1 /* 2 * Copyright (C) 2011-2013 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 * SOFTWARE. 22 */ 23 24 #include <linux/errno.h> 25 #include <linux/export.h> 26 #include <linux/kernel.h> 27 #include <drm/drmP.h> 28 #include <drm/drm_rect.h> 29 30 /** 31 * drm_rect_intersect - intersect two rectangles 32 * @r1: first rectangle 33 * @r2: second rectangle 34 * 35 * Calculate the intersection of rectangles @r1 and @r2. 36 * @r1 will be overwritten with the intersection. 37 * 38 * RETURNS: 39 * %true if rectangle @r1 is still visible after the operation, 40 * %false otherwise. 41 */ 42 bool drm_rect_intersect(struct drm_rect *r1, const struct drm_rect *r2) 43 { 44 r1->x1 = max(r1->x1, r2->x1); 45 r1->y1 = max(r1->y1, r2->y1); 46 r1->x2 = min(r1->x2, r2->x2); 47 r1->y2 = min(r1->y2, r2->y2); 48 49 return drm_rect_visible(r1); 50 } 51 EXPORT_SYMBOL(drm_rect_intersect); 52 53 static u32 clip_scaled(u32 src, u32 dst, u32 clip) 54 { 55 u64 tmp; 56 57 if (dst == 0) 58 return 0; 59 60 tmp = mul_u32_u32(src, dst - clip); 61 62 /* 63 * Round toward 1.0 when clipping so that we don't accidentally 64 * change upscaling to downscaling or vice versa. 65 */ 66 if (src < (dst << 16)) 67 return DIV_ROUND_UP_ULL(tmp, dst); 68 else 69 return DIV_ROUND_DOWN_ULL(tmp, dst); 70 } 71 72 /** 73 * drm_rect_clip_scaled - perform a scaled clip operation 74 * @src: source window rectangle 75 * @dst: destination window rectangle 76 * @clip: clip rectangle 77 * 78 * Clip rectangle @dst by rectangle @clip. Clip rectangle @src by the 79 * same amounts multiplied by @hscale and @vscale. 80 * 81 * RETURNS: 82 * %true if rectangle @dst is still visible after being clipped, 83 * %false otherwise 84 */ 85 bool drm_rect_clip_scaled(struct drm_rect *src, struct drm_rect *dst, 86 const struct drm_rect *clip) 87 { 88 int diff; 89 90 diff = clip->x1 - dst->x1; 91 if (diff > 0) { 92 u32 new_src_w = clip_scaled(drm_rect_width(src), 93 drm_rect_width(dst), diff); 94 95 src->x1 = clamp_t(int64_t, src->x2 - new_src_w, INT_MIN, INT_MAX); 96 dst->x1 = clip->x1; 97 } 98 diff = clip->y1 - dst->y1; 99 if (diff > 0) { 100 u32 new_src_h = clip_scaled(drm_rect_height(src), 101 drm_rect_height(dst), diff); 102 103 src->y1 = clamp_t(int64_t, src->y2 - new_src_h, INT_MIN, INT_MAX); 104 dst->y1 = clip->y1; 105 } 106 diff = dst->x2 - clip->x2; 107 if (diff > 0) { 108 u32 new_src_w = clip_scaled(drm_rect_width(src), 109 drm_rect_width(dst), diff); 110 111 src->x2 = clamp_t(int64_t, src->x1 + new_src_w, INT_MIN, INT_MAX); 112 dst->x2 = clip->x2; 113 } 114 diff = dst->y2 - clip->y2; 115 if (diff > 0) { 116 u32 new_src_h = clip_scaled(drm_rect_height(src), 117 drm_rect_height(dst), diff); 118 119 src->y2 = clamp_t(int64_t, src->y1 + new_src_h, INT_MIN, INT_MAX); 120 dst->y2 = clip->y2; 121 } 122 123 return drm_rect_visible(dst); 124 } 125 EXPORT_SYMBOL(drm_rect_clip_scaled); 126 127 static int drm_calc_scale(int src, int dst) 128 { 129 int scale = 0; 130 131 if (WARN_ON(src < 0 || dst < 0)) 132 return -EINVAL; 133 134 if (dst == 0) 135 return 0; 136 137 if (src > (dst << 16)) 138 return DIV_ROUND_UP(src, dst); 139 else 140 scale = src / dst; 141 142 return scale; 143 } 144 145 /** 146 * drm_rect_calc_hscale - calculate the horizontal scaling factor 147 * @src: source window rectangle 148 * @dst: destination window rectangle 149 * @min_hscale: minimum allowed horizontal scaling factor 150 * @max_hscale: maximum allowed horizontal scaling factor 151 * 152 * Calculate the horizontal scaling factor as 153 * (@src width) / (@dst width). 154 * 155 * If the scale is below 1 << 16, round down. If the scale is above 156 * 1 << 16, round up. This will calculate the scale with the most 157 * pessimistic limit calculation. 158 * 159 * RETURNS: 160 * The horizontal scaling factor, or errno of out of limits. 161 */ 162 int drm_rect_calc_hscale(const struct drm_rect *src, 163 const struct drm_rect *dst, 164 int min_hscale, int max_hscale) 165 { 166 int src_w = drm_rect_width(src); 167 int dst_w = drm_rect_width(dst); 168 int hscale = drm_calc_scale(src_w, dst_w); 169 170 if (hscale < 0 || dst_w == 0) 171 return hscale; 172 173 if (hscale < min_hscale || hscale > max_hscale) 174 return -ERANGE; 175 176 return hscale; 177 } 178 EXPORT_SYMBOL(drm_rect_calc_hscale); 179 180 /** 181 * drm_rect_calc_vscale - calculate the vertical scaling factor 182 * @src: source window rectangle 183 * @dst: destination window rectangle 184 * @min_vscale: minimum allowed vertical scaling factor 185 * @max_vscale: maximum allowed vertical scaling factor 186 * 187 * Calculate the vertical scaling factor as 188 * (@src height) / (@dst height). 189 * 190 * If the scale is below 1 << 16, round down. If the scale is above 191 * 1 << 16, round up. This will calculate the scale with the most 192 * pessimistic limit calculation. 193 * 194 * RETURNS: 195 * The vertical scaling factor, or errno of out of limits. 196 */ 197 int drm_rect_calc_vscale(const struct drm_rect *src, 198 const struct drm_rect *dst, 199 int min_vscale, int max_vscale) 200 { 201 int src_h = drm_rect_height(src); 202 int dst_h = drm_rect_height(dst); 203 int vscale = drm_calc_scale(src_h, dst_h); 204 205 if (vscale < 0 || dst_h == 0) 206 return vscale; 207 208 if (vscale < min_vscale || vscale > max_vscale) 209 return -ERANGE; 210 211 return vscale; 212 } 213 EXPORT_SYMBOL(drm_rect_calc_vscale); 214 215 /** 216 * drm_calc_hscale_relaxed - calculate the horizontal scaling factor 217 * @src: source window rectangle 218 * @dst: destination window rectangle 219 * @min_hscale: minimum allowed horizontal scaling factor 220 * @max_hscale: maximum allowed horizontal scaling factor 221 * 222 * Calculate the horizontal scaling factor as 223 * (@src width) / (@dst width). 224 * 225 * If the calculated scaling factor is below @min_vscale, 226 * decrease the height of rectangle @dst to compensate. 227 * 228 * If the calculated scaling factor is above @max_vscale, 229 * decrease the height of rectangle @src to compensate. 230 * 231 * If the scale is below 1 << 16, round down. If the scale is above 232 * 1 << 16, round up. This will calculate the scale with the most 233 * pessimistic limit calculation. 234 * 235 * RETURNS: 236 * The horizontal scaling factor. 237 */ 238 int drm_rect_calc_hscale_relaxed(struct drm_rect *src, 239 struct drm_rect *dst, 240 int min_hscale, int max_hscale) 241 { 242 int src_w = drm_rect_width(src); 243 int dst_w = drm_rect_width(dst); 244 int hscale = drm_calc_scale(src_w, dst_w); 245 246 if (hscale < 0 || dst_w == 0) 247 return hscale; 248 249 if (hscale < min_hscale) { 250 int max_dst_w = src_w / min_hscale; 251 252 drm_rect_adjust_size(dst, max_dst_w - dst_w, 0); 253 254 return min_hscale; 255 } 256 257 if (hscale > max_hscale) { 258 int max_src_w = dst_w * max_hscale; 259 260 drm_rect_adjust_size(src, max_src_w - src_w, 0); 261 262 return max_hscale; 263 } 264 265 return hscale; 266 } 267 EXPORT_SYMBOL(drm_rect_calc_hscale_relaxed); 268 269 /** 270 * drm_rect_calc_vscale_relaxed - calculate the vertical scaling factor 271 * @src: source window rectangle 272 * @dst: destination window rectangle 273 * @min_vscale: minimum allowed vertical scaling factor 274 * @max_vscale: maximum allowed vertical scaling factor 275 * 276 * Calculate the vertical scaling factor as 277 * (@src height) / (@dst height). 278 * 279 * If the calculated scaling factor is below @min_vscale, 280 * decrease the height of rectangle @dst to compensate. 281 * 282 * If the calculated scaling factor is above @max_vscale, 283 * decrease the height of rectangle @src to compensate. 284 * 285 * If the scale is below 1 << 16, round down. If the scale is above 286 * 1 << 16, round up. This will calculate the scale with the most 287 * pessimistic limit calculation. 288 * 289 * RETURNS: 290 * The vertical scaling factor. 291 */ 292 int drm_rect_calc_vscale_relaxed(struct drm_rect *src, 293 struct drm_rect *dst, 294 int min_vscale, int max_vscale) 295 { 296 int src_h = drm_rect_height(src); 297 int dst_h = drm_rect_height(dst); 298 int vscale = drm_calc_scale(src_h, dst_h); 299 300 if (vscale < 0 || dst_h == 0) 301 return vscale; 302 303 if (vscale < min_vscale) { 304 int max_dst_h = src_h / min_vscale; 305 306 drm_rect_adjust_size(dst, 0, max_dst_h - dst_h); 307 308 return min_vscale; 309 } 310 311 if (vscale > max_vscale) { 312 int max_src_h = dst_h * max_vscale; 313 314 drm_rect_adjust_size(src, 0, max_src_h - src_h); 315 316 return max_vscale; 317 } 318 319 return vscale; 320 } 321 EXPORT_SYMBOL(drm_rect_calc_vscale_relaxed); 322 323 /** 324 * drm_rect_debug_print - print the rectangle information 325 * @prefix: prefix string 326 * @r: rectangle to print 327 * @fixed_point: rectangle is in 16.16 fixed point format 328 */ 329 void drm_rect_debug_print(const char *prefix, const struct drm_rect *r, bool fixed_point) 330 { 331 if (fixed_point) 332 DRM_DEBUG_KMS("%s" DRM_RECT_FP_FMT "\n", prefix, DRM_RECT_FP_ARG(r)); 333 else 334 DRM_DEBUG_KMS("%s" DRM_RECT_FMT "\n", prefix, DRM_RECT_ARG(r)); 335 } 336 EXPORT_SYMBOL(drm_rect_debug_print); 337 338 /** 339 * drm_rect_rotate - Rotate the rectangle 340 * @r: rectangle to be rotated 341 * @width: Width of the coordinate space 342 * @height: Height of the coordinate space 343 * @rotation: Transformation to be applied 344 * 345 * Apply @rotation to the coordinates of rectangle @r. 346 * 347 * @width and @height combined with @rotation define 348 * the location of the new origin. 349 * 350 * @width correcsponds to the horizontal and @height 351 * to the vertical axis of the untransformed coordinate 352 * space. 353 */ 354 void drm_rect_rotate(struct drm_rect *r, 355 int width, int height, 356 unsigned int rotation) 357 { 358 struct drm_rect tmp; 359 360 if (rotation & (DRM_MODE_REFLECT_X | DRM_MODE_REFLECT_Y)) { 361 tmp = *r; 362 363 if (rotation & DRM_MODE_REFLECT_X) { 364 r->x1 = width - tmp.x2; 365 r->x2 = width - tmp.x1; 366 } 367 368 if (rotation & DRM_MODE_REFLECT_Y) { 369 r->y1 = height - tmp.y2; 370 r->y2 = height - tmp.y1; 371 } 372 } 373 374 switch (rotation & DRM_MODE_ROTATE_MASK) { 375 case DRM_MODE_ROTATE_0: 376 break; 377 case DRM_MODE_ROTATE_90: 378 tmp = *r; 379 r->x1 = tmp.y1; 380 r->x2 = tmp.y2; 381 r->y1 = width - tmp.x2; 382 r->y2 = width - tmp.x1; 383 break; 384 case DRM_MODE_ROTATE_180: 385 tmp = *r; 386 r->x1 = width - tmp.x2; 387 r->x2 = width - tmp.x1; 388 r->y1 = height - tmp.y2; 389 r->y2 = height - tmp.y1; 390 break; 391 case DRM_MODE_ROTATE_270: 392 tmp = *r; 393 r->x1 = height - tmp.y2; 394 r->x2 = height - tmp.y1; 395 r->y1 = tmp.x1; 396 r->y2 = tmp.x2; 397 break; 398 default: 399 break; 400 } 401 } 402 EXPORT_SYMBOL(drm_rect_rotate); 403 404 /** 405 * drm_rect_rotate_inv - Inverse rotate the rectangle 406 * @r: rectangle to be rotated 407 * @width: Width of the coordinate space 408 * @height: Height of the coordinate space 409 * @rotation: Transformation whose inverse is to be applied 410 * 411 * Apply the inverse of @rotation to the coordinates 412 * of rectangle @r. 413 * 414 * @width and @height combined with @rotation define 415 * the location of the new origin. 416 * 417 * @width correcsponds to the horizontal and @height 418 * to the vertical axis of the original untransformed 419 * coordinate space, so that you never have to flip 420 * them when doing a rotatation and its inverse. 421 * That is, if you do :: 422 * 423 * drm_rect_rotate(&r, width, height, rotation); 424 * drm_rect_rotate_inv(&r, width, height, rotation); 425 * 426 * you will always get back the original rectangle. 427 */ 428 void drm_rect_rotate_inv(struct drm_rect *r, 429 int width, int height, 430 unsigned int rotation) 431 { 432 struct drm_rect tmp; 433 434 switch (rotation & DRM_MODE_ROTATE_MASK) { 435 case DRM_MODE_ROTATE_0: 436 break; 437 case DRM_MODE_ROTATE_90: 438 tmp = *r; 439 r->x1 = width - tmp.y2; 440 r->x2 = width - tmp.y1; 441 r->y1 = tmp.x1; 442 r->y2 = tmp.x2; 443 break; 444 case DRM_MODE_ROTATE_180: 445 tmp = *r; 446 r->x1 = width - tmp.x2; 447 r->x2 = width - tmp.x1; 448 r->y1 = height - tmp.y2; 449 r->y2 = height - tmp.y1; 450 break; 451 case DRM_MODE_ROTATE_270: 452 tmp = *r; 453 r->x1 = tmp.y1; 454 r->x2 = tmp.y2; 455 r->y1 = height - tmp.x2; 456 r->y2 = height - tmp.x1; 457 break; 458 default: 459 break; 460 } 461 462 if (rotation & (DRM_MODE_REFLECT_X | DRM_MODE_REFLECT_Y)) { 463 tmp = *r; 464 465 if (rotation & DRM_MODE_REFLECT_X) { 466 r->x1 = width - tmp.x2; 467 r->x2 = width - tmp.x1; 468 } 469 470 if (rotation & DRM_MODE_REFLECT_Y) { 471 r->y1 = height - tmp.y2; 472 r->y2 = height - tmp.y1; 473 } 474 } 475 } 476 EXPORT_SYMBOL(drm_rect_rotate_inv); 477