtc: which counter to retrieve
798  * @vblanktime: Pointer to time to receive the vblank timestamp.
799  *
800  * Fetches the "cooked" vblank count value that represents the number of
801  * vblank events since the system was booted, including lost events due to
802  * modesetting activity. Returns corresponding system timestamp of the time
803  * of the vblank interval that corresponds to the current vblank counter value.
804  */
805 u64 drm_crtc_vblank_count_and_time(struct drm_crtc *crtc,
806 				   ktime_t *vblanktime)
807 {
808 	return drm_vblank_count_and_time(crtc->dev, drm_crtc_index(crtc),
809 					 vblanktime);
810 }
811 EXPORT_SYMBOL(drm_crtc_vblank_count_and_time);
812 
813 static void send_vblank_event(struct drm_device *dev,
814 		struct drm_pending_vblank_event *e,
815 		u64 seq, ktime_t now)
816 {
817 	struct timespec64 tv;
818 
819 	switch (e->event.base.type) {
820 	case DRM_EVENT_VBLANK:
821 	case DRM_EVENT_FLIP_COMPLETE:
822 		tv = ktime_to_timespec64(now);
823 		e->event.vbl.sequence = seq;
824 		/*
825 		 * e->event is a user space structure, with hardcoded unsigned
826 		 * 32-bit seconds/microseconds. This is safe as we always use
827 		 * monotonic timestamps since linux-4.15
828 		 */
829 		e->event.vbl.tv_sec = tv.tv_sec;
830 		e->event.vbl.tv_usec = tv.tv_nsec / 1000;
831 		break;
832 	case DRM_EVENT_CRTC_SEQUENCE:
833 		if (seq)
834 			e->event.seq.sequence = seq;
835 		e->event.seq.time_ns = ktime_to_ns(now);
836 		break;
837 	}
838 	trace_drm_vblank_event_delivered(e->base.file_priv, e->pipe, seq);
839 	drm_send_event_locked(dev, &e->base);
840 }
841 
842 /**
843  * drm_crtc_arm_vblank_event - arm vblank event after pageflip
844  * @crtc: the source CRTC of the vblank event
845  * @e: the event to send
846  *
847  * A lot of drivers need to generate vblank events for the very next vblank
848  * interrupt. For example when the page flip interrupt happens when the page
849  * flip gets armed, but not when it actually executes within the next vblank
850  * period. This helper function implements exactly the required vblank arming
851  * behaviour.
852  *
853  * NOTE: Drivers using this to send out the &drm_crtc_state.event as part of an
854  * atomic commit must ensure that the next vblank happens at exactly the same
855  * time as the atomic commit is committed to the hardware. This function itself
856  * does **not** protect against the next vblank interrupt racing with either this
857  * function call or the atomic commit operation. A possible sequence could be:
858  *
859  * 1. Driver commits new hardware state into vblank-synchronized registers.
860  * 2. A vblank happens, committing the hardware state. Also the corresponding
861  *    vblank interrupt is fired off and fully processed by the interrupt
862  *    handler.
863  * 3. The atomic commit operation proceeds to call drm_crtc_arm_vblank_event().
864  * 4. The event is only send out for the next vblank, which is wrong.
865  *
866  * An equivalent race can happen when the driver calls
867  * drm_crtc_arm_vblank_event() before writing out the new hardware state.
868  *
869  * The only way to make this work safely is to prevent the vblank from firing
870  * (and the hardware from committing anything else) until the entire atomic
871  * commit sequence has run to completion. If the hardware does not have such a
872  * feature (e.g. using a "go" bit), then it is unsafe to use this functions.
873  * Instead drivers need to manually send out the event from their interrupt
874  * handler by calling drm_crtc_send_vblank_event() and make sure that there's no
875  * possible race with the hardware committing the atomic update.
876  *
877  * Caller must hold a vblank reference for the event @e, which will be dropped
878  * when the next vblank arrives.
879  */
880 void drm_crtc_arm_vblank_event(struct drm_crtc *crtc,
881 			       struct drm_pending_vblank_event *e)
882 {
883 	struct drm_device *dev = crtc->dev;
884 	unsigned int pipe = drm_crtc_index(crtc);
885 
886 	assert_spin_locked(&dev->event_lock);
887 
888 	e->pipe = pipe;
889 	e->sequence = drm_crtc_accurate_vblank_count(crtc) + 1;
890 	list_add_tail(&e->base.link, &dev->vblank_event_list);
891 }
892 EXPORT_SYMBOL(drm_crtc_arm_vblank_event);
893 
894 /**
895  * drm_crtc_send_vblank_event - helper to send vblank event after pageflip
896  * @crtc: the source CRTC of the vblank event
897  * @e: the event to send
898  *
899  * Updates sequence # and timestamp on event for the most recently processed
900  * vblank, and sends it to userspace.  Caller must hold event lock.
901  *
902  * See drm_crtc_arm_vblank_event() for a helper which can be used in certain
903  * situation, especially to send out events for atomic commit operations.
904  */
905 void drm_crtc_send_vblank_event(struct drm_crtc *crtc,
906 				struct drm_pending_vblank_event *e)
907 {
908 	struct drm_device *dev = crtc->dev;
909 	u64 seq;
910 	unsigned int pipe = drm_crtc_index(crtc);
911 	ktime_t now;
912 
913 	if (dev->num_crtcs > 0) {
914 		seq = drm_vblank_count_and_time(dev, pipe, &now);
915 	} else {
916 		seq = 0;
917 
918 		now = ktime_get();
919 	}
920 	e->pipe = pipe;
921 	send_vblank_event(dev, e, seq, now);
922 }
923 EXPORT_SYMBOL(drm_crtc_send_vblank_event);
924 
925 static int __enable_vblank(struct drm_device *dev, unsigned int pipe)
926 {
927 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
928 		struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
929 
930 		if (WARN_ON(!crtc))
931 			return 0;
932 
933 		if (crtc->funcs->enable_vblank)
934 			return crtc->funcs->enable_vblank(crtc);
935 	}
936 
937 	return dev->driver->enable_vblank(dev, pipe);
938 }
939 
940 static int drm_vblank_enable(struct drm_device *dev, unsigned int pipe)
941 {
942 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
943 	int ret = 0;
944 
945 	assert_spin_locked(&dev->vbl_lock);
946 
947 	spin_lock(&dev->vblank_time_lock);
948 
949 	if (!vblank->enabled) {
950 		/*
951 		 * Enable vblank irqs under vblank_time_lock protection.
952 		 * All vblank count & timestamp updates are held off
953 		 * until we are done reinitializing master counter and
954 		 * timestamps. Filtercode in drm_handle_vblank() will
955 		 * prevent double-accounting of same vblank interval.
956 		 */
957 		ret = __enable_vblank(dev, pipe);
958 		DRM_DEBUG("enabling vblank on crtc %u, ret: %d\n", pipe, ret);
959 		if (ret) {
960 			atomic_dec(&vblank->refcount);
961 		} else {
962 			drm_update_vblank_count(dev, pipe, 0);
963 			/* drm_update_vblank_count() includes a wmb so we just
964 			 * need to ensure that the compiler emits the write
965 			 * to mark the vblank as enabled after the call
966 			 * to drm_update_vblank_count().
967 			 */
968 			WRITE_ONCE(vblank->enabled, true);
969 		}
970 	}
971 
972 	spin_unlock(&dev->vblank_time_lock);
973 
974 	return ret;
975 }
976 
977 static int drm_vblank_get(struct drm_device *dev, unsigned int pipe)
978 {
979 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
980 	unsigned long irqflags;
981 	int ret = 0;
982 
983 	if (!dev->num_crtcs)
984 		return -EINVAL;
985 
986 	if (WARN_ON(pipe >= dev->num_crtcs))
987 		return -EINVAL;
988 
989 	spin_lock_irqsave(&dev->vbl_lock, irqflags);
990 	/* Going from 0->1 means we have to enable interrupts again */
991 	if (atomic_add_return(1, &vblank->refcount) == 1) {
992 		ret = drm_vblank_enable(dev, pipe);
993 	} else {
994 		if (!vblank->enabled) {
995 			atomic_dec(&vblank->refcount);
996 			ret = -EINVAL;
997 		}
998 	}
999 	spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
1000 
1001 	return ret;
1002 }
1003 
1004 /**
1005  * drm_crtc_vblank_get - get a reference count on vblank events
1006  * @crtc: which CRTC to own
1007  *
1008  * Acquire a reference count on vblank events to avoid having them disabled
1009  * while in use.
1010  *
1011  * Returns:
1012  * Zero on success or a negative error code on failure.
1013  */
1014 int drm_crtc_vblank_get(struct drm_crtc *crtc)
1015 {
1016 	return drm_vblank_get(crtc->dev, drm_crtc_index(crtc));
1017 }
1018 EXPORT_SYMBOL(drm_crtc_vblank_get);
1019 
1020 static void drm_vblank_put(struct drm_device *dev, unsigned int pipe)
1021 {
1022 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1023 
1024 	if (WARN_ON(pipe >= dev->num_crtcs))
1025 		return;
1026 
1027 	if (WARN_ON(atomic_read(&vblank->refcount) == 0))
1028 		return;
1029 
1030 	/* Last user schedules interrupt disable */
1031 	if (atomic_dec_and_test(&vblank->refcount)) {
1032 		if (drm_vblank_offdelay == 0)
1033 			return;
1034 		else if (drm_vblank_offdelay < 0)
1035 			vblank_disable_fn((unsigned long)vblank);
1036 		else if (!dev->vblank_disable_immediate)
1037 			mod_timer(&vblank->disable_timer,
1038 				  jiffies + ((drm_vblank_offdelay * HZ)/1000));
1039 	}
1040 }
1041 
1042 /**
1043  * drm_crtc_vblank_put - give up ownership of vblank events
1044  * @crtc: which counter to give up
1045  *
1046  * Release ownership of a given vblank counter, turning off interrupts
1047  * if possible. Disable interrupts after drm_vblank_offdelay milliseconds.
1048  */
1049 void drm_crtc_vblank_put(struct drm_crtc *crtc)
1050 {
1051 	drm_vblank_put(crtc->dev, drm_crtc_index(crtc));
1052 }
1053 EXPORT_SYMBOL(drm_crtc_vblank_put);
1054 
1055 /**
1056  * drm_wait_one_vblank - wait for one vblank
1057  * @dev: DRM device
1058  * @pipe: CRTC index
1059  *
1060  * This waits for one vblank to pass on @pipe, using the irq driver interfaces.
1061  * It is a failure to call this when the vblank irq for @pipe is disabled, e.g.
1062  * due to lack of driver support or because the crtc is off.
1063  *
1064  * This is the legacy version of drm_crtc_wait_one_vblank().
1065  */
1066 void drm_wait_one_vblank(struct drm_device *dev, unsigned int pipe)
1067 {
1068 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1069 	int ret;
1070 	u64 last;
1071 
1072 	if (WARN_ON(pipe >= dev->num_crtcs))
1073 		return;
1074 
1075 #ifdef __OpenBSD__
1076 	/*
1077 	 * If we're cold, vblank interrupts won't happen even if
1078 	 * they're turned on by the driver.  Just stall long enough
1079 	 * for a vblank to pass.  This assumes a vrefresh of at least
1080 	 * 25 Hz.
1081 	 */
1082 	if (cold) {
1083 		delay(40000);
1084 		return;
1085 	}
1086 #endif
1087 
1088 	ret = drm_vblank_get(dev, pipe);
1089 	if (WARN(ret, "vblank not available on crtc %i, ret=%i\n", pipe, ret))
1090 		return;
1091 
1092 	last = drm_vblank_count(dev, pipe);
1093 
1094 	ret = wait_event_timeout(vblank->queue,
1095 				 last != drm_vblank_count(dev, pipe),
1096 				 msecs_to_jiffies(100));
1097 
1098 	WARN(ret == 0, "vblank wait timed out on crtc %i\n", pipe);
1099 
1100 	drm_vblank_put(dev, pipe);
1101 }
1102 EXPORT_SYMBOL(drm_wait_one_vblank);
1103 
1104 /**
1105  * drm_crtc_wait_one_vblank - wait for one vblank
1106  * @crtc: DRM crtc
1107  *
1108  * This waits for one vblank to pass on @crtc, using the irq driver interfaces.
1109  * It is a failure to call this when the vblank irq for @crtc is disabled, e.g.
1110  * due to lack of driver support or because the crtc is off.
1111  */
1112 void drm_crtc_wait_one_vblank(struct drm_crtc *crtc)
1113 {
1114 	drm_wait_one_vblank(crtc->dev, drm_crtc_index(crtc));
1115 }
1116 EXPORT_SYMBOL(drm_crtc_wait_one_vblank);
1117 
1118 /**
1119  * drm_crtc_vblank_off - disable vblank events on a CRTC
1120  * @crtc: CRTC in question
1121  *
1122  * Drivers can use this function to shut down the vblank interrupt handling when
1123  * disabling a crtc. This function ensures that the latest vblank frame count is
1124  * stored so that drm_vblank_on can restore it again.
1125  *
1126  * Drivers must use this function when the hardware vblank counter can get
1127  * reset, e.g. when suspending or disabling the @crtc in general.
1128  */
1129 void drm_crtc_vblank_off(struct drm_crtc *crtc)
1130 {
1131 	struct drm_device *dev = crtc->dev;
1132 	unsigned int pipe = drm_crtc_index(crtc);
1133 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1134 	struct drm_pending_vblank_event *e, *t;
1135 
1136 	ktime_t now;
1137 	unsigned long irqflags;
1138 	u64 seq;
1139 
1140 	if (WARN_ON(pipe >= dev->num_crtcs))
1141 		return;
1142 
1143 	spin_lock_irqsave(&dev->event_lock, irqflags);
1144 
1145 	spin_lock(&dev->vbl_lock);
1146 	DRM_DEBUG_VBL("crtc %d, vblank enabled %d, inmodeset %d\n",
1147 		      pipe, vblank->enabled, vblank->inmodeset);
1148 
1149 	/* Avoid redundant vblank disables without previous
1150 	 * drm_crtc_vblank_on(). */
1151 	if (drm_core_check_feature(dev, DRIVER_ATOMIC) || !vblank->inmodeset)
1152 		drm_vblank_disable_and_save(dev, pipe);
1153 
1154 	wake_up(&vblank->queue);
1155 
1156 	/*
1157 	 * Prevent subsequent drm_vblank_get() from re-enabling
1158 	 * the vblank interrupt by bumping the refcount.
1159 	 */
1160 	if (!vblank->inmodeset) {
1161 		atomic_inc(&vblank->refcount);
1162 		vblank->inmodeset = 1;
1163 	}
1164 	spin_unlock(&dev->vbl_lock);
1165 
1166 	/* Send any queued vblank events, lest the natives grow disquiet */
1167 	seq = drm_vblank_count_and_time(dev, pipe, &now);
1168 
1169 	list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) {
1170 		if (e->pipe != pipe)
1171 			continue;
1172 		DRM_DEBUG("Sending premature vblank event on disable: "
1173 			  "wanted %llu, current %llu\n",
1174 			  e->sequence, seq);
1175 		list_del(&e->base.link);
1176 		drm_vblank_put(dev, pipe);
1177 		send_vblank_event(dev, e, seq, now);
1178 	}
1179 	spin_unlock_irqrestore(&dev->event_lock, irqflags);
1180 
1181 	/* Will be reset by the modeset helpers when re-enabling the crtc by
1182 	 * calling drm_calc_timestamping_constants(). */
1183 	vblank->hwmode.crtc_clock = 0;
1184 }
1185 EXPORT_SYMBOL(drm_crtc_vblank_off);
1186 
1187 /**
1188  * drm_crtc_vblank_reset - reset vblank state to off on a CRTC
1189  * @crtc: CRTC in question
1190  *
1191  * Drivers can use this function to reset the vblank state to off at load time.
1192  * Drivers should use this together with the drm_crtc_vblank_off() and
1193  * drm_crtc_vblank_on() functions. The difference compared to
1194  * drm_crtc_vblank_off() is that this function doesn't save the vblank counter
1195  * and hence doesn't need to call any driver hooks.
1196  *
1197  * This is useful for recovering driver state e.g. on driver load, or on resume.
1198  */
1199 void drm_crtc_vblank_reset(struct drm_crtc *crtc)
1200 {
1201 	struct drm_device *dev = crtc->dev;
1202 	unsigned long irqflags;
1203 	unsigned int pipe = drm_crtc_index(crtc);
1204 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1205 
1206 	spin_lock_irqsave(&dev->vbl_lock, irqflags);
1207 	/*
1208 	 * Prevent subsequent drm_vblank_get() from enabling the vblank
1209 	 * interrupt by bumping the refcount.
1210 	 */
1211 	if (!vblank->inmodeset) {
1212 		atomic_inc(&vblank->refcount);
1213 		vblank->inmodeset = 1;
1214 	}
1215 	spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
1216 
1217 	WARN_ON(!list_empty(&dev->vblank_event_list));
1218 }
1219 EXPORT_SYMBOL(drm_crtc_vblank_reset);
1220 
1221 /**
1222  * drm_crtc_vblank_on - enable vblank events on a CRTC
1223  * @crtc: CRTC in question
1224  *
1225  * This functions restores the vblank interrupt state captured with
1226  * drm_crtc_vblank_off() again and is generally called when enabling @crtc. Note
1227  * that calls to drm_crtc_vblank_on() and drm_crtc_vblank_off() can be
1228  * unbalanced and so can also be unconditionally called in driver load code to
1229  * reflect the current hardware state of the crtc.
1230  */
1231 void drm_crtc_vblank_on(struct drm_crtc *crtc)
1232 {
1233 	struct drm_device *dev = crtc->dev;
1234 	unsigned int pipe = drm_crtc_index(crtc);
1235 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1236 	unsigned long irqflags;
1237 
1238 	if (WARN_ON(pipe >= dev->num_crtcs))
1239 		return;
1240 
1241 	spin_lock_irqsave(&dev->vbl_lock, irqflags);
1242 	DRM_DEBUG_VBL("crtc %d, vblank enabled %d, inmodeset %d\n",
1243 		      pipe, vblank->enabled, vblank->inmodeset);
1244 
1245 	/* Drop our private "prevent drm_vblank_get" refcount */
1246 	if (vblank->inmodeset) {
1247 		atomic_dec(&vblank->refcount);
1248 		vblank->inmodeset = 0;
1249 	}
1250 
1251 	drm_reset_vblank_timestamp(dev, pipe);
1252 
1253 	/*
1254 	 * re-enable interrupts if there are users left, or the
1255 	 * user wishes vblank interrupts to be enabled all the time.
1256 	 */
1257 	if (atomic_read(&vblank->refcount) != 0 || drm_vblank_offdelay == 0)
1258 		WARN_ON(drm_vblank_enable(dev, pipe));
1259 	spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
1260 }
1261 EXPORT_SYMBOL(drm_crtc_vblank_on);
1262 
1263 /**
1264  * drm_vblank_restore - estimate missed vblanks and update vblank count.
1265  * @dev: DRM device
1266  * @pipe: CRTC index
1267  *
1268  * Power manamement features can cause frame counter resets between vblank
1269  * disable and enable. Drivers can use this function in their
1270  * &drm_crtc_funcs.enable_vblank implementation to estimate missed vblanks since
1271  * the last &drm_crtc_funcs.disable_vblank using timestamps and update the
1272  * vblank counter.
1273  *
1274  * This function is the legacy version of drm_crtc_vblank_restore().
1275  */
1276 void drm_vblank_restore(struct drm_device *dev, unsigned int pipe)
1277 {
1278 	ktime_t t_vblank;
1279 	struct drm_vblank_crtc *vblank;
1280 	int framedur_ns;
1281 	u64 diff_ns;
1282 	u32 cur_vblank, diff = 1;
1283 	int count = DRM_TIMESTAMP_MAXRETRIES;
1284 
1285 	if (WARN_ON(pipe >= dev->num_crtcs))
1286 		return;
1287 
1288 	assert_spin_locked(&dev->vbl_lock);
1289 	assert_spin_locked(&dev->vblank_time_lock);
1290 
1291 	vblank = &dev->vblank[pipe];
1292 	WARN_ONCE((drm_debug & DRM_UT_VBL) && !vblank->framedur_ns,
1293 		  "Cannot compute missed vblanks without frame duration\n");
1294 	framedur_ns = vblank->framedur_ns;
1295 
1296 	do {
1297 		cur_vblank = __get_vblank_counter(dev, pipe);
1298 		drm_get_last_vbltimestamp(dev, pipe, &t_vblank, false);
1299 	} while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0);
1300 
1301 	diff_ns = ktime_to_ns(ktime_sub(t_vblank, vblank->time));
1302 	if (framedur_ns)
1303 		diff = DIV_ROUND_CLOSEST_ULL(diff_ns, framedur_ns);
1304 
1305 
1306 	DRM_DEBUG_VBL("missed %d vblanks in %lld ns, frame duration=%d ns, hw_diff=%d\n",
1307 		      diff, diff_ns, framedur_ns, cur_vblank - vblank->last);
1308 	store_vblank(dev, pipe, diff, t_vblank, cur_vblank);
1309 }
1310 EXPORT_SYMBOL(drm_vblank_restore);
1311 
1312 /**
1313  * drm_crtc_vblank_restore - estimate missed vblanks and update vblank count.
1314  * @crtc: CRTC in question
1315  *
1316  * Power manamement features can cause frame counter resets between vblank
1317  * disable and enable. Drivers can use this function in their
1318  * &drm_crtc_funcs.enable_vblank implementation to estimate missed vblanks since
1319  * the last &drm_crtc_funcs.disable_vblank using timestamps and update the
1320  * vblank counter.
1321  */
1322 void drm_crtc_vblank_restore(struct drm_crtc *crtc)
1323 {
1324 	drm_vblank_restore(crtc->dev, drm_crtc_index(crtc));
1325 }
1326 EXPORT_SYMBOL(drm_crtc_vblank_restore);
1327 
1328 static void drm_legacy_vblank_pre_modeset(struct drm_device *dev,
1329 					  unsigned int pipe)
1330 {
1331 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1332 
1333 	/* vblank is not initialized (IRQ not installed ?), or has been freed */
1334 	if (!dev->num_crtcs)
1335 		return;
1336 
1337 	if (WARN_ON(pipe >= dev->num_crtcs))
1338 		return;
1339 
1340 	/*
1341 	 * To avoid all the problems that might happen if interrupts
1342 	 * were enabled/disabled around or between these calls, we just
1343 	 * have the kernel take a reference on the CRTC (just once though
1344 	 * to avoid corrupting the count if multiple, mismatch calls occur),
1345 	 * so that interrupts remain enabled in the interim.
1346 	 */
1347 	if (!vblank->inmodeset) {
1348 		vblank->inmodeset = 0x1;
1349 		if (drm_vblank_get(dev, pipe) == 0)
1350 			vblank->inmodeset |= 0x2;
1351 	}
1352 }
1353 
1354 static void drm_legacy_vblank_post_modeset(struct drm_device *dev,
1355 					   unsigned int pipe)
1356 {
1357 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1358 	unsigned long irqflags;
1359 
1360 	/* vblank is not initialized (IRQ not installed ?), or has been freed */
1361 	if (!dev->num_crtcs)
1362 		return;
1363 
1364 	if (WARN_ON(pipe >= dev->num_crtcs))
1365 		return;
1366 
1367 	if (vblank->inmodeset) {
1368 		spin_lock_irqsave(&dev->vbl_lock, irqflags);
1369 		drm_reset_vblank_timestamp(dev, pipe);
1370 		spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
1371 
1372 		if (vblank->inmodeset & 0x2)
1373 			drm_vblank_put(dev, pipe);
1374 
1375 		vblank->inmodeset = 0;
1376 	}
1377 }
1378 
1379 int drm_legacy_modeset_ctl_ioctl(struct drm_device *dev, void *data,
1380 				 struct drm_file *file_priv)
1381 {
1382 	struct drm_modeset_ctl *modeset = data;
1383 	unsigned int pipe;
1384 
1385 	/* If drm_vblank_init() hasn't been called yet, just no-op */
1386 	if (!dev->num_crtcs)
1387 		return 0;
1388 
1389 	/* KMS drivers handle this internally */
1390 	if (!drm_core_check_feature(dev, DRIVER_LEGACY))
1391 		return 0;
1392 
1393 	pipe = modeset->crtc;
1394 	if (pipe >= dev->num_crtcs)
1395 		return -EINVAL;
1396 
1397 	switch (modeset->cmd) {
1398 	case _DRM_PRE_MODESET:
1399 		drm_legacy_vblank_pre_modeset(dev, pipe);
1400 		break;
1401 	case _DRM_POST_MODESET:
1402 		drm_legacy_vblank_post_modeset(dev, pipe);
1403 		break;
1404 	default:
1405 		return -EINVAL;
1406 	}
1407 
1408 	return 0;
1409 }
1410 
1411 static inline bool vblank_passed(u64 seq, u64 ref)
1412 {
1413 	return (seq - ref) <= (1 << 23);
1414 }
1415 
1416 static int drm_queue_vblank_event(struct drm_device *dev, unsigned int pipe,
1417 				  u64 req_seq,
1418 				  union drm_wait_vblank *vblwait,
1419 				  struct drm_file *file_priv)
1420 {
1421 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1422 	struct drm_pending_vblank_event *e;
1423 	ktime_t now;
1424 	unsigned long flags;
1425 	u64 seq;
1426 	int ret;
1427 
1428 	e = kzalloc(sizeof(*e), GFP_KERNEL);
1429 	if (e == NULL) {
1430 		ret = -ENOMEM;
1431 		goto err_put;
1432 	}
1433 
1434 	e->pipe = pipe;
1435 	e->event.base.type = DRM_EVENT_VBLANK;
1436 	e->event.base.length = sizeof(e->event.vbl);
1437 	e->event.vbl.user_data = vblwait->request.signal;
1438 	e->event.vbl.crtc_id = 0;
1439 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
1440 		struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
1441 		if (crtc)
1442 			e->event.vbl.crtc_id = crtc->base.id;
1443 	}
1444 
1445 	spin_lock_irqsave(&dev->event_lock, flags);
1446 
1447 	/*
1448 	 * drm_crtc_vblank_off() might have been called after we called
1449 	 * drm_vblank_get(). drm_crtc_vblank_off() holds event_lock around the
1450 	 * vblank disable, so no need for further locking.  The reference from
1451 	 * drm_vblank_get() protects against vblank disable from another source.
1452 	 */
1453 	if (!READ_ONCE(vblank->enabled)) {
1454 		ret = -EINVAL;
1455 		goto err_unlock;
1456 	}
1457 
1458 	ret = drm_event_reserve_init_locked(dev, file_priv, &e->base,
1459 					    &e->event.base);
1460 
1461 	if (ret)
1462 		goto err_unlock;
1463 
1464 	seq = drm_vblank_count_and_time(dev, pipe, &now);
1465 
1466 	DRM_DEBUG("event on vblank count %llu, current %llu, crtc %u\n",
1467 		  req_seq, seq, pipe);
1468 
1469 	trace_drm_vblank_event_queued(file_priv, pipe, req_seq);
1470 
1471 	e->sequence = req_seq;
1472 	if (vblank_passed(seq, req_seq)) {
1473 		drm_vblank_put(dev, pipe);
1474 		send_vblank_event(dev, e, seq, now);
1475 		vblwait->reply.sequence = seq;
1476 	} else {
1477 		/* drm_handle_vblank_events will call drm_vblank_put */
1478 		list_add_tail(&e->base.link, &dev->vblank_event_list);
1479 		vblwait->reply.sequence = req_seq;
1480 	}
1481 
1482 	spin_unlock_irqrestore(&dev->event_lock, flags);
1483 
1484 	return 0;
1485 
1486 err_unlock:
1487 	spin_unlock_irqrestore(&dev->event_lock, flags);
1488 	kfree(e);
1489 err_put:
1490 	drm_vblank_put(dev, pipe);
1491 	return ret;
1492 }
1493 
1494 static bool drm_wait_vblank_is_query(union drm_wait_vblank *vblwait)
1495 {
1496 	if (vblwait->request.sequence)
1497 		return false;
1498 
1499 	return _DRM_VBLANK_RELATIVE ==
1500 		(vblwait->request.type & (_DRM_VBLANK_TYPES_MASK |
1501 					  _DRM_VBLANK_EVENT |
1502 					  _DRM_VBLANK_NEXTONMISS));
1503 }
1504 
1505 /*
1506  * Widen a 32-bit param to 64-bits.
1507  *
1508  * \param narrow 32-bit value (missing upper 32 bits)
1509  * \param near 64-bit value that should be 'close' to near
1510  *
1511  * This function returns a 64-bit value using the lower 32-bits from
1512  * 'narrow' and constructing the upper 32-bits so that the result is
1513  * as close as possible to 'near'.
1514  */
1515 
1516 static u64 widen_32_to_64(u32 narrow, u64 near)
1517 {
1518 	return near + (s32) (narrow - near);
1519 }
1520 
1521 static void drm_wait_vblank_reply(struct drm_device *dev, unsigned int pipe,
1522 				  struct drm_wait_vblank_reply *reply)
1523 {
1524 	ktime_t now;
1525 	struct timespec64 ts;
1526 
1527 	/*
1528 	 * drm_wait_vblank_reply is a UAPI structure that uses 'long'
1529 	 * to store the seconds. This is safe as we always use monotonic
1530 	 * timestamps since linux-4.15.
1531 	 */
1532 	reply->sequence = drm_vblank_count_and_time(dev, pipe, &now);
1533 	ts = ktime_to_timespec64(now);
1534 	reply->tval_sec = (u32)ts.tv_sec;
1535 	reply->tval_usec = ts.tv_nsec / 1000;
1536 }
1537 
1538 int drm_wait_vblank_ioctl(struct drm_device *dev, void *data,
1539 			  struct drm_file *file_priv)
1540 {
1541 	struct drm_crtc *crtc;
1542 	struct drm_vblank_crtc *vblank;
1543 	union drm_wait_vblank *vblwait = data;
1544 	int ret;
1545 	u64 req_seq, seq;
1546 	unsigned int pipe_index;
1547 	unsigned int flags, pipe, high_pipe;
1548 
1549 	if (!dev->irq_enabled)
1550 		return -EINVAL;
1551 
1552 	if (vblwait->request.type & _DRM_VBLANK_SIGNAL)
1553 		return -EINVAL;
1554 
1555 	if (vblwait->request.type &
1556 	    ~(_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK |
1557 	      _DRM_VBLANK_HIGH_CRTC_MASK)) {
1558 		DRM_ERROR("Unsupported type value 0x%x, supported mask 0x%x\n",
1559 			  vblwait->request.type,
1560 			  (_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK |
1561 			   _DRM_VBLANK_HIGH_CRTC_MASK));
1562 		return -EINVAL;
1563 	}
1564 
1565 	flags = vblwait->request.type & _DRM_VBLANK_FLAGS_MASK;
1566 	high_pipe = (vblwait->request.type & _DRM_VBLANK_HIGH_CRTC_MASK);
1567 	if (high_pipe)
1568 		pipe_index = high_pipe >> _DRM_VBLANK_HIGH_CRTC_SHIFT;
1569 	else
1570 		pipe_index = flags & _DRM_VBLANK_SECONDARY ? 1 : 0;
1571 
1572 	/* Convert lease-relative crtc index into global crtc index */
1573 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
1574 		pipe = 0;
1575 		drm_for_each_crtc(crtc, dev) {
1576 			if (drm_lease_held(file_priv, crtc->base.id)) {
1577 				if (pipe_index == 0)
1578 					break;
1579 				pipe_index--;
1580 			}
1581 			pipe++;
1582 		}
1583 	} else {
1584 		pipe = pipe_index;
1585 	}
1586 
1587 	if (pipe >= dev->num_crtcs)
1588 		return -EINVAL;
1589 
1590 	vblank = &dev->vblank[pipe];
1591 
1592 	/* If the counter is currently enabled and accurate, short-circuit
1593 	 * queries to return the cached timestamp of the last vblank.
1594 	 */
1595 	if (dev->vblank_disable_immediate &&
1596 	    drm_wait_vblank_is_query(vblwait) &&
1597 	    READ_ONCE(vblank->enabled)) {
1598 		drm_wait_vblank_reply(dev, pipe, &vblwait->reply);
1599 		return 0;
1600 	}
1601 
1602 	ret = drm_vblank_get(dev, pipe);
1603 	if (ret) {
1604 		DRM_DEBUG("crtc %d failed to acquire vblank counter, %d\n", pipe, ret);
1605 		return ret;
1606 	}
1607 	seq = drm_vblank_count(dev, pipe);
1608 
1609 	switch (vblwait->request.type & _DRM_VBLANK_TYPES_MASK) {
1610 	case _DRM_VBLANK_RELATIVE:
1611 		req_seq = seq + vblwait->request.sequence;
1612 		vblwait->request.sequence = req_seq;
1613 		vblwait->request.type &= ~_DRM_VBLANK_RELATIVE;
1614 		break;
1615 	case _DRM_VBLANK_ABSOLUTE:
1616 		req_seq = widen_32_to_64(vblwait->request.sequence, seq);
1617 		break;
1618 	default:
1619 		ret = -EINVAL;
1620 		goto done;
1621 	}
1622 
1623 	if ((flags & _DRM_VBLANK_NEXTONMISS) &&
1624 	    vblank_passed(seq, req_seq)) {
1625 		req_seq = seq + 1;
1626 		vblwait->request.type &= ~_DRM_VBLANK_NEXTONMISS;
1627 		vblwait->request.sequence = req_seq;
1628 	}
1629 
1630 	if (flags & _DRM_VBLANK_EVENT) {
1631 		/* must hold on to the vblank ref until the event fires
1632 		 * drm_vblank_put will be called asynchronously
1633 		 */
1634 		return drm_queue_vblank_event(dev, pipe, req_seq, vblwait, file_priv);
1635 	}
1636 
1637 	if (req_seq != seq) {
1638 		DRM_DEBUG("waiting on vblank count %llu, crtc %u\n",
1639 			  req_seq, pipe);
1640 		DRM_WAIT_ON(ret, vblank->queue, 3 * HZ,
1641 			    vblank_passed(drm_vblank_count(dev, pipe),
1642 					  req_seq) ||
1643 			    !READ_ONCE(vblank->enabled));
1644 	}
1645 
1646 	if (ret != -EINTR) {
1647 		drm_wait_vblank_reply(dev, pipe, &vblwait->reply);
1648 
1649 		DRM_DEBUG("crtc %d returning %u to client\n",
1650 			  pipe, vblwait->reply.sequence);
1651 	} else {
1652 		DRM_DEBUG("crtc %d vblank wait interrupted by signal\n", pipe);
1653 	}
1654 
1655 done:
1656 	drm_vblank_put(dev, pipe);
1657 	return ret;
1658 }
1659 
1660 static void drm_handle_vblank_events(struct drm_device *dev, unsigned int pipe)
1661 {
1662 	struct drm_pending_vblank_event *e, *t;
1663 	ktime_t now;
1664 	u64 seq;
1665 
1666 	assert_spin_locked(&dev->event_lock);
1667 
1668 	seq = drm_vblank_count_and_time(dev, pipe, &now);
1669 
1670 	list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) {
1671 		if (e->pipe != pipe)
1672 			continue;
1673 		if (!vblank_passed(seq, e->sequence))
1674 			continue;
1675 
1676 		DRM_DEBUG("vblank event on %llu, current %llu\n",
1677 			  e->sequence, seq);
1678 
1679 		list_del(&e->base.link);
1680 		drm_vblank_put(dev, pipe);
1681 		send_vblank_event(dev, e, seq, now);
1682 	}
1683 
1684 	trace_drm_vblank_event(pipe, seq);
1685 }
1686 
1687 /**
1688  * drm_handle_vblank - handle a vblank event
1689  * @dev: DRM device
1690  * @pipe: index of CRTC where this event occurred
1691  *
1692  * Drivers should call this routine in their vblank interrupt handlers to
1693  * update the vblank counter and send any signals that may be pending.
1694  *
1695  * This is the legacy version of drm_crtc_handle_vblank().
1696  */
1697 bool drm_handle_vblank(struct drm_device *dev, unsigned int pipe)
1698 {
1699 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1700 	unsigned long irqflags;
1701 	bool disable_irq;
1702 
1703 	if (WARN_ON_ONCE(!dev->num_crtcs))
1704 		return false;
1705 
1706 	if (WARN_ON(pipe >= dev->num_crtcs))
1707 		return false;
1708 
1709 	spin_lock_irqsave(&dev->event_lock, irqflags);
1710 
1711 	/* Need timestamp lock to prevent concurrent execution with
1712 	 * vblank enable/disable, as this would cause inconsistent
1713 	 * or corrupted timestamps and vblank counts.
1714 	 */
1715 	spin_lock(&dev->vblank_time_lock);
1716 
1717 	/* Vblank irq handling disabled. Nothing to do. */
1718 	if (!vblank->enabled) {
1719 		spin_unlock(&dev->vblank_time_lock);
1720 		spin_unlock_irqrestore(&dev->event_lock, irqflags);
1721 		return false;
1722 	}
1723 
1724 	drm_update_vblank_count(dev, pipe, true);
1725 
1726 	spin_unlock(&dev->vblank_time_lock);
1727 
1728 	wake_up(&vblank->queue);
1729 
1730 	/* With instant-off, we defer disabling the interrupt until after
1731 	 * we finish processing the following vblank after all events have
1732 	 * been signaled. The disable has to be last (after
1733 	 * drm_handle_vblank_events) so that the timestamp is always accurate.
1734 	 */
1735 	disable_irq = (dev->vblank_disable_immediate &&
1736 		       drm_vblank_offdelay > 0 &&
1737 		       !atomic_read(&vblank->refcount));
1738 
1739 	drm_handle_vblank_events(dev, pipe);
1740 
1741 	spin_unlock_irqrestore(&dev->event_lock, irqflags);
1742 
1743 	if (disable_irq)
1744 		vblank_disable_fn((unsigned long)vblank);
1745 
1746 	return true;
1747 }
1748 EXPORT_SYMBOL(drm_handle_vblank);
1749 
1750 /**
1751  * drm_crtc_handle_vblank - handle a vblank event
1752  * @crtc: where this event occurred
1753  *
1754  * Drivers should call this routine in their vblank interrupt handlers to
1755  * update the vblank counter and send any signals that may be pending.
1756  *
1757  * This is the native KMS version of drm_handle_vblank().
1758  *
1759  * Returns:
1760  * True if the event was successfully handled, false on failure.
1761  */
1762 bool drm_crtc_handle_vblank(struct drm_crtc *crtc)
1763 {
1764 	return drm_handle_vblank(crtc->dev, drm_crtc_index(crtc));
1765 }
1766 EXPORT_SYMBOL(drm_crtc_handle_vblank);
1767 
1768 /*
1769  * Get crtc VBLANK count.
1770  *
1771  * \param dev DRM device
1772  * \param data user arguement, pointing to a drm_crtc_get_sequence structure.
1773  * \param file_priv drm file private for the user's open file descriptor
1774  */
1775 
1776 int drm_crtc_get_sequence_ioctl(struct drm_device *dev, void *data,
1777 				struct drm_file *file_priv)
1778 {
1779 	struct drm_crtc *crtc;
1780 	struct drm_vblank_crtc *vblank;
1781 	int pipe;
1782 	struct drm_crtc_get_sequence *get_seq = data;
1783 	ktime_t now;
1784 	bool vblank_enabled;
1785 	int ret;
1786 
1787 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
1788 		return -EINVAL;
1789 
1790 	if (!dev->irq_enabled)
1791 		return -EINVAL;
1792 
1793 	crtc = drm_crtc_find(dev, file_priv, get_seq->crtc_id);
1794 	if (!crtc)
1795 		return -ENOENT;
1796 
1797 	pipe = drm_crtc_index(crtc);
1798 
1799 	vblank = &dev->vblank[pipe];
1800 	vblank_enabled = dev->vblank_disable_immediate && READ_ONCE(vblank->enabled);
1801 
1802 	if (!vblank_enabled) {
1803 		ret = drm_crtc_vblank_get(crtc);
1804 		if (ret) {
1805 			DRM_DEBUG("crtc %d failed to acquire vblank counter, %d\n", pipe, ret);
1806 			return ret;
1807 		}
1808 	}
1809 	drm_modeset_lock(&crtc->mutex, NULL);
1810 	if (crtc->state)
1811 		get_seq->active = crtc->state->enable;
1812 	else
1813 		get_seq->active = crtc->enabled;
1814 	drm_modeset_unlock(&crtc->mutex);
1815 	get_seq->sequence = drm_vblank_count_and_time(dev, pipe, &now);
1816 	get_seq->sequence_ns = ktime_to_ns(now);
1817 	if (!vblank_enabled)
1818 		drm_crtc_vblank_put(crtc);
1819 	return 0;
1820 }
1821 
1822 /*
1823  * Queue a event for VBLANK sequence
1824  *
1825  * \param dev DRM device
1826  * \param data user arguement, pointing to a drm_crtc_queue_sequence structure.
1827  * \param file_priv drm file private for the user's open file descriptor
1828  */
1829 
1830 int drm_crtc_queue_sequence_ioctl(struct drm_device *dev, void *data,
1831 				  struct drm_file *file_priv)
1832 {
1833 	struct drm_crtc *crtc;
1834 	struct drm_vblank_crtc *vblank;
1835 	int pipe;
1836 	struct drm_crtc_queue_sequence *queue_seq = data;
1837 	ktime_t now;
1838 	struct drm_pending_vblank_event *e;
1839 	u32 flags;
1840 	u64 seq;
1841 	u64 req_seq;
1842 	int ret;
1843 	unsigned long spin_flags;
1844 
1845 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
1846 		return -EINVAL;
1847 
1848 	if (!dev->irq_enabled)
1849 		return -EINVAL;
1850 
1851 	crtc = drm_crtc_find(dev, file_priv, queue_seq->crtc_id);
1852 	if (!crtc)
1853 		return -ENOENT;
1854 
1855 	flags = queue_seq->flags;
1856 	/* Check valid flag bits */
1857 	if (flags & ~(DRM_CRTC_SEQUENCE_RELATIVE|
1858 		      DRM_CRTC_SEQUENCE_NEXT_ON_MISS))
1859 		return -EINVAL;
1860 
1861 	pipe = drm_crtc_index(crtc);
1862 
1863 	vblank = &dev->vblank[pipe];
1864 
1865 	e = kzalloc(sizeof(*e), GFP_KERNEL);
1866 	if (e == NULL)
1867 		return -ENOMEM;
1868 
1869 	ret = drm_crtc_vblank_get(crtc);
1870 	if (ret) {
1871 		DRM_DEBUG("crtc %d failed to acquire vblank counter, %d\n", pipe, ret);
1872 		goto err_free;
1873 	}
1874 
1875 	seq = drm_vblank_count_and_time(dev, pipe, &now);
1876 	req_seq = queue_seq->sequence;
1877 
1878 	if (flags & DRM_CRTC_SEQUENCE_RELATIVE)
1879 		req_seq += seq;
1880 
1881 	if ((flags & DRM_CRTC_SEQUENCE_NEXT_ON_MISS) && vblank_passed(seq, req_seq))
1882 		req_seq = seq + 1;
1883 
1884 	e->pipe = pipe;
1885 	e->event.base.type = DRM_EVENT_CRTC_SEQUENCE;
1886 	e->event.base.length = sizeof(e->event.seq);
1887 	e->event.seq.user_data = queue_seq->user_data;
1888 
1889 	spin_lock_irqsave(&dev->event_lock, spin_flags);
1890 
1891 	/*
1892 	 * drm_crtc_vblank_off() might have been called after we called
1893 	 * drm_crtc_vblank_get(). drm_crtc_vblank_off() holds event_lock around the
1894 	 * vblank disable, so no need for further locking.  The reference from
1895 	 * drm_crtc_vblank_get() protects against vblank disable from another source.
1896 	 */
1897 	if (!READ_ONCE(vblank->enabled)) {
1898 		ret = -EINVAL;
1899 		goto err_unlock;
1900 	}
1901 
1902 	ret = drm_event_reserve_init_locked(dev, file_priv, &e->base,
1903 					    &e->event.base);
1904 
1905 	if (ret)
1906 		goto err_unlock;
1907 
1908 	e->sequence = req_seq;
1909 
1910 	if (vblank_passed(seq, req_seq)) {
1911 		drm_crtc_vblank_put(crtc);
1912 		send_vblank_event(dev, e, seq, now);
1913 		queue_seq->sequence = seq;
1914 	} else {
1915 		/* drm_handle_vblank_events will call drm_vblank_put */
1916 		list_add_tail(&e->base.link, &dev->vblank_event_list);
1917 		queue_seq->sequence = req_seq;
1918 	}
1919 
1920 	spin_unlock_irqrestore(&dev->event_lock, spin_flags);
1921 	return 0;
1922 
1923 err_unlock:
1924 	spin_unlock_irqrestore(&dev->event_lock, spin_flags);
1925 	drm_crtc_vblank_put(crtc);
1926 err_free:
1927 	kfree(e);
1928 	return ret;
1929 }
1930