1 /* 2 * drm_irq.c IRQ and vblank support 3 * 4 * \author Rickard E. (Rik) Faith <faith@valinux.com> 5 * \author Gareth Hughes <gareth@valinux.com> 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a 8 * copy of this software and associated documentation files (the "Software"), 9 * to deal in the Software without restriction, including without limitation 10 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 11 * and/or sell copies of the Software, and to permit persons to whom the 12 * Software is furnished to do so, subject to the following conditions: 13 * 14 * The above copyright notice and this permission notice (including the next 15 * paragraph) shall be included in all copies or substantial portions of the 16 * Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 21 * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 22 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 23 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 24 * OTHER DEALINGS IN THE SOFTWARE. 25 */ 26 27 #include <linux/export.h> 28 #include <linux/kthread.h> 29 #include <linux/moduleparam.h> 30 31 #include <drm/drm_crtc.h> 32 #include <drm/drm_drv.h> 33 #include <drm/drm_framebuffer.h> 34 #include <drm/drm_managed.h> 35 #include <drm/drm_modeset_helper_vtables.h> 36 #include <drm/drm_print.h> 37 #include <drm/drm_vblank.h> 38 39 #include "drm_internal.h" 40 #include "drm_trace.h" 41 42 /** 43 * DOC: vblank handling 44 * 45 * From the computer's perspective, every time the monitor displays 46 * a new frame the scanout engine has "scanned out" the display image 47 * from top to bottom, one row of pixels at a time. The current row 48 * of pixels is referred to as the current scanline. 49 * 50 * In addition to the display's visible area, there's usually a couple of 51 * extra scanlines which aren't actually displayed on the screen. 52 * These extra scanlines don't contain image data and are occasionally used 53 * for features like audio and infoframes. The region made up of these 54 * scanlines is referred to as the vertical blanking region, or vblank for 55 * short. 56 * 57 * For historical reference, the vertical blanking period was designed to 58 * give the electron gun (on CRTs) enough time to move back to the top of 59 * the screen to start scanning out the next frame. Similar for horizontal 60 * blanking periods. They were designed to give the electron gun enough 61 * time to move back to the other side of the screen to start scanning the 62 * next scanline. 63 * 64 * :: 65 * 66 * 67 * physical → ⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽ 68 * top of | | 69 * display | | 70 * | New frame | 71 * | | 72 * |↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓| 73 * |~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~| ← Scanline, 74 * |↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓| updates the 75 * | | frame as it 76 * | | travels down 77 * | | ("scan out") 78 * | Old frame | 79 * | | 80 * | | 81 * | | 82 * | | physical 83 * | | bottom of 84 * vertical |⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽| ← display 85 * blanking ┆xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx┆ 86 * region → ┆xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx┆ 87 * ┆xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx┆ 88 * start of → ⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽ 89 * new frame 90 * 91 * "Physical top of display" is the reference point for the high-precision/ 92 * corrected timestamp. 93 * 94 * On a lot of display hardware, programming needs to take effect during the 95 * vertical blanking period so that settings like gamma, the image buffer 96 * buffer to be scanned out, etc. can safely be changed without showing 97 * any visual artifacts on the screen. In some unforgiving hardware, some of 98 * this programming has to both start and end in the same vblank. To help 99 * with the timing of the hardware programming, an interrupt is usually 100 * available to notify the driver when it can start the updating of registers. 101 * The interrupt is in this context named the vblank interrupt. 102 * 103 * The vblank interrupt may be fired at different points depending on the 104 * hardware. Some hardware implementations will fire the interrupt when the 105 * new frame start, other implementations will fire the interrupt at different 106 * points in time. 107 * 108 * Vertical blanking plays a major role in graphics rendering. To achieve 109 * tear-free display, users must synchronize page flips and/or rendering to 110 * vertical blanking. The DRM API offers ioctls to perform page flips 111 * synchronized to vertical blanking and wait for vertical blanking. 112 * 113 * The DRM core handles most of the vertical blanking management logic, which 114 * involves filtering out spurious interrupts, keeping race-free blanking 115 * counters, coping with counter wrap-around and resets and keeping use counts. 116 * It relies on the driver to generate vertical blanking interrupts and 117 * optionally provide a hardware vertical blanking counter. 118 * 119 * Drivers must initialize the vertical blanking handling core with a call to 120 * drm_vblank_init(). Minimally, a driver needs to implement 121 * &drm_crtc_funcs.enable_vblank and &drm_crtc_funcs.disable_vblank plus call 122 * drm_crtc_handle_vblank() in its vblank interrupt handler for working vblank 123 * support. 124 * 125 * Vertical blanking interrupts can be enabled by the DRM core or by drivers 126 * themselves (for instance to handle page flipping operations). The DRM core 127 * maintains a vertical blanking use count to ensure that the interrupts are not 128 * disabled while a user still needs them. To increment the use count, drivers 129 * call drm_crtc_vblank_get() and release the vblank reference again with 130 * drm_crtc_vblank_put(). In between these two calls vblank interrupts are 131 * guaranteed to be enabled. 132 * 133 * On many hardware disabling the vblank interrupt cannot be done in a race-free 134 * manner, see &drm_driver.vblank_disable_immediate and 135 * &drm_driver.max_vblank_count. In that case the vblank core only disables the 136 * vblanks after a timer has expired, which can be configured through the 137 * ``vblankoffdelay`` module parameter. 138 * 139 * Drivers for hardware without support for vertical-blanking interrupts 140 * must not call drm_vblank_init(). For such drivers, atomic helpers will 141 * automatically generate fake vblank events as part of the display update. 142 * This functionality also can be controlled by the driver by enabling and 143 * disabling struct drm_crtc_state.no_vblank. 144 */ 145 146 /* Retry timestamp calculation up to 3 times to satisfy 147 * drm_timestamp_precision before giving up. 148 */ 149 #define DRM_TIMESTAMP_MAXRETRIES 3 150 151 /* Threshold in nanoseconds for detection of redundant 152 * vblank irq in drm_handle_vblank(). 1 msec should be ok. 153 */ 154 #define DRM_REDUNDANT_VBLIRQ_THRESH_NS 1000000 155 156 static bool 157 drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe, 158 ktime_t *tvblank, bool in_vblank_irq); 159 160 static unsigned int drm_timestamp_precision = 20; /* Default to 20 usecs. */ 161 162 static int drm_vblank_offdelay = 5000; /* Default to 5000 msecs. */ 163 164 module_param_named(vblankoffdelay, drm_vblank_offdelay, int, 0600); 165 module_param_named(timestamp_precision_usec, drm_timestamp_precision, int, 0600); 166 MODULE_PARM_DESC(vblankoffdelay, "Delay until vblank irq auto-disable [msecs] (0: never disable, <0: disable immediately)"); 167 MODULE_PARM_DESC(timestamp_precision_usec, "Max. error on timestamps [usecs]"); 168 169 static void store_vblank(struct drm_device *dev, unsigned int pipe, 170 u32 vblank_count_inc, 171 ktime_t t_vblank, u32 last) 172 { 173 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 174 175 assert_spin_locked(&dev->vblank_time_lock); 176 177 vblank->last = last; 178 179 write_seqlock(&vblank->seqlock); 180 vblank->time = t_vblank; 181 atomic64_add(vblank_count_inc, &vblank->count); 182 write_sequnlock(&vblank->seqlock); 183 } 184 185 static u32 drm_max_vblank_count(struct drm_device *dev, unsigned int pipe) 186 { 187 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 188 189 return vblank->max_vblank_count ?: dev->max_vblank_count; 190 } 191 192 /* 193 * "No hw counter" fallback implementation of .get_vblank_counter() hook, 194 * if there is no usable hardware frame counter available. 195 */ 196 static u32 drm_vblank_no_hw_counter(struct drm_device *dev, unsigned int pipe) 197 { 198 drm_WARN_ON_ONCE(dev, drm_max_vblank_count(dev, pipe) != 0); 199 return 0; 200 } 201 202 static u32 __get_vblank_counter(struct drm_device *dev, unsigned int pipe) 203 { 204 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 205 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 206 207 if (drm_WARN_ON(dev, !crtc)) 208 return 0; 209 210 if (crtc->funcs->get_vblank_counter) 211 return crtc->funcs->get_vblank_counter(crtc); 212 } 213 #ifdef CONFIG_DRM_LEGACY 214 else if (dev->driver->get_vblank_counter) { 215 return dev->driver->get_vblank_counter(dev, pipe); 216 } 217 #endif 218 219 return drm_vblank_no_hw_counter(dev, pipe); 220 } 221 222 /* 223 * Reset the stored timestamp for the current vblank count to correspond 224 * to the last vblank occurred. 225 * 226 * Only to be called from drm_crtc_vblank_on(). 227 * 228 * Note: caller must hold &drm_device.vbl_lock since this reads & writes 229 * device vblank fields. 230 */ 231 static void drm_reset_vblank_timestamp(struct drm_device *dev, unsigned int pipe) 232 { 233 u32 cur_vblank; 234 bool rc; 235 ktime_t t_vblank; 236 int count = DRM_TIMESTAMP_MAXRETRIES; 237 238 spin_lock(&dev->vblank_time_lock); 239 240 /* 241 * sample the current counter to avoid random jumps 242 * when drm_vblank_enable() applies the diff 243 */ 244 do { 245 cur_vblank = __get_vblank_counter(dev, pipe); 246 rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, false); 247 } while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0); 248 249 /* 250 * Only reinitialize corresponding vblank timestamp if high-precision query 251 * available and didn't fail. Otherwise reinitialize delayed at next vblank 252 * interrupt and assign 0 for now, to mark the vblanktimestamp as invalid. 253 */ 254 if (!rc) 255 t_vblank = 0; 256 257 /* 258 * +1 to make sure user will never see the same 259 * vblank counter value before and after a modeset 260 */ 261 store_vblank(dev, pipe, 1, t_vblank, cur_vblank); 262 263 spin_unlock(&dev->vblank_time_lock); 264 } 265 266 /* 267 * Call back into the driver to update the appropriate vblank counter 268 * (specified by @pipe). Deal with wraparound, if it occurred, and 269 * update the last read value so we can deal with wraparound on the next 270 * call if necessary. 271 * 272 * Only necessary when going from off->on, to account for frames we 273 * didn't get an interrupt for. 274 * 275 * Note: caller must hold &drm_device.vbl_lock since this reads & writes 276 * device vblank fields. 277 */ 278 static void drm_update_vblank_count(struct drm_device *dev, unsigned int pipe, 279 bool in_vblank_irq) 280 { 281 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 282 u32 cur_vblank, diff; 283 bool rc; 284 ktime_t t_vblank; 285 int count = DRM_TIMESTAMP_MAXRETRIES; 286 int framedur_ns = vblank->framedur_ns; 287 u32 max_vblank_count = drm_max_vblank_count(dev, pipe); 288 289 /* 290 * Interrupts were disabled prior to this call, so deal with counter 291 * wrap if needed. 292 * NOTE! It's possible we lost a full dev->max_vblank_count + 1 events 293 * here if the register is small or we had vblank interrupts off for 294 * a long time. 295 * 296 * We repeat the hardware vblank counter & timestamp query until 297 * we get consistent results. This to prevent races between gpu 298 * updating its hardware counter while we are retrieving the 299 * corresponding vblank timestamp. 300 */ 301 do { 302 cur_vblank = __get_vblank_counter(dev, pipe); 303 rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, in_vblank_irq); 304 } while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0); 305 306 if (max_vblank_count) { 307 /* trust the hw counter when it's around */ 308 diff = (cur_vblank - vblank->last) & max_vblank_count; 309 } else if (rc && framedur_ns) { 310 u64 diff_ns = ktime_to_ns(ktime_sub(t_vblank, vblank->time)); 311 312 /* 313 * Figure out how many vblanks we've missed based 314 * on the difference in the timestamps and the 315 * frame/field duration. 316 */ 317 318 drm_dbg_vbl(dev, "crtc %u: Calculating number of vblanks." 319 " diff_ns = %lld, framedur_ns = %d)\n", 320 pipe, (long long)diff_ns, framedur_ns); 321 322 diff = DIV_ROUND_CLOSEST_ULL(diff_ns, framedur_ns); 323 324 if (diff == 0 && in_vblank_irq) 325 drm_dbg_vbl(dev, "crtc %u: Redundant vblirq ignored\n", 326 pipe); 327 } else { 328 /* some kind of default for drivers w/o accurate vbl timestamping */ 329 diff = in_vblank_irq ? 1 : 0; 330 } 331 332 /* 333 * Within a drm_vblank_pre_modeset - drm_vblank_post_modeset 334 * interval? If so then vblank irqs keep running and it will likely 335 * happen that the hardware vblank counter is not trustworthy as it 336 * might reset at some point in that interval and vblank timestamps 337 * are not trustworthy either in that interval. Iow. this can result 338 * in a bogus diff >> 1 which must be avoided as it would cause 339 * random large forward jumps of the software vblank counter. 340 */ 341 if (diff > 1 && (vblank->inmodeset & 0x2)) { 342 drm_dbg_vbl(dev, 343 "clamping vblank bump to 1 on crtc %u: diffr=%u" 344 " due to pre-modeset.\n", pipe, diff); 345 diff = 1; 346 } 347 348 drm_dbg_vbl(dev, "updating vblank count on crtc %u:" 349 " current=%llu, diff=%u, hw=%u hw_last=%u\n", 350 pipe, (unsigned long long)atomic64_read(&vblank->count), 351 diff, cur_vblank, vblank->last); 352 353 if (diff == 0) { 354 drm_WARN_ON_ONCE(dev, cur_vblank != vblank->last); 355 return; 356 } 357 358 /* 359 * Only reinitialize corresponding vblank timestamp if high-precision query 360 * available and didn't fail, or we were called from the vblank interrupt. 361 * Otherwise reinitialize delayed at next vblank interrupt and assign 0 362 * for now, to mark the vblanktimestamp as invalid. 363 */ 364 if (!rc && !in_vblank_irq) 365 t_vblank = 0; 366 367 store_vblank(dev, pipe, diff, t_vblank, cur_vblank); 368 } 369 370 u64 drm_vblank_count(struct drm_device *dev, unsigned int pipe) 371 { 372 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 373 u64 count; 374 375 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 376 return 0; 377 378 count = atomic64_read(&vblank->count); 379 380 /* 381 * This read barrier corresponds to the implicit write barrier of the 382 * write seqlock in store_vblank(). Note that this is the only place 383 * where we need an explicit barrier, since all other access goes 384 * through drm_vblank_count_and_time(), which already has the required 385 * read barrier curtesy of the read seqlock. 386 */ 387 smp_rmb(); 388 389 return count; 390 } 391 392 /** 393 * drm_crtc_accurate_vblank_count - retrieve the master vblank counter 394 * @crtc: which counter to retrieve 395 * 396 * This function is similar to drm_crtc_vblank_count() but this function 397 * interpolates to handle a race with vblank interrupts using the high precision 398 * timestamping support. 399 * 400 * This is mostly useful for hardware that can obtain the scanout position, but 401 * doesn't have a hardware frame counter. 402 */ 403 u64 drm_crtc_accurate_vblank_count(struct drm_crtc *crtc) 404 { 405 struct drm_device *dev = crtc->dev; 406 unsigned int pipe = drm_crtc_index(crtc); 407 u64 vblank; 408 unsigned long flags; 409 410 drm_WARN_ONCE(dev, drm_debug_enabled(DRM_UT_VBL) && 411 !crtc->funcs->get_vblank_timestamp, 412 "This function requires support for accurate vblank timestamps."); 413 414 spin_lock_irqsave(&dev->vblank_time_lock, flags); 415 416 drm_update_vblank_count(dev, pipe, false); 417 vblank = drm_vblank_count(dev, pipe); 418 419 spin_unlock_irqrestore(&dev->vblank_time_lock, flags); 420 421 return vblank; 422 } 423 EXPORT_SYMBOL(drm_crtc_accurate_vblank_count); 424 425 static void __disable_vblank(struct drm_device *dev, unsigned int pipe) 426 { 427 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 428 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 429 430 if (drm_WARN_ON(dev, !crtc)) 431 return; 432 433 if (crtc->funcs->disable_vblank) 434 crtc->funcs->disable_vblank(crtc); 435 } 436 #ifdef CONFIG_DRM_LEGACY 437 else { 438 dev->driver->disable_vblank(dev, pipe); 439 } 440 #endif 441 } 442 443 /* 444 * Disable vblank irq's on crtc, make sure that last vblank count 445 * of hardware and corresponding consistent software vblank counter 446 * are preserved, even if there are any spurious vblank irq's after 447 * disable. 448 */ 449 void drm_vblank_disable_and_save(struct drm_device *dev, unsigned int pipe) 450 { 451 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 452 unsigned long irqflags; 453 454 assert_spin_locked(&dev->vbl_lock); 455 456 /* Prevent vblank irq processing while disabling vblank irqs, 457 * so no updates of timestamps or count can happen after we've 458 * disabled. Needed to prevent races in case of delayed irq's. 459 */ 460 spin_lock_irqsave(&dev->vblank_time_lock, irqflags); 461 462 /* 463 * Update vblank count and disable vblank interrupts only if the 464 * interrupts were enabled. This avoids calling the ->disable_vblank() 465 * operation in atomic context with the hardware potentially runtime 466 * suspended. 467 */ 468 if (!vblank->enabled) 469 goto out; 470 471 /* 472 * Update the count and timestamp to maintain the 473 * appearance that the counter has been ticking all along until 474 * this time. This makes the count account for the entire time 475 * between drm_crtc_vblank_on() and drm_crtc_vblank_off(). 476 */ 477 drm_update_vblank_count(dev, pipe, false); 478 __disable_vblank(dev, pipe); 479 vblank->enabled = false; 480 481 out: 482 spin_unlock_irqrestore(&dev->vblank_time_lock, irqflags); 483 } 484 485 static void vblank_disable_fn(void *arg) 486 { 487 struct drm_vblank_crtc *vblank = arg; 488 struct drm_device *dev = vblank->dev; 489 unsigned int pipe = vblank->pipe; 490 unsigned long irqflags; 491 492 spin_lock_irqsave(&dev->vbl_lock, irqflags); 493 if (atomic_read(&vblank->refcount) == 0 && vblank->enabled) { 494 drm_dbg_core(dev, "disabling vblank on crtc %u\n", pipe); 495 drm_vblank_disable_and_save(dev, pipe); 496 } 497 spin_unlock_irqrestore(&dev->vbl_lock, irqflags); 498 } 499 500 static void drm_vblank_init_release(struct drm_device *dev, void *ptr) 501 { 502 struct drm_vblank_crtc *vblank = ptr; 503 504 drm_WARN_ON(dev, READ_ONCE(vblank->enabled) && 505 drm_core_check_feature(dev, DRIVER_MODESET)); 506 507 drm_vblank_destroy_worker(vblank); 508 del_timer_sync(&vblank->disable_timer); 509 } 510 511 /** 512 * drm_vblank_init - initialize vblank support 513 * @dev: DRM device 514 * @num_crtcs: number of CRTCs supported by @dev 515 * 516 * This function initializes vblank support for @num_crtcs display pipelines. 517 * Cleanup is handled automatically through a cleanup function added with 518 * drmm_add_action_or_reset(). 519 * 520 * Returns: 521 * Zero on success or a negative error code on failure. 522 */ 523 int drm_vblank_init(struct drm_device *dev, unsigned int num_crtcs) 524 { 525 int ret; 526 unsigned int i; 527 528 mtx_init(&dev->vbl_lock, IPL_TTY); 529 mtx_init(&dev->vblank_time_lock, IPL_TTY); 530 531 dev->vblank = drmm_kcalloc(dev, num_crtcs, sizeof(*dev->vblank), GFP_KERNEL); 532 if (!dev->vblank) 533 return -ENOMEM; 534 535 dev->num_crtcs = num_crtcs; 536 537 for (i = 0; i < num_crtcs; i++) { 538 struct drm_vblank_crtc *vblank = &dev->vblank[i]; 539 540 vblank->dev = dev; 541 vblank->pipe = i; 542 init_waitqueue_head(&vblank->queue); 543 #ifdef __linux__ 544 timer_setup(&vblank->disable_timer, vblank_disable_fn, 0); 545 #else 546 timeout_set(&vblank->disable_timer, vblank_disable_fn, vblank); 547 #endif 548 seqlock_init(&vblank->seqlock, IPL_TTY); 549 550 ret = drmm_add_action_or_reset(dev, drm_vblank_init_release, 551 vblank); 552 if (ret) 553 return ret; 554 555 ret = drm_vblank_worker_init(vblank); 556 if (ret) 557 return ret; 558 } 559 560 return 0; 561 } 562 EXPORT_SYMBOL(drm_vblank_init); 563 564 /** 565 * drm_dev_has_vblank - test if vblanking has been initialized for 566 * a device 567 * @dev: the device 568 * 569 * Drivers may call this function to test if vblank support is 570 * initialized for a device. For most hardware this means that vblanking 571 * can also be enabled. 572 * 573 * Atomic helpers use this function to initialize 574 * &drm_crtc_state.no_vblank. See also drm_atomic_helper_check_modeset(). 575 * 576 * Returns: 577 * True if vblanking has been initialized for the given device, false 578 * otherwise. 579 */ 580 bool drm_dev_has_vblank(const struct drm_device *dev) 581 { 582 return dev->num_crtcs != 0; 583 } 584 EXPORT_SYMBOL(drm_dev_has_vblank); 585 586 /** 587 * drm_crtc_vblank_waitqueue - get vblank waitqueue for the CRTC 588 * @crtc: which CRTC's vblank waitqueue to retrieve 589 * 590 * This function returns a pointer to the vblank waitqueue for the CRTC. 591 * Drivers can use this to implement vblank waits using wait_event() and related 592 * functions. 593 */ 594 wait_queue_head_t *drm_crtc_vblank_waitqueue(struct drm_crtc *crtc) 595 { 596 return &crtc->dev->vblank[drm_crtc_index(crtc)].queue; 597 } 598 EXPORT_SYMBOL(drm_crtc_vblank_waitqueue); 599 600 601 /** 602 * drm_calc_timestamping_constants - calculate vblank timestamp constants 603 * @crtc: drm_crtc whose timestamp constants should be updated. 604 * @mode: display mode containing the scanout timings 605 * 606 * Calculate and store various constants which are later needed by vblank and 607 * swap-completion timestamping, e.g, by 608 * drm_crtc_vblank_helper_get_vblank_timestamp(). They are derived from 609 * CRTC's true scanout timing, so they take things like panel scaling or 610 * other adjustments into account. 611 */ 612 void drm_calc_timestamping_constants(struct drm_crtc *crtc, 613 const struct drm_display_mode *mode) 614 { 615 struct drm_device *dev = crtc->dev; 616 unsigned int pipe = drm_crtc_index(crtc); 617 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 618 int linedur_ns = 0, framedur_ns = 0; 619 int dotclock = mode->crtc_clock; 620 621 if (!drm_dev_has_vblank(dev)) 622 return; 623 624 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 625 return; 626 627 /* Valid dotclock? */ 628 if (dotclock > 0) { 629 int frame_size = mode->crtc_htotal * mode->crtc_vtotal; 630 631 /* 632 * Convert scanline length in pixels and video 633 * dot clock to line duration and frame duration 634 * in nanoseconds: 635 */ 636 linedur_ns = div_u64((u64) mode->crtc_htotal * 1000000, dotclock); 637 framedur_ns = div_u64((u64) frame_size * 1000000, dotclock); 638 639 /* 640 * Fields of interlaced scanout modes are only half a frame duration. 641 */ 642 if (mode->flags & DRM_MODE_FLAG_INTERLACE) 643 framedur_ns /= 2; 644 } else { 645 drm_err(dev, "crtc %u: Can't calculate constants, dotclock = 0!\n", 646 crtc->base.id); 647 } 648 649 vblank->linedur_ns = linedur_ns; 650 vblank->framedur_ns = framedur_ns; 651 drm_mode_copy(&vblank->hwmode, mode); 652 653 drm_dbg_core(dev, 654 "crtc %u: hwmode: htotal %d, vtotal %d, vdisplay %d\n", 655 crtc->base.id, mode->crtc_htotal, 656 mode->crtc_vtotal, mode->crtc_vdisplay); 657 drm_dbg_core(dev, "crtc %u: clock %d kHz framedur %d linedur %d\n", 658 crtc->base.id, dotclock, framedur_ns, linedur_ns); 659 } 660 EXPORT_SYMBOL(drm_calc_timestamping_constants); 661 662 /** 663 * drm_crtc_vblank_helper_get_vblank_timestamp_internal - precise vblank 664 * timestamp helper 665 * @crtc: CRTC whose vblank timestamp to retrieve 666 * @max_error: Desired maximum allowable error in timestamps (nanosecs) 667 * On return contains true maximum error of timestamp 668 * @vblank_time: Pointer to time which should receive the timestamp 669 * @in_vblank_irq: 670 * True when called from drm_crtc_handle_vblank(). Some drivers 671 * need to apply some workarounds for gpu-specific vblank irq quirks 672 * if flag is set. 673 * @get_scanout_position: 674 * Callback function to retrieve the scanout position. See 675 * @struct drm_crtc_helper_funcs.get_scanout_position. 676 * 677 * Implements calculation of exact vblank timestamps from given drm_display_mode 678 * timings and current video scanout position of a CRTC. 679 * 680 * The current implementation only handles standard video modes. For double scan 681 * and interlaced modes the driver is supposed to adjust the hardware mode 682 * (taken from &drm_crtc_state.adjusted mode for atomic modeset drivers) to 683 * match the scanout position reported. 684 * 685 * Note that atomic drivers must call drm_calc_timestamping_constants() before 686 * enabling a CRTC. The atomic helpers already take care of that in 687 * drm_atomic_helper_calc_timestamping_constants(). 688 * 689 * Returns: 690 * 691 * Returns true on success, and false on failure, i.e. when no accurate 692 * timestamp could be acquired. 693 */ 694 bool 695 drm_crtc_vblank_helper_get_vblank_timestamp_internal( 696 struct drm_crtc *crtc, int *max_error, ktime_t *vblank_time, 697 bool in_vblank_irq, 698 drm_vblank_get_scanout_position_func get_scanout_position) 699 { 700 struct drm_device *dev = crtc->dev; 701 unsigned int pipe = crtc->index; 702 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 703 struct timespec64 ts_etime, ts_vblank_time; 704 ktime_t stime, etime; 705 bool vbl_status; 706 const struct drm_display_mode *mode; 707 int vpos, hpos, i; 708 int delta_ns, duration_ns; 709 710 if (pipe >= dev->num_crtcs) { 711 drm_err(dev, "Invalid crtc %u\n", pipe); 712 return false; 713 } 714 715 /* Scanout position query not supported? Should not happen. */ 716 if (!get_scanout_position) { 717 drm_err(dev, "Called from CRTC w/o get_scanout_position()!?\n"); 718 return false; 719 } 720 721 if (drm_drv_uses_atomic_modeset(dev)) 722 mode = &vblank->hwmode; 723 else 724 mode = &crtc->hwmode; 725 726 /* If mode timing undefined, just return as no-op: 727 * Happens during initial modesetting of a crtc. 728 */ 729 if (mode->crtc_clock == 0) { 730 drm_dbg_core(dev, "crtc %u: Noop due to uninitialized mode.\n", 731 pipe); 732 drm_WARN_ON_ONCE(dev, drm_drv_uses_atomic_modeset(dev)); 733 return false; 734 } 735 736 /* Get current scanout position with system timestamp. 737 * Repeat query up to DRM_TIMESTAMP_MAXRETRIES times 738 * if single query takes longer than max_error nanoseconds. 739 * 740 * This guarantees a tight bound on maximum error if 741 * code gets preempted or delayed for some reason. 742 */ 743 for (i = 0; i < DRM_TIMESTAMP_MAXRETRIES; i++) { 744 /* 745 * Get vertical and horizontal scanout position vpos, hpos, 746 * and bounding timestamps stime, etime, pre/post query. 747 */ 748 vbl_status = get_scanout_position(crtc, in_vblank_irq, 749 &vpos, &hpos, 750 &stime, &etime, 751 mode); 752 753 /* Return as no-op if scanout query unsupported or failed. */ 754 if (!vbl_status) { 755 drm_dbg_core(dev, 756 "crtc %u : scanoutpos query failed.\n", 757 pipe); 758 return false; 759 } 760 761 /* Compute uncertainty in timestamp of scanout position query. */ 762 duration_ns = ktime_to_ns(etime) - ktime_to_ns(stime); 763 764 /* Accept result with < max_error nsecs timing uncertainty. */ 765 if (duration_ns <= *max_error) 766 break; 767 } 768 769 /* Noisy system timing? */ 770 if (i == DRM_TIMESTAMP_MAXRETRIES) { 771 drm_dbg_core(dev, 772 "crtc %u: Noisy timestamp %d us > %d us [%d reps].\n", 773 pipe, duration_ns / 1000, *max_error / 1000, i); 774 } 775 776 /* Return upper bound of timestamp precision error. */ 777 *max_error = duration_ns; 778 779 /* Convert scanout position into elapsed time at raw_time query 780 * since start of scanout at first display scanline. delta_ns 781 * can be negative if start of scanout hasn't happened yet. 782 */ 783 delta_ns = div_s64(1000000LL * (vpos * mode->crtc_htotal + hpos), 784 mode->crtc_clock); 785 786 /* Subtract time delta from raw timestamp to get final 787 * vblank_time timestamp for end of vblank. 788 */ 789 *vblank_time = ktime_sub_ns(etime, delta_ns); 790 791 if (!drm_debug_enabled(DRM_UT_VBL)) 792 return true; 793 794 ts_etime = ktime_to_timespec64(etime); 795 ts_vblank_time = ktime_to_timespec64(*vblank_time); 796 797 drm_dbg_vbl(dev, 798 "crtc %u : v p(%d,%d)@ %lld.%06ld -> %lld.%06ld [e %d us, %d rep]\n", 799 pipe, hpos, vpos, 800 (u64)ts_etime.tv_sec, ts_etime.tv_nsec / 1000, 801 (u64)ts_vblank_time.tv_sec, ts_vblank_time.tv_nsec / 1000, 802 duration_ns / 1000, i); 803 804 return true; 805 } 806 EXPORT_SYMBOL(drm_crtc_vblank_helper_get_vblank_timestamp_internal); 807 808 /** 809 * drm_crtc_vblank_helper_get_vblank_timestamp - precise vblank timestamp 810 * helper 811 * @crtc: CRTC whose vblank timestamp to retrieve 812 * @max_error: Desired maximum allowable error in timestamps (nanosecs) 813 * On return contains true maximum error of timestamp 814 * @vblank_time: Pointer to time which should receive the timestamp 815 * @in_vblank_irq: 816 * True when called from drm_crtc_handle_vblank(). Some drivers 817 * need to apply some workarounds for gpu-specific vblank irq quirks 818 * if flag is set. 819 * 820 * Implements calculation of exact vblank timestamps from given drm_display_mode 821 * timings and current video scanout position of a CRTC. This can be directly 822 * used as the &drm_crtc_funcs.get_vblank_timestamp implementation of a kms 823 * driver if &drm_crtc_helper_funcs.get_scanout_position is implemented. 824 * 825 * The current implementation only handles standard video modes. For double scan 826 * and interlaced modes the driver is supposed to adjust the hardware mode 827 * (taken from &drm_crtc_state.adjusted mode for atomic modeset drivers) to 828 * match the scanout position reported. 829 * 830 * Note that atomic drivers must call drm_calc_timestamping_constants() before 831 * enabling a CRTC. The atomic helpers already take care of that in 832 * drm_atomic_helper_calc_timestamping_constants(). 833 * 834 * Returns: 835 * 836 * Returns true on success, and false on failure, i.e. when no accurate 837 * timestamp could be acquired. 838 */ 839 bool drm_crtc_vblank_helper_get_vblank_timestamp(struct drm_crtc *crtc, 840 int *max_error, 841 ktime_t *vblank_time, 842 bool in_vblank_irq) 843 { 844 return drm_crtc_vblank_helper_get_vblank_timestamp_internal( 845 crtc, max_error, vblank_time, in_vblank_irq, 846 crtc->helper_private->get_scanout_position); 847 } 848 EXPORT_SYMBOL(drm_crtc_vblank_helper_get_vblank_timestamp); 849 850 /** 851 * drm_get_last_vbltimestamp - retrieve raw timestamp for the most recent 852 * vblank interval 853 * @dev: DRM device 854 * @pipe: index of CRTC whose vblank timestamp to retrieve 855 * @tvblank: Pointer to target time which should receive the timestamp 856 * @in_vblank_irq: 857 * True when called from drm_crtc_handle_vblank(). Some drivers 858 * need to apply some workarounds for gpu-specific vblank irq quirks 859 * if flag is set. 860 * 861 * Fetches the system timestamp corresponding to the time of the most recent 862 * vblank interval on specified CRTC. May call into kms-driver to 863 * compute the timestamp with a high-precision GPU specific method. 864 * 865 * Returns zero if timestamp originates from uncorrected do_gettimeofday() 866 * call, i.e., it isn't very precisely locked to the true vblank. 867 * 868 * Returns: 869 * True if timestamp is considered to be very precise, false otherwise. 870 */ 871 static bool 872 drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe, 873 ktime_t *tvblank, bool in_vblank_irq) 874 { 875 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 876 bool ret = false; 877 878 /* Define requested maximum error on timestamps (nanoseconds). */ 879 int max_error = (int) drm_timestamp_precision * 1000; 880 881 /* Query driver if possible and precision timestamping enabled. */ 882 if (crtc && crtc->funcs->get_vblank_timestamp && max_error > 0) { 883 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 884 885 ret = crtc->funcs->get_vblank_timestamp(crtc, &max_error, 886 tvblank, in_vblank_irq); 887 } 888 889 /* GPU high precision timestamp query unsupported or failed. 890 * Return current monotonic/gettimeofday timestamp as best estimate. 891 */ 892 if (!ret) 893 *tvblank = ktime_get(); 894 895 return ret; 896 } 897 898 /** 899 * drm_crtc_vblank_count - retrieve "cooked" vblank counter value 900 * @crtc: which counter to retrieve 901 * 902 * Fetches the "cooked" vblank count value that represents the number of 903 * vblank events since the system was booted, including lost events due to 904 * modesetting activity. Note that this timer isn't correct against a racing 905 * vblank interrupt (since it only reports the software vblank counter), see 906 * drm_crtc_accurate_vblank_count() for such use-cases. 907 * 908 * Note that for a given vblank counter value drm_crtc_handle_vblank() 909 * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time() 910 * provide a barrier: Any writes done before calling 911 * drm_crtc_handle_vblank() will be visible to callers of the later 912 * functions, if the vblank count is the same or a later one. 913 * 914 * See also &drm_vblank_crtc.count. 915 * 916 * Returns: 917 * The software vblank counter. 918 */ 919 u64 drm_crtc_vblank_count(struct drm_crtc *crtc) 920 { 921 return drm_vblank_count(crtc->dev, drm_crtc_index(crtc)); 922 } 923 EXPORT_SYMBOL(drm_crtc_vblank_count); 924 925 /** 926 * drm_vblank_count_and_time - retrieve "cooked" vblank counter value and the 927 * system timestamp corresponding to that vblank counter value. 928 * @dev: DRM device 929 * @pipe: index of CRTC whose counter to retrieve 930 * @vblanktime: Pointer to ktime_t to receive the vblank timestamp. 931 * 932 * Fetches the "cooked" vblank count value that represents the number of 933 * vblank events since the system was booted, including lost events due to 934 * modesetting activity. Returns corresponding system timestamp of the time 935 * of the vblank interval that corresponds to the current vblank counter value. 936 * 937 * This is the legacy version of drm_crtc_vblank_count_and_time(). 938 */ 939 static u64 drm_vblank_count_and_time(struct drm_device *dev, unsigned int pipe, 940 ktime_t *vblanktime) 941 { 942 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 943 u64 vblank_count; 944 unsigned int seq; 945 946 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) { 947 *vblanktime = 0; 948 return 0; 949 } 950 951 do { 952 seq = read_seqbegin(&vblank->seqlock); 953 vblank_count = atomic64_read(&vblank->count); 954 *vblanktime = vblank->time; 955 } while (read_seqretry(&vblank->seqlock, seq)); 956 957 return vblank_count; 958 } 959 960 /** 961 * drm_crtc_vblank_count_and_time - retrieve "cooked" vblank counter value 962 * and the system timestamp corresponding to that vblank counter value 963 * @crtc: which counter to retrieve 964 * @vblanktime: Pointer to time to receive the vblank timestamp. 965 * 966 * Fetches the "cooked" vblank count value that represents the number of 967 * vblank events since the system was booted, including lost events due to 968 * modesetting activity. Returns corresponding system timestamp of the time 969 * of the vblank interval that corresponds to the current vblank counter value. 970 * 971 * Note that for a given vblank counter value drm_crtc_handle_vblank() 972 * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time() 973 * provide a barrier: Any writes done before calling 974 * drm_crtc_handle_vblank() will be visible to callers of the later 975 * functions, if the vblank count is the same or a later one. 976 * 977 * See also &drm_vblank_crtc.count. 978 */ 979 u64 drm_crtc_vblank_count_and_time(struct drm_crtc *crtc, 980 ktime_t *vblanktime) 981 { 982 return drm_vblank_count_and_time(crtc->dev, drm_crtc_index(crtc), 983 vblanktime); 984 } 985 EXPORT_SYMBOL(drm_crtc_vblank_count_and_time); 986 987 static void send_vblank_event(struct drm_device *dev, 988 struct drm_pending_vblank_event *e, 989 u64 seq, ktime_t now) 990 { 991 struct timespec64 tv; 992 993 switch (e->event.base.type) { 994 case DRM_EVENT_VBLANK: 995 case DRM_EVENT_FLIP_COMPLETE: 996 tv = ktime_to_timespec64(now); 997 e->event.vbl.sequence = seq; 998 /* 999 * e->event is a user space structure, with hardcoded unsigned 1000 * 32-bit seconds/microseconds. This is safe as we always use 1001 * monotonic timestamps since linux-4.15 1002 */ 1003 e->event.vbl.tv_sec = tv.tv_sec; 1004 e->event.vbl.tv_usec = tv.tv_nsec / 1000; 1005 break; 1006 case DRM_EVENT_CRTC_SEQUENCE: 1007 if (seq) 1008 e->event.seq.sequence = seq; 1009 e->event.seq.time_ns = ktime_to_ns(now); 1010 break; 1011 } 1012 trace_drm_vblank_event_delivered(e->base.file_priv, e->pipe, seq); 1013 /* 1014 * Use the same timestamp for any associated fence signal to avoid 1015 * mismatch in timestamps for vsync & fence events triggered by the 1016 * same HW event. Frameworks like SurfaceFlinger in Android expects the 1017 * retire-fence timestamp to match exactly with HW vsync as it uses it 1018 * for its software vsync modeling. 1019 */ 1020 drm_send_event_timestamp_locked(dev, &e->base, now); 1021 } 1022 1023 /** 1024 * drm_crtc_arm_vblank_event - arm vblank event after pageflip 1025 * @crtc: the source CRTC of the vblank event 1026 * @e: the event to send 1027 * 1028 * A lot of drivers need to generate vblank events for the very next vblank 1029 * interrupt. For example when the page flip interrupt happens when the page 1030 * flip gets armed, but not when it actually executes within the next vblank 1031 * period. This helper function implements exactly the required vblank arming 1032 * behaviour. 1033 * 1034 * NOTE: Drivers using this to send out the &drm_crtc_state.event as part of an 1035 * atomic commit must ensure that the next vblank happens at exactly the same 1036 * time as the atomic commit is committed to the hardware. This function itself 1037 * does **not** protect against the next vblank interrupt racing with either this 1038 * function call or the atomic commit operation. A possible sequence could be: 1039 * 1040 * 1. Driver commits new hardware state into vblank-synchronized registers. 1041 * 2. A vblank happens, committing the hardware state. Also the corresponding 1042 * vblank interrupt is fired off and fully processed by the interrupt 1043 * handler. 1044 * 3. The atomic commit operation proceeds to call drm_crtc_arm_vblank_event(). 1045 * 4. The event is only send out for the next vblank, which is wrong. 1046 * 1047 * An equivalent race can happen when the driver calls 1048 * drm_crtc_arm_vblank_event() before writing out the new hardware state. 1049 * 1050 * The only way to make this work safely is to prevent the vblank from firing 1051 * (and the hardware from committing anything else) until the entire atomic 1052 * commit sequence has run to completion. If the hardware does not have such a 1053 * feature (e.g. using a "go" bit), then it is unsafe to use this functions. 1054 * Instead drivers need to manually send out the event from their interrupt 1055 * handler by calling drm_crtc_send_vblank_event() and make sure that there's no 1056 * possible race with the hardware committing the atomic update. 1057 * 1058 * Caller must hold a vblank reference for the event @e acquired by a 1059 * drm_crtc_vblank_get(), which will be dropped when the next vblank arrives. 1060 */ 1061 void drm_crtc_arm_vblank_event(struct drm_crtc *crtc, 1062 struct drm_pending_vblank_event *e) 1063 { 1064 struct drm_device *dev = crtc->dev; 1065 unsigned int pipe = drm_crtc_index(crtc); 1066 1067 assert_spin_locked(&dev->event_lock); 1068 1069 e->pipe = pipe; 1070 e->sequence = drm_crtc_accurate_vblank_count(crtc) + 1; 1071 list_add_tail(&e->base.link, &dev->vblank_event_list); 1072 } 1073 EXPORT_SYMBOL(drm_crtc_arm_vblank_event); 1074 1075 /** 1076 * drm_crtc_send_vblank_event - helper to send vblank event after pageflip 1077 * @crtc: the source CRTC of the vblank event 1078 * @e: the event to send 1079 * 1080 * Updates sequence # and timestamp on event for the most recently processed 1081 * vblank, and sends it to userspace. Caller must hold event lock. 1082 * 1083 * See drm_crtc_arm_vblank_event() for a helper which can be used in certain 1084 * situation, especially to send out events for atomic commit operations. 1085 */ 1086 void drm_crtc_send_vblank_event(struct drm_crtc *crtc, 1087 struct drm_pending_vblank_event *e) 1088 { 1089 struct drm_device *dev = crtc->dev; 1090 u64 seq; 1091 unsigned int pipe = drm_crtc_index(crtc); 1092 ktime_t now; 1093 1094 if (drm_dev_has_vblank(dev)) { 1095 seq = drm_vblank_count_and_time(dev, pipe, &now); 1096 } else { 1097 seq = 0; 1098 1099 now = ktime_get(); 1100 } 1101 e->pipe = pipe; 1102 send_vblank_event(dev, e, seq, now); 1103 } 1104 EXPORT_SYMBOL(drm_crtc_send_vblank_event); 1105 1106 static int __enable_vblank(struct drm_device *dev, unsigned int pipe) 1107 { 1108 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 1109 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 1110 1111 if (drm_WARN_ON(dev, !crtc)) 1112 return 0; 1113 1114 if (crtc->funcs->enable_vblank) 1115 return crtc->funcs->enable_vblank(crtc); 1116 } 1117 #ifdef CONFIG_DRM_LEGACY 1118 else if (dev->driver->enable_vblank) { 1119 return dev->driver->enable_vblank(dev, pipe); 1120 } 1121 #endif 1122 1123 return -EINVAL; 1124 } 1125 1126 static int drm_vblank_enable(struct drm_device *dev, unsigned int pipe) 1127 { 1128 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1129 int ret = 0; 1130 1131 assert_spin_locked(&dev->vbl_lock); 1132 1133 spin_lock(&dev->vblank_time_lock); 1134 1135 if (!vblank->enabled) { 1136 /* 1137 * Enable vblank irqs under vblank_time_lock protection. 1138 * All vblank count & timestamp updates are held off 1139 * until we are done reinitializing master counter and 1140 * timestamps. Filtercode in drm_handle_vblank() will 1141 * prevent double-accounting of same vblank interval. 1142 */ 1143 ret = __enable_vblank(dev, pipe); 1144 drm_dbg_core(dev, "enabling vblank on crtc %u, ret: %d\n", 1145 pipe, ret); 1146 if (ret) { 1147 atomic_dec(&vblank->refcount); 1148 } else { 1149 drm_update_vblank_count(dev, pipe, 0); 1150 /* drm_update_vblank_count() includes a wmb so we just 1151 * need to ensure that the compiler emits the write 1152 * to mark the vblank as enabled after the call 1153 * to drm_update_vblank_count(). 1154 */ 1155 WRITE_ONCE(vblank->enabled, true); 1156 } 1157 } 1158 1159 spin_unlock(&dev->vblank_time_lock); 1160 1161 return ret; 1162 } 1163 1164 int drm_vblank_get(struct drm_device *dev, unsigned int pipe) 1165 { 1166 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1167 unsigned long irqflags; 1168 int ret = 0; 1169 1170 if (!drm_dev_has_vblank(dev)) 1171 return -EINVAL; 1172 1173 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 1174 return -EINVAL; 1175 1176 spin_lock_irqsave(&dev->vbl_lock, irqflags); 1177 /* Going from 0->1 means we have to enable interrupts again */ 1178 if (atomic_add_return(1, &vblank->refcount) == 1) { 1179 ret = drm_vblank_enable(dev, pipe); 1180 } else { 1181 if (!vblank->enabled) { 1182 atomic_dec(&vblank->refcount); 1183 ret = -EINVAL; 1184 } 1185 } 1186 spin_unlock_irqrestore(&dev->vbl_lock, irqflags); 1187 1188 return ret; 1189 } 1190 1191 /** 1192 * drm_crtc_vblank_get - get a reference count on vblank events 1193 * @crtc: which CRTC to own 1194 * 1195 * Acquire a reference count on vblank events to avoid having them disabled 1196 * while in use. 1197 * 1198 * Returns: 1199 * Zero on success or a negative error code on failure. 1200 */ 1201 int drm_crtc_vblank_get(struct drm_crtc *crtc) 1202 { 1203 return drm_vblank_get(crtc->dev, drm_crtc_index(crtc)); 1204 } 1205 EXPORT_SYMBOL(drm_crtc_vblank_get); 1206 1207 void drm_vblank_put(struct drm_device *dev, unsigned int pipe) 1208 { 1209 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1210 1211 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 1212 return; 1213 1214 if (drm_WARN_ON(dev, atomic_read(&vblank->refcount) == 0)) 1215 return; 1216 1217 /* Last user schedules interrupt disable */ 1218 if (atomic_dec_and_test(&vblank->refcount)) { 1219 if (drm_vblank_offdelay == 0) 1220 return; 1221 else if (drm_vblank_offdelay < 0) 1222 vblank_disable_fn(vblank); 1223 else if (!dev->vblank_disable_immediate) 1224 mod_timer(&vblank->disable_timer, 1225 jiffies + ((drm_vblank_offdelay * HZ)/1000)); 1226 } 1227 } 1228 1229 /** 1230 * drm_crtc_vblank_put - give up ownership of vblank events 1231 * @crtc: which counter to give up 1232 * 1233 * Release ownership of a given vblank counter, turning off interrupts 1234 * if possible. Disable interrupts after drm_vblank_offdelay milliseconds. 1235 */ 1236 void drm_crtc_vblank_put(struct drm_crtc *crtc) 1237 { 1238 drm_vblank_put(crtc->dev, drm_crtc_index(crtc)); 1239 } 1240 EXPORT_SYMBOL(drm_crtc_vblank_put); 1241 1242 /** 1243 * drm_wait_one_vblank - wait for one vblank 1244 * @dev: DRM device 1245 * @pipe: CRTC index 1246 * 1247 * This waits for one vblank to pass on @pipe, using the irq driver interfaces. 1248 * It is a failure to call this when the vblank irq for @pipe is disabled, e.g. 1249 * due to lack of driver support or because the crtc is off. 1250 * 1251 * This is the legacy version of drm_crtc_wait_one_vblank(). 1252 */ 1253 void drm_wait_one_vblank(struct drm_device *dev, unsigned int pipe) 1254 { 1255 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1256 int ret; 1257 u64 last; 1258 1259 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 1260 return; 1261 1262 #ifdef __OpenBSD__ 1263 /* 1264 * If we're cold, vblank interrupts won't happen even if 1265 * they're turned on by the driver. Just stall long enough 1266 * for a vblank to pass. This assumes a vrefresh of at least 1267 * 25 Hz. 1268 */ 1269 if (cold) { 1270 delay(40000); 1271 return; 1272 } 1273 #endif 1274 1275 ret = drm_vblank_get(dev, pipe); 1276 if (drm_WARN(dev, ret, "vblank not available on crtc %i, ret=%i\n", 1277 pipe, ret)) 1278 return; 1279 1280 last = drm_vblank_count(dev, pipe); 1281 1282 ret = wait_event_timeout(vblank->queue, 1283 last != drm_vblank_count(dev, pipe), 1284 msecs_to_jiffies(100)); 1285 1286 drm_WARN(dev, ret == 0, "vblank wait timed out on crtc %i\n", pipe); 1287 1288 drm_vblank_put(dev, pipe); 1289 } 1290 EXPORT_SYMBOL(drm_wait_one_vblank); 1291 1292 /** 1293 * drm_crtc_wait_one_vblank - wait for one vblank 1294 * @crtc: DRM crtc 1295 * 1296 * This waits for one vblank to pass on @crtc, using the irq driver interfaces. 1297 * It is a failure to call this when the vblank irq for @crtc is disabled, e.g. 1298 * due to lack of driver support or because the crtc is off. 1299 */ 1300 void drm_crtc_wait_one_vblank(struct drm_crtc *crtc) 1301 { 1302 drm_wait_one_vblank(crtc->dev, drm_crtc_index(crtc)); 1303 } 1304 EXPORT_SYMBOL(drm_crtc_wait_one_vblank); 1305 1306 /** 1307 * drm_crtc_vblank_off - disable vblank events on a CRTC 1308 * @crtc: CRTC in question 1309 * 1310 * Drivers can use this function to shut down the vblank interrupt handling when 1311 * disabling a crtc. This function ensures that the latest vblank frame count is 1312 * stored so that drm_vblank_on can restore it again. 1313 * 1314 * Drivers must use this function when the hardware vblank counter can get 1315 * reset, e.g. when suspending or disabling the @crtc in general. 1316 */ 1317 void drm_crtc_vblank_off(struct drm_crtc *crtc) 1318 { 1319 struct drm_device *dev = crtc->dev; 1320 unsigned int pipe = drm_crtc_index(crtc); 1321 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1322 struct drm_pending_vblank_event *e, *t; 1323 ktime_t now; 1324 u64 seq; 1325 1326 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 1327 return; 1328 1329 /* 1330 * Grab event_lock early to prevent vblank work from being scheduled 1331 * while we're in the middle of shutting down vblank interrupts 1332 */ 1333 spin_lock_irq(&dev->event_lock); 1334 1335 spin_lock(&dev->vbl_lock); 1336 drm_dbg_vbl(dev, "crtc %d, vblank enabled %d, inmodeset %d\n", 1337 pipe, vblank->enabled, vblank->inmodeset); 1338 1339 /* Avoid redundant vblank disables without previous 1340 * drm_crtc_vblank_on(). */ 1341 if (drm_core_check_feature(dev, DRIVER_ATOMIC) || !vblank->inmodeset) 1342 drm_vblank_disable_and_save(dev, pipe); 1343 1344 wake_up(&vblank->queue); 1345 1346 /* 1347 * Prevent subsequent drm_vblank_get() from re-enabling 1348 * the vblank interrupt by bumping the refcount. 1349 */ 1350 if (!vblank->inmodeset) { 1351 atomic_inc(&vblank->refcount); 1352 vblank->inmodeset = 1; 1353 } 1354 spin_unlock(&dev->vbl_lock); 1355 1356 /* Send any queued vblank events, lest the natives grow disquiet */ 1357 seq = drm_vblank_count_and_time(dev, pipe, &now); 1358 1359 list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) { 1360 if (e->pipe != pipe) 1361 continue; 1362 drm_dbg_core(dev, "Sending premature vblank event on disable: " 1363 "wanted %llu, current %llu\n", 1364 e->sequence, seq); 1365 list_del(&e->base.link); 1366 drm_vblank_put(dev, pipe); 1367 send_vblank_event(dev, e, seq, now); 1368 } 1369 1370 /* Cancel any leftover pending vblank work */ 1371 drm_vblank_cancel_pending_works(vblank); 1372 1373 spin_unlock_irq(&dev->event_lock); 1374 1375 /* Will be reset by the modeset helpers when re-enabling the crtc by 1376 * calling drm_calc_timestamping_constants(). */ 1377 vblank->hwmode.crtc_clock = 0; 1378 1379 /* Wait for any vblank work that's still executing to finish */ 1380 drm_vblank_flush_worker(vblank); 1381 } 1382 EXPORT_SYMBOL(drm_crtc_vblank_off); 1383 1384 /** 1385 * drm_crtc_vblank_reset - reset vblank state to off on a CRTC 1386 * @crtc: CRTC in question 1387 * 1388 * Drivers can use this function to reset the vblank state to off at load time. 1389 * Drivers should use this together with the drm_crtc_vblank_off() and 1390 * drm_crtc_vblank_on() functions. The difference compared to 1391 * drm_crtc_vblank_off() is that this function doesn't save the vblank counter 1392 * and hence doesn't need to call any driver hooks. 1393 * 1394 * This is useful for recovering driver state e.g. on driver load, or on resume. 1395 */ 1396 void drm_crtc_vblank_reset(struct drm_crtc *crtc) 1397 { 1398 struct drm_device *dev = crtc->dev; 1399 unsigned int pipe = drm_crtc_index(crtc); 1400 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1401 1402 spin_lock_irq(&dev->vbl_lock); 1403 /* 1404 * Prevent subsequent drm_vblank_get() from enabling the vblank 1405 * interrupt by bumping the refcount. 1406 */ 1407 if (!vblank->inmodeset) { 1408 atomic_inc(&vblank->refcount); 1409 vblank->inmodeset = 1; 1410 } 1411 spin_unlock_irq(&dev->vbl_lock); 1412 1413 drm_WARN_ON(dev, !list_empty(&dev->vblank_event_list)); 1414 drm_WARN_ON(dev, !list_empty(&vblank->pending_work)); 1415 } 1416 EXPORT_SYMBOL(drm_crtc_vblank_reset); 1417 1418 /** 1419 * drm_crtc_set_max_vblank_count - configure the hw max vblank counter value 1420 * @crtc: CRTC in question 1421 * @max_vblank_count: max hardware vblank counter value 1422 * 1423 * Update the maximum hardware vblank counter value for @crtc 1424 * at runtime. Useful for hardware where the operation of the 1425 * hardware vblank counter depends on the currently active 1426 * display configuration. 1427 * 1428 * For example, if the hardware vblank counter does not work 1429 * when a specific connector is active the maximum can be set 1430 * to zero. And when that specific connector isn't active the 1431 * maximum can again be set to the appropriate non-zero value. 1432 * 1433 * If used, must be called before drm_vblank_on(). 1434 */ 1435 void drm_crtc_set_max_vblank_count(struct drm_crtc *crtc, 1436 u32 max_vblank_count) 1437 { 1438 struct drm_device *dev = crtc->dev; 1439 unsigned int pipe = drm_crtc_index(crtc); 1440 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1441 1442 drm_WARN_ON(dev, dev->max_vblank_count); 1443 drm_WARN_ON(dev, !READ_ONCE(vblank->inmodeset)); 1444 1445 vblank->max_vblank_count = max_vblank_count; 1446 } 1447 EXPORT_SYMBOL(drm_crtc_set_max_vblank_count); 1448 1449 /** 1450 * drm_crtc_vblank_on - enable vblank events on a CRTC 1451 * @crtc: CRTC in question 1452 * 1453 * This functions restores the vblank interrupt state captured with 1454 * drm_crtc_vblank_off() again and is generally called when enabling @crtc. Note 1455 * that calls to drm_crtc_vblank_on() and drm_crtc_vblank_off() can be 1456 * unbalanced and so can also be unconditionally called in driver load code to 1457 * reflect the current hardware state of the crtc. 1458 */ 1459 void drm_crtc_vblank_on(struct drm_crtc *crtc) 1460 { 1461 struct drm_device *dev = crtc->dev; 1462 unsigned int pipe = drm_crtc_index(crtc); 1463 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1464 1465 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 1466 return; 1467 1468 spin_lock_irq(&dev->vbl_lock); 1469 drm_dbg_vbl(dev, "crtc %d, vblank enabled %d, inmodeset %d\n", 1470 pipe, vblank->enabled, vblank->inmodeset); 1471 1472 /* Drop our private "prevent drm_vblank_get" refcount */ 1473 if (vblank->inmodeset) { 1474 atomic_dec(&vblank->refcount); 1475 vblank->inmodeset = 0; 1476 } 1477 1478 drm_reset_vblank_timestamp(dev, pipe); 1479 1480 /* 1481 * re-enable interrupts if there are users left, or the 1482 * user wishes vblank interrupts to be enabled all the time. 1483 */ 1484 if (atomic_read(&vblank->refcount) != 0 || drm_vblank_offdelay == 0) 1485 drm_WARN_ON(dev, drm_vblank_enable(dev, pipe)); 1486 spin_unlock_irq(&dev->vbl_lock); 1487 } 1488 EXPORT_SYMBOL(drm_crtc_vblank_on); 1489 1490 static void drm_vblank_restore(struct drm_device *dev, unsigned int pipe) 1491 { 1492 ktime_t t_vblank; 1493 struct drm_vblank_crtc *vblank; 1494 int framedur_ns; 1495 u64 diff_ns; 1496 u32 cur_vblank, diff = 1; 1497 int count = DRM_TIMESTAMP_MAXRETRIES; 1498 u32 max_vblank_count = drm_max_vblank_count(dev, pipe); 1499 1500 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 1501 return; 1502 1503 assert_spin_locked(&dev->vbl_lock); 1504 assert_spin_locked(&dev->vblank_time_lock); 1505 1506 vblank = &dev->vblank[pipe]; 1507 drm_WARN_ONCE(dev, 1508 drm_debug_enabled(DRM_UT_VBL) && !vblank->framedur_ns, 1509 "Cannot compute missed vblanks without frame duration\n"); 1510 framedur_ns = vblank->framedur_ns; 1511 1512 do { 1513 cur_vblank = __get_vblank_counter(dev, pipe); 1514 drm_get_last_vbltimestamp(dev, pipe, &t_vblank, false); 1515 } while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0); 1516 1517 diff_ns = ktime_to_ns(ktime_sub(t_vblank, vblank->time)); 1518 if (framedur_ns) 1519 diff = DIV_ROUND_CLOSEST_ULL(diff_ns, framedur_ns); 1520 1521 1522 drm_dbg_vbl(dev, 1523 "missed %d vblanks in %lld ns, frame duration=%d ns, hw_diff=%d\n", 1524 diff, diff_ns, framedur_ns, cur_vblank - vblank->last); 1525 vblank->last = (cur_vblank - diff) & max_vblank_count; 1526 } 1527 1528 /** 1529 * drm_crtc_vblank_restore - estimate missed vblanks and update vblank count. 1530 * @crtc: CRTC in question 1531 * 1532 * Power manamement features can cause frame counter resets between vblank 1533 * disable and enable. Drivers can use this function in their 1534 * &drm_crtc_funcs.enable_vblank implementation to estimate missed vblanks since 1535 * the last &drm_crtc_funcs.disable_vblank using timestamps and update the 1536 * vblank counter. 1537 * 1538 * Note that drivers must have race-free high-precision timestamping support, 1539 * i.e. &drm_crtc_funcs.get_vblank_timestamp must be hooked up and 1540 * &drm_driver.vblank_disable_immediate must be set to indicate the 1541 * time-stamping functions are race-free against vblank hardware counter 1542 * increments. 1543 */ 1544 void drm_crtc_vblank_restore(struct drm_crtc *crtc) 1545 { 1546 WARN_ON_ONCE(!crtc->funcs->get_vblank_timestamp); 1547 WARN_ON_ONCE(!crtc->dev->vblank_disable_immediate); 1548 1549 drm_vblank_restore(crtc->dev, drm_crtc_index(crtc)); 1550 } 1551 EXPORT_SYMBOL(drm_crtc_vblank_restore); 1552 1553 static void drm_legacy_vblank_pre_modeset(struct drm_device *dev, 1554 unsigned int pipe) 1555 { 1556 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1557 1558 /* vblank is not initialized (IRQ not installed ?), or has been freed */ 1559 if (!drm_dev_has_vblank(dev)) 1560 return; 1561 1562 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 1563 return; 1564 1565 /* 1566 * To avoid all the problems that might happen if interrupts 1567 * were enabled/disabled around or between these calls, we just 1568 * have the kernel take a reference on the CRTC (just once though 1569 * to avoid corrupting the count if multiple, mismatch calls occur), 1570 * so that interrupts remain enabled in the interim. 1571 */ 1572 if (!vblank->inmodeset) { 1573 vblank->inmodeset = 0x1; 1574 if (drm_vblank_get(dev, pipe) == 0) 1575 vblank->inmodeset |= 0x2; 1576 } 1577 } 1578 1579 static void drm_legacy_vblank_post_modeset(struct drm_device *dev, 1580 unsigned int pipe) 1581 { 1582 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1583 1584 /* vblank is not initialized (IRQ not installed ?), or has been freed */ 1585 if (!drm_dev_has_vblank(dev)) 1586 return; 1587 1588 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 1589 return; 1590 1591 if (vblank->inmodeset) { 1592 spin_lock_irq(&dev->vbl_lock); 1593 drm_reset_vblank_timestamp(dev, pipe); 1594 spin_unlock_irq(&dev->vbl_lock); 1595 1596 if (vblank->inmodeset & 0x2) 1597 drm_vblank_put(dev, pipe); 1598 1599 vblank->inmodeset = 0; 1600 } 1601 } 1602 1603 int drm_legacy_modeset_ctl_ioctl(struct drm_device *dev, void *data, 1604 struct drm_file *file_priv) 1605 { 1606 struct drm_modeset_ctl *modeset = data; 1607 unsigned int pipe; 1608 1609 /* If drm_vblank_init() hasn't been called yet, just no-op */ 1610 if (!drm_dev_has_vblank(dev)) 1611 return 0; 1612 1613 /* KMS drivers handle this internally */ 1614 if (!drm_core_check_feature(dev, DRIVER_LEGACY)) 1615 return 0; 1616 1617 pipe = modeset->crtc; 1618 if (pipe >= dev->num_crtcs) 1619 return -EINVAL; 1620 1621 switch (modeset->cmd) { 1622 case _DRM_PRE_MODESET: 1623 drm_legacy_vblank_pre_modeset(dev, pipe); 1624 break; 1625 case _DRM_POST_MODESET: 1626 drm_legacy_vblank_post_modeset(dev, pipe); 1627 break; 1628 default: 1629 return -EINVAL; 1630 } 1631 1632 return 0; 1633 } 1634 1635 static int drm_queue_vblank_event(struct drm_device *dev, unsigned int pipe, 1636 u64 req_seq, 1637 union drm_wait_vblank *vblwait, 1638 struct drm_file *file_priv) 1639 { 1640 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1641 struct drm_pending_vblank_event *e; 1642 ktime_t now; 1643 u64 seq; 1644 int ret; 1645 1646 e = kzalloc(sizeof(*e), GFP_KERNEL); 1647 if (e == NULL) { 1648 ret = -ENOMEM; 1649 goto err_put; 1650 } 1651 1652 e->pipe = pipe; 1653 e->event.base.type = DRM_EVENT_VBLANK; 1654 e->event.base.length = sizeof(e->event.vbl); 1655 e->event.vbl.user_data = vblwait->request.signal; 1656 e->event.vbl.crtc_id = 0; 1657 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 1658 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 1659 1660 if (crtc) 1661 e->event.vbl.crtc_id = crtc->base.id; 1662 } 1663 1664 spin_lock_irq(&dev->event_lock); 1665 1666 /* 1667 * drm_crtc_vblank_off() might have been called after we called 1668 * drm_vblank_get(). drm_crtc_vblank_off() holds event_lock around the 1669 * vblank disable, so no need for further locking. The reference from 1670 * drm_vblank_get() protects against vblank disable from another source. 1671 */ 1672 if (!READ_ONCE(vblank->enabled)) { 1673 ret = -EINVAL; 1674 goto err_unlock; 1675 } 1676 1677 ret = drm_event_reserve_init_locked(dev, file_priv, &e->base, 1678 &e->event.base); 1679 1680 if (ret) 1681 goto err_unlock; 1682 1683 seq = drm_vblank_count_and_time(dev, pipe, &now); 1684 1685 drm_dbg_core(dev, "event on vblank count %llu, current %llu, crtc %u\n", 1686 req_seq, seq, pipe); 1687 1688 trace_drm_vblank_event_queued(file_priv, pipe, req_seq); 1689 1690 e->sequence = req_seq; 1691 if (drm_vblank_passed(seq, req_seq)) { 1692 drm_vblank_put(dev, pipe); 1693 send_vblank_event(dev, e, seq, now); 1694 vblwait->reply.sequence = seq; 1695 } else { 1696 /* drm_handle_vblank_events will call drm_vblank_put */ 1697 list_add_tail(&e->base.link, &dev->vblank_event_list); 1698 vblwait->reply.sequence = req_seq; 1699 } 1700 1701 spin_unlock_irq(&dev->event_lock); 1702 1703 return 0; 1704 1705 err_unlock: 1706 spin_unlock_irq(&dev->event_lock); 1707 kfree(e); 1708 err_put: 1709 drm_vblank_put(dev, pipe); 1710 return ret; 1711 } 1712 1713 static bool drm_wait_vblank_is_query(union drm_wait_vblank *vblwait) 1714 { 1715 if (vblwait->request.sequence) 1716 return false; 1717 1718 return _DRM_VBLANK_RELATIVE == 1719 (vblwait->request.type & (_DRM_VBLANK_TYPES_MASK | 1720 _DRM_VBLANK_EVENT | 1721 _DRM_VBLANK_NEXTONMISS)); 1722 } 1723 1724 /* 1725 * Widen a 32-bit param to 64-bits. 1726 * 1727 * \param narrow 32-bit value (missing upper 32 bits) 1728 * \param near 64-bit value that should be 'close' to near 1729 * 1730 * This function returns a 64-bit value using the lower 32-bits from 1731 * 'narrow' and constructing the upper 32-bits so that the result is 1732 * as close as possible to 'near'. 1733 */ 1734 1735 static u64 widen_32_to_64(u32 narrow, u64 near) 1736 { 1737 return near + (s32) (narrow - near); 1738 } 1739 1740 static void drm_wait_vblank_reply(struct drm_device *dev, unsigned int pipe, 1741 struct drm_wait_vblank_reply *reply) 1742 { 1743 ktime_t now; 1744 struct timespec64 ts; 1745 1746 /* 1747 * drm_wait_vblank_reply is a UAPI structure that uses 'long' 1748 * to store the seconds. This is safe as we always use monotonic 1749 * timestamps since linux-4.15. 1750 */ 1751 reply->sequence = drm_vblank_count_and_time(dev, pipe, &now); 1752 ts = ktime_to_timespec64(now); 1753 reply->tval_sec = (u32)ts.tv_sec; 1754 reply->tval_usec = ts.tv_nsec / 1000; 1755 } 1756 1757 static bool drm_wait_vblank_supported(struct drm_device *dev) 1758 { 1759 #if IS_ENABLED(CONFIG_DRM_LEGACY) 1760 if (unlikely(drm_core_check_feature(dev, DRIVER_LEGACY))) 1761 return dev->irq_enabled; 1762 #endif 1763 return drm_dev_has_vblank(dev); 1764 } 1765 1766 int drm_wait_vblank_ioctl(struct drm_device *dev, void *data, 1767 struct drm_file *file_priv) 1768 { 1769 struct drm_crtc *crtc; 1770 struct drm_vblank_crtc *vblank; 1771 union drm_wait_vblank *vblwait = data; 1772 int ret; 1773 u64 req_seq, seq; 1774 unsigned int pipe_index; 1775 unsigned int flags, pipe, high_pipe; 1776 1777 if (!drm_wait_vblank_supported(dev)) 1778 return -EOPNOTSUPP; 1779 1780 if (vblwait->request.type & _DRM_VBLANK_SIGNAL) 1781 return -EINVAL; 1782 1783 if (vblwait->request.type & 1784 ~(_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK | 1785 _DRM_VBLANK_HIGH_CRTC_MASK)) { 1786 drm_dbg_core(dev, 1787 "Unsupported type value 0x%x, supported mask 0x%x\n", 1788 vblwait->request.type, 1789 (_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK | 1790 _DRM_VBLANK_HIGH_CRTC_MASK)); 1791 return -EINVAL; 1792 } 1793 1794 flags = vblwait->request.type & _DRM_VBLANK_FLAGS_MASK; 1795 high_pipe = (vblwait->request.type & _DRM_VBLANK_HIGH_CRTC_MASK); 1796 if (high_pipe) 1797 pipe_index = high_pipe >> _DRM_VBLANK_HIGH_CRTC_SHIFT; 1798 else 1799 pipe_index = flags & _DRM_VBLANK_SECONDARY ? 1 : 0; 1800 1801 /* Convert lease-relative crtc index into global crtc index */ 1802 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 1803 pipe = 0; 1804 drm_for_each_crtc(crtc, dev) { 1805 if (drm_lease_held(file_priv, crtc->base.id)) { 1806 if (pipe_index == 0) 1807 break; 1808 pipe_index--; 1809 } 1810 pipe++; 1811 } 1812 } else { 1813 pipe = pipe_index; 1814 } 1815 1816 if (pipe >= dev->num_crtcs) 1817 return -EINVAL; 1818 1819 vblank = &dev->vblank[pipe]; 1820 1821 /* If the counter is currently enabled and accurate, short-circuit 1822 * queries to return the cached timestamp of the last vblank. 1823 */ 1824 if (dev->vblank_disable_immediate && 1825 drm_wait_vblank_is_query(vblwait) && 1826 READ_ONCE(vblank->enabled)) { 1827 drm_wait_vblank_reply(dev, pipe, &vblwait->reply); 1828 return 0; 1829 } 1830 1831 ret = drm_vblank_get(dev, pipe); 1832 if (ret) { 1833 drm_dbg_core(dev, 1834 "crtc %d failed to acquire vblank counter, %d\n", 1835 pipe, ret); 1836 return ret; 1837 } 1838 seq = drm_vblank_count(dev, pipe); 1839 1840 switch (vblwait->request.type & _DRM_VBLANK_TYPES_MASK) { 1841 case _DRM_VBLANK_RELATIVE: 1842 req_seq = seq + vblwait->request.sequence; 1843 vblwait->request.sequence = req_seq; 1844 vblwait->request.type &= ~_DRM_VBLANK_RELATIVE; 1845 break; 1846 case _DRM_VBLANK_ABSOLUTE: 1847 req_seq = widen_32_to_64(vblwait->request.sequence, seq); 1848 break; 1849 default: 1850 ret = -EINVAL; 1851 goto done; 1852 } 1853 1854 if ((flags & _DRM_VBLANK_NEXTONMISS) && 1855 drm_vblank_passed(seq, req_seq)) { 1856 req_seq = seq + 1; 1857 vblwait->request.type &= ~_DRM_VBLANK_NEXTONMISS; 1858 vblwait->request.sequence = req_seq; 1859 } 1860 1861 if (flags & _DRM_VBLANK_EVENT) { 1862 /* must hold on to the vblank ref until the event fires 1863 * drm_vblank_put will be called asynchronously 1864 */ 1865 return drm_queue_vblank_event(dev, pipe, req_seq, vblwait, file_priv); 1866 } 1867 1868 if (req_seq != seq) { 1869 int wait; 1870 1871 drm_dbg_core(dev, "waiting on vblank count %llu, crtc %u\n", 1872 req_seq, pipe); 1873 wait = wait_event_interruptible_timeout(vblank->queue, 1874 drm_vblank_passed(drm_vblank_count(dev, pipe), req_seq) || 1875 !READ_ONCE(vblank->enabled), 1876 msecs_to_jiffies(3000)); 1877 1878 switch (wait) { 1879 case 0: 1880 /* timeout */ 1881 ret = -EBUSY; 1882 break; 1883 case -ERESTARTSYS: 1884 /* interrupted by signal */ 1885 ret = -EINTR; 1886 break; 1887 default: 1888 ret = 0; 1889 break; 1890 } 1891 } 1892 1893 if (ret != -EINTR) { 1894 drm_wait_vblank_reply(dev, pipe, &vblwait->reply); 1895 1896 drm_dbg_core(dev, "crtc %d returning %u to client\n", 1897 pipe, vblwait->reply.sequence); 1898 } else { 1899 drm_dbg_core(dev, "crtc %d vblank wait interrupted by signal\n", 1900 pipe); 1901 } 1902 1903 done: 1904 drm_vblank_put(dev, pipe); 1905 return ret; 1906 } 1907 1908 static void drm_handle_vblank_events(struct drm_device *dev, unsigned int pipe) 1909 { 1910 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 1911 bool high_prec = false; 1912 struct drm_pending_vblank_event *e, *t; 1913 ktime_t now; 1914 u64 seq; 1915 1916 assert_spin_locked(&dev->event_lock); 1917 1918 seq = drm_vblank_count_and_time(dev, pipe, &now); 1919 1920 list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) { 1921 if (e->pipe != pipe) 1922 continue; 1923 if (!drm_vblank_passed(seq, e->sequence)) 1924 continue; 1925 1926 drm_dbg_core(dev, "vblank event on %llu, current %llu\n", 1927 e->sequence, seq); 1928 1929 list_del(&e->base.link); 1930 drm_vblank_put(dev, pipe); 1931 send_vblank_event(dev, e, seq, now); 1932 } 1933 1934 if (crtc && crtc->funcs->get_vblank_timestamp) 1935 high_prec = true; 1936 1937 trace_drm_vblank_event(pipe, seq, now, high_prec); 1938 } 1939 1940 /** 1941 * drm_handle_vblank - handle a vblank event 1942 * @dev: DRM device 1943 * @pipe: index of CRTC where this event occurred 1944 * 1945 * Drivers should call this routine in their vblank interrupt handlers to 1946 * update the vblank counter and send any signals that may be pending. 1947 * 1948 * This is the legacy version of drm_crtc_handle_vblank(). 1949 */ 1950 bool drm_handle_vblank(struct drm_device *dev, unsigned int pipe) 1951 { 1952 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1953 unsigned long irqflags; 1954 bool disable_irq; 1955 1956 if (drm_WARN_ON_ONCE(dev, !drm_dev_has_vblank(dev))) 1957 return false; 1958 1959 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 1960 return false; 1961 1962 spin_lock_irqsave(&dev->event_lock, irqflags); 1963 1964 /* Need timestamp lock to prevent concurrent execution with 1965 * vblank enable/disable, as this would cause inconsistent 1966 * or corrupted timestamps and vblank counts. 1967 */ 1968 spin_lock(&dev->vblank_time_lock); 1969 1970 /* Vblank irq handling disabled. Nothing to do. */ 1971 if (!vblank->enabled) { 1972 spin_unlock(&dev->vblank_time_lock); 1973 spin_unlock_irqrestore(&dev->event_lock, irqflags); 1974 return false; 1975 } 1976 1977 drm_update_vblank_count(dev, pipe, true); 1978 1979 spin_unlock(&dev->vblank_time_lock); 1980 1981 wake_up(&vblank->queue); 1982 1983 /* With instant-off, we defer disabling the interrupt until after 1984 * we finish processing the following vblank after all events have 1985 * been signaled. The disable has to be last (after 1986 * drm_handle_vblank_events) so that the timestamp is always accurate. 1987 */ 1988 disable_irq = (dev->vblank_disable_immediate && 1989 drm_vblank_offdelay > 0 && 1990 !atomic_read(&vblank->refcount)); 1991 1992 drm_handle_vblank_events(dev, pipe); 1993 drm_handle_vblank_works(vblank); 1994 1995 spin_unlock_irqrestore(&dev->event_lock, irqflags); 1996 1997 if (disable_irq) 1998 vblank_disable_fn(vblank); 1999 2000 return true; 2001 } 2002 EXPORT_SYMBOL(drm_handle_vblank); 2003 2004 /** 2005 * drm_crtc_handle_vblank - handle a vblank event 2006 * @crtc: where this event occurred 2007 * 2008 * Drivers should call this routine in their vblank interrupt handlers to 2009 * update the vblank counter and send any signals that may be pending. 2010 * 2011 * This is the native KMS version of drm_handle_vblank(). 2012 * 2013 * Note that for a given vblank counter value drm_crtc_handle_vblank() 2014 * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time() 2015 * provide a barrier: Any writes done before calling 2016 * drm_crtc_handle_vblank() will be visible to callers of the later 2017 * functions, if the vblank count is the same or a later one. 2018 * 2019 * See also &drm_vblank_crtc.count. 2020 * 2021 * Returns: 2022 * True if the event was successfully handled, false on failure. 2023 */ 2024 bool drm_crtc_handle_vblank(struct drm_crtc *crtc) 2025 { 2026 return drm_handle_vblank(crtc->dev, drm_crtc_index(crtc)); 2027 } 2028 EXPORT_SYMBOL(drm_crtc_handle_vblank); 2029 2030 /* 2031 * Get crtc VBLANK count. 2032 * 2033 * \param dev DRM device 2034 * \param data user argument, pointing to a drm_crtc_get_sequence structure. 2035 * \param file_priv drm file private for the user's open file descriptor 2036 */ 2037 2038 int drm_crtc_get_sequence_ioctl(struct drm_device *dev, void *data, 2039 struct drm_file *file_priv) 2040 { 2041 struct drm_crtc *crtc; 2042 struct drm_vblank_crtc *vblank; 2043 int pipe; 2044 struct drm_crtc_get_sequence *get_seq = data; 2045 ktime_t now; 2046 bool vblank_enabled; 2047 int ret; 2048 2049 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 2050 return -EOPNOTSUPP; 2051 2052 if (!drm_dev_has_vblank(dev)) 2053 return -EOPNOTSUPP; 2054 2055 crtc = drm_crtc_find(dev, file_priv, get_seq->crtc_id); 2056 if (!crtc) 2057 return -ENOENT; 2058 2059 pipe = drm_crtc_index(crtc); 2060 2061 vblank = &dev->vblank[pipe]; 2062 vblank_enabled = dev->vblank_disable_immediate && READ_ONCE(vblank->enabled); 2063 2064 if (!vblank_enabled) { 2065 ret = drm_crtc_vblank_get(crtc); 2066 if (ret) { 2067 drm_dbg_core(dev, 2068 "crtc %d failed to acquire vblank counter, %d\n", 2069 pipe, ret); 2070 return ret; 2071 } 2072 } 2073 drm_modeset_lock(&crtc->mutex, NULL); 2074 if (crtc->state) 2075 get_seq->active = crtc->state->enable; 2076 else 2077 get_seq->active = crtc->enabled; 2078 drm_modeset_unlock(&crtc->mutex); 2079 get_seq->sequence = drm_vblank_count_and_time(dev, pipe, &now); 2080 get_seq->sequence_ns = ktime_to_ns(now); 2081 if (!vblank_enabled) 2082 drm_crtc_vblank_put(crtc); 2083 return 0; 2084 } 2085 2086 /* 2087 * Queue a event for VBLANK sequence 2088 * 2089 * \param dev DRM device 2090 * \param data user argument, pointing to a drm_crtc_queue_sequence structure. 2091 * \param file_priv drm file private for the user's open file descriptor 2092 */ 2093 2094 int drm_crtc_queue_sequence_ioctl(struct drm_device *dev, void *data, 2095 struct drm_file *file_priv) 2096 { 2097 struct drm_crtc *crtc; 2098 struct drm_vblank_crtc *vblank; 2099 int pipe; 2100 struct drm_crtc_queue_sequence *queue_seq = data; 2101 ktime_t now; 2102 struct drm_pending_vblank_event *e; 2103 u32 flags; 2104 u64 seq; 2105 u64 req_seq; 2106 int ret; 2107 2108 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 2109 return -EOPNOTSUPP; 2110 2111 if (!drm_dev_has_vblank(dev)) 2112 return -EOPNOTSUPP; 2113 2114 crtc = drm_crtc_find(dev, file_priv, queue_seq->crtc_id); 2115 if (!crtc) 2116 return -ENOENT; 2117 2118 flags = queue_seq->flags; 2119 /* Check valid flag bits */ 2120 if (flags & ~(DRM_CRTC_SEQUENCE_RELATIVE| 2121 DRM_CRTC_SEQUENCE_NEXT_ON_MISS)) 2122 return -EINVAL; 2123 2124 pipe = drm_crtc_index(crtc); 2125 2126 vblank = &dev->vblank[pipe]; 2127 2128 e = kzalloc(sizeof(*e), GFP_KERNEL); 2129 if (e == NULL) 2130 return -ENOMEM; 2131 2132 ret = drm_crtc_vblank_get(crtc); 2133 if (ret) { 2134 drm_dbg_core(dev, 2135 "crtc %d failed to acquire vblank counter, %d\n", 2136 pipe, ret); 2137 goto err_free; 2138 } 2139 2140 seq = drm_vblank_count_and_time(dev, pipe, &now); 2141 req_seq = queue_seq->sequence; 2142 2143 if (flags & DRM_CRTC_SEQUENCE_RELATIVE) 2144 req_seq += seq; 2145 2146 if ((flags & DRM_CRTC_SEQUENCE_NEXT_ON_MISS) && drm_vblank_passed(seq, req_seq)) 2147 req_seq = seq + 1; 2148 2149 e->pipe = pipe; 2150 e->event.base.type = DRM_EVENT_CRTC_SEQUENCE; 2151 e->event.base.length = sizeof(e->event.seq); 2152 e->event.seq.user_data = queue_seq->user_data; 2153 2154 spin_lock_irq(&dev->event_lock); 2155 2156 /* 2157 * drm_crtc_vblank_off() might have been called after we called 2158 * drm_crtc_vblank_get(). drm_crtc_vblank_off() holds event_lock around the 2159 * vblank disable, so no need for further locking. The reference from 2160 * drm_crtc_vblank_get() protects against vblank disable from another source. 2161 */ 2162 if (!READ_ONCE(vblank->enabled)) { 2163 ret = -EINVAL; 2164 goto err_unlock; 2165 } 2166 2167 ret = drm_event_reserve_init_locked(dev, file_priv, &e->base, 2168 &e->event.base); 2169 2170 if (ret) 2171 goto err_unlock; 2172 2173 e->sequence = req_seq; 2174 2175 if (drm_vblank_passed(seq, req_seq)) { 2176 drm_crtc_vblank_put(crtc); 2177 send_vblank_event(dev, e, seq, now); 2178 queue_seq->sequence = seq; 2179 } else { 2180 /* drm_handle_vblank_events will call drm_vblank_put */ 2181 list_add_tail(&e->base.link, &dev->vblank_event_list); 2182 queue_seq->sequence = req_seq; 2183 } 2184 2185 spin_unlock_irq(&dev->event_lock); 2186 return 0; 2187 2188 err_unlock: 2189 spin_unlock_irq(&dev->event_lock); 2190 drm_crtc_vblank_put(crtc); 2191 err_free: 2192 kfree(e); 2193 return ret; 2194 } 2195 2196