1 /* 2 * drm_irq.c IRQ and vblank support 3 * 4 * \author Rickard E. (Rik) Faith <faith@valinux.com> 5 * \author Gareth Hughes <gareth@valinux.com> 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a 8 * copy of this software and associated documentation files (the "Software"), 9 * to deal in the Software without restriction, including without limitation 10 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 11 * and/or sell copies of the Software, and to permit persons to whom the 12 * Software is furnished to do so, subject to the following conditions: 13 * 14 * The above copyright notice and this permission notice (including the next 15 * paragraph) shall be included in all copies or substantial portions of the 16 * Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 21 * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 22 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 23 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 24 * OTHER DEALINGS IN THE SOFTWARE. 25 */ 26 27 #include <linux/export.h> 28 #include <linux/moduleparam.h> 29 30 #include <drm/drm_crtc.h> 31 #include <drm/drm_drv.h> 32 #include <drm/drm_framebuffer.h> 33 #include <drm/drm_modeset_helper_vtables.h> 34 #include <drm/drm_print.h> 35 #include <drm/drm_vblank.h> 36 37 #include "drm_internal.h" 38 #include "drm_trace.h" 39 40 /** 41 * DOC: vblank handling 42 * 43 * Vertical blanking plays a major role in graphics rendering. To achieve 44 * tear-free display, users must synchronize page flips and/or rendering to 45 * vertical blanking. The DRM API offers ioctls to perform page flips 46 * synchronized to vertical blanking and wait for vertical blanking. 47 * 48 * The DRM core handles most of the vertical blanking management logic, which 49 * involves filtering out spurious interrupts, keeping race-free blanking 50 * counters, coping with counter wrap-around and resets and keeping use counts. 51 * It relies on the driver to generate vertical blanking interrupts and 52 * optionally provide a hardware vertical blanking counter. 53 * 54 * Drivers must initialize the vertical blanking handling core with a call to 55 * drm_vblank_init(). Minimally, a driver needs to implement 56 * &drm_crtc_funcs.enable_vblank and &drm_crtc_funcs.disable_vblank plus call 57 * drm_crtc_handle_vblank() in its vblank interrupt handler for working vblank 58 * support. 59 * 60 * Vertical blanking interrupts can be enabled by the DRM core or by drivers 61 * themselves (for instance to handle page flipping operations). The DRM core 62 * maintains a vertical blanking use count to ensure that the interrupts are not 63 * disabled while a user still needs them. To increment the use count, drivers 64 * call drm_crtc_vblank_get() and release the vblank reference again with 65 * drm_crtc_vblank_put(). In between these two calls vblank interrupts are 66 * guaranteed to be enabled. 67 * 68 * On many hardware disabling the vblank interrupt cannot be done in a race-free 69 * manner, see &drm_driver.vblank_disable_immediate and 70 * &drm_driver.max_vblank_count. In that case the vblank core only disables the 71 * vblanks after a timer has expired, which can be configured through the 72 * ``vblankoffdelay`` module parameter. 73 * 74 * Drivers for hardware without support for vertical-blanking interrupts 75 * must not call drm_vblank_init(). For such drivers, atomic helpers will 76 * automatically generate fake vblank events as part of the display update. 77 * This functionality also can be controlled by the driver by enabling and 78 * disabling struct drm_crtc_state.no_vblank. 79 */ 80 81 /* Retry timestamp calculation up to 3 times to satisfy 82 * drm_timestamp_precision before giving up. 83 */ 84 #define DRM_TIMESTAMP_MAXRETRIES 3 85 86 /* Threshold in nanoseconds for detection of redundant 87 * vblank irq in drm_handle_vblank(). 1 msec should be ok. 88 */ 89 #define DRM_REDUNDANT_VBLIRQ_THRESH_NS 1000000 90 91 static bool 92 drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe, 93 ktime_t *tvblank, bool in_vblank_irq); 94 95 static unsigned int drm_timestamp_precision = 20; /* Default to 20 usecs. */ 96 97 static int drm_vblank_offdelay = 5000; /* Default to 5000 msecs. */ 98 99 module_param_named(vblankoffdelay, drm_vblank_offdelay, int, 0600); 100 module_param_named(timestamp_precision_usec, drm_timestamp_precision, int, 0600); 101 MODULE_PARM_DESC(vblankoffdelay, "Delay until vblank irq auto-disable [msecs] (0: never disable, <0: disable immediately)"); 102 MODULE_PARM_DESC(timestamp_precision_usec, "Max. error on timestamps [usecs]"); 103 104 static void store_vblank(struct drm_device *dev, unsigned int pipe, 105 u32 vblank_count_inc, 106 ktime_t t_vblank, u32 last) 107 { 108 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 109 110 assert_spin_locked(&dev->vblank_time_lock); 111 112 vblank->last = last; 113 114 write_seqlock(&vblank->seqlock); 115 vblank->time = t_vblank; 116 atomic64_add(vblank_count_inc, &vblank->count); 117 write_sequnlock(&vblank->seqlock); 118 } 119 120 static u32 drm_max_vblank_count(struct drm_device *dev, unsigned int pipe) 121 { 122 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 123 124 return vblank->max_vblank_count ?: dev->max_vblank_count; 125 } 126 127 /* 128 * "No hw counter" fallback implementation of .get_vblank_counter() hook, 129 * if there is no useable hardware frame counter available. 130 */ 131 static u32 drm_vblank_no_hw_counter(struct drm_device *dev, unsigned int pipe) 132 { 133 WARN_ON_ONCE(drm_max_vblank_count(dev, pipe) != 0); 134 return 0; 135 } 136 137 static u32 __get_vblank_counter(struct drm_device *dev, unsigned int pipe) 138 { 139 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 140 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 141 142 if (WARN_ON(!crtc)) 143 return 0; 144 145 if (crtc->funcs->get_vblank_counter) 146 return crtc->funcs->get_vblank_counter(crtc); 147 } else if (dev->driver->get_vblank_counter) { 148 return dev->driver->get_vblank_counter(dev, pipe); 149 } 150 151 return drm_vblank_no_hw_counter(dev, pipe); 152 } 153 154 /* 155 * Reset the stored timestamp for the current vblank count to correspond 156 * to the last vblank occurred. 157 * 158 * Only to be called from drm_crtc_vblank_on(). 159 * 160 * Note: caller must hold &drm_device.vbl_lock since this reads & writes 161 * device vblank fields. 162 */ 163 static void drm_reset_vblank_timestamp(struct drm_device *dev, unsigned int pipe) 164 { 165 u32 cur_vblank; 166 bool rc; 167 ktime_t t_vblank; 168 int count = DRM_TIMESTAMP_MAXRETRIES; 169 170 spin_lock(&dev->vblank_time_lock); 171 172 /* 173 * sample the current counter to avoid random jumps 174 * when drm_vblank_enable() applies the diff 175 */ 176 do { 177 cur_vblank = __get_vblank_counter(dev, pipe); 178 rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, false); 179 } while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0); 180 181 /* 182 * Only reinitialize corresponding vblank timestamp if high-precision query 183 * available and didn't fail. Otherwise reinitialize delayed at next vblank 184 * interrupt and assign 0 for now, to mark the vblanktimestamp as invalid. 185 */ 186 if (!rc) 187 t_vblank = 0; 188 189 /* 190 * +1 to make sure user will never see the same 191 * vblank counter value before and after a modeset 192 */ 193 store_vblank(dev, pipe, 1, t_vblank, cur_vblank); 194 195 spin_unlock(&dev->vblank_time_lock); 196 } 197 198 /* 199 * Call back into the driver to update the appropriate vblank counter 200 * (specified by @pipe). Deal with wraparound, if it occurred, and 201 * update the last read value so we can deal with wraparound on the next 202 * call if necessary. 203 * 204 * Only necessary when going from off->on, to account for frames we 205 * didn't get an interrupt for. 206 * 207 * Note: caller must hold &drm_device.vbl_lock since this reads & writes 208 * device vblank fields. 209 */ 210 static void drm_update_vblank_count(struct drm_device *dev, unsigned int pipe, 211 bool in_vblank_irq) 212 { 213 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 214 u32 cur_vblank, diff; 215 bool rc; 216 ktime_t t_vblank; 217 int count = DRM_TIMESTAMP_MAXRETRIES; 218 int framedur_ns = vblank->framedur_ns; 219 u32 max_vblank_count = drm_max_vblank_count(dev, pipe); 220 221 /* 222 * Interrupts were disabled prior to this call, so deal with counter 223 * wrap if needed. 224 * NOTE! It's possible we lost a full dev->max_vblank_count + 1 events 225 * here if the register is small or we had vblank interrupts off for 226 * a long time. 227 * 228 * We repeat the hardware vblank counter & timestamp query until 229 * we get consistent results. This to prevent races between gpu 230 * updating its hardware counter while we are retrieving the 231 * corresponding vblank timestamp. 232 */ 233 do { 234 cur_vblank = __get_vblank_counter(dev, pipe); 235 rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, in_vblank_irq); 236 } while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0); 237 238 if (max_vblank_count) { 239 /* trust the hw counter when it's around */ 240 diff = (cur_vblank - vblank->last) & max_vblank_count; 241 } else if (rc && framedur_ns) { 242 u64 diff_ns = ktime_to_ns(ktime_sub(t_vblank, vblank->time)); 243 244 /* 245 * Figure out how many vblanks we've missed based 246 * on the difference in the timestamps and the 247 * frame/field duration. 248 */ 249 250 DRM_DEBUG_VBL("crtc %u: Calculating number of vblanks." 251 " diff_ns = %lld, framedur_ns = %d)\n", 252 pipe, (long long) diff_ns, framedur_ns); 253 254 diff = DIV_ROUND_CLOSEST_ULL(diff_ns, framedur_ns); 255 256 if (diff == 0 && in_vblank_irq) 257 DRM_DEBUG_VBL("crtc %u: Redundant vblirq ignored\n", 258 pipe); 259 } else { 260 /* some kind of default for drivers w/o accurate vbl timestamping */ 261 diff = in_vblank_irq ? 1 : 0; 262 } 263 264 /* 265 * Within a drm_vblank_pre_modeset - drm_vblank_post_modeset 266 * interval? If so then vblank irqs keep running and it will likely 267 * happen that the hardware vblank counter is not trustworthy as it 268 * might reset at some point in that interval and vblank timestamps 269 * are not trustworthy either in that interval. Iow. this can result 270 * in a bogus diff >> 1 which must be avoided as it would cause 271 * random large forward jumps of the software vblank counter. 272 */ 273 if (diff > 1 && (vblank->inmodeset & 0x2)) { 274 DRM_DEBUG_VBL("clamping vblank bump to 1 on crtc %u: diffr=%u" 275 " due to pre-modeset.\n", pipe, diff); 276 diff = 1; 277 } 278 279 DRM_DEBUG_VBL("updating vblank count on crtc %u:" 280 " current=%llu, diff=%u, hw=%u hw_last=%u\n", 281 pipe, atomic64_read(&vblank->count), diff, 282 cur_vblank, vblank->last); 283 284 if (diff == 0) { 285 WARN_ON_ONCE(cur_vblank != vblank->last); 286 return; 287 } 288 289 /* 290 * Only reinitialize corresponding vblank timestamp if high-precision query 291 * available and didn't fail, or we were called from the vblank interrupt. 292 * Otherwise reinitialize delayed at next vblank interrupt and assign 0 293 * for now, to mark the vblanktimestamp as invalid. 294 */ 295 if (!rc && !in_vblank_irq) 296 t_vblank = 0; 297 298 store_vblank(dev, pipe, diff, t_vblank, cur_vblank); 299 } 300 301 static u64 drm_vblank_count(struct drm_device *dev, unsigned int pipe) 302 { 303 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 304 u64 count; 305 306 if (WARN_ON(pipe >= dev->num_crtcs)) 307 return 0; 308 309 count = atomic64_read(&vblank->count); 310 311 /* 312 * This read barrier corresponds to the implicit write barrier of the 313 * write seqlock in store_vblank(). Note that this is the only place 314 * where we need an explicit barrier, since all other access goes 315 * through drm_vblank_count_and_time(), which already has the required 316 * read barrier curtesy of the read seqlock. 317 */ 318 smp_rmb(); 319 320 return count; 321 } 322 323 /** 324 * drm_crtc_accurate_vblank_count - retrieve the master vblank counter 325 * @crtc: which counter to retrieve 326 * 327 * This function is similar to drm_crtc_vblank_count() but this function 328 * interpolates to handle a race with vblank interrupts using the high precision 329 * timestamping support. 330 * 331 * This is mostly useful for hardware that can obtain the scanout position, but 332 * doesn't have a hardware frame counter. 333 */ 334 u64 drm_crtc_accurate_vblank_count(struct drm_crtc *crtc) 335 { 336 struct drm_device *dev = crtc->dev; 337 unsigned int pipe = drm_crtc_index(crtc); 338 u64 vblank; 339 unsigned long flags; 340 341 WARN_ONCE(drm_debug_enabled(DRM_UT_VBL) && 342 !crtc->funcs->get_vblank_timestamp, 343 "This function requires support for accurate vblank timestamps."); 344 345 spin_lock_irqsave(&dev->vblank_time_lock, flags); 346 347 drm_update_vblank_count(dev, pipe, false); 348 vblank = drm_vblank_count(dev, pipe); 349 350 spin_unlock_irqrestore(&dev->vblank_time_lock, flags); 351 352 return vblank; 353 } 354 EXPORT_SYMBOL(drm_crtc_accurate_vblank_count); 355 356 static void __disable_vblank(struct drm_device *dev, unsigned int pipe) 357 { 358 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 359 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 360 361 if (WARN_ON(!crtc)) 362 return; 363 364 if (crtc->funcs->disable_vblank) 365 crtc->funcs->disable_vblank(crtc); 366 } else { 367 dev->driver->disable_vblank(dev, pipe); 368 } 369 } 370 371 /* 372 * Disable vblank irq's on crtc, make sure that last vblank count 373 * of hardware and corresponding consistent software vblank counter 374 * are preserved, even if there are any spurious vblank irq's after 375 * disable. 376 */ 377 void drm_vblank_disable_and_save(struct drm_device *dev, unsigned int pipe) 378 { 379 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 380 unsigned long irqflags; 381 382 assert_spin_locked(&dev->vbl_lock); 383 384 /* Prevent vblank irq processing while disabling vblank irqs, 385 * so no updates of timestamps or count can happen after we've 386 * disabled. Needed to prevent races in case of delayed irq's. 387 */ 388 spin_lock_irqsave(&dev->vblank_time_lock, irqflags); 389 390 /* 391 * Update vblank count and disable vblank interrupts only if the 392 * interrupts were enabled. This avoids calling the ->disable_vblank() 393 * operation in atomic context with the hardware potentially runtime 394 * suspended. 395 */ 396 if (!vblank->enabled) 397 goto out; 398 399 /* 400 * Update the count and timestamp to maintain the 401 * appearance that the counter has been ticking all along until 402 * this time. This makes the count account for the entire time 403 * between drm_crtc_vblank_on() and drm_crtc_vblank_off(). 404 */ 405 drm_update_vblank_count(dev, pipe, false); 406 __disable_vblank(dev, pipe); 407 vblank->enabled = false; 408 409 out: 410 spin_unlock_irqrestore(&dev->vblank_time_lock, irqflags); 411 } 412 413 static void vblank_disable_fn(void *arg) 414 { 415 struct drm_vblank_crtc *vblank = arg; 416 struct drm_device *dev = vblank->dev; 417 unsigned int pipe = vblank->pipe; 418 unsigned long irqflags; 419 420 spin_lock_irqsave(&dev->vbl_lock, irqflags); 421 if (atomic_read(&vblank->refcount) == 0 && vblank->enabled) { 422 DRM_DEBUG("disabling vblank on crtc %u\n", pipe); 423 drm_vblank_disable_and_save(dev, pipe); 424 } 425 spin_unlock_irqrestore(&dev->vbl_lock, irqflags); 426 } 427 428 void drm_vblank_cleanup(struct drm_device *dev) 429 { 430 unsigned int pipe; 431 432 /* Bail if the driver didn't call drm_vblank_init() */ 433 if (dev->num_crtcs == 0) 434 return; 435 436 for (pipe = 0; pipe < dev->num_crtcs; pipe++) { 437 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 438 439 WARN_ON(READ_ONCE(vblank->enabled) && 440 drm_core_check_feature(dev, DRIVER_MODESET)); 441 442 del_timer_sync(&vblank->disable_timer); 443 } 444 445 kfree(dev->vblank); 446 447 dev->num_crtcs = 0; 448 } 449 450 /** 451 * drm_vblank_init - initialize vblank support 452 * @dev: DRM device 453 * @num_crtcs: number of CRTCs supported by @dev 454 * 455 * This function initializes vblank support for @num_crtcs display pipelines. 456 * Cleanup is handled by the DRM core, or through calling drm_dev_fini() for 457 * drivers with a &drm_driver.release callback. 458 * 459 * Returns: 460 * Zero on success or a negative error code on failure. 461 */ 462 int drm_vblank_init(struct drm_device *dev, unsigned int num_crtcs) 463 { 464 int ret = -ENOMEM; 465 unsigned int i; 466 467 mtx_init(&dev->vbl_lock, IPL_TTY); 468 mtx_init(&dev->vblank_time_lock, IPL_TTY); 469 470 dev->num_crtcs = num_crtcs; 471 472 dev->vblank = kcalloc(num_crtcs, sizeof(*dev->vblank), GFP_KERNEL); 473 if (!dev->vblank) 474 goto err; 475 476 for (i = 0; i < num_crtcs; i++) { 477 struct drm_vblank_crtc *vblank = &dev->vblank[i]; 478 479 vblank->dev = dev; 480 vblank->pipe = i; 481 init_waitqueue_head(&vblank->queue); 482 #ifdef __linux__ 483 timer_setup(&vblank->disable_timer, vblank_disable_fn, 0); 484 #else 485 timeout_set(&vblank->disable_timer, vblank_disable_fn, vblank); 486 #endif 487 seqlock_init(&vblank->seqlock, IPL_TTY); 488 } 489 490 DRM_INFO("Supports vblank timestamp caching Rev 2 (21.10.2013).\n"); 491 492 return 0; 493 494 err: 495 dev->num_crtcs = 0; 496 return ret; 497 } 498 EXPORT_SYMBOL(drm_vblank_init); 499 500 /** 501 * drm_dev_has_vblank - test if vblanking has been initialized for 502 * a device 503 * @dev: the device 504 * 505 * Drivers may call this function to test if vblank support is 506 * initialized for a device. For most hardware this means that vblanking 507 * can also be enabled. 508 * 509 * Atomic helpers use this function to initialize 510 * &drm_crtc_state.no_vblank. See also drm_atomic_helper_check_modeset(). 511 * 512 * Returns: 513 * True if vblanking has been initialized for the given device, false 514 * otherwise. 515 */ 516 bool drm_dev_has_vblank(const struct drm_device *dev) 517 { 518 return dev->num_crtcs != 0; 519 } 520 EXPORT_SYMBOL(drm_dev_has_vblank); 521 522 /** 523 * drm_crtc_vblank_waitqueue - get vblank waitqueue for the CRTC 524 * @crtc: which CRTC's vblank waitqueue to retrieve 525 * 526 * This function returns a pointer to the vblank waitqueue for the CRTC. 527 * Drivers can use this to implement vblank waits using wait_event() and related 528 * functions. 529 */ 530 wait_queue_head_t *drm_crtc_vblank_waitqueue(struct drm_crtc *crtc) 531 { 532 return &crtc->dev->vblank[drm_crtc_index(crtc)].queue; 533 } 534 EXPORT_SYMBOL(drm_crtc_vblank_waitqueue); 535 536 537 /** 538 * drm_calc_timestamping_constants - calculate vblank timestamp constants 539 * @crtc: drm_crtc whose timestamp constants should be updated. 540 * @mode: display mode containing the scanout timings 541 * 542 * Calculate and store various constants which are later needed by vblank and 543 * swap-completion timestamping, e.g, by 544 * drm_crtc_vblank_helper_get_vblank_timestamp(). They are derived from 545 * CRTC's true scanout timing, so they take things like panel scaling or 546 * other adjustments into account. 547 */ 548 void drm_calc_timestamping_constants(struct drm_crtc *crtc, 549 const struct drm_display_mode *mode) 550 { 551 struct drm_device *dev = crtc->dev; 552 unsigned int pipe = drm_crtc_index(crtc); 553 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 554 int linedur_ns = 0, framedur_ns = 0; 555 int dotclock = mode->crtc_clock; 556 557 if (!dev->num_crtcs) 558 return; 559 560 if (WARN_ON(pipe >= dev->num_crtcs)) 561 return; 562 563 /* Valid dotclock? */ 564 if (dotclock > 0) { 565 int frame_size = mode->crtc_htotal * mode->crtc_vtotal; 566 567 /* 568 * Convert scanline length in pixels and video 569 * dot clock to line duration and frame duration 570 * in nanoseconds: 571 */ 572 linedur_ns = div_u64((u64) mode->crtc_htotal * 1000000, dotclock); 573 framedur_ns = div_u64((u64) frame_size * 1000000, dotclock); 574 575 /* 576 * Fields of interlaced scanout modes are only half a frame duration. 577 */ 578 if (mode->flags & DRM_MODE_FLAG_INTERLACE) 579 framedur_ns /= 2; 580 } else 581 DRM_ERROR("crtc %u: Can't calculate constants, dotclock = 0!\n", 582 crtc->base.id); 583 584 vblank->linedur_ns = linedur_ns; 585 vblank->framedur_ns = framedur_ns; 586 vblank->hwmode = *mode; 587 588 DRM_DEBUG("crtc %u: hwmode: htotal %d, vtotal %d, vdisplay %d\n", 589 crtc->base.id, mode->crtc_htotal, 590 mode->crtc_vtotal, mode->crtc_vdisplay); 591 DRM_DEBUG("crtc %u: clock %d kHz framedur %d linedur %d\n", 592 crtc->base.id, dotclock, framedur_ns, linedur_ns); 593 } 594 EXPORT_SYMBOL(drm_calc_timestamping_constants); 595 596 /** 597 * drm_crtc_vblank_helper_get_vblank_timestamp_internal - precise vblank 598 * timestamp helper 599 * @crtc: CRTC whose vblank timestamp to retrieve 600 * @max_error: Desired maximum allowable error in timestamps (nanosecs) 601 * On return contains true maximum error of timestamp 602 * @vblank_time: Pointer to time which should receive the timestamp 603 * @in_vblank_irq: 604 * True when called from drm_crtc_handle_vblank(). Some drivers 605 * need to apply some workarounds for gpu-specific vblank irq quirks 606 * if flag is set. 607 * @get_scanout_position: 608 * Callback function to retrieve the scanout position. See 609 * @struct drm_crtc_helper_funcs.get_scanout_position. 610 * 611 * Implements calculation of exact vblank timestamps from given drm_display_mode 612 * timings and current video scanout position of a CRTC. 613 * 614 * The current implementation only handles standard video modes. For double scan 615 * and interlaced modes the driver is supposed to adjust the hardware mode 616 * (taken from &drm_crtc_state.adjusted mode for atomic modeset drivers) to 617 * match the scanout position reported. 618 * 619 * Note that atomic drivers must call drm_calc_timestamping_constants() before 620 * enabling a CRTC. The atomic helpers already take care of that in 621 * drm_atomic_helper_update_legacy_modeset_state(). 622 * 623 * Returns: 624 * 625 * Returns true on success, and false on failure, i.e. when no accurate 626 * timestamp could be acquired. 627 */ 628 bool 629 drm_crtc_vblank_helper_get_vblank_timestamp_internal( 630 struct drm_crtc *crtc, int *max_error, ktime_t *vblank_time, 631 bool in_vblank_irq, 632 drm_vblank_get_scanout_position_func get_scanout_position) 633 { 634 struct drm_device *dev = crtc->dev; 635 unsigned int pipe = crtc->index; 636 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 637 struct timespec64 ts_etime, ts_vblank_time; 638 ktime_t stime, etime; 639 bool vbl_status; 640 const struct drm_display_mode *mode; 641 int vpos, hpos, i; 642 int delta_ns, duration_ns; 643 644 if (pipe >= dev->num_crtcs) { 645 DRM_ERROR("Invalid crtc %u\n", pipe); 646 return false; 647 } 648 649 /* Scanout position query not supported? Should not happen. */ 650 if (!get_scanout_position) { 651 DRM_ERROR("Called from CRTC w/o get_scanout_position()!?\n"); 652 return false; 653 } 654 655 if (drm_drv_uses_atomic_modeset(dev)) 656 mode = &vblank->hwmode; 657 else 658 mode = &crtc->hwmode; 659 660 /* If mode timing undefined, just return as no-op: 661 * Happens during initial modesetting of a crtc. 662 */ 663 if (mode->crtc_clock == 0) { 664 DRM_DEBUG("crtc %u: Noop due to uninitialized mode.\n", pipe); 665 WARN_ON_ONCE(drm_drv_uses_atomic_modeset(dev)); 666 return false; 667 } 668 669 /* Get current scanout position with system timestamp. 670 * Repeat query up to DRM_TIMESTAMP_MAXRETRIES times 671 * if single query takes longer than max_error nanoseconds. 672 * 673 * This guarantees a tight bound on maximum error if 674 * code gets preempted or delayed for some reason. 675 */ 676 for (i = 0; i < DRM_TIMESTAMP_MAXRETRIES; i++) { 677 /* 678 * Get vertical and horizontal scanout position vpos, hpos, 679 * and bounding timestamps stime, etime, pre/post query. 680 */ 681 vbl_status = get_scanout_position(crtc, in_vblank_irq, 682 &vpos, &hpos, 683 &stime, &etime, 684 mode); 685 686 /* Return as no-op if scanout query unsupported or failed. */ 687 if (!vbl_status) { 688 DRM_DEBUG("crtc %u : scanoutpos query failed.\n", 689 pipe); 690 return false; 691 } 692 693 /* Compute uncertainty in timestamp of scanout position query. */ 694 duration_ns = ktime_to_ns(etime) - ktime_to_ns(stime); 695 696 /* Accept result with < max_error nsecs timing uncertainty. */ 697 if (duration_ns <= *max_error) 698 break; 699 } 700 701 /* Noisy system timing? */ 702 if (i == DRM_TIMESTAMP_MAXRETRIES) { 703 DRM_DEBUG("crtc %u: Noisy timestamp %d us > %d us [%d reps].\n", 704 pipe, duration_ns/1000, *max_error/1000, i); 705 } 706 707 /* Return upper bound of timestamp precision error. */ 708 *max_error = duration_ns; 709 710 /* Convert scanout position into elapsed time at raw_time query 711 * since start of scanout at first display scanline. delta_ns 712 * can be negative if start of scanout hasn't happened yet. 713 */ 714 delta_ns = div_s64(1000000LL * (vpos * mode->crtc_htotal + hpos), 715 mode->crtc_clock); 716 717 /* Subtract time delta from raw timestamp to get final 718 * vblank_time timestamp for end of vblank. 719 */ 720 *vblank_time = ktime_sub_ns(etime, delta_ns); 721 722 if (!drm_debug_enabled(DRM_UT_VBL)) 723 return true; 724 725 ts_etime = ktime_to_timespec64(etime); 726 ts_vblank_time = ktime_to_timespec64(*vblank_time); 727 728 DRM_DEBUG_VBL("crtc %u : v p(%d,%d)@ %lld.%06ld -> %lld.%06ld [e %d us, %d rep]\n", 729 pipe, hpos, vpos, 730 (u64)ts_etime.tv_sec, ts_etime.tv_nsec / 1000, 731 (u64)ts_vblank_time.tv_sec, ts_vblank_time.tv_nsec / 1000, 732 duration_ns / 1000, i); 733 734 return true; 735 } 736 EXPORT_SYMBOL(drm_crtc_vblank_helper_get_vblank_timestamp_internal); 737 738 /** 739 * drm_crtc_vblank_helper_get_vblank_timestamp - precise vblank timestamp 740 * helper 741 * @crtc: CRTC whose vblank timestamp to retrieve 742 * @max_error: Desired maximum allowable error in timestamps (nanosecs) 743 * On return contains true maximum error of timestamp 744 * @vblank_time: Pointer to time which should receive the timestamp 745 * @in_vblank_irq: 746 * True when called from drm_crtc_handle_vblank(). Some drivers 747 * need to apply some workarounds for gpu-specific vblank irq quirks 748 * if flag is set. 749 * 750 * Implements calculation of exact vblank timestamps from given drm_display_mode 751 * timings and current video scanout position of a CRTC. This can be directly 752 * used as the &drm_crtc_funcs.get_vblank_timestamp implementation of a kms 753 * driver if &drm_crtc_helper_funcs.get_scanout_position is implemented. 754 * 755 * The current implementation only handles standard video modes. For double scan 756 * and interlaced modes the driver is supposed to adjust the hardware mode 757 * (taken from &drm_crtc_state.adjusted mode for atomic modeset drivers) to 758 * match the scanout position reported. 759 * 760 * Note that atomic drivers must call drm_calc_timestamping_constants() before 761 * enabling a CRTC. The atomic helpers already take care of that in 762 * drm_atomic_helper_update_legacy_modeset_state(). 763 * 764 * Returns: 765 * 766 * Returns true on success, and false on failure, i.e. when no accurate 767 * timestamp could be acquired. 768 */ 769 bool drm_crtc_vblank_helper_get_vblank_timestamp(struct drm_crtc *crtc, 770 int *max_error, 771 ktime_t *vblank_time, 772 bool in_vblank_irq) 773 { 774 return drm_crtc_vblank_helper_get_vblank_timestamp_internal( 775 crtc, max_error, vblank_time, in_vblank_irq, 776 crtc->helper_private->get_scanout_position); 777 } 778 EXPORT_SYMBOL(drm_crtc_vblank_helper_get_vblank_timestamp); 779 780 /** 781 * drm_get_last_vbltimestamp - retrieve raw timestamp for the most recent 782 * vblank interval 783 * @dev: DRM device 784 * @pipe: index of CRTC whose vblank timestamp to retrieve 785 * @tvblank: Pointer to target time which should receive the timestamp 786 * @in_vblank_irq: 787 * True when called from drm_crtc_handle_vblank(). Some drivers 788 * need to apply some workarounds for gpu-specific vblank irq quirks 789 * if flag is set. 790 * 791 * Fetches the system timestamp corresponding to the time of the most recent 792 * vblank interval on specified CRTC. May call into kms-driver to 793 * compute the timestamp with a high-precision GPU specific method. 794 * 795 * Returns zero if timestamp originates from uncorrected do_gettimeofday() 796 * call, i.e., it isn't very precisely locked to the true vblank. 797 * 798 * Returns: 799 * True if timestamp is considered to be very precise, false otherwise. 800 */ 801 static bool 802 drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe, 803 ktime_t *tvblank, bool in_vblank_irq) 804 { 805 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 806 bool ret = false; 807 808 /* Define requested maximum error on timestamps (nanoseconds). */ 809 int max_error = (int) drm_timestamp_precision * 1000; 810 811 /* Query driver if possible and precision timestamping enabled. */ 812 if (crtc && crtc->funcs->get_vblank_timestamp && max_error > 0) { 813 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 814 815 ret = crtc->funcs->get_vblank_timestamp(crtc, &max_error, 816 tvblank, in_vblank_irq); 817 } 818 819 /* GPU high precision timestamp query unsupported or failed. 820 * Return current monotonic/gettimeofday timestamp as best estimate. 821 */ 822 if (!ret) 823 *tvblank = ktime_get(); 824 825 return ret; 826 } 827 828 /** 829 * drm_crtc_vblank_count - retrieve "cooked" vblank counter value 830 * @crtc: which counter to retrieve 831 * 832 * Fetches the "cooked" vblank count value that represents the number of 833 * vblank events since the system was booted, including lost events due to 834 * modesetting activity. Note that this timer isn't correct against a racing 835 * vblank interrupt (since it only reports the software vblank counter), see 836 * drm_crtc_accurate_vblank_count() for such use-cases. 837 * 838 * Note that for a given vblank counter value drm_crtc_handle_vblank() 839 * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time() 840 * provide a barrier: Any writes done before calling 841 * drm_crtc_handle_vblank() will be visible to callers of the later 842 * functions, iff the vblank count is the same or a later one. 843 * 844 * See also &drm_vblank_crtc.count. 845 * 846 * Returns: 847 * The software vblank counter. 848 */ 849 u64 drm_crtc_vblank_count(struct drm_crtc *crtc) 850 { 851 return drm_vblank_count(crtc->dev, drm_crtc_index(crtc)); 852 } 853 EXPORT_SYMBOL(drm_crtc_vblank_count); 854 855 /** 856 * drm_vblank_count_and_time - retrieve "cooked" vblank counter value and the 857 * system timestamp corresponding to that vblank counter value. 858 * @dev: DRM device 859 * @pipe: index of CRTC whose counter to retrieve 860 * @vblanktime: Pointer to ktime_t to receive the vblank timestamp. 861 * 862 * Fetches the "cooked" vblank count value that represents the number of 863 * vblank events since the system was booted, including lost events due to 864 * modesetting activity. Returns corresponding system timestamp of the time 865 * of the vblank interval that corresponds to the current vblank counter value. 866 * 867 * This is the legacy version of drm_crtc_vblank_count_and_time(). 868 */ 869 static u64 drm_vblank_count_and_time(struct drm_device *dev, unsigned int pipe, 870 ktime_t *vblanktime) 871 { 872 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 873 u64 vblank_count; 874 unsigned int seq; 875 876 if (WARN_ON(pipe >= dev->num_crtcs)) { 877 *vblanktime = 0; 878 return 0; 879 } 880 881 do { 882 seq = read_seqbegin(&vblank->seqlock); 883 vblank_count = atomic64_read(&vblank->count); 884 *vblanktime = vblank->time; 885 } while (read_seqretry(&vblank->seqlock, seq)); 886 887 return vblank_count; 888 } 889 890 /** 891 * drm_crtc_vblank_count_and_time - retrieve "cooked" vblank counter value 892 * and the system timestamp corresponding to that vblank counter value 893 * @crtc: which counter to retrieve 894 * @vblanktime: Pointer to time to receive the vblank timestamp. 895 * 896 * Fetches the "cooked" vblank count value that represents the number of 897 * vblank events since the system was booted, including lost events due to 898 * modesetting activity. Returns corresponding system timestamp of the time 899 * of the vblank interval that corresponds to the current vblank counter value. 900 * 901 * Note that for a given vblank counter value drm_crtc_handle_vblank() 902 * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time() 903 * provide a barrier: Any writes done before calling 904 * drm_crtc_handle_vblank() will be visible to callers of the later 905 * functions, iff the vblank count is the same or a later one. 906 * 907 * See also &drm_vblank_crtc.count. 908 */ 909 u64 drm_crtc_vblank_count_and_time(struct drm_crtc *crtc, 910 ktime_t *vblanktime) 911 { 912 return drm_vblank_count_and_time(crtc->dev, drm_crtc_index(crtc), 913 vblanktime); 914 } 915 EXPORT_SYMBOL(drm_crtc_vblank_count_and_time); 916 917 static void send_vblank_event(struct drm_device *dev, 918 struct drm_pending_vblank_event *e, 919 u64 seq, ktime_t now) 920 { 921 struct timespec64 tv; 922 923 switch (e->event.base.type) { 924 case DRM_EVENT_VBLANK: 925 case DRM_EVENT_FLIP_COMPLETE: 926 tv = ktime_to_timespec64(now); 927 e->event.vbl.sequence = seq; 928 /* 929 * e->event is a user space structure, with hardcoded unsigned 930 * 32-bit seconds/microseconds. This is safe as we always use 931 * monotonic timestamps since linux-4.15 932 */ 933 e->event.vbl.tv_sec = tv.tv_sec; 934 e->event.vbl.tv_usec = tv.tv_nsec / 1000; 935 break; 936 case DRM_EVENT_CRTC_SEQUENCE: 937 if (seq) 938 e->event.seq.sequence = seq; 939 e->event.seq.time_ns = ktime_to_ns(now); 940 break; 941 } 942 trace_drm_vblank_event_delivered(e->base.file_priv, e->pipe, seq); 943 drm_send_event_locked(dev, &e->base); 944 } 945 946 /** 947 * drm_crtc_arm_vblank_event - arm vblank event after pageflip 948 * @crtc: the source CRTC of the vblank event 949 * @e: the event to send 950 * 951 * A lot of drivers need to generate vblank events for the very next vblank 952 * interrupt. For example when the page flip interrupt happens when the page 953 * flip gets armed, but not when it actually executes within the next vblank 954 * period. This helper function implements exactly the required vblank arming 955 * behaviour. 956 * 957 * NOTE: Drivers using this to send out the &drm_crtc_state.event as part of an 958 * atomic commit must ensure that the next vblank happens at exactly the same 959 * time as the atomic commit is committed to the hardware. This function itself 960 * does **not** protect against the next vblank interrupt racing with either this 961 * function call or the atomic commit operation. A possible sequence could be: 962 * 963 * 1. Driver commits new hardware state into vblank-synchronized registers. 964 * 2. A vblank happens, committing the hardware state. Also the corresponding 965 * vblank interrupt is fired off and fully processed by the interrupt 966 * handler. 967 * 3. The atomic commit operation proceeds to call drm_crtc_arm_vblank_event(). 968 * 4. The event is only send out for the next vblank, which is wrong. 969 * 970 * An equivalent race can happen when the driver calls 971 * drm_crtc_arm_vblank_event() before writing out the new hardware state. 972 * 973 * The only way to make this work safely is to prevent the vblank from firing 974 * (and the hardware from committing anything else) until the entire atomic 975 * commit sequence has run to completion. If the hardware does not have such a 976 * feature (e.g. using a "go" bit), then it is unsafe to use this functions. 977 * Instead drivers need to manually send out the event from their interrupt 978 * handler by calling drm_crtc_send_vblank_event() and make sure that there's no 979 * possible race with the hardware committing the atomic update. 980 * 981 * Caller must hold a vblank reference for the event @e acquired by a 982 * drm_crtc_vblank_get(), which will be dropped when the next vblank arrives. 983 */ 984 void drm_crtc_arm_vblank_event(struct drm_crtc *crtc, 985 struct drm_pending_vblank_event *e) 986 { 987 struct drm_device *dev = crtc->dev; 988 unsigned int pipe = drm_crtc_index(crtc); 989 990 assert_spin_locked(&dev->event_lock); 991 992 e->pipe = pipe; 993 e->sequence = drm_crtc_accurate_vblank_count(crtc) + 1; 994 list_add_tail(&e->base.link, &dev->vblank_event_list); 995 } 996 EXPORT_SYMBOL(drm_crtc_arm_vblank_event); 997 998 /** 999 * drm_crtc_send_vblank_event - helper to send vblank event after pageflip 1000 * @crtc: the source CRTC of the vblank event 1001 * @e: the event to send 1002 * 1003 * Updates sequence # and timestamp on event for the most recently processed 1004 * vblank, and sends it to userspace. Caller must hold event lock. 1005 * 1006 * See drm_crtc_arm_vblank_event() for a helper which can be used in certain 1007 * situation, especially to send out events for atomic commit operations. 1008 */ 1009 void drm_crtc_send_vblank_event(struct drm_crtc *crtc, 1010 struct drm_pending_vblank_event *e) 1011 { 1012 struct drm_device *dev = crtc->dev; 1013 u64 seq; 1014 unsigned int pipe = drm_crtc_index(crtc); 1015 ktime_t now; 1016 1017 if (dev->num_crtcs > 0) { 1018 seq = drm_vblank_count_and_time(dev, pipe, &now); 1019 } else { 1020 seq = 0; 1021 1022 now = ktime_get(); 1023 } 1024 e->pipe = pipe; 1025 send_vblank_event(dev, e, seq, now); 1026 } 1027 EXPORT_SYMBOL(drm_crtc_send_vblank_event); 1028 1029 static int __enable_vblank(struct drm_device *dev, unsigned int pipe) 1030 { 1031 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 1032 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 1033 1034 if (WARN_ON(!crtc)) 1035 return 0; 1036 1037 if (crtc->funcs->enable_vblank) 1038 return crtc->funcs->enable_vblank(crtc); 1039 } else if (dev->driver->enable_vblank) { 1040 return dev->driver->enable_vblank(dev, pipe); 1041 } 1042 1043 return -EINVAL; 1044 } 1045 1046 static int drm_vblank_enable(struct drm_device *dev, unsigned int pipe) 1047 { 1048 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1049 int ret = 0; 1050 1051 assert_spin_locked(&dev->vbl_lock); 1052 1053 spin_lock(&dev->vblank_time_lock); 1054 1055 if (!vblank->enabled) { 1056 /* 1057 * Enable vblank irqs under vblank_time_lock protection. 1058 * All vblank count & timestamp updates are held off 1059 * until we are done reinitializing master counter and 1060 * timestamps. Filtercode in drm_handle_vblank() will 1061 * prevent double-accounting of same vblank interval. 1062 */ 1063 ret = __enable_vblank(dev, pipe); 1064 DRM_DEBUG("enabling vblank on crtc %u, ret: %d\n", pipe, ret); 1065 if (ret) { 1066 atomic_dec(&vblank->refcount); 1067 } else { 1068 drm_update_vblank_count(dev, pipe, 0); 1069 /* drm_update_vblank_count() includes a wmb so we just 1070 * need to ensure that the compiler emits the write 1071 * to mark the vblank as enabled after the call 1072 * to drm_update_vblank_count(). 1073 */ 1074 WRITE_ONCE(vblank->enabled, true); 1075 } 1076 } 1077 1078 spin_unlock(&dev->vblank_time_lock); 1079 1080 return ret; 1081 } 1082 1083 static int drm_vblank_get(struct drm_device *dev, unsigned int pipe) 1084 { 1085 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1086 unsigned long irqflags; 1087 int ret = 0; 1088 1089 if (!dev->num_crtcs) 1090 return -EINVAL; 1091 1092 if (WARN_ON(pipe >= dev->num_crtcs)) 1093 return -EINVAL; 1094 1095 spin_lock_irqsave(&dev->vbl_lock, irqflags); 1096 /* Going from 0->1 means we have to enable interrupts again */ 1097 if (atomic_add_return(1, &vblank->refcount) == 1) { 1098 ret = drm_vblank_enable(dev, pipe); 1099 } else { 1100 if (!vblank->enabled) { 1101 atomic_dec(&vblank->refcount); 1102 ret = -EINVAL; 1103 } 1104 } 1105 spin_unlock_irqrestore(&dev->vbl_lock, irqflags); 1106 1107 return ret; 1108 } 1109 1110 /** 1111 * drm_crtc_vblank_get - get a reference count on vblank events 1112 * @crtc: which CRTC to own 1113 * 1114 * Acquire a reference count on vblank events to avoid having them disabled 1115 * while in use. 1116 * 1117 * Returns: 1118 * Zero on success or a negative error code on failure. 1119 */ 1120 int drm_crtc_vblank_get(struct drm_crtc *crtc) 1121 { 1122 return drm_vblank_get(crtc->dev, drm_crtc_index(crtc)); 1123 } 1124 EXPORT_SYMBOL(drm_crtc_vblank_get); 1125 1126 static void drm_vblank_put(struct drm_device *dev, unsigned int pipe) 1127 { 1128 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1129 1130 if (WARN_ON(pipe >= dev->num_crtcs)) 1131 return; 1132 1133 if (WARN_ON(atomic_read(&vblank->refcount) == 0)) 1134 return; 1135 1136 /* Last user schedules interrupt disable */ 1137 if (atomic_dec_and_test(&vblank->refcount)) { 1138 if (drm_vblank_offdelay == 0) 1139 return; 1140 else if (drm_vblank_offdelay < 0) 1141 vblank_disable_fn(vblank); 1142 else if (!dev->vblank_disable_immediate) 1143 mod_timer(&vblank->disable_timer, 1144 jiffies + ((drm_vblank_offdelay * HZ)/1000)); 1145 } 1146 } 1147 1148 /** 1149 * drm_crtc_vblank_put - give up ownership of vblank events 1150 * @crtc: which counter to give up 1151 * 1152 * Release ownership of a given vblank counter, turning off interrupts 1153 * if possible. Disable interrupts after drm_vblank_offdelay milliseconds. 1154 */ 1155 void drm_crtc_vblank_put(struct drm_crtc *crtc) 1156 { 1157 drm_vblank_put(crtc->dev, drm_crtc_index(crtc)); 1158 } 1159 EXPORT_SYMBOL(drm_crtc_vblank_put); 1160 1161 /** 1162 * drm_wait_one_vblank - wait for one vblank 1163 * @dev: DRM device 1164 * @pipe: CRTC index 1165 * 1166 * This waits for one vblank to pass on @pipe, using the irq driver interfaces. 1167 * It is a failure to call this when the vblank irq for @pipe is disabled, e.g. 1168 * due to lack of driver support or because the crtc is off. 1169 * 1170 * This is the legacy version of drm_crtc_wait_one_vblank(). 1171 */ 1172 void drm_wait_one_vblank(struct drm_device *dev, unsigned int pipe) 1173 { 1174 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1175 int ret; 1176 u64 last; 1177 1178 if (WARN_ON(pipe >= dev->num_crtcs)) 1179 return; 1180 1181 #ifdef __OpenBSD__ 1182 /* 1183 * If we're cold, vblank interrupts won't happen even if 1184 * they're turned on by the driver. Just stall long enough 1185 * for a vblank to pass. This assumes a vrefresh of at least 1186 * 25 Hz. 1187 */ 1188 if (cold) { 1189 delay(40000); 1190 return; 1191 } 1192 #endif 1193 1194 ret = drm_vblank_get(dev, pipe); 1195 if (WARN(ret, "vblank not available on crtc %i, ret=%i\n", pipe, ret)) 1196 return; 1197 1198 last = drm_vblank_count(dev, pipe); 1199 1200 ret = wait_event_timeout(vblank->queue, 1201 last != drm_vblank_count(dev, pipe), 1202 msecs_to_jiffies(100)); 1203 1204 WARN(ret == 0, "vblank wait timed out on crtc %i\n", pipe); 1205 1206 drm_vblank_put(dev, pipe); 1207 } 1208 EXPORT_SYMBOL(drm_wait_one_vblank); 1209 1210 /** 1211 * drm_crtc_wait_one_vblank - wait for one vblank 1212 * @crtc: DRM crtc 1213 * 1214 * This waits for one vblank to pass on @crtc, using the irq driver interfaces. 1215 * It is a failure to call this when the vblank irq for @crtc is disabled, e.g. 1216 * due to lack of driver support or because the crtc is off. 1217 */ 1218 void drm_crtc_wait_one_vblank(struct drm_crtc *crtc) 1219 { 1220 drm_wait_one_vblank(crtc->dev, drm_crtc_index(crtc)); 1221 } 1222 EXPORT_SYMBOL(drm_crtc_wait_one_vblank); 1223 1224 /** 1225 * drm_crtc_vblank_off - disable vblank events on a CRTC 1226 * @crtc: CRTC in question 1227 * 1228 * Drivers can use this function to shut down the vblank interrupt handling when 1229 * disabling a crtc. This function ensures that the latest vblank frame count is 1230 * stored so that drm_vblank_on can restore it again. 1231 * 1232 * Drivers must use this function when the hardware vblank counter can get 1233 * reset, e.g. when suspending or disabling the @crtc in general. 1234 */ 1235 void drm_crtc_vblank_off(struct drm_crtc *crtc) 1236 { 1237 struct drm_device *dev = crtc->dev; 1238 unsigned int pipe = drm_crtc_index(crtc); 1239 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1240 struct drm_pending_vblank_event *e, *t; 1241 1242 ktime_t now; 1243 unsigned long irqflags; 1244 u64 seq; 1245 1246 if (WARN_ON(pipe >= dev->num_crtcs)) 1247 return; 1248 1249 spin_lock_irqsave(&dev->event_lock, irqflags); 1250 1251 spin_lock(&dev->vbl_lock); 1252 DRM_DEBUG_VBL("crtc %d, vblank enabled %d, inmodeset %d\n", 1253 pipe, vblank->enabled, vblank->inmodeset); 1254 1255 /* Avoid redundant vblank disables without previous 1256 * drm_crtc_vblank_on(). */ 1257 if (drm_core_check_feature(dev, DRIVER_ATOMIC) || !vblank->inmodeset) 1258 drm_vblank_disable_and_save(dev, pipe); 1259 1260 wake_up(&vblank->queue); 1261 1262 /* 1263 * Prevent subsequent drm_vblank_get() from re-enabling 1264 * the vblank interrupt by bumping the refcount. 1265 */ 1266 if (!vblank->inmodeset) { 1267 atomic_inc(&vblank->refcount); 1268 vblank->inmodeset = 1; 1269 } 1270 spin_unlock(&dev->vbl_lock); 1271 1272 /* Send any queued vblank events, lest the natives grow disquiet */ 1273 seq = drm_vblank_count_and_time(dev, pipe, &now); 1274 1275 list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) { 1276 if (e->pipe != pipe) 1277 continue; 1278 DRM_DEBUG("Sending premature vblank event on disable: " 1279 "wanted %llu, current %llu\n", 1280 e->sequence, seq); 1281 list_del(&e->base.link); 1282 drm_vblank_put(dev, pipe); 1283 send_vblank_event(dev, e, seq, now); 1284 } 1285 spin_unlock_irqrestore(&dev->event_lock, irqflags); 1286 1287 /* Will be reset by the modeset helpers when re-enabling the crtc by 1288 * calling drm_calc_timestamping_constants(). */ 1289 vblank->hwmode.crtc_clock = 0; 1290 } 1291 EXPORT_SYMBOL(drm_crtc_vblank_off); 1292 1293 /** 1294 * drm_crtc_vblank_reset - reset vblank state to off on a CRTC 1295 * @crtc: CRTC in question 1296 * 1297 * Drivers can use this function to reset the vblank state to off at load time. 1298 * Drivers should use this together with the drm_crtc_vblank_off() and 1299 * drm_crtc_vblank_on() functions. The difference compared to 1300 * drm_crtc_vblank_off() is that this function doesn't save the vblank counter 1301 * and hence doesn't need to call any driver hooks. 1302 * 1303 * This is useful for recovering driver state e.g. on driver load, or on resume. 1304 */ 1305 void drm_crtc_vblank_reset(struct drm_crtc *crtc) 1306 { 1307 struct drm_device *dev = crtc->dev; 1308 unsigned long irqflags; 1309 unsigned int pipe = drm_crtc_index(crtc); 1310 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1311 1312 spin_lock_irqsave(&dev->vbl_lock, irqflags); 1313 /* 1314 * Prevent subsequent drm_vblank_get() from enabling the vblank 1315 * interrupt by bumping the refcount. 1316 */ 1317 if (!vblank->inmodeset) { 1318 atomic_inc(&vblank->refcount); 1319 vblank->inmodeset = 1; 1320 } 1321 spin_unlock_irqrestore(&dev->vbl_lock, irqflags); 1322 1323 WARN_ON(!list_empty(&dev->vblank_event_list)); 1324 } 1325 EXPORT_SYMBOL(drm_crtc_vblank_reset); 1326 1327 /** 1328 * drm_crtc_set_max_vblank_count - configure the hw max vblank counter value 1329 * @crtc: CRTC in question 1330 * @max_vblank_count: max hardware vblank counter value 1331 * 1332 * Update the maximum hardware vblank counter value for @crtc 1333 * at runtime. Useful for hardware where the operation of the 1334 * hardware vblank counter depends on the currently active 1335 * display configuration. 1336 * 1337 * For example, if the hardware vblank counter does not work 1338 * when a specific connector is active the maximum can be set 1339 * to zero. And when that specific connector isn't active the 1340 * maximum can again be set to the appropriate non-zero value. 1341 * 1342 * If used, must be called before drm_vblank_on(). 1343 */ 1344 void drm_crtc_set_max_vblank_count(struct drm_crtc *crtc, 1345 u32 max_vblank_count) 1346 { 1347 struct drm_device *dev = crtc->dev; 1348 unsigned int pipe = drm_crtc_index(crtc); 1349 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1350 1351 WARN_ON(dev->max_vblank_count); 1352 WARN_ON(!READ_ONCE(vblank->inmodeset)); 1353 1354 vblank->max_vblank_count = max_vblank_count; 1355 } 1356 EXPORT_SYMBOL(drm_crtc_set_max_vblank_count); 1357 1358 /** 1359 * drm_crtc_vblank_on - enable vblank events on a CRTC 1360 * @crtc: CRTC in question 1361 * 1362 * This functions restores the vblank interrupt state captured with 1363 * drm_crtc_vblank_off() again and is generally called when enabling @crtc. Note 1364 * that calls to drm_crtc_vblank_on() and drm_crtc_vblank_off() can be 1365 * unbalanced and so can also be unconditionally called in driver load code to 1366 * reflect the current hardware state of the crtc. 1367 */ 1368 void drm_crtc_vblank_on(struct drm_crtc *crtc) 1369 { 1370 struct drm_device *dev = crtc->dev; 1371 unsigned int pipe = drm_crtc_index(crtc); 1372 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1373 unsigned long irqflags; 1374 1375 if (WARN_ON(pipe >= dev->num_crtcs)) 1376 return; 1377 1378 spin_lock_irqsave(&dev->vbl_lock, irqflags); 1379 DRM_DEBUG_VBL("crtc %d, vblank enabled %d, inmodeset %d\n", 1380 pipe, vblank->enabled, vblank->inmodeset); 1381 1382 /* Drop our private "prevent drm_vblank_get" refcount */ 1383 if (vblank->inmodeset) { 1384 atomic_dec(&vblank->refcount); 1385 vblank->inmodeset = 0; 1386 } 1387 1388 drm_reset_vblank_timestamp(dev, pipe); 1389 1390 /* 1391 * re-enable interrupts if there are users left, or the 1392 * user wishes vblank interrupts to be enabled all the time. 1393 */ 1394 if (atomic_read(&vblank->refcount) != 0 || drm_vblank_offdelay == 0) 1395 WARN_ON(drm_vblank_enable(dev, pipe)); 1396 spin_unlock_irqrestore(&dev->vbl_lock, irqflags); 1397 } 1398 EXPORT_SYMBOL(drm_crtc_vblank_on); 1399 1400 /** 1401 * drm_vblank_restore - estimate missed vblanks and update vblank count. 1402 * @dev: DRM device 1403 * @pipe: CRTC index 1404 * 1405 * Power manamement features can cause frame counter resets between vblank 1406 * disable and enable. Drivers can use this function in their 1407 * &drm_crtc_funcs.enable_vblank implementation to estimate missed vblanks since 1408 * the last &drm_crtc_funcs.disable_vblank using timestamps and update the 1409 * vblank counter. 1410 * 1411 * This function is the legacy version of drm_crtc_vblank_restore(). 1412 */ 1413 void drm_vblank_restore(struct drm_device *dev, unsigned int pipe) 1414 { 1415 ktime_t t_vblank; 1416 struct drm_vblank_crtc *vblank; 1417 int framedur_ns; 1418 u64 diff_ns; 1419 u32 cur_vblank, diff = 1; 1420 int count = DRM_TIMESTAMP_MAXRETRIES; 1421 1422 if (WARN_ON(pipe >= dev->num_crtcs)) 1423 return; 1424 1425 assert_spin_locked(&dev->vbl_lock); 1426 assert_spin_locked(&dev->vblank_time_lock); 1427 1428 vblank = &dev->vblank[pipe]; 1429 WARN_ONCE(drm_debug_enabled(DRM_UT_VBL) && !vblank->framedur_ns, 1430 "Cannot compute missed vblanks without frame duration\n"); 1431 framedur_ns = vblank->framedur_ns; 1432 1433 do { 1434 cur_vblank = __get_vblank_counter(dev, pipe); 1435 drm_get_last_vbltimestamp(dev, pipe, &t_vblank, false); 1436 } while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0); 1437 1438 diff_ns = ktime_to_ns(ktime_sub(t_vblank, vblank->time)); 1439 if (framedur_ns) 1440 diff = DIV_ROUND_CLOSEST_ULL(diff_ns, framedur_ns); 1441 1442 1443 DRM_DEBUG_VBL("missed %d vblanks in %lld ns, frame duration=%d ns, hw_diff=%d\n", 1444 diff, diff_ns, framedur_ns, cur_vblank - vblank->last); 1445 store_vblank(dev, pipe, diff, t_vblank, cur_vblank); 1446 } 1447 EXPORT_SYMBOL(drm_vblank_restore); 1448 1449 /** 1450 * drm_crtc_vblank_restore - estimate missed vblanks and update vblank count. 1451 * @crtc: CRTC in question 1452 * 1453 * Power manamement features can cause frame counter resets between vblank 1454 * disable and enable. Drivers can use this function in their 1455 * &drm_crtc_funcs.enable_vblank implementation to estimate missed vblanks since 1456 * the last &drm_crtc_funcs.disable_vblank using timestamps and update the 1457 * vblank counter. 1458 */ 1459 void drm_crtc_vblank_restore(struct drm_crtc *crtc) 1460 { 1461 drm_vblank_restore(crtc->dev, drm_crtc_index(crtc)); 1462 } 1463 EXPORT_SYMBOL(drm_crtc_vblank_restore); 1464 1465 static void drm_legacy_vblank_pre_modeset(struct drm_device *dev, 1466 unsigned int pipe) 1467 { 1468 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1469 1470 /* vblank is not initialized (IRQ not installed ?), or has been freed */ 1471 if (!dev->num_crtcs) 1472 return; 1473 1474 if (WARN_ON(pipe >= dev->num_crtcs)) 1475 return; 1476 1477 /* 1478 * To avoid all the problems that might happen if interrupts 1479 * were enabled/disabled around or between these calls, we just 1480 * have the kernel take a reference on the CRTC (just once though 1481 * to avoid corrupting the count if multiple, mismatch calls occur), 1482 * so that interrupts remain enabled in the interim. 1483 */ 1484 if (!vblank->inmodeset) { 1485 vblank->inmodeset = 0x1; 1486 if (drm_vblank_get(dev, pipe) == 0) 1487 vblank->inmodeset |= 0x2; 1488 } 1489 } 1490 1491 static void drm_legacy_vblank_post_modeset(struct drm_device *dev, 1492 unsigned int pipe) 1493 { 1494 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1495 unsigned long irqflags; 1496 1497 /* vblank is not initialized (IRQ not installed ?), or has been freed */ 1498 if (!dev->num_crtcs) 1499 return; 1500 1501 if (WARN_ON(pipe >= dev->num_crtcs)) 1502 return; 1503 1504 if (vblank->inmodeset) { 1505 spin_lock_irqsave(&dev->vbl_lock, irqflags); 1506 drm_reset_vblank_timestamp(dev, pipe); 1507 spin_unlock_irqrestore(&dev->vbl_lock, irqflags); 1508 1509 if (vblank->inmodeset & 0x2) 1510 drm_vblank_put(dev, pipe); 1511 1512 vblank->inmodeset = 0; 1513 } 1514 } 1515 1516 int drm_legacy_modeset_ctl_ioctl(struct drm_device *dev, void *data, 1517 struct drm_file *file_priv) 1518 { 1519 struct drm_modeset_ctl *modeset = data; 1520 unsigned int pipe; 1521 1522 /* If drm_vblank_init() hasn't been called yet, just no-op */ 1523 if (!dev->num_crtcs) 1524 return 0; 1525 1526 /* KMS drivers handle this internally */ 1527 if (!drm_core_check_feature(dev, DRIVER_LEGACY)) 1528 return 0; 1529 1530 pipe = modeset->crtc; 1531 if (pipe >= dev->num_crtcs) 1532 return -EINVAL; 1533 1534 switch (modeset->cmd) { 1535 case _DRM_PRE_MODESET: 1536 drm_legacy_vblank_pre_modeset(dev, pipe); 1537 break; 1538 case _DRM_POST_MODESET: 1539 drm_legacy_vblank_post_modeset(dev, pipe); 1540 break; 1541 default: 1542 return -EINVAL; 1543 } 1544 1545 return 0; 1546 } 1547 1548 static inline bool vblank_passed(u64 seq, u64 ref) 1549 { 1550 return (seq - ref) <= (1 << 23); 1551 } 1552 1553 static int drm_queue_vblank_event(struct drm_device *dev, unsigned int pipe, 1554 u64 req_seq, 1555 union drm_wait_vblank *vblwait, 1556 struct drm_file *file_priv) 1557 { 1558 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1559 struct drm_pending_vblank_event *e; 1560 ktime_t now; 1561 unsigned long flags; 1562 u64 seq; 1563 int ret; 1564 1565 e = kzalloc(sizeof(*e), GFP_KERNEL); 1566 if (e == NULL) { 1567 ret = -ENOMEM; 1568 goto err_put; 1569 } 1570 1571 e->pipe = pipe; 1572 e->event.base.type = DRM_EVENT_VBLANK; 1573 e->event.base.length = sizeof(e->event.vbl); 1574 e->event.vbl.user_data = vblwait->request.signal; 1575 e->event.vbl.crtc_id = 0; 1576 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 1577 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 1578 if (crtc) 1579 e->event.vbl.crtc_id = crtc->base.id; 1580 } 1581 1582 spin_lock_irqsave(&dev->event_lock, flags); 1583 1584 /* 1585 * drm_crtc_vblank_off() might have been called after we called 1586 * drm_vblank_get(). drm_crtc_vblank_off() holds event_lock around the 1587 * vblank disable, so no need for further locking. The reference from 1588 * drm_vblank_get() protects against vblank disable from another source. 1589 */ 1590 if (!READ_ONCE(vblank->enabled)) { 1591 ret = -EINVAL; 1592 goto err_unlock; 1593 } 1594 1595 ret = drm_event_reserve_init_locked(dev, file_priv, &e->base, 1596 &e->event.base); 1597 1598 if (ret) 1599 goto err_unlock; 1600 1601 seq = drm_vblank_count_and_time(dev, pipe, &now); 1602 1603 DRM_DEBUG("event on vblank count %llu, current %llu, crtc %u\n", 1604 req_seq, seq, pipe); 1605 1606 trace_drm_vblank_event_queued(file_priv, pipe, req_seq); 1607 1608 e->sequence = req_seq; 1609 if (vblank_passed(seq, req_seq)) { 1610 drm_vblank_put(dev, pipe); 1611 send_vblank_event(dev, e, seq, now); 1612 vblwait->reply.sequence = seq; 1613 } else { 1614 /* drm_handle_vblank_events will call drm_vblank_put */ 1615 list_add_tail(&e->base.link, &dev->vblank_event_list); 1616 vblwait->reply.sequence = req_seq; 1617 } 1618 1619 spin_unlock_irqrestore(&dev->event_lock, flags); 1620 1621 return 0; 1622 1623 err_unlock: 1624 spin_unlock_irqrestore(&dev->event_lock, flags); 1625 kfree(e); 1626 err_put: 1627 drm_vblank_put(dev, pipe); 1628 return ret; 1629 } 1630 1631 static bool drm_wait_vblank_is_query(union drm_wait_vblank *vblwait) 1632 { 1633 if (vblwait->request.sequence) 1634 return false; 1635 1636 return _DRM_VBLANK_RELATIVE == 1637 (vblwait->request.type & (_DRM_VBLANK_TYPES_MASK | 1638 _DRM_VBLANK_EVENT | 1639 _DRM_VBLANK_NEXTONMISS)); 1640 } 1641 1642 /* 1643 * Widen a 32-bit param to 64-bits. 1644 * 1645 * \param narrow 32-bit value (missing upper 32 bits) 1646 * \param near 64-bit value that should be 'close' to near 1647 * 1648 * This function returns a 64-bit value using the lower 32-bits from 1649 * 'narrow' and constructing the upper 32-bits so that the result is 1650 * as close as possible to 'near'. 1651 */ 1652 1653 static u64 widen_32_to_64(u32 narrow, u64 near) 1654 { 1655 return near + (s32) (narrow - near); 1656 } 1657 1658 static void drm_wait_vblank_reply(struct drm_device *dev, unsigned int pipe, 1659 struct drm_wait_vblank_reply *reply) 1660 { 1661 ktime_t now; 1662 struct timespec64 ts; 1663 1664 /* 1665 * drm_wait_vblank_reply is a UAPI structure that uses 'long' 1666 * to store the seconds. This is safe as we always use monotonic 1667 * timestamps since linux-4.15. 1668 */ 1669 reply->sequence = drm_vblank_count_and_time(dev, pipe, &now); 1670 ts = ktime_to_timespec64(now); 1671 reply->tval_sec = (u32)ts.tv_sec; 1672 reply->tval_usec = ts.tv_nsec / 1000; 1673 } 1674 1675 int drm_wait_vblank_ioctl(struct drm_device *dev, void *data, 1676 struct drm_file *file_priv) 1677 { 1678 struct drm_crtc *crtc; 1679 struct drm_vblank_crtc *vblank; 1680 union drm_wait_vblank *vblwait = data; 1681 int ret; 1682 u64 req_seq, seq; 1683 unsigned int pipe_index; 1684 unsigned int flags, pipe, high_pipe; 1685 1686 if (!dev->irq_enabled) 1687 return -EOPNOTSUPP; 1688 1689 if (vblwait->request.type & _DRM_VBLANK_SIGNAL) 1690 return -EINVAL; 1691 1692 if (vblwait->request.type & 1693 ~(_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK | 1694 _DRM_VBLANK_HIGH_CRTC_MASK)) { 1695 DRM_DEBUG("Unsupported type value 0x%x, supported mask 0x%x\n", 1696 vblwait->request.type, 1697 (_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK | 1698 _DRM_VBLANK_HIGH_CRTC_MASK)); 1699 return -EINVAL; 1700 } 1701 1702 flags = vblwait->request.type & _DRM_VBLANK_FLAGS_MASK; 1703 high_pipe = (vblwait->request.type & _DRM_VBLANK_HIGH_CRTC_MASK); 1704 if (high_pipe) 1705 pipe_index = high_pipe >> _DRM_VBLANK_HIGH_CRTC_SHIFT; 1706 else 1707 pipe_index = flags & _DRM_VBLANK_SECONDARY ? 1 : 0; 1708 1709 /* Convert lease-relative crtc index into global crtc index */ 1710 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 1711 pipe = 0; 1712 drm_for_each_crtc(crtc, dev) { 1713 if (drm_lease_held(file_priv, crtc->base.id)) { 1714 if (pipe_index == 0) 1715 break; 1716 pipe_index--; 1717 } 1718 pipe++; 1719 } 1720 } else { 1721 pipe = pipe_index; 1722 } 1723 1724 if (pipe >= dev->num_crtcs) 1725 return -EINVAL; 1726 1727 vblank = &dev->vblank[pipe]; 1728 1729 /* If the counter is currently enabled and accurate, short-circuit 1730 * queries to return the cached timestamp of the last vblank. 1731 */ 1732 if (dev->vblank_disable_immediate && 1733 drm_wait_vblank_is_query(vblwait) && 1734 READ_ONCE(vblank->enabled)) { 1735 drm_wait_vblank_reply(dev, pipe, &vblwait->reply); 1736 return 0; 1737 } 1738 1739 ret = drm_vblank_get(dev, pipe); 1740 if (ret) { 1741 DRM_DEBUG("crtc %d failed to acquire vblank counter, %d\n", pipe, ret); 1742 return ret; 1743 } 1744 seq = drm_vblank_count(dev, pipe); 1745 1746 switch (vblwait->request.type & _DRM_VBLANK_TYPES_MASK) { 1747 case _DRM_VBLANK_RELATIVE: 1748 req_seq = seq + vblwait->request.sequence; 1749 vblwait->request.sequence = req_seq; 1750 vblwait->request.type &= ~_DRM_VBLANK_RELATIVE; 1751 break; 1752 case _DRM_VBLANK_ABSOLUTE: 1753 req_seq = widen_32_to_64(vblwait->request.sequence, seq); 1754 break; 1755 default: 1756 ret = -EINVAL; 1757 goto done; 1758 } 1759 1760 if ((flags & _DRM_VBLANK_NEXTONMISS) && 1761 vblank_passed(seq, req_seq)) { 1762 req_seq = seq + 1; 1763 vblwait->request.type &= ~_DRM_VBLANK_NEXTONMISS; 1764 vblwait->request.sequence = req_seq; 1765 } 1766 1767 if (flags & _DRM_VBLANK_EVENT) { 1768 /* must hold on to the vblank ref until the event fires 1769 * drm_vblank_put will be called asynchronously 1770 */ 1771 return drm_queue_vblank_event(dev, pipe, req_seq, vblwait, file_priv); 1772 } 1773 1774 if (req_seq != seq) { 1775 int wait; 1776 1777 DRM_DEBUG("waiting on vblank count %llu, crtc %u\n", 1778 req_seq, pipe); 1779 wait = wait_event_interruptible_timeout(vblank->queue, 1780 vblank_passed(drm_vblank_count(dev, pipe), req_seq) || 1781 !READ_ONCE(vblank->enabled), 1782 msecs_to_jiffies(3000)); 1783 1784 switch (wait) { 1785 case 0: 1786 /* timeout */ 1787 ret = -EBUSY; 1788 break; 1789 case -ERESTARTSYS: 1790 /* interrupted by signal */ 1791 ret = -EINTR; 1792 break; 1793 default: 1794 ret = 0; 1795 break; 1796 } 1797 } 1798 1799 if (ret != -EINTR) { 1800 drm_wait_vblank_reply(dev, pipe, &vblwait->reply); 1801 1802 DRM_DEBUG("crtc %d returning %u to client\n", 1803 pipe, vblwait->reply.sequence); 1804 } else { 1805 DRM_DEBUG("crtc %d vblank wait interrupted by signal\n", pipe); 1806 } 1807 1808 done: 1809 drm_vblank_put(dev, pipe); 1810 return ret; 1811 } 1812 1813 static void drm_handle_vblank_events(struct drm_device *dev, unsigned int pipe) 1814 { 1815 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 1816 bool high_prec = false; 1817 struct drm_pending_vblank_event *e, *t; 1818 ktime_t now; 1819 u64 seq; 1820 1821 assert_spin_locked(&dev->event_lock); 1822 1823 seq = drm_vblank_count_and_time(dev, pipe, &now); 1824 1825 list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) { 1826 if (e->pipe != pipe) 1827 continue; 1828 if (!vblank_passed(seq, e->sequence)) 1829 continue; 1830 1831 DRM_DEBUG("vblank event on %llu, current %llu\n", 1832 e->sequence, seq); 1833 1834 list_del(&e->base.link); 1835 drm_vblank_put(dev, pipe); 1836 send_vblank_event(dev, e, seq, now); 1837 } 1838 1839 if (crtc && crtc->funcs->get_vblank_timestamp) 1840 high_prec = true; 1841 1842 trace_drm_vblank_event(pipe, seq, now, high_prec); 1843 } 1844 1845 /** 1846 * drm_handle_vblank - handle a vblank event 1847 * @dev: DRM device 1848 * @pipe: index of CRTC where this event occurred 1849 * 1850 * Drivers should call this routine in their vblank interrupt handlers to 1851 * update the vblank counter and send any signals that may be pending. 1852 * 1853 * This is the legacy version of drm_crtc_handle_vblank(). 1854 */ 1855 bool drm_handle_vblank(struct drm_device *dev, unsigned int pipe) 1856 { 1857 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1858 unsigned long irqflags; 1859 bool disable_irq; 1860 1861 if (WARN_ON_ONCE(!dev->num_crtcs)) 1862 return false; 1863 1864 if (WARN_ON(pipe >= dev->num_crtcs)) 1865 return false; 1866 1867 spin_lock_irqsave(&dev->event_lock, irqflags); 1868 1869 /* Need timestamp lock to prevent concurrent execution with 1870 * vblank enable/disable, as this would cause inconsistent 1871 * or corrupted timestamps and vblank counts. 1872 */ 1873 spin_lock(&dev->vblank_time_lock); 1874 1875 /* Vblank irq handling disabled. Nothing to do. */ 1876 if (!vblank->enabled) { 1877 spin_unlock(&dev->vblank_time_lock); 1878 spin_unlock_irqrestore(&dev->event_lock, irqflags); 1879 return false; 1880 } 1881 1882 drm_update_vblank_count(dev, pipe, true); 1883 1884 spin_unlock(&dev->vblank_time_lock); 1885 1886 wake_up(&vblank->queue); 1887 1888 /* With instant-off, we defer disabling the interrupt until after 1889 * we finish processing the following vblank after all events have 1890 * been signaled. The disable has to be last (after 1891 * drm_handle_vblank_events) so that the timestamp is always accurate. 1892 */ 1893 disable_irq = (dev->vblank_disable_immediate && 1894 drm_vblank_offdelay > 0 && 1895 !atomic_read(&vblank->refcount)); 1896 1897 drm_handle_vblank_events(dev, pipe); 1898 1899 spin_unlock_irqrestore(&dev->event_lock, irqflags); 1900 1901 if (disable_irq) 1902 vblank_disable_fn(vblank); 1903 1904 return true; 1905 } 1906 EXPORT_SYMBOL(drm_handle_vblank); 1907 1908 /** 1909 * drm_crtc_handle_vblank - handle a vblank event 1910 * @crtc: where this event occurred 1911 * 1912 * Drivers should call this routine in their vblank interrupt handlers to 1913 * update the vblank counter and send any signals that may be pending. 1914 * 1915 * This is the native KMS version of drm_handle_vblank(). 1916 * 1917 * Note that for a given vblank counter value drm_crtc_handle_vblank() 1918 * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time() 1919 * provide a barrier: Any writes done before calling 1920 * drm_crtc_handle_vblank() will be visible to callers of the later 1921 * functions, iff the vblank count is the same or a later one. 1922 * 1923 * See also &drm_vblank_crtc.count. 1924 * 1925 * Returns: 1926 * True if the event was successfully handled, false on failure. 1927 */ 1928 bool drm_crtc_handle_vblank(struct drm_crtc *crtc) 1929 { 1930 return drm_handle_vblank(crtc->dev, drm_crtc_index(crtc)); 1931 } 1932 EXPORT_SYMBOL(drm_crtc_handle_vblank); 1933 1934 /* 1935 * Get crtc VBLANK count. 1936 * 1937 * \param dev DRM device 1938 * \param data user arguement, pointing to a drm_crtc_get_sequence structure. 1939 * \param file_priv drm file private for the user's open file descriptor 1940 */ 1941 1942 int drm_crtc_get_sequence_ioctl(struct drm_device *dev, void *data, 1943 struct drm_file *file_priv) 1944 { 1945 struct drm_crtc *crtc; 1946 struct drm_vblank_crtc *vblank; 1947 int pipe; 1948 struct drm_crtc_get_sequence *get_seq = data; 1949 ktime_t now; 1950 bool vblank_enabled; 1951 int ret; 1952 1953 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 1954 return -EOPNOTSUPP; 1955 1956 if (!dev->irq_enabled) 1957 return -EOPNOTSUPP; 1958 1959 crtc = drm_crtc_find(dev, file_priv, get_seq->crtc_id); 1960 if (!crtc) 1961 return -ENOENT; 1962 1963 pipe = drm_crtc_index(crtc); 1964 1965 vblank = &dev->vblank[pipe]; 1966 vblank_enabled = dev->vblank_disable_immediate && READ_ONCE(vblank->enabled); 1967 1968 if (!vblank_enabled) { 1969 ret = drm_crtc_vblank_get(crtc); 1970 if (ret) { 1971 DRM_DEBUG("crtc %d failed to acquire vblank counter, %d\n", pipe, ret); 1972 return ret; 1973 } 1974 } 1975 drm_modeset_lock(&crtc->mutex, NULL); 1976 if (crtc->state) 1977 get_seq->active = crtc->state->enable; 1978 else 1979 get_seq->active = crtc->enabled; 1980 drm_modeset_unlock(&crtc->mutex); 1981 get_seq->sequence = drm_vblank_count_and_time(dev, pipe, &now); 1982 get_seq->sequence_ns = ktime_to_ns(now); 1983 if (!vblank_enabled) 1984 drm_crtc_vblank_put(crtc); 1985 return 0; 1986 } 1987 1988 /* 1989 * Queue a event for VBLANK sequence 1990 * 1991 * \param dev DRM device 1992 * \param data user arguement, pointing to a drm_crtc_queue_sequence structure. 1993 * \param file_priv drm file private for the user's open file descriptor 1994 */ 1995 1996 int drm_crtc_queue_sequence_ioctl(struct drm_device *dev, void *data, 1997 struct drm_file *file_priv) 1998 { 1999 struct drm_crtc *crtc; 2000 struct drm_vblank_crtc *vblank; 2001 int pipe; 2002 struct drm_crtc_queue_sequence *queue_seq = data; 2003 ktime_t now; 2004 struct drm_pending_vblank_event *e; 2005 u32 flags; 2006 u64 seq; 2007 u64 req_seq; 2008 int ret; 2009 unsigned long spin_flags; 2010 2011 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 2012 return -EOPNOTSUPP; 2013 2014 if (!dev->irq_enabled) 2015 return -EOPNOTSUPP; 2016 2017 crtc = drm_crtc_find(dev, file_priv, queue_seq->crtc_id); 2018 if (!crtc) 2019 return -ENOENT; 2020 2021 flags = queue_seq->flags; 2022 /* Check valid flag bits */ 2023 if (flags & ~(DRM_CRTC_SEQUENCE_RELATIVE| 2024 DRM_CRTC_SEQUENCE_NEXT_ON_MISS)) 2025 return -EINVAL; 2026 2027 pipe = drm_crtc_index(crtc); 2028 2029 vblank = &dev->vblank[pipe]; 2030 2031 e = kzalloc(sizeof(*e), GFP_KERNEL); 2032 if (e == NULL) 2033 return -ENOMEM; 2034 2035 ret = drm_crtc_vblank_get(crtc); 2036 if (ret) { 2037 DRM_DEBUG("crtc %d failed to acquire vblank counter, %d\n", pipe, ret); 2038 goto err_free; 2039 } 2040 2041 seq = drm_vblank_count_and_time(dev, pipe, &now); 2042 req_seq = queue_seq->sequence; 2043 2044 if (flags & DRM_CRTC_SEQUENCE_RELATIVE) 2045 req_seq += seq; 2046 2047 if ((flags & DRM_CRTC_SEQUENCE_NEXT_ON_MISS) && vblank_passed(seq, req_seq)) 2048 req_seq = seq + 1; 2049 2050 e->pipe = pipe; 2051 e->event.base.type = DRM_EVENT_CRTC_SEQUENCE; 2052 e->event.base.length = sizeof(e->event.seq); 2053 e->event.seq.user_data = queue_seq->user_data; 2054 2055 spin_lock_irqsave(&dev->event_lock, spin_flags); 2056 2057 /* 2058 * drm_crtc_vblank_off() might have been called after we called 2059 * drm_crtc_vblank_get(). drm_crtc_vblank_off() holds event_lock around the 2060 * vblank disable, so no need for further locking. The reference from 2061 * drm_crtc_vblank_get() protects against vblank disable from another source. 2062 */ 2063 if (!READ_ONCE(vblank->enabled)) { 2064 ret = -EINVAL; 2065 goto err_unlock; 2066 } 2067 2068 ret = drm_event_reserve_init_locked(dev, file_priv, &e->base, 2069 &e->event.base); 2070 2071 if (ret) 2072 goto err_unlock; 2073 2074 e->sequence = req_seq; 2075 2076 if (vblank_passed(seq, req_seq)) { 2077 drm_crtc_vblank_put(crtc); 2078 send_vblank_event(dev, e, seq, now); 2079 queue_seq->sequence = seq; 2080 } else { 2081 /* drm_handle_vblank_events will call drm_vblank_put */ 2082 list_add_tail(&e->base.link, &dev->vblank_event_list); 2083 queue_seq->sequence = req_seq; 2084 } 2085 2086 spin_unlock_irqrestore(&dev->event_lock, spin_flags); 2087 return 0; 2088 2089 err_unlock: 2090 spin_unlock_irqrestore(&dev->event_lock, spin_flags); 2091 drm_crtc_vblank_put(crtc); 2092 err_free: 2093 kfree(e); 2094 return ret; 2095 } 2096